Skip to content
This repository
tree: 656f3c337e
Fetching contributors…

Octocat-spinner-32-eaf2f5

Cannot retrieve contributors at this time

file 800 lines (676 sloc) 24.909 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
/**********************************************************
* C-based/Cached/Core Computer Vision Library
* Liu Liu, 2010-02-01
**********************************************************/

#ifndef GUARD_ccv_h
#define GUARD_ccv_h

#include <unistd.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <float.h>
#include <math.h>
#ifdef HAVE_SSE2
#include <xmmintrin.h>
#endif
#include <assert.h>
#include <alloca.h>

#define CCV_PI (3.141592653589793)
#define ccmalloc malloc
#define ccrealloc realloc
#define ccfree free

enum {
CCV_8U = 0x0100,
CCV_32S = 0x0200,
CCV_32F = 0x0400,
CCV_64S = 0x0800,
CCV_64F = 0x1000,
};

enum {
CCV_C1 = 0x01,
CCV_C2 = 0x02,
CCV_C3 = 0x03,
CCV_C4 = 0x04,
};

static const int _ccv_get_data_type_size[] = { -1, 1, 4, -1, 4, -1, -1, -1, 8, -1, -1, -1, -1, -1, -1, -1, 8 };

#define CCV_GET_DATA_TYPE(x) ((x) & 0xFF00)
#define CCV_GET_DATA_TYPE_SIZE(x) _ccv_get_data_type_size[CCV_GET_DATA_TYPE(x) >> 8]
#define CCV_MAX_CHANNEL (0xFF)
#define CCV_GET_CHANNEL(x) ((x) & 0xFF)
#define CCV_ALL_DATA_TYPE (CCV_8U | CCV_32S | CCV_32F | CCV_64S | CCV_64F)

enum {
CCV_MATRIX_DENSE = 0x010000,
CCV_MATRIX_SPARSE = 0x020000,
CCV_MATRIX_CSR = 0x040000,
CCV_MATRIX_CSC = 0x080000,
};

enum {
CCV_GARBAGE = 0x80000000, // matrix is in cache (not used by any functions)
CCV_REUSABLE = 0x40000000, // matrix can be recycled
CCV_UNMANAGED = 0x20000000, // matrix is allocated by user, therefore, cannot be freed by ccv_matrix_free/ccv_matrix_free_immediately
};

typedef union {
unsigned char* u8;
int* i32;
float* f32;
int64_t* i64;
double* f64;
} ccv_matrix_cell_t;

typedef struct {
int type;
uint64_t sig;
int refcount;
int rows;
int cols;
int step;
union {
unsigned char u8;
int i32;
float f32;
int64_t i64;
double f64;
void* p;
} tag;
ccv_matrix_cell_t data;
} ccv_dense_matrix_t;

enum {
CCV_SPARSE_VECTOR = 0x00100000,
CCV_DENSE_VECTOR = 0x00200000,
};

typedef struct ccv_dense_vector_t {
int step;
int length;
int index;
int prime;
int load_factor;
ccv_matrix_cell_t data;
int* indice;
struct ccv_dense_vector_t* next;
} ccv_dense_vector_t;

enum {
CCV_SPARSE_ROW_MAJOR = 0x00,
CCV_SPARSE_COL_MAJOR = 0x01,
};

typedef struct {
int type;
uint64_t sig;
int refcount;
int rows;
int cols;
int major;
int prime;
int load_factor;
union {
unsigned char chr;
int i;
float fl;
int64_t l;
double db;
} tag;
ccv_dense_vector_t* vector;
} ccv_sparse_matrix_t;

extern int _ccv_get_sparse_prime[];
#define CCV_GET_SPARSE_PRIME(x) _ccv_get_sparse_prime[(x)]

typedef void ccv_matrix_t;

