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Goal This document aims to provide extra information about the method
for beam convolution with non-ideal HWPs described in [1]. We will focus
on the code implementation.

General note on “spin” formalism versus E-, B-mode formalism In
essence, the harmonic convolution method evaluates the following expression
to produce time-ordered data:

dt =

smax∑
s=−smax

[ `max∑
`=0

∑̀
m=−`

sf`m sY`m(θt, φt)
]
e−isψt . (1)

The sf`m coefficients obey the “reality condition”:

(sf`m)∗ = −sf`−m(−1)s+m . (2)

Equivalently, they are the spin-weighed SH coefficients of spin-weighted fields
that obey (sf)∗ (θ, φ) = −sf(θ, φ). This follows from the requirement that
dt is real.

In cases with a spin-0 beam and sky we have:

sf`m = b`s a`m . (3)

In this case the reality condition is clearly met:

(sf`m)∗ = b`−s a`−m(−1)s+m , (4)
= −sf`m(−1)s+m . (5)

In cases with a spin-2 beam and sky we have:

sf`m =
1

2
(−2b`s 2a`m + 2b`s −2a`m) . (6)
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In this case the reality condition still holds:

(sf`m)∗ =
1

2
(2b`−s −2a`−m + −2b`−s 2a`−m) (−1)s+m , (7)

= −sf`m(−1)s+m . (8)

But note that the reality condition does not hold for the individual terms.
By making use of the following relations:

−2x`m = −(xE`m − ixB`m) , (9)

2x`m = −(xE`m + ixB`m) , (10)

we can rewrite the spin-2 case in terms of the E- and B-mode coefficients of
the beam and sky:

sf`m =
1

2
(−2b`s 2a`m + 2b`s −2a`m) , (11)

= bE`s a
E
`m + bB`s a

B
`m . (12)

Note that the reality condition now holds for both terms independently since
we have

(
x
E/B
`m

)∗
= x

E/B
`−m(−1)m.

Note on the implementation in beamconv In beamconv Eq. (1) is evalu-
ated in two different ways depending on whether the sf`m coefficients consist
of spin-0 beams/skies or spin-2 beams/skies.

For the first case, i.e. when sf`m = b`s a`m, we make use of the fact that
Eq. (1) can be written as:

dt = 0f(θt, φt) +

smax∑
s>0

sf(θt, φt)e
−isψt + −sf(θt, φt)e

isψt , (13)

= 0f(θt, φt) +

smax∑
s>0

Re
[
sf(θt, φt)e

−isψt

]
, (14)

where:

sf(θt, φt) =

`max∑
`=0

∑̀
m=−`

sf`m sY`m(θt, φt) . (15)

Eq. (15) is calculated for s ≥ 0; the resulting (complex) maps are plugged into
Eq. (14) where they are modulated by the complex exponential exp(−isψt)
before the real part is taken.

2



For the second case, i.e. when sf`m = (−2b`s 2a`m + 2b`s −2a`m) /2, beamconv
evaluates Eq. (1) by instead using sf

′
`m = −2b`s 2a`m. These are the coeffi-

cients of a field sf
′(θ, φ) that does not obey the reality condition: (sf

′)∗ (θ, φ) 6=
−sf

′(θ, φ). As a result, the maps in Eq. (15) have to be computed for
−smax ≤ s ≤ smax. They are inserted into Eq. 13 without making use
of the trick in Eq. 14. The result is still real, so dt is still real valued.

In retrospect this seems an overly complicated method because it does
not match well with libsharp, which does not support SH transforms for
fields that do not obey the reality condition. As a result, beamconv has to do
some relatively opaque operations to achieve the transforms for these fields.

Data model with non-ideal HWPs The data model is given by Eq. (11)
in [1].

dt =

∫
dνF (ν)

∑
`,m,s

{
b
Ĩ
(0)
i
`s (ν, αt)a

I
`m(ν) + b

Ṽ
(0)
i
`s (ν, αt)a

V
`m(ν)

+
1

2

[
−2b

P̃
(0)
i
`s (ν, αt)2a

P
`m(ν) + 2b

P̃
(0)
i
`s (ν, αt)−2a

P
`m(ν)

]}
×
√

4π

2`+ 1
e−isψt

sY`m(θt, φt) + nt ,

(16)

Here, αt is the time-dependent HWP angle.

