
Elementary Algorithms

Xinyu LIU 1

January 15, 2023

1Xinyu LIU
Version: 0.6180339887498949
Email: liuxinyu95@gmail.com

2

Contents

0.1 The smallest free number . 10
0.1.1 Improvement . 11
0.1.2 Divide and Conquer . 12
0.1.3 Expressiveness and performance 13

0.2 Regular number . 13
0.2.1 The brute-force solution . 13
0.2.2 Improvement . 14
0.2.3 Queues . 16

0.3 Summary . 17

1 List 19
1.1 Introduction . 19
1.2 Definition . 19

1.2.1 Access . 20
1.3 Basic operations . 20

1.3.1 index . 20
1.3.2 Last . 21
1.3.3 Reverse index . 22
1.3.4 Mutate . 23

Append . 23
Set value . 24
insert . 25
delete . 26
concatenate . 27

1.3.5 sum and product . 28
Recursive sum and product . 28
Tail call recursion . 29

1.3.6 maximum and minimum . 31
1.4 Transform . 32

1.4.1 map and for-each . 33
Map . 34
For each . 35
Examples . 35

1.4.2 reverse . 37
1.5 Sub-list . 38

1.5.1 take, drop, and split-at . 38
conditional take and drop . 39

1.5.2 break and group . 39
break and span . 39
group . 40

1.6 Fold . 42

3

4 CONTENTS

1.6.1 fold right . 42
1.6.2 fold left . 44
1.6.3 example . 45

concatenate . 46
1.7 Search and filter . 46

1.7.1 Exist . 46
1.7.2 Look up . 47
1.7.3 find and filter . 47
1.7.4 Match . 48

1.8 zip and unzip . 49
1.9 Further reading . 52

2 Binary Search Tree 53
2.1 Introduction . 53
2.2 Data Layout . 55
2.3 Insertion . 55
2.4 Traverse . 57
2.5 Query . 59

2.5.1 Look up . 59
2.5.2 Minimum and maximum . 60
2.5.3 Successor and predecessor . 60

2.6 Deletion . 61
2.7 Random build . 64
2.8 Map . 65
2.9 Appendix: Example programs . 65

3 Insertion sort 67
3.1 Introduction . 67
3.2 Insertion . 68
3.3 Binary search . 69
3.4 List . 69
3.5 Binary search tree . 70
3.6 Summary . 71

4 Red-black tree 73
4.1 Introduction . 73

4.1.1 Balance . 74
4.1.2 Tree rotation . 74

4.2 Definition . 76
4.3 Insert . 78
4.4 Delete . 80
4.5 Imperative red-black tree algorithm ⋆ . 84
4.6 Summary . 85
4.7 Appendix: Example programs . 86

5 AVL tree 89
5.1 Introduction . 89
5.2 Definition . 89
5.3 Insert . 91

5.3.1 Balance . 92
Verification . 93

5.4 Imperative AVL tree algorithm ⋆ . 94

CONTENTS 5

5.5 Summary . 96
5.6 Appendix: Example programs . 96

6 Radix tree 99
6.1 Integer trie . 99

6.1.1 Definition . 100
6.1.2 Insert . 100
6.1.3 Look up . 102

6.2 Integer prefix tree . 102
6.2.1 Definition . 103
6.2.2 Insert . 103
6.2.3 Lookup . 107

6.3 Trie . 108
6.3.1 Definition . 108
6.3.2 Insert . 108
6.3.3 Look up . 110

6.4 Prefix tree . 111
6.4.1 Definition . 111
6.4.2 Insert . 111
6.4.3 Look up . 114

6.5 Applications of trie and prefix tree . 115
6.5.1 Dictionary and input completion 115
6.5.2 Predictive text input . 117

6.6 Summary . 119
6.7 Appendix: Example programs . 120

7 B-Tree 125
7.1 Introduction . 125
7.2 Insert . 127

7.2.1 Insert then split . 127
7.2.2 Split before insert . 130
7.2.3 Paired lists . 132

7.3 Look up . 134
7.4 Delete . 136

7.4.1 Delete and fix . 136
7.4.2 Merge before delete . 139

7.5 Summary . 142
7.6 Appendix: Example programs . 143

8 Binary Heaps 147
8.1 Definition . 147
8.2 Binary heap by array . 147

8.2.1 Heapify . 148
8.2.2 Build . 149
8.2.3 Heap operations . 150

Pop . 150
Top-k . 150
Increase priority . 152
Insertion . 152

8.2.4 Heap sort . 152
8.3 Leftist heap and skew heap . 153

8.3.1 Leftist heap . 154

6 CONTENTS

Merge . 155
Top and pop . 155
Insert . 156
Heap sort . 156

8.3.2 Skew heap . 156
Merge . 157

8.4 Splay heap . 157
8.4.1 Splay . 158
8.4.2 Pop . 161
8.4.3 Merge . 162

8.5 Summary . 162
8.6 Appendix - example programs . 162

9 Selection sort 167
9.1 Introduction . 167
9.2 Find the minimum . 168

9.2.1 Performance . 169
9.3 Improvement . 169

9.3.1 Cock-tail sort . 170
9.4 Further improvement . 172

9.4.1 Tournament knock out . 172
9.4.2 Heap sort . 175

9.5 Appendix - example programs . 176

10 Binomial heap, Fibonacci heap, and pairing heap 179
10.1 Introduction . 179
10.2 Binomial Heaps . 179

Binomial tree . 180
10.2.1 Link . 182

Insert . 183
10.2.2 Merge . 184

Pop . 185
10.3 Fibonacci heap . 186

10.3.1 Insert . 187
Merge . 187
Pop . 188

10.3.2 Increase priority . 192
10.3.3 The name of Fibonacci heap . 193

10.4 Pairing Heaps . 194
10.4.1 Definition . 195
10.4.2 Merge, insert, and top . 195
10.4.3 Increase priority . 195
10.4.4 Pop . 196

Delete . 197
10.5 Summary . 198
10.6 Appendix - example programs . 198

11 Queue 203
11.1 Introduction . 203
11.2 Linked-list queue . 203
11.3 Circular buffer . 204
11.4 Paired-list queue . 206

CONTENTS 7

11.5 Balance Queue . 207
11.6 Real-time queue . 207
11.7 Lazy real-time queue . 210
11.8 Appendix - example programs . 211

12 Sequence 213
12.1 Introduction . 213
12.2 Binary random access list . 213
12.3 Numeric representation . 216
12.4 paired-array sequence . 219
12.5 Concatenate-able list . 220
12.6 Finger tree . 221

12.6.1 Insert . 222
12.6.2 Extract . 223
12.6.3 Append and remove . 225
12.6.4 concatenate . 225
12.6.5 Random access . 226

12.7 Appendix - example programs . 228

13 Quick sort and merge sort 233
13.1 Introduction . 233
13.2 Quick sort . 233

13.2.1 Partition . 234
13.2.2 In-place sort . 235
13.2.3 Performance . 237

Average case⋆ . 237
13.2.4 Improvement . 239

Worst cases . 243
13.2.5 quick sort and tree sort . 246

13.3 Merge sort . 246
13.3.1 Merge . 247
13.3.2 Performance . 248

Improvement . 249
13.3.3 In-place merge sort . 250
13.3.4 Nature merge sort . 253
13.3.5 Bottom-up merge sort . 256

13.4 Parallelism . 257
13.5 Summary . 257
13.6 Appendix: Example programs . 258

14 Searching 261
14.1 Introduction . 261
14.2 Sequence search . 261

14.2.1 Divide and conquer search . 261
k-selection problem . 262
binary search . 265
2 dimensions search . 268

Brute-force 2D search . 269
Saddleback search . 269
Improved saddleback search 271
More improvement to saddleback search 275

14.2.2 Information reuse . 280

8 CONTENTS

Boyer-Moore majority number . 280
Maximum sum of sub vector . 284
KMP . 285

Purely functional KMP algorithm 288
Boyer-Moore . 296

The bad character heuristics 296
The good suffix heuristics 299

14.3 Solution searching . 305
14.3.1 DFS and BFS . 305

Maze . 305
Eight queens puzzle . 311
Peg puzzle . 313
Summary of DFS . 317
The wolf, goat, and cabbage puzzle 319
Water jugs puzzle . 323
Kloski . 330
Summary of BFS . 336

14.3.2 Search the optimal solution . 338
Grady algorithm . 338

Huffman coding . 338
Change-making problem . 347
Summary of greedy method 348

Dynamic programming . 348
Properties of dynamic programming 353
Longest common subsequence problem 353
Subset sum problem . 358

14.4 Short summary . 363

Appendices

A Imperative delete for red-black tree 367

B AVL tree - proofs and the delete algorithm 375
B.1 Height increment . 375
B.2 Balance adjustment after insert . 376
B.3 Delete algorithm . 378

B.3.1 Functional delete . 379
B.3.2 Imperative delete . 380

B.4 Example program . 382

GNU Free Documentation License 391
1. APPLICABILITY AND DEFINITIONS . 391
2. VERBATIM COPYING . 392
3. COPYING IN QUANTITY . 393
4. MODIFICATIONS . 393
5. COMBINING DOCUMENTS . 395
6. COLLECTIONS OF DOCUMENTS . 395
7. AGGREGATION WITH INDEPENDENT WORKS 395
8. TRANSLATION . 396
9. TERMINATION . 396
10. FUTURE REVISIONS OF THIS LICENSE 396
11. RELICENSING . 397

CONTENTS 9

ADDENDUM: How to use this License for your documents 397

10 Preface

Programmers learn elementary algorithms at school. Except for programming contest,
code interview, they seldom use algorithms in commercial software development. When
talking about algorithms in AI and machine learning, it actually means scientific modeling,
but not about data structure or elementary algorithm. Even when programmers need
them, they have already been provided in libraries. It seems quite enough to know about
how to use the library as a tool but not ‘re-invent the wheel’.

I would say elementary algorithms are critical in solving ‘interesting problems’, the
usefulness of the problem set aside. Let’s start with two problems.

0.1 The smallest free number

Richard Bird gives an interesting programming problem to find the minimum number
that not appears in a given list(Chapter 1, [?]). It’s common to use a number as the
identifier (Id) to index entities. At any time, a number is either occupied or free. When
client tries to acquire a new number as index, we want to always allocate the smallest
available one. Suppose numbers are non-negative integers and those being occupied are
recorded in a list, for example:

[18, 4, 8, 9, 16, 1, 14, 7, 19, 3, 0, 5, 2, 11, 6]

How can we find the smallest free number, which is 10, from the list? It seems quite
easy to figure out the solution.

1: function Min-Free(A)
2: x← 0
3: loop
4: if x /∈ A then
5: return x
6: else
7: x← x+ 1

Where the /∈ is realized like below.
1: function ‘/∈’(x,X)
2: for i← 1 to |X| do
3: if x = X[i] then
4: return False
5: return True

Some environments have built-in implementation to test if an element is in a list.
Below is an example program.

def minfree(lst):
i = 0
while True:

if i not in lst:
return i

i = i + 1

However, when there are millions of numbers being used, this solution performs poor.
The time spent is quadratic to the length of the list. In a computer with 2 cores of
2.10 GHz CPU, and 2G RAM, the C implementation takes 5.4s to search the minimum
free number among 100,000 numbers, and takes more than 8 minutes to handle a million
numbers.

0.1. THE SMALLEST FREE NUMBER 11

0.1.1 Improvement
The key idea to improve the solution is based on the fact that, for n numbers x1, x2, ..., xn,
if there exists free number, some xi must be outside the range [0, n); otherwise the list is
exactly some permutation of 0, 1, ..., n − 1 hence n should be returned as the minimum
free number. In summary:

minfree(x1, x2, ..., xn) ≤ n (1)

A better solution is to use an array of n+1 flags to mark whether a number in range
[0, n] is free.

1: function Min-Free(A)
2: F ←[False, False, ..., False] where |F | = n+ 1
3: for ∀x ∈ A do
4: if x < n then
5: F [x]← True
6: for i← [0, n] do
7: if F [i] = False then
8: return i

Line 2 initializes a flag array all of False values. Then we scan all numbers in A and
mark the corresponding flag to True if the value is less than n. Finally, we iterate to find
the first False flag. This program takes time proportion to n. It uses n+ 1 flags to cover
the special case that sorted(A) = [0, 1, 2, ..., n − 1]. This solution is much faster than
the brute force one. In the same computer, the Python implementation takes 0.02s when
dealing with 100,000 numbers.

Although this solution only takes O(n) time, it needs additional O(n) space to store
the flags. We haven’t tuned it yet. Each time the program allocates memory to create
an array of n+ 1 flags, then releases it when finish. Such memory allocation and release
is expensive and cost a lot of processing time.

To improve it, we can allocate the memory in advance for later reusing, and change
to bit-wise flags instead of array. For example as the following C program:

#define N 1000000
#define WORD_LENGTH (sizeof(int) * 8)

void setbit(unsigned int* bits, unsigned int i) {
bits[i / WORD_LENGTH] |= 1 << (i % WORD_LENGTH);

}

int testbit(unsigned int* bits, unsigned int i) {
return bits[i / WORD_LENGTH] & (1 << (i % WORD_LENGTH));

}

unsigned int bits[N / WORD_LENGTH + 1];

int minfree(int* xs, int n) {
int i, len = N/WORD_LENGTH + 1;
for (i = 0; i < len; ++i) {

bits[i]=0;
}
for (i=0; i < n; ++i) {

if(xs[i] < n) {
setbit(bits, xs[i]);

}
}
for (i=0; i <= n; ++i) {

if (!testbit(bits, i)) {
return i;

12 Preface

}
}

}

This program can handle 1 million numbers in 0.023s in the same computer.

0.1.2 Divide and Conquer
The above improvement costs O(n) additional space for flags, can we eliminate it? The
divide and conquer strategy is to break the problem into smaller ones, then solve them
separately to get the answer.

We can put numbers xi ≤ bn/2c into a sub-list A′ and put the rest into another sub-
list A′′. According to (1), if the length of A′ equals to bn/2c, it means A′ is ‘full’. The
minimum free number must be in A′′. We can recursively search in A′′ which is shorter
the original list. Otherwise, it means the minimum free number is in A′, which again
leads to a smaller problem.

When search in A′′, the conditions change a bit. We do not start from 0, but from
bn/2c+ 1 as the new lower bound. We define the algorithm as search(A, l, u), where l is
the lower bound and u is the upper bound index. For the empty list as a special case, we
return the l as the result.

minfree(A) = search(A, 0, |A| − 1)

search(∅, l, u) = l

search(A, l, u) =

{
|A′| = m− l + 1 : search(A′′,m+ 1, u)

otherwise : search(A′, l,m)

where

m = b l + u

2
c

A′ = [x|x ∈ A, x ≤ m]
A′′ = [x|x ∈ A, x > m]

This algorithm doesn’t need additional space1. Each recursive call performs O(|A|)
comparisons to build A′ and A′′. After that the problem scale halves. Therefore, the time
is bound to T (n) = T (n/2) + O(n), which reduce to O(n) according to master theorem.
Alternatively, observe that the first call takes O(n) to build A′ and A′′ and the second
call takes O(n/2), and O(n/4) for the third... The total time is O(n+ n/2 + n/4 + ...) =
O(2n) = O(n). We use [a|a ∈ A, p(a)] for list. It is different with {a|a ∈ A, p(a)}, which
is a set.

Below example Haskell program implements this algorithm.

minFree xs = bsearch xs 0 (length xs - 1)

bsearch xs l u | xs == [] = l
| length as == m - l + 1 = bsearch bs (m+1) u
| otherwise = bsearch as l m

where
m = (l + u) `div` 2
(as, bs) = partition (≤ m) xs

1The recursion takes O(lgn) stack spaces, but it can be eliminated through tail recursion optimization

0.2. REGULAR NUMBER 13

0.1.3 Expressiveness and performance
One may concern the performance of this divide and conquer algorithm. There are O(lgn)
recursive calls, which need additional stack space. If wanted, we can eliminate the recur-
sion:

1: function Min-Free(A)
2: l← 0, u← |A|
3: while u− l > 0 do
4: m← l +

u− l

2
5: left← l
6: for right← l to u− 1 do
7: if A[right] ≤ m then
8: A[left]↔ A[right]
9: left← left+ 1

10: if left < m+ 1 then
11: u← left
12: else
13: l← left

As shown in figure 1, this program re-arranges the array such that all elements before
left are less than or equal to m; while those between left and right are greater than m.

A[i]<=m A[i]>m ...?...

left right

Figure 1: Divide the array, all A[i] ≤ m where 0 ≤ i < left; while all A[i] > m where
left ≤ i < right. The rest elements haven’t been processed yet.

This solution is fast and needn’t extra stack space. However, compare to the previous
recursive one, there is some expressiveness drops. Depends on individual taste, one may
prefer one over the other.

0.2 Regular number
The second puzzle is to find the 1,500-th number, which only contains factor 2, 3 or 5. Such
numbers are called regular number, also known as 5-smooth indicating the greatest prime
factor is at most 5, or Hamming numbers named after Richard Hamming in computer
science. 2, 3, and 5 are of course regular numbers. 60 = 223151 is the 25-th number.
21 = 203171 is not valid because it has a factor 7. We consider 1 = 203050 be the 0-th
regular number. The first 10 regular numbers are:

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, ...

0.2.1 The brute-force solution
The straightforward way is to check numbers one by one from 1, extract all factors of 2,
3 and 5 to see if the left part is 1:

1: function Regular-Number(n)

14 Preface

2: x← 1
3: while n > 0 do
4: x← x+ 1
5: if Valid?(x) then
6: n← n− 1

7: return x

8: function Valid?(x)
9: while x mod 2 = 0 do

10: x← bx/2c
11: while x mod 3 = 0 do
12: x← bx/3c
13: while x mod 5 = 0 do
14: x← bx/5c
15: return x = 1 ?

This ‘brute-force’ algorithm works for small n. However, to find the 1500-th regular
number (which is 860934420), its C implementation takes 40.39s in above computer.
When n increases to 15,000, it can’t terminate after 10 minutes.

0.2.2 Improvement

Modular and divide calculations are very expensive [2]. And they are executed a lot in
loops. Instead of checking if a number only contains 2, 3, or 5 as factors, we can construct
regular number from these three factors. We can start from 1, multiply it with 2, 3, or 5
to generate the rest numbers. The problem turns to be how to generate regular numbers
in order? One method is to utilize the queue data structure.

A queue allows to add element to one end (called enqueue), and delete from the other
(called dequeue). The element enqueued first will be dequeued first. This nature is called
FIFO (First In First Out). The idea is to add 1 as the first number to the queue. We
repeatedly dequeue a number, multiply it with 2, 3, and 5, to generate 3 new numbers;
then add them back to the queue in order. A new generated number may already exist
in the queue. In such case, we drop the duplicated number. Because the new number
may be smaller than the others in the queue, we must put them at the correct position.
Figure 2 shows this idea.

1

1*2=2 1*3=3 1*5=5

(a) Initialize with 1

2 3 5

2*2=4 2*3=6 2*5=10

(b) Add 2, 3, 5 back;

3 4 5 6 10

3*2=6 3*3=9 3*5=15

(c) Add 4, 6, and 10 back;

4 5 6 9 10 15

4*2=8 4*3=12 4*5=20

(d) Add 9 and 15 back, 6 is
dropped.

Figure 2: First 4 steps to generate regular numbers.

0.2. REGULAR NUMBER 15

We can design the algorithm based on this idea:
1: function Regular-Number(n)
2: Q← ∅
3: x← 1
4: Enqueue(Q, x)
5: while n > 0 do
6: x← Dequeue(Q)
7: Unique-Enqueue(Q, 2x)
8: Unique-Enqueue(Q, 3x)
9: Unique-Enqueue(Q, 5x)

10: n← n− 1

11: return x

12: function Unique-Enqueue(Q, x)
13: i← 0,m← |Q|
14: while i < m and Q[i] < x do
15: i← i+ 1

16: if i ≥ m or x 6= Q[i] then
17: Insert(Q, i, x)

The insert function takes O(m) time to insert a number at proper position, where
m = |Q| is the length of the queue. It skips insertion if the number already exists. The
length of the queue increases proportion to n (Each time, we dequeue an element, and
enqueue 3 new at most. The increase ratio ≤ 2), the total time is O(1+ 2+3+ ...+n) =
O(n2).

Figure3 shows the number of access to the queue against n. It is a quadratic curve,
which reflects the O(n2) performance.

Figure 3: Queue access count - n.

The corresponding C implementation takes 0.016s to output 860934420. It is about
2500 times faster than the naive search solution.

We can also realize this improvement recursively. Suppose X is an infinite list of all
regular numbers [x1, x2, x3, ...]. For every number, we multiply it by 2, the result is still a
list of regular numbers: [2x1, 2x2, 2x3, ...]. We can also multiply numbers in X by 3 and
5, to generate two new infinite lists. If we merge them together, remove the duplicated
numbers, and prepend 1 as the first, then we get X again. In other words, the following
equation holds:

X = 1 : [2x|∀x ∈ X] ∪ [3x|∀x ∈ X] ∪ [5x|∀x ∈ X] (2)

16 Preface

Where symbol x : X means to link x before list X, such that x becomes the first
element. It is called ‘cons’ in Lisp. We link 1 before the rest, as it is the first regular
number. To implement infinite lists merge, we define ∪ to recursively compare elements
in two sorted lists. Let X = [x1, x2, x3...], Y = [y1, y2, y3, ...] be two such lists, X ′ =
[x2, x3, ...] and Y ′ = [y2, y3, ...] contain the rest elements except without their heads x1

and y1. We define merge as below:

X ∪ Y =


x1 < y1 : x1 : X ′ ∪ Y

x1 = y1 : x1 : X ′ ∪ Y ′

y1 < x1 : y1 : X ∪ Y ′

We need not concern about either X or Y is empty, because they are both infinite lists.
In functional settings that support lazy evaluation, this algorithm can be implemented as
the following example program:
ns = 1 : (map (∗2) ns) `merge` (map (∗3) ns) `merge` (map (∗5) ns)

merge (x:xs) (y:ys) | x < y = x : merge xs (y:ys)
| x == y = x : merge xs ys
| otherwise = y : merge (x:xs) ys

The 1500th number 860934420 is given by ns !! 1500. In the same computer, it
takes about 0.03s to output the answer.

0.2.3 Queues
Although the improved solution is much faster than the original brute-force one, it gener-
ates duplicated numbers, and they are eventually dropped. In order to keep numbers
ordered, it needs linear time scan and insertion, which degrades the enqueue opera-
tion from constant time to O(|Q|). To avoid duplication, we can separate all regular
numbers into 3 disjoint buckets: Q2 = {2i|i > 0}, Q23 = {2i3j |i ≥ 0, j > 0}, and
Q235 = {2i3j5k|i, j ≥ 0, k > 0}. The constraints that j 6= 0 in Q23, and k 6= 0 in
Q235 ensure there is no overlap. The bucket is realized as a queue. They are initialized as
Q2 = {2}, Q23 = {3}, and Q235 = {5}. Starting from 1, each time we extract the smallest
number x from the three queues as the next regular number. Then do the following:

• If x comes from Q2, we enqueue 2x, 3x, and 5x back to Q2, Q23, and Q235 respec-
tively;

• If x comes from Q23, we only enqueue 3x to Q23, and 5x to Q235. We should not
add 2x to Q2, because Q2 cannot hold any numbers divided by 3.

• If x comes from Q235, we only need enqueue 5x to Q235. We should not add 2x to
Q2, or 3x to Q23 because they can’t hold numbers divided by 5.

We reach to the answer after repeatedly enqueue the smallest number n times. The
following algorithm implements this idea:

1: function Regular-Number(n)
2: x← 1
3: Q2 ← {2}, Q23 ← {3}, Q235 ← {5}
4: while n > 0 do
5: x← min(Head(Q2), Head(Q23), Head(Q235))
6: if x = Head(Q2) then
7: Dequeue(Q2)
8: Enqueue(Q2, 2x)

0.3. SUMMARY 17

2

min=2

3 5

2*min=4 3*min=6 5*min=10

(a) Enqueue 4, 6, 10;

4

min=3

3 6 5 10

3*min=9 5*min=15

(b) Enqueue 9, 15;

4

min=4

6 9 5 10 15

2*min=8 3*min=12 5*min=20

(c) Enqueue 8, 12, 20;

8

min=5

6 9 12 5 10 15 20

5*min=25

(d) Enqueue 25.

Figure 4: First 4 steps with Q2, Q23, and Q235. They were initialize with 2, 3, 5.

9: Enqueue(Q23, 3x)
10: Enqueue(Q235, 5x)
11: else if x = Head(Q23) then
12: Dequeue(Q23)
13: Enqueue(Q23, 3x)
14: Enqueue(Q235, 5x)
15: else
16: Dequeue(Q235)
17: Enqueue(Q235, 5x)
18: n← n− 1

19: return x

This algorithm loops on n. Each time it extracts the minimum number from the head
of three queues. This takes constant time. Then it add at most 3 numbers to each queue
respectively. This takes constant time too. Therefore the algorithm is bound to O(n).

0.3 Summary
One might think the brute-force solution was sufficient to solve both programming puzzles.
However, as the problem scales up, we have to seek for better solutions. There are
many interesting problems, which were hard before, but through computer programming,
we are able to solve them nowadays. This book aims to provide both functional and
imperative definition for the commonly used elementary algorithms and data structures.
We referenced many results from Okasaki’s work [3] and classic text books(for example [4]).
We try to avoid relying on a specific programming language, because it may or may not
be familiar with the reader, and programming languages keep changing. Instead, we use
pseudo code or mathematics notation to make the algorithm definition generic. When
give code examples, the functional ones look more like Haskell, and the imperative ones
look like a mix of C, Java, and Python. They are only for illustration purpose, but not
guaranteed following any language specification strictly.

18 List

Exercise 1
1. For the free number puzzle, since all numbers are not negative, we can leverage the

sign as a flag to indicate a number exists. We can scan the number list, for every
number |x| < n (where n is the length), negate the number at position |x|. Then
we run another round of scan to find out the first positive number. It’s position is
the answer. Write a program to realize this method.

2. There are n numbers 1, 2, ..., n. After some processing, they are shuffled, and a
number x is altered to y. Suppose 1 ≤ y ≤ n, design a solution to find x and y in
linear time with constant space.

3. Below example program is a solution for the regular number puzzle. Is it equivalent
to the queue based solution?
Int regularNum(Int m) {

nums = Int[m + 1]
n = 0, i = 0, j = 0, k = 0
nums[0] = 1
x2 = 2 ∗ nums[i]
x3 = 3 ∗ nums[j]
x5 = 5 ∗ nums[k]
while (n < m) {

n = n + 1
nums[n] = min(x2, x3, x5)
if (x2 == nums[n]) {

i = i + 1
x2 = 2 ∗ nums[i]

}
if (x3 == nums[n]) {

j = j + 1
x3 = 3 ∗ nums[j]

}
if (x5 == nums[n]) {

k = k + 1
x5 = 5 ∗ nums[k]

}
}
return nums[m];

}

Chapter 1

List

1.1 Introduction
List and array are the preliminary build blocks to create complex data structure. Both
can hold multiple elements as a container. Array is trivially implemented as a range of
consecutive cells indexed by a number. The number is called address or position. Array
is typically bounded. Its size need be determined before using. While list increases on-
demand to hold additional elements. One can traverse a list one by one from head to
tail. Particularly in functional settings, the list related algorithms play critical roles to
control the computation and logic structure1. Readers already familiar with map, filter,
fold algorithms are safe to skip this chapter, and directly start from chapter 2.

1.2 Definition
List, also known as singly linked-list is a data structure recursively defined as below:

• A list is either empty, denoted as ∅ or NIL;

• Or contains an element and liked with a list.

Figure 1.1 shows a list of nodes. Each node contains two part, an element called key,
and a reference to the sub-list called next. The sub-list reference in the last node is empty,
marked as ‘NIL’.

NIL

Figure 1.1: A list of nodes

Every node links to the next one or NIL. Linked-list is often defined through compound
structure2, for example:
struct List<A> {

A key
List<A> next

}

1In low level, lambda calculus plays the most critical role as one of the computation model equivalent
to Turing machine [93], [99].

2In most cases, the data stored in list have the same type. However, there is also heterogeneous list,
like the list in Lisp for example.

19

20 CHAPTER 1. LIST

It needs more clarification for the empty list. Many traditional environments support
null concept. There are two different ways to represent empty list. One is to use null (or
NIL) directly; the other is to construct a list, but put nothing as []. From implementation
perspective, null need not allocate any memory, while [] does. In this book, we use ∅ to
represent generic empty list, set, or container.

1.2.1 Access
Given a none empty list L, we need define two functions to access its first element, and
the rest sub-list. They are often called first(L), rest(L) or head(L), tail(L)3. On the
other hand, we can construct a list from an element x and another list xs (can be empty),
denoted as x : xs. It is also called the cons operation. We have the following equations
hold: {

head(x : xs) = x

tail(x : xs) = xs
(1.1)

For a none empty list X, we will also use x1 for the first element, and use X ′ for the
rest sub-list. For example, when X = [x1, x2, x3, ...], then X ′ = [x2, x3, ...].

Exercise 1.2
1. For list of type A, suppose we can test if any two elements x, y ∈ A are equal,

define an algorithm to test if two lists are identical.

1.3 Basic operations
From the definition, we can count the length recursively: for empty list, the length is
zero, otherwise, it is the length of the sub-list plus one.

length(∅) = 0
length(L) = 1 + length(L′)

(1.2)

In order to count the length, this algorithm traverses all the elements from head to end,
hence it is bound to O(n) time, where n is the number of elements. To avoid repeatedly
counting, we can also persist the length in a variable, and update it when mutate (add
or delete) the list. Below is the iterative way to count length:

1: function Length(L)
2: n← 0
3: while L 6= NIL do
4: n← n+ 1
5: L← Next(L)
6: return n

We will also use notion |L| for the length of list L when the context is clear.

1.3.1 index
Different from array, which supports random access an element at position i in constant
time, we need traverse the list i steps to access the target element.

getAt(i, x : xs) =

{
i = 0 : x

i 6= 0 : getAt(i− 1, xs)
(1.3)

3They are named as car and cdr in Lisp due to the design of machine registers [63].

1.3. BASIC OPERATIONS 21

In order to get the i-th element from a none empty list:

• if i is 0, the result is the first element;

• Otherwise, the result is the (i− 1)-th element in the sub-list.

We intend to leave the empty list not handled. The behavior when pass ∅ is undefined.
As such, the out of bound case also leads to undefined behavior. If i > |L| exceeds the
length, we end up the edge case to access the (i − |L|)-th element of the empty list. On
the other hand, if i < 0, minus it by one makes it even farther away from 0. We finally
end up with the same situation that the index is negative, while the list is empty.

This algorithm is bound to O(i) time as it advances the list i steps. Below is the
corresponding imperative implementation:

1: function Get-At(i, L)
2: while i 6= 0 do
3: L← Next(L) ▷ Raise error when L = NIL
4: i← i− 1

5: return First(L)

Exercise 1.3
1. In the iterative Get-At(i, L) algorithm, what is the behavior when L is empty?

what is the behavior when i is out of the bound or negative?

1.3.2 Last
There is a pair of symmetric operations to ‘first/rest’. They are called ‘last/init’. For a
none empty list X = [x1, x2, ..., xn], function last returns the last element xn, while init
returns the sub-list of [x1, x2, ..., xn−1]. Although they are symmetric pairs left to right,
‘last/init’ need linear time, because we need traverse the whole list to tail.

When access the last element of list X:

• If the X contains only one element as [x1], then x1 is the last one;

• Otherwise, the result is the last element of the sub-list X ′.

last([x]) = x
last(x : xs) = last(xs)

(1.4)

Similarly, when extract the sub-list of X contains all elements without the last one:

• If X is a singleton [x1], the result is empty [];

• Otherwise, we recursively get the initial sub-list for X ′, then prepend x1 to it as
the result.

init([x]) = []
init(x : xs) = x : init(xs)

(1.5)

We leave the empty list not handled for both operations. The behavior is undefined
if pass ∅ in. Below are the iterative implementation:

1: function Last(L)
2: x← NIL
3: while L 6= NIL do
4: x← First(L)

22 CHAPTER 1. LIST

5: L← Rest(L)
6: return x

7: function Init(L)
8: L′ ← NIL
9: while Rest(L) 6= NIL do ▷ Raise error when L is NIL

10: L′ ← Cons(First(L), L′)
11: L← Rest(L)
12: return Reverse(L′)

As advancing towards the tail, this algorithm accumulates the ‘init’ result through
‘cons’. However, such result is in the reversed order. We need apply reverse (defined in
section 1.4.2) again to return the correct result. There is a question to ask if we can use
‘append’ instead of ‘cons’ in the exercise.

1.3.3 Reverse index
last is a special case of reverse index. The generic case is to find the last i-th element
of a given list. The naive implementation takes two rounds of traverse: Determine the
length n through the first round; then access the (n−i−1)-th element through the second
round:

lastAt(i, L) = getAt(|L| − i− 1, L) (1.6)

There actually exists better solution. The idea is to keep two pointers p1, p2 with
the distance i between them. The equation resti(p2) = p1 holds, where resti(p2) means
repleatedly apply rest() function i times. When succeed p2 by i steps gets p1. We start
by pointing p2 to the list head, and advance both pointers in parallel till p1 arrives at tail.
At that time point, p2 exactly points to the i-th element from right. Figure 1.2 shows
this idea. As p1, p2 form a window, this method is also called ‘sliding window’ solution.

x[1] x[2] ... x[i+1] ... x[n] .

p2 p1

(a) p2 starts from the head, behind p1 in i steps.

x[1] x[2] ... x[n-i] ... x[n] .

p2 p1

(b) When p1 reaches the tail, p2 points to the i-th element from right.

Figure 1.2: Sliding window formed by two pointers

1: function Last-At(i, L)

1.3. BASIC OPERATIONS 23

2: p← L
3: while i > 0 do
4: L← Rest(L) ▷ Raise error if out of bound
5: i← i− 1

6: while Rest(L) 6= NIL do
7: L← Rest(L)
8: p← Rest(p)
9: return First(p)

The functional implementation need special consideration as we cannot update point-
ers directly. Instead, we advance two lists X = [x1, x2, ..., xn] and Y = [xi, xi+1, ..., xn]
simultaneously, where Y is the sub-list without the first i− 1 elements.

• If Y is a singleton list, i.e. [xn], then the last i-th element is the head of X;

• Otherwise, we drop the first element from both X and Y , then recursively check X ′

and Y ′.

lastAt(i,X) = slide(X, drop(i,X)) (1.7)

where function slide(X,Y) drops the heads for both lists:

slide(x : xs, [y]) = x
slide(x : xs, y : ys) = slide(xs, ys)

(1.8)

Function drop(m,X) discards the first m elements from list X. It can be implemented
by advancing X by m steps:

drop(0, X) = X
drop(m, ∅) = ∅

drop(m, x : xs) = drop(m− 1, xs)
(1.9)

Exercise 1.4
1. In the Init algorithm, can we use Append(L′, First(L)) instead of ‘cons’?
2. How to handle empty list or out of bound index error in Last-At algorithm?

1.3.4 Mutate
Mutate operations include append, insert, update, and delete. Some functional environ-
ments actually implement mutate by creating a new list, while the original one is persisted
for later reuse, or released at sometime (chapter 2 in [3]).

Append

Append is the symmetric operation of cons, it adds element on the tail instead of head.
Because of this, it is also called ‘snoc’. For linked-list, it means we need traverse to the
tail, hence it takes O(n) time, where n is the length. To avoid repeatedly traverse, we
can record the tail reference as a variable, and keep updating it upon changes.

append(∅, x) = [x]
append(y : ys, x) = y : append(ys, x)

(1.10)

• If append x to the empty list, the result is [x];

24 CHAPTER 1. LIST

• Otherwise, we firstly recursive append x to the rest sub-list, then prepend the
original head to form the result.

The corresponding iterative implementation is as the following:
1: function Append(L, x)
2: if L = NIL then
3: return Cons(x, NIL)
4: H ← L ▷ save the head
5: while Rest(L) 6= NIL do
6: L← Rest(L)
7: Rest(L) ← Cons(x, NIL)
8: return H

Update the Rest is typically implemented by setting the next reference field as shown
in below example program.

List<A> append(List<A> xs, T x) {
if (xs == null) {

return cons(x, null)
}
List<A> head = xs
while (xs.next ̸= null) {

xs = xs.next
}
xs.next = cons(x, null)
return head

}

Exercise 1.5

1. Add a ‘tail’ field in list definition, optimize the append algorithm to constant time.

2. With the additional ‘tail’ field, when need we update the tail variable? How does
it affect the performance?

Set value

Similar to getAt, we need advance to the target position, then change the element there.
To define function setAt(i, x, L):

• If i = 0, it means we are changing the first element, the result is x : L′;

• Otherwise, we need recursively set the value at position i− 1 for the sub-list L′.

setAt(0, x, y : ys) = x : ys
setAt(i, x, y : ys) = y : setAt(i− 1, x, ys)

(1.11)

This algorithm is bound to O(i) time, where i is the position to update.

Exercise 1.6

1. Handle the empty list and out of bound error for setAt.

1.3. BASIC OPERATIONS 25

insert

There are two different cases about insertion. One is to insert an element at a given
position: insert(i, x, L). The algorithm is similar to setAt; The other is to insert an
element to a sorted list, and keep the order still sorted.

To insert x at position i, we need firstly advance i steps, then construct a new sub-list
with x as the head, then concatenate it to the first i elements4.

• If i = 0, it then turns to be a ‘cons’ operation: x : L;

• Otherwise, we recursively insert x to L′ at position i− 1; then prepend the original
head.

insert(0, x, L) = x : L
insert(i, x, y : ys) = x : insert(i− 1, x, ys)

(1.12)

When i exceeds the list length, we can treat it as to append x. We leave this as an
exercise. The following is the corresponding iterative implementation:

1: function Insert(i, x, L)
2: if i = 0 then
3: return Cons(x, L)
4: H ← L
5: p← L
6: while i > 0 and L 6= NIL do
7: p← L
8: L← Rest(L)
9: i← i− 1

10: Rest(p) ← Cons(x, L)
11: return H

If the list L = [x1, x2, ..., xn] is sorted, i.e. for any position 1 ≤ i ≤ j ≤ n, then
xi ≤ xj holds. Here ≤ is abstract ordering. It can actually mean ≥ for descending order,
or subset relationship etc. We can design the insert algorithm to maintain the sorted
order. To insert element x to a sorted list L:

• If either L is empty or x is not greater than the first element in L, we prepend x to
L and returns x : L;

• Otherwise, we recursively insert x to the sub-list L′.

insert(x, ∅) = [x]

insert(x, y : ys) =

{
x ≤ y : x : y : ys

otherwise : y : insert(x, ys)

(1.13)

Since the algorithm need compare elements one by one, it is bound to O(n) time,
where n is the length. Below is the corresponding iterative implementation:

1: function Insert(x, L)
2: if L = NIL or x < First(L) then
3: return Cons(x, L)
4: H ← L
5: while Rest(L) 6= NIL and First(Rest(L)) < x do
6: L← Rest(L)

4i starts from 0.

26 CHAPTER 1. LIST

7: Rest(L) ← Cons(x, Rest(L))
8: return H

With this linear time ordered insertion defined, we can further develop the insertion-
sort algorithm. The idea is to repeatedly insert elements to the empty list. Since each
insert takes liner time, the overall sort is bound to O(n2).

sort(∅) = ∅
sort(x : xs) = insert(x, sort(xs))

(1.14)

This is a recursive algorithm. It firstly sorts the sub-list, then inserts the first element
in it. We can eliminate the recursion to develop a iterative implementation. The idea is
to scan the list, and one by one insert them:

1: function Sort(L)
2: S ← NIL
3: while L 6= NIL do
4: S ← Insert(First(L), S)
5: L← Rest(L)
6: return S

At any time during the loop, the result is sorted. There is a major difference between
the recursive and the iterative implementations. The recursive one processes the list
from right, while the iterative one is from left. We’ll introduce ‘tail-recursion’ in section
1.3.5 to eliminate this difference. Chapter 3 introduces insertion sort in detail, including
performance analysis and optimization.

Exercise 1.7
1. Handle the out-of-bound case in insertion, and treat it as append.
2. Design the insertion algorithm for array. When insert at position i, all elements

after i need shift to the end by one.
3. Implement the insertion sort only with less than (<) defined.

delete

Symmetric to insert, delete also has two cases. One is to delete the element at a position;
the other is to look up, then delete the element of a given value. The first case is defined
as delAt(i, L), the second case is defined as delete(x, L).

To delete the element at position i, we need advance i steps to the target position,
then by pass the element, and link the rest sub-list.

• If L is empty, then the result is empty too;

• If i = 0, we are deleting the head, the result is L′;

• Otherwise, recursively delete the (i− 1)-th element from L′, then prepend the orig-
inal head as the result.

delAt(i, ∅) = ∅
delAt(0, x : xs) = xs
delAt(i, x : xs) = x : delAt(i− 1, xs)

(1.15)

This algorithm is bound to O(i) as we need advance i steps to perform deleting. Below
is the iterative implementation:

1: function Del-At(i, L)

1.3. BASIC OPERATIONS 27

2: S ← Cons(⊥, L) ▷ A sentinel node
3: p← S
4: while i > 0 and L 6= NIL do
5: i← i− 1
6: p← L
7: L← Rest(L)
8: if L 6= NIL then
9: Rest(p) ← Rest(L)

10: return Rest(S)
To simplify the implementation, we introduce a sentinel node S, it contains a special

value ⊥, and its next reference points to L. With S, we are save to cut-off any node in L
even for the first one. Finally, we return the list after S as the result, and S itself can be
discarded.

For the ‘find and delete’ case, there are two options. We can either find and delete
the first occurrence of a value; or remove all the occurrences. The later is more generic,
we leave it as an exercise. When delete x from list L:

• If the list is empty, the result is ∅;

• Otherwise, we compare the head and x, if they are equal, then the result is L′;

• If the head does not equal to x, we keep the head, and recursively delete x in L′.
delete(x, ∅) = ∅

delete(x, y : ys) =

{
x = y : ys

x 6= y : y : delete(x, ys)

(1.16)

This algorithm is bound to O(n) time, where n is the length, as it need scan the list
to find the target element. For the iterative implementation, we also introduce a sentinel
node to simplify the logic:

1: function Delete(x, L)
2: S ← Cons(⊥, L)
3: p← L
4: while L 6= NIL and First(L) 6= x do
5: p← L
6: L← Rest(L)
7: if L 6= NIL then
8: Rest(p) ← Rest(L)
9: return Rest(S)

Exercise 1.8
1. Design the algorithm to find and delete all occurrences of a given value.
2. Design the delete algorithm for array, all elements after the delete position need

shift to front by one.

concatenate

Append is a special case for concatenation. Append only adds one element, while concate-
nation adds multiple ones. However, the performance would be quadratic if repeatedly
appending as below:

X ++∅ = X
X ++ (y : ys) = append(X, y) ++ ys

(1.17)

28 CHAPTER 1. LIST

In this implementation when concatenate X and Y , each append operation traverses
to the tail, and we do this for |Y | times. the total time is bound to O(|X|+ (|X|+ 1) +
...+ (|X|+ |Y |)) = O(|X||Y |+ |Y |2). Consider the link (cons) operation is fast (constant
time), we can traverse to the tail of X only once, then link Y to the tail.

• If X is empty, the result is Y ;

• Otherwise, we concatenate the sub-list X ′ with Y , then prepend the head as the
result.

We can further improve it a bit: when Y is empty, we needn’t traverse, but directly
return X:

∅++ Y = Y
X ++∅ = X

(x : xs) ++ Y = x : (xs++ Y)
(1.18)

The modified algorithm only traverse list X, then link its tail to Y , hence it is bound
O(|X|) time. In imperative settings, concatenation can be realized in constant time with
the additional tail variable. We leave its implementation as exercise. Below is the iterative
implementation without using the tail variable:

1: function Concat(X,Y)
2: if X = NIL then
3: return Y
4: if Y = NIL then
5: return X
6: H ← X
7: while Rest(X) 6= NIL do
8: X ← Rest(X)
9: Rest(X) ← Y

10: return H

1.3.5 sum and product
It is common to calculate the sum or product of a list of numbers. They have almost
same structure. We will introduce how to abstract them to higher order computation in
section 1.6.

Recursive sum and product

To calculate the sum of a list:

• If the list is empty, the result is zero;

• Otherwise, the result is the first element plus the sum of the rest.

sum(∅) = 0
sum(x : xs) = x+ sum(xs)

(1.19)

We can’t merely replace + to × to obtain product algorithm, because it always returns
zero. We need define the product of the empty list as 1.

product(∅) = 1
product(x : xs) = x · product(xs) (1.20)

Both algorithms traverse the list, hence are bound to O(n) time, where n is the length.

1.3. BASIC OPERATIONS 29

Tail call recursion

Both sum and product algorithms calculate from right to left. We can change them to
calculate the accumulated result from left to right. For sum, it accumulates from 0, then
adds element one by one; while for product, it starts from 1, then repeatedly multiplying
elements. The accumulate process can be defined as:

• If the list is empty, return the accumulated result;

• Otherwise, accumulate the first element to the result, then go on accumulating.

Below are the accumulated sum and product:

sum′(A, ∅) = A
sum′(A, x : xs) = sum(x+A, xs)

prod′(A, ∅) = A
prod′(A, x : xs) = prod′(x ·A, xs)

(1.21)
Given a list, we can call sum′ with 0, and prod′ with 1:

sum(X) = sum′(0, X) product(X) = prod′(1, X) (1.22)

Or merely simplify it to Curried form:

sum = sum′(0) product = prod′(1)

Curried form was introduced by Schönfinkel (1889 - 1942) in 1924, then widely used by
Haskell Curry from 1958. It is known as Currying [73]. For a function taking 2 parameters
f(x, y), when pass one argument x, it ends up to another function of y: g(y) = f(x, y)
or g = f x. We can further extend it to multiple variables, that f(x, y, ..., z) can be
Curried to a series of functions: f, f x, f x y, No matter how many variables, we can
treat them as a series of Curried function, each has only one parameter: f(x, y, ..., z) =
f(x)(y)...(z) = f x y ... z.

The accumulated sum does not only calculate the result from left to right, it needn’t
book keeping any context, state, or intermediate result for recursion. All such states are
either passed as argument (i.e. A), or can be dropped (the previous element in the list).
Such recursive calls are often optimized as pure loops in practice. We call this kind of
function as tail recursion (or ‘tail call’), and the optimization to eliminate recursion is
called ’tail recursion optimization’ [61], because the recursion happens at the tail place in
the function. The performance of tail call can be greatly improved after optimization,
and we can avoid the issue of stack overflow in deep recursions.

In section 1.3.4 about insertion sort, we mentioned the recursive algorithm sorts ele-
ments form right. We can also optimize it to tail call:

sort′(A, ∅) = A
sort′(A, x : xs) = sort′(insert(x,A), xs)

(1.23)

And the sort is defined in Curried form with ∅ as the start value:

sort = sort′(∅) (1.24)

As a typical tail call problem, let’s consider how to compute bn effectively? (refer to
problem 1.16 in [63].) A brute-force solution is to repeatedly multiplying b for n times
from 1. This algorithm is bound to O(n):

1: function Pow(b, n)
2: x← 1
3: loop n times

30 CHAPTER 1. LIST

4: x← x · b
5: return x

Actually, the solution can be greatly improved. When compute b8, after the first 2
loops, we get x = b2. At this stage, we needn’t multiply x with b to get b3, but directly
compute x2, which gives b4. If do this again, we get (b4)2 = b8. Thus we only need loop
3 times, but not 8 times.

Based on this idea, if n = 2m for some none negative integer m, we can design below
algorithm to compute bn:

b1 = b
bn = (b

n
2)2

We next extend this divide and conquer method for any none negative integer n:

• If n = 0, define b0 = 1;

• If n is even, we halve n, to compute b
n
2 . Then square it;

• Otherwise n is odd. Since n− 1 is even, we recursively compute bn−1, the multiply
b atop it.

b0 = 1

bn =

{
2|n : (b

n
2)2

otherwise : b · bn−1

(1.25)

However, the 2nd clause blocks us to turn it tail recursive. Alternatively, we can
square the base number, and halve the exponent.

b0 = 1

bn =

{
2|n : (b2)

n
2

otherwise : b · bn−1

(1.26)

With this change, we can develop a tail recursive algorithm to compute bn = pow(b, n, 1).

pow(b, 0, A) = A

pow(b, n,A) =

{
2|n : pow(b2,

n

2
, A)

otherwise : pow(b, n− 1, b ·A)

(1.27)

Compare to the brute-force implementation, this one improves to O(lgn) time. Ac-
tually, we can improve it further. If represent n in binary format n = (amam−1...a1a0)2,
we clearly know that the computation for b2

i is necessary if ai = 1. This is quite similar
to the idea of Binomial heap (section 10.2). We can multiplying all of them for bits of 1.

For example, when compute b11, as 11 = (1011)2 = 23 +2+1, thus b11 = b2
3 × b2× b.

We get the result by these steps:

1. calculate b1, which is b;

2. Square to b2 from the previous result;

3. Square again to b2
2 from step 2;

4. Square to b2
3 from step 3.

1.3. BASIC OPERATIONS 31

Finally, we multiply the result of step 1, 2, and 4 to get b11. Summarize this idea, we
improve the algorithm as below.

pow(b, 0, A) = A

pow(b, n,A) =

2|n : pow(b2,
n

2
, A)

otherwise : pow(b2, bn
2
c, b ·A)

(1.28)

This algorithm essentially shifts n to right 1 bit each time (divide n by 2). If the
LSB (Least Significant Bit, the lowest) is 0, n is even. It squares the base and keeps the
accumulator A unchanged; If the LSB is 1, n is odd. It squares the base and accumulates
it to A; When n is zero, we exhaust all bits, A is the final result. At any time, the
updated base number b′, the shifted exponent number n′, and the accumulator A satisfy
the invariant bn = A · (b′)n′ .

Compare to previous implementation, which minus by one for odd n, this algorithm
halves n every time. It exactly runs m rounds, where m is the number of bits. We leave
the imperative implementation as exercise.

Back to the sum and product. The iterative implementation applies plus and multiply
while traversing:

1: function Sum(L)
2: s← 0
3: while L 6= NIL do
4: s← s+ First(L)
5: L← Rest(L)
6: return s

7: function Product(L)
8: p← 1
9: while L 6= NIL do

10: p← p · First(L)
11: L← Rest(L)
12: return p

One interesting usage of product is to calculate factorial of n as: n! = product([1..n]).

1.3.6 maximum and minimum
For a list of comparable elements (we can define order for any two elements), there is
the maximum and minimum. The algorithm structure of max/min is same. For a none
empty list:

• If there is only one element (a singleton) [x1], the result is x1;

• Otherwise, we recursively find the min/max of the sub-list, then compare it with
the first element to determine the result.

min([x]) = x

min(x : xs) =

{
x < min(xs) : x

otherwise : min(xs)

(1.29)

and
max([x]) = x

max(x : xs) =

{
x > max(xs) : x

otherwise : max(xs)

(1.30)

32 CHAPTER 1. LIST

Both process the list from right to left. We can modify them to tail recursive. It also
brings us the ‘on-line’ feature, that at any time, the accumulator is the min/max so far
processed. Use min for example:

min′(a, ∅) = a

min′(a, x : xs) =

{
x < a : min′(x, xs)

otherwise : min′(a, xs)

(1.31)

Different from sum′/prod′, we can’t pass a fixed starting value to the tail recursive
min′/max′, unless we use ±∞ in below Curried form:

min = min′(∞) max = max′(−∞)

Alternatively, we can pass the first element as the accumulator given min/max only
takes none empty list:

min(x : xs) = min′(x, xs) max(x : xs) = max′(x, xs) (1.32)

The optimized tail recursive algorithm can be further changed to purely iterative
implementation. We give the Min example, and skip Max.

1: function Min(L)
2: m← First(L)
3: L← Rest(L)
4: while L 6= NIL do
5: if First(L) < m then
6: m← First(L)
7: L← Rest(L)
8: return m

There is a way to realize the tail recursive algorithm without using accumulator explic-
itly. The idea is to re-use the first element as the accumulator. Every time, we compare
the head with the next element; then drop the greater one for min, and drop the less one
for max.

min([x]) = x

min(x1 : x2 : xs) =

{
x1 < x2 : min(x1 : xs)

otherwise : min(x2 : xs)

(1.33)

We skip the definition for max as it is symmetric.

Exercise 1.9

1. Change the length to tail call.
2. Change the insertion sort to tail call.
3. Implement the O(lgn) algorithm to calculate bn by represent n in binary.

1.4 Transform
From algebraic perspective, there are two types of transform: one keeps the list structure,
but only change the elements; the other alter the list structure, hence the result is not
isomorphic to the original list. Particularly, we call the former map.

1.4. TRANSFORM 33

1.4.1 map and for-each
The first example is to convert a list of numbers to their represented strings, like to change
[3, 1, 2, 4, 5] to [“three”, “one”, “two”, “four”, “five”]

toStr(∅) = ∅
toStr(x : xs) = str(x) : toStr(xs)

(1.34)

For the second example, consider a dictionary, which is a list of words grouped by
initial letter. Like:

[[a, an, another, ...],
[bat, bath, bool, bus, ...],
...,
[zero, zoo, ...]]