/* the explicit cache mechanism ccv_cache.c */
/* the new cache is radix tree based, but has a strict memory usage upper bound
* so that you don't have to explicitly call ccv_drain_cache() every time */

typedef void(*ccv_cache_index_free_f)(void*);

typedef union {
struct {
uint64_t bitmap;
uint64_t set;
uint64_t age;
} branch;
struct {
uint64_t sign;
uint64_t off;
uint64_t type;
} terminal;
} ccv_cache_index_t;

typedef struct {
ccv_cache_index_t origin;
uint32_t rnum;
uint32_t age;
size_t up;
size_t size;
ccv_cache_index_free_f ffree[16];
} ccv_cache_t;

/* I made it as generic as possible */

void ccv_cache_init(ccv_cache_t* cache, size_t up, int cache_types, ccv_cache_index_free_f ffree, ...);
void* ccv_cache_get(ccv_cache_t* cache, uint64_t sign, uint8_t* type);
int ccv_cache_put(ccv_cache_t* cache, uint64_t sign, void* x, uint32_t size, uint8_t type);
void* ccv_cache_out(ccv_cache_t* cache, uint64_t sign, uint8_t* type);
int ccv_cache_delete(ccv_cache_t* cache, uint64_t sign);
void ccv_cache_cleanup(ccv_cache_t* cache);
void ccv_cache_close(ccv_cache_t* cache);

/* deprecated methods, often these implemented in another way and no longer suitable for newer computer architecture */
/* 0 */

typedef struct {
int type;
uint64_t sig;
int refcount;
int rows;
int cols;
int nnz;
union {
unsigned char chr;
int i;
float fl;
int64_t l;
double db;
} tag;
int* index;
int* offset;
ccv_matrix_cell_t data;
} ccv_compressed_sparse_matrix_t;

#define ccv_clamp(x, a, b) (((x) < (a)) ? (a) : (((x) > (b)) ? (b) : (x)))
#define ccv_min(a, b) (((a) < (b)) ? (a) : (b))
#define ccv_max(a, b) (((a) > (b)) ? (a) : (b))

/* matrix memory operations ccv_memory.c */
#define ccv_compute_dense_matrix_size(rows, cols, type) (sizeof(ccv_dense_matrix_t) + (((cols) * CCV_GET_DATA_TYPE_SIZE(type) * CCV_GET_CHANNEL(type) + 3) & -4) * (rows))
ccv_dense_matrix_t* __attribute__((warn_unused_result)) ccv_dense_matrix_renew(ccv_dense_matrix_t* x, int rows, int cols, int types, int prefer_type, uint64_t sig);
ccv_dense_matrix_t* __attribute__((warn_unused_result)) ccv_dense_matrix_new(int rows, int cols, int type, void* data, uint64_t sig);
ccv_dense_matrix_t ccv_dense_matrix(int rows, int cols, int type, void* data, uint64_t sig);
void ccv_make_matrix_mutable(ccv_matrix_t* mat);
void ccv_make_matrix_immutable(ccv_matrix_t* mat);
ccv_sparse_matrix_t* __attribute__((warn_unused_result)) ccv_sparse_matrix_new(int rows, int cols, int type, int major, uint64_t sig);
void ccv_matrix_free_immediately(ccv_matrix_t* mat);
void ccv_matrix_free(ccv_matrix_t* mat);

uint64_t ccv_cache_generate_signature(const char* msg, int len, uint64_t sig_start, ...);

#define CCV_DEFAULT_CACHE_SIZE (1024 * 1024 * 64)

void ccv_drain_cache(void);
void ccv_disable_cache(void);
void ccv_enable_default_cache(void);
void ccv_enable_cache(size_t size);

#define ccv_get_dense_matrix_cell_by(type, x, row, col, ch) \
(((type) & CCV_32S) ? (void*)((x)->data.i32 + ((row) * (x)->cols + (col)) * CCV_GET_CHANNEL(type) + (ch)) : \
(((type) & CCV_32F) ? (void*)((x)->data.f32+ ((row) * (x)->cols + (col)) * CCV_GET_CHANNEL(type) + (ch)) : \
(((type) & CCV_64S) ? (void*)((x)->data.i64+ ((row) * (x)->cols + (col)) * CCV_GET_CHANNEL(type) + (ch)) : \
(((type) & CCV_64F) ? (void*)((x)->data.f64 + ((row) * (x)->cols + (col)) * CCV_GET_CHANNEL(type) + (ch)) : \
(void*)((x)->data.u8 + (row) * (x)->step + (col) * CCV_GET_CHANNEL(type) + (ch))))))