Frequency passband We start with the integral over frequency and the
frequency passband F (ν):

dt =

∫
dνF (ν)

(
. . .
)
t
(ν) + nt . (17)

In the code this integral is replaced by a sum over approximately 10 frequency
subbands:

dt =

νN∑
ν=ν0

∆νF (ν)
(
. . .
)
t
(ν) + nt . (18)

To produce the final time-ordered data, we thus have to compute the con-
volution for each frequency subband and add the result to a single array
of time-ordered data. In the current version of beamconv the time-ordered
data for each subband is also mapped onto the sky before all subbands are
combined. This is valid because our map-making scheme is linear, but it is
wasteful and should ideally be avoided.
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Convolution of the Stokes I sky Let us focus on the part of the data
model describing the coupling to the Stokes I component of the sky:

dt =

∫
dνF (ν)

∑
`,m,s

b
Ĩ
(0)
i
`s (ν, αt)a

I
`m(ν)

√
4π

2`+ 1
e−isψt

sY`m(θt, φt) . (19)

The SH coefficients of the beam b
Ĩ
(0)
i
`s (ν, αt) are given in Eq. (15) of [1]. For

the present discussion the detailed expressions are not important (they are
derived later in this document), the important part is that the coefficients
can be written as:

b
Ĩ
(0)
i
`s (ν, αt) = bĨb,II`s (ν) + bṼb,V I`s (ν)

+ b
Re(P̃b,P

∗I)
`s (ν) cos(2αt) + b

Im(P̃b,P
∗I)

`s (ν) sin(2αt) .
(20)

The first two elements on the right hand side of the equation describe
the coupling between the Stokes I and V beam of the instrument and the
II and V I elements of the HWP Mueller matrix, respectively. These are
coefficients of real-valued spin-0 fields, so the usual symmetry relations hold.
For efficiency, the combination bĨb,II`s (ν) + bṼb,V I`s (ν) can be treated as a single
set of SH coefficients during the convolution.

The last two elements on the right hand side of the equation describe
the coupling between the P̃ beam and the P ∗I element of the HWP. These
are both complex fields, but the coupling can be separated into the real and
imaginary parts of the coupling. The bRe(P̃b,P

∗I)
`s and bIm(P̃b,P

∗I)
`s coefficients

are both SH coefficients of real-valued spin-0 fields, so they can be treated in
the usual case. The modulation by αt can be applied after the time-ordered
data is generated. For example, the contribution to the total time-ordered
data from the Re(P̃b, P

∗I) term would be given by (ignoring the integral
over ν for simplicity):

d
Re(P̃b,P

∗I)
t =

∑
`,m,s

b
Re(P̃b,P

∗I)
`s aI`m

√
4π

2`+ 1
e−isψt

sY`m(θt, φt)

 cos(4αt) .

(21)

Note that that the term inside the brackets does not depend on the HWP
angle α. The cos(4αt) modulation can be done after the time-ordered data
inside the square brackets have been generated.
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Convolution of the Stokes V sky This is completely analogous to the
case for the Stokes I sky (just swapping I for V ). The data model is given
by:

dt =

∫
dνF (ν)

∑
`,m,s

b
Ṽ

(0)
i
`s (ν, αt)a

V
`m(ν)

√
4π

2`+ 1
e−isψt

sY`m(θt, φt) . (22)

with coefficients that can be written as:

b
Ṽ

(0)
i
`s (ν, αt) = bĨb,IV`s (ν) + bṼb,V V`s (ν)

+ b
Re(P̃b,P

∗V )
`s (ν) cos(2αt) + b

Im(P̃b,P
∗V )

`s (ν) sin(2αt) .
(23)

Convolution of the Stokes Q, U sky The part of the data model that
describes the coupling to the Stokes Q and U part of the sky is given by:

dt =

∫
dνF (ν)

∑
`,m,s

1

2

[
−2b

P̃
(0)
i
`s (ν, αt)2a

P
`m(ν) + 2b

P̃
(0)
i
`s (ν, αt)−2a

P
`m(ν)

]}
×
√

4π

2`+ 1
e−isψt

sY`m(θt, φt) .