Next we process a text (Hamlet for example), and augment each word with their
number of occurrence, like:

[[(a, 1041), (an, 432), (another, 802), ...],
[(bat, 5), (bath, 34), (bool, 11), (bus, 0), ...],
...,
[(zero 12), (zoo, 0), ...]]

Now for every initial letter, we want to figure out which word occurs most. How
to write a program to do this work? The output is a list of words, that every one has
the most occurrences in the group, something like [a, but, can, ...]. We need
develop a program that transform a list of groups of word-number pairs into a list
of words.

First, we need define a function. It takes a list of word-number pairs, finds the word
paired with the biggest number. Sort is overkill. What we need is a special max function
maxBy(cmp,L), where cmp compares two elements abstractly.

maxBy(cmp, [x]) = x

maxBy(cmp, x1 : x2 : xs) =

{
cmp(x1, x2) : maxBy(cmp, x2 : xs)

otherwise : maxBy(cmp, x1 : xs)

(1.35)

For a pair p = (a, b) we define two access functions:{
fst (a, b) = a

snd (a, b) = b
(1.36)

Instead of embedded parenthesis fst((a, b)) = a, we omit one layer, and use a space.
Generally, we treat f x = f(x) when the context is clear. Then we can define a special
compare function for word-count pairs:

less(p1, p2) = snd(p1) < snd(p2) (1.37)

Then pass less to maxBy to finalize our definition (in Curried form):

max′′ = maxBy(less) (1.38)

With max′′() defined, we can develop the solution to process the whole list.

solve(∅) = ∅
solve(x : xs) = fst(max′′(x)) : solve(xs)

(1.39)

34 CHAPTER 1. LIST

Map

The solve() and toStr() functions reveal the same structure, although they are developed
for different problems. We can abstract this common structure as map:

map(f, ∅) = ∅
map(f, x : xs) = f(x) : map(f, xs)

(1.40)

map takes the function f as argument, applies it to every element to form a new list.
A function that computes with other functions is called high-order function. If the type
of f is A→ B, which means it sends an element of A to the result of B, then the type of
map is:

map :: (A→ B)→ [A]→ [B] (1.41)

We read it as: map takes a function of A→ B, then convert a list [A] to another list
[B]. The two examples in previous section can be defined with map as (in Curried form):

toStr = map str
solve = map (fst ◦max′′)

Where f ◦ g means function composite, i.e. first apply g then apply f . (f ◦ g) x =
f(g(x)), Read as f after g. Map can also be defined from the domain theory point of
view. Function y = f(x) defines the map from x in set X to y in set Y :

Y = {f(x)|x ∈ X} (1.42)

This type of set definition is called Zermelo-Frankel set abstraction (known as ZF
expression) [72]. The different is that the mapping is from a list (but not set) to another:
Y = [f(x)|x ∈ Y]. There can be duplicated elements. For list, such ZF style expression
is called list comprehension.

List comprehension is a powerful tool. As an example, let us see how to realize the
permutation algorithm. Extend from generating all-permutations as [72] and [94], we define
a generic perm(L, r), that permutes r out of the total n elements in the list L. There are
total P r

n =
n!

(n− r)!
solutions.

perm(L, r) =

{
|L| < r or r = 0 : [[]]

otherwise : [x : ys | x ∈ L, ys ∈ perm(delete(x, L), r − 1)]

(1.43)
If pick zero element for permutation, or there are too few (less than r), the result is a

list of empty list; otherwise, we recursively pick r− 1 out of the rest n− 1 elements; then
prepend x before each. Below Haskell example program utilizes the list comprehension
feature:
perm xs r | r == 0 | | length xs < r = [[]]

| otherwise = [x:ys | x ←xs,
ys ← perm (delete x xs) (r-1)]

For the iterative Map implementation, below algorithm uses a sentinel node to simplify
the logic to handle head reference.

1: function Map(f, L)
2: L′ ← Cons(⊥, NIL) ▷ Sentinel node
3: p← L′

4: while L 6= NIL do

1.4. TRANSFORM 35

5: x← First(L)
6: L← Rest(L)
7: Rest(p) ← Cons(f(x), NIL)
8: p← Rest(p)
9: return Rest(L′) ▷ Drop the sentinel

For each

Sometimes we only need to traverse the list, repeatedly process the elements one by one
without building the new list. Here is an example that print every element out:

1: function Print(L)
2: while L 6= NIL do
3: print First(L)
4: L← Rest(L)

More generally, we can pass a procedure P , then traverse the list and apply P to each
element.

1: function For-Each(P,L)
2: while L 6= NIL do
3: P(First(L))
4: L← Rest(L)

Examples

As an example, let’s see a “n-lights puzzle” [96]. There are n lights in a room, all of them
are off. We execute the following n rounds:

1. Switch all the lights in the room (all on);

2. Switch lights with number 2, 4, 6, ... , that every other light is switched, if the light
is on, it will be off;

3. Switch every third lights, number 3, 6, 9, ... ;

4. ...

And at the last round, only the last light (the n-th light) is switched. The question is
how many lights are on in the end?

Let’s start with a brute-force solution, then improve it step by step. We represent the
state of n lights as a list of 0/1 numbers. 0 is off, 1 is on. The initial state are all zeros:
[0, 0, ..., 0]. We label the light from 1 to n, then map them to (i, on/off) pairs:

lights = map(i 7→ (i, 0), [1, 2, 3, ...n])

It binds each number to zero, the result is a list of pairs: L = [(1, 0), (2, 0), ..., (n, 0)].
Next we operate this list of pairs for n rounds. In the i-th round, switch the second value
in this pair if its label is divided by i. Consider 1− 0 = 1, and 1− 1 = 0, we can switch
0/1 value of x by 1− x. For light (j, x), if i|j, (i.e. j mod i = 0), then switch, otherwise
leave the light untouched.

switch(i, (j, x)) =

{
j mod i = 0 : (j, 1− x)

otherwise : (j, x)
(1.44)

The i-th round for all lights can be realized as map:

map(switch(i), L) (1.45)

36 CHAPTER 1. LIST

Here we use the Curried form of switch, which is equivalent to:

map((j, x) 7→ switch(i, (j, x)), L)

Next, we define a function op(), which performs above mapping on L over and over
by n rounds. We call this function with op([1, 2, ..., n], L).

op(∅, L) = L
op(i : is, L) = op(is,map(switch(i), L))

(1.46)

At this stage, we can sum the second value of each pair in list L to get the answer.

solve(n) = sum(map(snd, op([1, 2, ..., n], lights))) (1.47)

Below is the example Haskell implementation of this brute-force solution:
solve = sum ◦ (map snd) ◦ proc where

lights = map (λi → (i, 0)) [1..n]
proc n = operate [1..n] lights
operate [] xs = xs
operate (i:is) xs = operate is (map (switch i) xs)

switch i (j, x) = if j `mod` i == 0 then (j, 1 - x) else (j, x)

Run this program from 1 light to 100 lights, let’s see what the answers are (we added
line breaks):

[1,1,1,
2,2,2,2,2,
3,3,3,3,3,3,3,
4,4,4,4,4,4,4,4,4,
5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,6,6,6,6,6,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10]

This result is interesting:

• the first 3 answers are 1;

• the 4-th to the 8-th answers are 2;

• the 9-th to the 15-th answers are 3;

• ...

It seems that the i2-th to the ((i+ 1)2 − 1)-th answers are i. Actually, we can prove
it:

Proof. Given n lights labeled from 1 to n, consider which lights are on finally. Since the
initial states for all lights are off, we can say that, the lights which are manipulated odd
times are on. For every light i, it will be switched at the j round if i can be divided by j
(denote as j|i). Only the lights which have odd number of factors are on in the end.

The key point to solve this puzzle, is to find all numbers which have odd number of
factors. For any positive integer n, let S be the set of all factors of n. S is initialized to
∅. If p is a factor of n, there must exist a positive integer q such that n = pq holds. It
means q is also a factor of n. We add 2 different factors to set S if and only if p 6= q,
which keeps |S| even all the time unless p = q. In such case, n is a square number. We
can only add 1 factor to set S, which leads to odd number of factors.

1.4. TRANSFORM 37

At this stage, we can design a fast solution by finding the number of square numbers
under n.

solve(n) = b
√
nc (1.48)

Below Haskell example program outputs the answer for 1, 2, ..., 100 lights:
map (floor ◦ sqrt) [1..100]

Map is a generic concept does not limit to list. It can be applied to many complex
algebraic structures. The next chapter about binary search tree explains how to map on
trees. As long as we can traverse the structure, and the empty is defined, we can use the
same mapping idea.

1.4.2 reverse
It’s a classic exercise to reverse a singly linked-list with minimum space. One must
carefully manipulate the node reference, however, there exists easy method to implement
reverse:

1. Write a purely recursive solution;

2. Change it to tail-call;

3. Translate the tail-call solution to imperative operations.

The purely recursive solution is straightforward. To reverse a list L.

• If L is empty, the reversed result is empty;

• Otherwise, recursively reverse sub-list L′, then append the first element to the end.

reverse(∅) = ∅
reverse(x : xs) = append(reverse(xs), x)

(1.49)

However, the performance is poor. As it need traverse to the end to append, this
algorithm is bound to quadratic time. We can optimize it with tail call, use an ac-
cumulator to store the reversed part so far. We initialize the accumulator as empty:
reverse = reverse′(∅).

reverse′(A, ∅) = A
reverse′(A, x : xs) = reverse′(x : A, xs)

(1.50)

Different from appending, cons (:) is a constant time operation. The idea is to re-
peatedly take the elements from the head, and prepend them to the accumulator. It
essentially likes to store elements in a stack, then pop them out. The overall performance
is O(n), where n is the length. Since tail call need not keep the context, we can optimize
it to purely iterative loops:

1: function Reverse(L)
2: A← NIL
3: while L 6= NIL do
4: A← Cons(First(L), A)
5: L← Rest(L)
6: return A

However, this algorithm creates a new reversed list, but not mutate the original one.
We need change it to in-place mutate L as the below example program:

38 CHAPTER 1. LIST

List<T> reverse(List<T> xs) {
List<T> p, ys = null
while (xs ̸= null) {
p = xs
xs = xs.next
p.next = ys
ys = p

}
return ys

}

Exercise 1.10
1. Given a number from 0 to 1 billion, write a program to give its English represen-

tation. For e.g. 123 is ‘one hundred and twenty three’. What if there is decimal
part?

2. Implement the algorithm to find the maximum value in a list of pairs [(k, v)] in
tail call.

1.5 Sub-list
Different from array which is capable to slice a continuous segment fast, it typically need
linear time to traverse and extract sub-list.

1.5.1 take, drop, and split-at
Taking the first n elements is essentially to slice the list from 1 to n: sublist(1, n, L). If
either n = 0 or L = ∅, the sub-list is empty; otherwise, we recursively take the first n− 1
elements from the L′, then prepend the first element.

take(0, L) = ∅
take(n,∅) = ∅

take(n, x : xs) = x : take(n− 1, xs)
(1.51)

This algorithm handles the out of bound case like this: if n > |L| or n is negative, it
ends up to the edge case that L becomes empty, hence returns the whole list as the result.

Drop, on the other hand, discards the first n elements and returns the rest. It is
equivalent to slice the sub-list from right: sublist(n + 1, |L|, L), where |L| is the length.
Its implementation is symmetric:

drop(0, L) = L
drop(n,∅) = ∅

drop(n, x : xs) = drop(n− 1, xs)
(1.52)

We leave the imperative implementation for take/drop as exercise. As the next step,
we can develop a algorithm to extract sub-list at any position for a given length:

sublist(from, cnt, L) = take(cnt, drop(from− 1, L)) (1.53)

Or slice the list with left and right boundaries:

slice(from, to, L) = drop(from− 1, take(to, L)) (1.54)

1.5. SUB-LIST 39

The boundary is defined as [from, to]. It includes both ends. We can also split a list
at a given position:

splitAt(i, L) = (take(i, L), drop(i, L)) (1.55)

Exercise 1.11
1. Define sublist and slice in Curried Form without L as parameter.

conditional take and drop

Instead of specifying number of elements for take/drop, one may want to provide a pred-
ication. We keep taking or dropping as far as the condition meets. We define such
algorithm as takeWhile/dropWhile.

takeWhile/dropWhile examine elements one by one against the prediction. They
ignore the rest even if some elements satisfy the condition. We’ll see this different in the
section of filtering.

takeWhile(p, ∅) = ∅

takeWhile(p, x : xs) =

{
p(x) : x : takeWhile(p, xs)

otherwise : ∅
(1.56)

Where p is the prediction. When applied to an element, p returns true or false to
indicate the condition is satisfied. dropWhile is symmetric:

dropWhile(p, ∅) = ∅

dropWhile(p, x : xs) =

{
p(x) : dropWhile(p, xs)

otherwise : x : xs

(1.57)

1.5.2 break and group
Break and group are operations to re-arrange a list into multiple sub-lists. They typically
perform the re-arrangement while traverse the list to keep the performance linear.

break and span

break/span can be considered as a general form of splitting. Instead of splitting at a given
position, break/span scans elements with a prediction. It extracts the longest prefix of
the list against the condition, and returns it together with the rest as a pair.

There are two different cases. For a given predication, one is to pick the elements
satisfied; the other is to pick the elements not satisfied. The former is called span, the
later is called break.

span(p, ∅) = (∅,∅)

span(p, x : xs) =

{
p(x) : (x : A, B) where (A,B) = span(p, xs)

otherwise : (∅, x : xs)

(1.58)

and we can define break with span by negating the predication in Curried form:

break(p) = span(¬p) (1.59)

Both span and break find the longest prefix. They stop immediately when the con-
dition does not meet and ignores the rest. Below is the iterative implementation for
span:

40 CHAPTER 1. LIST

1: function Span(p, L)
2: A← NIL
3: while L 6= NIL and p(First(L)) do
4: A← Cons(First(L), A)
5: L← Rest(L)
6: return (A,L)

This algorithm creates a new list to hold the longest prefix, another option is to reuse
the original list and break it in-place:

1: function Span(p, L)
2: A← L
3: tail← NIL
4: while L 6= NIL and p(First(L)) do
5: tail← L
6: L← Rest(L)
7: if tail = NIL then
8: return (NIL, L)
9: Rest(tail) ← NIL

10: return (A,L)

group

span breaks list into two parts, group divides list into multiple sub-lists. For example,
we can use group to change a long word into small units, each contains consecutive same
characters:
group ``Mississippi'' = [``M'', ``i'', ``ss'', ``i'',

``ss'',``i'', ``pp'', ``i'']

For another example, given a list of numbers:

L = [15, 9, 0, 12, 11, 7, 10, 5, 6, 13, 1, 4, 8, 3, 14, 2]

We can divide it into small lists, each one is in descending order:

group(L) = [[15, 9, 0], [12, 11, 7], [10, 5], [6], [13, 1], [4], [8, 3], [14, 2]]

These are useful operations. The string groups can be used to build Radix tree, a
data structure support fast text search. The number groups can be used to implement
nature merge sort algorithm. We’ll introduce them in later chapters.

We can abstract the group condition as a relation ∼. It tests whether two consecutive
elements x, y are generic ‘equivalent’: x ∼ y. We scan and list and compare two elements
each time. If they match, we add both to a group; otherwise, only add x to the group,
and use y to initialize another group.

group(∼, ∅) = [∅]
group(∼, [x]) = [[x]]

group(∼, x : y : xs) =

{
x ∼ y : (x : ys) : yss

otherwise : [x] : ys : yss

(1.60)

where (ys : yss) = group(∼, xs). This algorithm is bound to O(n) time, where n is
the length. We can also implement the iterative group algorithm. For the none empty
list L, we initialize the result groups as [[x1]], where x1 is the first element. We scan the
list from the second one, append it to the last group if the two consecutive elements are
‘equivalent’; otherwise we start a new group.

1.5. SUB-LIST 41

1: function Group(∼, L)
2: if L = NIL then
3: return [NIL]
4: x← First(L)
5: L← Rest(L)
6: g ← [x]
7: G← [g]
8: while L 6= NIL do
9: y ← First(L)

10: if x ∼ y then
11: g ← Append(g, y)
12: else
13: g ← [y]
14: G← Append(G, g)
15: x← y
16: L← Next(L)
17: return G

However, this program performs in quadratic time if the append isn’t optimized with
the tail reference. If don’t care the order, we can alternatively change append to cons.
With the group algorithm defined, we can realize the above 2 cases as below:

group(=, [m, i, s, s, i, s, s, i, p, p, i]) = [[M], [i], [ss], [i], [ss], [i], [pp], [i]]

and
group(≥, [15, 9, 0, 12, 11, 7, 10, 5, 6, 13, 1, 4, 8, 3, 14, 2])
= [[15, 9, 0], [12, 11, 7], [10, 5], [6], [13, 1], [4], [8, 3], [14, 2]]

Another method to implement group is to use the span function. Given a predication,
span breaks the list into two parts: the longest sub-list satisfies the condition, and the
rest. We can repeatedly apply span to the rest part till it becomes empty. However, the
predication passed to span is an unary function. It takes an element and tests it. While
in group, the predication is a binary function. It takes two elements and compares. We
can use Currying: to pass and fix the first element in the binary predication, then use the
Curried function to test the other.

group(∼, ∅) = [∅]
group(∼, x : xs) = (x : A) : group(∼, B)

(1.61)

Where (A,B) = span(y 7→ x ∼ y, xs) is the span result applied to the rest sub-list.
Although this new group function generates the correct result for string case:
group (==) ``Mississippi''
[``m'', ``i'', ``ss'', ``i'', ``ss'', ``i'', ``pp'', ``i'']

However, it can’t group the list of numbers correctly with ≤ relation:
group (≥) [15, 9, 0, 12, 11, 7, 10, 5, 6, 13, 1, 4, 8, 3, 14, 2]
[[15,9,0,12,11,7,10,5,6,13,1,4,8,3,14,2]]

When the first number 15 is used as the left hand of ≥, it is the maximum value, hence
span ends with putting all elements to A, and leaves B empty. It is not a defect, but
the correct behavior, because group is defined to put equivalent elements together. To be
accurate, the equivalent relation (∼) needs satisfy three things: reflexive, transitive, and
symmetric.

1. Reflexive. x ∼ x, any element equals to itself;

42 CHAPTER 1. LIST

2. Transitive. x ∼ y, y ∼ z ⇒ x ∼ z, if two elements equal, and one of them equals
to another, then all three equal;

3. Symmetric. x ∼ y ⇔ y ∼ x, the order of comparing two equal elements doesn’t
affect the result.

When group “Mississippi”, we use the equal (=) operator. It conforms the three
rules, and generates the correct result. However, when pass Curried (≥) predication for
numbers, it violets both reflexive and symmetric rules, hence generates unexpected result.
The second algorithm using span, limits its use case to strictly equality; while the first
algorithm does not. It only tests the predication for every two elements matches, which
is weaker than equality relation.

Exercise 1.12

1. Change the take/drop algorithm, such that when n is negative, returns ∅ for take,
and the whole list for drop.

2. Implement the in-place imperative take/drop algorithms.
3. Implement the iterative ‘take while’ and ‘drop while’ algorithms.
4. Consider the below span implementation:

span(p, ∅) = (∅,∅)

span(p, x : xs) =

{
p(x) : (x : A,B)

otherwise : (A, x : B)

where (A,B) = span(p, xs). What is the difference between this one and the
algorithm we defined previously?

1.6 Fold
We’ve seen most list algorithms share some common structure. This is not by chance.
Such commonality is rooted from the recursive nature of list. We can abstract the list
algorithms to a higher level concept, fold5, which is essentially the initial algebra of all
list related computation [99].

1.6.1 fold right
Compare sum, product and sort, we can find the common structure.

h(∅) = z
h(x : xs) = x⊕ h(xs)

(1.62)

There are two things we can abstract as parameters:

• The result for empty list. It is 0 for sum, 1 for product, and ∅ for sort.

• The binary operation applies to the head and the recursive result. It is plus for
sum, multiply for product, and ordered-insertion for sort.

5also known as reduce

1.6. FOLD 43

We abstract the result for empty list as the initial value, denoted as z to mimic the
generic zero concept. The binary operation as ⊕. The above definition can be then
parameterized as:

h(⊕, z, ∅) = z
h(⊕, z, x : xs) = x⊕ h(⊕, z, xs) (1.63)

Let’s feed it a list L = [x1, x2, ..., xn], and expand to see how it behaves like:

h(⊕, z, [x1, x2, ..., xn])
= x1 ⊕ h(⊕, z, [x2, x3, ..., xn])
= x1 ⊕ (x2 ⊕ h(⊕, z, [x3, ..., xn]))

...
= x1 ⊕ (x2 ⊕ (...(xn ⊕ h(⊕, z,∅))...))
= x1 ⊕ (x2 ⊕ (...(xn ⊕ z)...))

We need add the parentheses, because the computation starts from the right-most
(xn⊕z). It repeatedly folds to left towards x1. This is quite similar to a fold-fan in figure
1.3. Fold-fan is made of bamboo and paper. Multiple frames stack together with an axis
at one end. The arc shape paper is fully expanded by these frames; We can close the fan
by folding the paper. It ends up as a stick.

Figure 1.3: Fold fan

We can consider the fold-fan as a list of bamboo frames. The binary operation is to
fold a frame to the top of the stack. The initial stack is empty. To fold the fan, we start
from one end, repeatedly apply the binary operation, till all the frames are stacked. The
sum and product algorithms do the same thing like folding fan.

sum([1, 2, 3, 4, 5]) = 1 + (2 + (3 + (4 + 5)))
= 1 + (2 + (3 + 9))
= 1 + (2 + 12)
= 1 + 14
= 15

product([1, 2, 3, 4, 5]) = 1× (2× (3× (4× 5)))
= 1× (2× (3× 20))
= 1× (2× 60)
= 1× 120
= 120

We name this kind of process fold. Particularly, since the computation starts from
the right end, we denote it foldr:

foldr(f, z, ∅) = z
foldr(f, z, x : xs) = f(x, foldr(f, z, xs))

(1.64)

44 CHAPTER 1. LIST

We can define sum and product with foldr as below:∑n
i=1 xi = x1 + (x2 + (x3 + ...+ (xn−1 + xn))...)

= foldr(+, 0, [x1, x2, ..., xn])
(1.65)

∏n
i=1 xi = x1 × (x2 × (x3 × ...+ (xn−1 × xn))...)

= foldr(×, 1, [x1, x2, ..., xn])
(1.66)

Or in Curried form: sum = foldr(+, 0), product = foldr(×, 1). We can also define
the insertion sort with foldr as:

sort = foldr(insert,∅) (1.67)

1.6.2 fold left
We can convert foldr to tail call. It generates the same result, but computes from left to
right. For this reason, we define it as foldl:

foldl(f, z, ∅) = z
foldl(f, z, x : xs) = foldl(f, f(z, x), xs)

(1.68)

Use sum for example, we can see how the computation is expanded from left to right:

foldl(+, 0, [1, 2, 3, 4, 5])
= foldl(+, 0 + 1, [2, 3, 4, 5])
= foldl(+, (0 + 1) + 2, [3, 4, 5])
= foldl(+, ((0 + 1) + 2) + 3, [4, 5])
= foldl(+, (((0 + 1) + 2) + 3) + 4, [5])
= foldl(+, ((((0 + 1) + 2 + 3) + 4 + 5,∅)
= 0 + 1 + 2 + 3 + 4 + 5

Here we delay the evaluation of f(z, x) in every step. This is the behavior for lazy-
evaluation. Otherwise, they will be evaluated in sequence of [1, 3, 6, 10, 15] in each call.
Generally, we can expand foldl as:

foldl(f, z, [x1, x2, ..., xn]) = f(f(...(f(f(z, x1), x2), ..., xn) (1.69)

Or express as infix:

foldl(⊕, z, [x1, x2, ..., xn]) = z ⊕ x1 ⊕ x2 ⊕ ...⊕ xn (1.70)

foldl is tail recursive. We can implement it with loops. We initialize the result as
z, then apply the binary operation on top of it with every element. It is typically called
Reduce in most imperative environment.

1: function Reduce(f, z, L)
2: while L 6= NIL do
3: z ← f(z, First(L))
4: L← Rest(L)
5: return z

Both foldr and foldl have their own suitable use cases. They are not always exchange-
able. For example, some container only allows to add element in one end (like stack). We
can define a function fromList to build such a container from a list (in Curried form):

fromList = foldr(add, empty)

1.6. FOLD 45

Where empty is the empty container. The singly linked-list is such a container. It
performs well when add element to the head, but poorly when append to tail. foldr is
a natural choice when duplicate a list while keep the order. But foldl will generate a
reversed list. As a workaround, to implement the iterative reducing from right, we can
first reverse the list, then reduce it:

1: function Reduce-Right(f, z, L)
2: return Reduce(f, z, Reverse(L))

One may think foldl should be the preferred one as it is optimized with tail call,
hence fits for both functional and imperative settings. It is also the online algorithm that
always holds the result so far. However, foldr plays a critical role when handling infinite
list (modeled as stream) with lazy evaluation. For example, below program wraps every
natural number to a singleton list, and returns the first 10:

take(10, foldr((x, xs) 7→ [x] : xs,∅, [1, 2, ...])
⇒ [[1], [2], [3], [4], [5], [6], [7], [8], [9], [10]]

It does not work with foldl because the outer most evaluation never ends. We use a
unified notation fold when either left or right works. In this book, we also use foldl and
foldr to emphasis folding over the direction. Although this chapter is about list, the fold
concept is generic. It can be applied to other algebraic structures. We can fold a tree (2.6
in [99]), a queue, and many other things as long as they satisfy the following 2 criteria:

• The empty is defined (like the empty tree);

• We can decompose the recursive structure (like decompose tree into sub-trees and
key).

People abstract them further with concepts like foldable, monoid, and traversable.

Exercise 1.13
1. To define insertion-sort with foldr, we designe the insert function as insert(x, L),

such that it can be expressed as sort = foldr(insert,∅). The type for foldr is:

foldr :: (A→ B → B)→ B → [A]→ B

Where its first parameter f has the type A → B → B, the initial value z has
the type B. It folds on a list of A, and builds the result of B. How to define the
insertion-sort with foldl? What is the type signature of foldl?

1.6.3 example
As an example, let’s see how to implement the n-lights puzzle with fold and map. In the
brute-force solution, we create a list of pairs. Each pair (i, s) has a number i, and on/off
state s. Every round j, we scan the lights, toggle the i-th switch when the j divides the
i. We can define this process with fold:

foldr(step, [(1, 0), (2, 0), ..., (n, 0)], [1, 2, ..., n])

As the initial state, all lights are off. We fold on the list of round numbers from 1
to n. Function step takes two parameters: the round number i, and the list of pairs. It
performs switching through map:

foldr((i, L) 7→ map(switch(i), L), [(1, 0), (2, 0), ..., (n, 0)], [1, 2, ..., n])

46 CHAPTER 1. LIST

The foldr result is the pairs of final on/off state, we next extract the state from each
through map, and count the number with sum:

sum(map(snd, foldr((i, L) 7→
map(switch(i), L), [(1, 0), (2, 0), ..., (n, 0)], [1, 2, ..., n])))

(1.71)

concatenate

What if we apply fold on “++” (section 1.3.4) for a list of lists? It concatenates them to
a long list, just like sum to numbers.

concat = foldr(++,∅) (1.72)

This is in Curried form. Its usage is as:

concat([[1], [2, 3, 4], [5, 6, 7, 8, 9]])⇒ [1, 2, 3, 4, 5, 6, 7, 8, 9]

Exercise 1.14

1. What’s the performance of concat?
2. Design a linear time concat algorithm
3. Define map in foldr

1.7 Search and filter
Search and filter are generic concepts apply to a wide range of things. For list, it often
takes linear time to find the result, as we need traverse in most cases.

1.7.1 Exist
Given some a of type A, and a list of A, how to test if x is in the list? The idea is to
compare every element in the list with a, until either they are equal, or reach to the end:

• If the list is empty, then a does not exist;

• If the first element equals to a, then it exists;

• Otherwise, recursively test if a exists in the rest sub-list.

a ∈ ∅ = False

a ∈ (b : bs) =

{
b = a : True

b 6= a : a ∈ bs

(1.73)

This algorithm is also called elem. It bounds to O(n) where n is the length. If the list
is ordered (ascending for example), one may want to improve the algorithm to logarithm
time with the idea of divide and conquer. However, list does not support random access,
we can’t apply binary search. See chapter 3 for details.

1.7. SEARCH AND FILTER 47

1.7.2 Look up
Let’s extend elem a bit. In the n-lights puzzle, we use a list of pairs [(k, v)]. Every pair
contains a key and a value. This kind of list is called ‘associate list’ (or assoc list). If
want to look up a given value in such list, we need extract some part (the value) for
comparison.

lookup(x,∅) = Nothing

lookup(x, (k, v) : kvs) =

{
v = x : Just (k, v)

v 6= x : lookup(x, kvs)

(1.74)

Different from elem, we do not return true/false. Instead, we want to return the pair
of key-value when find. However, it is not guaranteed the value always exists. We use
an algebraic type called ‘Maybe’. A type of Maybe A has two different kinds of value. It
maybe some a in A of nothing. Denoted as Just a or Nothing. This is the way to deal
with null reference issues(4.2.2 in [99]).

1.7.3 find and filter
We can make ‘look up’ more generic. Instead of only comparing if the element equals to
the given value, we can abstract to find the element that satisfies a specific predicate:

find(p, ∅) = Nothing

find(p, (x : xs)) =

{
p(x) : Just x

otherwise : find(p, xs)

(1.75)

Although there can be multiple elements match, the find algorithm picks the first.
We can expand it to find all elements. It is often called filter as demonstrated in figure
1.4.

filter pInput Output

Figure 1.4: Input: [x1, x2, ..., xn], Output: [x′
1, x

′
2, ..., x

′
m]. and ∀x′

i ⇒ p(x′
i).

We can define it in ZF expression:

filter(p,X) = [xi|xi ∈ X, p(xi)] (1.76)

Different from find, when there is no element satisfies the predicate, filter returns
the empty list. It scans to examine every element one by one:

filter(p, ∅) = ∅

filter(p, x : xs) =

{
p(x) : x : filter(p, xs)

otherwise : filter(p, xs)

(1.77)

This definition builds the result from right to left. For iterative implementation, if
build the result with append, it will degrade to O(n2).

1: function Filter(p, L)
2: L′ ← NIL
3: while L 6= NIL do
4: if p(First(L)) then
5: L′ ← Append(L′, First(L)) ▷ Linear time

48 CHAPTER 1. LIST

6: L← Rest(L)
The right way is to use cons instead, however, it builds the result in the reversed

order. We can further reverse it within linear time (see the exercise). The nature to build
result from right indicates that we can define filter in foldr. We need define a function f
to test an element against the predicate, if OK, prepend to the result:

f(x,A) =

{
p(x) : x : A

otherwise : A
(1.78)

We also need pass the predicate p to f . There are actually 3 parameters as f(p, x,A).
Filter is defined in foldr with a Curried form of f :

filter(p) = foldr((x,A) 7→ f(p, x,A),∅) (1.79)

We can further simplify it (called η-conversion [73]) as:

filter(p) = foldr(f(p),∅) (1.80)

Filter is also a generic concept not only limit to list. We can apply a predicate on any
traversable structures to extract the result.

1.7.4 Match
Match is to find a pattern among some structure. Even if we limit to list and string, there
are still too many things to cover. We have dedicated chapters about string matching.
This section deals with the problem, that given a list A, and test if it exits in another list
B. There are two special cases: to test if A is prefix or suffix of B. The span algorithm
in (1.58) actually finds a prefix under a certain condition. We can do similar things: to
compare each element between A and B from left till meet any different one or reach the
end of either list. Define A ⊆ B if A is prefix of B:

∅ ⊆ B = True
(a : as) ⊆ ∅ = False

(a : as) ⊆ (b : bs) =

{
a 6= b : False

a = b : as ⊆ bs

(1.81)

Prefix testing takes linear time as it scans the lists. However, we can not do suffix
testing in this way because it is hard to start from the aligned right ends, and scan
backwards for lists. This is different from array. Alternatively, we can reverse both lists
in linear time, hence change the problem to prefix testing:

A ⊇ B = reverse(A) ⊆ reverse(B) (1.82)

With ⊆ defined, we can test if a list is the sub-list of another one. We call it infix
testing. The idea is to scan the target list, and repeatedly applying the prefix testing:

infix?(a : as, ∅) = False

infix?(A, B) =

{
A ⊆ B : True

otherwise : infix?(A,B′)

(1.83)

For the edge case that A is empty, we define empty is infix of any list. Because ∅ ⊆ B
is always true, it gives the right result. It also evaluates infix?(∅,∅) correctly. Below is
the corresponding iterative implementation:

1.8. ZIP AND UNZIP 49

1: function Is-Infix(A,B)
2: if A = NIL then
3: return TRUE
4: n← |A|
5: while B 6= NIL and n ≤ |B| do
6: if A ⊆ B then
7: return TRUE
8: B ← Rest(B)
9: return FALSE

Because prefix testing runs in linear time, and it is called in the loop of scan. This
algorithm is bound to O(nm), where m,n are the length of the two lists respectively. It
is an interesting problem to improve this ‘position by position’ scan algorithm to linear
time, even when we apply it to arrays. Chapter 13 introduces some smart methods,
like the Knuth-Morris-Pratt (KMP) algorithm and Boyer-Moore algorithm. Appendix C
introduces another method called suffix-tree.

In a symmetric way, we can enumerate all suffixes of B, and check if A is prefix of any
of them:

infix?(A,B) = ∃S ∈ suffixes(B), A ⊆ S (1.84)

This can be implemented with list comprehension as below example Haskell program:
isInfixOf a b = (not ◦ null) [s | s ← tails(b), a `isPrefixOf` s]

Where function isPrefixOf does the prefixing testing, tails generates all suffixes
of a given list. We left its implementation as an exercise.

Exercise 1.15
1. Implement the linear time existence testing algorithm.
2. Implement the iterative look up algorithm.
3. Implement the linear time filter algorithm through reverse.
4. Implement the iterative prefix testing algorithm.
5. Implement the algorithm to enumerate all suffixes of a list.

1.8 zip and unzip
The assoc list of paired values is often used as a light weighted dictionary for small set
of data. It is easier to build assoc list than tree or heap based dictionary, although the
look up performance of assoc list is linear instead of logarithm. In the ‘n-lights’ puzzle,
we build the assoc list as below:

map(i 7→ (i, 0), [1, 2, ..., n])

More often, we need ’zip’ two lists to one. We can define a zip function to do that:

zip(A, ∅) = ∅
zip(∅, B) = ∅

zip(a : as, b : bs) = (a, b) : zip(as, bs)
(1.85)

This algorithm works even the two lists have different length. The result length equals
to the shorter one. We can even use it to zip infinite lists (under lazy evaluation if both
are infinite), for example6:

6In Haskell: zip (repeat 0) [1..n]

50 CHAPTER 1. LIST

zip([0, 0, ...], [1, 2, ..., n])

For a list of words, we can index them with numbers as:

zip([1, 2, ...], [a, an, another, ...])

zip build the result from right. We can also define it with foldr. It is bound to O(m)
time, where m is the length of the shorter list. When implement the iterative zip, the
performance will drop to quadratic if using append, unless with the reference to the tail
position.

1: function Zip(A,B)
2: C ← NIL
3: while A 6= NIL and B 6= NIL do
4: C ← Append(C, (First(A), First(B))) ▷ Linear time
5: A← Rest(A)
6: B ← Rest(B)
7: return C

To avoid append, we can use ’cons’ then reverse the result. However, it can not deal
with two infinite lists. In imperative settings, we can also re-use A to store the result
(treat it as transform a list of elements to a list of pairs).

We can extend to zip multiple lists to one. Some programming libraries provide, zip,
zip3, zip4, ..., till zip7. Sometimes, we don’t want to build a list of pairs, but apply
a combinator function. For example, given a list of unit prices [1.00, 0.80, 10.05, ...] for
fruits: apple, orange, banana, ... When customer has a list of quantities, like [3, 1, 0, ...],
means this customer, buys 3 apples, 1 orange, 0 banana, ... Below program generates a
payment list:

pays(U, ∅) = ∅
pays(∅, Q) = ∅

pays(u : us, q : qs) = (u · q) : pays(us, qs)

It is same as the zip function except uses multiply but not ’cons’ to combine elements.
We can abstract the combinator as a function f , and pass it to zip to build a generic
algorithm:

zipWith(f,A, ∅) = ∅
zipWith(f,∅, B) = ∅

zipWith(f, a : as, b : bs) = f(a, b) : zipWith(f, as, bs)
(1.86)

Here is an example that defines the inner-product (or dot-product) [98] through zipWith:

A ·B = sum(zipWith(·, A,B)) (1.87)

unzip is the inverse operation of zip. It converts a list of pairs to two separated lists.
Below is its definition with foldr in Curried form:

unzip = foldr((a, b), (A,B) 7→ (a : A, b : B), (∅,∅)) (1.88)

We fold from a pair of empty lists, break a, b from the pairs and prepend them to the
two intermediate lists respectively. We can also use fst and snd explicitly as:

(p, P) 7→ (fst(p) : fst(P), snd(p) : snd(P))

For the fruits example, suppose the unit price is stored in a assoc list: U = [(apple, 1.00), (orange, 0.80), (banana, 10.05), ...]
for lookup, for example lookup(melon, U). The purchase quantity is a assoc list: Q =

1.8. ZIP AND UNZIP 51

[(apple, 3), (orange, 1), (banana, 0), ...]. How to calculate the total payment? The straight
forward way is to extract the unit price and the quantity lists, then compute their inner-
product:

pay = sum(zipWith(·, snd(unzip(U)), snd(unzip(Q)))) (1.89)

As an example, let’s see how to use zipWith to define infinite Fibonacci numbers with
lazy evaluation:

F = 0 : 1 : zipWith(+, F, F ′) (1.90)

Where F is the infinite list of Fibonacci numbers, starts from 0 and 1. F ′ is the rest
Fibonacci numbers without the first one. From the third, every Fibonacci number is the
sum of numbers from F and F ′ at the same position. Below example program list the
first 15 Fibonacci numbers:

fib = 0 : 1 : zipWith (+) fib (tail fib)

take 15 fib
[0,1,1,2,3,5,8,13,21,34,55,89,144,233,377]

zip and unzip are generic. We can expand to zip two trees, where the nodes contain
paired elements from both. When traverse a collection of elements, we can also use the
generic zip and unzip to track the path, this is a method to mimic the ‘parent’ reference
in imperative implementation (last chapter of [10]).

Exercise 1.16

1. Design the iota (I) algorithm for below usages:

• iota(..., n) = [1, 2, 3, ..., n];
• iota(m,n) = [m,m+ 1,m+ 2, ..., n], where m ≤ n;
• iota(m,m+ a, ..., n) = [m,m+ a,m+ 2a, ..., n];
• iota(m,m, ...) = repeat(m) = [m,m,m, ...];
• iota(m, ...) = [m,m+ 1,m+ 2, ...].

The last two cases are about infinite list. One possible implementation is through
streaming and lazy evaluation ([63] and [10]).

2. Implement the linear time imperative zip algorithm
3. Define zip with foldr.
4. For the fruits example, suppose the quantity assoc list only contains the items with

none-zero quantity. i.e. instead of

Q = [(apple, 3), (banana, 0), (orange, 1), ...]

but
Q = [(apple, 3), (orange, 1), ...]

because customer does not buy banana. Design a program to calculate the total
payment.

5. Implement lastAt with zip.

52 Binary search tree

1.9 Further reading
List is the fundamental thing to build more complex data structures and algorithms par-
ticularly in functional settings. We introduced elementary algorithms to construct, access,
update, and transform list; how to search, filter data, and compute atop list. Although
most programming environments provide pre-defined tools and libraries to support list,
we should not simply treat them as black-boxes. Rabhi and Lapalme introduce many
functional algorithms about list in [72]. Haskell library provides detailed documentation
about basic list algorithms. There are materials provide good examples of folding, espe-
cially in [1]. It also introduces about the fold fusion law.

Exercise 1.17
1. Design algorithm to remove the duplicated elements in a list. For imperative

implementation, the elements should be removed in-place. The original element
order should be maintained. What is the complexity of this algorithm? How to
simplify it with additional data structure?

2. List can represent decimal non-negative integer. For example 1024 as list is 4 →
2 → 0 → 1. Generally, n = dm...d2d1 can be represented as d1 → d2 → ... → dm.
Given two numbers a, b in list form. Realize arithmetic operations such as add
and subtraction.

3. In imperative settings, a circular linked-list is corrupted, that some node points
back to previous one, as shown in figure 1.5. When traverse, it falls into infinite
loops. Design an algorithm to detect if a list is circular. On top of that, improve
it to find the node where loop starts (the node being pointed by two precedents).

Figure 1.5: A circular linked-list

Chapter 2

Binary Search Tree

2.1 Introduction
Array and list are typically considered the basic data structures. However, we’ll see they
are not necessarily easy to implement in chapter 12. Upon imperative settings, array is
the most elementary data structures. It is possible to implement linked-list using arrays
(Equation 3.4). While in functional settings, linked-list acts as the building blocks to
create array and other data structures.

We start from Binary Search Trees as the first data structure. Let us see an interesting
programming problem given by Bentley in Programming Pearls [2]. It is about to count
the number of words in text. Here is an example solution:
void wordcount(Input in) {

bst<string, int> map;
while string w = read(in) {

map[w] = if map[w] == null then 1 else map[w] + 1
}
for var (w, c) in map {

print(w, ":", c)
}

}

We can run it to count the words in a text file:

$ cat bbe.txt | wordcount > wc.txt

The map is a binary search tree. Here we use the word as the key, and its occurrence
number as the value. This program runs fast, which reflects the power of binary search
tree. Before dive into it, let us first see the more generic tree, the binary tree. A binary
tree can be defined recursively. It is

• either empty;

• or contains 3 parts: the element, and two sub-trees called left and right children.

Figure 2.1 shows an example of binary tree.
A binary search tree is a special binary tree that its elements are comparable1, and

satisfies the following constraints:

• For any node, all the keys in its left sub-tree are less than the key in this node;
1It is abstract ordering, not limit to magnitude, but like precedence, subset of etc. the ‘less than’ (<)

is abstract in this chapter.

53

54 CHAPTER 2. BINARY SEARCH TREE

k

L R

(a) Binary tree structure

16

4 10

14 7

2 8 1

9 3

(b) A binary tree

Figure 2.1: Binary tree concept and an example.

2.2. DATA LAYOUT 55

• the key in this node is less than any key in its right sub-tree.

Figure 2.2 shows an example of binary search tree. Comparing with Figure 2.1, we
can see the differences in keys ordering. To highlight the elements in binary search tree
is comparable, we call it as key, and name the augmented satellite data as value.

4

3 8

1

2

7 16

10

9 14

Figure 2.2: A Binary Search Tree

2.2 Data Layout
Based on the recursive definition of binary search tree, we can design the data layout as
shown in figure 2.3. A node stores the key as a field, it can also store augmented data
(known as satellite data). The next two fields are pointers to the left and right sub-trees.
To make it easy for backtracking, it can also store a parent field pointed to its ancestor
node.

For illustration purpose, we’ll skip the augmented data. The appendix of this chapter
includes an example definition. In functional settings, it is seldom to use pointers for
backtracking. Typically, there is no such need, because the algorithm is usually top-down
recursive. Below is the example functional definition:

data Tree a = Empty
| Node (Tree a) a (Tree a)

2.3 Insertion
When insert a key k (or along with a value) to binary search tree T , we need ensure the
key ordering property is always hold:

• If the tree is empty, construct a leaf node with key = k;

• If k is less than the key of root, insert it to the left sub-tree;

• Otherwise, insert it in the right sub-tree.

56 CHAPTER 2. BINARY SEARCH TREE

key + satellite data

left

right

parent

key + satellite data

left

right

parent

key + satellite data

left

right

parent

...

Figure 2.3: Node layout with parent field.

There is an exceptional case that k is equal to the key of root. It means k already
exists in the tree. We can overwrite it, or append data, or do nothing. We’ll skip such case
handling. This algorithm is simple and straightforward. We can define it as a recursive
function:

insert(∅, k) = Node(∅, k,∅)

insert(Node(Tl, k
′, Tr), k) =

{
k < k′ : Node(insert(Tl, k), k

′, Tr)

otherwise : Node(Tl, k
′, insert(Tr, k))

(2.1)

For the none empty node, Tl denotes the left sub-tree, Tr denotes the right sub-tree,
and k′ is the key. The function Node(l, k, r) creates a node from two sub-trees and a key.
∅ means empty (also known as NIL. This symbol was invented by mathematician André
Weil for null set. It came from the Norwegian alphabet). Below is the corresponding
example program in Haskell for insertion.
insert Empty k = Node Empty k Empty
insert (Node l x r) k | k < x = Node (insert l k) x r

| otherwise = Node l x (insert r k)

This example program utilizes the pattern matching features. The appendix of this
chapter provides another example without using this feature. Insertion can also be im-
plemented without recursion. Here is a pure iterative algorithm:

1: function Insert(T, k)
2: root← T
3: x← Create-Leaf(k)
4: parent← NIL
5: while T 6= NIL do
6: parent← T
7: if k < Key(T) then
8: T ← Left(T)
9: else

10: T ← Right(T)

2.4. TRAVERSE 57

11: Parent(x) ← parent
12: if parent = NIL then ▷ tree T is empty
13: return x
14: else if k < Key(parent) then
15: Left(parent) ← x
16: else
17: Right(parent) ← x

18: return root

19: function Create-Leaf(k)
20: x← Empty-Node
21: Key(x) ← k
22: Left(x) ← NIL
23: Right(x) ← NIL
24: Parent(x) ← NIL
25: return x

While a bit more complex than the functional one, the iterative implementation runs
faster, and it is capable to process very deep tree.

2.4 Traverse
Traverse is to visit every element one by one. There are 3 different ways to walk through
a binary tree: (1) pre-order tree walk, (2) in-order tree walk, (3) and post-order tree walk.
They are named to highlight the order of visiting key before/after sub-trees.

• pre-order: key - left - right;

• in-order: left - key - right;

• post-order: left - right - key.

Each ‘visit’ operation is recursive, for example in pre-order traverse, when visit the
left sub-tree, we recursively traverse it if it is not empty. For the tree shown in figure 2.2,
the corresponding visiting orders are as below:

• pre-order: 4, 3, 1, 2, 8, 7, 16, 10, 9, 14

• in-order: 1, 2, 3, 4, 7, 8, 9, 10, 14, 16

• post-order: 2, 1, 3, 7, 9, 14, 10, 16, 8, 4

It is not by accident that the in-order traverse lists the elements one by one increas-
ingly. The definition of the binary search tree ensures it is always true. We leave the
proof as an exercise. Specifically, the in-order traverse algorithm is defined as:

• If the tree is empty, stop and return;

• Otherwise, in-order traverse the left sub-tree; then visit the key; finally in-order
traverse the right sub-tree.

We can further define a generic map to apply any given function f to every element
in the tree along the in-order traverse. The result is a new tree mapped by f .

map(f,∅) = ∅
map(f,Node(Tl, k, Tr)) = Node(map(f, Tl), f(k),map(f, Tr))

(2.2)

58 CHAPTER 2. BINARY SEARCH TREE

If we only need manipulate keys but not to transform the tree, we can implement this
algorithm imperatively.

1: function In-Order-Traverse(T, f)
2: if T 6= NIL then
3: In-Order-Traverse(Left(T, f))
4: f(Key(T))
5: In-Order-Traverse(Right(T, f))

Leverage in-order traverse, we can change the map function to convert a binary search
tree to a sorted list. Instead building the tree in recursive case, we concatenate the result
to a list:

toList(∅) = []
toList(Node(Tl, k, Tr)) = toList(Tl) ++ [k] ++ toList(Tr)

(2.3)

We can develop a method to sort a list of elements: first build a binary search tree
from the list, then turn it back to list through in-order traversing. This method is called
as ‘tree sort’. For a given list X = [x1, x2, x3, ..., xn].

sort(X) = toList(fromList(X)) (2.4)

And we can write it in point-free form [8].

sort = toList ◦ fromList

Where function fromList repeatedly inserts elements from a list to a tree. It can be
defined to recursively process the list.

fromList([]) = ∅
fromList(X) = insert(fromList(X ′), x1)

When the list is empty, the result is an empty tree; otherwise, it inserts the first
element x1 to the tree, then recursively inserts the rests X ′ = [x2, x3, ..., xn]. By using
list folding [7] (see appendix A.6), we can also define fromList as the following:

fromList(X) = foldl(insert,∅, X) (2.5)

We can also rewrite it in Curried form [9] (also known as partial application) such as
to omit parameter X:

fromList = foldl insert ∅

Exercise 2.1
1. Given the in-order and pre-order traverse results, re-construct the tree, and output

the post-order traverse result. For example:
• Pre-order: 1, 2, 4, 3, 5, 6;
• In-order: 4, 2, 1, 5, 3, 6;
• Post-order: ?

2. Write a program to re-construct the binary tree from the pre-order and in-order
traverse lists.

3. For binary search tree, prove that the in-order traverse always visits elements in
increase order

4. Consider the performance of tree sort algorithm, what is its complexity for n
elements?

2.5. QUERY 59

2.5 Query
Because the elements stored in binary search tree is well ordered and organized recursively.
It supports varies of search effectively. This is one of the reasons people name it as binary
search tree. There are mainly three types of querying: (1) look up a key; (2) find the
minimum or maximum element; (3) given any node, find its predecessor or successor.

2.5.1 Look up
Because binary search tree is recursive and all elements satisfy the ordering property, we
can look up a key k top-down from the root as the following:

• If the tree is empty, terminate. The key does not exist;

• Compare k with the key of root, if equal, we are done. The key is stored in the
root;

• If k is less than the key of root, then recursively look up the left sub-tree;

• Otherwise, look up the right sub-tree.

We can define the recursive lookup function for this algorithm as below.

lookup(∅, x) = ∅

lookup(Node(Tl, k, Tr), x) =


k = x : T

x < k : lookup(Tl, x)

otherwise : lookup(Tr, x)

(2.6)

This function returns the tree node being located or empty if not found. One may
instead return the value that bound to the key. However, in search implementation, we
need consider using Maybe type (also known as Optional<T>) to handle the not found
case, for example:

lookup Empty _ = Nothing
lookup t@(Node l k r) x | k == x = Just k

| x < k = lookup l x
| otherwise = lookup r x

If the binary search tree is well balanced, which means almost all branch nodes have
both none empty sub-trees except for leaves. This is not the formal definition of balance.
We’ll define it in chapter 4. For a balanced tree of n elements, the algorithm takes O(lgn)
time to look up a key. If the tree is poor balanced, the worst case is bound to O(n) time.
If denote the height of the tree as h, we can represent the performance of look up as O(h).

We can also implement looking up purely iterative without recursion:
1: function Search(T, x)
2: while T 6= NIL and Key(T) 6= x do
3: if x < Key(T) then
4: T ← Left(T)
5: else
6: T ← Right(T)
7: return T

60 CHAPTER 2. BINARY SEARCH TREE

2.5.2 Minimum and maximum
From the definition, we know that less keys are always on the left. To locate the minimum
element, we can keep traversing along the left sub-trees till reach to a node, where its left
sub-tree is empty. In a symmetric way, keep traversing along the right sub-trees gives the
maximum.

min(Node(∅, k, Tr)) = k
min(Node(Tl, k, Tr)) = min(Tl)

(2.7)

max(Node(Tl, k,∅)) = k
max(Node(Tl, k, Tr)) = max(Tr)

(2.8)

Both functions are bound to O(h) time, where h is the height of the tree.

2.5.3 Successor and predecessor
When treat binary search tree as a generic container (a collection of elements), it is
common to traverse it with a bi-directional iterator. Start from the minimum element,
one can keep moving forward with the iterator towards the maximum, or go back and
forth. Below example program prints elements in sorted order.
void printTree (Node<T> t) {

for (var it = Iterator(t), it.hasNext(); it = it.next()) {
print(it.get(), ", ");

}
}

Such use cases demand us to design algorithm to find the successor or predecessor of
any node. The successor of element x is defined as the smallest element y that satisfies
x < y. If the node of x has none empty right sub-tree, then minimum element of the right
sub-tree is the successor. As shown in figure 2.4, to find the successor of 8, we search the
minimum element in its right sub-tree, which is 9. If the right sub-tree of node x is empty,
we need back-track along the parent field till the closest ancestor whose left sub-tree is
also an ancestor of x. In figure 2.4, since node 2 does not have right sub-tree, we go up to
its parent of node 1. However, node 1 does not have left sub-tree, we need go up again,
hence reach to node 3. As the left sub-tree of node 3 is also an ancestor of node 2, node
3 is the successor of node 2.

If we finally reach to the root when back-track along the parent, but still can not find
an ancestor on the right, then the node does not have a successor. Below algorithm finds
the successor of a given node x:

1: function Succ(x)
2: if Right(x) 6= NIL then
3: return Min(Right(x))
4: else
5: p← Parent(x)
6: while p 6= NIL and x = Right(p) do
7: x← p
8: p← Parent(p)
9: return p

This algorithm returns NIL when x does not has successor. The predecessor finding
algorithm is symmetric:

1: function Pred(x)
2: if Left(x) 6= NIL then

2.6. DELETION 61

4

3 8

1

2

7 16

10

9 14

Figure 2.4: The successor of 8, is the minimum one in its right sub-tree, 9; In order to
find the successor of 2, we go up to its parent 1, then 3.

