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Edge cover

Definition

For an undirected input graph G = (V,E), an edge cover of G is a set of
edges C covering all vertices.

Example

Figure : An edge cover for Petersen graph

, with edges chosen being highlighted in
red. Note that this is also a perfect matching.
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Why counting?

Remark (Counting edge covers)

As the name suggests, the problem of counting edge covers simply
asks for the number of edge covers in a graph.

While both decision and optimization (minimum edge covers) version
of edge cover is easy, the counting version is more challenging and
interesting.

Besides theoretical computer science, counting problems could also be
related to many problems from other discipline such as:

Partition function in statistical physics.

Graph polynomials.

Sampling, learning and inference in probabilistic graphical models.

Pricing in combinatorial prediction markets.

Query evaluations of probabilistic database.

. . . .
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Approximate Counting

Many interesting problems in the exact counting regimes, including
counting edge cover, is hard (#P-complete). We look for their
approximate version.

Definition (FPTAS)

For given parameter ε > 0 and an instance of a particular problem class, if
the algorithm outputs a number N̂ such that

(1− ε)N ≤ N̂ ≤ (1 + ε)N,

where N is the accurate answer of the problem instance, and the running
time is bounded by poly(n, 1/ε) with n being the size of instance, this is
called the FPTAS (fully polynomial time approximation scheme).

A randomized relaxation of FPTAS is known as FPRAS (fully polynomial
time randomized approximation scheme), which uses random bits and
only outputs N̂ to the desired precision with high probability.
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Edge cover

Besides its own interests, edge cover is closely related to many other
problems such as:

Matching problem.

Rtw-Mon-CNF. (read twice monotone CNF)

Holant problem.

. . . .
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Relation to Matching

A perfect matching is always a minimum edge cover.

#perfect-matchings ≤AP #minimum-edge-covers.

Besides,

Example (Minimum edge covers)

Find a minimum edge cover by maximal matching?

(a) G has a perfect matching. (b) G doesn’t have a perfect matching.
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Relation to Rtw-Mon-CNF

Definition

A formula is read twice if every variables appears at most twice.
A formula is monotone if every variables appears positively.

By treating edges as variables, and vertices as clauses,

Edge-covers ≡ Rtw-Mon-CNF.

e1 e2 e3

e4 e5

Figure : Graph representation for
φ = (e1 ∨ e2 ∨ e3) ∧ (e1 ∨ e4) ∧ (e4 ∨ e5 ∨ e2) ∧ (e3 ∨ e5).
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Previous Results

For counting edge covers, only an Markov Chain Monte Carlo
(MCMC) based FPRAS is known for graphs with maximum degree 3
[I. Bezkov and W. Rummler 2009].

For #DNF[Karp and Luby 1983] and counting matchings[Jerrum and
Sinclair 1989], only FPRAS is known.

For counting perfect matchings, it’s still open whether or not it
admits FPRAS (or FPTAS).

For anti-ferromagnetic 2-spins systems (e.g. counting independent
sets), an FPTAS is known, and it’s correlation decay based, and goes
beyond the best known MCMC based FPRAS and achieves the
boundary of approximability (in terms of maximum degree).

Jingcheng Liu (SJTU) Counting Edge Covers SODA 2014 14 / 27



Previous Results

For counting edge covers, only an Markov Chain Monte Carlo
(MCMC) based FPRAS is known for graphs with maximum degree 3
[I. Bezkov and W. Rummler 2009].

For #DNF[Karp and Luby 1983] and counting matchings[Jerrum and
Sinclair 1989], only FPRAS is known.

For counting perfect matchings, it’s still open whether or not it
admits FPRAS (or FPTAS).

For anti-ferromagnetic 2-spins systems (e.g. counting independent
sets), an FPTAS is known, and it’s correlation decay based, and goes
beyond the best known MCMC based FPRAS and achieves the
boundary of approximability (in terms of maximum degree).

Jingcheng Liu (SJTU) Counting Edge Covers SODA 2014 14 / 27



Previous Results

For counting edge covers, only an Markov Chain Monte Carlo
(MCMC) based FPRAS is known for graphs with maximum degree 3
[I. Bezkov and W. Rummler 2009].

For #DNF[Karp and Luby 1983] and counting matchings[Jerrum and
Sinclair 1989], only FPRAS is known.

For counting perfect matchings, it’s still open whether or not it
admits FPRAS (or FPTAS).

For anti-ferromagnetic 2-spins systems (e.g. counting independent
sets), an FPTAS is known, and it’s correlation decay based, and goes
beyond the best known MCMC based FPRAS and achieves the
boundary of approximability (in terms of maximum degree).