(24)

The SH coefficients of the beam 2b
P̃

(0)
i
`s (ν, αt) are given by Eq. (16) in [1]. We

can divide the coefficients into 4 parts again:

2b
P̃

(0)
i
`s (ν, αt) = 2b

Ĩb,IP
`s (ν)e−2iαt + 2b

Ṽb,V P
`s (ν)e−2iαt

+ 2b
P̃ ∗b,P

∗P
`s (ν)e−4iαt + 2b

P̃b,PP
`s (ν) .

(25)

The coefficients of the −2b
P̃

(0)
i
`s (ν, αt) are similar:

−2b
P̃

(0)
i
`s (ν, αt) = −2b

Ĩb,IP
`s (ν)e2iαt + −2b

Ṽb,V P
`s (ν)e2iαt

+ −2b
P̃b,PP

∗

`s (ν)e4iαt + −2b
P̃ ∗b,P

∗P ∗

`s (ν) .
(26)

If we combine with the ±2aP`m coefficients, we thus get 4 different terms:

sf
Ĩb,IP
`m =

1

2

(
−2b

Ĩb,IP
`s 2a

P
`me2iαt + 2b

Ĩb,IP
`s −2a

P
`me−2iαt

)
, (27)

sf
Ṽb,V P
`m =

1

2

(
−2b

Ṽb,V P
`s 2a

P
`me2iαt + 2b

Ṽb,V P
`s −2a

P
`me−2iαt

)
, (28)

sf
P̃b,PP

∗

`m =
1

2

(
−2b

P̃b,PP
∗

`s 2a
P
`me4iαt + 2b

P̃ ∗b,P
∗P

`s −2a
P
`me−4iαt

)
, (29)

sf
P̃b,PP
`m =

1

2

(
−2b

P̃ ∗b,P
∗P ∗

`s 2a
P
`m + 2b

P̃b,PP
`s −2a

P
`m

)
. (30)
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Note that the coefficients that describe the coupling between the I beam
and the HWP and the V beam with the HWP can treated as a single set of
coefficients: −2b

Ĩb,IP
`s + −2b

Ṽb,V P
`s and similar for the +2 versions.

The sf`m coefficients in Eq. (27 - 30) all obey the reality condition and
thus they can be treated in a similar way as the usual case for Q, U beams
and skies. The last line, Eq. (30), is exactly the same as the usual case. For
the first three lines we have to take care of the αt terms. As explained earlier,
in beamconv these terms are handled by only considering the first term, e.g.

−2b
Ĩb,IP
`s 2a

P
`m and treating the resulting complex field that does not obey the

reality condition. In this case it is straightforward to apply the complex
exponential after the complex time-ordered data have been generated.

For the case where the E- and B-mode coefficients of the beam and sky
are used Eq. (27 - 30) can be rewritten as follows:

sf
Ĩb,IP
`m = bE,Ĩb,IP`s aE`m cos(2αt) + bB,Ĩb,IP`s aB`m cos(2αt)

+ bE,Ĩb,IP`s aB`m sin(2αt) + bB,Ĩb,IP`s aE`m sin(2αt) ,
(31)

sf
Ṽb,V P
`m = bE,Ṽb,V P`s aE`m cos(2αt) + bB,Ṽb,V P`s aB`m cos(2αt)

+ bE,Ṽb,V P`s aB`m sin(2αt) + bB,Ṽb,V P`s aE`m sin(2αt) ,
(32)

sf
P̃b,PP

∗

`m = bE,P̃b,PP
∗

`s aE`m cos(4αt) + bB,P̃b,PP
∗

`s aB`m cos(4αt)

+ bE,P̃b,PP
∗

`s aB`m sin(4αt) + bB,P̃b,PP
∗

`s aE`m sin(4αt) ,
(33)

sf
P̃b,PP
`m = bE,P̃b,PP

`s aE`m + bB,P̃b,PP
`s aB`m . (34)

Again, the αt modulation can be applied after the time-ordered data for each
term is generated.