3: return Max(Left(x))
4: else
5: p← Parent(x)
6: while p 6= NIL and x = Left(p) do
7: x← p
8: p← Parent(p)
9: return p

It seems hard to find the purely functional solution, because there is no pointer like
field linking to the parent node2. One solution is to left ‘breadcrumbs’ when we visit the
tree, and use these information to back-track or even re-construct the whole tree. Such
data structure, that contains both the tree and ‘breadcrumbs’ is called zipper [?].

Our original purpose to develop succ and pred functions is ‘to traverse all the elements’
as a generic container. However, in functional settings, we typically traverse the tree in-
order through map. We’ll meet similar situations in the rest of this book. A problems
valid in imperative settings may not be necessarily meaningful in functional settings. For
example, to delete an element from red-black tree [5].

Exercise 2.2

1. Use Pred and Succ to write an iterator to traverse the binary search tree as a
generic container. What’s the time complexity to traverse a tree of n elements?

2. One can traverse elements inside a range [a, b] for example:
for_each (m.lower_bound(12), m.upper_bound(26), f);
Write an equivalent functional program for binary search tree.

2.6 Deletion
We need special consideration when delete an element from the binary search tree. This
is because we must keep the ordering property, that for any node, all keys in left sub-tree

2There is ref in ML and OCaml, we limit to the purely functional settings.

62 CHAPTER 2. BINARY SEARCH TREE

are less than the key of this node, and they are all less than any keys in right sub tree.
Blindly deleting a node may break this constraint.

To delete a node x from a binary search tree [6].

• If x has no sub-trees (a leaf) or only one sub-tree, splice x out;

• Otherwise (x has two sub-trees), use the minimum element y of its right sub-tree
to replace x, and splice the original y out.

The simplicity comes from the fact that, for the node to be deleted, if the right sub-
tree is not empty, then the minimum element is some node in it. It can’t have two none
empty children, and end up in the trivial case. Therefore, the node can be directly splice
out from the tree.

Figure 2.5, 2.6, and 2.7 illustrate different cases for deletion.

Tree

x

NIL NIL

Figure 2.5: x can be spliced out.

Tree

x

L NIL

(a) Before delete x.

Tree

L

(b) After delete x, x is spliced out, and
replaced by its left child.

Tree

x

NIL R

(c) Before delete x.

Tree

R

(d) After delete x, x is spliced out, and
replaced by its right sub-tree.

Figure 2.6: Delete a node with only one none empty sub-tree.

2.6. DELETION 63

Tree

x

L R

(a) Before delete x.

Tree

min(R)

L delete(R, min(R))

(b) After delete x, x is replaced
by splicing the minimum element
from its right sub-tree.

Figure 2.7: Delete a node with two none empty sub-trees.

Based on this idea, we can define the delete algorithm as below:

delete(∅, x) = ∅

delete(Node(Tl, k, Tr), x) =


x < k : Node(delete(Tl, x), k, Tr)

x > k : Node(Tl, k, delete(Tr, x))

x = k : del(Tl, Tr)

(2.9)

Function del performs slicing, and mutually call delete recursively to cut off the min-
imum from the right sub-tree.

del(∅, Tr) = Tr

del(Tl,∅) = Tl

del(Tl, Tr) = Node(Tl, y, delete(Tr, y))
(2.10)

Where y = min(Tr) is the minimum element in the right sub-tree. Here is the corre-
sponding example program:
delete Empty _ = Empty
delete (Node l k r) x | x < k = Node (delete l x) k r

| x > k = Node l k (delete r x)
| otherwise = del l r

where
del Empty r = r
del l Empty = l
del l r = let k' = min r in Node l k' (delete r k')

This algorithm firstly looks up the node to be deleted, then executes the deletion. It
takes O(h) time where h is the height of the tree.

The imperative deletion algorithm needs set the parent properly in addition. The
following one returns the root of the result tree.

1: function Delete(T, x)
2: r ← T
3: x′ ← x ▷ save x

64 CHAPTER 2. BINARY SEARCH TREE

4: p← Parent(x)
5: if Left(x) = NIL then
6: x← Right(x)
7: else if Right(x) = NIL then
8: x← Left(x)
9: else ▷ neither children is empty

10: y ← Min(Right(x))
11: Key(x) ← Key(y)
12: Copy other satellite data from y to x
13: if Parent(y) 6= x then ▷ y does not have left sub-tree
14: Left(Parent(y)) ← Right(y)
15: else ▷ y is the root of the right sub-tree
16: Right(x) ← Right(y)
17: if Right(y) 6= NIL then
18: Parent(Right(y)) ← Parent(y)
19: Remove y
20: return r
21: if x 6= NIL then
22: Parent(x) ← p

23: if p = NIL then ▷ remove the root
24: r ← x
25: else
26: if Left(p) = x′ then
27: Left(p) ← x
28: else
29: Right(p) ← x

30: Remove x′

31: return r

We assume the node to be deleted is not empty. This algorithm first records the root,
creates copy reference to x, and its parent. If either sub-tree is empty, then we splice x
out. Otherwise, the node has two none empty sub-trees. We first located the minimum
node y in its right sub-tree, then replace the key of x with the one in y, copy the satellite
data, and finally, splice y out. We also need handle the special case, that y is the root of
the right sub-tree.

At last, we need reset the stored parent if x has only one none empty sub-tree. If the
parent pointer we copied is empty, it means that we are deleting the root. In this case,
we need return the new root. After the parent is set properly, we can safely remove x.
The deletion algorithm is bound to O(h) time, where h is the height of the tree.

Exercise 2.3
1. There is a symmetric deletion algorithm. When neither sub-tree is empty, we

can replace the key by splicing the maximum node off the left sub-tree. Write a
program to implement this solution.

2.7 Random build
All binary search tree algorithms we give so far are bound bound to O(h) time. The
height h of the tree impacts the performance. For a poor unbalanced tree, O(h) tends to
be O(n). It leads to the worst case. While for well balanced tree, O(h) close to O(lgn).
We can gain good performance.

2.8. MAP 65

We’ll see two well designed solutions to keep the tree balanced in chapter 4 and 5.
There exists a simple method, to build the binary search tree randomly [4]. It decreases
the possibility of giving a unbalanced binary tree. The idea is to randomly shuffle the
elements before building the tree.

Exercise 2.4
1. Write a randomly building algorithm for binary search tree.

2.8 Map
We can use binary search tree to realize the map data structure (also known as associative
data structure or dictionary). A finite map is a collection of key-value pairs. The keys
are unique, that every key is mapped to a value. For keys of type K, values of type V ,
the map is Map K V or Map<K, V>. For none empty map, it contains n mappings of
k1 7→ v1, k2 7→ v2, ..., kn 7→ vn. When use the binary search tree to implement map, we
constrain K to be ordered set. Every node stores both key and value. We use the tree
insert/update operation to bind a key to a value. Given a key k, we use the tree lookup
to find the mapped value, or returns nothing when k does not exist. The red-black tree
and AVL tree introduced in later chapters can also be used to implement map.

2.9 Appendix: Example programs
Definition of binary search tree node with parent field.
data Node<T> {

T key
Node<T> left
Node<T> right
Node<T> parent

Node(T k) = Node(null, k, null)

Node(Node<T> l, T k, Node<T> r) {
left = l, key = k, right = r
if (left ̸= null) then left.parent = this
if (right ̸= null) then right.parent = this

}
}

Example program of recursive insertion. It does not use pattern matching.
Node<T> insert (Node<T> t, T x) {

if (t == null) {
return Node(null, x, null)

} else if (t.key < x) {
return Node(insert(t.left, x), t.key, t.right)

} else {
return Node(t.left, t.key, insert(t.right, x))

}
}

Example program to look up a key. Purely iterative without recursion.
Optional<Node<T>> lookup (Node<T> t, T x) {

while (t ̸= null and t.key ̸= x) {
if (x < t.key) {

t = t.left

66 Insertion sort

} else {
t = t.right

}
}
return Optional(t);

}

Example iterative program to find the minimum of a tree.
Optional<Node<T>> min (Node<T> t) {

while (t ̸= null and t.left ̸= null) {
t = t.left

}
return Optional(t);

}

Example program to find the successor of a node.
Optional<Node<T>> succ (Node<T> x) {

if (x == null) {
return Optional.None

} else if (x.right ̸= null) {
return min(x.right)

} else {
p = x.parent
while (p ̸= null and x == p.right) {

x = p
p = p.parent

}
return Optional(p);

}
}

Chapter 3

Insertion sort

3.1 Introduction
Insertion sort is a straightforward sort algorithm1. We give its preliminary definition
for list in chapter 1. For a collection of comparable elements, we repeatedly pick one,
insert them to a list and maintain the ordering. As every insertion takes linear time, its
performance is bound to O(n2) where n is the number of elements. This performance is
not as good as the divide and conqueror sort algorithms, like quick sort and merge sort.
However, we can still find its application today. For example, a well tuned quick sort
implementation falls back to insertion sort for small data set. The idea of insertion sort is
similar to sort a deck of a poker cards([4] pp.15). The cards are shuffled. A player takes
card one by one. At any time, all cards on hand are sorted. When draws a new card, the
player inserts it in proper position according to the order of points as shown in figure 3.1.

Figure 3.1: Insert card 8 to a deck.

Based on this idea, we can implement insertion sort as below:
1: function Sort(A)
2: S ← NIL
3: for each a ∈ A do
4: Insert(a, S)
5: return S

We store the sorted result in a new array, alternatively, we can change it to in-place:
1: function Sort(A)

1We skip the ‘Bubble sort’ method

67

68 CHAPTER 3. INSERTION SORT

2: for i← 2 to |A| do
3: ordered insert A[i] to A[1...(i− 1)]

Where the index i ranges from 1 to n = |A|. We start from 2, because the singleton
sub-array [A[1]] is ordered. When process the i-th element, all elements before i are
sorted. We continuously insert elements till consuming all the unsorted ones, as shown in
figure 3.2.

 ... sorted elements ... x

insert

 ... unsorted elements ...

Figure 3.2: Continuously insert elements to the sorted part.

3.2 Insertion
In chapter 1, we give the ordered insertion algorithm for list. For array, we also scan it
to locate the insert position either from left or right. Below algorithm is from right:

1: function Sort(A)
2: for i← 2 to |A| do ▷ Insert A[i] to A[1...(i− 1)]
3: x← A[i] ▷ Save A[i] to x
4: j ← i− 1
5: while j > 0 and x < A[j] do
6: A[j + 1]← A[j]
7: j ← j − 1

8: A[j + 1]← x

It’s expensive to insert at arbitrary position, as array stores elements continuously.
When insert x at position i, we need shift all elements after i (i.e. A[i + 1], A[i + 2], ...)
one cell to right. After free up the cell at i, we put x in, as shown in figure 3.3.

A[1] A[2] ... A[i-1] A[i] A[i+1] A[i+2] ... A[n-1] A[n] empty

x

insert

Figure 3.3: Insert x to A at i.

For the array of length n, suppose after comparing x to the first i elements, we located
the position to insert. Then we shift the rest n − i + 1 elements, and put x in the i-th
cell. Overall, we need traverse the whole array if scan from left. On the other hand, if
scan from right to left, we examine n− i+ 1 elements, and perform the same amount of
shifts. We can also define a separated Insert() function, and call it inside the loop. The
insertion takes linear time no matter scans from left or right, hence the sort algorithm is
bound to O(n2), where n is the number of elements.

3.3. BINARY SEARCH 69

Exercise 3.1

1. Implement the insert to scan from left to right.
2. Define the insert function, and call it from the sort algorithm.

3.3 Binary search
When insert a poker card, human does not scan, but takes a quick glance at the deck to
locate the position. We can do this because the deck is sorted. Binary search is such a
method that applies to ordered sequence.

1: function Sort(A)
2: for i← 2 to |A| do
3: x← A[i]
4: p← Binary-Search(x,A[1...(i− 1)])
5: for j ← i down to p do
6: A[j]← A[j − 1]

7: A[p]← x

Binary search utilize the fact that the slice A[1...(i − 1)] is ordered. Suppose it is
ascending without loss of generality (as we can define ≤ abstract). To find the position
j that satisfies A[j − 1] ≤ x ≤ A[j], we compare x to the middle element A[m], where
m = b i

2
c. If x < A[m], we then recursively apply binary search to the first half; otherwise,

we search the second half. As every time, we halve the elements, binary search takes
O(lg i) time to locate the insert position.

1: function Binary-Search(x,A)
2: l← 1, u← 1 + |A|
3: while l < u do
4: m← b l + u

2
c

5: if A[m] = x then
6: return m ▷ Duplicated element
7: else if A[m] < x then
8: l← m+ 1
9: else

10: u← m
11: return l

The improved sort algorithm is still bound to O(n2). The one with scan takes O(n2)
comparisons and O(n2) shifts; with binary search, it overall takes O(n lgn) comparisons
and O(n2) shifts.

Exercise 3.2

1. Implement the recursive binary search.

3.4 List
With binary search, the search time improved to O(n lgn). However, as we need shift
array cells when insert, the overall time is still bound to O(n2). On the other hand, when
use list, the insert operation is constant time at a given node reference. In chapter 1, we

70 CHAPTER 3. INSERTION SORT

define the insertion sort algorithm for list as below:

sort(∅) = ∅
sort(x : xs) = insert(x, sort(xs))

(3.1)

Or with foldl in Curried form:

sort = foldl(insert,∅) (3.2)

However, the list insert algorithm still takes linear time, because we need scan to
locate the insert position:

insert(x, ∅) = [x]

insert(x, y : ys) =

{
x ≤ y : x : y : ys

otherwise : y : insert(x, ys)

(3.3)

Instead of using node reference, we can also realize list through an additional index
array. For every element A[i], Next[i] stores the index to the next element follows A[i],
i.e. A[Next[i]] is the next element of A[i]. There are two special indexes: for the tail node
A[m], we define Next[m] = −1, indicating it points to NIL; we also define Next[0] to
index the head element. With the index array, we can implement the insertion algorithm
as below:

1: function Insert(A,Next, i)
2: j ← 0 ▷ Next[0] for head
3: while Next[j] 6= −1 and A[Next[j]] < A[i] do
4: j ← Next[j]

5: Next[i]← Next[j]
6: Next[j]← i

7: function Sort(A)
8: n← |A|
9: Next = [1, 2, ..., n,−1] ▷ n+ 1 indexes

10: for i← 1 to n do
11: Insert(A,Next, i)
12: return Next

With list, although the insert operation changes to constant time, we need traverse
the list to locate the position. It is still bound to O(n2) times comparison. Unlike array,
list does not support random access, hence we can not use binary search to speed up.

Exercise 3.3
1. For the index array based list, we return the re-arranged index as result. Design

an algorithm to re-order the original array A from the index Next.

3.5 Binary search tree
We drive into a corner. We want to improve both comparison and insertion at the same
time, or will end up with O(n2) performance. For comparison, we need binary search
to achieve O(lgn) time; on the other hand, we need change the data structure, because
array can not support constant time insertion at a position. We introduce a powerful
data structure in chapter 2, the binary search tree. It supports binary search from its
definition by nature. At the same time, we can insert a new node in binary search tree
fast at the given location.

3.6. SUMMARY 71

1: function Sort(A)
2: T ← ∅
3: for each x ∈ A do
4: T ← Insert-Tree(T, x)
5: return To-List(T)

Where Insert-Tree() and To-List() are defined in chapter 2. In average case, the
performance of tree sort is bound to O(n lgn), where n is the number of elements. This
is the lower limit of comparison based sort([?] pp.180-193). However, in the worst case,
if the tree is poor balanced the performance drops to O(n2).

3.6 Summary
Insertion sort is often used as the first example of sorting. It is straightforward and easy to
implement. However its performance is quadratic. Insertion sort does not only appear in
textbooks, it has practical use case in the quick sort implementation. It is an engineering
practice to fallback to insertion sort when the number of elements is small.

72 Red-black tree

Chapter 4

Red-black tree

4.1 Introduction

As the example in chapter 2, we use the binary search tree as a dictionary to count the
word occurrence in text. One may want to feed a address book to a binary search tree,
and use it to look up the contact as below example program:

void addrBook(Input in) {
bst<string, string> dict
while (string name, string addr) = read(in) {

dict[name] = addr
}
loop {

string name = read(console)
var addr = dict[name]
if (addr == null) {

print("not found")
} else {

print("address: ", addr)
}

}
}

Unlike the word counter program, this one performs poorly, especially when search
names like Zara, Zed, Zulu, etc. This is because the address entries are typically listed in
lexicographic order, i.e. the names are input in ascending order. If insert numbers 1, 2,
3, ..., n to a binary search tree, it ends up like in figure 4.1. It is an extremely unbalanced
binary search tree. The lookup() is bound to O(h) time for a tree with height h. When
the tree is well balanced, the performance is O(lgn), where n is the number of elements in
the tree. But in this extreme case, the performance downgrades to O(n). It is equivalent
to list scan.

Exercise 4.1

1. For a big address entry list in lexicographic order, one may want to speed up
building the address book with two concurrent tasks: one reads from the head;
while the other reads from the tail, till they meet at some middle point. What
does the binary search tree look like? What if split the list into multiple sections
to scale the concurrency?

2. Find more cases to exploit a binary search tree, for example in figure 4.2.

73

74 CHAPTER 4. RED-BLACK TREE

1

2

3

...

n

Figure 4.1: unbalanced tree

4.1.1 Balance
To avoid extremely unbalanced case, we can shuffle the input(12.4 in [4]), however, when
the input is entered by user interactively, we can not randomize the sequence. People de-
veloped solutions to make the tree balanced. They mostly rely on the rotation operation.
Rotation changes the tree structure while maintain the elements ordering. This chapter
introduces the red-black tree, the widely used self-adjusting balanced binary search tree.
Next chapter is about AVL tree, another self-balanced tree. Chapter 8 introduce the
splay tree. It adjusts the tree in steps to make it balanced.

4.1.2 Tree rotation
Tree rotation transforms the tree structure while keeping the in-order traverse result
unchanged. There are multiple binary search trees generate the same ordered element
sequence. Figure 4.3 shows the tree rotation.

Tree rotation can be defined with pattern matching:

rotatel (a, x, (b, y, c)) = ((a, x, b), y, c))
rotatel T = T

(4.1)

and

rotater ((a, x, b), y, c) = (a, x, (b, y, c))
rotater T = T

(4.2)

The second row in each equation keeps the tree unchanged if the pattern does not
match (for example, both sub-trees are empty). We can also implement tree rotation
imperatively. We need re-assign sub-trees and parent node reference. When rotate, we
pass both the root T , and the node x as parameters:

1: function Left-Rotate(T, x)
2: p← Parent(x)
3: y ← Right(x) ▷ assume y 6= NIL
4: a← Left(x)
5: b← Left(y)
6: c← Right(y)
7: Replace(x, y) ▷ replace node x with y

4.1. INTRODUCTION 75

n

n-1

n-2

...

1

(a)

1

2

n

3

n-1

4

...

(b)
m

m-1 m+1

m-2

...

1

m+2

...

n

(c)

Figure 4.2: Unbalanced trees

Figure 4.3: ‘left rotate’ and ‘right rotate’.

76 CHAPTER 4. RED-BLACK TREE

8: Set-Subtrees(x, a, b) ▷ Set a, b as the sub-trees of x
9: Set-Subtrees(y, x, c) ▷ Set x, c as the sub-trees of y

10: if p = NIL then ▷ x was the root
11: T ← y

12: return T

The Right-Rotate is symmetric, we leave it as exercise. The Replace(x, y) uses
node y to replace x:

1: function Replace(x, y)
2: p← Parent(x)
3: if p = NIL then ▷ x is the root
4: if y 6= NIL then Parent(y) ← NIL
5: else if Left(p) = x then
6: Set-Left(p, y)
7: else
8: Set-Right(p, y)
9: Parent(x) ← NIL

Procedure Set-Subtrees(x, L,R) assigns L as the left, and R as the right sub-trees
of x:

1: function Set-Subtrees(x, L,R)
2: Set-Left(x, L)
3: Set-Right(x,R)

It further calls Set-Left and Set-Right to set the two sub-trees:
1: function Set-Left(x, y)
2: Left(x) ← y
3: if y 6= NIL then Parent(y) ← x

4: function Set-Right(x, y)
5: Right(x) ← y
6: if y 6= NIL then Parent(y) ← x

We can see how pattern matching simplifies the tree rotation. Based on this idea,
Okasaki developed the purely functional algorithm for red-black tree in 1995 [13].

Exercise 4.2

1. Implement the Right-Rotate.

4.2 Definition

A red-black tree is a self-balancing binary search tree [14]. It is essentially equivalent to
2-3-4 tree1. By coloring the node red or black, and performing rotation, red-black tree
provides an efficient way to keep the tree balanced. On top of the binary search tree
definition, we label the node with a color. We say it is a red-black tree if the coloring
satisfies the following 5 rules([4] pp273):

1. Every node is either red or black.

2. The root is black.
1Chapter 7, B-tree. For any 2-3-4 tree, there is at least one red-black tree has the same ordered data.

4.2. DEFINITION 77

3. Every leaf (NIL) is black.

4. If a node is red, then both sub-trees are black.

5. For every node, all paths from it to descendant leaves contain the same number of
black nodes.

Why do they keep the red-black tree balanced? The key point is that, the longest
path from the root to leaf can not be as 2 times longer than the shortest path. Consider
rule 4, there can not be any two adjacent red nodes. Therefore, the shortest path only
contains black nodes. Any longer path must have red ones. In addition, rule 5 ensures all
paths have the same number of black nodes. So as to the root. It eventually ensures any
path is not 2 times longer than others [14]. Figure 4.4 gives an example of red-black tree.

13

8 17

1 11

NIL 6

NIL NIL

NIL NIL

15 25

NIL NIL 22 27

NIL NIL NIL NIL

Figure 4.4: A red-black tree

As all NIL nodes are black, we can hide them as shown in figure 4.5. All operations
including lookup, min/max, are same as the binary search tree. However, the insert and
delete are special, as we need maintain the coloring rules.

13

8 17

1 11

6

15 25

22 27

Figure 4.5: Hide the NIL nodes

Below example program adds the color field atop binary search tree definition:
data Color = R | B
data RBTree a = Empty

78 CHAPTER 4. RED-BLACK TREE

| Node Color (RBTree a) a (RBTree a)

Exercise 4.3
1. Prove the height h of a red-black tree of n nodes is at most 2 lg(n+ 1)

4.3 Insert
The insert algorithm for red-black tree has two steps. The first step is as same as the
binary search tree. The tree may become unbalanced after that, we need fix it to resume
the red-black tree coloring in the second step. When insert a new element, we always
make it red. Unless the new node is the root, we won’t break any coloring rules except for
the 4-th. Because it may bring two adjacent red nodes. Okasaki finds there are 4 cases
violate rule 4. All have two adjacent red nodes. They share a uniformed structure after
fixing [13] as shown in figure 4.6.

Figure 4.6: Fix 4 cases to the same structure.

All 4 transformations move the redness one level up. When perform bottom-up re-
cursive fixing, it may color the root red. While rule 2 requires the root always be black.
We need revert the root back to black finally. With pattern matching, we can define a
balance function to fix the tree. Denote the color as C with values black B, and red R.
A none empty node is in the form of T = (C, l, k, r), where l, r are the left and right
sub-trees, k is the key.

balance B (R, (R, a, x, b), y, c) z d = (R, (B, a, x, b), y, (B, c, z, d))
balance B, (R, a, x, (R, b, y, c)) z d = (R, (B, a, x, b), y, (B, c, z, d))
balance B a x (R, b, y, (R, c, z, d)) = (R, (B, a, x, b), y, (B, c, z, d))
balance B a x (R, (R, b, y, c), z, d) = (R, (B, a, x, b), y, (B, c, z, d))

balance T = T

(4.3)

The last row says if the tree is not in any 4 patterns, then we leave it unchanged. We
define the insert algorithm for red-black tree as below:

insert T k = makeBlack (ins T k) (4.4)

4.3. INSERT 79

where

ins ∅ k = (R,∅, k,∅)

ins (C, l, k′, r) k =

{
k < k′ : balance C (ins l k) k′ r

k > k′ : balance C l k′ (ins r k)

(4.5)

If the tree is empty, we create a red node of k with two empty sub-trees; otherwise,
let the sub-trees and the key be l, r, k′, we compare k and k′, then recursively insert k to
a sub-tree. After that, we call balance to fix the coloring, then force the root to be black
finally.

makeBlack (C, l, k, r) = (B, l, k, r) (4.6)

Below is the corresponding example program:
insert t x = makeBlack $ ins t where

ins Empty = Node R Empty x Empty
ins (Node color l k r)

| x < k = balance color (ins l) k r
| otherwise = balance color l k (ins r)

makeBlack(Node _ l k r) = Node B l k r

balance B (Node R (Node R a x b) y c) z d =
Node R (Node B a x b) y (Node B c z d)

balance B (Node R a x (Node R b y c)) z d =
Node R (Node B a x b) y (Node B c z d)

balance B a x (Node R b y (Node R c z d)) =
Node R (Node B a x b) y (Node B c z d)

balance B a x (Node R (Node R b y c) z d) =
Node R (Node B a x b) y (Node B c z d)

balance color l k r = Node color l k r

We skip to handle the duplicated keys. If the key already exists, we can overwrite,
drop, or store the values in a list ([4], pp269). Figure 4.7 shows two red-black trees built
from sequence 11, 2, 14, 1, 7, 15, 5, 8, 4 and 1, 2, ..., 8. The second example demonstrates
the tree is well balanced even for ordered input.

14

7

2

1 5 11 15

4 8

1

2

3

4

6

5 7

8

Figure 4.7: Red-black tree examples

The algorithm performs top-down recursive insertion and fixing. It is bound to O(h)
time, where h is the height of the tree. As the red-black tree coloring rules are maintained,
h is the logarithm to the number of nodes n. The overall performance is O(lgn).

Exercise 4.4
1. Implement the insert algorithm without using pattern matching, but test the 4

cases separately.

80 CHAPTER 4. RED-BLACK TREE

4.4 Delete
Delete is more complex than insert. We can also use pattern matching and recursion to
simplify the delete algorithm for red-black tree2. There are alternatives to mimic delete.
Sometimes, we build the read-only tree, then use it for frequently looking up [5]. When
delete, we mark the deleted node with a flag, and later rebuild the tree if such nodes
exceeds 50%. Delete may also violate the red-black tree coloring rules. We use the same
idea to apply fixing after delete. The coloring violation only happens when delete a black
node according to rule 5. The black nodes along the path decreases by one, hence not all
paths contain the same number of black nodes.

To resume the blackness, we introduce a special ‘doubly-black’ node([4], pp290). One
such node is counted as 2 black nodes. When delete a black node x, we can move the
blackness either up to its parent or down to one sub-tree. Let this node be y that accepts
the blackness. If y was red, we turn it black; if y was already black, we make it ‘doubly-
black’, denoted as B2. Below example program adds the ‘doubly-black’ support:

data Color = R | B | BB
data RBTree a = Empty | BBEmpty

| Node Color (RBTree a) a (RBTree a)

Because all empty leaves are black, when push the blackness down to a leaf, it becomes
‘doubly-black’ empty (BBEmpty, or bold ∅∅∅). The first step is to perform the normal
binary search tree delete; then if the cut off node is black, we shift the blackness, and fix
the tree coloring.

delete = makeBlack ◦ del (4.7)

This definition is in Curried form. When delete the only element, the tree becomes
empty. To cover this case, we modify makeBlack as below:

makeBlack ∅ = ∅
makeBlack (C, l, k, r) = (B, l, k, r) (4.8)

Where del accepts the tree and k to be deleted:

del ∅ k = ∅

del (C, l, k′, r) k =



k < k′ : fixB2(C, (del l k), k′, r)
k > k′ : fixB2(C, l, k′, (del r k))

k = k′ :


l = ∅ : (C = B 7→ shiftB r, r)

r = ∅ : (C = B 7→ shiftB l, l)

else : fixB2(C, l, k′′, (del r k′′))

where k′′ = min(r)

(4.9)

When the tree is empty, the result is ∅; otherwise, we compare the key k′ in the tree
with k. If k < k′, we recursively delete k from the left sub-tree; if k > k′ then delete from
the right. Because the recursive result may contain doubly-black node, we need apply
fixB2 to fix it. When k = k′, we need splice it out. If either sub-tree is empty, we replace
it with the other, then shift the blackness if the spliced node is black. This is represented
with McCarthy form (p 7→ a, b), which is equivalent to ‘(if p then a else b)’. If neither
sub-tree is empty, we cut the minimum element k′′ = min(r), and use k′′ to replace k.

2Actually, the tree is rebuilt in purely functional setting, although the common part is reused. This
feature is called ‘persist’

4.4. DELETE 81

To reserve the blackness, shiftB makes a black node doubly-black, and forces it black
for other cases. It flips doubly-black to normal black when applied twice.

shiftB (B, l, k, r) = (B2, l, k, r)
shiftB (C, l, k, r) = (B, l, k, r)

shiftB ∅ = ∅∅∅
shiftB ∅∅∅ = ∅

(4.10)

Below is the example program (except the doubly-black fixing part).

delete :: (Ord a) ⇒ RBTree a → a → RBTree a
delete t k = makeBlack $ del t k where

del Empty _ = Empty
del (Node color l k' r) k

| k < k' = fixDB color (del l k) k' r
| k > k' = fixDB color l k' (del r k)
| isEmpty l = if color == B then shiftBlack r else r
| isEmpty r = if color == B then shiftBlack l else l
| otherwise = fixDB color l k'' (del r k'') where k''= min r

makeBlack (Node _ l k r) = Node B l k r
makeBlack _ = Empty

shiftBlack (Node B l k r) = Node BB l k r
shiftBlack (Node _ l k r) = Node B l k r
shiftBlack Empty = BBEmpty
shiftBlack BBEmpty = Empty

The fixB2 function eliminates the doubly-black node by rotation and re-coloring.
The doubly-black node can be branch node or empty ∅∅∅. There are three cases:

Case 1. The sibling of the doubly-black node is black, and it has a red sub-tree. We
can fix this case with a rotation. There are 4 sub-cases, all can be transformed to a
uniformed pattern, as shown in figure A.1.

Figure 4.8: 4 sub-cases share the uniformed fixing pattern

82 CHAPTER 4. RED-BLACK TREE

The fixing for these 4 sub-cases can be realized with pattern matching.

fixB2 C aB2 x (B, (R, b, y, c), z, d) = (C, (B, shiftB(a), x, b), y, (B, c, z, d))
fixB2 C aB2 x (B, b, y, (R, c, z, d)) = (C, (B, shiftB(a), x, b), y, (B, c, z, d))
fixB2 C (B, a, x, (R, b, y, c)) z dB2 = (C, (B, a, x, b), y, (B, c, z, shiftB(d)))
fixB2 C (B, (R, a, x, b), y, c) z dB2 = (C, (B, a, x, b), y, (B, c, z, shiftB(d)))

(4.11)
Where aB2 means node a is doubly-black, it can be branch or ∅∅∅.
Case 2. The sibling of the doubly-black is red. We can rotate the tree to turn it into

case 1 or 3, as shown in figure A.2.

Figure 4.9: The sibling of the doubly-black is red.

We add this fixing as additional 2 rows in equation (4.11):

...
fixB2 B aB2 x (R, b, y, c) = fixB2 B (fixB2 R a x b) y c
fixB2 B (R, a, x, b) y cB2 = fixB2 B a x (fixB2 R b y c)

(4.12)

Case 3. The sibling of the doubly-black node, and its two sub-trees are all black. In
this case, we change the sibling to red, flip the doubly-black node to black, and propagate
the doubly-blackness a level up to parent as shown in figure A.3.

There are two symmetric sub-cases. For the upper case, x was either red or black. x
changes to black if it was red, otherwise changes to doubly-black; Same coloring changes
to y in the lower case. We add this fixing to equation (4.12):

...
fixB2 C aB2 x (B, b, y, c) = shiftB (C, (shiftB a), x, (R, b, y, c))
fixB2 C (B, a, x, b) y cB2 = shiftB (C, (R, a, x, b), y, (shiftB c))

fixB2 C l k r = (C, l, k, r)

(4.13)

If none of the patterns match, the last row keeps the node unchanged. The doubly-
black fixing is recursive. It terminates in two ways: One is Case 1, the doubly-black
node is eliminated. Otherwise the blackness may move up till the root. Finally the we
force the root be black. Below example program puts all three cases together:
−− the sibling is black, and has a red sub-tree
fixDB color a@(Node BB _ _ _) x (Node B (Node R b y c) z d)

= Node color (Node B (shiftBlack a) x b) y (Node B c z d)

4.4. DELETE 83

Figure 4.10: move the blackness up.

fixDB color BBEmpty x (Node B (Node R b y c) z d)
= Node color (Node B Empty x b) y (Node B c z d)

fixDB color a@(Node BB _ _ _) x (Node B b y (Node R c z d))
= Node color (Node B (shiftBlack a) x b) y (Node B c z d)

fixDB color BBEmpty x (Node B b y (Node R c z d))
= Node color (Node B Empty x b) y (Node B c z d)

fixDB color (Node B a x (Node R b y c)) z d@(Node BB _ _ _)
= Node color (Node B a x b) y (Node B c z (shiftBlack d))

fixDB color (Node B a x (Node R b y c)) z BBEmpty
= Node color (Node B a x b) y (Node B c z Empty)

fixDB color (Node B (Node R a x b) y c) z d@(Node BB _ _ _)
= Node color (Node B a x b) y (Node B c z (shiftBlack d))

fixDB color (Node B (Node R a x b) y c) z BBEmpty
= Node color (Node B a x b) y (Node B c z Empty)

−− the sibling is red
fixDB B a@(Node BB _ _ _) x (Node R b y c)

= fixDB B (fixDB R a x b) y c
fixDB B a@BBEmpty x (Node R b y c)

= fixDB B (fixDB R a x b) y c
fixDB B (Node R a x b) y c@(Node BB _ _ _)

= fixDB B a x (fixDB R b y c)
fixDB B (Node R a x b) y c@BBEmpty

= fixDB B a x (fixDB R b y c)
−− the sibling and its 2 children are all black, move the blackness up
fixDB color a@(Node BB _ _ _) x (Node B b y c)

= shiftBlack (Node color (shiftBlack a) x (Node R b y c))
fixDB color BBEmpty x (Node B b y c)

= shiftBlack (Node color Empty x (Node R b y c))
fixDB color (Node B a x b) y c@(Node BB _ _ _)

= shiftBlack (Node color (Node R a x b) y (shiftBlack c))
fixDB color (Node B a x b) y BBEmpty

= shiftBlack (Node color (Node R a x b) y Empty)
−− otherwise
fixDB color l k r = Node color l k r

The delete algorithm is bound to O(h) time, where h is the height of the tree. As
red-black tree maintains the balance, h = O(lgn) for n nodes.

Exercise 4.5

1. Implement the alternative delete algorithm: mark the node as deleted without
actually removing it. When the marked nodes exceed 50%, re-build the tree.

84 CHAPTER 4. RED-BLACK TREE

4.5 Imperative red-black tree algorithm ⋆

We simplify the red-black tree implementation with pattern matching. In this section, we
give the imperative algorithm for completeness. When insert, the first step is as same as
the binary search tree, then as the second step, we fix the balance through tree rotations.

1: function Insert(T, k)
2: root← T
3: x← Create-Leaf(k)
4: Color(x) ← RED
5: p← NIL
6: while T 6= NIL do
7: p← T
8: if k < Key(T) then
9: T ← Left(T)

10: else
11: T ← Right(T)
12: Parent(x) ← p
13: if p = NIL then ▷ tree T is empty
14: return x
15: else if k < Key(p) then
16: Left(p) ← x
17: else
18: Right(p) ← x

19: return Insert-Fix(root, x)

We make the new node red, and then perform fixing before return. There are 3 basic
cases, each one has a symmetric case, hence there are total 6 cases. Among them, we can
merge two cases, because both have a red ‘uncle’ node. We change the parent and uncle
to black, and set grand parent to red:

1: function Insert-Fix(T, x)
2: while Parent(x) 6= NIL and Color(Parent(x)) = RED do
3: if Color(Uncle(x)) = RED then ▷ Case 1, x’s uncle is red
4: Color(Parent(x)) ← BLACK
5: Color(Grand-Parent(x)) ← RED
6: Color(Uncle(x)) ← BLACK
7: x← Grand-Parent(x)
8: else ▷ x’s uncle is black
9: if Parent(x) = Left(Grand-Parent(x)) then

10: if x = Right(Parent(x)) then ▷ Case 2, x is on the right
11: x← Parent(x)
12: T ← Left-Rotate(T, x)

▷ Case 3, x is on the left
13: Color(Parent(x)) ← BLACK
14: Color(Grand-Parent(x)) ← RED
15: T ← Right-Rotate(T , Grand-Parent(x))
16: else
17: if x = Left(Parent(x)) then ▷ Case 2, Symmetric
18: x← Parent(x)
19: T ← Right-Rotate(T, x)

▷ Case 3, Symmetric
20: Color(Parent(x)) ← BLACK
21: Color(Grand-Parent(x)) ← RED

4.6. SUMMARY 85

22: T ← Left-Rotate(T , Grand-Parent(x))
23: Color(T) ← BLACK
24: return T

This algorithm takes O(lgn) time to insert a key, where n is the number of nodes.
Compare to the balance function defined previously, they have different logic. Even input
the same sequence of keys, they build different red-black trees. Figure 4.11 shows the
result when input the same sequence of keys to the imperative algorithm. We can see the
difference from figure 4.7. There is a bit performance overhead in the pattern matching
algorithm. Okasaki discussed the difference in detail in [13].

11

2 14

1 7

5 8

15

5

2 7

1 4

3

6 9

8

Figure 4.11: Red-black trees created by imperative algorithm.

We provide the imperative delete algorithm in Appendix A of this book.

4.6 Summary

Red-black tree is a popular implementation of balanced binary search tree. We introduce
another one, called AVL tree in the next chapter. Red-black tree is a good start for more
data structures. If extend the number of children from 2 to k, and maintain the balance,
it leads to B-tree; If store the data along with the edge but not inside node, it leads to
Radix tree. To maintain the balance, we need handle multiple cases. Okasaki’s developed
a method that makes the red-black tree easy to implement. There are many implemen-
tations based on this idea [16]. We also provide AVL tree and Splay tree implementation
based on pattern matching in this book.

86 CHAPTER 4. RED-BLACK TREE

4.7 Appendix: Example programs
Definition of red-black tree node with parent field. When not explicitly defined, the color
of the new node is red by default.
data Node<T> {

T key
Color color
Node<T> left
Node<T> right
Node<T> parent

Node(T x) = Node(null, x, null, Color.RED)

Node(Node<T> l, T k, Node<T> r, Color c) {
left = l, key = k, right = r, color = c
if left ̸= null then left.parent = this
if right ̸= null then right.parent = this

}

Self setLeft(l) {
left = l
if l ̸= null then l.parent = this

}

Self setRight(r) {
right = r
if r ̸= null then r.parent = this

}

Node<T> sibling() = if parent.left == this then parent.right
else parent.left

Node<T> uncle() = parent.sibling()

Node<T> grandparent() = parent.parent
}

Insert a key to red-black tree:
Node<T> insert(Node<T> t, T key) {

root = t
x = Node(key)
parent = null
while (t ̸= null) {

parent = t
t = if (key < t.key) then t.left else t.right

}
if (parent == null) { //tree is empty

root = x
} else if (key < parent.key) {

parent.setLeft(x)
} else {

parent.setRight(x)
}
return insertFix(root, x)

}

Fix the balance:
// Fix the red→red violation
Node<T> insertFix(Node<T> t, Node<T> x) {

while (x.parent ̸= null and x.parent.color == Color.RED) {
if (x.uncle().color == Color.RED) {

// case 1: ((a:R x:R b) y:B c:R) =⇒ ((a:R x:B b) y:R c:B)

Elementary Algorithms 87

x.parent.color = Color.BLACK
x.grandparent().color = Color.RED
x.uncle().color = Color.BLACK
x = x.grandparent()

} else {
if (x.parent == x.grandparent().left) {

if (x == x.parent.right) {
// case 2: ((a x:R b:R) y:B c) =⇒ case 3
x = x.parent
t = leftRotate(t, x)

}
// case 3: ((a:R x:R b) y:B c) =⇒ (a:R x:B (b y:R c))
x.parent.color = Color.BLACK
x.grandparent().color = Color.RED
t = rightRotate(t, x.grandparent())

} else {
if (x == x.parent.left) {

// case 2': (a x:B (b:R y:R c)) =⇒ case 3'
x = x.parent
t = rightRotate(t, x)

}
// case 3': (a x:B (b y:R c:R)) =⇒ ((a x:R b) y:B c:R)
x.parent.color = Color.BLACK
x.grandparent().color = Color.RED
t = leftRotate(t, x.grandparent())

}
}

}
t.color = Color.BLACK
return t

}

88 AVL tree

Chapter 5

AVL tree

5.1 Introduction
The idea of red-black tree is to limit the number nodes along a path within a range. AVL
tree takes a direct approach: quantify the difference between branches. For a node T ,
define:

δ(T) = |r| − |l| (5.1)

Where |T | is the height of tree T , l and r are the left and right sub-trees. Define
δ(∅) = 0 for the empty tree. If δ(T) = 0 for every node T , the tree is definitely balanced.
For example, a complete binary tree has n = 2h − 1 nodes for height h. There are not
any empty branches unless the leaves. The less absolute value of δ(T), the more balanced
between the sub-trees. We call δ(T) the balance factor of a binary tree.

5.2 Definition

4

2 8

1 3 6 9

5 7 10

Figure 5.1: an AVL tree

A binary search tree is an AVL tree if every sub-tree T satisfies:

|δ(T)| ≤ 1 (5.2)

89

90 CHAPTER 5. AVL TREE

There are three valid values for δ(T): ±1, and 0. Figure 5.1 shows an AVL tree. This
definition ensures the tree height h = O(lgn), where n is the number of nodes in the tree.
Let’s prove it. For an AVL tree of height h, the number of nodes varies. There are at
most 2h− 1 nodes for a complete binary tree case. We are interesting in how many nodes
at least. Let the minimum number be N(h). We have the following result:

• Empty tree ∅: h = 0, N(0) = 0;

• Singleton tree: h = 1, N(1) = 1;

Figure 5.2 shows an AVL tree T of height h. It contains three parts, the key k, and
two sub-trees l, r. We have the following equation:

k

h-1 h-2

Figure 5.2: An AVL tree of height h. The height of one sub-tree is h− 1, the other is no
less than h− 2.

h = max(|l|, |r|) + 1 (5.3)

There must be a sub-tree of height h− 1. From the definition. we have ||l| − |r|| ≤ 1
holds. Hence the height of the other tree can not be lower than h− 2. The total number
of the nodes in T is the sum of both sub-trees plus 1 (for the root):

N(h) = N(h− 1) +N(h− 2) + 1 (5.4)

This recursive equation is similar to Fibonacci numbers. Actually we can transform
it to Fibonacci numbers through N ′(h) = N(h) + 1. Equation (5.4) then changes to:

N ′(h) = N ′(h− 1) +N ′(h− 2) (5.5)

Lemma 5.2.1. Let N(h) be the minimum number of nodes for an AVL tree of height h,
and N ′(h) = N(h) + 1, then

N ′(h) ≥ ϕh (5.6)

Where ϕ =

√
5 + 1

2
is the golden ratio.

Proof. When h = 0 or 1, we have:
• h = 0: N ′(0) = 1 ≥ ϕ0 = 1

• h = 1: N ′(1) = 2 ≥ ϕ1 = 1.618...

For the induction case, assume N ′(h) ≥ ϕh.

N ′(h+ 1) = N ′(h) +N ′(h− 1) {Fibonacci}
≥ ϕh + ϕh−1

= ϕh−1(ϕ+ 1) {ϕ+ 1 = ϕ2 =

√
5 + 3

2
}

= ϕh+1

5.3. INSERT 91

From Lemma 5.2.1, we immediately obtain:
h ≤ logϕ(n+ 1) = logϕ2 · lg(n+ 1) ≈ 1.44 lg(n+ 1) (5.7)

We prove the height of AVL tree is proportion to O(lgn), indicating AVL tree is
balanced.

When insert or delete, the balance factor may exceed the valid value range, we need fix
to resume |δ| < 1. Traditionally, the fixing is through tree rotations. We give the simplified
implementation based on pattern matching. The idea is similar to the functional red-black
tree(Okasaki, [13]). Because of this ‘modify-fix’ approach, AVL tree is also self-balanced
binary search tree. We can re-use the binary search tree definition. Although the balance
factor δ can be computed recursively, we record it inside each node as T = (l, k, r, δ), and
update it when mutate the tree1. Below example program adds δ as an Int:
data AVLTree a = Empty

| Br (AVLTree a) a (AVLTree a) Int

For AVL tree, lookup, max, min are as same as the binary search tree. We focus on
insert and delete algorithms.

5.3 Insert
When insert a new element, |δ(T)| may exceed 1. We can use pattern matching similar to
red-black tree to develop a simplified solution. After insert element x, for those sub-trees
which are the ancestors of x, the height may increase at most by 1. We need recursively
update the balance factor along the path of insertion. Define the insert result as a pair
(T ′,∆H), where T ′ is the updated tree and ∆H is the increment of height. We modify
the binary search tree insert function as below:

insert = fst ◦ ins (5.8)
Where fst (a, b) = a returns the first element in a pair. ins(T, k) does the actual work

to insert element k into tree T :
ins ∅ k = ((∅, k,∅, 0), 1)

ins (l, k′, r, δ) k =

{
k < k′ : tree (ins l k) k′ (r, 0) δ

k > k′ : tree (l, 0) k′ (ins r, k) δ

(5.9)

If the tree is empty ∅, the result is a leaf of k with balance factor 0. The height
increases to 1. Otherwise let T = (l, k′, r, δ). We compare the new element k with k′.
If k < k′, we recursively insert k it to the left sub-tree l, otherwise insert to r. As the
recursive insert result is a pair of (l′,∆l) or (r′,∆r), we need adjust the balance factor
and update tree height through function tree, it takes 4 parameters: (l′,∆l), k′, (r′,∆r),
and δ. The result is (T ′,∆H), where T ′ is the new tree, and ∆H is defined as:

∆H = |T ′| − |T | (5.10)
We can further break it down into 4 cases:

∆H = |T ′| − |T |
= 1 +max(|r′|, |l′|)− (1 +max(|r|, |l|))
= max(|r′|, |l′|)−max(|r|, |l|)

=


δ ≥ 0, δ′ ≥ 0 : ∆r

δ ≤ 0, δ′ ≥ 0 : δ +∆r

δ ≥ 0, δ′ ≤ 0 : ∆l − δ

otherwise : ∆l

(5.11)

1Alternatively, we can record the height instead of δ [20].

92 CHAPTER 5. AVL TREE

Where δ′ = δ(T ′) = |r′|− |l′|, is the updated balance factor. Appendix B provides the
proof for it. We need determine δ′ before balance adjustment.

δ′ = |r′| − |l′|
= |r|+∆r − (|l|+∆l)
= |r| − |l|+∆r −∆l
= δ +∆r −∆l

(5.12)

With the changes in height and balance factor, we can define the tree function in
(5.9):

tree (l′,∆l) k (r′,∆r) δ = balance (l′, k, r′, δ′) ∆H (5.13)

Below example programs implements what we deduced so far:
insert t x = fst $ ins t where

ins Empty = (Br Empty x Empty 0, 1)
ins (Br l k r d)

| x < k = tree (ins l) k (r, 0) d
| x > k = tree (l, 0) k (ins r) d

tree (l, dl) k (r, dr) d = balance (Br l k r d') deltaH where
d' = d + dr - dl
deltaH | d ≥ 0 && d' ≥ 0 = dr

| d ≤ 0 && d' ≥ 0 = d+dr
| d ≥ 0 && d' ≤ 0 = dl - d
| otherwise = dl

5.3.1 Balance
There are 4 cases need fix as shown in figure 5.3. The balance factor is ±2, exceeds the
range of [−1, 1]. We adjust them to a uniformed structure in the center, with the δ(y) = 0.

Figure 5.3: Fix 4 cases to the same structure

We call the 4 cases: left-left, right-right, right-left, and left-right. Denote the balance
factors before fixing as δ(x), δ(y), and δ(z); after fixing, they change to δ′(x), δ′(y) = 0,

5.3. INSERT 93

and δ′(z) respectively. The values of δ′(x) and δ′(z) can be given as below. Appendix B
gives the proof.

Left-left:

δ′(x) = δ(x)
δ′(y) = 0
δ′(z) = 0

(5.14)

Right-right:

δ′(x) = 0
δ′(y) = 0
δ′(z) = δ(z)

(5.15)

Right-left and Left-right:

δ′(x) =

{
δ(y) = 1 : −1
otherwise : 0

δ′(y) = 0

δ′(z) =

{
δ(y) = −1 : 1

otherwise : 0

(5.16)

Based on this, we can implement the pattern matching fix as below:

balance (((a, x, b, δ(x)), y, c,−1), z, d,−2) ∆H = ((a, x, b, δ(x)), y, (c, z, d, 0), 0,∆H − 1)
balance (a, x, (b, y, (c, z, d, δ(z)), 1), 2) ∆H = ((a, x, b, 0), y, (c, z, d, δ(z)), 0,∆H − 1)

balance ((a, x, (b, y, c, δ(y)), 1), z, d,−2) ∆H = ((a, x, b, δ′(x)), y, (c, z, d, δ′(z)), 0,∆H − 1)
balance (a, x, ((b, y, c, δ(y)), z, d,−1), 2) ∆H = ((a, x, b, δ′(x)), y, (c, z, d, δ′(z)), 0,∆H − 1)

balance T ∆H = (T,∆H)

(5.17)
Where δ′(x) and δ′(z) are defined in (B.17). If none of the pattern matches, the last

row keeps the tree unchanged. Below is the example program implements balance:
balance (Br (Br (Br a x b dx) y c (-1)) z d (-2)) dH =

(Br (Br a x b dx) y (Br c z d 0) 0, dH-1)
balance (Br a x (Br b y (Br c z d dz) 1) 2) dH =

(Br (Br a x b 0) y (Br c z d dz) 0, dH-1)
balance (Br (Br a x (Br b y c dy) 1) z d (-2)) dH =

(Br (Br a x b dx') y (Br c z d dz') 0, dH-1) where
dx' = if dy == 1 then -1 else 0
dz' = if dy == -1 then 1 else 0

balance (Br a x (Br (Br b y c dy) z d (-1)) 2) dH =
(Br (Br a x b dx') y (Br c z d dz') 0, dH-1) where

dx' = if dy == 1 then -1 else 0
dz' = if dy == -1 then 1 else 0

balance t d = (t, d)

The performance of insert is proportion to the height of the tree. From (5.7), it is
bound to is O(lgn) where n is the number of elements in the tree.

Verification

To test an AVL tree, we need verify two things: It is a binary search tree; and for every
sub-tree T , equation (5.2): δ(T) ≤ 1 holds. Below function examines the height difference
between the two sub-trees recursively:

avl? ∅ = True
avl? T = avl? l ∧ avl? r ∧ ||r| − |l|| ≤ 1

(5.18)

94 CHAPTER 5. AVL TREE

Where l, r are the left and right sub-trees. The height is calculated recursively:

|∅| = 0
|T | = 1 +max(|r|, |l|) (5.19)

Below example program implements AVL tree height verification:
isAVL Empty = True
isAVL (Br l _ r _) = isAVL l && isAVL r && abs (height r - height l) ≤ 1

height Empty = 0
height (Br l _ r _) = 1 + max (height l) (height r)

Exercise 5.1
1. We only give the algorithm to test AVL height. Complete the program to test if a

binary tree is AVL tree.

5.4 Imperative AVL tree algorithm ⋆
This section gives the imperative algorithm for completeness. Similar to the red-black
tree algorithm, we first re-use the binary search tree insert, then fix the balance through
tree rotations.

1: function Insert(T, k)
2: root← T
3: x← Create-Leaf(k)
4: δ(x) ← 0
5: parent← NIL
6: while T 6= NIL do
7: parent← T
8: if k < Key(T) then
9: T ← Left(T)

10: else
11: T ← Right(T)
12: Parent(x) ← parent
13: if parent = NIL then ▷ tree T is empty
14: return x
15: else if k < Key(parent) then
16: Left(parent) ← x
17: else
18: Right(parent) ← x

19: return AVL-Insert-Fix(root, x)
After insert, the balance factor δ may change because of the tree growth. Insert to the

right may increase δ by 1, while insert to the left may decrease it. We perform bottom-up
fixing from x to root. Denote the new balance factor as δ′, there are 3 cases:

• |δ| = 1, |δ′| = 0. The new node makes the tree well balanced. The height of the
parent keeps unchanged.

• |δ| = 0, |δ′| = 1. Either the left or the right sub-tree increases its height. We need
go on checking the upper level.

• |δ| = 1, |δ′| = 2. We need rotate the tree to fix the balance factor.