#define ccv_get_dense_matrix_cell(x, row, col, ch) ccv_get_dense_matrix_cell_by((x)->type, x, row, col, ch)

/* this is for simplicity in code, I am sick of x->data.f64[i * x->cols + j] stuff, this is clearer, and compiler
* can optimize away the if structures */
#define ccv_get_dense_matrix_cell_value_by(type, x, row, col, ch) \
(((type) & CCV_32S) ? (x)->data.i32[((row) * (x)->cols + (col)) * CCV_GET_CHANNEL(type) + (ch)] : \
(((type) & CCV_32F) ? (x)->data.f32[((row) * (x)->cols + (col)) * CCV_GET_CHANNEL(type) + (ch)] : \
(((type) & CCV_64S) ? (x)->data.i64[((row) * (x)->cols + (col)) * CCV_GET_CHANNEL(type) + (ch)] : \
(((type) & CCV_64F) ? (x)->data.f64[((row) * (x)->cols + (col)) * CCV_GET_CHANNEL(type) + (ch)] : \
(x)->data.u8[(row) * (x)->step + (col) * CCV_GET_CHANNEL(type) + (ch)]))))

#define ccv_get_dense_matrix_cell_value(x, row, col, ch) ccv_get_dense_matrix_cell_value_by((x)->type, x, row, col, ch)

#define ccv_get_value(type, ptr, i) \
(((type) & CCV_32S) ? ((int*)(ptr))[(i)] : \
(((type) & CCV_32F) ? ((float*)(ptr))[(i)] : \
(((type) & CCV_64S) ? ((int64_t*)(ptr))[(i)] : \
(((type) & CCV_64F) ? ((double*)(ptr))[(i)] : \
((unsigned char*)(ptr))[(i)]))))

#define ccv_set_value(type, ptr, i, value, factor) switch (CCV_GET_DATA_TYPE((type))) { \
case CCV_32S: ((int*)(ptr))[(i)] = (int)(value) >> factor; break; \
case CCV_32F: ((float*)(ptr))[(i)] = (float)value; break; \
case CCV_64S: ((int64_t*)(ptr))[(i)] = (int64_t)(value) >> factor; break; \
case CCV_64F: ((double*)(ptr))[(i)] = (double)value; break; \
default: ((unsigned char*)(ptr))[(i)] = ccv_clamp((int)(value) >> factor, 0, 255); }

/* basic io ccv_io.c */

enum {
// modifier for converting to gray-scale
CCV_IO_GRAY = 0x100,
// modifier for converting to color
CCV_IO_RGB_COLOR = 0x300,
};

enum {
// modifier for not copy the data over when read raw in-memory data
CCV_IO_NO_COPY = 0x10000,
};

enum {
// read self-describe in-memory data
CCV_IO_ANY_STREAM = 0x010,
CCV_IO_BMP_STREAM = 0x011,
CCV_IO_JPEG_STREAM = 0x012,
CCV_IO_PNG_STREAM = 0x013,
CCV_IO_PLAIN_STREAM = 0x014,
CCV_IO_DEFLATE_STREAM = 0x015,
// read self-describe on-disk data
CCV_IO_ANY_FILE = 0x020,
CCV_IO_BMP_FILE = 0x021,
CCV_IO_JPEG_FILE = 0x022,
CCV_IO_PNG_FILE = 0x023,
CCV_IO_BINARY_FILE = 0x024,
// read not-self-describe in-memory data (a.k.a. raw data)
// you need to specify rows, cols, or scanline for these data
CCV_IO_ANY_RAW = 0x040,
CCV_IO_RGB_RAW = 0x041,
CCV_IO_RGBA_RAW = 0x042,
CCV_IO_ARGB_RAW = 0x043,
CCV_IO_BGR_RAW = 0x044,
CCV_IO_BGRA_RAW = 0x045,
CCV_IO_ABGR_RAW = 0x046,
CCV_IO_GRAY_RAW = 0x047,
};

