TES Simulation

Tommaso Ghigna

TES Model (Minimal complexity)

Irwin & Hilton. Transition-edge sensors, 2005: https://doi.org/10.1007/10933596_3.

Assumptions

- For LiteBIRD we expect $P_{opt} \approx 0.3 0.5$ pW depending on the band. For simplicity I assumed $P_{opt} = 0.5$ pW.
- Saturation power. I assumed a target $P_{sat} = 2.5 \times P_{opt}$.
- "Normal" thermal time constant $\tau_0 = \frac{C}{G}$. Target value = 33 ms.
- From expected P_{sat} and τ_0 , using expression for P_b we can define $G \sim 3.3 \times 10^{-11}$ W/K and $C \sim 1 \times 10^{-12}$ J/K.
- Inductor L = 1 nH. Small enough to have $\tau_{el} = \frac{L}{R} \ll \tau_{th}$.
- We need $R_{shunt} \ll R_{TES}$ to keep the TES voltage biased: $R_{shunt} = 0.02 \Omega$.
- In the Df-Mux system TES are AC biased. Since the bias frequency >> $\frac{1}{\tau_{th}}$ >> signal variations we expect the DC approx to be good enough for now. However I have an AC version of the code that can be used for more extended studies if needed.

Assumptions

Procedure

- Fix optical power input and bias current to obtain a stable response "in transition". Two case analyzed operation point: $R_{TES} \sim 0.7 \Omega$ and $R_{TES} \sim 0.5 \Omega$ corresponding to $\mathcal{L} \sim 7$ and $\mathcal{L} \sim 13$ for the model assumed.
- Introduce **slow** fluctuations of P_{opt} , T_{bath} or I_{bias} to study the effect on the detector response.
- Fit the result with a polynomial to obtain a formula to independently simulate response drifts. Not applicable to fast signals like CR! Require different procedure.

 $R = 0.5 \Omega - 1\% T_{bath}$ fluctuations

$R = 0.5 \Omega - 1\% P_{opt}$ fluctuations

$R = 0.5 \Omega - 100\% P_{opt}$ fluctuations

 $R = 0.5 \ \Omega - 1\% I_{bias}$ fluctuations