5.4. IMPERATIVE AVL TREE ALGORITHM ⋆ 95

1: function AVL-Insert-Fix(T, x)
2: while Parent(x) 6= NIL do
3: P ← Parent(x)
4: L← Left(x)
5: R← Right(x)
6: δ ← δ(P)
7: if x = Left(P) then
8: δ′ ← δ − 1
9: else

10: δ′ ← δ + 1

11: δ(P)← δ′

12: if |δ| = 1 and |δ′| = 0 then ▷ Height unchanged
13: return T
14: else if |δ| = 0 and |δ′| = 1 then ▷ Go on bottom-up update
15: x← P
16: else if |δ| = 1 and |δ′| = 2 then
17: if δ′ = 2 then
18: if δ(R) = 1 then ▷ Right-right
19: δ(P)← 0 ▷ By (B.6)
20: δ(R)← 0
21: T ← Left-Rotate(T, P)
22: if δ(R) = −1 then ▷ Right-left
23: δy ← δ(Left(R)) ▷ By (B.17)
24: if δy = 1 then
25: δ(P)← −1
26: else
27: δ(P)← 0

28: δ(Left(R)) ← 0
29: if δy = −1 then
30: δ(R)← 1
31: else
32: δ(R)← 0

33: T ← Right-Rotate(T,R)
34: T ← Left-Rotate(T, P)
35: if δ′ = −2 then
36: if δ(L) = −1 then ▷ Left-left
37: δ(P)← 0
38: δ(L)← 0
39: Right-Rotate(T, P)
40: else ▷ Left-Right
41: δy ← δ(Right(L))
42: if δy = 1 then
43: δ(L)← −1
44: else
45: δ(L)← 0

46: δ(Right(L)) ← 0
47: if δy = −1 then
48: δ(P)← 1
49: else
50: δ(P)← 0

51: Left-Rotate(T,L)

96 CHAPTER 5. AVL TREE

52: Right-Rotate(T, P)
53: break
54: return T

Besides rotation, we also need update δ for the impacted nodes. The right-right and
left-left cases need one rotation, while the right-left and left-right case need two rotations.
We skip the AVL tree delete algorithm in this chapter. Appendix B provides the delete
implementation.

5.5 Summary
AVL tree was developed in 1962 by Adelson-Velskii and Landis [18], [19]. It is named after
the two authors. AVL tree was developed earlier than the red-black tree. Both are self-
balance binary search trees. Most tree operations are bound O(lgn) time. From (5.7),
AVL tree is more rigidly balanced, and performs faster than red-black tree in looking up
intensive applications [18]. However, red-black tree performs better in frequently insertion
and removal cases. Many popular self-balance binary search tree libraries are implemented
on top of red-black tree. AVL tree also provides the intuitive and effective solution to the
balance problem.

5.6 Appendix: Example programs
Definition of AVL tree node.
data Node<T> {

int delta
T key
Node<T> left
Node<T> right
Node<T> parent

}

Fix the balance:
Node<T> insertFix(Node<T> t, Node<T> x) {

while (x.parent ̸= null) {
var (p, l, r) = (x.parent, x.parent.left, x.parent.right)
var d1 = p.delta
var d2 = if x == parent.left then d1 - 1 else d1 + 1
p.delta = d2

if abs(d1) == 1 and abs(d2) == 0 {
return t

} else if abs(d1) == 0 and abs(d2) == 1 {
x = p

} else if abs(d1) == 1 and abs(d2) == 2 {
if d2 == 2 {

if r.delta == 1 { //Right-right
p.delta = 0
r.delta = 0
t = rotateLeft(t, p)

} else if r.delta == -1 { //Right-Left
var dy = r.left.delta
p.delta = if dy == 1 then -1 else 0
r.left.delta = 0
r.delta = if dy == -1 then 1 else 0
t = rotateRight(t, r)
t = rotateLeft(t, p)

}

Elementary algorithms 97

} else if d2 == -2 {
if l.delta == -1 { //Left-left

p.delta = 0
l.delta = 0
t = rotateRight(t, p)

} else if l.delta == 1 { //Left-right
var dy = l.right.delta
l.delta = if dy == 1 then -1 else 0
l.right.delta = 0
p.delta = if dy == -1 then 1 else 0
t = rotateLeft(t, l)
t = rotateRight(t, p)

}
}
break

}
}
return t

}

98 Radix tree

Chapter 6

Radix tree

Binary search tree stores data in nodes. Can we use the edges to carry information? Radix
trees, including trie, prefix tree, and suffix tree are the data structures developed based
on this idea in 1960s. They are widely used in compiler design [21], and bio-information
processing, like DNA pattern matching [23].

0

0 1

1

10

0

011

1

100

0 1

1011

1

Figure 6.1: Radix tree.

Figure 6.1 shows a Radix tree. It contains bits 1011, 10, 011, 100 and 0. When lookup
a key k = (b0b1...bn)2, we take the first bit b0 (MSB from left), check whether it is 0 or 1.
For 0, turn left, else turn right. Then take the second bit and repeat looking up till either
reach a leaf node or consume all the n bits. We needn’t store keys in Radix tree node.
The information is represented by edges. The nodes labelled with key in figure 6.1 are
for illustration purpose. If the keys are integers, we can represent them in binary format,
and implement lookup with bit-wise manipulations.

6.1 Integer trie
We call the data structure in figure 6.1 binary trie. Trie was developed by Edward
Fredkin in 1960. It comes from “retrieval”, pronounce as /’tri:/ by Freddkin, while
others pronounce it as /’trai/ “try” [24]. Although it’s also called prefix tree in some
context, we treat trie and prefix tree different in this chapter. A binary trie is a special

99

100 CHAPTER 6. RADIX TREE

binary tree in which the placement of each key is controlled by its bits, each 0 means ‘go
left’ and each 1 means ‘go right’ [21]. Consider the binary trie in figure 6.2. The three
keys are different bit strings of “11”, “011”, and “0011” although they are all equal to 3.

0 1

0 1

1

0011

1

011

1

11

1

Figure 6.2: A big-endian trie.

It is inefficient to treat the prefix zeros as valid bits. For 32 bits integers, we need
a tree of 32 levels to insert number 1. Okasaki suggested to use little-endian integers
instead [21]. 1 is represented as bits (1)2, 2 as (01)2, and 3 is (11)2, ...

6.1.1 Definition
We can re-use binary tree structure to define the little-endian binary trie. A node is either
empty, or a branch containing the left, right sub-trees, and an optional value. The left
sub-tree is encoded as 0 and the right sub-tree is encoded as 1.

data IntTrie a = Empty
| Branch (IntTrie a) (Maybe a) (IntTrie a)

Given a node in the binary trie, the integer key bound to it is uniquely determined
through its position. That is the reason we need not save the key, but only the value in
the node. The type of the key is always integer, we call the tree IntTrie A if the value is
of type A.

6.1.2 Insert
When insert an integer key k and a value v, we convert k into binary form. If k is even,
the lowest bit is 0, we recursively insert to the left sub-tree; otherwise if k is odd, the
lowest bit is 1, we recursively insert to the right. We next divide k by 2 to remove the
lowest bit. For none empty trie T = (l, v′, r), where l, r are the left and right sub-trees,
and v′ is the optional value, function insert can be defined as below:

insert ∅ k v = insert(∅,Nothing,∅) k v
insert (l, v′, r) 0 v = (l, Just v, r)

insert (l, v′, r) k v =


even(k) : (insert l

k

2
v, v′, r)

odd(k) : (l, v′, insert r bk
2
c v)

(6.1)

6.1. INTEGER TRIE 101

If k = 0, we put v in the node. When T = ∅, it becomes (∅, Just v,∅). As far
as k 6= 0, we goes down along the tree based on the parity of k. We create empty leaf
(∅,Nothing,∅) whenever meet ∅ node. This algorithm overrides the value if k already
exists. Alternatively, we can store a list, and append v to it. Figure 6.3 shows an example
trie, generated by inserting the key-value pairs of {1→ a, 4→ b, 5→ c, 9→ d}. Below is
the example program implements insert:

0

1:a

1

0

4:b

1

0

0

5:c

1

9:d

1

Figure 6.3: A little-endian integer binary trie of {1→ a, 4→ b, 5→ c, 9→ d}.

insert Empty k x = insert (Branch Empty Nothing Empty) k x
insert (Branch l v r) 0 x = Branch l (Just x) r
insert (Branch l v r) k x | even k = Branch (insert l (k `div` 2) x) v r

| otherwise = Branch l v (insert r (k `div` 2) x)

We can define the even/odd testing by modular 2, and check if the remainder is 0
or not: even(k) = (k mod 2 = 0). Or use bit-wise operation in some environment, like
(k & 0x1) == 0. We can eliminate the recursion through loops to realize an iterative
implementation as below:

1: function Insert(T, k, v)
2: if T = NIL then
3: T ← Empty-Node ▷ (NIL, Nothing, NIL)
4: p← T
5: while k 6= 0 do
6: if Even?(k) then
7: if Left(p) = NIL then
8: Left(p) ← Empty-Node
9: p← Left(p)

10: else
11: if Right(p) = NIL then
12: Right(p) ← Empty-Node
13: p← Right(p)
14: k ← bk/2c
15: Value(p) ← v
16: return T

102 CHAPTER 6. RADIX TREE

Insert takes, a trie T , a key k, and a value v. For integer k with m bits in binary, it
goes into m levels of the trie. The performance is bound to O(m).

6.1.3 Look up
When look up key k in a none empty integer trie, if k = 0, then the root node is the
target. Otherwise, we check the lowest bit, then recursively look up the left or right
sub-tree accordingly.

lookup ∅ k = Nothing
lookup (l, v, r) 0 = v

lookup (l, v, r) k =


even(k) : lookup l

k

2

odd(k) : lookup r bk
2
c

(6.2)

Below example program implements the lookup function:
lookup Empty _ = Nothing
lookup (Branch _ v _) 0 = v
lookup (Branch l _ r) k | even k = lookup l (k `div` 2)

| otherwise = lookup r (k `div` 2)

We can eliminate the recursion to implement the iterative lookup as the following:
1: function Lookup(T, k)
2: while k 6= 0 and T 6=NIL do
3: if Even?(k) then
4: T ← Left(T)
5: else
6: T ← Right(T)
7: k ← bk/2c
8: if T 6= NIL then
9: return Value(T)

10: else
11: return NIL

The lookup function is bound to O(m) time, where m is the number of bits of k.

Exercise 6.1

1. Can we change the definition from Branch (IntTrie a) (Maybe a) (IntTrie
a) to Branch (IntTrie a) a (IntTrie a), and return Nothing if the value
does not exist, and Just v otherwise?

6.2 Integer prefix tree
Trie is not space efficient. As shown in figure 6.3, there are only 4 nodes with value,
while the rest 5 are empty. The space usage is less than 50%. To improve the efficiency,
we can consolidate the chained nodes to one. Integer prefix tree is such a data struc-
ture developed by Donald R. Morrison in 1968. He named it as ‘Patricia’, standing for
Practical Algorithm To Retrieve Information Coded In Alphanumeric [22]. When the
keys are integer, we call it integer prefix tree or simply integer tree when the context
is clear. Okasaki provided the implementation in [21]. Consolidate the chained nodes in
figure 6.3, we obtained an integer tree as shown in figure 6.4.

6.2. INTEGER PREFIX TREE 103

4:b

001

1:a

1

0

9:d

01

5:c

1

Figure 6.4: Little endian integer tree for the map {1→ a, 4→ b, 5→ c, 9→ d}.

The key to the branch node is the longest common prefix for its descendant trees. In
other words, the sibling sub-trees branch out at the bit where ends at their longest prefix.
As the result, integer tree eliminates the redundant spaces in trie.

6.2.1 Definition
Integer prefix tree is a special binary tree. It is either empty or a node of:

• A leaf contains an integer key k and a value v;

• Or a branch with the left and right sub-trees, that share the longest common
prefix bits for their keys. For the left sub-tree, the next bit is 0, for the right, it is
1.

Below example program defines the integer prefix tree. The branch node contains 4
components: The longest prefix, a mask integer indicating from which bit the sub-trees
branch out, the left and right sub-trees. The mask is m = 2n for some integer n ≥ 0. All
bits that are lower than n do not belong to the common prefix.
data IntTree a = Empty

| Leaf Int a
| Branch Int Int (IntTree a) (IntTree a)

6.2.2 Insert
When insert integer y to tree T , if T is empty, we create a leaf of y; If T is a singleton
leaf of x, besides the new leaf of y, we need create a branch node, set x and y as the
two sub-trees. To determine whether y is on the left or right, we need find the longest
common prefix p of x and y. For example if x = 12 = (1100)2, y = 15 = (1111)2, then
p = (11oo)2, where o denotes the bits we don’t care. We can use another integer m to
mask those bits. In this example, m = 4 = (100)2. The next bit after p presents 21. It is
0 in x, 1 in y. Hence, we set x as the left sub-tree and y as the right, as shown in figure
6.5.

If T is neither empty nor a leaf, we firstly check if y matches the longest common
prefix p in the root, then recursively insert it to the sub-tree according to the next bit
after p. For example, when insert y = 14 = (1110)2 to the tree shown in figure 6.5, since
p = (11oo)2 and the next bit (the bit of 21) is 1, we recursively insert y to the right

104 CHAPTER 6. RADIX TREE

12
prefix=1100
mask=100

12

0

15

1

Figure 6.5: Left: T is a leaf of 12; Right: After insert 15.

sub-tree. If y does not match p in the root, we need branch a new leaf as shown in figure
6.6.

prefix=1100
mask=100

12

0

15

1

prefix=1100
mask=100

12

0

prefix=1110
mask=10

1

14

0

15

1

(a) Insert 14 = (1110)2, which matches
p = (1100)2. It is inserted to the right.

prefix=1100
mask=100

12

0

15

1

prefix=0
mask=10000

5

0

prefix=1110
mask=10

1

12

0

15

1

(b) Insert 5 = (101)2, which does not match
p = (1100)2. Branch out a new leaf.

Figure 6.6: The tree is a branch node.

For integer key k and value v, let (k, v) be the leaf. For branch node, denote it as
(p,m, l, r), where p is the longest common prefix, m is the mask, l and r are the left and

6.2. INTEGER PREFIX TREE 105

right sub-trees. Below insert function defines the above 3 cases:

insert ∅ k v = (k, v)
insert (k, v′) k v = (k, v)
insert (k′, v′) k v = join k (k, v) k′ (k′, v′)

insert (p,m, l, r) k v =

match(k, p,m) :

{
zero(k,m) : (p,m, insert l k v)

otherwise : (p,m, insert r k v)

otherwise : join k (k, v) p (p,m, l, r)
(6.3)

The first clause creates a leaf when T = ∅; the second clause overrides the value for
the same key. Function match(k, p,m) tests if integer k and prefix p have the same bits
after masked with m through: mask(k,m) = p, where mask(k,m) = m− 1&k. It applies
bit-wise not to m − 1, then does bit-wise and with k. zero(k,m) tests the next bit in k
masked with m is 0 or not. We shift m one bit to right, then do bit-wise and with k:

zero(k,m) = x&(m >> 1) (6.4)

Function join(p1, T1, p2, T2) takes two different prefixes and trees. It extracts the
longest common prefix of p1 and p2 as (p,m) = LCP (p1, p2), creates a new branch node,
then set T1 and T2 as the two sub-trees:

join(p1, T1, p2, T2) =

{
zero(p1,m) : (p,m, T1, T2)

otherwise : (p,m, T2, T1)
(6.5)

To calculate the longest common prefix, we can firstly compute bit-wise exclusive-or
for p1 and p2, then count the highest bit highest(xor(p1, p2)) as:

highest(0) = 0
highest(n) = 1 + highest(n >> 1)

Then generate a mask m = 2highest(xor(p1,p2)). The longest common prefix p can be
given by masking the bits with m for either p1 or p2, like p = mask(p1,m). The following
example program implements the insert function:
insert t k x

= case t of
Empty → Leaf k x
Leaf k' x' → if k == k' then Leaf k x

else join k (Leaf k x) k' t
Branch p m l r
| match k p m → if zero k m

then Branch p m (insert l k x) r
else Branch p m l (insert r k x)

| otherwise → join k (Leaf k x) p t

join p1 t1 p2 t2 = if zero p1 m then Branch p m t1 t2
else Branch p m t2 t1

where
(p, m) = lcp p1 p2

lcp p1 p2 = (p, m) where
m = bit (highestBit (p1 `xor` p2))
p = mask p1 m

highestBit x = if x == 0 then 0 else 1 + highestBit (shiftR x 1)

mask x m = x .&. complement (m - 1)

106 CHAPTER 6. RADIX TREE

zero x m = x .&. (shiftR m 1) == 0

match k p m = (mask k m) == p

We can also implement insert imperatively:
1: function Insert(T, k, v)
2: if T = NIL then
3: return Create-Leaf(k, v)
4: y ← T
5: p← NIL
6: while y is not leaf, and Match(k, Prefix(y), Mask(y)) do
7: p← y
8: if Zero?(k, Mask(y)) then
9: y ← Left(y)

10: else
11: y ← Right(y)
12: if y is leaf, and k = Key(y) then
13: Value(y) ← v
14: else
15: z ← Branch(y, Create-Leaf(k, v))
16: if p = NIL then
17: T ← z
18: else
19: if Left(p) = y then
20: Left(p) ← z
21: else
22: Right(p) ← z

23: return T

Where Branch(T1, T2) creates a new branch node, extracts the longest common pre-
fix, then sets T1 and T2 as the two sub-trees.

1: function Branch(T1, T2)
2: T ← Empty-Node
3: (Prefix(T), Mask(T)) ← LCP(Prefix(T1), Prefix(T2))
4: if Zero?(Prefix(T1), Mask(T)) then
5: Left(T) ← T1

6: Right(T) ← T2

7: else
8: Left(T) ← T2

9: Right(T) ← T1

10: return T

11: function Zero?(x,m)
12: return (x&bm

2
c) = 0

Function LCP find the longest bit prefix from two integers:
1: function LCP(a, b)
2: d← xor(a, b)
3: m← 1
4: while d 6= 0 do
5: d← bd

2
c

6.2. INTEGER PREFIX TREE 107

6: m← 2m
7: return (MaskBit(a,m), m)

8: function MaskBit(x,m)
9: return x&m− 1

Figure 6.7 gives an example integer tree created from the insert algorithm. Although
integer prefix tree consolidates the chained nodes, the operation to extract the longest
common prefix need linear scan the bits. For integer of m bits, the insert is bound to
O(m).

prefix=0
mask=8

1:x

0

prefix=100
mask=2

1

4:y

0

5:z

1

Figure 6.7: Insert {1→ x, 4→ y, 5→ z} to the big-endian integer tree.

6.2.3 Lookup
When lookup key k, if the integer tree T = ∅ or it is a leaf of T = (k′, v) with different
key, then k does not exist; if k = k′, then v is the result; if T = (p,m, l, r) is a branch
node, we need check if the common prefix p matches k under the mask m, then recursively
lookup the sub-tree l or r upon next bit. If fails to match the common prefix p, then k
does not exist.

lookup ∅ k = Nothing

lookup (k′, v) k =

{
k = k′ : Just v
otherwise : Nothing

lookup (p,m, l, r) k =

match(k, p,m) :

{
zero(k,m) : lookup l k

otherwise : lookup r k

otherwise : Nothing

(6.6)

We can also eliminate the recursion to implement the iterative lookup algorithm.
1: function Look-Up(T, k)
2: if T = NIL then
3: return NIL
4: while T is not leaf, and Match(k, Prefix(T), Mask(T)) do
5: if Zero?(k, Mask(T)) then
6: T ← Left(T)
7: else
8: T ← Right(T)

108 CHAPTER 6. RADIX TREE

9: if T is leaf, and Key(T) = k then
10: return Value(T)
11: else
12: return NIL

The lookup algorithm is bound to O(m), where m is the number of bits in the key.

Exercise 6.2

1. Write a program to implement the lookup function.
2. Implement the pre-order traverse for both integer trie and integer tree. Only

output the keys when the nodes store values. What pattern does the result follow?

6.3 Trie
From integer trie and tree, we can extend the key to a list of elements. Particularly the
trie and tree with key in alphabetic string are powerful tools for text manipulation.

6.3.1 Definition
When extend the key type from 0/1 bits to generic list, the tree structure changes from
binary tree to multiple sub-trees. Taking English characters for example, there are up to
26 sub-trees when ignore the case as shown in figure 6.8.

Not all the 26 sub-trees contain data. In figure 6.8, there are only three none empty
sub-trees bound to ‘a’, ‘b’, and ‘z’. Other sub-trees, such as for ‘c’, are empty. We can
hide them in the figure. When it is case sensitive, or extent the key from alphabetic string
to generic list, we can adopt collection types, like map to define trie.

A trie is either empty or a node of 2 kinds:

1. A leaf of value v without any sub-trees;

2. A branch, containing a value v and multiple sub-trees. Each sub-tree is bound to
an element k of type K.

Let the type of value be V , we denote the trie as Trie K V . Below example program
defines trie.

data Trie k v = Trie { value :: Maybe v
, subTrees :: [(k, Trie k v)]}

The empty trie is in form of (Nothing,∅).

6.3.2 Insert
When insert a pair of key and value to the trie, where the key is a list of elements.
Let the trie be T = (v, ts), where v is the value stored in the trie, and ts = {c1 7→
T1, c2 7→ T2, ..., cm 7→ Tm} contains mappings between elements and sub-trees. Element
ci is mapped to sub-tree Ti. We can either implement the mapping through associated
list: [(c1, T1), (c2, T2), ..., (cm, Tm)], or through self-balanced tree map (Chapter 4 or 5).

insert (v, ts) ∅ v′ = (v′, ts)
insert (v, ts) (k : ks) v′ = (v, ins ts)

(6.7)

6.3. TRIE 109

a

a b

nil

c

...

z

an

n

o

t

h

e

another

r

o

o

boy

y

bool

l

o

zoo

o

Figure 6.8: A trie of 26 branches, containing key ‘a’, ‘an’, ‘another’, ‘bool’, ‘boy’, and
‘zoo’.

110 CHAPTER 6. RADIX TREE

When the key is empty, we override the value; otherwise, we extract the first element
k, check if there is a map among the sub-trees for k, and recursively insert ks and v′:

ins ∅ = [k 7→ insert (Nothing,∅) ks v′]

ins ((c 7→ t) : ts) =

{
c = k : (k 7→ insert t ks v′) : ts

otherwise : (c 7→ t) : (ins ts)

(6.8)

If there is no sub-tree in the node, we create a mapping from k to an empty trie node
t = (Nothing,∅); otherwise, we located the sub-tree t mapped to k, then recursively insert
ks and v′ to t. Below is the example program implement insert, it’s based on associated
list to manage sub-tree mappings.
insert (Trie _ ts) [] x = Trie (Just x) ts
insert (Trie v ts) (k:ks) x = Trie v (ins ts) where

ins [] = [(k, insert empty ks x)]
ins ((c, t) : ts) = if c == k then (k, insert t ks x) : ts

else (c, t) : (ins ts)

empty = Trie Nothing []

We can also eliminate the recursion to implement insert iteratively.
1: function Insert(T, k, v)
2: if T = NIL then
3: T ← Empty-Node
4: p← T
5: for each c in k do
6: if Sub-Trees(p)[c] = NIL then
7: Sub-Trees(p)[c] ← Empty-Node
8: p← Sub-Trees(p)[c]
9: Value(p) ← v

10: return T

For the key type [K] (list of K), if K is finite set of m elements, and the length of the
key is n, then the insert algorithm is bound to O(mn). When the key is lower case English
strings, then m = 26, the insert operation is proportion to the length of key string.

6.3.3 Look up
When look up a none empty key (k : ks) from trie T = (v, ts), starting from the first
element k, if there exists sub-tree T ′ mapped to k, we then recursively lookup ks in T ′.
When the key is empty, then return the value as result:

lookup ∅ (v, ts) = v

lookup (k : ks) (v, ts) =

{
lookupl k ts = Nothing : Nothing
lookupl k ts = Just t : lookup ks t

(6.9)

Where function lookupl is defined in chapter 1. It looks up if a key exits in an assoc
list. Below is the corresponding iterative implementation:

1: function Look-Up(T, key)
2: if T = NIL then
3: return Nothing
4: for each c in key do
5: if Sub-Trees(T)[c] = NIL then
6: return Nothing

6.4. PREFIX TREE 111

7: T ← Sub-Trees(T)[c]
8: return Value(T)

The lookup algorithm is bound to O(mn), where n is the length of the key, and m is
the size of the element set.

Exercise 6.3
1. Use the self-balance binary tree, like red-black tree or AVL tree to implement a map

data structure, and manage the sub-trees with map. We call such implementation
MapTrie and MapTree respectively. What are the performance of insert and
lookup for map based tree and trie?

6.4 Prefix tree
Trie is not space efficient. We can consolidate the chained nodes to obtain the prefix tree.

6.4.1 Definition
A prefix tree node t contains two parts: an optional value v; zero or multiple sub prefix
trees, each ti is bound to a list si. The sub-trees and their mappings are denoted as
[si 7→ ti]. These lists share the longest common prefix s bound to the node t. i.e. s is
the longest common prefix of s ++ s1, s ++ s2, ... For any i 6= j, list si and sj don’t have
none empty common prefix. Consolidate the chained nodes in figure 6.8, we obtain the
corresponding prefix tree in figure 6.9.

a

a bo

zoo

zoo

an

n

another

other

bool

ol

boy

y

Figure 6.9: A prefix tree with keys: ‘a’, ‘an’, ‘another’, ‘bool’, ‘boy’, ‘zoo’.

Below example program defines the prefix tree:
data PrefixTree k v = PrefixTree { value :: Maybe v

, subTrees :: [([k], PrefixTree k v)]}

We denote prefix tree t = (v, ts). Particularly, (Nothing,∅) is the empty node, and
(Just v,∅) is a leaf node of value v.

6.4.2 Insert
When insert key s, if the prefix tree is empty, we create a leaf node of s as figure 6.10
(a); otherwise, if there exits common prefix between s and si, where si is bound to some

112 CHAPTER 6. RADIX TREE

sub-tree ti, we branch out a new leaf tj , extract the common prefix, and map it to a new
internal branch node t′, then put ti and tj as two sub-trees of t′. Figure 6.10 (b) shows
this case. There are two special cases: s is the prefix of si as shown in figure 6.10 (c) →
(e); or si is the prefix of s as shown in figure 6.10 (d) → (e).

Figure 6.10: (a) insert ‘boy’ to empty tree; (b) insert ‘bool’, branch a new node out; (c)
insert ‘another’ to (b); (d) insert ‘an’ to (b); (e) insert ‘an’ to (c), same result as insert
‘another’ to (d)

Below function inserts key s and value v to the prefix tree t = (v′, ts):

insert (v′, ts) ∅ v = (Just v, ts)
insert (v′, ts) s v = (v′, ins ts)

(6.10)

If the key s is empty, we overwrite the value to v; otherwise, we call ins to examine
the sub-trees and their prefixes.

ins ∅ = [s 7→ (Just v,∅)]

ins (s′ 7→ t) : ts′ =

{
match s s′ : (branch s v s′ t) : ts′

otherwise : (s′ 7→ t) : ins ts′
(6.11)

If there is no sub-tree in the node, then we create a leaf of v as the single sub-tree, and
map s to it; otherwise, for each sub-tree mapping s′ 7→ t, we compare s′ with s. If they
have common prefix (tested by the match function), then we branch out new sub-tree.
We define two lists matching if they have common prefix:

match ∅ B = True
match A ∅ = True

match (a : as) (b : bs) = a = b
(6.12)

To extract the longest common prefix of two lists A and B, we define a function
(C,A′, B′) = lcp A B, where C ++ A′ = A and C ++ B′ = B hold. If either A or B is
empty, or their first elements are different, then the common prefix C = ∅; otherwise, we

6.4. PREFIX TREE 113

recursively extract the longest common prefix from the rest lists, and preprend the head
element:

lcp ∅ B = (∅,∅, B)
lcp A ∅ = (∅, A,∅)

lcp (a : as) (b : bs) =

{
a 6= b : (∅, a : as, b : bs)

otherwise : (a : cs, as′, bs′)

(6.13)

where (cs, as′, bs′) = lcp as bs in the recursive case. Function branch A v B t takes
two keys A, B, a value v, and a tree t. It extracts the longest common prefix C from A
and B, maps it to a new branch node, and assign sub-trees:

branch A v B t =

lcp A B =


(C,∅, B′) : (C, (Just v, [B′ 7→ t]))

(C,A′,∅) : (C, insert t A′ v)

(C,A′, B′) : (C, (Nothing, [A′ 7→ (Just v,∅), B′ 7→ t]))

(6.14)

If A is the prefix of B, then A is mapped to the node of v, and the remaining list is
re-mapped to t, which is the single sub-tree in the branch; if B is the prefix of A, then we
recursively insert the remaining list and the value to t; otherwise, we create a leaf node
of v put it together with t as the two sub-trees of the branch. The following example
program implements the insert algorithm:
insert (PrefixTree _ ts) [] v = PrefixTree (Just v) ts
insert (PrefixTree v' ts) k v = PrefixTree v' (ins ts) where

ins [] = [(k, leaf v)]
ins ((k', t) : ts) | match k k' = (branch k v k' t) : ts

| otherwise = (k', t) : ins ts

leaf v = PrefixTree (Just v) []

match [] _ = True
match _ [] = True
match (a:_) (b:_) = a == b

branch a v b t = case lcp a b of
(c, [], b') → (c, PrefixTree (Just v) [(b', t)])
(c, a', []) → (c, insert t a' v)
(c, a', b') → (c, PrefixTree Nothing [(a', leaf v), (b', t)])

lcp [] bs = ([], [], bs)
lcp as [] = ([], as, [])
lcp (a:as) (b:bs) | a ̸= b = ([], a:as, b:bs)

| otherwise = (a:cs, as', bs') where
(cs, as', bs') = lcp as bs

We can eliminate the recursion to implement the insert algorithm in loops.
1: function Insert(T, k, v)
2: if T = NIL then
3: T ← Empty-Node
4: p← T
5: loop
6: match← FALSE
7: for each si 7→ Ti in Sub-Trees(p) do
8: if k = si then
9: Value(Ti) ← v ▷ Overwrite

10: return T

114 CHAPTER 6. RADIX TREE

11: c← LCP(k, si)
12: k1 ← k − c, k2 ← si − c
13: if c 6= NIL then
14: match← TRUE
15: if k2 = NIL then ▷ si is prefix of k
16: p← Ti, k ← k1
17: break
18: else ▷ Branch out a new leaf
19: Add(Sub-Trees(p), c 7→ Branch(k1, Leaf(v), k2, Ti))
20: Delete(Sub-Trees(p), si 7→ Ti)
21: return T
22: if not match then ▷ Add a new leaf
23: Add(Sub-Trees(p), k 7→ Leaf(v))
24: break
25: return T

Function LCP extracts the longest common prefix from two lists.
1: function LCP(A,B)
2: i← 1
3: while i ≤ |A| and i ≤ |B| and A[i] = B[i] do
4: i← i+ 1

5: return A[1...i− 1]

There is a special case in Branch(s1, T1, s2, T2). If s1 is empty, the key to be insert
is some prefix. We set T2 as the sub-tree of T1. Otherwise, we create a new branch node
and set T1 and T2 as the two sub-trees.

1: function Branch(s1, T1, s2, T2)
2: if s1 = NIL then
3: Add(Sub-Trees(T1), s2 7→ T2)
4: return T1

5: T ← Empty-Node
6: Sub-Trees(T) ← {s1 7→ T1, s2 7→ T2}
7: return T

Although the prefix tree improves the space efficiency of trie, it is still bound to O(mn),
where n is the length of the key, and m is the size of the element set.

6.4.3 Look up
When look up a key k, we start from the root. If k = ∅ is empty, then return the root
value as the result; otherwise, we examine the sub-tree mappings, locate the one si 7→ ti,
such that si is some prefix of k, then recursively look up k − si in sub-tree ti. If there
does not exist si as the prefix of k, then there is no such key in the prefix tree.

lookup ∅ (v, ts) = v
lookup k (v, ts) = find ((s, t) 7→ s v k) ts ={

Nothing : Nothing

Just (s, t) : lookup (k − s) t

(6.15)

Where A v B means list A is prefix of B. Function find is defined in chapter 1, which
searches element in a list with a given predication. Below example program implements
the look up algorithm.
lookup [] (PrefixTree v _) = v
lookup ks (PrefixTree v ts) =

6.5. APPLICATIONS OF TRIE AND PREFIX TREE 115

case find (λ(s, t) → s `isPrefixOf` ks) ts of
Nothing → Nothing
Just (s, t) → lookup (drop (length s) ks) t

The prefix testing is linear to the length of the list, the lookup algorithm is bound to
O(mn) time, where m is the size of the element set, and n is the length of the key. We
skip the imperative implementation, and leave it as the exercise.

Exercise 6.4

1. Eliminate the recursion to implement the prefix tree lookup purely with loops

6.5 Applications of trie and prefix tree
We can use trie and prefix tree to solve many interesting problems, like implement a
dictionary, populate candidate inputs, and realize the textonym input method. Different
from the industry implementation, we give the examples to illustrate the ideas of trie and
prefix tree.

6.5.1 Dictionary and input completion
As shown in figure 6.11, when user enters some characters, the dictionary application
searches the library, populates a list of candidate words or phrases that start from what
input.

Figure 6.11: A dictionary application

A dictionary can contain hundreds of thousands words. It’s expensive to perform a
complete search. Commercial dictionaries adopt varies engineering approach, like caching,
indexing to speed up search. Similarly, figure 6.12 shows a smart text input component.
When type some characters, it populates a candidate lists, with all items starting with
the input string.

Both examples give the ‘auto-completion’ functionality. We can implement it with
prefix tree. For illustration purpose, we limit to English characters, and set a upper
bound n for the number of candidates. A dictionary stores key-value pairs, where the
key is English word or phrase, the value is the corresponding meaning and explanation.
When user input string s, we look up the prefix tree for all keys start with s. If s is empty

116 CHAPTER 6. RADIX TREE

Figure 6.12: A smart text input component

we expand all sub-trees till reach to n candidates; otherwise, we locate the sub-tree from
the mapped key, and look up recursively. In the environment supports lazy evaluation,
we can expand all candidates, and take the first n on demand: take n (startsWith s t),
where t is the prefix tree.

startsWith ∅ (Nothing, ts) = enum ts
startsWith ∅ (Just x, ts) = (∅, x) : enum ts

startsWith s (v, ts) = find ((k, t) 7→ s v k or k v s) ts ={
Nothing : ∅
Just (k, t) : [(k ++ a, b)|(a, b) ∈ startsWith (s− k) t]

(6.16)

Given a prefix s, function startsWith searches all candidates in the prefix tree starts
with s. If s is empty, it enumerates all sub-trees, and prepand (∅, x) for none empty
value x in the root. Function enum ts is defined as:

enum = concatMap (k, t) 7→ [(k ++ a, b)|(a, b) ∈ startsWith ∅ t] (6.17)

Where concatMap (also known as flatMap) is an important concept for list compu-
tation. Literally, it results like firstly map on each element, then concatenate the result
together. It’s typically realized with ’build-foldr’ fusion law to eliminate the intermediate
list overhead. (see chapter 5 in my book Isomorphism – mathematics of programming)
If the input prefix s is not empty, we examine the sub-tree mappings, for each list and
sub-tree pair (k, t), if either s is prefix of k or vice versa, we recursively expand t and
prepand k to each result key; otherwise, s does not match any sub-trees, hence the result
is empty. Below example program implements this algorithm.
startsWith [] (PrefixTree Nothing ts) = enum ts
startsWith [] (PrefixTree (Just v) ts) = ([], v) : enum ts
startsWith k (PrefixTree _ ts) =

case find (λ(s, t) → s `isPrefixOf` k | | k `isPrefixOf` s) ts of
Nothing → []
Just (s, t) → [(s ++ a, b) |

(a, b) ← startsWith (drop (length s) k) t]

enum = concatMap (λ(k, t) → [(k ++ a, b) | (a, b) ← startsWith [] t])

We can also realize the algorithm Starts-With(T, k, n) imperatively. From the root,
we loop on every sub-tree mapping ki 7→ Ti. If k is the prefix for any sub-tree Ti, we
expand all things in it up to n items; if ki is the prefix of k, we then drop that prefix,
update the key to k − ki, then search Ti for this new key.

1: function Starts-With(T, k, n)
2: if T = NIL then
3: return NIL
4: s← NIL

6.5. APPLICATIONS OF TRIE AND PREFIX TREE 117

5: repeat
6: match← FALSE
7: for ki 7→ Ti in Sub-Trees(T) do
8: if k is prefix of ki then
9: return Expand(s++ ki, Ti, n)

10: if ki is prefix of k then
11: match← TRUE
12: k ← k − ki ▷ drop the prefix
13: T ← Ti

14: s← s++ ki
15: break
16: until not match
17: return NIL

Where function Expand(s, T, n) populates n results from T and prepand s to each
key. We implement it with ‘breadth first search’ method (see section 14.3):

1: function Expand(s, T, n)
2: R← NIL
3: Q← [(s, T)]
4: while |R| < n and Q 6= NIL do
5: (k, T)← Pop(Q)
6: v ← Value(T)
7: if v 6= NIL then
8: Insert(R, (k, v))
9: for ki 7→ Ti in Sub-Trees(T) do

10: Push(Q, (k ++ ki, Ti))

6.5.2 Predictive text input
Before 2010, most mobile phones had a small keypad as shown in 6.13, called ITU-T
keypad. It maps a digit to 3 - 4 characters. For example, when input word ‘home’, one
can press keys in below sequence:

Figure 6.13: The mobile phone ITU-T keypad.

1. Press key ‘4’ twice to enter ‘h’;

2. Press key ‘6’ three times to enter ‘o’;

3. Press key ‘6’ to enter ‘m’;

4. Press key ‘3’ twice to enter ‘e’;

118 CHAPTER 6. RADIX TREE

A smarter input method allows to press less keys:

1. Press key sequence ‘4’, ‘6’, ‘6’, ‘3’, the word ‘home’ appears as a candidate;

2. Press key ‘*’ to change to next candidate, word ‘good’ appears;

3. Press key ’*’ again for another candidate, word ‘gone’ appears;

4. ...

This is called predictive input, or abbreviated as ‘T9’ [25], [26]. We can realize it by
storing the word dictionary in a prefix tree. The commercial implementations uses multi-
ple layers of caches/index in both memory and file system. We simplify it as an example
of prefix tree application. First, we need define the digit key mappings:

MT9 = { 2 7→ "abc", 3 7→ "def", 4 7→ "ghi",
5 7→ "jkl", 6 7→ "mno", 7 7→ "pqrs",
8 7→ "tuv", 9 7→ "wxyz" }

(6.18)

MT9[i] gives the corresponding characters for digit i. We can also define the reversed
mapping from a character back to digit.

M−1
T9 = concatMap ((d, s) 7→ [(c, d)|c ∈ s]) MT9 (6.19)

Given a string, we can convert it to a sequence of digits by looking up M−1
T9 .

digits(s) = [M−1
T9 [c]|c ∈ s] (6.20)

For any character does not belong [a..z], we map it to a special key '#' as fallback.
Below example program defines the above two mappings.
mapT9 = Map.fromList [('2', ”abc”), ('3', ” def ”), ('4', ” ghi ”),

('5', ” j k l ”), ('6', ”mno”), ('7', ”pqrs”),
('8', ”tuv”), ('9', ”wxyz”)]

rmapT9 = Map.fromList $ concatMap (λ(d, s) → [(c, d) | c ← s]) $
Map.toList mapT9

digits = map (λc → Map.findWithDefault '#' c rmapT9)

Suppose we already build the prefix tree (v, ts) from all words in a dictionary. We
need change the above auto completion algorithm to process digit string ds. For every
sub-tree mappings (s 7→ t) ∈ ts, we convert the prefix s to digits(s), check if it matches
to ds (either one is the prefix of the other). There can be multiple sub-trees match ds as:

pfx = [(s, t)|(s 7→ t) ∈ ts, digits(s) v ds or ds v digits(s)]

findT9 t ∅ = [∅]
findT9 (v, ts) ds = concatMap find pfx (6.21)

For each mapping (s, t) in pfx, function find recursively lookup the remaining digits
ds′ in t, where ds′ = drop |s| ds, then prepend s to every candidate. However, the length
may exceeds the number of digits, we need cut and only take n = |ds| characters:

find (s, t) = [take n (s++ si)|si ∈ findT9 t ds′] (6.22)

The following example program implements the predictive input look up algorithm:

6.6. SUMMARY 119

findT9 _ [] = [[]]
findT9 (PrefixTree _ ts) k = concatMap find pfx where

find (s, t) = map (take (length k) ◦ (s++)) $ findT9 t (drop (length s) k)
pfx = [(s, t) | (s, t) ← ts, let ds = digits s in

ds `isPrefixOf` k | | k `isPrefixOf` ds]

To realize the predictive text input imperatively, we can perform breadth first search
with a queue Q of tuples (prefix, D, t). Every tuple records the possible prefix searched so
far; the remaining digits D to be searched; and the sub-tree t we are going to search. Q is
initialized with the empty prefix, the whole digits sequence, and the root. We repeatedly
pop the tuple from the queue, and examine the sub-tree mappings. for every mapping
(s 7→ T ′), we convert s to digits(s). If D is prefix of it, then we find a candidate. We
append s to prefix, and record it in the result. If digits(s) is prefix of D, we need further
search the sub-tree T ′. We create a new tuple of (prefix ++ s,D′, T ′), where D′ is the
remaining digits to be searched. Then push this new tuple back to the queue.

1: function Look-Up-T9(T,D)
2: R← NIL
3: if T = NIL or D = NIL then
4: return R
5: n← |D|
6: Q← {(NIL, D, T)}
7: while Q 6= NIL do
8: (prefix, D, T)← Pop(Q)
9: for (s 7→ T ′) ∈ Sub-Trees(T) do

10: D′ ← Digits(s)
11: if D′ ⊏ D then ▷ D′ is prefix of D
12: Append(R, (prefix ++ s)[1..n]) ▷ limit the length to n
13: else if D ⊏ D′ then
14: Push(Q, (prefix ++ s,D −D′, T ′))
15: return R

Exercise 6.5

1. Implement the auto-completion and predictive text input with trie.
2. How to ensure the candidates in lexicographic order in the auto-completion and

predictive text input program? What’s the performance change accordingly?
3. In the environment without lazy evaluation support, how to return the first n

candidates on-demand?

6.6 Summary

We start from integer trie and prefix tree. By turning the integer key to binary format,
we re-used binary tree to realize the integer based map data structure. Then extend the
key from integer to generic list, and limit the list element to finite set. Particularly for
alphabetic strings, the generic trie and prefix tree can be used as tools to manipulate the
text information. We give example applications about auto-completion and predictive
text input. as another instance of radix tree, the suffix tree is closely related to trie and
prefix tree used in text, and DNA processing.

120 CHAPTER 6. RADIX TREE

6.7 Appendix: Example programs
Definition of integer binary trie:
data IntTrie<T> {

IntTrie<T> left = null
IntTrie<T> right = null
Optional<T> value = Optional.None

}

The following example insert program uses bit-wise operation to test even/odd, and
shift the bit to right:
IntTrie<T> insert(IntTrie<T> t, Int key,

Optional<T> value = Optional.None) {
if t == null then t = IntTrie<T>()
p = t
while key ̸= 0 {

if key & 1 == 0 {
p = if p.left == null then IntTrie<T>() else p.left

} else {
p = if p.right == null then IntTrie<T>() else p.right

}
key = key >> 1

}
p.value = Optional.of(value)
return t

}

Definition of integer prefix tree:
data IntTree<T> {

Int key
T value
Int prefix
Int mask = 1
IntTree<T> left = null
IntTree<T> right = null

IntTree(Int k, T v) {
key = k, value = v, prefix = k

}

bool isLeaf = (left == null and right == null)

Self replace(IntTree<T> x, IntTree<T> y) {
if left == x then left = y else right = y

}

bool match(Int k) = maskbit(k, mask) == prefix
}

Int maskbit(Int x, Int mask) = x & (~(mask - 1))

Insert key-value to integer prefix tree.
IntTree<T> insert(IntTree<T> t, Int key, T value) {

if t == null then return IntTree(key, value)
node = t
Node<T> parent = null
while (not node.isLeaf()) and node.match(key) {

parent = node
node = if zero(key, node.mask) then node.left else node.right

}
if node.isleaf() and key == node.key {

6.7. APPENDIX: EXAMPLE PROGRAMS 121

node.value = value
} else {

p = branch(node, IntTree(key, value))
if parent == null then return p
parent.replace(node, p)

}
return t

}

IntTree<T> branch(IntTree<T> t1, IntTree<T> t2) {
var t = IntTree<T>()
(t.prefix, t.mask) = lcp(t1.prefix, t2.prefix)
(t.left, t.right) = if zero(t1.prefix, t.mask) then (t1, t2)

else (t2, t1)
return t

}

bool zero(int x, int mask) = (x & (mask >> 1) == 0)

Int lcp(Int p1, Int p2) {
Int diff = p1 ^ p2
Int mask = 1
while diff ̸= 0 {

diff = diff >> 1
mask = mask << 1

}
return (maskbit(p1, mask), mask)

}

Definition of trie and the insert program:
data Trie<K, V> {

Optional<V> value = Optional.None
Map<K, Trie<K, V>> subTrees = Map.empty()

}

Trie<K, V> insert(Trie<K, V> t, [K] key, V value) {
if t == null then t = Trie<K, V>()
var p = t
for c in key {

if p.subTrees[c] == null then p.subTrees[c] = Trie<K, V>()
p = p.subTrees[c]

}
p.value = Optional.of(value)
return t

}

Definition of Prefix Tree and insert program:
data PrefixTree<K, V> {

Optional<V> value = Optional.None
Map<[K], PrefixTree<K, V>> subTrees = Map.empty()

Self PrefixTree(V v) {
value = Optional.of(v)

}
}

PrefixTree<K, V> insert(PrefixTree<K, V> t, [K] key, V value) {
if t == null then t = PrefixTree()
var node = t
loop {

bool match = false
for var (k, tr) in node.subtrees {

if key == k {
tr.value = value

122 CHAPTER 6. RADIX TREE

return t
}
prefix, k1, k2 = lcp(key, k)
if prefix ̸= [] {

match = true
if k2 == [] {

node = tr
key = k1
break

} else {
node.subtrees[prefix] = branch(k1, PrefixTree(value),

k2, tr)
node.subtrees.delete(k)
return t

}
}

}
if !match {

node.subtrees[key] = PrefixTree(value)
break

}
}
return t

}

The longest common prefix lcp and branch example programs.
([K], [K], [K]) lcp([K] s1, [K] s2) {

j = 0
while j < length(s1) and j < length(s2) and s1[j] == s2[j] {

j = j + 1
}
return (s1[0..j-1], s1[j..], s2[j..])

}

PrefixTree<K, V> branch([K] key1, PrefixTree<K, V> tree1,
[K] key2, PrefixTree<K, V> tree2) {

if key1 == []:
tree1.subtrees[key2] = tree2
return tree1

t = PrefixTree()
t.subtrees[key1] = tree1
t.subtrees[key2] = tree2
return t

}

Populate multiple candidates, they share the common prefix
[([K], V)] startsWith(PrefixTree<K, V> t, [K] key, Int n) {

if t == null then return []
[T] s = []
repeat {

bool match = false
for var (k, tr) in t.subtrees {

if key.isPrefixOf(k) {
return expand(s ++ k, tr, n)

} else if k.isPrefixOf(key) {
match = true
key = key[length(k)..]
t = tr
s = s ++ k
break

}
}

} until not match
return []

Elementary Algorithms 123

}

[([K], V)] expand([K] s, PrefixTree<K, V> t, Int n) {
[([K], V)] r = []
var q = Queue([(s, t)])
while length(r) < n and !q.isEmpty() {

var (s, t) = q.pop()
v = t.value
if v.isPresent() then r.append((s, v.get()))
for k, tr in t.subtrees {

q.push((s ++ k, tr))
}

}
return r

}

Predictive text input lookup
var T9MAP={'2':"abc", '3':"def", '4':"ghi", '5':"jkl", λ

'6':"mno", '7':"pqrs", '8':"tuv", '9':"wxyz"}

var T9RMAP = { c : d for var (d, cs) in T9MAP for var c in cs }

string digits(string w) = ''.join([T9RMAP[c] for c in w])

[string] lookupT9(PrefixTree<char, V> t, string key) {
if t == null or key == "" then return []
res = []
n = length(key)
q = Queue(("", key, t))
while not q.isEmpty() {

(prefix, key, t) = q.pop()
for var (k, tr) in t.subtrees {

ds = digits(k)
if key.isPrefixOf(ds) {

res.append((prefix ++ k)[:n])
} else if ds.isPrefixOf(key) {

q.append((prefix ++ k, key[length(k)..], tr))
}

}
}
return res

}

124 B-Tree

Chapter 7

B-Tree

7.1 Introduction
The integer prefix tree in previous chapter gives a way to encode the information in the
edge of the binary tree. Another way to extend the binary search tree is to increase
the sub-trees from 2 to k. B-tree is such a data structure, that can be considered as a
generic form of k-ary search tree. It is also developed to be self-balanced [39]. B-tree is
widely used in computer file system (some are based on B+ tree, an extension of B-tree)
and database system. Figure 7.1 gives an example B-tree, we can find the difference and
similarity between B-tree and binary search tree.

P

 C G M T X

A B D E F J K L N O Q R S U V Y Z

Figure 7.1: A B-Tree

A binary search tree is either empty or contains a key k and two sub-trees l and r.
Every key in l is less than k, while k is less than every key in r:

∀ x ∈ l, y ∈ r ⇒ x < k < y (7.1)

Extend to multiple keys and sub-trees, we obtain the B-tree. A B-tree is either empty
or contains n keys and n + 1 sub-trees, each sub-tree is also a B-Tree. We denote these
keys and sub-trees as k1, k2, ..., kn and t1, t2, ..., tn, tn+1, as shown in figure 7.2.

C[1] K[1] C[2] K[2] ... C[n] K[n] C[n+1]

Figure 7.2: A B-Tree node

For every node, the keys and sub-trees satisfy the following rules:

• Keys are in ascending order: k1 < k2 < ... < kn;

• For every key ki, all keys in sub-tree ti are less than it, while ki is less than every
key in sub-tree ti+1:

125

126 CHAPTER 7. B-TREE

∀ xi ∈ ti, i = 0, 1, ..., n ⇒ x1 < k1 < x2 < k2 < ... < xn < kn < xn+1 (7.2)

Leaf node has no sub-tree. There can be optional values bound to the keys in B-tree
node. We skip the values for simplicity. Let the type of keys be K, the type of the
B-tree is BTree K, or denoted as BTree<K>. On top of it, we also need define a set of
self-balance rules:

1. All leaves have the same depth;

2. Let d be the minimum degree number of a B-tree, such that each node:

• has at most 2d− 1 keys;

• has at least d− 1 keys, except for the root;

In summary:

d− 1 ≤ |keys(t)| ≤ 2d− 1 (7.3)

We next prove that a B-tree satisfying these rules is always balanced.

Proof. Consider a B-tree of n keys. The minimum degree d ≥ 2. Let the height be h. All
the nodes have at least d − 1 keys except for the root. The root contains at least 1 key.
There are at least 2 nodes at depth 1, at least 2d nodes at depth 2, at least 2d2 nodes at
depth 3, ..., at least 2dh−1 nodes at depth h. Multiply all nodes with d− 1 except for the
root, the total number of keys satisfies the following:

n ≥ 1 + (d− 1)(2 + 2d+ 2d2 + ...+ 2dh−1)

= 1 + 2(d− 1)

h−1∑
k=0

dk

= 1 + 2(d− 1)
dh − 1

d− 1
= 2dh − 1

(7.4)

It limits the tree height with logarithm of the number of keys.

h ≤ logd
n+ 1

2
(7.5)

Hence B-tree is balanced. The simplest B-tree is called 2-3-4 tree, where d = 2. Every
node except for the root contains 2, 3, or 4 sub-trees. Essentially, a red-black tree can be
mapped to a 2-3-4 tree. For a none empty B-tree of degree d, we denote it as (d, (ks, ts)),
where ks are the keys, ts are the sub-trees. Below example program defines the B-tree.

data BTree a = BTree [a] [BTree a]

The empty node is in the form of (∅,∅) or BTree [] []. Instead of storing d in
every node, we pass it together with B-tree t as a pair (d, t).

7.2. INSERT 127

Figure 7.3: Insert 22 to a 2-3-4 tree. 22 > 20, go to the right sub-tree; next as 22 < 26,
go to the first sub-tree; finally, 21 < 22 < 25, and the leaf is not full.

7.2 Insert
The idea is similar to the binary search tree. While we need deal with multiple keys and
sub-trees. When insert key x to B-tree t, starting from the root, we examine the keys in
the node to locate a position1 where all keys on the left are less than x, while the rest keys
on the right are greater than x. If the node is a leaf, and it is not full (|keys(t)| < 2d−1),
we insert x at this position. Otherwise, this position points to a sub-tree t′, we recursively
insert x to t′.

As an example, consider the 2-3-4 tree in figure 7.3. when insert x = 22, because
20 < 22, we next examine the sub-tree on the right, which contains 26, 38, 45. Since
22 < 26, we next go to the first sub-tree containing 21 and 25. This is a leaf, and it is
not full. Hence we insert 22 to this node.