Computing the HPW + beam SH coefficients We now focus on
computing the spherical harmonic coefficients of the product of the I, P and
V beams with the different elements of the HPW Mueller matrix. These are
the coefficients that are needed to compute Eq. (20) and Eq. (25).

We start by transforming the HWP Mueller matrix MHWP using the
complex transformation:

C = TMHWPT
† , (35)
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where:

T =


1 0 0 0

0 1√
2

i√
2

0

0 1√
2

−i√
2

0

0 0 0 1

 . (36)

The advantage of this representation is that the elements of C transform as
spin-weighted fields under rotations.

The second ingredient we need is a way to represent a tensor product
of two spin-weighted spherical harmonics as a direct sum of a single spin-
weighted spherical harmonic:

s1Y`1m1(n̂) s2Y`2m2(n̂) =

`1+`2∑
`3=|`1−`2|

`3∑
m3=−`3

`3∑
s3=−`3

J−s1−s2−s3`1`2`3

×
(
`1 `2 `3
m1 m2 m3

)
s3Y

∗
`3m3

(n̂) ,

(37)

with:

Js1s2s3`1`2`3
≡
√

(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3
s1 s2 s3

)
. (38)

We start with the terms that make up Eq. (20). They are given in
Eq. (15) of [1]:

b
Ĩ
(0)
i
`s (ν, α) =

∫
S2

dΩ(n̂)
[
Ĩ
(0)
b (n̂, ν)CII(ν)

+ Ṽ
(0)
b (n̂, ν)CV I(ν)

+
√

2Re
(
P̃

(0)
b (n̂, ν)CP ∗I(ν)e−2iα

)]
Y ∗`s(n̂) ,

(39)

= bĨb,II`s (ν) + bṼb,V I`s (ν)

+ b
Re(P̃b,P

∗I)
`s (ν) cos(2αt) + b

Im(P̃b,P
∗I)

`s (ν) sin(2αt) .
(40)

Lets go through the individual terms:

1. Ĩ (0)
b (n̂, ν)CII(ν) is a product of the I beam: Ĩ

(0)
b (n̂, ν) and the II

component of the complex HWP matrix (which for II is the same as
the normal real-valued Mueller matrix). Decomposing both quantities
into spherical harmonics yields:

Ĩ
(0)
b (n̂)CII =

∑
`1,m1

∑
`2,m2

bĨ`1m1
cII`2m2

Y`1m1(n̂)Y`2m2(n̂) . (41)
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This is valid because both are spin 0 quantities. Now we use Eq. (37)
and make use of the fact that we model the II element of the HWP as
a monopole, i.e. cII`m =

√
4πCIIδ`,0δm,0:

Ĩ
(0)
b (n̂)CII =

√
4πCII

∑
`1,m1

∑
`3,m3

bĨ`1m1
J000
`10`3

×
(
`1 0 `3
m1 0 m3

)
Y ∗`3m3

(n̂) ,

(42)

=
√

4πCII
∑
`1,m1

bĨ`1m1

2`1 + 1√
4π

×
(
`1 0 `1
0 0 0

)(
`1 0 `1
m1 0 −m1

)
Y ∗`1−m1

(n̂) ,

(43)

= CII
∑
`1,m1

bĨ`1m1
(−1)m1Y ∗`1−m1

(n̂) , (44)

= CII
∑
`1,m1

bĨ`1m1
Y`1m1(n̂) . (45)

In the first step we have used the triangle constraint of the 3-j symbols.
In the second step, we have used:(

` 0 `
m 0 −m

)
=

(−1)`+m√
2`+ 1

. (46)

Plugging in this result then yields:

bĨb,II`s =

∫
S2

dΩ(n̂)Ĩ
(0)
b (n̂)CIIY

∗
`s(n̂) , (47)

=

∫
S2

dΩ(n̂)CII
∑
`1,m1

bĨ`1m1
(n̂)Y`1m1Y

∗
`s(n̂) , (48)

= CIIb
Ĩ
`s , (49)

which is of course what we expected for this simple case.