Jingcheng Liu (SJTU) Counting Edge Covers SODA 2014 14 / 27



Previous Results

For counting edge covers, only an Markov Chain Monte Carlo
(MCMC) based FPRAS is known for graphs with maximum degree 3
[I. Bezkov and W. Rummler 2009].

For #DNF[Karp and Luby 1983] and counting matchings[Jerrum and
Sinclair 1989], only FPRAS is known.

For counting perfect matchings, it’s still open whether or not it
admits FPRAS (or FPTAS).

For anti-ferromagnetic 2-spins systems (e.g. counting independent
sets), an FPTAS is known, and it’s correlation decay based, and goes
beyond the best known MCMC based FPRAS and achieves the
boundary of approximability (in terms of maximum degree).

Jingcheng Liu (SJTU) Counting Edge Covers SODA 2014 14 / 27



Our Result

An FPTAS for counting edge covers in general graphs.

Our algorithm is correlation decay based.

This provides another example where the tractable range of
correlation decay based FPTAS exceeds the best-known sampling
based FPRAS.
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Proof Sketch

Let EC(G) be the set of edge covers. Here is an overall work-flow:

Relate |EC(G)| with a marginal probability P (G, e).

Derive a computation tree recursion for P (G, e).

P (G, e, L): Truncate the tree at depth L for some notion of depth.

Show exponential correlation decay with respect to that tree depth:

|P (G, e, L)− P (G, e)| ≤ exp(−Ω(L))
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Devising sub-problems

Definition (Dangling edge)

A dangling edge e = (u, ) of a graph is such a singleton edge with
exactly one end-point vertex u, as shown in the Figure 4a.

G− e , (V,E \ e)

G− u , (V \ u,E − u)

}��� }@@@
}ue

f

(a) G

} }@@@
}ue

f

(b) f − u
} }f

(c) G− e− u , (G− e)− u

Figure : Dangling edges examples.
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Counting v.s. Marginal Probability

Problem

Goal: estimate |EC(G)|.

Let X be an edge cover sampled uniformly from EC(G), consider the
following marginal probability:
for an edge e, we write P (G, e) , Pr(e /∈ X).

Solution: estimate P (G, e).
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Why P (G, e)?

Recall that the set of all edges E is an edge cover. For a randomly
sampled edge cover X, what is Pr(X = E)?
Let E = {ei}, and ei = (ui, vi).

Pr(X = E) =
1

|EC(G)|

Pr(X = E) = Pr(∀i, ei ∈ X)

= Pr(e1 ∈ X) Pr(e2 ∈ X | e1 ∈ X) · · ·

=
∏
i

Pr(ei ∈ X | {ej}i−1j=1 ⊆ X)

=
∏
i

(1− P (Gi, ei)) ,

where G1 = G,Gi+1 = Gi − ei − ui − vi.
Therefore,

1

|EC(G)|
=
∏
i

(1− P (Gi, ei)) .
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Proof Sketch

Let EC(G) be the set of edge covers. Here is an overall work-flow:

Relate |EC(G)| with a marginal probability P (G, e).

Derive a computation tree recursion for P (G, e).

P (G, e, L): Truncate the tree at depth L for some notion of depth.

Show exponential correlation decay with respect to that tree depth:

|P (G, e, L)− P (G, e)| ≤ exp(−Ω(L))
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Computation Tree Recursion

We focus on e is dangling.

P (G, e) =
1−

∏d
i=1 P (Gi, ei)

2−
∏d

i=1 P (Gi, ei)
,

where G1 , G− e− u, and Gi+1 , Gi − ei.

But the computation tree could be exponentially large, how do we get an
estimate out of it?
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Computationally Efficient Correlation Decay

A natural estimate: Truncate the tree!

But without a degree bound, the tree could still be exponentially large. So
we truncate with a modified recursion depth:

P (G, e, L) =


1
2 , if L ≤ 0;
1−

∏d
i=1 P (Gi,ei,L−dlog6 (d+1)e)

2−
∏d

i=1 P (Gi,ei,L−dlog6 (d+1)e)
, otherwise.

This is also known as computational efficient correlation decay.
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Correlation Decay

Key Lemma

Given graph G, edge e and depth L,

|P (G, e, L)− P (G, e)| ≤ 3 · (1

2
)L+1

Now we just take L = log2
(
6m
ε

)
, this gives the desired FPTAS.
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Conclusions and Upcoming Results

As a conclusion, we have shown an FPTAS for counting edge covers (or
Rtw-Mon-CNF) in general graphs.

A natural question: what about counting Read-k-Mon-CNF?

Upcoming: FPTAS for counting Read-5-Mon-CNF, while
Read-6-Mon-CNF does not admit FPTAS unless P = NP .
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Thank you!

Q & A.

liuexp[at]gmail[dot]com
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