However, if there are 2d− 1 keys in the leaf, we will break the B-tree rules after insert
x, as the node will be too ’full’. For the same B-tree in figure 7.3, we’ll meet this issue
when insert 18. There are two solutions: insert then split, and split before insert.

7.2.1 Insert then split
We can adopt the similar ‘insert then fix’ method for the red-black tree. First, we insert
the key to the proper ordering position without considering the B-tree balance rules. As
the next step, if the new tree violates the balance rules, we perform a recursive bottom-up
fixing by splitting the overly full node. We need define the function to test whether a
given node satisfies the minimum degree constraint or not.{

full d (ks, ts) = |ks| > 2d− 1

low d (ks, ts) = |ks| < d− 1
(7.6)

When the node contains too many keys and sub-trees, we define split function to
break it into 3 parts at a given position m as shown in figure 7.4:

split m (ks, ts) = ((ksl, tsl), k, (ksr, tsr)) (7.7)

We reuse the list splitAt function defined in chapter 1 (Equation 1.55) to realize it.
1In fact, it is sufficient to only support less-than and equality. See exercise 1.

128 CHAPTER 7. B-TREE

Figure 7.4: Split the node into 3 parts at m

{
(ksl, (k : ksr)) = splitAt (m− 1) ks

(tsl, tsr) = splitAt m ts

We can define the reversed operation unsplit to combine the 3 parts back into a B-tree
node.

unsplit (ksl, tsl) k (ksr, tsr) = (ksl ++ [k] ++ ksr, tsl ++ tsr) (7.8)

Below function first inserts x to the tree t, then calls fix to resume the B-tree balance
rules with the given degree d.

insert x (d, t) = fix (d, ins t) (7.9)

After ins, if the root contains too many keys, function fix calls split to break it and
build a new root.

fix (d, t) =

{
full d t : (d, ([k], [l, r])),where (l, k, r) = split d t

otherwise : (d, t)
(7.10)

ins need handle two cases: for leaf node, we can reuse the list ordered insert function
defined in chapter 1 (Equation 1.13); otherwise, we need find the position to recursively
insert to sub-tree. To do that, we define a partition function as:

partition x (ks, ts) = (l, t′, r) (7.11)

Where l = (ksl, tsl) and r = (ksr, tsr). It further uses the list partition function span
defined in chapter 1 (Equation 1.58):{

(ksl, ksr) = span (< x) ks

(tsl, (t
′ : tsr)) = splitAt |ksl| ts

As such, we separate all the keys and sub-trees less than x on the left as l, and those
greater than x on the right as r. The last sub-tree that less than x is extracted as t′. We
then recursively insert x to t′, as shown in figure 7.5.

ins (ks,∅) = (insertL x ks,∅) list insert for leaf
ins (ks, ts) = balance d l (ins t′) r where (l, t′, r) = partition x t

(7.12)

7.2. INSERT 129

Figure 7.5: partition a node with x

After insert x to t′, it may contains too many keys that violates B-tree rules. We
define function balance to recursively recover B-tree rules by splitting sub-tree.

balance d (ksl, tsl) t (ksr, tsr) =

{
full d t : fixf

otherwise : (ksl ++ ksr, tsl ++ [t] ++ tsr)
(7.13)

where fixf splits sub-tree t with degree d as (t1, k, t2) = split d t, then combine them
to a new B-tree node:

fixf = (ksl ++ [k] ++ ksr, tsl ++ [t1, t2] ++ tsr) (7.14)

The following example program implements insert for B-tree.
partition x (BTree ks ts) = (l, t, r) where

l = (ks1, ts1)
r = (ks2, ts2)
(ks1, ks2) = span (< x) ks
(ts1, (t:ts2)) = splitAt (length ks1) ts

split d (BTree ks ts) = (BTree ks1 ts1, k, BTree ks2 ts2) where
(ks1, k:ks2) = splitAt (d - 1) ks
(ts1, ts2) = splitAt d ts

insert x (d, t) = fixRoot (d, ins t) where
ins (BTree ks []) = BTree (List.insert x ks) []
ins t = balance d l (ins t') r where (l, t', r) = partition x t

fixRoot (d, t) | full d t = let (t1, k, t2) = split d t in
(d, BTree [k] [t1, t2])

| otherwise = (d, t)

balance d (ks1, ts1) t (ks2, ts2)
| full d t = fixFull
| otherwise = BTree (ks1 ++ ks2) (ts1 ++ [t] ++ ts2)

where
fixFull = let (t1, k, t2) = split d t in

BTree (ks1 ++ [k] ++ ks2) (ts1 ++ [t1, t2] ++ ts2)

130 CHAPTER 7. B-TREE

Figure 7.6 shows the example B-trees built by repeatedly insert elements from list
“GMPXACDEJKNORSTUVYZ”.

Figure 7.6: Repeatedly insert elements from “GMPXACDEJKNORSTUVYZ”. above:
d = 2 (2-3-4 tree), below: d = 3

7.2.2 Split before insert
The second method is to split a node before insertion to prevent it becoming overly
full. We often see this method in imperative implementations. When perform top-down
recursive insert, if we reach to a node with 2d− 1 keys, we divide it into 3 parts as shown
in figure 7.4, such that each new node has d−1 keys. They will be valid B-tree node after
insertion. For node x, let K(x) be the keys, T (x) be the sub-trees. Denote the i-th key
of x as ki(x), the j-th sub-tree as tj(x). Below algorithm splits the i-th sub-tree of node
z:

1: procedure Split(z, i)
2: d← Deg(z)
3: x← ti(z)
4: y ← Create-Node
5: K(y)← [kd+1(x), kd+2(x), ..., k2d−1(x)]
6: K(x)← [k1(x), k2(x), ..., kd−1(x)]
7: if x is not leaf then
8: T (y)← [td+1(x), td+2(x), ..., t2d(x)]
9: T (x)← [t1(x), t2(x), ..., td(x)]

10: Insert-At(K(z), i, kd(x))
11: Insert-At(T (z), i+ 1, y)

When split the node x = ti(z), we push the d-th key kd(x) up to the parent node z.
If z is already full, the pushing will break B-tree rules. To solve this problem, we need
do the top-down check from the root along the path when insert. Split any node with
2d − 1 keys. Since all parent nodes are processed to be not full, they can accept the
additional key pushed up. This method needs one single pass down the tree without any
back-tracking. If the root is full, we create a new node, and put the root as it singleton
sub-tree. Below is the insert algorithm:

1: function Insert(t, k)
2: r ← t

7.2. INSERT 131

3: if r is full then ▷ root is full
4: s← CREATE-NODE
5: T (s)← [r]
6: Split(s, 1)
7: r ← s
8: return Insert-Nonfull(r, k)

Where Insert-Nonfull assumes the node r passed in is not full. If r is a leaf, we
insert k to the keys based on order (Exercise 3 asks to realize the ordered insert with
binary search); otherwise, we locate the position, where ki(r) < k < ki+1(r). Split the
sub-tree ti(r) if it is full, and go on insert to this sub-tree.

1: function Insert-Nonfull(r, k)
2: n← |K(r)|
3: if r is leaf then
4: i← 1
5: while i ≤ n and k > ki(r) do
6: i← i+ 1

7: Insert-At(K(r), i, k)
8: else
9: i← n

10: while i > 1 and k < ki(r) do
11: i← i− 1

12: if ti(r) is full then
13: Split(r, i)
14: if k > ki(r) then
15: i← i+ 1

16: Insert-Nonfull(ti(r), k)
17: return r

This algorithm is recursive. Exercise 2 asks to eliminate the recursion with pure loops.
Figure 7.7 gives the result with the same input of “GMPXACDEJKNORSTUVYZ”.

Figure 7.7: Insert from “GMPXACDEJKNORSTUVYZ”. up: d = 2, 2-3-4 tree; bottom:
d = 3.

132 CHAPTER 7. B-TREE

7.2.3 Paired lists

When use list to store ordered keys, we always start from the first key, and scan the list
to find the insert position. If the keys are stored in array, we can improve it with binary
search. Can we start somewhere in the node, go left or right depending on the order of
keys? One idea is to separate the B-tree node into three parts: left l, a sub-tree t′, and
right r. Where left and right are lists of pairs, each pair contains a key and a sub-tree:
(ki, ti). However, l is reversed. In other words, l and r are head-to-head connected by t′

as a U-shape shown in figure 7.8. We can move forward and backward both in constant
time.

Figure 7.8: Define the B-tree node with a sub-tree and paired lists

Below example program defines B-tree node. It’s either empty, or contains 3 parts:
the left (key, sub-tree) list in reversed order, a sub-tree, and the right (key, sub-tree) list.
We denoted the none empty node as (l, t′, r).

data BTree a = Empty
| BTree [(a, BTree a)] (BTree a) [(a, BTree a)]

When move to right by a step, we take the first pair (k, t) from r, then form another
pair (k, t′) in front of l, and replace t′ with t. When move to left a step, it is symmetric.
Both operations take constant time.

stepl ((k, t) : l, t
′, r) = (l, t, (k, t′) : r)

stepr (l, t′, (k, t) : r) = ((k, t′) : l, t, r)
(7.15)

With the left/right moves, we can implement a generic partition function partition p t,
that separates the tree t with a given predicate p into 3 parts: left, middle, right: (l,m, r),
such that all sub-trees in l and m satisfy p, while the sub-trees in r do not. Let the function

7.2. INSERT 133

hd = fst ◦ head, which picks the first pair (a, b) from a list, then extracts a out.

partition p (∅,m, r) =

{
p(hd(r)) : partition p (stepr t)

otherwise : (∅,m, r)

partition p (l,m,∅) =

{
(not ◦ p)(hd(l)) : partition p (stepl t)

otherwise : (l,m,∅)

partition p (l,m, r) =


p(hd(l)) and (not ◦ p)(hd(r)) : (l,m, r)

p(hd(r)) : partition p (stepr t)

(not ◦ p)(hd(l)) : partition p (stepl t)

(7.16)
For example, partition (< k) t moves all keys and sub-trees in t less than k out of the

right part. Below example program implements the partition function:
partition p t@(BTree [] m r)
| p (hd r) = partition p (stepR t)
| otherwise = ([], m, r)

partition p t@(BTree l m [])
| (not ◦ p) (hd l) = partition p (stepL t)
| otherwise = (l, m, [])

partition p t@(BTree l m r)
| p (hd l) && (not ◦ p) (hd r) = (l, m, r)
| p (hd r) = partition p (stepR t)
| (not ◦ p) (hd l) = partition p (stepL t)

We can also use stepl/stepr to split a B-tree at position d when it becomes overly
full. Let n = |l| be the number of keys/sub-trees of the left part. fn(x) means repeatedly
apply function f to x for n times.

split d t =


n < d : sp(stepd−n

r (t))

n > d : sp(stepn−d
r (t))

otherwise : sp(t)

(7.17)

Where sp does the separation work as below:

sp (l, t, (k, t′) : r) = ((l, t,∅), k, (∅, t′, r)) (7.18)

With partition and split defined, we can define B-tree insert algorithm for the paired
lists implementation. Firstly, we need modify the low/full testing to count both left and
right parts:

full d ∅ = False
full d (l, t′, r) = |l|+ |r| > 2d− 1

(7.19)

and
low d ∅ = False
low d (l, t′, r) = |l|+ |r| < d− 1

(7.20)

When insert key x to B-tree t of degree d, we do the recursive insertion, then fix the
root if it gets overly full:

insert x (d, t) = fix (d, ins t) (7.21)

Where fix splits the root at d if needed:

fix (d, t) =

{
full d t : (d, (∅, t1, [(k, t2)] where (t1, k, t2) = split d t

otherwise : (d, t)
(7.22)

134 CHAPTER 7. B-TREE

Function ins need handle both t = ∅, and t 6= ∅ cases. For empty case, we create
a singleton leaf; otherwise, we call (l, t′, r) = partition (< x) t to locate the position for
recursive insert:

ins ∅ = (∅,∅, [(x,∅)])

ins t =

{
t′ = ∅ : balance d l ∅ ((x,∅) : r)

t′ 6= ∅ : balance d l (ins t′) r

(7.23)

Function balance examines if the sub-tree t contains too many keys, and splits it.

balance d l t r =

{
full d t : fixFull

otherwise : (l, t, r)
(7.24)

Where fixFull = (l, t1, ((k, t2) : r), and (t1, k, t2) = split d t. Below example program
implements the insert algorithm:
insert x (d, t) = fixRoot (d, ins t) where

ins Empty = BTree [] Empty [(x, Empty)]
ins t = let (l, t', r) = partition (< x) t in
case t' of

Empty → balance d l Empty ((x, Empty):r)
_ → balance d l (ins t') r

fixRoot (d, t) | full d t = let (t1, k, t2) = split d t in
(d, BTree [] t1 [(k, t2)])

| otherwise = (d, t)

balance d l t r | full d t = fixFull
| otherwise = BTree l t r

where
fixFull = let (t1, k, t2) = split d t in BTree l t1 ((k, t2):r)

split d t@(BTree l _ _) | n < d = sp $ iterate stepR t !! (d - n)
| n > d = sp $ iterate stepL t !! (n - d)
| otherwise = sp t

where
n = length l
sp (BTree l t ((k, t'):r)) = (BTree l t [], k, BTree [] t' r)

Exercise 7.1

1. Can we use ≤ to support duplicated keys in B-Tree?
2. For the ‘split then insert’ algorithm, eliminate the recursion with loops.
3. We use linear search among keys to find the proper insert position. Improve the im-

perative implementation with binary search. Is the big-O performance improved?

7.3 Look up
For look up, we can extend from the binary search tree to multiple branches, and obtain
the generic B-tree look up solution. There are only two directions when look up the
binary search tree: left and right, while, there are multiple ways in B-tree. Consider look
up k in B-tree t = (ks, ts), if t is a leaf (ts is empty), then the problem becomes list look
up; otherwise, we partition the t with k into three parts: l = (ksl, tsl), t

′, r = (ksr, tsr),
where all keys in l and sub-tree t′ are less then k, and the remaining (≥ k) is in r. If

7.3. LOOK UP 135

the first key in ksr equals k, then we find the answer; otherwise, we recursive look up in
sub-tree t′.

lookup k (ks,∅) =

{
k ∈ ks : Just (ks,∅)

otherwise : Nothing

lookup k (ks, ts) =

{
Just k = safeHd ksr : Just (ks, ts)
otherwise : lookup k t′

(7.25)

Where ((ksl, tsl), t
′, (ksr, tsr)) = partition k t, and

safeHd [] = Nothing
safeHd (x : xs) = Just x

Below example program2 implements lookup.
lookup k t@(BTree ks []) = if k `elem` ks then Just t else Nothing
lookup k t = if (Just k) == safeHd ks then Just t

else lookup k t' where
(_, t', (ks, _)) = partition k t

For the paired list implementation, the idea is similar. If the tree is not empty, we
partition it with the predicate ‘< k’. Then check if the first key in the right part equals
to k, or recursively look up the partitioned sub-tree:

lookup k ∅ = Nothing

lookup k t =

{
Just k = safeFst (safeHd r) : Just (l, t′, r)
otherwise : lookup k t′

(7.26)

Where (l, t′, r) = partition (< k) t for the none empty tree case. safeFst applies fst
function to a ‘Maybe’ value. Below example program utilizes fmap to do this:
lookup x Empty = Nothing
lookup x t = let (l, t', r) = partition (< x) t in

if (Just x) == fmap fst (safeHd r) then Just (BTree l t' r)
else lookup x t'

For the imperative implementation, we start from the root r, find a position i among
the keys, such that ki(r) ≤ k < ki+1(r). If ki(r) = k then return the node r and i as a
pair; otherwise, move to sub-tree ti(r) to go on looking up. If r is a leaf and k is not in
the keys, then return nothing. It means k does not exist in the tree.

1: function Look-Up(r, k)
2: loop
3: i← 1, n← |K(r)|
4: while i ≤ n and k > ki(r) do
5: i← i+ 1

6: if i ≤ n and k = ki(r) then
7: return (r, i)

8: if r is leaf then
9: return Nothing ▷ k does not exist

10: else
11: r ← ti(r) ▷ go to the i-th sub-tree

Exercise 7.2
1. Improve the imperative look up with binary search among keys.

2safeHd is provided as listToMaybe in some library.

136 CHAPTER 7. B-TREE

7.4 Delete
After delete a key, the number of keys may be too few to be a valid B-tree node. Except
the root, the number of keys should not be less than d − 1, where d is the minimum
degree. There are two methods symmetric to insert: we can either delete then fix, or
merge before delete.

7.4.1 Delete and fix
We first extend the delete algorithm for binary search tree to multiple branches, then fix
the B-tree balance rules. The main delete program is defined with these two steps:

delete x (d, t) = fix(d, del x t) (7.27)

Where function del is the one we extend to support multiple branches. If t is a leaf,
we merely delete x from the keys; otherwise, we partition the tree with x into 3 parts:
(l, t′, r). Where all the keys in l and sub-tree t′ are less than x, and the rest in r are
great than or equal (≥) to x. When r isn’t empty, we pick the first key ki from it. If
the key equals to x, (ki = x), we next replace it with the maximum key k′ of sub-tree t′

(k′ = max(t′)), and recursively delete k′ from t′ as shown in figure 7.9. Otherwise (either
r is empty, or ki 6= x), we recursively delete x from sub-tree t′.

Figure 7.9: Replace ki with k′ = max(t′), then recursively delete k′ from t′.

del x (ks,∅) = (deletel x ks,∅)

del x t =

{
Just x = safeHd ks′ : balance d l (del k′ t′) (k′ : (tail ks′), ts′)

otherwise : balance d l (del x t′) (ks′, ts′)

(7.28)
Where (l, t′, (ks′, ts′)) = partition x t, are the 3 parts partitioned by x. On top of it,

we extract the maximum key k′ from t′. The max function is defined as:

max (ks,∅) = last ks
max (ks, ts) = max (last ts)

(7.29)

Function last returns the last element from a list (Equation 1.4 in chapter 1). deletel
is the list delete algorithm (Equation 1.16 in chapter 1). tail drops the first element from
a list and returns the rest (Equation 1.1). We need modify the balance function, which

7.4. DELETE 137

we defined for insert before, with the additional logic to merge the node if it contains too
less keys.

balance d (ksl, tsl) t (ksr, tsr) =


full d t : fixf

low d t : fixl

otherwise : (ksl ++ ksr, tsl ++ [t] ++ tsr)

(7.30)

If t is overly low (< d − 1 keys), we call fixl to merge it with the left part (ksl, tsl)
or right part (ksr, tsr) depends on which side of keys is not empty. Use the left part for
example: we extract the last element from ksl and tsl respectively, say km and tm. Then
call unsplit (defined in Equation 7.8) to merge them with t as unsplit tm km t. It forms
a new sub-tree with more keys. Finally we call balance again to build the result B-tree.

fixl =


ksl 6= ∅ : balance d (init ksl, init tsl) (unsplit tm km t) (ksr, tsr)

ksr 6= ∅ : balance d (ksl, tsl) (unsplit t k1 t1) (tail ksr, tail tsr)

otherwise : t

(7.31)

The last case (otherwise) means ksl = ksr = ∅, both sides are empty. The tree is
a singleton leaf hence need not fixing. k1 and t1 are the first element in ksr and tsr
respectively. Finally, we need modify the fix function defined for insert, add new logic
for delete:

fix (d, (∅, [t])) = (d, t)

fix (d, t) =

{
full d t : (d, ([k], [l, r])),where (l, k, r) = split d t

otherwise : (d, t)

(7.32)

What we add is the first case. After delete, if the root contains nothing but a sub-tree,
we can shrink the height, pull the single sub-tree as the new root. The following example
program implements the delete algorithm.
delete x (d, t) = fixRoot (d, del x t) where

del x (BTree ks []) = BTree (List.delete x ks) []
del x t = if (Just x) == safeHd ks' then

let k' = max t' in
balance d l (del k' t') (k':(tail ks'), ts')

else balance d l (del x t') r
where
(l, t', r@(ks', ts')) = partition x t

fixRoot (d, BTree [] [t]) = (d, t)
fixRoot (d, t) | full d t = let (t1, k, t2) = split d t in

(d, BTree [k] [t1, t2])
| otherwise = (d, t)

balance d (ks1, ts1) t (ks2, ts2)
| full d t = fixFull
| low d t = fixLow
| otherwise = BTree (ks1 ++ ks2) (ts1 ++ [t] ++ ts2)

where
fixFull = let (t1, k, t2) = split d t in

BTree (ks1 ++ [k] ++ ks2) (ts1 ++ [t1, t2] ++ ts2)
fixLow | not $ null ks1 = balance d (init ks1, init ts1)

(unsplit (last ts1) (last ks1) t)
(ks2, ts2)

| not $ null ks2 = balance d (ks1, ts1)
(unsplit t (head ks2) (head ts2))
(tail ks2, tail ts2)

| otherwise = t

We leave the delete function for the ’paired list’ implementation as an exercise. Figure
7.10, 7.11, and 7.12 give examples of delete.

138 CHAPTER 7. B-TREE

P

 C G M T X

A B D E F J K L N O Q R S U V Y Z

Figure 7.10: Before delete

Figure 7.11: Delete ‘C’, then delete ‘J’

Figure 7.12: Delete ‘K’, then delete ‘N’

7.4. DELETE 139

7.4.2 Merge before delete
The other way is to merge the nodes before delete if there are too few keys. Consider
delete key x from the tree t, let us start from the easy case.

Case 1. If x exists in node t, and t is a leaf, we can directly remove x from t. If t is
the singleton node in the tree (root), we needn’t worry about too few keys.

Case 2. If x exists in node t, but t is not a leaf. There are three sub-cases:
Case 2a. As shown in figure 7.9, let the predecessor of ki = x be k′, where k′ =

max(ti). If ti has sufficient keys (≥ d), we replace ki with k′, then recursively delete k′

from ti.
Case 2b. If ti does not have enough keys, but the sub-tree ti+1 does (≥ d). Symmet-

rically, we replace ki with its successor k′′, where k′′ = min(ti+1), then recursively delete
k′′ from ti+1, as shown in figure 7.13.

Figure 7.13: Replace ki with k′′ = min(ti+1), then delete k′′ from ti+1.

Case 2c. If neither ti nor ti+1 contains sufficient keys (|ti| = |ti+1| = d−1), we merge
ti, x, ti+1 to a new node. This new node has 2d− 1 keys, we can safely perform delete on
it as shown in figure 7.14.

Figure 7.14: Merge before delete

Merge pushes a key ki to the sub-tree. After that, if node t becomes empty, it means
ki is the only key in t, and ti, ti+1 are the only two sub-trees. We need shrink the tree
height as shown in figure 7.15.

Case 3. If node t does not contain x, we need recursively delete x from a sub-tree ti.
There are two sub-cases if there are too few keys in ti:

Case 3a. Among the two siblings ti−1, ti+1, if either one has enough keys (≥ d),
we move a key from t to ti, then move a key from the sibling up to t, and move the
corresponding sub-tree from the sibling to ti. As shown in figure 7.16, ti received one
more key. We next recursively delete x from ti.

140 CHAPTER 7. B-TREE

Figure 7.15: Shrink

Figure 7.16: Borrow from the right sibling.

7.4. DELETE 141

Case 3b. If neither sibling has sufficient keys (|ti−1| = |ti+1| = d− 1), we merge ti, a
key from t, and either sibling into a new node, as shown in figure 7.17. Then recursively
delete x from it.

Figure 7.17: Merge ti, k, ti+1

Below Delete algorithm implements the ‘merge then delete’ method:
1: function Delete(t, k)
2: if t is empty then
3: return t
4: i← 1, n← |K(t)|
5: while i ≤ n and k > ki(t) do
6: i← i+ 1

7: if k = ki(t) then
8: if t is leaf then ▷ case 1
9: Remove(K(t), k)

10: else ▷ case 2
11: if |K(ti(t))| ≥ d then ▷ case 2a
12: ki(t)← Max(ti(t))
13: Delete(ti(t), ki(t))
14: else if |K(ti+1(t))| ≥ d then ▷ case 2b
15: ki(t)← Min(ti+1(t))
16: Delete(ti+1(t), ki(t))
17: else ▷ case 2c
18: Merge-At(t, i)
19: Delete(ti(t), k)
20: if K(T) is empty then
21: t← ti(t) ▷ Shrinks height
22: return t

142 CHAPTER 7. B-TREE

23: if t is not leaf then
24: if k > kn(t) then
25: i← i+ 1

26: if |K(ti(t))| < d then ▷ case 3
27: if i > 1 and |K(ti−1(t))| ≥ d then ▷ case 3a: left
28: Insert(K(ti(t)), ki−1(t))
29: ki−1(t)← Pop-Last(K(ti−1(t)))
30: if ti(t) is not leaf then
31: Insert(T (ti(t)), Pop-Back(T (ti−1(t))))
32: else if i ≤ n and |K(ti+1(t))| ≥ d then ▷ case 3a: right
33: Append(K(ti(t)), ki(t))
34: ki(t)← Pop-First(K(ti+1(t)))
35: if ti(t) is not leaf then
36: Append(T (ti(t)), Pop-First(T (ti+1(t))))
37: else ▷ case 3b
38: if i = n+ 1 then
39: i← i− 1

40: Merge-At(t, i)
41: Delete(ti(t), k)
42: if K(t) is empty then ▷ Shrinks height
43: t← t1(t)

44: return t

Where Merge-At(t, i) merges sub-tree ti(t), key ki(t), and ti+1(t) into one sub-tree.
1: procedure Merge-At(t, i)
2: x← ti(t)
3: y ← ti+1(t)
4: K(x)← K(x) ++ [ki(t)] ++K(y)
5: T (x)← T (x) ++ T (y)
6: Remove-At(K(t), i)
7: Remove-At(T (t), i+ 1)

Exercise 7.3

1. When delete a key k from the branch node, we use the maximum key from the
predecessor sub-tree k′ = max(t′) to replace k, then recursively delete k′ from
t′. There is a symmetric method, to replace k with the minimum key from the
successor sub-tree. Implement this solution.

2. Define the delete function for the ‘paired list’ implementation.

7.5 Summary

We extend the binary search tree to multiple branches, then constrain the branches within
a range to develop the B-tree. B-tree is used as a tool to control the magnetic disk access
(chapter 18, [4]). Because all B-tree nodes store keys in a range, not too few or too
many. B-tree is balanced. Most of the tree operations are proportion to the height. The
performance is bound to O(lgn) time, where n is the number of keys in B-tree.

7.6. APPENDIX: EXAMPLE PROGRAMS 143

7.6 Appendix: Example programs
Definition of B-tree:
data BTree<K, Int deg> {

[K] keys
[BTree<K>] subStrees;

}

Split node
void split(BTree<K, deg> z, Int i) {

var d = deg
var x = z.subTrees[i]
var y = BTree<K, deg>()
y.keys = x.keys[d ...]
x.keys = x.keys[... d - 1]
if not isLeaf(x) {

y.subTrees = x.subTrees[d ...]
x.subTrees = x.subTrees[... d]

}
z.keys.insert(i, x.keys[d - 1])
z.subTrees.insert(i + 1, y)

}

Bool isLeaf(BTree<K, deg> t) = t.subTrees == []

Insert a key to B-tree:
BTree<K, deg> insert(BTree<K, deg> tr, K key) {

var root = tr
if isFull(root) {

var s = BTree<K, deg>()
s.subTrees.insert(0, root)
split(s, 0)
root = s

}
return insertNonfull(root, key)

}

Insert a key to a non-full node.
BTree<K, deg> insertNonfull(BTree<K, deg> tr, K key) {

if isLeaf(tr) {
orderedInsert(tr.keys, key)

} else {
Int i = length(tr.keys)
while i > 0 and key < tr.keys[i - 1] {

i = i - 1
}
if isFull(tr.subTrees[i]) {

split(tr, i)
if key > tr.keys[i] then i = i + 1

}
insertNonfull(tr.subTree[i], key)

}
return tr

}

Where orderedInsert inserts an element to an ordered list.
void orderedInsert([K] lst, K x) {

Int i = length(lst)
lst.append(x)
while i > 0 and lst[i] < lst[i-1] {

144 CHAPTER 7. B-TREE

(lst[i-1], lst[i]) = (lst[i], lst[i-1])
i = i - 1

}
}

Bool isFull(BTree<K, deg> x) = length(x.keys) ≥ 2 ∗ deg - 1
Bool isLow(BTree<K, deg> x) = length(x.keys) ≤ deg - 1

Iterative look up:
Optional<(BTree<K, deg>, Int)> lookup(BTree<K, deg> tr, K key) {

loop {
Int i = 0, n = length(tr.keys)
while i < n and key > tr.keys[i] {

i = i + 1
}
if i < n and key == tr.keys[i] then return Optional((tr, i))
if isLeaf(tr) {

return Optional.None
} else {

tr = tr.subTrees[i]
}

}
}

Imperative merge before delete:
BTree<K, deg> delete(BTree<K, deg> t, K x) {

if empty(t.keys) then return t
Int i = 0, n = length(t.keys)
while i < n and x > t.keys[i] { i = i + 1 }
if x == t.keys[i] {

if isLeaf(t) { // case 1
removeAt(t.keys, i)

} else {
var tl = t.subtrees[i]
var tr = t.subtrees[i + 1]
if not low(tl) { // case 2a

t.keys[i] = max(tl)
delete(tl, t.keys[i])

} else if not low(tr) { // case 2b
t.keys[i] = min(tr)
delete(tr, t.keys[i])

} else { // case 2c
mergeSubtrees(t, i)
delete(d, tl, x)
if empty(t.keys) then t = tl // shrink height

}
return t

}
if not isLeaf(t) {

if x > t.keys[n - 1] then i = i + 1
if low(t.subtrees[i]) {

var tl = if i == 0 then null else t.subtrees[i - 1]
var tr = if i == n then null else t.subtrees[i + 1]
if tl ̸= null and (not low(tl)) { // case 3a, left

insert(t.subtrees[i].keys, 0, t.keys[i - 1])
t.keys[i - 1] = popLast(tl.keys)
if not isLeaf(tl) {

insert(t.subtrees[i].subtrees, 0, popLast(tl.subtrees))
}

} else if tr ̸= null and (not low(tr)) { // case 3a, right
append(t.subtrees[i].keys, t.keys[i])
t.keys[i] = popFirst(tr.keys)
if not isLeaf(tr) {

append(t.subtrees[i].subtrees, popFirst(tr.subtrees))

Elementary Algorithms 145

}
} else { // case 3b

mergeSubtrees(t, if i < n then i else (i - 1))
if i == n then i = i - 1

}
delete(t.subtrees[i], x)
if empty(t.keys) then t = t.subtrees[0] // shrink height
}

}
return t

}

merge sub-trees, find the min/max key from a B-tree.
void mergeSubtrees(BTree<K, deg>, Int i) {

t.subtrees[i].keys += [t.keys[i]] + t.subtrees[i + 1].keys
t.subtrees[i].subtrees += t.subtrees[i + 1].subtrees
removeAt(t.keys, i)
removeAt(t.subtrees, i + 1)

}

K max(BTree<K, deg> t) {
while not empty(t.subtrees) {

t = last(t.subtrees)
}
return last(t.keys)

}

K min(BTree<K, deg> t) {
while not empty(t.subtrees) {

t = t.subtrees[0]
}
return t.keys[0]

}

146 Binary Heaps

Chapter 8

Binary Heaps

8.1 Definition
Heaps are widely used for sorting, priority scheduling and graph algorithms, and etc. [40].
The most popular implementation models the heap as a complete binary tree in array [4].
The most efficient heap sort algorithm developed by R.W. Floyd is also based on this
method [41] [42]. For the generic heap definition, we can implement with varies data struc-
tures but not limit to array. In this chapter, we focus on the heaps implemented with
binary trees, including leftist heap, skew heap, and splay heap [3]. A heap is either empty,
or stores comparable elements that satisfies a property and three operations:

1. The heap property: the top element is always the minimum;

2. Pop: removes the top element from the heap and maintain the heap property: the
new top is still the minimum in the rest;

3. Insert: add a new element to the heap and maintain the heap property;

4. Other: operations like merge also maintain the heap property.

Because elements are comparable, we can also define the heap always keeps the max-
imum on top. We call the heap with the minimum on top as min-heap, the maximum
on top as max-heap. When implement heap with a tree, we can put the minimum (or
the maximum) in the root. After pop, we remove the root, and rebuild the tree from the
sub-trees. We call the heap implemented with binary tree as binary heap. This chapter
gives three types of binary heap.

8.2 Binary heap by array
The first implementation is to represent the a complete binary tree with an array. The
complete binary tree is ‘almost’ full. The full binary tree of depth k contains 2k−1 nodes.
We can number every node top-down, from left to right as 1, 2, ..., 2k − 1. The node
number i in the complete binary tree is located at the same position in the full binary
tree. The leaves only appear in the bottom layer, or the second last layer. Figure 8.1
shows a complete binary tree and the array. As the complete binary tree, the i-th cell in
array corresponds to a node, its parent node maps to the bi/2c-th cell; the left sub-tree
maps to the 2i-th cell, and the right sub-tree maps to the 2i + 1-th cell. If any sub-tree
maps to an index out of the array bound, then the sub-tree does not exist (i.e. leaf node).
We can define the map as below (index starts from 1):

147

148 CHAPTER 8. BINARY HEAPS

16

14 10

8 7

2 4 1

9 3

Figure 8.1: Map between a complete binary tree and an array.


parent(i) = b i

2
c

left(i) = 2i

right(i) = 2i+ 1

(8.1)

8.2.1 Heapify
Heapify is the process maintain heap property, keep the minimum element on the top.
For binary heap, we can obtain a stronger property as the binary tree is recursive: every
sub-tree stores its minimum element in the root. In other words, every sub-tree is also
a binary heap. Consider the min-heap represented with array, for any cell index i, we
examine if all the elements in sub-trees are greater then or equal to it (≥). Exchange
when not satisfies. Repeat this for all sub-trees rooted at i.

1: function Heapify(A, i)
2: n← |A|
3: loop
4: s← i ▷ s is the smallest
5: l← Left(i), r ← Right(i)
6: if l ≤ n and A[l] < A[i] then
7: s← l
8: if r ≤ n and A[r] < A[s] then
9: s← r

10: if s 6= i then
11: Exchange A[i]↔ A[s]
12: i← s
13: else
14: return

8.2. BINARY HEAP BY ARRAY 149

For index i in array A, any sub-tree node should not be less than A[i]. Otherwise, we
exchange A[i] with the smallest one, and recursively check the sub-trees. As the process
time is proportion to the height of the tree, Heapify is bound to O(lgn), where n is the
length of the array. Figure 8.2 gives the steps when apply Heapify from 2 to array [1,
13, 7, 3, 10, 12, 14, 15, 9, 16]. The result is [1, 3, 7, 9, 10, 12, 14, 15, 13, 16].

Figure 8.2: Heapify. Step 1: the minimum of 13, 3, 10 is 3, exchange 3 ↔ 13; Step 2: the
minimum of 13, 15, 9 is 9, exchange 13 ↔ 9; Step 3: 13 is leaf, terminate.

8.2.2 Build
We can build heap from arbitrary array with Heapify. List how many nodes in each
level of a complete binary tree: 1, 2, 4, 8, They are all power of 2 except for the last
level. Because the tree is not necessarily full, there are at most 2p−1 nodes, where p is
the smallest integer satisfying 2p− 1 ≥ n, and n is the length of the array. Skip all leaves
because Heapify takes no effect on them, we start applying Heapify to the last branch
node (which index ≤ bn/2c) bottom-up. The build function is defined as below:

1: function Build-Heap(A)
2: n← |A|
3: for i← bn/2c down to 1 do
4: Heapify(A, i)

Although Heapify is bound O(lgn) time, Build-Heap is bound to O(n), but not
O(n lgn). We skip all leaves, check and move down a level at most for 1/4 nodes; check
and move down two levels at most for 1/8 nodes; check and move down three levels at

150 CHAPTER 8. BINARY HEAPS

most for 1/16 nodes... the total comparison and move times is up to:

S = n(
1

4
+ 2

1

8
+ 3

1

16
+ ...) (8.2)

Multiply by 2 for both sides:

2S = n(
1

2
+ 2

1

4
+ 3

1

8
+ ...) (8.3)

Subtract (8.2) from (8.3):

2S − S = n[
1

2
+ (2

1

4
− 1

4
) + (3

1

8
− 2

1

8
) + ...] shift by one and subtract

S = n[
1

2
+

1

4
+

1

8
+ ...] geometric series

= n

Figure 8.3 shows the steps to build a min-heap from array [4, 1, 3, 2, 16, 9, 10, 14, 8, 7].
The black node is where Heapify is applied. The grey nodes are swapped to maintain
the heap property.

8.2.3 Heap operations
Heap operations include access the top, pop, look up the top k elements, decrease an
element in min-heap (or increase an element in max-heap), and insert a new element.
For binary heap, the root stores the minimum element, corresponding to the first cell in
array:

1: function Top(A)
2: return A[1]

Pop

After pop, the remaining elements in array shift ahead by one. However, after removed
the root of the binary tree, the rest is not a binary tree any more. To avoid such situation,
we swap the first and the last element in array, then reduce the array length by one. It
equivalent to remove a leaf but not the root. We then apply Heapify to recover the heap
property:

1: function Pop(A)
2: x← A[1], n← |A|
3: Exchange A[1]↔ A[n]
4: Remove(A,n)
5: if A is not empty then
6: Heapify(A, 1)
7: return x

It takes constant time to remove the last element from array, hence pop is also bound
to O(lgn) time as same as Heapify.

Top-k

We can obtain top k elements by repeatedly applying pop.
1: function Top-k(A, k)
2: R← []
3: Build-Heap(A)

8.2. BINARY HEAP BY ARRAY 151

Figure 8.3: Build heap. (1) 16 > 7; (2) exchange 16 ↔ 7; (3) 2 < 14 and 2 < 8; (4) 3 < 9
and 3 < 10; (5) 1 < 2 and 1 < 7; (6) 1 < 4 and 1 < 3; (7) exchange 4 ↔ 1; (8) exchange
4 ↔ 2, end.

152 CHAPTER 8. BINARY HEAPS

4: loop Min(k, |A|) times ▷ cut off when k out of array bound
5: Append(R, Pop(A))
6: return R

Increase priority

We can implement a priority queue with heap, to schedule tasks with priorities. Every
time, we peek the high priority task to execute. To make an urgent task run earlier, we
can increase its priority. It corresponds to decrease an element in a min-heap, as shown
in 8.4.

Figure 8.4: Decrease 13 to 2. Exchange 2 and 9, then exchange with 3.

The heap property may not be satisfied when decrease some element in a min-heap.
Let the decreased element indexed at i in the array, below function resumes the heap
property bottom-up. It is bound to O(lgn) time.

1: function Heap-Fix(A, i)
2: while i > 1 and A[i] < A[Parent(i)] do
3: Exchange A[i]↔ A[Parent(i)]
4: i← Parent(i)

Insertion

We can realize push with Heap-Fix [4]. Use min-heap for example, we append the new
element k to the tail of the array, then apply Heap-Fix to recover the heap property:

1: function Push(A, k)
2: Append(A, k)
3: Heap-Fix(A, |A|)

8.2.4 Heap sort
We can sort elements with heap. Build a min-heap from a collection of n elements, the
repeatedly pop the top element to obtain the ascending result. It takes O(n) time to

8.3. LEFTIST HEAP AND SKEW HEAP 153

build the heap. The pop is bound to O(lgn) time, and runs for n times. Therefore, the
total time is bound to O(n lgn). The space is bound to O(n) as we need another list to
hold the result.

1: function Heap-Sort(A)
2: R← []
3: Build-Heap(A)
4: while A 6= [] do
5: Append(R, Pop(A))
6: return R

Robert. W. Floyd gave a fast implementation with max-heap. The top stores the
maximum one. Every time, swap the head and the tail elements in the array. After
that the maximum is stored to the expected position, and the previous tail becomes the
new top. We next decrease the heap size by one, and apply Heapify to maintain the
heap property. Repeat this till the heap size decrease to one. This algorithm needn’t the
additional space to store the result.

1: function Heap-Sort(A)
2: Build-Max-Heap(A)
3: n← |A|
4: while n > 1 do
5: Exchange A[1]↔ A[n]
6: n← n− 1
7: Heapify(A[1...n], 1)

Exercise 8.1

1. Consider another idea about in-place heap sort: Build a min-heap from the array
A, the first element a1 is in the right position. Treat the rest [a2, a3, ..., an] as the
new heap, and apply Heapify from a2. Repeat this till the last element. Is this
method correct?

1: function Heap-Sort(A)
2: Build-Heap(A)
3: for i = 1 to n− 1 do
4: Heapify(A[i...n], 1)

2. Similarly, can we apply Heapify k times from left to right to get the top-k ele-
ments?

1: function Top-K(A, k)
2: Build-Heap(A)
3: n← |A|
4: for i← 1 to min(k, n) do
5: Heapify(A[i...n], 1)

8.3 Leftist heap and skew heap

When implement the heap with a explicit binary tree, after pop the rot, there remain two
sub-trees. Both are heaps as shown in figure 8.5. How can we merge them to a new heap?
To maintain the heap property, the new root must be the minimum for the remaining.
We can give the first edge cases easily:

154 CHAPTER 8. BINARY HEAPS

Figure 8.5: Merge left and right sub-trees after pop.

merge(∅, R) = R
merge(L,∅) = L
merge(L,R) = ?

Both left and right sub-trees are heaps. When they are not empty, each root stores the
minimum respectively. We can compare the two roots, and peek the smaller as the new
root. Let L = (A, x,B), R = (A′, y, B′), where A, A′, B, B′ are sub-trees. If x < y, then
x is the new root. We keep A, and merge B and R recursively; alternatively, we can keep
B, and merge A and R. The new heap can be (merge(A,R), x, B) or (A, x,merge(B,R)).
Both are right. To simplify, we always merge the right sub-tree. This method generates
leftist heap.

8.3.1 Leftist heap
The leftist heap is implemented with leftist tree. C. A. Crane in 1972 [43] developed leftist
tree. He defined a rank for every node (also known as S-value) as the distance to the
nearest NIL. The rank of NIL is 0. As shown in 8.6, The nearest leaf node to 4 is 8, the
rank of 4 is 2; Both 4 and 8 are leaves, their ranks are 1. Although the left sub-tree of 5 is
not empty, its right sub-tree is NIL, hence the rank is 1. We can define the merge method
with rank as below. Let the ranks for left and right sub-trees be rl, rr respectively:

4

5 8

6 NIL

NIL NIL

NIL NIL

Figure 8.6: rank(4) = 2, rank(6) = rank(8) = rank(5) = 1.

1. Always merge the right sub-tree;

8.3. LEFTIST HEAP AND SKEW HEAP 155

2. When rl < rr, exchange the left and right sub-trees.

We call above merge rules ‘leftist property’. Basically, a leftist tree always has the
shortest path to some NIL on the right. It tends to be unbalanced, while maintain a
critical constraint:
Theorem 8.3.1. For a leftist tree T of n nodes, the path from root to the rightmost NIL
has at most blog(n+ 1)c nodes.

We skip the proof [44] [51]. With this theorem, algorithms process along this path are
ensured bound to O(lgn) time. We can define the leftist tree by reusing binary tree plus
an additional rank. Let the none empty leftist tree be (r, L, k,R):
data LHeap a = E −− Empty

| Node Int (LHeap a) a (LHeap a)

Function rank returns the rank value:
rank ∅ = 0

rank (r, L, k,R) = r
(8.4)

Merge

To merge two leftist heaps, we define a make function. It compares the ranks of the
sub-trees and swap them if necessary.

make(A, k,B) =

{
rank(A) < rank(B) : (rank(A) + 1, B, k,A)

否则 : (rank(B) + 1, A, k,B)
(8.5)

It takes two sub-trees A and B. If rank of A is smaller, we let B be the left sub-tree,
and A be the right. The rank of the new node is rank(A) + 1; otherwise if rank of B
is smaller, we let A be the left sub-tree, and B be the right. The rank of the new node
is rank(B) + 1. Given two leftist heaps H1 and H2, if they are not empty, let them be
(r1, L1,K1, R1) and (r2, L2, k2, R2) respectively. Below function defines merge:

merge ∅ H2 = H2

merge H1 ∅ = H1

merge H1 H2 =

{
k1 < k2 : make(L1, k1,merge R1 H2)

否则 : make(L2, k2,merge H1 R2)

(8.6)

We always apply merge to the right sub-tree recursively, hence the leftist property
is maintained, and it is bound to O(lgn) time.The binary heap implemented by array
performs well in most cases, and it suitable for the modern cache technology. However,
it takes O(n) time for merge. We need concatenate two arrays, and rebuild the heap [50].

1: function Merge-Heap(A,B)
2: C ← Concat(A,B)
3: Build-Heap(C)

We can define most heap operations with merge.

Top and pop

We can access the top element in O(1) time, assume the heap is not empty:

top (r, L, k,R) = k (8.7)

After pop the root, we merge the left and right sub-trees as a new heap. Same as
merge, pop is also bound to O(lgn) time.

pop (r, L, k,R) = merge L R (8.8)

156 CHAPTER 8. BINARY HEAPS

Insert

To insert a new element k, we build a singleton leaf of k, then merge it with the heap:

insert k H = merge (1,∅, k,∅) H (8.9)

Or write it in Curried form as build = foldr insert ∅.

1

2

4 3

7 9

16 10

14 8

Figure 8.7: Build the leftist heap from [9, 4, 16, 7, 10, 2, 14, 3, 8, 1].

Heap sort

Given a list, we build a leftist heap from it, then repeatedly pop the minimum element
from top to obtain the sorted result.

sort = heapSort ◦ build (8.10)

Where
heapSort [] = []
heapSort H = (top H) : (heapSort (pop H))

(8.11)

We call pop n times, each takes O(lgn) time. The total time is bound to O(n lgn).

8.3.2 Skew heap
Leftist heap may lead to unbalanced tree in some cases as shown in figure 8.8. Skew heap
is a self-adjusting heap. It simplifies the leftist heap and improves balance [46] [47]. When
build the leftist heap, we swap the left and right sub-trees when the rank on left is smaller
than the right. However, this method can’t handle the case when either sub-tree has a
NIL node. The rank is always 1 no matter how big the sub-tree is. Skew heap simplified
the merge, it always swap the left and right sub-trees.

Skew heap is implemented with skew tree. Skew tree is a binary tree. The root stores
the minimum element, every sub-tree is also a skew tree. Skew tree needn’t the rank. We
can directly re-use the binary tree definition. Let the none empty tree be (L, k,R).
data SHeap a = E −− Emtpy

| Node (SHeap a) a (SHeap a)

8.4. SPLAY HEAP 157

1

2

3 4

7

8 9

10

14

16

Figure 8.8: Leftist heap built from [16, 14, 10, 8, 7, 9, 3, 2, 4, 1].

Merge

When merge two none empty skew trees, we choose the smaller root as the new root.
Then merge the greater tree with a sub-tree, and swap the left and right sub-trees. Let
the two trees be H1 = (L1, k1, R1) and H2 = (L2, k2, R2). If k1 < k2, then choose k1 as
the new root. We can either merge H2 with L1, or merge H2 with R1. We choose R1,
and swap the left and right sub-trees. The result is (merge(R1,H2), k1, L1).

merge ∅ H2 = H2

merge H1 ∅ = H1

merge H1 H2 =

{
k1 < k2 : (merge(R1,H2), k1, L1)

otherwise : (merge(H1, R2), k2, L2)

(8.12)

Similar with leftist tree, the other operations, including insert, top, and pop are im-
plemented with merge. Skew heap outputs a balanced tree even for ordered list as shown
in figure 8.9.

8.4 Splay heap
The leftist heap and skew heap are implemented with binary tree. If change to binary
search tree, then the minimum element will not be in root. We need O(lgn) time to locate
the minimum. The performance will downgrade if the tree is not balanced. Although we
can use the red-black tree to secure balancing, the splay tree provides a light weight
implementation. It dynamically make the tree balanced. Splay tree takes cache-like
approach. It rotates the node currently being accessed to the root, reduces the access

158 CHAPTER 8. BINARY HEAPS

1

2

4 3

7 9

16 10

14 8

Figure 8.9: Skew tree built from [1, 2, ..., 10].

time for next visit. We define such operation as ’splay’. The tree tends to be more
balanced after several splay operations. Most splay tree operations perform in amortized
O(lgn) time. Daniel Dominic Sleator and Robert Endre Tarjan developed splay tree in
1985 [48] [49].

8.4.1 Splay

We introduce two methods to implement splay. The first is pattern matching, it need
match multiple cases; the second has the uniformed form, but the implementation is
complex. Let the node to be accessed be x, the parent node be p. If it has grand parent
node, then denote it as g. There are 3 cases, each has two symmetric sub-cases. We
explain one of them as shown in 8.10:

1. Zig-zig: Both x and p are on the left; or on the right. We rotate twice to make x as
root.

2. Zig-zag: x is on the left, while p is on the right; or x is on the right, while P is on
the left. After rotation, x becomes the root, p and g are siblings.

3. Zig: p is the root, we rotate to make x as root.

There are total 6 cases. Let the none empty tree be T = (L, k,R), define splay as

8.4. SPLAY HEAP 159

Figure 8.10: zig-zig: x and p are both on left or right, x becomes new root. zig-zag: x
and p are on different sides, x becomes new root, p and g are siblings. zig: p is root,
rotate to make x as root.

160 CHAPTER 8. BINARY HEAPS

below when access element y:

splay (((a, x, b), p, c), g, d) y =

{
x = y : (a, x, (b, p, (c, g, d)))

otherwise : T
zig-zig

splay (a, g, (b, p, (c, x, d))) y =

{
x = y : (((a, g, b), p, c), x, d)

otherwise : T
zig-zig symmetric

splay (a, p, (b, x, c), g, d) y =

{
x = y : ((a, p, b), x, (c, g, d))

otherwise : T
zig-zag

splay (a, g, ((b, x, c), p, d)) y =

{
x = y : ((a, g, b), x, (c, p, d))

otherwise : T
zig-zag symmetric

splay ((a, x, b), p, c) y =

{
x = y : (a, x, (b, p, c))

otherwise : T
zig

splay (a, p, (b, x, c)) y =

{
x = y : ((a, p, b), x, c)

otherwise : T
zig symmetric

splay T y = T others
(8.13)

The first two are ’zig-zig’ cases; then two ’zig-zag’ cases; then two zig cases. The tree
keeps changed for all other cases. Every time when insert a new element, we trigger splay
to adjust the balance. IF the tree is empty, the result is a singleton leaf; otherwise, we
compare the new element and the root, then recursively insert to left (less than) or right
(greater than) sub-tree and apply splay.

insert ∅ y = (∅, y,∅)

insert (L, x,R) y =

{
y < x : splay ((insert L y), x, R) y

otherwise : splay (L, x, (insert R y)) y

(8.14)

5

4 10

2

1 3

9

7

6 8

Figure 8.11: Splay tree built from [1, 2, ..., 10].

Figure 8.11 gives the splay tree built from [1, 2, ..., 10]. It generates a well balanced
tree. Okasaki found a simple rule for splaying [3]. Whenever we follow two left branches,
or two right branches continuously, we rotate the two nodes. When access node of x, if
move to left or right twice, then partition T as L and R, where L contains all the elements
less than x, while R contains the remaining. Then we create a new tree with x as the
root, and L, R as the left and right sub-trees. The partition process is recursively applied

8.4. SPLAY HEAP 161

to sub-trees.

partition ∅ y = (∅,∅)
partition (L, x,R) y =

x < y



R = ∅ (T,∅)

R = (L′, x′, R′)


x′ < y (((L, x, L′), x′, A), B)

where: (A,B) = partition R′ y

otherwise ((L, x,A), (B, x′, R′))

where: (A,B) = partition L′ y

otherwise



L = ∅ (∅, T)

L = (L′, x′, R′)


y < x′ (A, (L′, x′, (R′, x, R)))

where: (A,B) = partition L′ y

otherwise ((L′, x′, A), (B, x,R))

where: (A,B) = partition R′ y
(8.15)

Function partition takes a tree T , and a pivot y. For empty tree, the result is a pair of
empty trees; otherwise let the tree be (L, x,R). We compare the pivot y and the root x.
If x < y, there are two sub-cases: (1) R is empty. All elements in the binary search tree
are less then y, hence the result is (T,∅); (2) Let R = (L′, x′, R′), if x′ < y, we recursively
partition R′ with the pivot y. Put all the elements less than y in A, and the rest in B.
The result is a pair of trees: ((L, x, L′), x′, A) and B. If x′ > y, then recursively partition
L′ with y to obtain (A,B). The result is also a pair of (L, x,A) and (B, x′, R′). When
y < x, the result is symmetric.

Alternatively, we can define insert with partition. When insert a new element k to
splay heap T , we first partition the heap to two sub-trees of L and R. Where L contains
all elements smaller than k, while R contains the rest. Then construct a new tree with k
as the root, and L, R as the sub-trees.

insert T k = (L, k,R),其中：(L,R) = partition T k (8.16)

8.4.2 Pop
Since splay tree is essentially a binary search tree, the minimum is at the left most. We
need keep traversing the left sub-tree to access the heap ‘top’. Let the none empty tree
be T = (L, k,R), we define the top function as below:

top (∅, k, R) = k
top (L, k,R) = top L

(8.17)

This is equivalent to min for the binary search tree. When pop, we need remove the
minimum. We apply splay when move left twice.

pop (∅, k, R) = R
pop ((∅, k′, R′), k, R) = (R′, k, R)
pop ((L′, k′, R′), k, R) = (pop L′, k′, (R′, k, R))

(8.18)

The third row performs splaying without calling partition. It uses the binary search
tree property. Top and pop are bound to O(lgn) time when the splay tree is balanced.