enum {
CCV_IO_FINAL = 0x00,
CCV_IO_CONTINUE,
CCV_IO_ERROR,
CCV_IO_ATTEMPTED,
CCV_IO_UNKNOWN,
};

int ccv_read_impl(const char* in, ccv_dense_matrix_t** x, int type, int rows, int cols, int scanline);
#define ccv_read_n(in, x, type, rows, cols, scanline, ...) \
ccv_read_impl(in, x, type, rows, cols, scanline)
#define ccv_read(in, x, type, ...) \
ccv_read_n(in, x, type, ##__VA_ARGS__, 0, 0, 0)
// this is a way to implement function-signature based dispatch, you can call either
// ccv_read(in, x, type) or ccv_read(in, x, type, rows, cols, scanline)
// notice that you can implement this with va_* functions, but that is not type-safe
int ccv_write(ccv_dense_matrix_t* mat, char* out, int* len, int type, void* conf);

/* basic algebra algorithms ccv_algebra.c */

double ccv_trace(ccv_matrix_t* mat);

enum {
CCV_L2_NORM = 0x01, // |dx| + |dy|
CCV_L1_NORM = 0x02, // sqrt(dx^2 + dy^2)
CCV_GSEDT = 0x04, // Generalized Squared Euclidean Distance Transform:
// a * dx + b * dy + c * dx^2 + d * dy^2, when combined with CCV_L1_NORM:
// a * |dx| + b * |dy| + c * dx^2 + d * dy^2
CCV_NEGATIVE = 0x08, // negative distance computation (from positive (min) to negative (max))
CCV_POSITIVE = 0x00, // positive distance computation (the default)
};

enum {
CCV_NO_PADDING = 0x00,
CCV_PADDING_ZERO = 0x01,
CCV_PADDING_EXTEND = 0x02,
CCV_PADDING_MIRROR = 0x04,
};

enum {
CCV_SIGNED = 0x00,
CCV_UNSIGNED = 0x01,
};

double ccv_norm(ccv_matrix_t* mat, int type);
double ccv_normalize(ccv_matrix_t* a, ccv_matrix_t** b, int btype, int flag);
void ccv_sat(ccv_dense_matrix_t* a, ccv_dense_matrix_t** b, int type, int padding_pattern);
double ccv_dot(ccv_matrix_t* a, ccv_matrix_t* b);
double ccv_sum(ccv_matrix_t* mat, int flag);
void ccv_multiply(ccv_matrix_t* a, ccv_matrix_t* b, ccv_matrix_t** c, int type);
void ccv_subtract(ccv_matrix_t* a, ccv_matrix_t* b, ccv_matrix_t** c, int type);

enum {
CCV_A_TRANSPOSE = 0x01,
CCV_B_TRANSPOSE = 0X02,
CCV_C_TRANSPOSE = 0X04,
};

void ccv_gemm(ccv_matrix_t* a, ccv_matrix_t* b, double alpha, ccv_matrix_t* c, double beta, int transpose, ccv_matrix_t** d, int type);

/* matrix build blocks / utility functions ccv_util.c */

ccv_dense_matrix_t* ccv_get_dense_matrix(ccv_matrix_t* mat);
ccv_sparse_matrix_t* ccv_get_sparse_matrix(ccv_matrix_t* mat);
ccv_dense_vector_t* ccv_get_sparse_matrix_vector(ccv_sparse_matrix_t* mat, int index);
ccv_matrix_cell_t ccv_get_sparse_matrix_cell(ccv_sparse_matrix_t* mat, int row, int col);
void ccv_set_sparse_matrix_cell(ccv_sparse_matrix_t* mat, int row, int col, void* data);
void ccv_compress_sparse_matrix(ccv_sparse_matrix_t* mat, ccv_compressed_sparse_matrix_t** csm);
void ccv_decompress_sparse_matrix(ccv_compressed_sparse_matrix_t* csm, ccv_sparse_matrix_t** smt);