2. The Ṽ (0)
b (n̂, ν)CV I(ν) case is completely analogous to the previous

case. One finds that bṼb,V I`s = CV Ib
Ṽ
`s.

3. The
√

2Re
(
P̃

(0)
b (n̂, ν)CP ∗I(ν)e−2iα

)
case is a bit more complicated.
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We start by writing:

√
2Re

(
P̃

(0)
b (n̂)CP ∗Ie

−2iα
)

=
1√
2

(
P̃

(0)
b (n̂)CP ∗Ie

−2iα

+ P̃ ∗
(0)

b (n̂)CPIe
2iα
)
.

(50)

Lets calculate the SH coefficients for the first term:

b1`m =
1√
2

∫
S2

dΩ(n̂)P̃
(0)
b (n̂)CP ∗Ie

−2iαY ∗`m(n̂) . (51)

We note that P̃ (0)
b is spin 2 and that CP ∗I is spin -2. Furthermore, we

assume that CP ∗I has no spatial variation (just like we did above where
we assumed that CII was described by a monopole). A constant spin
-2 field cannot be a monopole but must proportional to exp 2iφ near
the north pole of the spherical coordinate system (see Eq. (31) in [2]),
so we assume that we can decompose CP ∗I into SH coefficients that
are nonzero only for m = 2: CP ∗I =

∑
`m c`2 2Y`2. We can therefore

write:

b1`m =
e−2iα√

2

∑
`′m′

∑
`′′

2b
P̃
`′m′c`′′2(−1)m

×
∫
S2

dΩ(n̂) 2Y`′m′(n̂)−2Y`′′2(n̂)Y`−m(n̂) ,

(52)

=
e−2iα√

2

∑
`′m′

∑
`′′

2b
P̃
`′m′c`′′2(−1)mJ02−2

``′`′′

(
` `′ `′′

−m m′ 2

)
, (53)

=
e−2iα√

2

∑
`′

∑
`′′

2b
P̃
`′m−2c`′′2(−1)m

× J02−2
``′`′′

(
` `′ `′′

−m m− 2 2

)
.

(54)

Now we use the approximation from Appendix G from [3]: we note
that c`′′2 peaks at `′′ = 2. The triangle constraint of the 3-j symbols
thus constrains `′ to be very close to `. This means that we can safely
move 2b

P̃
`′m−2 outside the sum over `′ (assuming that 2b

P̃
`′m−2 is slowly

varying with `′, i.e. a narrow beam) and that we can approximate the
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prefactor of J02−2
``′`′′ as (2`′ + 1)

√
2`′′ + 1/

√
4π. This yields:

b1`m ≈
e−2iα√

2
2b
P̃
`m−2(−1)m

∑
`′′

c`′′2

√
2`′′ + 1√

4π

×
∑
`′

(2`′ + 1)

(
` `′ `′′

0 −2 2

)(
` `′ `′′

−m m− 2 2

)
.

(55)

Then, using Eq. (C9) from [3], this can be written as:

b1`m ≈
e−2iα√

2
2b
P̃
`m−2

∑
`′′

c`′′2

√
2`′′ + 1√

4π
. (56)

Finally, in Appendix G from [3] it is shown that
∑

`′′ c`′′2
√

2`′′ + 1/
√

4π
is very close to CP ∗I . So we end up with:

b1`m ≈
e−2iα√

2
2b
P̃
`m−2CP ∗I . (57)

The same derivation can be applied to the second term, giving:

b2`m =
1√
2

∫
S2

dΩ(n̂)P̃ ∗
(0)

b (n̂)CPIe
2iαY ∗`m(n̂) , (58)

≈ e2iα√
2
−2b

P̃ ∗
`m+2CPI . (59)

The SH coefficients corresponding to
√

2Re
(
P̃

(0)
b (n̂, ν)CP ∗I(ν)e−2iα

)
are thus approximately given by:∫

S2

dΩ(n̂)
[√

2Re
(
P̃

(0)
b (n̂, ν)CP ∗I(ν)e−2iα

)]
Y ∗`s(n̂)

≈ b1`m + b2`m ,

(60)