162 CHAPTER 8. BINARY HEAPS

8.4.3 Merge
We can implement merge with partition to obtain the O(lgn) time bound. When merge
two none-empty splay trees, we choose a root as the pivot to partition the other tree,
then recursively merge the sub-trees:

merge ∅ T = T
merge (L, x,R) T = ((merge L L′) x (merge R R′))

(8.19)

where

(L′, R′) = partition T x

If a heap is empty, then the result is the other heap; otherwise, let a heap be (L, x,R).
We use x to partition T to (L′, R′), where L contains all elements less than x in T , while
R′ contains the rest. Then we recursively merge L and L′ to the left sub-tree, and merge
R and R′ to the right sub-tree.

8.5 Summary
We give the generic definition of binary heap in this chapter. There are several imple-
mentations. The array based representation is suitable for imperative implementation.
It maps a complete binary tree to array, supports random access any element. We also
directly use the binary tree to implement the heap in functional way. Most operations are
bound to O(lgn) time, some are O(1) amortized time. Okasaki gave detailed analysis [3].
When extend from binary tree to k-ary tree, we obtain binomial heap, Fibonacci heap,
and pairing heap. We introduce these heaps in chapter 10.

Exercise 8.2
1. Realize leftist heap, skew heap, and splay heap in imperative approach.

8.6 Appendix - example programs
For the complete binary tree represented by array, access parent, and sub-trees with
bit-wise operation (index from 0):
Int parent(Int i) = ((i + 1) >> 1) - 1

Int left(Int i) = (i << 1) + 1

Int right(Int i) = (i + 1) << 1

Heapify, parameterized the comparison:
void heapify([K] a, Int i, Less<K> lt) {

Int l, r, m
Int n = length(a)
loop {

m = i
l = left(i)
r = right(i)
if l < n and lt(a[l], a[i]) then m = l
if r < n and lt(a[r], a[m]) then m = r
if m ̸= i {

swap(a, i, m);
i = m

8.6. APPENDIX - EXAMPLE PROGRAMS 163

} else {
break

}
}

}

Build the binary heap from array:
void buildHeap([K] a, Less<K> lt) {

Int n = length(a)
for Int i = (n-1) / 2 downto 0 {

heapify(a, i, lt)
}

}

Pop:
K pop([K] a, Less<K> lt) {

var n = length(a)
t = a[n]
swap(a, 0, n - 1)
remove(a, n - 1)
if a ̸= [] then heapify(a, 0, lt)
return t

}

Obtain the top-k elements:
[K] topk([K] a, Int k, Less<K> lt) {

buildHeap(a, lt)
[K] r = []
loop min(k, length(a)) {

append(r, pop(a, lt))
}
return r

}

Decrease the key in min-heap:
void decreaseKey([K] a, Int i, K k, Less<K> lt) {

if lt(k, a[i]) {
a[i] = k
heapFix(a, i, lt)

}
}

void heapFix([K] a, Int i, Less<K> lt) {
while i > 0 and lt(a[i], a[parent(i)]) {

swap(a, i, parent(i))
i = parent(i)

}
}

Push new element:
void push([K] a, K k, less<K> lt) {

append(a, k)
heapFix(a, length(a) - 1, lt)

}

Heap sort:
void heapSort([K] a, less<K> lt) {

buildHeap(a, not ◦ lt)
n = length(a)
while n > 1 {

164 CHAPTER 8. BINARY HEAPS

swap(a, 0, n - 1)
n = n - 1
heapify(a[0 .. (n - 1)], 0, not ◦ lt)

}
}

Merge two leftist heaps:
merge E h = h
merge h E = h
merge h1@(Node _ x l r) h2@(Node _ y l' r') =

if x < y then makeNode x l (merge r h2)
else makeNode y l' (merge h1 r')

makeNode x a b = if rank a < rank b then Node (rank a + 1) x b a
else Node (rank b + 1) x a b

Merge two skew heaps:
merge E h = h
merge h E = h
merge h1@(Node x l r) h2@(Node y l' r') =

if x < y then Node x (merge r h2) l
else Node y (merge h1 r') l'

Splay operation:
−− zig-zig
splay t@(Node (Node (Node a x b) p c) g d) y =

if x == y then Node a x (Node b p (Node c g d)) else t
splay t@(Node a g (Node b p (Node c x d))) y =

if x == y then Node (Node (Node a g b) p c) x d else t
−− zig-zag
splay t@(Node (Node a p (Node b x c)) g d) y =

if x == y then Node (Node a p b) x (Node c g d) else t
splay t@(Node a g (Node (Node b x c) p d)) y =

if x == y then Node (Node a g b) x (Node c p d) else t
−− zig
splay t@(Node (Node a x b) p c) y = if x == y then Node a x (Node b p c) else t
splay t@(Node a p (Node b x c)) y = if x == y then Node (Node a p b) x c else t
−− others
splay t _ = t

Insert new element to the splay heap:
insert E y = Node E y E
insert (Node l x r) y

| x > y = splay (Node (insert l y) x r) y
| otherwise = splay (Node l x (insert r y)) y

Partition the splay tree:
partition E _ = (E, E)
partition t@(Node l x r) y

| x < y =
case r of

E → (t, E)
Node l' x' r' →

if x' < y then
let (small, big) = partition r' y in
(Node (Node l x l') x' small, big)

else
let (small, big) = partition l' y in
(Node l x small, Node big x' r')

| otherwise =
case l of

Elementary Algorithms 165

E → (E, t)
Node l' x' r' →

if y < x' then
let (small, big) = partition l' y in
(small, Node l' x' (Node r' x r))

else
let (small, big) = partition r' y in
(Node l' x' small, Node big x r)

Merge two splay trees:
merge E t = t
merge (Node l x r) t = Node (merge l l') x (merge r r')

where (l', r') = partition t x

166 Selection sort

Chapter 9

Selection sort

9.1 Introduction
Selection sort is a straightforward sorting algorithm. It repeatedly selects the minimum
(or maximum) from a collection of elements. It performs below the divide and conqueror
sort algorithms, like quick sort and merge sort. We’ll give different ways to improve it,
and finally evolve it to heap sort, achieving O(n lgn), the upper limit of comparison based
sort algorithm time bound. When facing a bunch of grapes, there are two types of kids.
One pick the biggest grape to eat every time, the other always eat the smallest one. The
first type eats the grape in ascending order of size, the other eats in descending order. In
either case, the kid essentially applies selection sort method. It can be defined as:

1. If the collection is empty, the sorted result is empty;

2. Otherwise, select the minimum element, and append it to the sorted result.

It sorts elements in ascending order. We can obtain descending order by selecting the
maximum. The compare operation can be abstract.

sort [] = []
sort A = m : sort (A− [m]) where m = min A

(9.1)

Where A−[m] is the remaining elements in A except m. The corresponding imperative
implementation is as below:

1: function Sort(A)
2: X ← []
3: while A 6= [] do
4: x← Min(A)
5: Del(A, x)
6: Append(X,x)
7: return X

Figure 9.1 shows the process of selection sort. We can improve it to in-place sort. The
idea is to reuse A. Place the minimum element in A[1], the second smallest one in A[2],
...When find the i-th smallest element, swap it with A[i].

1: function Sort(A)
2: for i← 1 to |A| do
3: m← Min-At(A, i)
4: Exchange A[i]↔ A[m]

167

168 CHAPTER 9. SELECTION SORT

Figure 9.1: The left is sorted, repeatedly select the minimum of the rest and append.

Let A = [a1, a2, ..., an], when select the i-th smallest element, [a1, a2, ..., ai−1] are
sorted. We find the minimum of [ai, ai+1, ..., an], and swap it with ai. Repeat this to
process all elements as shown in figure 9.2.

... sorted ... x ... min ...

swap

Figure 9.2: The left is sorted, repeatedly find the minimum and swap to the right position.

9.2 Find the minimum
We can use the ‘compare and swap’ method to find the minimum element. Label the
elements with 1, 2, ..., n. Compare the elements of number 1 and 2, pick the smaller and
compare it with number 3, ... repeat till the last element of number n.

1: function Min-At(A, i)
2: m← i
3: for i← m+ 1 to |A| do
4: if A[i] < A[m] then
5: m← i
6: return m

The Min-At find the minimum m from slice A[i...]. Let m start pointing to A[i], then
scan A[i+ 1], A[i+ 2],

We can also find the minimum from list of elements L recursively. When L is a
singleton, the only element is the minimum; otherwise pick an element x from L, then
recursively find the minimum y from the remaining, the smaller one between x and y is
the minimum of L.

min [x] = (x, [])

min (x : xs) =

{
x < y : (x, xs), where (y, ys) = min xs

otherwise : (y, x : ys)

(9.2)

We can further improve it tail recursively. Divide the elements with two groups A
and B. A is initialized empty ([]), B contains all elements. We pick two elements
from B, compare and put the greater one to A, leave the smaller one as m. Then
repeatedly pick element from B, compare with m till B becomes empty. Finally, m is
the minimum element. At any time, we have the invariant: L = A ++ [m] ++ B, where
a ≤ m ≤ b, a ∈ A, b ∈ B.

min (x : xs) = min′ [] x xs (9.3)

9.3. IMPROVEMENT 169

Where:

min′ as m [] = (m,A)

min′ as m (b : bs) =

{
b < m : min′ (m : as) b bs

otherwise : min′ (b : as) m bs

(9.4)

Function min return a pair: the minimum and the remaining elements. We can define
selection sort as below:

sort [] = []
sort xs = m : (sort xs′), where (m,xs′) = min xs

(9.5)

9.2.1 Performance
Selection sort need scan the unsorted elements to find the minimum for n times. It
compares n+ (n− 1) + (n− 2) + ...+ 1 times. The time bound is O(

n(n+ 1)

2
) = O(n2).

Compare to the insertion sort, selection sort performs same in the best, worst, and average
cases. While insertion sort performs best at O(n) (the linked-list is in reversed ordered),
and worst at O(n2).

Exercise 9.1
1. What is the problem with below implementation of min?

min′ as m [] = (m,A)

min′ as m (b : bs) =

{
b < m : min′ (as++ [m]) b bs

否则 : min′ (as++ [b]) m bs

2. Implement the selection sort for both in-placed and not.

9.3 Improvement
To sort in ascending, descending, and varies of ordering, we abstract the comparison as
◁.

sortBy ◁ [] = []
sortBy ◁ xs = m : sortBy ◁ xs′, where (m,xs′) = minBy ◁ xs

(9.6)

We also use ◁ to find the ’minimum’:

minBy ◁ [x] = (x, [])

minBy ◁ (x : xs) =

{
x◁ y : (x, xs), where (y, ys) = minBy xs

otherwise : (y, x : ys)

(9.7)

For example, we pass the < to sort a collection of numbers in ascending order:
sortBy (<) [3, 1, 4, ...]. As the constraint, we need the comparison ◁ satisfy the strict
weak order [52].

• Irreflexivity: for all x, x < x is false;

• Asymmetry: for all x and y, if x < y, then y < x is false;

• Transitivity, for all x, y, and z, if x < y, and y < z, then x < z.

170 CHAPTER 9. SELECTION SORT

The in-place selection sort traverses all elements, we can find the minimum as an inner
loop to make the implementation compact:

1: procedure Sort(A)
2: for i← 1 to |A| do
3: m← i
4: for j ← i+ 1 to |A| do
5: if A[i] < A[m] then
6: m← i
7: Exchange A[i]↔ A[m]

After sort the first n − 1 elements, the last one must be the maximum. We can save
the last loop. Besides, we needn’t swap if the i-th smallest is exactly A[i].

1: procedure Sort(A)
2: for i← 1 to |A| − 1 do
3: m← i
4: for j ← i+ 1 to |A| do
5: if A[i] < A[m] then
6: m← i
7: if m 6= i then
8: Exchange A[i]↔ A[m]

9.3.1 Cock-tail sort
Knuth gives another selection sort implementation [51]. Select the maximum, but not the
minimum, and move it to the tail, as shown in figure ??. At any time, the right most
part is sorted. We scan the unsorted part, find the maximum and swap to the right.

1: procedure Sort’(A)
2: for i← |A| down-to 2 do
3: m← i
4: for j ← 1 to i− 1 do
5: if A[m] < A[i] then
6: m← i
7: Exchange A[i]↔ A[m]

... max ... x ... sorted ...

swap

Figure 9.3: Select the maximum and swap to tail

We obtain the ascending order as well. Further, we can pick both the minimum and
maximum in one pass, swap the minimum to the head, and the maximum to the tail. We
can halve the inner loop times. The method is called ‘cock-tail sort’.

1: procedure Sort(A)

2: for i← 1 to b |A|
2
c do

3: min← i
4: max← |A|+ 1− i
5: if A[max] < A[min] then
6: Exchange A[min]↔ A[max]

7: for j ← i+ 1 to |A| − i do
8: if A[j] < A[min] then

9.3. IMPROVEMENT 171

9: min← j

10: if A[max] < A[j] then
11: max← j

12: Exchange A[i]↔ A[min]
13: Exchange A[|A|+ 1− i]↔ A[max]

... sorted smaller ... x ... max ... min ... y ... sorted greater ...

swap

swap

Figure 9.4: Find the minimum and maximum, swap both to the right positions.

It’s necessary to swap if the right most element less than the right most one before the
inner loop. This is because the scan excludes them. We can also implement the cock-tail
sort recursively:

1. If the list is empty or singleton, it’s sorted;

2. Otherwise, we select the minimum and the maximum, move them to the head and
tail, then recursively sort the rest elements.

sort [] = []
sort [x] = [x]
sort xs = a : (sort xs′) ++ [b],where (a, b, xs′) = minMax xs

(9.8)

Where function minMax extracts the minimum and maximum from a list:
minMax (x : y : xs) = foldr sel(min x y,max x y, []) xs (9.9)

We initialize the minimum as the first element x0, and the maximum as the second
element x1, and process the list with foldr. Function sel is defined as:

sel x (x0, x1, xs) =


x < x0 : (x, x1, x0 : xs)

x1 < x : (x0, x, x1 : xs)

otherwsie : (x0, x1, x : xs)

Although minMax is bound to O(n) time, ++[b] is expensive. As shown in figure 9.4,
let the left sorted part be A, the right sorted part be B. We can turn the cock-tail sort
to tail recursive with A and B as the accumulators.

sort′ A B [] = A++B
sort′ A B [x] = A++ (x : B)

sort′ A B (x : xs) = sort′ (A++ [x0]) xs
′ (x1 : B)

(9.10)

Where (x0, x1, xs
′) = minMax xs. We pass empty A and B to initialize sorting:

sort = sort′ [] []. The append only happens to A ++ [x0], while x1 is linked before
B. Every recursion performs an append operation. To eliminate it, we can maintain A

in reversed order: ←−A , hence x0 is linked ahead but appended. We have the following
equations:

A′ = A++ [x]
= reverse (x : reverse A)

= reverse (x :
←−
A)

=
←−−−
x :
←−
A

(9.11)

172 CHAPTER 9. SELECTION SORT

Finally, we reverse
←−
A′ back to A′. We can improve the algorithm as below:

sort′ A B [] = (reverse A) ++B
sort′ A B [x] = (reverse x : A) ++B

sort′ A B (x : xs) = sort′ (x0 : A) xs′ (x1 : B)
(9.12)

9.4 Further improvement
Although cock-tail sort halves the loops, it’s still bound to O(n2) time. To sort by
comparison, we need the outer loop to examine all the elements for ordering. Do we need
scan all the elements to select the minimum every time? After find the first smallest one,
we’ve traversed the whole collection, obtain some information, like which are greater,
which are smaller. However, we discard such information for further selection, but restart
a fresh scan. The idea is information reusing. Let’s see one inspired from football match.

9.4.1 Tournament knock out
The football world cup is held every four years. There are 32 teams from different conti-
nent play the final games. Before 1982, there were 16 teams in the finals. Let’s go back to
1978 and imagine a special way to determine the champion: In the first round, the teams
are grouped into 8 pairs to play. There will be 8 winners, and 8 teams will be out. Then
in the second round, 8 teams are grouped into 4 pairs. There will be 4 winners. Then
the top 4 teams are grouped into 2 pairs, there will be two teams left for the final. The
champion is determined after 4 rounds of games. There are total 8+4+2+1 = 15 games.
Besides the champion, we also want to know which is the silver medal team. In the real
world cup, the team lost the final is the runner-up. However, it isn’t fair in some sense.
We often hear about the ‘group of death’. Suppose Brazil is grouped with Germam in
round one. Although both teams are strong, one team is knocked out. It’s quite possible
that team would beat other teams except for the champion, as shown in figure 9.5.

16

16 14

16 13

7 16

7 6 15 16

8 13

8 4 13 3

10 14

10 9

5 10 9 1

12 14

12 2 11 14

Figure 9.5: The element 15 is knocked out in the first round.

Assign every team a number to measure its strength. Suppose the team with greater
number always beats the smaller one (this is obviously not true in real world). The
champion number is 16. the runner-up is not 14, but 15, which is out in the first round.
We need figure out a way to quickly identify the second greater number in the tournament
tree. The apply it to select the 3rd, the 4th, ... to sort. We can mutate the champion
to a very small number, i.e. −∞, hence it won’t be selected next time, and the previous
runner-up will become the new champion. For 2m teams, where m is some natural number,
it takes 2m−1 +2m−2 + ...+2+1 = 2m− 1 comparisons to determine the new champion.
This is same as before. Actually, we needn’t perform bottom-up comparisons because
the tournament tree stores sufficient ordering information. The champion must beat the
runner-up at sometime. We can locate the runner-up along the path from the root to

9.4. FURTHER IMPROVEMENT 173

the leaf of the champion. We grey the path in figure 9.5 of [14, 13, 7, 15]. This method is
defined as below:

1. Build a tournament tree with the maximum (the champion) at the root;

2. Take the root, replace it with −∞ along the path to leaf;

3. Perform a bottom-up back-track along the path, find the new champion and store
it in the root;

4. Repeat step 2 to process all elements.

15

15 14

15 13

7 15

7 6 15 -INF

8 13

8 4 13 3

10 14

10 9

5 10 9 1

12 14

12 2 11 14

Take 16, replace with −∞, 15 becomes the new root.
14

13 14

7 13

7 -INF

7 6 -INF -INF

8 13

8 4 13 3

10 14

10 9

5 10 9 1

12 14

12 2 11 14

Take 15, replace with −∞, 14 becomes the new root.
13

13 12

7 13

7 -INF

7 6 -INF -INF

8 13

8 4 13 3

10 12

10 9

5 10 9 1

12 11

12 2 11 -INF

Take 14, replace with −∞, 13 becomes the new root.

Figure 9.6: The first 3 steps of tournament tree sort.

To sort a collection of elements, we build a tournament tree from them, repeatedly
select the champion from it. Figure 9.6 gives the first 3 steps. We can re-use the binary
tree definition. To make back-track easy, we need the parent field in each node. When
n is not 2m form some natural number m, there is remaining element without “player”,
and directly enters the next round of games. To build the tournament tree, we build n
singleton trees from every element. Then pick every two t1, t2 to create a bigger binary
tree t. Where the root of t is max(key(t1), key(t2)), the left and right sub-trees are t1,

174 CHAPTER 9. SELECTION SORT

t2. Repeat to obtain a collection of new trees, each height increases by one. If there
is remaining, then enters the next round. After this round, trees halve to bn

2
c. Repeat

this to obtain the final tournament tree. The process is bound to O(n +
n

2
+

n

4
+ ...) =

O(2n) = O(n) time.
1: function Build-Tree(A)
2: T ← []
3: for each x ∈ A do
4: Append(T , Node(NIL, x, NIL))
5: while |T | > 1 do
6: T ′ ← []
7: for every t1, t2 ∈ T do
8: k ← Max(Key(t1), Key(t2))
9: Append(T ′, Node(t1, k, t2))

10: if |T| is odd then
11: Append(T ′, Last(T))
12: T ← T ′

13: return T [1]

We replace the root with −∞ top-down, then back-track through the parent field to
find the new maximum.

1: function Pop(T)
2: m← Key(T)
3: Key(T) ← −∞
4: while T is not leaf do ▷ top-down replace m with −∞.
5: if Key(Left(T)) = m then
6: T ← Left(T)
7: else
8: T ← Right(T)
9: Key(T) ← −∞

10: while Parent(T) 6= NIL do ▷ bottom-up to find the new maximum.
11: T ← Parent(T)
12: Key(T) ← Max(Key(Left(T)), Key(Right(T)))
13: return (m,T) ▷ the maximum and the new tree.

Pop process the tree in two passes, top-down, then bottom-up along the path of the
champion. Because the tournament tree is balanced, the length of this path, i.e. height
of the tree, is bound to O(lgn), where n is the number of the elements. Below is the
tournament tree sort. We first build the tree in O(n) time, then pop the maximum for n
times, each pop takes O(lgn) time. The total time is bound to O(n lgn).

procedure Sort(A)
T ← Build-Tree(A)
for i← |A| down to 1 do

A[i]← Extract-Max(T)
We can also implement tournament tree sort recursively. Reuse the binary search tree

definition, let an none empty tree be (l, k, r), where k is the element, l, r are the left and
right sub-trees. Define wrap x = (∅, x,∅) to create a leaf node. We can convert the n
elements to a list of n single trees: ts = map wrap xs. For every pair of trees t1, t2, we
merge them to a bigger tree, pick the greater element as the new root, and t1, t2 become
the left and right sub-trees.

merge t1 t2 = (t1,max k1 k2, t2) (9.13)

9.4. FURTHER IMPROVEMENT 175

Where k1 = key t1, k2 = key t2 are the elements at root respectively. Define a function
build ts to repeatedly merge two trees, and build the final tournament tree.

build [] = ∅
build [t] = t
build ts = build (pairs ts)

(9.14)

Where:

pairs (t1 : t2 : ts) = (merge t1 t2) : pairs ts
pairs ts = ts

(9.15)

When pop the champion, we examine the sub-trees to see which one holds the same
element as the root. Then recursively pop the champion from the sub-tree till the leaf
node. Then replace it with −∞.

pop (∅, k,∅) = (∅,−∞,∅)

pop (l, k, r) =

{
k = key l : (l′,max (key l′) (key r), r),wherel′ = pop l

k = key r : (l,max (key l) (key r′), r′),wherer′ = pop r

(9.16)
Then repeatedly pop from the tournament tree to sort (in descending order):

sort ∅ = []
sort (l,−∞, r) = []

sort t = (key t) : sort (pop t)
(9.17)

Exercise 9.2
1. Implement the recursive tournament tree sort in ascending order.
2. When there are duplicated elements, how to sort it with tournament tree?
3. Compare the tournament tree sort and binary search tree sort in terms of space

and time performance.
4. Compare heap sort and tournament tree sort in terms of space and time perfor-

mance.

9.4.2 Heap sort
We improve the selection based sort to O(n lgn) time through tournament tree. It is
the upper limit of the comparison based sort [51]. However, there are still rooms for
improvement. After sort, The binary holds all −∞, occupying 2n nodes for n elements.
It’s there a way to release node after pop? Can we halve 2n nodes to n? Treat the tree
as empty when the root element is −∞, and rename key to top, we can write (9.17) in a
generic way:

sort ∅ = []
sort t = (top t) : sort (pop t)

(9.18)

This is exactly as same as the definition of heap sort. Heap always stores the minimum
(or the maximum) on the top, and provides fast pop operation. The array implementation
encodes the binary tree structure as indices, uses exactly n cells to represent the heap.
The functional heaps, like the leftist heap and splay heap use n nodes as well. We’ll give
more well performed heaps in next chapter.

176 CHAPTER 9. SELECTION SORT

9.5 Appendix - example programs
Tail recursive selection sort:
sort [] = []
sort xs = x : sort xs'

where
(x, xs') = extractMin xs

extractMin (x:xs) = min' [] x xs
where
min' ys m [] = (m, ys)
min' ys m (x:xs) = if m < x then min' (x:ys) m xs

else min' (m:ys) x xs

Cock-tail sort:
[A] cocktailSort([A] xs) {

Int n = length(xs)
for Int i = 0 to n / 2 {

var (mi, ma) = (i, n - 1 -i)
if xs[ma] < xs[mi] then swap(xs[mi], xs[ma])
for Int j = i + 1 to n - 1 - i {

if xs[j] < xs[mi] then mi = j
if xs[ma] < xs[j] then ma = j

}
swap(xs[i], xs[mi])
swap(xs[n - 1 - i], xs[ma])

}
return xs

}

Tail recursive cock-tail sort:
csort xs = cocktail [] [] xs

where
cocktail as bs [] = reverse as ++ bs
cocktail as bs [x] = reverse (x:as) ++ bs
cocktail as bs xs = let (mi, ma, xs') = minMax xs

in cocktail (mi:as) (ma:bs) xs'

minMax (x:y:xs) = foldr sel (min x y, max x y, []) xs
where
sel x (mi, ma, ys) | x < mi = (x, ma, mi:ys)

| ma < x = (mi, x, ma:ys)
| otherwise = (mi, ma, x:ys)

Build the tournament tree (reuse the binary tree structure):
Node<T> build([T] xs) {

[T] ts = []
for x in xs {

append(ts, Node(null, x, null))
}
while length(ts) > 1 {

[T] ts' = []
for l, r in ts {

append(ts', Node(l, max(l.key, r.key), r))
}
if odd(length(ts)) then append(ts', last(ts))
ts = ts'

}
return ts[0];

}

Pop from the tournament tree:

Elementary Algorithms 177

T pop(Node<T> t) {
T m = t.key
t.key = -INF
while not isLeaf(t) {

t = if t.left.key == m then t→left else t→right
t.key = -INF

}
while (t.parent ̸= null) {

t = t.parent
t.key = max(t.left.key, t.right.key)

}
return (m, t);

}

Tournament tree sort:
void sort([A] xs) {

Node<T> t = build(xs)
for Int n = length(xs) - 1 downto 0 {

(xs[n], t) = pop(t)
}

}

Recursive tournament tree sort (descending order):
data Tr a = Empty | Br (Tr a) a (Tr a)

data Infinite a = NegInf | Only a | Inf deriving (Eq, Ord)

key (Br _ k _) = k

wrap x = Br Empty (Only x) Empty

merge t1@(Br _ k1 _) t2@(Br _ k2 _) = Br t1 (max k1 k2) t2

fromList = build ◦ (map wrap) where
build [] = Empty
build [t] = t
build ts = build (pairs ts)
pairs (t1:t2:ts) = (merge t1 t2) : pair ts
pairs ts = ts

pop (Br Empty _ Empty) = Br Empty NegInf Empty
pop (Br l k r) | k == key l = let l' = pop l in Br l' (max (key l') (key r)) r

| k == key r = let r' = pop r in Br l (max (key l) (key r')) r'

toList Empty = []
toList (Br _ Inf _) = []
toList t@(Br _ Only k _) = k : toList (pop t)

sort = toList ◦ fromList

178 Binomial heap, Fibonacci heap, and pairing heap

Chapter 10

Binomial heap, Fibonacci heap,
and pairing heap

10.1 Introduction

Binary heap stores elements in a binary tree, we can extend it to k-ary tree [54] (k > 2
multi-ways tree), or multiple trees. This chapter introduces binomial heap, which consists
of forest of k-ary trees. When delay some operations to a Binomial heap, we obtained
Fibonacci heap. It improves the heap merge performance from O(lgn) time bound to
amortized constant time. This is critical for graph algorithm design. We give pairing
heap as a simplified heap implementation with good overall performance.

10.2 Binomial Heaps
Binomial heap is named after Newton’s binomial theorem. It consists of a set of k-ary
trees (also called a forest). Every tree has the size equal to a binomial coefficient. Newton
proved that (a+ b)n expands to:

(a+ b)n = an +

(
n

1

)
an−1b+ ...+

(
n

n− 1

)
abn−1 + b (10.1)

When n is a natural number, the coefficients is some row in Pascal’s triangle1 [55].

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
...

The first row is 1, all the first and last numbers are 1 for every row. Any other number
is the sum of the top-left and top-right numbers in the previous row. There are many
methods to generate pascal triangles, like recursion.

1Also know as the Jia Xian’s triangle named after ancient Chinese mathematician Jia Xian (1010-
1070). Newton generalized n to rational numbers, later Euler expand it to real exponents.

179

180 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

Binomial tree

A binomial tree is a multi-ways tree with an integer rank. Denoted as B0 if the rank is
0, and Bn for rank n.

1. B0 has only one node;

2. Bn is formed by two Bn−1 trees, the one with the greater root element is the left
most sub-tree of the other, as shown in figure 10.1.

Figure 10.1: Binomial tree

Figure 10.2 gives examples of B0 to B4.
We can find the number of nodes in every row in Bn is a binomial coefficient. For

example in B4, there is a node (root) in level 0, 4 nodes in level 1, 6 nodes in level 2, 4
nodes in level 3, and a node in level 4. They are exactly same as the 4th row (start from
0) of Pascal’s triangle: 1, 4, 6, 4, 1. This is the reason why we name it binomial tree. We
can further know there are 2n elements in a Bn tree.

A binomial heap is a set of binomial trees (a forest) that satisfies the following two
rules:

1. Every tree satisfies the heap property, i.e. for min heap, the element in every node
is not less than (≥) its parent;

2. Every tree has unique rank. i.e. any two trees have different ranks.

From the 2nd rule, for a binomial heap of n elements, convert n to its binary format
(am...a1, a0)2, where a0 is the least significant bit (LSB) and am is the most significant
bit (MSB). If if ai = 0, there is no tree of rank i; if ai = 1, there is a tree of rank i.
For example, consider a binomial heap of 5 elements. As 5 is 101 in binary, there are
2 binomial trees, one is B0, the other is B2. The binomial heap in figure 10.3 has 19
elements, 19 is (10011)2. There is a B0, a B1, and a B4.

We define the binomial tree as (r, k, ts), where r is the rank, k is the element in the
root, and ts is the list of sub-trees ordered by rank.
data BiTree a = Node Int a [BiTree a]

type BiHeap a = [BiTree a]

10.2. BINOMIAL HEAPS 181

(a) B0

1

0

(b) B1

2

1 0

0

(c) B2

3

2 1 0

1 0

0

0

(d) B3

4

3 2 1 0

2 1 0

1 0

0

0

1 0

0

0

...
(e) B4

Figure 10.2: Binomial trees of rank 0, 1, 2, 3, 4, ...

18 3

37

6

8 29 10 44

30 23 22

45 32

55

24

48 31

50

17

Figure 10.3: A binomial heap with 19 elements

182 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

There is a method called ‘left-child, right-sibling’ [4], that can reuse the binary tree
data structure to define multi-ways tree. Every node has the left and right part. the
left references to the first sub-tree; the right references to its sibling. All siblings form a
list as shown in figure 10.4. Alternatively, we can use an array or a list to represent the
sub-trees.

Figure 10.4: R is the root, T1, T2, ..., Tm are sub-trees of R. The left of R is T1, the right
is NIL. T11, ..., T1p are sub-trees of T1. The left of T1 is T11, the right is its sibling T2.
The left of T2 is T21, the left is sibling.

10.2.1 Link
To link two Bn trees to a Bn+1 tree, we compare the two root elements, choose the smaller
one as the root, and put the other tree ahead of other sub-trees as shown in figure 10.5.

link (r, x, ts) (r, y, ts′) =

{
x < y : (r + 1, x, (r, t, ts′) : ts)

otherwise : (r + 1, y, (r, x, ts) : ts′)
(10.2)

x

y ...

...

Figure 10.5: If x < y, link y as the first sub-tree of x.

We can implement link with ‘left child, right sibling’ method as below. Link operation
is bound to constant time.

1: function Link(x, y)
2: if Key(y) < Key(x) then
3: Exchange x↔ y

4: Sibling(y) ← Sub-Trees(T1)
5: Sub-Trees(x) ← y
6: Parent(y) ← x

10.2. BINOMIAL HEAPS 183

7: Rank(x) ← Rank(y) + 1
8: return x

Exercise 10.1
1. Write a program to generate Pascal’s triangle.
2. Prove that the i-th row in tree Bn has

(
n
i

)
nodes.

3. Prove there are 2n elements in Bn tree.
4. Use a container to store sub-trees, how to implement link? How to secure the

operation is in constant time?

Insert

When insert a new tree, we keep the trees in binomial heap ordered by rank (ascending):

ins t [] = [t]

ins t (t′ : ts) =


rank t < rank t′ : t : t′ : ts

rank t′ < rank t : t′ : ins t ts

otherwise : ins (link t t′) ts

(10.3)

Where rank (r, k, ts) = r gives the rank of a tree. For empty heap [], it becomes a
single list of the new tree t; otherwise, we compare the rank of t with the first tree t′, if t
has less rank, then it becomes the new first one; if t′ has less rank, we recursively insert
t to the rest trees; if they have the same rank, then link t and t′ to a bigger tree, and
recursively insert to the rest. For n elements, there are at most O(lgn) binomial trees in
the heap. ins links O(lgn) time at most, as linking is bound to constant time, the overall
performance is bound to O(lgn)2. We can define insert for binomial heap with ins. First
wrap the new element x in a singleton tree, then insert the tree to the heap:

insert x = ins (0, x, []) (10.4)

This is a Curried definition, we can further insert a list of elements to the heap by
using fold:

fromList = foldr insert [] (10.5)

Below is the implementation with ’left child, right sibling’ method:
1: function Insert-Tree(T,H)
2: ⊥← p← Node(0, NIL, NIL)
3: while H 6= NIL 且 Rank(H) ≤ Rank(T) do
4: T1 ← H
5: H ← Sibling(H)
6: if Rank(T) = Rank(T1) then
7: T ← Link(T, T1)
8: else
9: Sibling(p) ← T1

10: p← T1

11: Sibling(p) ← T
12: Sibling(T) ← H
13: return Remove-First(⊥)

2It’s similar to adding two binary numbers. A more generic topic is numeric representation [3].

184 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

14: function Remove-First(H)
15: n← Sibling(H)
16: Sibling(H) ← NIL
17: return n

10.2.2 Merge
When merge two binomial heaps, we actually merge two lists of binomial trees. Every
tree has unique rank in merged result, and the ranks are in ascending order. The tree
merge process is similar to merge sort. Every time, we pick the first tree from each heap,
compare their ranks, put the smaller one to the result. If the two trees have the same
rank, we link them to a bigger one, and recursively insert to the merge result.

merge ts1 [] = ts1
merge [] ts2 = ts2

merge (t1 : ts1) (t2 : ts2) =


rank t1 < rank t2 : t1 : (merge ts1 (t2 : ts2))

rank t2 < rank t1 : t2 : (merge (t1 : ts1) ts2)

otherwise : ins (link t1 t2) (merge ts1 ts2)

(10.6)
Alternatively, when t1 and t2 have the same rank, we can insert the linked tree back

to either heap, and recursively merge:

merge (ins (link t1 t2) ts1) ts2

We can also eliminate recursion, and implement iterative merge:
1: function Merge(H1,H2)
2: H ← p← Node(0, NIL, NIL)
3: while H1 6= NIL and H2 6= NIL do
4: if Rank(H1) < Rank(H2) then
5: Sibling(p) ← H1

6: p← Sibling(p)
7: H1 ← Sibling(H1)
8: else if Rank(H2) < Rank(H1) then
9: Sibling(p) ← H2

10: p← Sibling(p)
11: H2 ← Sibling(H2)
12: else ▷ same rank
13: T1 ← H1, T2 ← H2

14: H1 ← Sibling(H1), H2 ← Sibling(H2)
15: H1 ← Insert-Tree(Link(T1, T2), H1)
16: if H1 6= NIL then
17: Sibling(p) ← H1

18: if H2 6= NIL then
19: Sibling(p) ← H2

20: return Remove-First(H)
If there are m1 trees in H1, m2 trees in H2. There are at most m1 + m2 trees

after merge. The merge is bound to O(m1 + m2) time if all trees have different ranks.
If there exist trees of the same rank, we call ins up to O(m1 + m2) times. Consider
m1 = 1+ blgn1c and m2 = 1+ blgn2c, where n1, n2 are the numbers of elements in each
heap, and blgn1c+ blgn2c ≤ 2blgnc, where n = n1 +n2. The final performance of merge
is O(lgn).

10.2. BINOMIAL HEAPS 185

Pop

Although every tree has the minimal element in its root, we don’t know which tree holds
the overall minimum in the heap. We need locate it from all trees. As there are O(lgn)
trees, it takes O(lgn) time to find the top element. For pop, we need further remove the
top element and maintain heap property. Let the trees be Bi, Bj , ..., Bp, ..., Bm in the
heap, and the minimum is in the root of Bp. After remove the top, there leave p sub
binomial trees with ranks of p−1, p−2, ..., 0. We can reverse them to form a new binomial
heap Hp. The other trees without Bp also form a binomial heap H ′ = H − [Bp]. We
merge Hp and H ′ to get the final result as shown in figure 10.6. Below is the definition
to access the minimal element in the heap.

Figure 10.6: Binomial heap pop.

top (t : ts) = foldr f (key t) ts (10.7)

f (r, x, ts) y = min x y

It’s means to traverse all trees and find the which root has the minimum.
1: function Top(H)
2: m←∞
3: while H 6= NIL do
4: m← Min(m, Key(H))
5: H ← Sibling(H)
6: return m

To support pop, we need extract the tree containing the minimum out:

min′ [t] = (t, [])

min′ (t : ts) =

{
key t < key t′ : (t, ts),其中 : (t′, ts′) = min′ ts

否则 : (t′, t : ts′)

(10.8)

Where key (r, k, ts) = k accesses the root element, the result of min′ is a pair: the
tree containing the minimum and the remaining trees. We next define pop with it:

pop H = (k,merge (reverse ts) H ′),其中 : ((r, k, ts),H ′) = min′ H (10.9)

The iterative implementation is as below:

186 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

1: function Pop(H)
2: (Tm,H)← Extract-Min(H)
3: H ← Merge(H, Reverse(Sub-Trees(Tm)))
4: Sub-Trees(Tm)
5: return (Key(Tm), H)

Where the list reverse is defined in chapter 1, Extract-Min is implemented as below:
1: function Extract-Min(H)
2: H ′ ← H, p← NIL
3: Tm ← Tp ← NIL
4: while H 6= NIL do
5: if Tm = NIL or Key(H) < Key(Tm) then
6: Tm ← H
7: Tp ← p

8: p← H
9: H ← Sibling(H)

10: if Tp 6= NIL then
11: Sibling(Tp) ← Sibling(Tm)
12: else
13: H ′ ← Sibling(Tm)
14: Sibling(Tm) ← NIL
15: return (Tm,H ′)

We can implement heap sort with pop. First build a binomial heap from a list of
elements, then repeatedly pop the smallest element.

sort = heapSort ◦ fromList (10.10)

Where heapSort is defined as:

heapSort [] = []
heapSort H = k : (heapSort H ′),where : (k,H ′) = pop H

(10.11)

Binomial heap insert and merge are bound to O(lgn) time in worst case, their amor-
tized performance are constant time, we skip the proof.

10.3 Fibonacci heap
Binomial heap is named from binomial theorem, Fibonacci heap is named after Fibonacci
numbers3. Fibonacci heap is essentially a ‘lazy’ binomial heap. It delays some operation.
However, it does not mean the binomial heap turns to be Fibonacci heap automatically in
lazy evaluation environment. Such environment only makes the implementation easy [56].
All operations except for pop are bound to amortized constant time [57].

When insert new element x to a binomial heap, we wrap x to a single tree, then
insert to the forest. We keep the rank ordering, if two ranks are same, we link them, and
recursively insert. The performance is bound to O(lgn) time. Taking lazy strategy, we
delay the ordered (by rank) insert and link later. Put the single tree of x directly to the
forest. To access the top element in constant time, we need record which tree has the
minimum in its root. A Fibonacci heap is either empty ∅, or a forest of trees denoted as
(n, tm, ts). Where tm is the tree holds the minimal element, n is the number of elements

3Michael L. Fredman and Robert E. Tarjan, used Fibonacci numbers to prove the performance time
bound, they decided to use Fibonacci to name this data structure. [4]

10.3. FIBONACCI HEAP 187

operation Binomial heap Fibonacci heap
insertion O(lgn) O(1)
merge O(lgn) O(1)
top O(lgn) O(1)
pop O(lgn) amortized O(lgn)

Table 10.1: Performance of Fibonacci heap and binomial heap

in the heap, and ts is the rest trees. Below example program defines Fibonacci heap
(reused the definition of binomial tree).
data FibHeap a = E | FH { size :: Int

, minTree :: BiTree a
, trees :: [BiTree a]}

We can access the top element in constant time: top H = key minTree H.

10.3.1 Insert
We define insert as a special case of merge: one heap contains a singleton tree:

insert x H = merge (singleton x) H

Or simplified in Curried form:

insert = merge ◦ singleton (10.12)

singleton x = (1, (1, x, []), [])

We can also implement insert as add a tree to the forest, then update the reference to
the tree holds the minimum.

1: function Insert(k,H)
2: x← Singleton(k) ▷ wrap k to a tree
3: Add(x, Trees(H))
4: Tm ← Min-Tree(H)
5: if Tm = NIL or k < Key(Tm) then
6: Min-Tree(H) ← x

7: Size(H) ← Size(H) + 1
Where Trees(H) access the list of trees in H, Min-Tree(H) returns the tree that

holds the minimal element.

Merge

Different from binomial heap, we delay the link operation, but only put the trees from
two heaps together, and pick the new top element.

merge h ∅ = h
merge ∅ h = h

merge (n, tm, ts) (n′, t′m, ts′) =

{
key tm < key t′m : (n+ n′, tm, t′m : ts++ ts′)

otherwise : (n+ n′, t′m, tm : ts++ ts′)

(10.13)
When neither tree is empty, the ++ takes time that is proportion to the number of

trees in one heap. We can improve it to constant time with doubly linked-list to store
trees as shown in below example program.

188 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

data Node<K> {
K key
Int rank
Node<k> next, prev, parent, subTrees

}

data FibHeap<K> {
Int size
Node<K> minTree, trees

}

1: function Merge(H1,H2)
2: H ← Fib-Heap
3: Trees(H) ← Concat(Trees(H1), Trees(H2))
4: if Key(Min-Tree(H1)) < Key(Min-Tree(H2)) then
5: Min-Tree(H) ← Min-Tree(H1)
6: else
7: Min-Tree(H) ← Min-Tree(H2)

Size(H) = Size(H1) + Size(H2)
8: return H

9: function Concat(s1, s2)
10: e1 ← Prev(s1)
11: e2 ← Prev(s2)
12: Next(e1) ← s2
13: Prev(s2) ← e1
14: Next(e2) ← s1
15: Prev(s1) ← e2
16: return s1

Pop

As the link operation is delayed to future during merge, we need ‘compensate’ it during
pop. We define it as tree consolidation. Consider another problem: given a list of numbers
of 2m (m is natural numbers), for e.g., L = [2, 1, 1, 4, 8, 1, 1, 2, 4], we repeatedly sum the
two equal numbers until all numbers are unique. The result is [8, 16]. This process is
shown in table 10.2. The first column gives the number we are ‘scanning’; the second
is the middle step, i.e. compare current number and the first number in result list, add
them when equal; the last column is the merge result, which inputs to the next step. The
consolidation process can be defined with fold:

number compare, add result
2 2 2
1 1, 2 1, 2
1 (1+1), 2 4
4 (4+4) 8
8 (8+8) 16
1 1, 16 1, 16
1 (1+1), 16 2, 16
2 (2+2), 16 4, 16
4 (4+4), 16 8, 16

Table 10.2: Consolidation steps.

10.3. FIBONACCI HEAP 189

consolidate = foldr melt [] (10.14)
Where melt is defined as below:

melt x [] = x

melt x (x′ : xs) =


x = x′ : melt 2x xs

x < x′ : x : x′ : xs

x > x′ : x′ : melt x xs

(10.15)

Let n = sum L, the sum of all numbers. consolidate actually represent n in binary
format. If the i-th bit is 1, then the result contains 2i (i starts from 0). For e.g.,
sum[2, 1, 1, 4, 8, 1, 1, 2, 4] = 24. It’s 11000 in binary, the 3rd and 4th bit are 1, hence the
result contains 23 = 8, 24 = 16. We can consolidate trees in similar way: compare the
rank, and link the trees:

melt t [] = [t]

melt t (t′ : ts) =


rank t = rank t′ : melt (link t t′) ts

rank t < rank t′ : t : t′ : ts

rank t > rank t′ : t′ : melt t ts

(10.16)

Figure 10.7 gives the consolidation steps. It is similar to number consolidation when
compare with table 10.2. We can use an auxiliary array A to do the consolidation. A[i]
stores the tree of rank i. We traverse the trees in the heap. If meet another tree of rank
i, we link them together to obtain a bigger tree of rank i+ 1, clean A[i], and next check
whether A[i+ 1] is empty or not. If there is a tree of rank i+ 1, then link them together
again. Array A stores the final consolidation result after traverse.

1: function Consolidate(H)
2: R← Max-Rank(Size(H))
3: A← [NIL, NIL, ..., NIL] ▷ total R cells
4: for each T in Trees(H) do
5: r ← Rank(T)
6: while A[r] 6= NIL do
7: T ′ ← A[r]
8: T ← Link(T, T ′)
9: A[r]← NIL

10: r ← r + 1

11: A[r]← T

12: Tm ← NIL
13: Trees(H) ← NIL
14: for each T in A do
15: if T 6= NIL then
16: append T to Trees(H)
17: if Tm = NIL or Key(T) < Key(Tm) then
18: Tm ← T

19: Min-Tree(H) ← Tm

It becomes a binomial heap after consolidation. There are O(lgn) trees. Max-
Rank(n) returns the upper limit of rank R in a heap of n elements. From the binomial
tree result, the biggest tree BR has 2R elements. We have 2R ≤ n < 2R+1, we estimate
the rough upper limit is R ≤ log2 n. We’ll give more accurate estimation of R in later
section. We need additionally scan all trees, find the minimal root element. We can reuse
min′ defined in (10.8) to extract the min-tree.

pop (1, (0, x, []), []) = (x, [])
pop (n, (r, x, tsm), ts) = (x, (n− 1, tm, ts′))

(10.17)

190 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

a

b

c d e

f g

i

h

j k m

q

l n o

p

r s

t

u

v w

x

Before

c a

b

Step 1, 2

a

b c

d

Step 3, link d and c, then
link a.

a

b c e

d f g

h

Step 4

a

b c e i

d f g

h

j k m

l n o

p

Step 5

q a

b c e i

d f g

h

j k m

l n o

p

Step 6
q

r s

a

t

b c e i

d f g

h

j k m

l n o

p

Step 7, 8, link r and q, then link s and q.

Figure 10.7: Consolidation

10.3. FIBONACCI HEAP 191

Where (tm, ts′) = min′ consolidate (tsm ++ ts). It takes O(|tsm|) time for ++ to
concatenate trees. The corresponding iterative implementation is as below:

1: function Pop(H)
2: Tm ← Min-Tree(H)
3: for each T in Sub-Trees(Tm) do
4: append T to Trees(H)
5: Parent(T) ← NIL
6: remove Tm from Trees(H)
7: Size(H) ← Size(H) - 1
8: Consolidate(H)
9: return (Key(Tm), H)

We use the ‘potential’ method to evaluate the amortized performance. The gravity
potential energy in physics is defined as:

E = mgh

As shown in figure 10.8, consider some process, that moves an object of mass m up
and down, and finally stops at height h′. Let the friction resistance be Wf , the process
works the following power:

W = mg(h′ − h) +Wf

Figure 10.8: Gravity potential energy.

Consider heap pop. To evaluate the cost, let the potential be Φ(H) before pop. It
is the result accumulated by a series of insert and merge operations. The heap becomes
H ′ after tree consolidation. The new potential is Φ(H ′). The difference between Φ(H ′)
and Φ(H), plus the cost of tree consolidation give the amortized performance. Define the
potential as:

Φ(H) = t(H) (10.18)

Where t(H) is the number of trees in the heap. Let the upper bound of rank for all
trees as R(n), where n is the number of elements in the heap. After tree consolidation,
there are at most t(H ′) = R(n)+1 trees. Before consolidation, there is another operation
contributes to running time. we removed the root of min-tree, then add all sub-trees to
the heap. We consolidate at most R(n)+ t(H)− 1 trees. Let the pop performance bound
to T , the consolidation bound to Tc, the amortized time is given as below:

T = Tc +Φ(H ′)− Φ(H)
= O(R(n) + t(H)− 1) + (R(n) + 1)− t(H)
= O(R(n))

(10.19)

192 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

Insert, merge, and pop ensure all trees are binomial trees, therefore, the upper bound
of R(n) is O(lgn).

10.3.2 Increase priority
We can use heap to manage tasks with priority. When need prioritize a task, we decrease
the corresponding element, making it close to the heap top. Some graph algorithms, like
the minimum spanning tree and Dijkstra’s algorithm rely on this heap operation [4] meet
amortized constant time. Let x be a node in the heap H, we need decrease its value to
k. As shown in figure 10.9, if the element in x is less than the one in its parent y, we
cut x off y, the add it the heap (forest). Although it ensures the parent still holds the
minimum in the tree, it is not binomial tree any more. The performance drops when loss
too many sub-trees. We add another rule to address this problem: If a node losses its
second sub-tree, it is immediately cut from parent, and added to the heap (forest).

Figure 10.9: If key x < key y, cut x off and add to the heap.

1: function Decrease(H,x, k)
2: Key(x) ← k
3: p← Parent(x)
4: if p 6= NIL and k < Key(p) then
5: Cut(H,x)
6: Cascade-Cut(H, p)
7: if k < Top(H) then
8: Min-Tree(H) ← x

Where function Cascade-Cut uses a mark to record whether a node lost sub-tree
before. The mark is cleared later in Cut function.

1: function Cut(H,x)
2: p← Parent(x)
3: remove x from p
4: Rank(p) ← Rank(p) - 1
5: add x to Trees(H)
6: Parent(x) ← NIL

10.3. FIBONACCI HEAP 193

7: Mark(x) ← False
During cascade cut, if node x is marked, it has lost some sub-tree before. We need

recursively cut along the parent till root.
1: function Cascade-Cut(H,x)
2: p← Parent(x)
3: if p 6= NIL then
4: if Mark(x) = False then
5: Mark(x) ← True
6: else
7: Cut(H,x)
8: Cascade-Cut(H, p)

Exercise 10.2
Prove Decrease is bound to amortized O(1) time.

10.3.3 The name of Fibonacci heap
We are yet to implement Max-Rank(n). It defines the upper bound of tree rank for a
Fibonacci heap of n elements.

Lemma 10.3.1. For any tree x in a Fibonacci Heap, let k = rank(x), and |x| = size(x),
then

|x| ≥ Fk+2 (10.20)

Where Fk is the k-th Fibonacci number:

F0 = 0
F1 = 1
Fk = Fk−1 + Fk−2

Proof. For tree x, let its k sub-trees be y1, y2, ..., yk, ordered by the time when they are
linked to x. Where y1 is the first, and yk is the latest. Obviously, |yi| ≥ 0. When link yi
to x, there have already been sub-trees of y1, y2, ..., yi−1. Because we only link nodes of
the same rank, by that time we have:

rank(yi) = rank(x) = i− 1

After that, yi can lost additional sub-tree at most, (through the Decrease). Once
loss the second sub-tree, it will be cut off then add to the forest. For any i = 2, 3, ..., k,
we have:

rank(yi) ≥ i− 2

Let sk be the minimum possible size of tree x, where k = rank(x). It starts from
s0 = 1, s1 = 2. i.e. there is at least a node in tree of rank 0, at least two nodes in tree of
rank 1, at least k nodes in tree of rank k.

|x| ≥ sk
= 2 + srank(y2) + srank(y3) + ...+ srank(yk)

≥ 2 + s0 + s1 + ...+ sk−2

194 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

The last row holds because rank(yi) ≥ i − 2, and sk is monotonic, hence srank(yi) ≥
si−2. We next show that sk > Fk+2. Apply induction. For edge case, s0 = 1 ≥ F2 = 1,
and s1 = 2 ≥ F3 = 2; For induction case k ≥ 2.

|x| ≥ sk
≥ 2 + s0 + s1 + ...+ sk−2

≥ 2 + F2 + F3 + ...+ Fk induction hypothesis
= 1 + F0 + F1 + F2 + ...+ Fk fromF0 = 0, F1 = 1

Next, we prove:

Fk+2 = 1 +

k∑
i=0

Fi (10.21)

Use induction again:

• Edge case, F2 = 1 + F0 = 2

• Induction case, suppose it’s true for k + 1.