void ccv_move(ccv_matrix_t* a, ccv_matrix_t** b, int btype, int y, int x);
int ccv_matrix_eq(ccv_matrix_t* a, ccv_matrix_t* b);
void ccv_slice(ccv_matrix_t* a, ccv_matrix_t** b, int type, int y, int x, int rows, int cols);
void ccv_visualize(ccv_matrix_t* a, ccv_dense_matrix_t** b, int type);
void ccv_flatten(ccv_matrix_t* a, ccv_matrix_t** b, int type, int flag);
void ccv_zero(ccv_matrix_t* mat);
void ccv_shift(ccv_matrix_t* a, ccv_matrix_t** b, int type, int lr, int rr);
int ccv_any_nan(ccv_matrix_t *a);

/* basic data structures ccv_util.c */

typedef struct {
int width;
int height;
} ccv_size_t;

inline static ccv_size_t ccv_size(int width, int height)
{
ccv_size_t size;
size.width = width;
size.height = height;
return size;
}

inline static int ccv_size_is_zero(ccv_size_t size)
{
return size.width == 0 && size.height == 0;
}

typedef struct {
int x;
int y;
int width;
int height;
} ccv_rect_t;

inline static ccv_rect_t ccv_rect(int x, int y, int width, int height)
{
ccv_rect_t rect;
rect.x = x;
rect.y = y;
rect.width = width;
rect.height = height;
return rect;
}

inline static int ccv_rect_is_zero(ccv_rect_t rect)
{
return rect.x == 0 && rect.y == 0 && rect.width == 0 && rect.height == 0;
}

typedef struct {
int type;
uint64_t sig;
int refcount;
int rnum;
int size;
int rsize;
void* data;
} ccv_array_t;

ccv_array_t* __attribute__((warn_unused_result)) ccv_array_new(int rsize, int rnum, uint64_t sig);
void ccv_array_push(ccv_array_t* array, void* r);
typedef int(*ccv_array_group_f)(const void*, const void*, void*);
int ccv_array_group(ccv_array_t* array, ccv_array_t** index, ccv_array_group_f gfunc, void* data);
void ccv_make_array_immutable(ccv_array_t* array);
void ccv_make_array_mutable(ccv_array_t* array);
void ccv_array_zero(ccv_array_t* array);
void ccv_array_clear(ccv_array_t* array);
void ccv_array_free_immediately(ccv_array_t* array);
void ccv_array_free(ccv_array_t* array);

#define ccv_array_get(a, i) (((char*)((a)->data)) + (a)->rsize * (i))

typedef struct {
int x, y;
} ccv_point_t;

inline static ccv_point_t ccv_point(int x, int y)
{
ccv_point_t point;
point.x = x;
point.y = y;
return point;
}

typedef struct {
ccv_rect_t rect;
int size;
ccv_array_t* set;
long m10, m01, m11, m20, m02;
} ccv_contour_t;

ccv_contour_t* ccv_contour_new(int set);
void ccv_contour_push(ccv_contour_t* contour, ccv_point_t point);
void ccv_contour_free(ccv_contour_t* contour);

/* numerical algorithms ccv_numeric.c */

/* clarification about algebra and numerical algorithms:
* when using the word "algebra", I assume the operation is well established in Mathematic sense
* and can be calculated with a straight-forward, finite sequence of operation. The "numerical"
* in other word, refer to a class of algorithm that can only approximate/or iteratively found the
* solution. Thus, "invert" would be classified as numerical because of the sense that in some case,
* it can only be "approximate" (in least-square sense), so to "solve". */

void ccv_invert(ccv_matrix_t* a, ccv_matrix_t** b, int type);
void ccv_solve(ccv_matrix_t* a, ccv_matrix_t* b, ccv_matrix_t** d, int type);
void ccv_eigen(ccv_matrix_t* a, ccv_matrix_t* b, ccv_matrix_t** d, int type);

typedef struct {
double interp;
double extrap;
int max_iter;
double ratio;
double rho;
double sig;
} ccv_minimize_param_t;

typedef int(*ccv_minimize_f)(const ccv_dense_matrix_t* x, double* f, ccv_dense_matrix_t* df, void*);
void ccv_minimize(ccv_dense_matrix_t* x, int length, double red, ccv_minimize_f func, ccv_minimize_param_t params, void* data);

void ccv_filter(ccv_dense_matrix_t* a, ccv_dense_matrix_t* b, ccv_dense_matrix_t** d, int type, int padding_pattern);
typedef double(*ccv_filter_kernel_f)(double x, double y, void*);
void ccv_filter_kernel(ccv_dense_matrix_t* x, ccv_filter_kernel_f func, void* data);

