Approximate Laplace-Beltrami
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1. Form the matrix K with entries exp(—"—

2. Set p=K;*1 where1=(11...1)
3. Define Ky = K;./(p * p/)

4. Set v =sqrt(Ka * 1)

5. Define K = Ka./(v V')

6. Diagonalize K by [U, S, V]| = svd(K)

7. The eigenvalues of A are approximated by those of K, and its
eigenfunctions ¢; are approximated by U(:,7)./U(:, 1)

2.4.1 Curves
Closed curves

We first discuss the case of closed curves in R”. We assume that I" is a C° simple curve
(it has no double points) of length 1. Since I' has no boundary, the Neumann heat kernel is
merely the heat kernel.

This case is degenerate as from the heat diffusion point of view, all such curves are the
same: the amount of heat that has propagated from x to y at a given time ¢ only depends
on the initial distribution of temperature and the length of the curve between x and y.
Equivalently, every curve is isometric to a circle and the heat kernel is a function of the
geodesic distance. As a consequence, all closed simple curves can be identified to a circle of
the same length, and for the circle, the eigenfunctions of the Laplace-Beltrami operator are
known to be the Fourier basis. For these curves, the heat kernel is
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where o and (3 are the curvilinear abscissas of two points on I'. Thus

pe(a, ) =1+2 Z e_th(cos(27rjoz) cos(2mj ) + sin(2mja) sin(27j3))
Jj=1

which constitutes the spectral decomposition of this kernel.

This identity shows that for very moderate values of ¢, only the first terms contribute
to this sum, and the heat flow can be accurately computed using the embedding a —
(cos(2mav),sin(27wer)). In other words, the curve I' is mapped onto a circle in the plane. We
therefore have shown that the heat metric can be computed on a closed simple curve as the
cord length of a circle to any accuracy:
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where r¢(z,y) is a bounded function.
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