Fk+2 = Fk+1 + Fk

= (1 +

k−1∑
i=0

Fi) + Fk induction hypothesis

= 1 +

k∑
i=0

Fi

Wrap up to the final result:
n ≥ |x| ≥ Fk+2 (10.22)

For Fibonacci sequence, Fk ≥ ϕk, where ϕ =
1 +
√
5

2
is the golden ratio. We prove

that pop is amortized O(lgn) algorithm. We can define maxRank as:

MaxRank(n) = 1 + blogϕ nc (10.23)

We can also implement Max-Degree from Fibonacci numbers:
1: function Max-Rank(n)
2: F0 ← 0, F1 ← 1
3: k ← 2
4: repeat
5: Fk ← Fk1 + Fk2

6: k ← k + 1
7: until Fk < n
8: return k − 2

10.4 Pairing Heaps
It’s complex to implement Fibonacci heap. Pairing heap provides another option. It’s
easy to implement, and the performance is good. Most operations, like insert, top, merge
are bound to constant time. the pop is conjectured to be amortized O(lgn) time [58] [3].

10.4. PAIRING HEAPS 195

10.4.1 Definition
A pairing heap is a multi-way tree. The root holds the minimum. A pairing heap is either
empty ∅, or a k-ary tree, consists of a root and multiple sub-trees, denoted as (x, ts). We
can also use ‘left child, right sibling’ way to define the tree.

data PHeap a = E | Node a [PHeap a]

10.4.2 Merge, insert, and top
There are two cases when merge two heaps:

1. Either heap is ∅, the result is the other heap;

2. Otherwise, compare the two roots, turn the greater one as the new sub-tree of the
other.

merge ∅ h2 = h2

merge h1 ∅ = h1

merge (x, ts1) (y, ts2) =

{
x < y : (x, (y, ts2) : ts1)

otherwise : (y, (x, ts1) : ts2)

(10.24)

merge is bound to constant time. With the ‘left-child, right sibling’ method, we link
the heap with greater root as the first sub-tree of the other.

1: function Merge(H1,H2)
2: if H1 = NIL then
3: return H2

4: if H2 = NIL then
5: return H1

6: if Key(H2) < Key(H1) then
7: Exchange(H1 ↔ H2)
8: Sub-Trees(H1) ← Link(H2, Sub-Trees(H1))
9: Parent(H2) ← H1

10: return H1

Similar to Fibonacci heap, we implement insert with merge as (10.12). We access the
top element from the root: top (x, ts) = x. Both operations are bound to constant time.

10.4.3 Increase priority
When decrease the value in a node, we cut the sub-tree rooted with this node, then merge
it back to the heap. If the node is the root, we can directly decrease its value.

1: function Decrease(H,x, k)
2: Key(x) ← k
3: p← Parent(x)
4: if p 6= NIL then
5: Remove x from Sub-Trees(p)
6: Parent(x) ← NIL
7: return Merge(H,x)
8: return H

196 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

10.4.4 Pop
After pop the root, we consolidate the remaining sub-trees to a tree:

pop (x, ts) = consolidate ts (10.25)

We firstly merge every two sub-trees from left to right, then merge these paired results
from right to left to a tree. This explains the why we name it ‘paring heap’. Figure 10.10
and 10.11 show the paired merge.

2

5 4 3 12 7 10 11 6 9

15 13 8 17 14

16

(a) Before pop.
5

15

4

13

3

8

12 7 10 11 6 9

17 14

16

(b) Pop 2, there are 9 sub-trees.
4

5 13

3

15

12 8

7

10

6

11

9

7 14

16

(c) Merge with pairs, leave the last
tree.

Figure 10.10: Pop the root, merge sub-trees in pairs.

consolidate [] = ∅
consolidate [t] = t

consolidate (t1 : t2 : ts) = merge (merge t1 t2) (consolidate ts)
(10.26)

The corresponding ‘left child, right sibling’ implementation is as below:
1: function Pop(H)
2: L← NIL
3: for every Tx, Ty in Sub-Trees(H) do
4: T ← Merge(Tx, Ty)
5: L← Link(T,L)
6: H ← NIL
7: for T in L do

10.4. PAIRING HEAPS 197

6

9 11

7 14

16

(a) Merge 9 and 6.

6

7 9 11

10 14

16

(b) Merge 7.
3

6 12 8

7 9 11

10 14

16

(c) Merge 3.

3

4 6 12 8

5 13

15

7 9 11

10 14

16

(d) Merge 4.

Figure 10.11: Merge from right to left.

8: H ← Merge(H,T)
9: return H

We iterate to merge Tx, Ty to T , and link ahead of L. When loop on L the second
time, we actually traversed from right to left. When there are odd number of sub-trees,
Ty = NIL at last, hence T = Tx in this case.

Delete

To delete a node x, we can first decrease the value in x to −∞, then followed with a pop.
There is an alternative method. If x is the root, we pop it; otherwise, we cut x off H,
then apply pop to x, and merge x back to H:

1: function Delete(H,x)
2: if H = x then
3: Pop(H)
4: else
5: H ← Cut(H,x)
6: x← Pop(x)
7: Merge(H,x)

As delete is implemented with pop, the performance is conjectured to be amortized
O(lgn) time.

Exercise 10.3
Implement delete for paring heap.

198 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

10.5 Summary
In this chapter, we extend the heap from binary tree based implementation to more data
structures. Binomial heap and Fibonacci heap use forest of multi-way trees, pairing heap
use a single multi-way tree.It’s a common practice to post pone some expensive operation,
and obtain better amortized performance.

10.6 Appendix - example programs
Definition of multi-way tree (left child, right sibling):
data Node<K> {

Int rank
K key
Node<K> parent, subTrees, sibling,
Bool mark

Node(K x) {
key = x
rank = 0
parent = subTrees = sibling = null
mark = false

}
}

Link binomial trees:
Node<K> link(Node<K> t1, Node<K> t2) {

if t2.key < t1.key then (t1, t2) = (t2, t1)
t2.sibling = t1.subTrees
t1.subTrees = t2
t2.parent = t1
t1.rank = t1.rank + 1
return t1

}

Binomial heap insert:
Node<K> insert(K x, Node<K> h) = insertTree(Node(x), h)

Node<K> insertTree(Node<K> t, Node<K> h) {
var h1 = Node()
var prev = h1
while h ̸= null and h.rank ≤ t.rank {

var t1 = h
h = h.sibling
if t.rank == t1.rank {

t = link(t, t1)
} else {

prev.sibling = t1
prev = t1

}
}
prev.sibling = t
t.sibling = h
return removeFirst(h1)

}

Node<K> removeFirst(Node<K> h) {
var next = h.sibling
h.sibling = null
return next

}

10.6. APPENDIX - EXAMPLE PROGRAMS 199

Binomial heap recursive insert:
data BiTree a = Node { rank :: Int

, key :: a
, subTrees :: [BiTree a]}

type BiHeap a = [BiTree a]

link t1@(Node r x c1) t2@(Node _ y c2) =
if x < y then Node (r + 1) x (t2:c1)
else Node (r + 1) y (t1:c2)

insertTree t [] = [t]
insertTree t ts@(t':ts') | rank t < rank t' = t:ts

| rank t > rank t' = t' : insertTree t ts'
| otherwise = insertTree (link t t') ts'

insert x = insertTree (Node 0 x [])

Binomial heap merge:
Node<K> merge(h1, h2) {

var h = Node()
var prev = h
while h1 ̸= null and h2 ̸= null {

if h1.rank < h2.rank {
prev.sibling = h1
prev = prev.sibling
h1 = h1.sibling

} else if h2.rank < h1.rank {
prev.sibling = h2
prev = prev.sibling
h2 = h2.sibling

} else {
var (t1, t2) = (h1, h2)
(h1, h2) = (h1.sibling, h2.sibling)
h1 = insertTree(link(t1, t2), h1)

}
if h1 ̸= null then prev.sibling = h1
if h2 ̸= null then prev.sibling = h2
return removeFirst(h)

}

Binomial heap recursive merge:
merge ts1 [] = ts1
merge [] ts2 = ts2
merge ts1@(t1:ts1') ts2@(t2:ts2')

| rank t1 < rank t2 = t1:(merge ts1' ts2)
| rank t1 > rank t2 = t2:(merge ts1 ts2')
| otherwise = insertTree (link t1 t2) (merge ts1' ts2')

Binomial tree pop:
Node<K> reverse(Node<K> h) {

Node<K> prev = null
while h ̸= null {

var x = h
h = h.sibling
x.sibling = prev
prev = x

}
return prev

}

(Node<K>, Node<K>) extractMin(Node<K> h) {

200 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

var head = h
Node<K> tp = null
Node<K> tm = null
Node<K> prev = null
while h ̸= null {

if tm == null or h.key < tm.key {
tm = h
tp = prev

}
prev = h
h = h.sibling

}
if tp ̸= null {

tp.sibling = tm.sibling
} else {

head = tm.sibling
}
tm.sibling = null
return (tm, head)

}

(K, Node<K>) pop(Node<K> h) {
var (tm, h) = extractMin(h)
h = merge(h, reverse(tm.subtrees))
tm.subtrees = null
return (tm.key, h)

}

Binomial heap recursive pop:
pop h = merge (reverse $ subTrees t) ts where

(t, ts) = extractMin h

extractMin [t] = (t, [])
extractMin (t:ts) = if key t < key t' then (t, ts)

else (t', t:ts') where
(t', ts') = extractMin ts

Merge Fibonacci heaps with bidirectional linked list:
FibHeap<K> merge(FibHeap<K> h1, FibHeap<K> h2) {

if isEmpty(h1) then return h2
if isEmpty(h2) then return h1
FibHeap<K> h = FibHeap<K>()
h.trees = concat(h1.trees, h2.trees)
h.minTree = if h1.minTree.key < h2.minTree.key

then h1.minTree else h2.minTree
h.size = h1.size + h2.size
return h

}

bool isEmpty(FibHeap<K> h) = (h == null or h.trees == null)

Node<K> concat(Node<K> first1, Node<K> first2) {
var last1 = first1.prev
var last2 = first2.prev
last1.next = first2
first2.prev = last1
last2.next = first1
first1.prev = last2
return first1

}

Consolidate trees in Fibonacci heap:
consolidate = foldr melt [] where

10.6. APPENDIX - EXAMPLE PROGRAMS 201

melt t [] = [t]
meld t (t':ts) | rank t == rank t' = meld (link t t') ts

| rank t < rank t' = t : t' : ts
| otherwise = t' : meld t ts

Consolidate trees with auxiliary array:
void consolidate(FibHeap<K> h) {

Int R = maxRank(h.size) + 1
Node<K>[R] a = [null, ...]
while h.trees ̸= null {

var x = h.trees
h.trees = remove(h.trees, x)
Int r = x.rank
while a[r] ̸= null {

var y = a[r]
x = link(x, y)
a[r] = null
r = r + 1

}
a[r] = x

}
h.minTr = null
h.trees = null
for var t in a if t ̸= null {

h.trees = append(h.trees, t)
if h.minTr == null or t.key < h.minTr.key then h.minTr = t

}
}

Fibonacci heap pop:
pop (FH _ (Node _ x []) []) = (x, E)
pop (FH sz (Node _ x tsm) ts) = (x, FH (sz - 1) tm ts') where

(tm, ts') = extractMin $ consolidate (tsm ++ ts)

Decrease value in Fibonacci heap:
void decrease(FibHeap<K> h, Node<K> x, K k) {

var p = x.parent
x.key = k
if p ̸= null and k < p.key {

cut(h, x)
cascadeCut(h, p)

}
if k < h.minTr.key then h.minTr = x

}

void cut(FibHeap<K> h, Node<K> x) {
var p = x.parent
p.subTrees = remove(p.subTrees, x)
p.rank = p.rank - 1
h.trees = append(h.trees, x)
x.parent = null
x.mark = false

}

void cascadeCut(FibHeap<K> h, Node<K> x) {
var p = x.parent
if p == null then return
if x.mark {

cut(h, x)
cascadeCut(h, p)

} else {
x.mark = true

}

202 Queue

}

Chapter 11

Queue

11.1 Introduction
Queue supports first-in, first-out (FIFO). There are many ways to implement queue,
e.g., through linked list, doubly liked list, circular buffer, etc. Okasaki gave 16 different
implementations in [3]. A queue satisfies the following two requirements:

1. Add a new element to the tail in constant time;

2. Access or remove an element from head in constant time.

It’s easy to realize queue with doubly linked list. We skip this implementation, and
focus on using other basic data structures, like (singly) linked list or array.

11.2 Linked-list queue
We can insert or remove element from the head of a linked list. However, to support
FIFO, we have to do one operation in head, and the other in tail. We need O(n) time
traverse to reach the tail, where n is the length. To achieve the constant time performance
goal, we use an extra variable to record the tail position, and apply a sentinel node S to
simplify the empty queue case handling, as shown in figure 11.1.
data Node<K> {

Key key
Node next

}

data Queue {
Node head, tail

}

S

head tail

Figure 11.1: Both head and tail point to S for empty queue.

203

204 CHAPTER 11. QUEUE

The two important queue operations are ‘enqueue’ (also called push, snoc, append, or
push back) and ‘dequeue’ (also called pop, or pop front). When implement queue with
list, we push on head, and pop from tail.

1: function Enqueue(Q, x)
2: p← Node(x)
3: Next(p) ← NIL
4: Next(Tail(Q)) ← p
5: Tail(Q) ← p

As there is at least a S node even for empty queue, we need not check if the tail is
NIL.

1: function Dequeue(Q)
2: x← Head(Q)
3: Next(Head(Q)) ← Next(x)
4: if x = Tail(Q) then ▷ Q is empty
5: Tail(Q) ← Head(Q)
6: return Key(x)

As the S node is ahead of all other nodes, Head actually returns the next node to S, as
shown in figure 11.2. It’s easy to expand this implementation to concurrent environment
with two locks on the head and tail respectively. S node helps to prevent dead-lock when
the queue is empty [59] [60].

Figure 11.2: List with S node.

11.3 Circular buffer
Symmetrically, we can append element to the tail of array, but it takes linear time O(n)
to remove element from head. This is because we need shift all elements one cell ahead.
The idea of circular buffer is to reuse the free cells before the first valid element after we
remove elements from head, as shown figure 11.4, and 11.3. We can use the head index,
the length count, and the size of the array to define a queue. It’s empty when the count is
0, it’s full when count = size, we can also simplify the enqueue/dequeue implementation
with modular operation.

1: function Enqueue(Q, x)
2: if not Full(Q) then
3: Count(Q) ← Count(Q) + 1
4: tail ← (Head(Q) + Count(Q)) mod Size(Q)
5: Buf(Q)[tail] ← x

1: function Dequeue(Q)
2: x← NIL
3: if not Empty(Q) then
4: h← Head(Q)
5: x← Buf(Q)[h]
6: Head(Q) ← (h + 1) mod Size(Q)

11.3. CIRCULAR BUFFER 205

Figure 11.3: Circular buffer.

a[0] a[1] ... a[i] ...

head tail boundary

(a) Enqueue some elements.

... a[j] ... a[i] ...

head tail boundary

(b) Free cells after dequeue.

... a[j] ... a[i]

head tail boundary

(c) Enqueue more elements to the
boundary

a[0] ... a[j] ...

headtail boundary

(d) Enqueue the next element to
the first cell.

a[0] a[1] ... a[j-1] a[j] ...

headtail boundary

(e) All cells are occupied, full.

Figure 11.4: Circular buffer queue

206 CHAPTER 11. QUEUE

7: Count(Q) ← Count(Q) - 1
8: return x

Exercise 11.1
The circular buffer is allocated with a predefined size. We can use two references head

and tail instead of count. How to determine if a circular buffer queue is full or empty?
(the head can be either ahead of tail or behind it.)

11.4 Paired-list queue
We can access list head in constant time, but need linear time to access the tail. We can
connect two lists ‘tail to tail’ to implement queue, as shown in figure 11.5. We define such
queue as (f, r), where f is the front list, and r is the rear list. The empty list is ([], []).
We push new element to the head of r, and pop from the tail of f . Both are constant
time.

Figure 11.5: paired-list queue.

{
push x (f, r) = (f, x:r)

pop (x:f, r) = (f, r)
(11.1)

f may become empty after a series of pops, while r still contains elements. To continue
pop, we reverse r to replace f , i.e., ([], r) 7→ (reverse r, []). We need check and adjust
balance after every push/pop:

balance [] r = (reverse r, [])
balance f r = (f, r)

(11.2)

Although the time is bound to linear time when reverse r, the amortised performance
is constant time. We adjust the push/pop as below:{

push x (f, r) = balance f (x:r)

pop (x:f, r) = balance f r
(11.3)

There is a symmetric implementation with a pair of arrays. Table 11.1 shows the
symmetric between list and array. We connect two arrays head to head to form a queue,
as shown in figure 11.6. When array R becomes empty, we reverse array F to replace R.

Exercise 11.2
1. Why need balance check and adjustment after push?
2. Prove the amortized performance of paired-list queue is constant time.
3. Implement the paired-array queue.

11.5. BALANCE QUEUE 207

operation array list
insert to head O(n) O(1)
append to tail O(1) O(n)
remove from head O(n) O(1)
remove from tail O(1) O(n)

Table 11.1: array and list

Figure 11.6: paired-array queue.

11.5 Balance Queue
Although paired-list queue performs in amortized constant time, it is linear time in worse
case. For e.g., there is an element in f , then repeat pushing n elements. Now it takes
O(n) time to pop. The lengths of f and r are unbalance in this case. To solve it, we add
another rule: keep the length of r is not greater than f , otherwise we reverse.

|r| ≤ |f | (11.4)

We check the lengths in every push/pop, however, it takes linear time to compute
length. We can record the length in a variable, and update it during push/pop. Denote
the paired-list queue as (f, n, r,m), where n = |f |, m = |r|. From the balance rule (11.4),
we can check the length of f to test if a queue is empty:

Q = ϕ ⇐⇒ n = 0 (11.5)

The definition of push/pop change to:{
push x (f, n, r,m) = balance (f, n, x:r,m+ 1)

pop (x:f, n, r,m) = balance (f, n− 1, r,m)
(11.6)

Where balance is defined as:

balance (f, n, r,m) =

{
m ≤ n : (f, n, r,m)

otherwise : (f ++ reverse r,m+ n, [], 0)
(11.7)

11.6 Real-time queue
It still takes linear time to reverse, concatenate lists in balanced queue. A real-time queue
need guarantee constant time in every push/pop operation. The performance bottleneck
happens in f ++ reverse r. At this time, m >, breaks the balance rule. Since m,n are
integers, we know m = n+1. ++ takes O(n) time, and reverse takes O(m) time. The total
time is bound to O(n+m), which is proportion to the number of elements. Our solution

208 CHAPTER 11. QUEUE

is to distribute this computation to multiple push and pop operations. Let’s revisit the
tail recursive [61] [62] reverse:

reverse = reverse′ [] (11.8)

This is in Curried form, where:

reverse′ a [] = a
reverse′ a (x:xs) = reverse′ (x:a) xs (11.9)

We can turn the tail recursive implementation to stepped computation. We model it
as a series of state transformation. Define a state machine with two states: reverse state
Sr, and complete state Sf . We slow-down the reverse computation as below:

step Sr a [] = (Sf , a)
step Sr a (x:xs) = (Sr, (x:a), xs)

(11.10)

Each step, we check and transform the state. Sr means the reverse is on going. If
there is no remaining element to reverse, we change the state to Sf (done); otherwise, we
pick the head element x, link it ahead of a. This step terminates, but not continues to
recursion. The new state with the intermediate reverse result will be input to the next
step. For example:

step Sr “hello” [] = (Sr, “ello”, “h”)
step Sr “ello” “h” = (Sr, “llo”, “eh”)

...
step Sr “o” “lleh” = (Sr, [], “olleh”)
step Sr [] “olleh” = (Sf , “olleh”)

We can next distribute the reverse steps to push/pop operations. However, it only
solves half problem. We next need slow-down ++ computation, which is more complex.
We use state machine too. To concatenate xs ++ ys, we first reverse xs to ←−xs, then pick
elements form ←−xs one by one, and link each head of ys. The idea is similar to reverse′:

xs++ ys = (reverse reverse xs) ++ ys
= (reverse′ [] (reverse xs)) ++ ys
= reverse′ ys (reverse xs)
= reverse′ ys ←−xs

(11.11)

We need add another state. After reverse r, we step by step concatenate from←−f . The
three states are: Sr of reverse, Sc of concatenate, Sf of completion. The two phases are:

1. Reverse f and r in parallel to: ←−f and ←−r step by step;

2. Stepped taking elements from ←−f , and link each ahead of ←−r .

next (Sr, f
′, x:f, r′, y :r) = (Sr, x:f

′, f, y :r′, r) reverse f, r
next (Sr, f

′, [], r′, [y]) = next (Sc, f
′, y :r′) reverse done, start concatenation

next (Sc, a, []) = (Sf , a) done
next (Sc, a, x:f

′) = (Sc, x:a, f
′) concatenation

(11.12)
We need arrange these steps to each push/pop next. From the balance rule, when

m = n + 1, we kick off f ++ reverse r. it takes n + 1 steps to reverse r, within these
steps, we reverse f in parallel. After that, we use another n + 1 steps to concatenate.

11.6. REAL-TIME QUEUE 209

2n+ 2 steps in total. The critical question is: Before we complete the 2n+ 2 steps, will
the queue become unbalanced due to a series of push/pop operations?

Luckily, repeat pushing won’t break the balance rule again before we complete f ++
reverse r in 2n+2 steps. We will obtain a new front list f ′ = f ++ reverse r after 2n+2
steps, while the time to break the balance rule again is:

|r′| = |f ′|+ 1
= |f |+ |r|+ 1
= 2n+ 2

(11.13)

Thanks to the balance rule. It means even repeat pushing as many elements as
possible, from the previous to the next time when the queue is unbalanced, the 2n + 2
steps are guaranteed to be completed, hence the new f is ready. We can next safely start
to compute f ′ ++ reverse r′.

However, pop may happen before the completion of 2n + 2 steps. We are facing the
situation that needs extract element from f , while the new front list f ′ = f ++ reverse r
hasn’t been ready yet. To solve this issue, we duplicate a copy of f when doing reverse f .
We are save even repeat pop for n times. Table 11.2 shows the queue during phase 1
(reverse f and r in parallel)1.

f copy on-going part new r

{fi, fi+1, ..., fn} (Sr, f̃ , ..., r̃, ...) {...}
first i− 1 elements out intermediate ←−f , ←−r newly pushed

Table 11.2: Before completion of the first n steps.

The copy of f is exhausted after repeated n pops. We are about to stepped concate-
nation. What if pop happens at this time? Since f is exhausted, it becomes []. We
needn’t concatenate anymore. This is because f ++ ←−r = [] ++ ←−r = ←−r . In fact, we
only need to concatenate the elements in f that haven’t been popped. Because we pop
elements from the head of f , we use a counter to record the remaining elements in f . It’s
initialized as 0. We apply +1 every time when reverse an element in f . It means we need
concatenate this element in the future; Whenever pop happens, we apply -1, means we
needn’t concatenate this one any more. We also decrease it during concatenation process,
and cancel the process when it is 0. Below is the updated state transformation:

next (Sr, n, f
′, x:f, r′, y :r) = (Sr, n+ 1, x:f ′, f, y :r′, r) reverse f, r

next (Sr, n, f
′, [], r′, [y]) = next (Sc, n, f

′, y :r′) reverse done, start concatenation
next (Sc, 0, a, f) = (Sf , a) done

next (Sc, n, a, x:f
′) = (Sc, n− 1, x:a, f ′) concatenation

next S0 = S0 idle
(11.14)

We define addition idle state S0 to simplify the transition logic. The queue contains 3
parts: the front list f with its length n, the state S of on going f++reverse r, and the rear
list r with its length m. Denoted as (f, n, S, r,m). The empty queue is ([], 0, S0, [], 0).
We can tell a queue is empty when n = 0 according to the balance rule. The push/pop
are updated as:{

push x (f, n, S, r,m) = balance f n S (x:r) (m+ 1)

pop (x:f, n, S, r,m) = balance f (n− 1) (abort S) r m
(11.15)

1Although it takes linear time to duplicate a list, however, the one time copying won’t happen at all.
We actually duplicate the reference to the front list, and delay the element level copying to each step

210 CHAPTER 11. QUEUE

Where abort decrease the counter in pop to cancel an element for concatenation. We’ll
define it later. balance triggers stepped f ++ reverse r if the queue is unbalanced, else
runs a step:

balance f n S r m =

{
m ≤ n : step f n S r m

otherwise : step f (n+m) (next (Sr, 0, [], f, [], r)) [] 0

(11.16)
Where step transforms the state machine to next state. It ends with the idle state S0

when completes.

step f n S r m = queue (next S) (11.17)

Where:

queue (Sf , f
′) = (f ′, n, S0, r,m) replace f with f ′

queue S′ = (f, n, S′, r,m)
(11.18)

We define abort to cancel an element:

abort (Sc, 0, (x:a), f
′) = (Sf , a)

abort (Sc, n, a, f
′) = (Sc, n− 1, a, f ′)

abort (Sr, n, f
′f, r′r) = (Sr, n− 1, f ′, f, r′, r)
abort S = S

(11.19)

Exercise 11.3
1. Why need rollback an element (we cancelled the previous ‘cons’, removed x and

return a as the result) when n = 0 in abort?

11.7 Lazy real-time queue
The key to realize real-time queue is to break down the expensive f ++ reverse r. We can
simplify it with lazy evaluation. Assume function rotate compute f ++ reverse r in steps,
i.e., below two functions are equivalent with an accumulator a.

rotate xs ys a = xs++ (reverse ys) ++ a (11.20)

We initialize xs as the front list f , ys as the rear list r, the accumulator a empty [].
We implement rotate from the edge case:

rotate [] [y] a = y :a (11.21)

The recursive case is:

rotate (x:xs) (y :ys) a
= (x:xs) ++ (reverse (y :ys)) ++ a from (11.20)
= x : (xs++ reverse (y :ys)) ++ a) concatenation is associative
= x : (xs++ reverse ys++ (y :a)) reverse property, and associative
= x : rotate xs ys (y :a) reverse of (11.20)

(11.22)

Summarize them together:

rotate [] [y] a = y :a
rotate (x:xs) (y :ys) a = x : rotate xs ys (y :a)

(11.23)

11.8. APPENDIX - EXAMPLE PROGRAMS 211

In lazy evaluation settings, (:) is delayed to push/pop, hence the rotate is broken
down. We change the paired-list queue definition to (f, r, rot), where rot is the on going
f ++ reverse r computation. It is initialized empty [].{

push x (f, r, rot) = balance f (x:r) rot

pop (x:f, r, rot) = balance f r rot
(11.24)

Every time, balance advances the rotation one step, and starts another round when
completes.

balance f r [] = (f ′, [], f ′) 其中 : f ′ = rotate f r []
balance f r (x:rot) = (f, r, rot) 推进轮转 (11.25)

Exercise 11.4
Implement bidirectional queue, support add/remove elements on both head and tail

in constant time.

11.8 Appendix - example programs
List implemented queue:
Queue<K> enQ(Queue<K> q, K x) {

var p = Node(x)
p.next = null
q.tail.next = p
q.tail = p
return q

}

K deQ(Queue<K> q) {
var p = q.head.next //the next of S
q.head.next = p.next
if q.tail == p then q.tail = q.head //empty
return p.key

}

Circular buffer queue:
data Queue<K> {

K buf[]
int head, cnt, size

Queue(int max) {
buf = Array<K>(max)
size = max
head = cnt = 0

}
}

Enqueue, dequeue implementation for circular buffer queue:
N offset(N i, N size) = if i < size then i else i - size

void enQ(Queue<K> q, K x) {
if q.cnt < q.size {

q.buf[offset(q.head + q.cnt, q.size)] = x;
q.cnt = q.cnt + 1

}
}

212 Sequence

K head(Queue<K> q) = if q.cnt == 0 then null else q.buf[q.head]

K deQ(Queue<K> q) {
K x = null
if q.cnt > 0 {

x = head(q)
q.head = offset(q→head + 1, q→size);
q.cnt = q.cnt -1

}
return x

}

Real-time queue:
data State a = Empty

| Reverse Int [a] [a] [a] [a] −− n, acc f, f, acc r, r
| Concat Int [a] [a] −− n, acc, reversed f
| Done [a] −− f’ = f ++ reverse r

−− f, n = length f, state, r, m = length r
data RealtimeQueue a = RTQ [a] Int (State a) [a] Int

push x (RTQ f n s r m) = balance f n s (x:r) (m + 1)

pop (RTQ (_:f) n s r m) = balance f (n - 1) (abort s) r m

top (RTQ (x:_) _ _ _ _) = x

balance f n s r m
| m ≤ n = step f n s r m
| otherwise = step f (m + n) (next (Reverse 0 [] f [] r)) [] 0

step f n s r m = queue (next s) where
queue (Done f') = RTQ f' n Empty r m
queue s' = RTQ f n s' r m

next (Reverse n f' (x:f) r' (y:r)) = Reverse (n + 1) (x:f') f (y:r') r
next (Reverse n f' [] r' [y]) = next $ Concat n (y:r') f'
next (Concat 0 acc _) = Done acc
next (Concat n acc (x:f')) = Concat (n-1) (x:acc) f'
next s = s

abort (Concat 0 (_:acc) _) = Done acc −− rollback 1 elem
abort (Concat n acc f') = Concat (n - 1) acc f'
abort (Reverse n f' f r' r) = Reverse (n - 1) f' f r' r
abort s = s

Lazy real-time queue:
data LazyRTQueue a = LQ [a] [a] [a] −− front, rear, f ++ reverse r

empty = LQ [] [] []

push (LQ f r rot) x = balance f (x:r) rot

pop (LQ (_:f) r rot) = balance f r rot

top (LQ (x:_) _ _) = x

balance f r [] = let f' = rotate f r [] in LQ f' [] f'
balance f r (_:rot) = LQ f r rot

rotate [] [y] acc = y:acc
rotate (x:xs) (y:ys) acc = x : rotate xs ys (y:acc)

Chapter 12

Sequence

12.1 Introduction
Sequence is a combination of array and list. We set the following goals for the ideal
sequence:

1. Add, remove element on head and tail in constant time;

2. Fast (no slower than linear time) concatenate two sequences;

3. Fast access, update element at any position;

4. Fast split at any position;

Array and list only satisfy these goals partially as shown in below table. Where n
is the length for the sequence. If there are two sequences, then we use n1, n2 for their
lengths respectively.

operation array list
add/remove on head O(n) O(1)
add/remove on tail O(1) O(n)
concatenate O(n2) O(n1)
random access at i O(1) O(i)
remove at i O(n− i) O(i)

We give three implementations: binary random access list, concatenate-able list, and
finger tree.

12.2 Binary random access list
The binary random access list is a set of full binary trees (forest). The elements are stored
in leaves. For any integer n ≥ 0, we know how many trees need to hold n elements from its
binary format. Every bit of 1 represents a binary tree, the tree size is determined by the
magnitude of the bit. For any index 1 ≤ i ≤ n, we can locate the binary tree that stores the
i-th element. As shown in figure 12.1, tree t1, t2 represent sequence [x1, x2, x3, x4, x5, x6].

213

214 CHAPTER 12. SEQUENCE

t1

x1 x2

t2

x3 x4 x5 x6

Figure 12.1: A sequence of 6 elements.

Denote the full binary tree of depth i+ 1 as ti. t0 only has a leaf node. There are 2i

leaves in ti. For sequence of n elements, represent n in binary as n = (emem−1...e1e0)2,
where ei is either 1 or 0.

n = 20e0 + 21e1 + ...+ 2mem (12.1)

If ei 6= 0, there is a full binary tree ti of size 2i. For example in figure 12.1, the length
of the sequence is 6 = (110)2. The lowest bit is 0, there’s no tree of size 1; the 2nd bit is
1, there is t1 of size 2; the highest bit is 1, there is t2 of size 4. In this way, we represent
sequence [x1, x2, ..., xn] as a list of trees. Each tree has unique size, in ascending order.
We call it binary random access list [3]. We can customize the binary tree definition: (1)
only store the element in leaf node as (x); (2) augment the size in each branch node as
(s, l, r), where s is the size of the tree, l, r are left and right tree respectively. We get the
size information as below:

size (x) = 1
size (s, l, r) = s

(12.2)

To add a new element y before sequence S, we create a singleton t0 tree t′ = (y), then
insert it to the forest. insert y S = insertT (y) S, or define it in Curried form:

insert y = insertT (y) (12.3)

We compare t′ with the first tree ti in the forest, if ti is bigger, then put t′ ahead of
the forest (in constant time); if they have the same size, then link them to a bigger tree
(in constant time): t′i+1 = (2s, ti, t

′), then recursively insert t′i+1 to the forest, as shown
in figure 12.2.

insertT t [] = [t]

insertT t (t1 :ts) =

{
size t < size t1 : t : t1 : ts

otherwise : insertT (link t t1) ts

(12.4)

Where link links two trees of the same size: link t1 t2 = (size t1 + size t2, t1, t2).
For n elements, there are m = O(lgn) trees in the forest. The performance is bound

to O(lgn) time. We’ll prove the amortized performance is constant time.
Symmetrically, we can reverse the insert process to define remove. If the first tree is

t0 (singleton leaf), we remove t0; otherwise, we repeat splitting the first tree to obtain a
t0 and remove it, as shown in figure 12.3.

extract ((x):ts) = (x, ts)
extract ((s, t1, t2):ts) = extract (t1 :t2 :ts)

(12.5)

12.2. BINARY RANDOM ACCESS LIST 215

x1

(a) Insert x1

t1

x2 x1

(b) Insert x2, link to [t1].

x3 x2

t1

x1

(c) Insert x3, result [t0, t1].

t2

x4 x3 x2 x1

(d) Insert x4, link
twice, generate [t2].

x5

t2

x4 x3 x2 x1

(e) Insert x5, result [t0, t2].

t1

x6 x5

t2

x4 x3 x2 x1

(f) Insert x6, result [t1, t2].

Figure 12.2: Insert x1, x2, ..., x6.

x5

t2

x4 x3 x2 x1

(a) Sequence x1, x2, ..., x5 as
[t0, t2].

t2

x4 x3 x2 x1

(b) Remove x5. Re-
move t0 directly.

x3 x2

t1

x1

(c) Remove x4. Split twice to get [t0, t0, t1], then re-
move the head to get [t0, t1].

Figure 12.3: Remove

216 CHAPTER 12. SEQUENCE

We call extract to remove element from head:{
head = fst ◦ extract
tail = snd ◦ extract

(12.6)

Where fst (a, b) = a, snd (a, b) = b access the component in a pair.
The trees divides elements into chunks. For a given index 1 ≤ i ≤ n, we first locate

the corresponding tree, then lookup the tree to access the element.

1. For the first tree t in the forest, if i ≤ size(t), then the element is in t, we next
lookup t for the target element;

2. Otherwise, let i′ = i− size(t), then recursively lookup the i′-th element in the rest
trees.

(t:ts)[i] =

{
i ≤ size t : lookupT i t

otherwise : ts[i− size t]
(12.7)

Where lookupT applies binary search. If i = 1, returns the root, else divides the tree
and recursively lookup:

lookupT 1 (x) = x

lookupT i (s, t1, t2) =

i ≤ bs
2
c : lookupT i t1

otherwise : lookupT (i− bs
2
c) t2

(12.8)

Figure 12.4 gives the steps to lookup the 4-th element in a sequence of length 6. The
size of the first tree is 2 < 4, move to the next tree and update the index to i′ = 4−2. The
size of the second tree is 4 > i′ = 2, we need lookup it. Because the index 2 is less than
the half size 4/2 = 2, we lookup the left, then the right, and finally locate the element.
Similarly, we can alter an element at a given position.

There are O(lgn) full binary trees to hold n elements. For index i, we need at most
O(lgn) time to locate the tree, the next lookup time is proportion to the height, which
is O(lgn) at most. The overall random access time is bound to O(lgn).

Exercise 12.1
How to handle the out of bound exception?

12.3 Numeric representation
The binary form of n = 20e0+21e1+ ...+2mem maps to the forest. The ei is the i-th bit.
If ei = 1, there is a full binary tree of size 2i. Adding an element corresponds to +1 to
a binary number; while deleting corresponds to -1. We call such correspondence numeric
representation [3]. To explicitly express this correspondence, we define two states: Zero
means none existence of the binary tree, while One t means there exits tree t. As such,
we represent the forest as a list of binary states, and implement insert as binary add.

add t [] = [One t]
add t (Zero:ds) = (One t) : ds

add t (One t′ :ds) = Zero : add (link t t′) ds
(12.9)

When add tree t, if the forest is empty, we create a state of One t, it’s the only
bit, corresponding to 0 + 1 = 1. If the forest isn’t empty, and the first bit is Zero, we

12.3. NUMERIC REPRESENTATION 217

t1

x6 x5

t2

x4 x3 x2 x1

(a) S[4], 4 > size(t1) = 2

t2

x4 x3 x2 x1

(b) S′[4− 2] ⇒ lookupT 2 t2

left(t2)

x4 x3

(c) 2 ≤ ⌊size(t2)
2

⌋ ⇒ lookupT 2 left(t2)

x3

(d) lookupT 1 right(left(t2)), return x3

Figure 12.4: Steps to access S[4]

218 CHAPTER 12. SEQUENCE

use the state One t to replace Zero, corresponding to binary add (...digits...0)2 + 1 =
(...digits...1)2. For e.g. 6+1 = (110)2+1 = (111)2 = 7. If the first bit is One t′, we assume
t and t′ have the same size because we always start to insert from a singleton leaf t0 = (x).
The tree size increase as a sequence of 1, 2, 4, ..., 2i, We link t and t′, recursively insert
to the rest bits. The original One t′ is replaced by Zero. It corresponds to binary add
(...digits...1)2 + 1 = (...digits′...0)2. For e.g. 7 + 1 = (111)2 + 1 = (1000)2 = 8.

Symmetrically, we can implement remove as binary subtraction. If the sequence is a
singleton bit One t, it becomes empty after remove, corresponding to 1− 1 = 0. If there
are multiple bits and the first one is One t, we replace it by Zero. This corresponds to
(...digits...1)2 − 1 = (...digits...0)2. For e.g., 7 − 1 = (111)2 − 1 = (110)2 = 6. If the
first bit is Zero, we need borrow. We cursively extract tree from the rest bits, split into
two t1, t2, replace Zero to One t2, and remove t1. It corresponds to (...digits...0)2 − 1 =
(...digits′...1)2. For e.g., 4− 1 = (100)2 − 1 = (11)2 = 3.

minus [One t] = (t, [])
minus ((One t):ts) = (t, Zero:ts)

minus (Zero:ts) = (t1, (One t2):ts
′),where : (s, t1, t2) = minus ts

(12.10)

Numeric representation doesn’t change the performance. We next evaluate the amor-
tized time by aggregation. The steps to insert n = 2m elements to empty is given as table
12.1:

i binary (MSB ... LSB)
0 0, 0, ..., 0, 0
1 0, 0, ..., 0, 1
2 0, 0, ..., 1, 0
3 0, 0, ..., 1, 1
... ...
2m − 1 1, 1, ..., 1, 1
2m 1, 0, 0, ..., 0, 0
bits changed 1, 1, 2, ... 2m−1, 2m

Table 12.1: Insert 2m elements.

The LSB changes every time when insert, total 2m times. The second bit changes
every other time (link trees), total 2m−1 times. The second highest bit only changes 1
time, links all trees to a final one. The highest bit changes to 1 after insert the last
element. Sum all times: T = 1+1+2+4+ ...+2m−1+2m = 2m+1. Hence the amortized
performance is:

O(T/n) = O(
2m+1

2m
) = O(1) (12.11)

Proved the amortized constant time performance.

Exercise 12.2
1. Implement the random access for numeric representation S[i], 1 ≤ i ≤ n, where n

is the length of the sequence.
2. Prove the amortized performance of delete is constant time. (hint: use aggregation

method).
3. We can represent the full binary tree with array of length 2m, where m is none

negative integer. Implement the binary tree forest, insert, and random access.
What are the performance?

12.4. PAIRED-ARRAY SEQUENCE 219

12.4 paired-array sequence
We give paired-array queue in chapter 11. We can expand it to paired-array sequence
as array supports random access. As shown in figure 12.5, we link two arrays head to
head. When add an element from left, we append to the tail of f ; when add from right,
we append to the tail of r. We denote the sequence as a pair S = (f, r), Front(S) = f ,
Rear(S) = r access them respectively. We implement insert/append as below:

Figure 12.5: Paired-array sequence.

1: function Insert(x, S)
2: Append(x, Front(S))
3: function Append(x, S)
4: Append(x, Rear(S))

When access the i-th element, we first determine i index to f or r, then locate the
position. If i ≤ |f |, the element is in f . Because f and r are connected head to head, we
need index from right of f at position |f | − i+1; if i > |f |, the element is in r. We index
from left at position i− |f |.

1: function Get(i, S)
2: f, r ← Front(S), Rear(S)
3: n← Size(f)
4: if i ≤ n then
5: return f [n− i+ 1] ▷ reversed
6: else
7: return r[i− n]

Removing can makes f or r empty ([]), while the other is not. To re-balance, we
halve the none empty one, and reverse either half to form a new pair. As f and r are
symmetric, we can swap them, call Balance, then swap back.

1: function Balance(S)
2: f ← Front(S), r ← Rear(S)
3: n← Size(f), m← Size(r)
4: if F = [] then
5: k ← bm

2
c

6: return (Reverse(r[1...k]), r[(k + 1)...m])

7: if R = [] then
8: k ← bn

2
c

9: return (f [(k + 1)...n],Reverse(f [1...k]))
10: return (f, r)

Every time when delete, we check f , r and balance them:
1: function Remove-Head(S)
2: Balance(S)
3: f, r ← Front(S), Rear(S)
4: if f = [] then ▷ S = ([], [x])
5: r ← []

220 CHAPTER 12. SEQUENCE

6: else
7: Remove-Last(f)

8: function Remove-Tail(S)
9: Balance(S)

10: f, r ← Front(S), Rear(S)
11: if r = [] then ▷ S = ([x], [])
12: f ← []
13: else
14: Remove-Last(r)

Due to reverse, the performance is O(n) in the worst case, where n is the number of
elements, while it is amortized constant time.

Exercise 12.3

1. For paired-array delete, prove the amortized performance is constant time.

12.5 Concatenate-able list

We achieve O(lgn) time insert, delete, random index with binary tree forest. However,
it’s not easy to concatenate two sequences. We can’t merely merge trees, but need link
trees with the same size. Figure 12.6 shows an implementation of concatenate-able list.
The first element x1 is in root, the rest is organized with smaller sequences, each one is
a sub-tree. These sub-trees are put in a real-time queue (see chapter 11). We denote
the sequence as (x1, Qx) = [x1, x2, ..., xn]. When concatenate with another sequence
of (y1, Qy) = [y1, y2, ..., ym], we append it to Qx. The real-time queue guarantees the
en-queue in constant time, hence the concatenate performance is in constant time.

x[1]

c[1] c[2] ... c[n]

x[2]...x[i] x[i+1]...x[j] x[k]...x[n]

(a) (x1, Qx) = [x1, x2, ..., xn]

x[1]

c[1] c[2] ... c[n] c[n+1]

x[2]...x[i] x[i+1]...x[j] x[k]...x[n] y[1]...y[m]

(b) Concatenate with (y1, Qy) = [y1, y2, ..., ym], addcn+1 to Qx

Figure 12.6: Concatenate-able list

12.6. FINGER TREE 221

s++∅ = s
∅++ s = s

(x,Q) ++ s = (x, push s Q)
(12.12)

When insert new element z, we create a singleton of (z,∅), then concatenate it to the
sequence: {

insert x s = (x,∅) ++ s

append x s = s++ (x,∅)
(12.13)

When delete x1 from head, we lose the root. The rest sub-trees are all concatenate-able
lists. We concatenate them all to a new sequence.

concat ∅ = ∅
concat Q = (top Q) ++ concat (pop Q)

(12.14)

The real-time queue hold sub-trees, we pop the first c1, and recursively concatenate
the rest to s, then concatenate c1 and s. We define delete from head with concat.

tail (x,Q) = concat Q (12.15)

Function concat traverses the queue, and reduces to a result, it essentially folds on
Q [10].

fold f z ∅ = z
fold f z Q = f (top Q) (fold f z (pop Q))

(12.16)

Where f is a binary function, z is zero unit. Here are examples of folding on queue
Q = [1, 2, ..., 5]:

fold (+) 0 Q = 1 + (2 + (3 + (4 + (5 + 0)))) = 15
fold (×) 1 Q = 1× (2× (3× (4× (5× 1)))) = 120
fold (×) 0 Q = 1× (2× (3× (4× (5× 0)))) = 0

We can define concat with fold (Curried form):

concat = fold (++) ∅ (12.17)

The performance is bound to linear time in worst case: delete after repeatedly add n
elements. All n − 1 sub-trees are singleton. concat takes O(n) time to consolidate. The
amortized performance is constant time if add, append, delete randomly happen.

Exercise 12.4
1. Prove the amortized performance for delete is constant time

12.6 Finger tree
Binary random access list supports to insert, remove from head in amortized constant
time, and index in logarithm time. But we can’t easily append element to tail, or fast
concatenate. With concatenate-able list, we can concatenate, insert, and append in amor-
tized constant time, but can’t easily index element. From these two examples, we need:
1, access head, tail fast to insert or delete; 2, the recursive structure, e.g., tree, realizes
random access as divide and conquer search. Finger tree [66] implements sequence with
these two ideas [65]. It’s critical to maintain the tree balanced to guarantee search perfor-
mance. Finger tree leverages 2-3 tree (a type of B-tree). A 2-3 tree is consist of 2 or 3
sub-trees, as (t1, t2) or (t1, t2, t3).

222 CHAPTER 12. SEQUENCE

data Node a = Br2 a a | Br3 a a a

We define a finger tree as one of below three:

1. empty ∅;

2. a singleton leaf (x);

3. a tree with three parts: a sub-tree, left and right finger, denoted as (f, t, r). Each
finger is a list up to 3 elements1.

data Tree a = Empty
| Lf a
| Tr [a] (Tree (Node a)) [a]

12.6.1 Insert

NIL

(a) ∅

a

(b) (x)

b NIL a

(c) ([b],∅, [a])

Figure 12.7: Finger tree, example 1

e d c b NIL a

(a) Insert 3 elements
to f , not a valid, bal-
anced 2-3 tree.

f e a

d c b

(b) Re-balance.
there are two
elements in f ;
the middle is a
singleton of a 2-3
tree.

Figure 12.8: Finger tree, example 2
1f: front, r: rear

12.6. FINGER TREE 223

As shown in figure 12.7 and 12.8. Example 1 (a) is ∅, (b) is a singleton, (c) has two
element in f and r for each. When add more, f will exceeds 2-3 tree, as in example 2
(a). We need re-balance as in (b). There are two elements in f , the middle is singleton
of a 2-3 tree. These examples are list as below:

∅ Empty
(a) Lf a
([b],∅, [a]) Tr [b] Empty [a]
([e, d, c, b],∅, [a]) Tr [e, d, c, b] Empty [a]
([f, e], (d, c, b), [a]) Tr [f, e] Lf (Br3 d c b) [a]

In example 2 (b), the middle component is a singleton leaf. Finger tree is recursive,
apart from f and r, the middle is a deeper finger tree of type Tree (Node a). One more
wrap, one level deeper. Summarize above examples, we define insert a to tree T as below:

1. If T = ∅, the result is a singleton (a);

2. If T = (b) is a leaf, the result is ([a],∅, [b]);

3. For T = (f, t, r), if there are ≤ 3 elements in f , we insert a to f , otherwise (> 3),
extract the last 3 elements from f to a 2-3 tree t′, recursively insert t′ to t, then
insert a to f .

insert a ∅ = (x)
insert a (b) = ([a],∅, [b])

insert a ([b, c, d, e], t, r) = ([a, b], insert (c, d, e) t, r)
insert a (f, t, r) = (a:f, t, r)

(12.18)

The insert performance is constant time except for the recursive case. The recursion
time is proportion to the height of the tree h. Because of 2-3 trees, it’s balanced, hence
h = O(lgn), where n is the number of elements. When distribute the recursion to other
cases, the amortized performance is constant time [3] [65]. We can repeatedly insert a list
of elements by folding:

xs� t = foldr insert t xs (12.19)

Exercise 12.5
1. Eliminate recursion, implement insert with loop.

12.6.2 Extract
We implement extract as the reverse of insert.

extract (a) = (a,∅)
extract ([a],∅, [b]) = (a, (b))

extract ([a],∅, b:bs) = (a, ([b],∅, bs))
extract ([a], t, r) = (a, (toList f, t′, r)),where : (f, t′) = extract t

extract (a:as, t, r) = (a, (as, t, r))

(12.20)

Where toList flatten a 2-3 tree to list:

toList (a, b) = [a, b]
toList (a, b, c) = [a, b, c]

(12.21)

224 CHAPTER 12. SEQUENCE

We skip error handling (e.g., extract from empty tree). If the tree is a singleton leaf,
the result is empty; if there are two elements, the result is a singleton; if f is a singleton
list, the middle is empty, while r isn’t empty, we extract the only one in f , then borrow
one from r to f ; if the middle isn’t empty, we recursively extract a node from the middle,
flatten that node to list to replace f (the original one is extracted). If f has more than
one element, we extract the first. Figure 12.9 gives examples that extract 2 elements.

x[10] x[9] x[2] x[1]

NIL

x[8] x[7] x[6] x[5] x[4] x[3]

(a) A sequence of 10 elements.

x[9] x[2] x[1]

NIL

x[8] x[7] x[6] x[5] x[4] x[3]

(b) Extract one, f becomes a sin-
gleton list.

x[8] x[7] x[6] x[2] x[1]

x[5] x[4] x[3]

(c) Extract another, borrow an element from the middle,
flatten the 2-3 tree to a list as the new f .

Figure 12.9: Extract

We can define head, tail with extract.{
head = fst ◦ extract
tail = snd ◦ extract

(12.22)

12.6. FINGER TREE 225

Exercise 12.6
1. Eliminate recursion, implement extract in loops.

12.6.3 Append and remove
We implement append, remove on right symmetrically.

append ∅ a = (a)
append (a) b = ([a],∅, [b])

append (f, t, [a, b, c, d]) e = (f, append t (a, b, c), [d, e])
append (f, t, r) a = (f, t, r ++ [a])

(12.23)

If there are no more 4 elements in r, we append the new element to tail of r. Otherwise,
we extract the first 3 from r, form a new 2-3 tree, and recursively append it to the middle.
We can repeatedly append a list of elements by folding from left:

t� xs = foldl append t xs (12.24)

The remove is reversed operation of append:

remove (a) = (∅, a)
remove ([a],∅, [b]) = ((a), b)
remove (f,∅, [a]) = ((initf,∅, [lastf]), a)
remove (f, t, [a]) = ((f, t′, toList r), a),其中 : (t′, r) = remove t
remove (f, t, r) = ((f, t, init r), last r)

(12.25)

Where last accesses the last element of a list, init returns the rest (see chapter 1).

12.6.4 concatenate
When concatenate two none empty finger trees T1 = (f1, t1, r1), T2 = (f2, t2, r2), we use
f1 as the result front f , r2 as the result rear r. Then merge t1, r1, f2, t2 as the middle
tree. Because both r1 and f2 are list of nodes, it equivalent to the below problem:

merge t1 (r1 ++ f2) t2 =?

Both t1 and t2 are finger trees deeper than T1 and T2 a level. If the type of element
in T1 is a, then the type of element in t1 Node a. We recursively merge, keep the front
of t1 and rear of t2, then further merge the middle of t1, t2, and the rear of t1, the front
of t2.

merge ∅ ts t2 = ts� t2
merge t1 ts ∅ = t1 � ts

merge (a) ts t2 = merge ∅ (a:ts) t2
merge t1 ts (a) = merge t1 (ts++ [a]) ∅

merge (f1, t1, r1) ts (f2, t2, r2) = (f1,merge t1 (nodes (r1 ++ ts++ f2)) t2, r2)
(12.26)

Where nodes collects elements to a list of 2-3 trees. This is because type of the element
in the middle is deeper than the finger.

nodes [a, b] = [(a, b)]
nodes [a, b, c] = [(a, b, c)]

nodes [a, b, c, d] = [(a, b), (c, d)]
nodes (a:b:c:ts) = (a, b, c):nodes ts

(12.27)

226 CHAPTER 12. SEQUENCE

We then define finger tree concatenation with merge:

(f1, t1, r1) ++ (f2, t2, r2) = (f1,merge t1 (r1 ++ f2) t2, r2) (12.28)

Compare with (12.26), concatenation is essentially merge, we can define them in a
unified way:

T1 ++ T2 = merge T1 [] T2 (12.29)

The performance is proportion to the number of recursions, which is the smaller height
of the two trees. The 2-3 trees are balanced, the height is O(lgn), where n is the number
of elements. In edge cases, merge performs as same as insert (call insert at most 8 times)
in amortized constant time; In worst case, the performance is O(m), where m is the height
difference between the two trees. The overall performance is bound O(lgn), where n is
the total elements of the two trees.