/* modern numerical algorithms */

void ccv_distance_transform(ccv_dense_matrix_t* a, ccv_dense_matrix_t** b, int type, ccv_dense_matrix_t** x, int x_type, ccv_dense_matrix_t** y, int y_type, double dx, double dy, double dxx, double dyy, int flag);
void ccv_sparse_coding(ccv_matrix_t* x, int k, ccv_matrix_t** A, int typeA, ccv_matrix_t** y, int typey);
void ccv_compressive_sensing_reconstruct(ccv_matrix_t* a, ccv_matrix_t* x, ccv_matrix_t** y, int type);

/* basic computer vision algorithms / or build blocks ccv_basic.c */

void ccv_sobel(ccv_dense_matrix_t* a, ccv_dense_matrix_t** b, int type, int dx, int dy);
void ccv_gradient(ccv_dense_matrix_t* a, ccv_dense_matrix_t** theta, int ttype, ccv_dense_matrix_t** m, int mtype, int dx, int dy);

enum {
CCV_FLIP_X = 0x01,
CCV_FLIP_Y = 0x02,
};

void ccv_flip(ccv_dense_matrix_t* a, ccv_dense_matrix_t** b, int btype, int type);
void ccv_blur(ccv_dense_matrix_t* a, ccv_dense_matrix_t** b, int type, double sigma);

enum {
CCV_RGB_TO_YUV = 0x01,
};

void ccv_color_transform(ccv_dense_matrix_t* a, ccv_dense_matrix_t** b, int type, int flag);

/* resample algorithms ccv_resample.c */

enum {
CCV_INTER_AREA = 0x01,
CCV_INTER_LINEAR = 0X02,
CCV_INTER_CUBIC = 0X03,
CCV_INTER_LANCZOS = 0X04,
};

void ccv_resample(ccv_dense_matrix_t* a, ccv_dense_matrix_t** b, int btype, int rows, int cols, int type);
void ccv_sample_down(ccv_dense_matrix_t* a, ccv_dense_matrix_t** b, int type, int src_x, int src_y);
void ccv_sample_up(ccv_dense_matrix_t* a, ccv_dense_matrix_t** b, int type, int src_x, int src_y);

/* classic computer vision algorithms ccv_classic.c */

void ccv_hog(ccv_dense_matrix_t* a, ccv_dense_matrix_t** b, int b_type, int sbin, int size);
void ccv_canny(ccv_dense_matrix_t* a, ccv_dense_matrix_t** b, int type, int size, double low_thresh, double high_thresh);
void ccv_close_outline(ccv_dense_matrix_t* a, ccv_dense_matrix_t** b, int type);
/* range: exclusive, return value: inclusive (i.e., threshold = 5, 0~5 is background, 6~range-1 is foreground */
int ccv_otsu(ccv_dense_matrix_t* a, double* outvar, int range);

/* modern computer vision algorithms */
/* SIFT, DAISY, SWT, MSER, DPM, BBF, SGF, SSD, FAST */

/* daisy related methods */
typedef struct {
double radius;
int rad_q_no;
int th_q_no;
int hist_th_q_no;
float normalize_threshold;
int normalize_method;
} ccv_daisy_param_t;

enum {
CCV_DAISY_NORMAL_PARTIAL = 0x01,
CCV_DAISY_NORMAL_FULL = 0x02,
CCV_DAISY_NORMAL_SIFT = 0x03,
};

void ccv_daisy(ccv_dense_matrix_t* a, ccv_dense_matrix_t** b, int type, ccv_daisy_param_t params);