=
1√
2

(
e−2iα2b

P̃
`m−2CP ∗I + e2iα−2b

P̃ ∗
`m+2CPI

)
. (61)

Which satisfy the symmetry relation for the SH coefficients of a real-
valued field. We can also write this as:

b1`m + b2`m =
1√
2

[
cos(2α)

(
−2b

P̃ ∗
`m+2CPI + 2b

P̃
`m−2CP ∗I

i sin(2α)
(
−2b

P̃ ∗
`m+2CPI − 2b

P̃
`m−2CP ∗I

)]
,

(62)
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which means that we have found the expressions for bRe(P̃b,P
∗I)

`s and

b
Im(P̃b,P

∗I)
`s in Eq. (20) and Eq. (40):

b
Re(P̃b,P

∗I)
`m =

1√
2

(
−2b

P̃ ∗
`m+2CPI + 2b

P̃
`m−2CP ∗I

)
, (63)

b
Im(P̃b,P

∗I)
`m =

i√
2

(
−2b

P̃ ∗
`m+2CPI − 2b

P̃
`m−2CP ∗I

)
. (64)

Here, −2bP̃
∗

`m+2 and 2b
P̃
`m−2 are the spin-weighed spherical harmonic

coefficients of the normal (i.e. no HWP) Q̃ − iŨ and Q̃ + iŨ beams
respectively, while CP ∗I and CPI are elements of the complex HWP
Mueller matrix.

We now turn our attention to the SH coefficients that make up Eq. (23).
We will not repeat the above derivation, we can obtain the result by swapping
the I and V indices in the appropriate places. We obtain:

bĨb,IV`s = bĨ`sCIV , (65)

bṼb,V V`s = bṼ`sCV V , (66)

b
Re(P̃b,P

∗V )
`s =

1√
2

(
−2b

P̃ ∗
`m+2CPV + 2b

P̃
`m−2CP ∗V

)
, (67)

b
Im(P̃b,P

∗V )
`s =

i√
2

(
−2b

P̃ ∗
`m+2CPV − 2b

P̃
`m−2CP ∗V

)
. (68)

Now we move on to the SH coefficients in Eq. (25). Again, the derivation
is so similar that I do not want to repeat it, the only new things are realizing
that CPP ∗ and CP ∗P are spin -4 and 4 respectively and that CPP and CP ∗P ∗
are both spin 0. I also found a mistake in our paper unfortunately: the SH
coefficients in Eq. (16) should be:

2b
P̃

(0)
i
`s (ν, α) =

∫
S2

dΩ(n̂)
[
Ĩ
(0)
b (n̂, ν)CIP (ν)

√
2 e−2iα

+ Ṽ
(0)
b (n̂, ν)CV P (ν)

√
2e−2iα

+ P̃
(0)∗
b (n̂, ν)CP ∗P (ν)e−4iα

+ P̃
(0)
b (n̂, ν)CPP (ν)

]
2Y
∗
`s(n̂) ,

(69)

(I accidentally swapped around P̃ (0)
b and P̃ (0)∗

b ). Using the correct expression
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we obtain:

2b
Ĩb,IP
`m =

√
2CIP b

Ĩ
`m+2 , (70)

2b
Ṽb,V P
`m =

√
2CV P b

Ṽ
`m+2 , (71)

2b
P̃ ∗b,P

∗P
`m = CP ∗P −2b

P̃
`m+4 , (72)

2b
P̃b,PP
`m = CPP 2b

P̃
`m . (73)

and similarly, the coefficients in Eq. (26) are given by:

−2b
Ĩb,IP
`m =

√
2CIP ∗ b

Ĩ
`m−2 , (74)

−2b
Ṽb,V P
`m =

√
2CV P ∗ b

Ṽ
`m−2 , (75)

−2b
P̃b,PP

∗

`m = CPP ∗ 2b
P̃
`m−4 , (76)

−2b
P̃ ∗b,P

∗P ∗

`m = CP ∗P ∗ −2b
P̃
`m . (77)

These can be converted to the E and B harmonic modes used in Eq. (31)-(34)
by making use of Eq. (9)-(10).
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