/* sift related methods */
typedef struct {
float x, y;
int octave;
int level;
union {
struct {
double a, b;
double c, d;
} affine;
struct {
double scale;
double angle;
} regular;
};
} ccv_keypoint_t;

typedef struct {
int up2x;
int noctaves;
int nlevels;
float edge_threshold;
float peak_threshold;
float norm_threshold;
} ccv_sift_param_t;

void ccv_sift(ccv_dense_matrix_t* a, ccv_array_t** keypoints, ccv_dense_matrix_t** desc, int type, ccv_sift_param_t params);

/* mser related method */

typedef struct {
/* parameters for MSER */
int delta;
int min_area; /* default: 60 */
int direction; /* default: 0, 0 for both, -1 for bright to dark, 1 for dark to bright */
int max_area;
double max_variance;
double min_diversity;
int range; /* from 0 to range, inclusive */
/* parameters for MSCR */
double area_threshold; /* default: 1.01 */
double min_margin; /* default: 0.003 */
int max_evolution;
double edge_blur_sigma; /* default: 1.0 */
} ccv_mser_param_t;

typedef struct {
ccv_rect_t rect;
int size;
long m10, m01, m11, m20, m02;
ccv_point_t keypoint;
} ccv_mser_keypoint_t;

enum {
CCV_BRIGHT_TO_DARK = -1,
CCV_DARK_TO_BRIGHT = 1,
};

ccv_array_t* __attribute__((warn_unused_result)) ccv_mser(ccv_dense_matrix_t* a, ccv_dense_matrix_t* h, ccv_dense_matrix_t** b, int type, ccv_mser_param_t params);

/* swt related method: stroke width transform is relatively new, typically used in text detection */
typedef struct {
int interval; // for scale invariant option
int min_neighbors; // minimal neighbors to make a detection valid, this is for scale-invariant version
int scale_invariant; // enable scale invariant swt (to scale to different sizes and then combine the results)
int direction;
double same_word_thresh[2]; // overlapping more than 0.1 of the bigger one (0), and 0.9 of the smaller one (1)
/* canny parameters */
int size;
int low_thresh;
int high_thresh;
/* geometry filtering parameters */
int max_height;
int min_height;
int min_area;
int letter_occlude_thresh;
double aspect_ratio;
double std_ratio;
/* grouping parameters */
double thickness_ratio;
double height_ratio;
int intensity_thresh;
double distance_ratio;
double intersect_ratio;
double elongate_ratio;
int letter_thresh;
/* break textline into words */
int breakdown;
double breakdown_ratio;
} ccv_swt_param_t;

void ccv_swt(ccv_dense_matrix_t* a, ccv_dense_matrix_t** b, int type, ccv_swt_param_t params);
ccv_array_t* __attribute__((warn_unused_result)) ccv_swt_detect_words(ccv_dense_matrix_t* a, ccv_swt_param_t params);

/* I'd like to include Deformable Part Models as a general object detection method in here
* The difference between BBF and DPM:
* ~ BBF is for rigid object detection: banners, box, faces etc.
* ~ DPM is more generalized, can detect people, car, bike (larger inner-class difference) etc.
* ~ BBF is blazing fast (few milliseconds), DPM is relatively slow (around 1 seconds or so) */

#define CCV_DPM_PART_MAX (10)

typedef struct {
ccv_rect_t rect;
int neighbors;
int id;
float confidence;
} ccv_comp_t;

typedef struct {
ccv_rect_t rect;
int neighbors;
int id;
float confidence;
int pnum;
ccv_comp_t part[CCV_DPM_PART_MAX];
} ccv_root_comp_t;

typedef struct {
ccv_dense_matrix_t* w;
double dx, dy, dxx, dyy;
int x, y, z;
int counterpart;
float alpha[6];
} ccv_dpm_part_classifier_t;

typedef struct {
int count;
ccv_dpm_part_classifier_t root;
ccv_dpm_part_classifier_t* part;
float alpha[3], beta;
} ccv_dpm_root_classifier_t;

typedef struct {
int count;
ccv_dpm_root_classifier_t* root;
} ccv_dpm_mixture_model_t;

typedef struct {
int interval;
int min_neighbors;
int flags;
float threshold;
} ccv_dpm_param_t;

typedef struct {
int components;
int parts;
int grayscale;
int symmetric;
int min_area; // 3000
int max_area; // 5000
int iterations;
int data_minings;
int root_relabels;
int relabels;
int negative_cache_size; // 1000
double include_overlap; // 0.7
double alpha;
double alpha_ratio; // 0.85
double balance; // 1.5
double C;
double percentile_breakdown; // 0.05
ccv_dpm_param_t detector;
} ccv_dpm_new_param_t;

enum {
CCV_DPM_NO_NESTED = 0x10000000,
};

void ccv_dpm_mixture_model_new(char** posfiles, ccv_rect_t* bboxes, int posnum, char** bgfiles, int bgnum, int negnum, const char* dir, ccv_dpm_new_param_t params);
ccv_array_t* __attribute__((warn_unused_result)) ccv_dpm_detect_objects(ccv_dense_matrix_t* a, ccv_dpm_mixture_model_t** model, int count, ccv_dpm_param_t params);
ccv_dpm_mixture_model_t* __attribute__((warn_unused_result)) ccv_load_dpm_mixture_model(const char* directory);
void ccv_dpm_mixture_model_free(ccv_dpm_mixture_model_t* model);

/* this is open source implementation of object detection algorithm: brightness binary feature
* it is an extension/modification of original HAAR-like feature with Adaboost, featured faster
* computation and higher accuracy (current highest accuracy close-source face detector is based
* on the same algorithm) */

#define CCV_BBF_POINT_MAX (8)
#define CCV_BBF_POINT_MIN (3)

typedef struct {
int size;
int px[CCV_BBF_POINT_MAX];
int py[CCV_BBF_POINT_MAX];
int pz[CCV_BBF_POINT_MAX];
int nx[CCV_BBF_POINT_MAX];
int ny[CCV_BBF_POINT_MAX];
int nz[CCV_BBF_POINT_MAX];
} ccv_bbf_feature_t;

typedef struct {
int count;
float threshold;
ccv_bbf_feature_t* feature;
float* alpha;
} ccv_bbf_stage_classifier_t;

typedef struct {
int count;
ccv_size_t size;
ccv_bbf_stage_classifier_t* stage_classifier;
} ccv_bbf_classifier_cascade_t;

enum {
CCV_BBF_GENETIC_OPT = 0x01,
CCV_BBF_FLOAT_OPT = 0x02
};

typedef struct {
int interval;
int min_neighbors;
int flags;
int accurate;
ccv_size_t size;
} ccv_bbf_param_t;

typedef struct {
double pos_crit;
double neg_crit;
double balance_k;
int layer;
int feature_number;
int optimizer;
ccv_bbf_param_t detector;
} ccv_bbf_new_param_t;

enum {
CCV_BBF_NO_NESTED = 0x10000000,
};

void ccv_bbf_classifier_cascade_new(ccv_dense_matrix_t** posimg, int posnum, char** bgfiles, int bgnum, int negnum, ccv_size_t size, const char* dir, ccv_bbf_new_param_t params);
ccv_array_t* __attribute__((warn_unused_result)) ccv_bbf_detect_objects(ccv_dense_matrix_t* a, ccv_bbf_classifier_cascade_t** cascade, int count, ccv_bbf_param_t params);
ccv_bbf_classifier_cascade_t* __attribute__((warn_unused_result)) ccv_load_bbf_classifier_cascade(const char* directory);
ccv_bbf_classifier_cascade_t* __attribute__((warn_unused_result)) ccv_bbf_classifier_cascade_read_binary(char* s);
int ccv_bbf_classifier_cascade_write_binary(ccv_bbf_classifier_cascade_t* cascade, char* s, int slen);
void ccv_bbf_classifier_cascade_free(ccv_bbf_classifier_cascade_t* cascade);

/* modern machine learning algorithms */
/* RBM, LLE, APCluster */

#endif
Something went wrong with that request. Please try again.