12.6.5 Random access
The idea is to turn random access into tree search. To avoid repeatedly compute tree
size, we augment a size variable s to each branch node as (s, f, t, r).

data Tree a = Empty
| Lf a
| Tr Int [a] (Tree (Node a)) [a]

size ∅ = 0
size (x) = size x

size (s, f, t, r) = s
(12.30)

Here size (x) is not necessarily 1. x can be a deeper node, like Node a. It is only 1
at level one. For termination, we wrap x as an element cell (x)e, and define size (x)e = 1
(see the example in appendix).{

x◁ t = insert (x)e t

t▷ x = append t (x)e
(12.31)

and: {
xs� t = foldr (◁) t xs

t� xs = foldl (▷) t xs
(12.32)

We also need calculate the size of a 2-3 tree:

size (t1, t2) = size t1 + size t2
size (t1, t2, t3) = size t1 + size t2 + size t3

(12.33)

Given a list of nodes (e.g., finger at deeper level), we calculate size from sum ◦
(map size). We need update the size when insert or delete element. With size aug-
mented, we can lookup the tree for any position i. The finger tree (s, f, t, r) has recursive
structure. Let the size of these components be sf , st, sr, and s = sf + st + sr. If i ≤ sf ,
the location is in f , we further lookup f ; if sf < i ≤ sf + st, then the location is in t,
we need recursively lookup t; otherwise, we lookup r. We also need handle leaf case of

12.6. FINGER TREE 227

(x). We use a pair (i, t) to define the position i at data structure t, and define lookupT
as below:

lookupT i (x) = (i, x)

lookupT i (s, f, t, r) =


i < sf : lookups i f

sf ≤ i < sf + st : lookupN (lookupT (i− sf) t)

otherwise : lookups (i− sf − st) r

(12.34)

Where sf = sum (map size f), st = size t, are the sizes of the first two components.
When lookup location i, if the tree is a leaf (x), the result is (i, x); otherwise we need
figure out which component among (s, f, t, r) that i points to. If it either in f or r, then
we lookup the figure:

lookups i (x:xs) =

{
i < size x : (i, x)

otherwise : lookups (i− size x) xs
(12.35)

If i is in some element x (i < size x), we return (i, x); otherwise, we continue looking
up the rest elements. If i points to the middle t, we recursively lookup to obtain a place
(i′,m), where m is a 2-3 tree. We next lookup m:

lookupN i (t1, t2) =

{
i < size t1 : (i, t1)

otherwise : (i− size t1, t2)

lookupN i (t1, t2, t3) =


i < size t1 : (i, t1)

size t1 ≤ i < size t1 + size t2 : (i− size t1, t2)

otherwise : (i− size t1 − size t2, t3)

(12.36)
Because we previously wrapped x inside (x)e, we need extract x out finally:

T [i] =

{
if lookupT i T = (i′, (x)e) : Just x
otherwise : Nothing

(12.37)

We return the result of type Maybe a = Nothing|Just a, means either found, or lookup
failed2. The random access looks up the finger tree recursively, proportion to the tree
depth. Because finger tree is balanced, the performs is bound to O(lgn), where n is the
number of elements.

We achieved balanced performance with finger tree implementation. The operations
at head and tail are bound to amortized constant time, concatenation, split, and random
access are in logarithm time [67]. By the end of this chapter, we’ve seen many elementary
data structures. They are useful to solve some classic problems. For example, we can use
sequence to implement MTF (move-to-front3) encoding algorithm [68]. MTF move any
element at position i to the front of the sequence:

mtf i S = x◁ S′,where(x, S′) = extractAt i S

In the next chapters, we’ll go through the classic divide and conquer sorting algo-
rithms, including quick sort, merge sort and their variants; then give the string matching
algorithms and elementary search algorithms.

Exercise 12.7
1. For random access, how to handle empty tree ∅ and out of bound cases?
2. Implement cut i S, split sequence S at position i.

2Many programming environments provide equivalent tool, like the Optional<T> in Java/C++.
3Used in Burrows-Wheeler transform (BWT) data compression algorithm.

228 CHAPTER 12. SEQUENCE

12.7 Appendix - example programs
Binary random access list (forest):
data Tree a = Leaf a

| Node Int (Tree a) (Tree a)

type BRAList a = [Tree a]

size (Leaf _) = 1
size (Node sz _ _) = sz

link t1 t2 = Node (size t1 + size t2) t1 t2

insert x = insertTree (Leaf x) where
insertTree t [] = [t]
insertTree t (t':ts) = if size t < size t' then t:t':ts

else insertTree (link t t') ts

extract ((Leaf x):ts) = (x, ts)
extract ((Node _ t1 t2):ts) = extract (t1:t2:ts)

head' = fst ◦ extract
tail' = snd ◦ extract

getAt i (t:ts) | i < size t = lookupTree i t
| otherwise = getAt (i - size t) ts

where
lookupTree 0 (Leaf x) = x
lookupTree i (Node sz t1 t2)

| i < sz `div` 2 = lookupTree i t1
| otherwise = lookupTree (i - sz `div` 2) t2

Numeric representation of binary random access list:
data Digit a = Zero | One (Tree a)

type RAList a = [Digit a]

insert x = add (Leaf x) where
add t [] = [One t]
add t (Zero:ts) = One t : ts
add t (One t' :ts) = Zero : add (link t t') ts

minus [One t] = (t, [])
minus (One t:ts) = (t, Zero:ts)
minus (Zero:ts) = (t1, One t2:ts') where

(Node _ t1 t2, ts') = minus ts

head' ts = x where (Leaf x, _) = minus ts
tail' = snd ◦ minus

Paired-array sequence:
Data Seq<K> {

[K] front = [], rear = []
}

Int length(S<K> s) = length(s.front) + length(s.rear)

void insert(K x, Seq<K> s) = append(x, s.front)

void append(K x, Seq<K> s) = append(x, s.rear)

K get(Int i, Seq<K> s) {

12.7. APPENDIX - EXAMPLE PROGRAMS 229

Int n = length(s.front)
return if i < n then s.front[n - i - 1] else s.rear[i - n]

}

Concatenate-able list:
data CList a = Empty | CList a (Queue (CList a))

wrap x = CList x emptyQ

x ++ Empty = x
Empty ++ y = y
(CList x q) ++ y = CList x (push q y)

fold f z q | isEmpty q = z
| otherwise = (top q) `f` fold f z (pop q)

concat = fold (++) Empty

insert x xs = (wrap x) ++ xs
append xs x = xs ++ wrap x

head (CList x _) = x
tail (CList _ q) = concat q

Finger tree:
−− 2-3 tree
data Node a = Tr2 Int a a

| Tr3 Int a a a

−− finger tree
data Tree a = Empty

| Lf a
| Br Int [a] (Tree (Node a)) [a] −− size, front, mid, rear

newtype Elem a = Elem { getElem :: a } −− wrap element

newtype Seq a = Seq (Tree (Elem a)) −− sequence

class Sized a where −− support size measurement
size :: a → Int

instance Sized (Elem a) where
size _ = 1 −− 1 for any element

instance Sized (Node a) where
size (Tr2 s _ _) = s
size (Tr3 s _ _ _) = s

instance Sized a ⇒ Sized (Tree a) where
size Empty = 0
size (Lf a) = size a
size (Br s _ _ _) = s

instance Sized (Seq a) where
size (Seq xs) = size xs

tr2 a b = Tr2 (size a + size b) a b
tr3 a b c = Tr3 (size a + size b + size c) a b c

nodesOf (Tr2 _ a b) = [a, b]
nodesOf (Tr3 _ a b c) = [a, b, c]

−− left
x <| Seq xs = Seq (Elem x `cons` xs)

230 CHAPTER 12. SEQUENCE

cons :: (Sized a) ⇒ a → Tree a → Tree a
cons a Empty = Lf a
cons a (Lf b) = Br (size a + size b) [a] Empty [b]
cons a (Br s [b, c, d, e] m r) = Br (s + size a) [a, b] ((tr3 c d e) `cons` m) r
cons a (Br s f m r) = Br (s + size a) (a:f) m r

head' (Seq xs) = getElem $ fst $ uncons xs
tail' (Seq xs) = Seq $ snd $ uncons xs

uncons :: (Sized a) ⇒ Tree a → (a, Tree a)
uncons (Lf a) = (a, Empty)
uncons (Br _ [a] Empty [b]) = (a, Lf b)
uncons (Br s [a] Empty (r:rs)) = (a, Br (s - size a) [r] Empty rs)
uncons (Br s [a] m r) = (a, Br (s - size a) (nodesOf f) m' r)

where (f, m') = uncons m
uncons (Br s (a:f) m r) = (a, Br (s - size a) f m r)

−− right
Seq xs |> x = Seq (xs `snoc` Elem x)

snoc :: (Sized a) ⇒ Tree a → a → Tree a
snoc Empty a = Lf a
snoc (Lf a) b = Br (size a + size b) [a] Empty [b]
snoc (Br s f m [a, b, c, d]) e = Br (s + size e) f (m `snoc` (tr3 a b c)) [d, e]
snoc (Br s f m r) a = Br (s + size a) f m (r ++ [a])

last' (Seq xs) = getElem $ snd $ unsnoc xs
init' (Seq xs) = Seq $ fst $ unsnoc xs

unsnoc :: (Sized a) ⇒ Tree a → (Tree a, a)
unsnoc (Lf a) = (Empty, a)
unsnoc (Br _ [a] Empty [b]) = (Lf a, b)
unsnoc (Br s f@(_:_:_) Empty [a]) = (Br (s - size a) (init f) Empty [last f], a)
unsnoc (Br s f m [a]) = (Br (s - size a) f m' (nodesOf r), a)

where (m', r) = unsnoc m
unsnoc (Br s f m r) = (Br (s - size a) f m (init r), a) where a = last r

−− concatenate
Seq xs +++ Seq ys = Seq (xs >+< ys)

xs >+< ys = merge xs [] ys

t <<< xs = foldl snoc t xs
xs >>> t = foldr cons t xs

merge :: (Sized a) ⇒ Tree a → [a] → Tree a → Tree a
merge Empty es t2 = es >>> t2
merge t1 es Empty = t1 <<< es
merge (Lf a) es t2 = merge Empty (a:es) t2
merge t1 es (Lf a) = merge t1 (es++[a]) Empty
merge (Br s1 f1 m1 r1) es (Br s2 f2 m2 r2) =

Br (s1 + s2 + (sum $ map size es)) f1 (merge m1 (trees (r1 ++ es ++ f2)) m2) r2

trees [a, b] = [tr2 a b]
trees [a, b, c] = [tr3 a b c]
trees [a, b, c, d] = [tr2 a b, tr2 c d]
trees (a:b:c:es) = (tr3 a b c):trees es

−− index
data Place a = Place Int a

getAt :: Seq a → Int → Maybe a
getAt (Seq xs) i | i < size xs = case lookupTree i xs of

Place _ (Elem x) → Just x

Elementary Algorithms 231

| otherwise = Nothing

lookupTree :: (Sized a) ⇒ Int → Tree a → Place a
lookupTree n (Lf a) = Place n a
lookupTree n (Br s f m r) | n < sf = lookups n f

| n < sm = case lookupTree (n - sf) m of
Place n' xs → lookupNode n' xs

| n < s = lookups (n - sm) r
where sf = sum $ map size f

sm = sf + size m

lookupNode :: (Sized a) ⇒ Int → Node a → Place a
lookupNode n (Tr2 _ a b) | n < sa = Place n a

| otherwise = Place (n - sa) b
where sa = size a

lookupNode n (Tr3 _ a b c) | n < sa = Place n a
| n < sab = Place (n - sa) b
| otherwise = Place (n - sab) c

where sa = size a
sab = sa + size b

lookups :: (Sized a) ⇒ Int → [a] → Place a
lookups n (x:xs) = if n < sx then Place n x

else lookups (n - sx) xs
where sx = size x

232 Quick sort and merge sort

Chapter 13

Quick sort and merge sort

13.1 Introduction
People proved the performance upper limit be O(n lgn) for comparison based sort [51].
This chapter gives two divide and conquer sort algorithms: quick sort and merge sort,
both achieve O(n lgn) time bound. We also give their variants, like natural merge sort,
in-place merge sort, and etc.

13.2 Quick sort

Consider arrange kids in a line ordered by height.

1. The first kid raises hand, all shorter one move to left, and the others move to right;

2. All kids on the left and right repeat.

For example, the heights (in cm) are [102, 100, 98, 95, 96, 99, 101, 97]. Table 13.1 gives
the steps. (1) The kid of 102 cm raises hand as the pivot (underlined in the first row). It
happens the tallest, hence all others move to the left as shown in the second row in the
table. (2) The kid of 100 cm is the pivot. Kids of height 98, 95, 96, and 99 cm move to
the left, and the kid of 101 cm move to the right, as shown in the third row. (3) The kid

233

234 CHAPTER 13. QUICK SORT AND MERGE SORT

of 98 cm is the left pivot, while 101 cm is the right pivot. Because there is only one kid
on the right, it’s sorted. Repeat this to sort all kids.

102 100 98 95 96 99 101 97
100 98 95 96 99 101 97 ‘102’
98 95 96 99 97 ‘100’ 101 ‘102’
95 96 97 ‘98’ 99 ‘100’ ‘101’ ‘102’
‘95’ 96 97 ‘98’ ‘99’ ‘100’ ‘101’ ‘102’
‘95’ ‘96’ 97 ‘98’ ‘99’ ‘100’ ‘101’ ‘102’
‘95’ ‘96’ ‘97’ ‘98’ ‘99’ ‘100’ ‘101’ ‘102’

Table 13.1: Sort steps

We can summarize the quick sort definition, when sort list L:

• If L is empty[], the result is [];

• Otherwise, select an element as the pivot p, recursively sort elements ≤ p to the
left; and sort other elements > p to the right.

We say and, but not ‘then’, indicate we can parallel sort left and right. C. A. R.
Hoare developed quick sort in 1960 [51] [78]. There are varies of ways to pick the pivot, for
example, always choose the first element.

sort [] = []
sort (x:xs) = sort [y|y ∈ xs, y ≤ x] ++ [x] ++ sort [y|y ∈ xs, x < y]

(13.1)

We use the Zermelo Frankel expression (ZF expression)1. {a|a ∈ S, p1(a), p2(a), ...}
selects elements in set S, that satisfy every the predication p1, p2, ... (see chapter 1). Below
is example code:
sort [] = []
sort (x:xs) = sort [y | y←xs, y ≤ x] ++ [x] ++ sort [y | y←xs, x < y]

We assume to sort in ascending order. We can abstract the comparison to sort different
things like numbers, strings, and etc. (see chapter 3) We needn’t total ordering, but at
least need strict weak ordering [79] [52](see chapter 9). We use ≤ as the abstract comparison.

13.2.1 Partition
We traverse elements in two passes: first filter all elements ≤ x ; next filter all > x. We
can combine them into one pass:

part p [] = ([], [])

part p (x:xs) =

{
p(x) : (x:as, bs),where : (as, bs) = part p xs

otherwise : (as, x:bs)

(13.2)

And change the quick sort definition to:

sort [] = []
sort (x:xs) = sort as++ [x] ++ sort bs,where : (as, bs) = part (≤ x) xs

(13.3)

We can also define partition with fold:

part p = foldr f ([], []) (13.4)
1Name after two mathematicians found the modern set theory.

13.2. QUICK SORT 235

Where f is defined as:

f (as, bs) x =

{
p(x) : (x:as, bs)

otherwise : (as, x:bs)
(13.5)

It’s essentially to accumulate to (as, bs). If p(x) holds, then add x to as, otherwise to
bs. We can implement a tail recursive partition:

part p [] as bs = (as, bs)

part p (x:xs) as bs =

{
p(x) : part p xs (x:as) bs

otherwise : part p xs as (x:bs)

(13.6)

To partition x:xs, we call:

(as, bs) = part (≤ x) xs [] []

We change concatenation sort as++ [x] ++ sort bs with accumulator as:

sort s [] = s
sort s (x:xs) = sort (x : sort s bs) as

(13.7)

Where s is the accumulator, we initialize sort with an empty list: qsort = sort [].
After partition, we need recursively sort as, bs. We can first sort bs, prepend x, then pass
it as the new accumulator to sort as:
sort = sort' []

sort' acc [] = acc
sort' acc (x:xs) = sort' (x : sort' acc bs) as where

(as, bs) = part xs [] []
part [] as bs = (as, bs)
part (y:ys) as bs | y ≤ x = part ys (y:as) bs

| otherwise = part ys as (y:bs)

13.2.2 In-place sort
Figure 13.1 gives a way to partition in-place [2] [4]. We scan from left to right. At any
time, the array is consist of three parts as shown in figure 13.1 (a):

• The pivot is the left element p = x[l]. It moves to the final position after partition;

• A section of elements ≤ p, extend right to L;

• A section of elements > p, extend right to R. The elements between L and R > p;

• Elements after R haven’t been partitioned (may >,=, < p).

When partition starts, L points to p, R points to the next, as shown in figure 13.1
(b). We advance R to right till reach to the array boundary. Every time, we compare
x[R] and p. If x[R] > p, it should be between L and R, we move R forward; otherwise if
X[R] ≤ p, it should be on the left of L. We advance L a step, then swap x[L] ↔ x[R].
When R passes the last element, the partition ends. Elements > p move to the right of
L, while others on the left side. We need move p to the position between the two parts.
To do that, we swap p↔ x[L], as shown in 13.1 (c). L finally points to p, partitioned the
array in two parts. We return L + 1 as the result, that points to the first element > p.
Let the array be A, the lower, upper boundary be l, u. The in-place partition is defined
below:

236 CHAPTER 13. QUICK SORT AND MERGE SORT

x[l] ... ≤ p > p?... x[u]

p = x[l] left L right R

(a) Partition invariant

x[l] x[l+1] ...?... x[u]

p L R

(b) Initialize

x[l] ... ≤ p ... x[L] ... > p ... x[u]

p L R

swap

(c) Terminate

Figure 13.1: In-place partition, pivot p = x[l]

1: function Partition(A, l, u)
2: p← A[l] ▷ pivot
3: L← l ▷ left
4: for R in [l + 1, u] do ▷ iterate right
5: if p ≥ A[R] then
6: L← L+ 1
7: Exchange A[L]↔ A[R]

8: Exchange A[L]↔ p
9: return L+ 1 ▷ partition position

Table 13.2 lists the steps to partition [3, 2, 5, 4, 0, 1, 6, 7].

3(l) 2(r) 5 4 0 1 6 7 start, p = 3、l = 1、r = 2
3 2(l)(r) 5 4 0 1 6 7 2 < 3, advance l（r = l）
3 2(l) 5(r) 4 0 1 6 7 5 > 3, move on
3 2(l) 5 4(r) 0 1 6 7 4 > 3, move on
3 2(l) 5 4 0(r) 1 6 7 0 < 3
3 2 0(l) 4 5(r) 1 6 7 advance l, swap with r
3 2 0(l) 4 5 1(r) 6 7 1 < 3
3 2 0 1(l) 5 4(r) 6 7 advance l, swap with r
3 2 0 1(l) 5 4 6(r) 7 6 > 3, move on
3 2 0 1(l) 5 4 6 7(r) 7 > 3, move on
1 2 0 3 5(l+1) 4 6 7 terminate, swap p and l

Table 13.2: Partition array

With Partition defined, we implement quick sort as below:
1: procedure Quick-Sort(A, l, u)
2: if l < u then
3: m← Partition(A, l, u)

13.2. QUICK SORT 237

4: Quick-Sort(A, l,m− 1)
5: Quick-Sort(A,m, u)

We pass the array and its boundaries, as Quick-Sort(A, 1, |A|) to sort. When the
array is empty or singleton, sort returns immediately.

Exercise 13.1

1. Improve the basic quick sort definition when the list is singleton.

13.2.3 Performance
Quick sort performs well in most cases. We start from the best/worst cases. For the best
case, we always halve the elements into two equal sized parts. As shown in figure 13.2,
there are total O(lgn) levels of recursions. At level one, we processes n elements with
one partition; at level two, we partition twice, each processes n/2 elements, taking total
2O(n/2) = O(n) time; at level three, we partition four times, each process n/4 elements,
taking total O(n) time too, ..., at the last level, there are n singleton segments, taking
total O(n) time. Sum all levels, the time is bound to O(n lgn).

 n

 n / 2 n / 2

 n /4 n /4 n /4 n /4

...lg(n)...

11 ...n... 1

Figure 13.2: The best case, halve every time.

For the worst case, the partition is totally unbalanced, one part is of O(1) length, the
other is O(n). The level of recursions decays to O(n). Model the partition as a tree.
It’s balanced binary tree in the best case, while it becomes a linked-list of O(n) length
in the worst case. Every branch node has an empty sub-tree. At each level, we process
all elements, hence the total time is bound to O(n2). This is same as insertion sort, and
selection sort. We can list several worst cases, for example, there are many duplicated
elements, or the sequence is largely ordered, and so on. There isn’t a method can avoid
the worst case completely.

Average case⋆

Quick sort performs well in average. For example, even if every partition gives two parts
of 1:9, the performance still achieves O(n lgn) [4]. We give two method to evaluate the
performance. The first one is based on the fact, that the performance is proportion to
the number of comparisons. In selection sort, every two elements are compared, while in

238 CHAPTER 13. QUICK SORT AND MERGE SORT

quick sort, we save many comparisons. When partition sequence [a1, a2, a3, ..., an] with a1
as the pivot, we obtain two sub sequences A = [x1, x2, ..., xk] and B = [y1, y2, ..., yn−k−1].
After that, none element in A will compare with any one in B. Let the sorted result be
[a1, a2, ..., an], if ai < aj , we do not compare them if and only if there is some element ak,
where ai < ak < aj , is picked as the pivot before either ai or aj being the pivot. In other
word, the only chance that we compare ai and aj is either ai or aj is chosen as the pivot
before any other elements in ai+1 < ai+2 < ... < aj−1 being the pivot. Let P (i, j) be the
probability that we compare ai and aj . We have:

P (i, j) =
2

j − i+ 1
(13.8)

The total number of comparisons is:

C(n) =

n−1∑
i=1

n∑
j=i+1

P (i, j) (13.9)

If we compare ai and aj , we won’t compare aj and ai again, and we never compare ai
with itself. The upper bound of i is n− 1, and the lower bound of j is i+ 1. Substitute
the probability:

C(n) =

n−1∑
i=1

n∑
j=i+1

2

j − i+ 1

=

n−1∑
i=1

n−i∑
k=1

2

k + 1

(13.10)

Use the result of harmonic series [80].

Hn = 1 +
1

2
+

1

3
+ = lnn+ γ + ϵn

C(n) =

n−1∑
i=1

O(lgn) = O(n lgn) (13.11)

The other method uses the recursion. Let the length of the sequence be n, we partition
it into two parts of length i and n−i−1. The partition takes cn time because it compares
every element with the pivot. The total time is:

T (n) = T (i) + T (n− i− 1) + cn (13.12)

Where T (n) is the time to sort n elements. i equally distributes across 0, 1, ..., n− 1.
Taking math expectation:

T (n) = E(T (i)) + E(T (n− i− 1)) + cn

=
1

n

n−1∑
i=0

T (i) +
1

n

n−1∑
i=0

T (n− i− 1) + cn

=
1

n

n−1∑
i=0

T (i) +
1

n

n−1∑
j=0

T (j) + cn

=
2

n

b−1∑
i=0

T (i) + cn

(13.13)

13.2. QUICK SORT 239

Multiply n to both sides:

nT (n) = 2

n−1∑
i=0

T (i) + cn2 (13.14)

Substitute n to n− 1:

(n− 1)T (n− 1) = 2

n−2∑
i=0

T (i) + c(n− 1)2 (13.15)

Take (13.14) - (13.15), cancel all T (i) for 0 ≤ i < n− 1.

nT (n) = (n+ 1)T (n− 1) + 2cn− c (13.16)

Drop the constant c, we obtain:

T (n)

n+ 1
=

T (n− 1)

n
+

2c

n+ 1
(13.17)

Assign n to n− 1, n− 2, ..., to give n− 1 equations.

T (n− 1)

n
=

T (n− 2)

n− 1
+

2c

n

T (n− 2)

n− 1
=

T (n− 3)

n− 2
+

2c

n− 1

...

T (2)

3
=

T (1)

2
+

2c

3

Sum up and cancel the same components on both sides, we get a function of n.

T (n)

n+ 1
=

T (1)

2
+ 2c

n+1∑
k=3

1

k
(13.18)

Use the result of the harmonic series:

O(
T (n)

n+ 1
) = O(

T (1)

2
+ 2c lnn+ γ + ϵn) = O(lgn) (13.19)

Therefore:

O(T (n)) = O(n lgn) (13.20)

13.2.4 Improvement
The Partition procedure doesn’t perform well when there are many duplicated elements.
Consider the extreme case that all n elements are equal [x, x, ..., x]:

1. From the quick sort definition: pick any element as the pivot, hence p = x, partition
into two sub-sequences. One is [x, x, ..., x] of length n− 1, the other is empty. Next
recursively sort the n− 1 elements, the total time decays to O(n2).

2. Modify the partition with < x and > x. The result are two empty sub-sequences,
and n elements equal to x. The recursion on empty sequence terminates immedi-
ately. The result is [] ++ [x, x, ..., x] ++ []. The performance is O(n).

240 CHAPTER 13. QUICK SORT AND MERGE SORT

We improve from binary partition to ternary partition to handle duplicated elements:

sort [] = []
sort (x:xs) = sort S ++ sort E ++ sort G

(13.21)

Where: 
S = [y|y ∈ xs, y < x]

E = [y|y ∈ xs, y = x]

G = [y|y ∈ xs, y > x]

To concatenate three lists in linear time, we can use an accumulator: qsort = sort [],
where:

sort A [] = A
sort A (x:xs) = sort (E ++ sort A G) S

(13.22)

We partition the list in three parts: S,E,G, where E contains elements of same value,
hence sorted. We first sort G with accumulator A, append the result to E as the new
accumulator, and use it to sort S. We also improve the partition with accumulator:

part S E G x [] = (S,E,G)

part S E G x (y :ys) =


y < x : (y :S,E,G)

y = x : (S, y :E,G)

y > x : (S,E, y :G)

(13.23)

Richard Bird developed another improvement [1], instead concatenate the recursive
sort results, put them in a list and concatenate finally:
sort :: (Ord a) ⇒ [a] → [a]
sort = concat ◦ (pass [])

pass xss [] = xss
pass xss (x:xs) = step xs [] [x] [] xss where

step [] as bs cs xss = pass (bs : pass xss cs) as
step (x':xs') as bs cs xss | x' < x = step xs' (x':as) bs cs xss

| x' == x = step xs' as (x':bs) cs xss
| x' > x = step xs' as bs (x':cs) xss

Robert Sedgewick developed two-way partition method [69] [2]. Use two pointers i, j
from left and right boundaries. Pick the first element as the pivot p. Advance i to right
till an element ≥ p; while (in parallel) move j to left till an element ≤ p. At this time,
all elements left to i are less than the pivot (< p), while those right to j are greater than
the pivot (> p). i points to one that ≥ p, and j points to one that ≤ p, as shown in
figure 13.3 (a). To move all elements ≤ p to left, and the remaining to right, we exchange
x[i] ↔ x[j], then continue scan. We repeat this till i and j meet. At any time, we keep
the invariant: All elements left to i (include i) are ≤ p; while all right to j (include j) are
≥ p. The elements between i and j are yet to scan, as shown in figure 13.3 (b).

When i meets j, we need an extra exchange, swap the pivot p to position j. Then
recursive sort sub-array A[l...j) and A[i...u).

1: procedure Sort(A, l, u) ▷ sort range [l, u)
2: if u− l > 1 then ▷ At least 2 elements
3: i← l, j ← u
4: pivot← A[l]
5: loop

13.2. QUICK SORT 241

x[l] ... < p ... x[i] ... ? ... x[j] ... > p ...

pivot p ≥ p ≤ p

(a) When i and j stop

x[l] ... ≤ p ? ≥ p ...

pivot p i j

(b) Partition invariant

Figure 13.3: 2-way scan

6: repeat
7: i← i+ 1
8: until A[i] ≥ pivot ▷ Ignore i ≥ u
9: repeat

10: j ← j − 1
11: until A[j] ≤ pivot ▷ Ignore j < l
12: if j < i then
13: break
14: Exchange A[i]↔ A[j]

15: Exchange A[l]↔ A[j] ▷ Move the pivot
16: Sort(A, l, j)
17: Sort(A, i, u)

Consider the special case that all elements are equal, the array is partitioned into two
same parts with n

2
swaps. Because of the balanced partition, the performance is O(n lgn).

It takes less swaps than the one pass scan method, since it skips the elements on the right
side of the pivot. We can combine 2-way scan and ternary partition. Only recursively
sort the elements different with the pivot. Jon Bentley and Douglas McIlroy developed
a method as shown in figure 13.4 (a), that store the elements equal to the pivot on both
sides [70] [71].

x[l] ... = < ? > = ...

pivot p i j q

(a) Ternary partition invariant.

... < = > ...

i j

(b) Swap the elements = p to the middle.

Figure 13.4: Ternary partition

We scan from two sides, pause when i reach an element ≥ the pivot, and j reach one ≤

242 CHAPTER 13. QUICK SORT AND MERGE SORT

the pivot. If i doesn’t meet or pass j, we exchange A[i]↔ A[j], then check if A[i] or A[j]
equals to the pivot. If yes, we exchange A[i]↔ A[p] or A[j]↔ A[q] respectively. Finally,
we swap all the elements equal to the pivot to the middle. This step do nothing if all
elements are unique. The partition result is shown as 13.4 (b). We next only recursively
sort the elements not equal to the pivot.

1: procedure Sort(A, l, u)
2: if u− l > 1 then
3: i← l, j ← u
4: p← l, q ← u ▷ point to the boundaries of duplicated elements
5: pivot← A[l]
6: loop
7: repeat
8: i← i+ 1
9: until A[i] ≥ pivot ▷ Ignore i ≥ u case

10: repeat
11: j ← j − 1
12: until A[j] ≤ pivot ▷ Ignore j < l case
13: if j ≤ i then
14: break
15: Exchange A[i]↔ A[j]
16: if A[i] = pivot then ▷ duplicated element
17: p← p+ 1
18: Exchange A[p]↔ A[i]

19: if A[j] = pivot then
20: q ← q − 1
21: Exchange A[q]↔ A[j]

22: if i = j and A[i] = pivot then
23: j ← j − 1, i← i+ 1

24: for k from l to p do ▷ Swap the duplicated elements to the middle
25: Exchange A[k]↔ A[j]
26: j ← j − 1

27: for k from u− 1 down-to q do
28: Exchange A[k]↔ A[i]
29: i← i+ 1

30: Sort(A, l, j + 1)
31: Sort(A, i, u)

It becomes complex when combine 2-way scan and ternary partition. We can change
the one pass scan to ternary partition directly. Pick the first element as the pivot, as
shown in figure ??. At any time, the left part contains elements < p; the next part
contains those = p; and the right part contains those > p. The boundaries are i, k, j.
Elements between [k, j) are yet to be partitioned. We scan from left to right. When start,
the part < p is empty; the part = p has an element; i points to the lower boundary, k
points to the next. The part > p is empty too, j points to the upper boundary.

... < p = p ? > p ...

i k j

Figure 13.5: 1 way scan ternary partition

13.2. QUICK SORT 243

We iterate on k, if A[k] = p, then move k to the next; if A[k] > p, then exchange
A[k]↔ A[j − 1], the range of elements that > p increases by one. Its boundary j moves
to left a step. Because we don’t know if the element moved to k is still > p, we compare
again and repeat. Otherwise if A[k] < p, we exchange A[k]↔ A[i], where A[i] is the first
element that = p. The partition terminates when k meets j.

1: procedure Sort(A, l, u)
2: if u− l > 1 then
3: i← l, j ← u, k ← l + 1
4: pivot← A[i]
5: while k < j do
6: while pivot < A[k] do
7: j ← j − 1
8: Exchange A[k]↔ A[j]

9: if A[k] < pivot then
10: Exchange A[k]↔ A[i]
11: i← i+ 1

12: k ← k + 1

13: Sort(A, l, i)
14: Sort(A, j, u)

Compare with the ternary partition through 2-way scan, this implementation is less
complex but need more swaps.

Worst cases

Although ternary partition handles duplicated elements well, there are the worst cases.
For example, when most elements are ordered (ascending or descending), the partition is
unbalanced. Figure 13.6 gives two of the worst cases: [x1 < x2 < ... < xn] and [y1 > y2 >
... > yn]. It’s easy to give more, for example: [xm, xm−1, ..., x2, x1, xm+1, xm+2, ...xn],
where [x1 < x2 < ... < xn], and [xn, x1, xn−1, x2, ...] as shown in figure 13.7.

In these worst cases, the partition is unbalanced when choose the first element as the
pivot. Robert Sedgwick improved the pivot selection [69]: Instead pick a fixed position,
sample several elements to avoid bad pivot. We sample the first, the middle, and the
last, pick the median as the pivot. We can either compare every two (total 3 times) [70],
or swap the least one to head, swap the greatest one end, and move the median to the
middle.

1: procedure Sort(A, l, u)
2: if u− l > 1 then
3: m← b l + u

2
c ▷ or l +

u− l

2
to void overflow

4: if A[m] < A[l] then ▷ Ensure A[l] ≤ A[m]
5: Exchange A[l]↔ A[m]

6: if A[u− 1] < A[l] then ▷ Ensure A[l] ≤ A[u− 1]
7: Exchange A[l]↔ A[u− 1]

8: if A[u− 1] < A[m] then ▷ Ensure A[m] ≤ A[u− 1]
9: Exchange A[m]↔ A[u− 1]

10: Exchange A[l]↔ A[m]
11: (i, j)← Partition(A, l, u)
12: Sort(A, l, i)
13: Sort(A, j, u)

This implementation handles the above four worst cases well. We call it ‘median of
three’. Alternatively, we can randomly pick pivot:

244 CHAPTER 13. QUICK SORT AND MERGE SORT

[]

[]

[]

[]

x[1] x[2] ... x[n]

x[2] x[3] ... x[n]

x[3] x[4] ... x[n]

...

x[n]

(a) Partition tree of [x1 < x2 < ... < xn], the sub-trees of ≤ p are empty.

y[1] y[2] ... y[n]

y[2] y[3] ... y[n] []

y[3] y[4] ... y[n] []

... []

y[n] []

(b) Partition tree of [y1 > y2 > ... > yn], the sub-trees of ≥ p are
empty.

Figure 13.6: The worst cases - 1.

13.2. QUICK SORT 245

x[m] x[m-1] ... x[1] x[m+1] x[m+2] ... x[n]

x[m-1] x[m-2] ... x[1] x[m+1] x[m+2] ... x[n]

x[m-2] x[m-3] ... x[1] []

... []

x[1] []

[] x[m+2] x[m+3] ... x[n]

[] ...

[] x[n]

(a) Unbalanced partitions except for the first time.

x[n] x[1] x[n-1] x[2] ...

x[1] x[n-1] x[2] x[n-2] x[2] ...

[] x[n-1] x[2] x[n-2] x[3] ...

x[2] x[n-2] x[3] x[n-3] ...

[] x[n-2] x[3] x[n-3] x[4] ...

x[3] x[n-3] x[4] x[n-4] ... []

[] ...

(b) A zig-zag partition tree.

Figure 13.7: The worst cases - 2.

246 CHAPTER 13. QUICK SORT AND MERGE SORT

1: procedure Sort(A, l, u)
2: if u− l > 1 then
3: Exchange A[l]↔ A[Random(l, u)]
4: (i, j)← Partition(A, l, u)
5: Sort(A, l, i)
6: Sort(A, j, u)

Where Random(l, u) returns integer l ≤ i < u randomly. We swap A[i] with the
first element as the pivot. This method is called random quick sort [4]. Theoretically,
neither ‘median of three’ nor random quick sort can avoid the worst case completely. If
the sequence is random, it’s same to choose any one as the pivot. Nonetheless, these
improvements are widely used in engineering practice.

There are other improvements besides partition. Sedgewick found quick sort had
overhead when the list is short, while insert sort performed better [2] [70]. Sedgewick,
Bentley and McIlroy evaluated varies thresholds, as ‘cut-off’. When the elements are less
than the ‘cut-off’, then switch to insert sort.

1: procedure Sort(A, l, u)
2: if u− l > Cut-Off then
3: Quick-Sort(A, l, u)
4: else
5: Insertion-Sort(A, l, u)

13.2.5 quick sort and tree sort
The ‘true quick sort’ is the combination of multiple engineering improvements, falls back
to insert sort for small sequence, in-place swaps, choose the pivot as the ‘median of
three’, 2-way scan, and ternary partition. Some people think the basic recursive defi-
nition is essentially tree sort. Richard Bird derived quick sort from binary tree sort by
deforestation [72]. Define unfold that converts a list to binary search tree:

unfold [] = ∅
unfold (x:xs) = (unfold [a|a ∈ xs, a ≤ x], x, unfold [a|a ∈ xs, a > x])

(13.24)

Compare with the binary tree insert (see chapter 2), unfold creates the tree differently.
If the list is empty, the tree is empty; otherwise, use the first element x as the key, then
recursively build the left, right sub-trees. Where the left sub-tree has the elements ≤ x;
and the right tree has elements that > x. While to convert a binary search tree to ordered
list, we define in-order traverse as:

toList ∅ = []
toList (l, k, r) = toList l ++ [k] ++ toList r (13.25)

We define quick sort by composing the two functions:

sort = toList ◦ unfold (13.26)

We first build the binary search tree through unfold, then pass it to toList to generate
the list, and discard the tree. When eliminate the intermediate tree (through deforestation
by Burstle-Darlington’s work [?]), we obtain the quick sort.

13.3 Merge sort
Quick sort performs well in most cases. However, there are the worst cases can’t be
completely avoided. Merge sort guarantees O(n lgn) performance in all cases. It sup-
ports both arrays and lists. Many programming environments provide merge sort as the

13.3. MERGE SORT 247

standard sort tool2. Merge sort takes divide and conquer approach. It always splits the
sequence in half and half, recursively sort them and merge.

sort [] = []
sort [x] = [x]
sort xs = merge (sort as) (sort bs),where : (as, bs) = halve xs

(13.27)

Where halve splits the sequence, for array, we can cut at the middle: splitAt b |xs|
2
c xs.

However, it takes linear time to move to the middle point of a list (see chapter 1):

splitAt n xs = shift n [] xs (13.28)

Where:

shift 0 as bs = (as, bs)
shift n as (b:bs) = shift (n− 1) (b:as) bs

(13.29)

Because halve needn’t keep the relative order among elements, we can simplify the
implementation with odd-even split. There are same number of elements in odd and even
positions, or they only differ by one. halve = split [] [], where:

split as bs [] = (as, bs)
split as bs [x] = (x:as, bs)

split as bs (x:y :xs) = split (x:as) (y :bs) xs
(13.30)

We can further simplify it with folding, as in below example, we add x to a every
time, then swap as↔ bs:
halve = foldr f ([], []) where

f x (as, bs) = (bs, x : as)

13.3.1 Merge
Merge is demonstrated as figure 13.8. Consider two groups of kids, already ordered from
short to tall. They need pass a gate, one kid per time. We arrange the first kid from each
group to compare, the shorter one pass the gate. Repeat this till a group pass the gate,
then the remaining kids pass the gate one by one.

Figure 13.8: Merge

merge [] bs = bs
merge as [] = as

merge (a:as) (b:bs) =

{
a < b : a : merge as (b:bs)

otherwise : b : merge (a:as) bs

(13.31)

For array, we directly cut at the middle position, recursively sort two halves, then
merge:

2For example in the standard library of Haskell, Python, and Java.

248 CHAPTER 13. QUICK SORT AND MERGE SORT

1: procedure Sort(A)
2: n← |A|
3: if n > 1 then
4: m← bn

2
c

5: X ← Copy-Array(A[1...m])
6: Y ← Copy-Array(A[m+ 1...n])
7: Sort(X)
8: Sort(Y)
9: Merge(A,X, Y)

We allocated additional space of the same size of A because Merge is not in-pace.
We repeatedly compare elements from X and Y , pick the less one to A. When either
sub-array finish, we add all the remaining to A.

1: procedure Merge(A,X, Y)
2: i← 1, j ← 1, k ← 1
3: m← |X|, n← |Y |
4: while i ≤ m and j ≤ n do
5: if X[i] < Y [j] then
6: A[k]← X[i]
7: i← i+ 1
8: else
9: A[k]← Y [j]

10: j ← j + 1

11: k ← k + 1

12: while i ≤ m do
13: A[k]← X[i]
14: k ← k + 1
15: i← i+ 1

16: while j ≤ n do
17: A[k]← Y [j]
18: k ← k + 1
19: j ← j + 1

13.3.2 Performance

Merge sort has two steps: partition and merge. We always halve the sequence. The
partition tree is a balanced binary tree as shown in figure 13.2. The height is O(lgn), so
as the recursion depth. The merge happens at every level, compares elements one by one
from each sorted sub-sequence. Hence merge takes linear time. For sequence of length n,
let T (n) be the merge sort time, we have below recursive breakdown:

T (n) = T (
n

2
) + T (

n

2
) + cn = 2T (

n

2
) + cn (13.32)

The time consists of three parts: sort the first half, sort the second half, each takes
T (

n

2
) time; and merge in cn time, where c is a constant. Solving this equation gives

O(n lgn) result. The other performance factor is space. Varies implementation differ
a lot. The basic merge sort allocates the space of the same size as the array in each
recursion, copies elements and sorts, then release the space. When reach to the deepest
recursion, consume the largest space of O(n lgn).

13.3. MERGE SORT 249

Improvement

To simplify merge, we append ∞ to X and Y 3.
1: procedure Merge(A,X, Y)
2: Append(X,∞)
3: Append(Y,∞)
4: i← 1, j ← 1, n← |A|
5: for k ← from 1 to n do
6: if X[i] < Y [j] then
7: A[k]← X[i]
8: i← i+ 1
9: else

10: A[k]← Y [j]
11: j ← j + 1

It’s expensive to allocate/release space repeatedly [2]. We can pre-allocate a work area
of the same size as A. Reuse it during recursive merge, and finally release it.

1: procedure Sort(A)
2: n← |A|
3: Sort′(A, Create-Array(n), 1, n)

4: procedure Sort′(A,B, l, u)
5: if u− l > 0 then
6: m← b l + u

2
c

7: Sort′(A,B, l,m)
8: Sort′(A,B,m+ 1, u)
9: Merge′(A,B, l,m, u)

We need update Merge′ with the passed in work area:
1: procedure Merge′(A,B, l,m, u)
2: i← l, j ← m+ 1, k ← l
3: while i ≤ m and j ≤ u do
4: if A[i] < A[j] then
5: B[k]← A[i]
6: i← i+ 1
7: else
8: B[k]← A[j]
9: j ← j + 1

10: k ← k + 1

11: while i ≤ m do
12: B[k]← A[i]
13: k ← k + 1
14: i← i+ 1

15: while j ≤ u do
16: B[k]← A[j]
17: k ← k + 1
18: j ← j + 1

19: for i← from l to u do ▷ copy back
20: A[i]← B[i]

This implementation reduces the space from O(n lgn) to O(n), improve performance

3−∞ for descending order

250 CHAPTER 13. QUICK SORT AND MERGE SORT

20% to 25% for 100,000 numeric elements.

13.3.3 In-place merge sort
To avoid additional space, we consider how to reuse the array as the work area. As shown
in figure 13.9, sub-array A and B are sorted, when merge in-place, the part before l are
merged and ordered. If A[l] < A[m], move l to right a step; otherwise if A[l] ≥ A[m], we
need move A[m] to merge result before l. We need shift all elements between l and m
(including l) to right a step.

merged A[l] ... sorted X... A[m] ... sorted Y ...

if A[l] ≥ A[m], then shift X

Figure 13.9: In-place shift and merge

1: procedure Merge(A, l,m, u)
2: while l ≤ m ∧m ≤ u do
3: if A[l] < A[m] then
4: l← l + 1
5: else
6: x← A[m]
7: for i← m down-to l + 1 do ▷ Shift
8: A[i]← A[i− 1]

9: A[l]← x

However, the in-place shift and merge downgrades the performance to O(n2) time.
Array shift takes linear time, proportion to the length of X. When sort a sub-array, our
idea is to reuse the remaining part as the work area, and avoid overwriting the elements
in it. When compare elements from sorted sub-array A and B, we chose the less one and
store it in the work area, but we need exchange the element out to free up the cell. After
merge, A and B together store the content of the original work area, as shown in figure
13.10.

... reuse ... A[i] reuse ... B[j] ...

... merged ... C[k] ...

compare

if A[i] < B[j] then exchange A[i]↔ C[k]

Figure 13.10: Merge and swap

The sorted array A, B, and work area C are all part of the array. We pass the start,
end positions of A and B as ranges [i,m), [j, n)4. The work area starts from k.

1: procedure Merge(A, [i,m), [j, n), k)
2: while i < m and j < n do
3: if A[i] < A[j] then

4range [a, b) includes a, but excludes b.

13.3. MERGE SORT 251

4: Exchange A[k]↔ A[i]
5: i← i+ 1
6: else
7: Exchange A[k]↔ A[j]
8: j ← j + 1

9: k ← k + 1

10: while i < m do
11: Exchange A[k]↔ A[i]
12: i← i+ 1
13: k ← k + 1

14: while j < m do
15: Exchange A[k]↔ A[j]
16: j ← j + 1
17: k ← k + 1

The work area satisfies below two rules:

1. The work area has sufficient size to hold elements swapped in;

2. The work area can overlap with either sorted sub-arrays, but not overwrite any
unmerged elements.

We can use half array as the work area to sort the other half, as shown in figure 13.11.

... unsorted sorted ...

Figure 13.11: Merge and sort half array

We next sort further half of the work area (remaining 1

4
), as shown in figure 13.12.

We must merge A (1
2

array) and B (1
4

array) later sometime. However, the work area

can only hold 1

4
array, insufficient for size of A+B.

Figure 13.12: Work area can’t support merge A and B.

The second rule gives us an opportunity: arrange the work area overlapped with either
sub-array, and only override the merged part. We first sort the second 1/2 of the work
area, as the result, swap B to the first 1/2, the new work area is between A and B, as
shown in the upper of figure 13.13. The work area is overlapped with A [74]. Consider two
extremes:

1. x < y, for all x in B, y in A. After merge, contents of B and the work area are
swapped (the size of B equals to the work area);

2. y < x, for all x in B, y in A. During merge, we repeatedly swap content of A and
the work area. After half of A is swapped, we start overriding A. Fortunately, we
only override the merged content. The right boundary of work area keep moving to
the 3/4 of the array. After that, we start swap the content of B and the work area.
Finally, the work area moves to the left side of the array, as shown in the bottom
of figure 13.13 (b).

252 CHAPTER 13. QUICK SORT AND MERGE SORT

Figure 13.13: Merge A and B with the work area.

The other cases are between the above two extremes. The work area finally moves to
the first 1/4 of the array. Repeat this, we always sort the second 1/2 of the work area,
swap the result to the first 1/2, and keep the work area in the middle. We halve the work
area every time 1

2
,
1

4
,
1

8
, ... of the array, terminate when there is only one element left.

We cal also switch to insert sort for the last few elements.
1: procedure Sort(A, l, u)
2: if u− l > 0 then
3: m← b l + u

2
c

4: w ← l + u−m
5: Sort’(A, l,m,w) ▷ sort half
6: while w − l > 1 do
7: u′ ← w

8: w ← d l + u′

2
e ▷ halve the work area

9: Sort’(A,w, u′, l) ▷ sort the remaining half
10: Merge(A, [l, l + u′ − w], [u′, u], w)
11: for i← w down-to l do ▷ Switch to insert sort
12: j ← i
13: while j ≤ u and A[j] < A[j − 1] do
14: Exchange A[j]↔ A[j − 1]
15: j ← j + 1

We round up the work area to ensure sufficient size, then pass the range and work
area to Merge. We next update Sort’, which calls Sort to swap the work area and
merged part.

1: procedure Sort’(A, l, u, w)
2: if u− l > 0 then
3: m← b l + u

2
c

4: Sort(A, l,m)
5: Sort(A,m+ 1, u)
6: Merge(A, [l,m), [m+ 1, u), w)
7: else ▷ Swap elements to the work area
8: while l ≤ u do
9: Exchange A[l]↔ A[w]

10: l← l + 1
11: w ← w + 1

This implementation needn’t shift sub-array, it keeps reducing the unordered part:

13.3. MERGE SORT 253

n

2
,
n

4
,
n

8
, ..., completes in O(lgn) steps. Every step sorts half of the remaining, then

merge in linear time. Let the time to sort n elements be T (n), we have the following
recursive result:

T (n) = T (
n

2
) + c

n

2
+ T (

n

4
) + c

3n

4
+ T (

n

8
) + c

7n

8
+ ... (13.33)

For half elements, the time is:

T (
n

2
) = T (

n

4
) + c

n

4
+ T (

n

8
) + c

3n

8
+ T (

n

16
) + c

7n

16
+ ... (13.34)

Subtract (13.33) and (13.34):

T (n)− T (
n

2
) = T (

n

2
) + cn(

1

2
+

1

2
+ ...)

Add 1

2
total lgn times, hence:

T (n) = 2T (
1

2
) +

c

2
n lgn

Apply telescope method, obtain the result O(n lg2 n).

13.3.4 Nature merge sort

Figure 13.14: Burn from both ends

Knuth gives another implementation, called nature merge sort. It likes burning a
candle from both ends [51]. For any sequence, one can always find a ordered segment from
any position. Particularly, we can find such a segment from left end as shown in below
table.

15, 0, 4, 3, 5, 2, 7, 1, 12, 14, 13, 8, 9, 6, 10, 11
8, 12, 14, 0, 1, 4, 11, 2, 3, 5, 9, 13, 10, 6, 15, 7
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

The first row is the extreme case of a singleton segment, the second is less than the
first; the third row is the other extreme that the segment extends to the right end, the
whole sequence is ordered. Symmetrically, we can always find the ordered segment from
right end. We can merge the two sorted segments, one from left, another from right. The
advantage is to re-use the nature ordered sub-sequences for partition.

As shown in figure 13.15, we scan from both ends, find the two longest ordered seg-
ments respectively. Then merge them to the left of the work area. Next, we repeat to

254 CHAPTER 13. QUICK SORT AND MERGE SORT

8, 12, 14 0, 1, 4, 11 2, 3, 5 9 13, 10, 6 15, 7

7, 8, 12, 14, 15 ... free cells ... 13, 11, 10, 6, 4, 1, 0

merge merge

Figure 13.15: Nature merge sort

scan from left and right to center. This time, we merge the two segments for the right
to left of the work area. We switch the merge direction right/left in-turns. After scan all
elements and merge them to the work area, we swap the original array and the work area,
then start a new round of bi-directional scan and merge, terminates when the ordered
segment extends to cover the whole array. This implementation process the array from
both directions based on nature ordering. We called it nature two-way merge sort. As
shown in figure 13.16, elements before a and after d are scanned. We span the ordered
segment [a, b) to right, meanwhile, span [c, d) to left. For the work area, elements before
f and after f are merged (consist of multiple sub-sequences). In odd rounds, we merge
[a, b) and [c, d) from f to right; in even rounds, we merge from r to left.

... scanned span [a, b) ? span [c, d) scanned ...

a b c d

... merged free cells merged ...

f r

Figure 13.16: A status of nature merge sort

When sort starts, we allocate a work area with the same size of the array. a and b
point to the left side, c and d point to the right side. f and r point to the two sides of
the work area respectively.

1: function Sort(A)
2: if |A| > 1 then
3: n← |A|
4: B ← Create-Array(n) ▷ the work area
5: loop
6: [a, b)← [1, 1)
7: [c, d)← [n+ 1, n+ 1)
8: f ← 1, r ← n ▷ front, rear of the work area
9: t← 1 ▷ even/odd round

10: while b < c do ▷ elements yet to scan
11: repeat ▷ Span [a, b)

13.3. MERGE SORT 255

12: b← b+ 1
13: until b ≥ c ∨A[b] < A[b− 1]
14: repeat ▷ Span [c, d)
15: c← c− 1
16: until c ≤ b ∨A[c− 1] < A[c]
17: if c < b then ▷ Avoid overlap
18: c← b
19: if b− a ≥ n then ▷ Terminates if [a, b) spans the whole array
20: return A
21: if t is odd then ▷ merge to front
22: f ← Merge(A, [a, b), [c, d), B, f, 1)
23: else ▷ merge to rear
24: r ← Merge(A, [a, b), [c, d), B, r,−1)
25: a← b, d← c
26: t← t+ 1

27: Exchange A↔ B ▷ Switch work area
28: return A

We need pass the merge direction in:
1: function Merge(A, [a, b), [c, d), B,w,∆)
2: while a < b and c < d do
3: if A[a] < A[d− 1] then
4: B[w]← A[a]
5: a← a+ 1
6: else
7: B[w]← A[d− 1]
8: d← d− 1

9: w ← w +∆

10: while a < b do
11: B[w]← A[a]
12: a← a+ 1
13: w ← w +∆

14: while c < d do
15: B[w]← A[d− 1]
16: d← d− 1
17: w ← w +∆

18: return w

The performance does not depend on how ordered the elements are. In the ‘worst’
case, the ordered sub-sequences are all singleton. After merge, the length of the new
ordered sub-sequences are at least 2. Suppose we still encounter the ‘worst’ case in the
second round, the merged sub-sequences have length at least 4, ... every round double the
sub-sequence length, hence we need at most O(lgn) rounds. Because we can all elements
every round, the total time is bound to O(n lgn). For list, we can’t scan from tail back
easily as array. A list consists multiple ordered sub-lists, we can merge them in pairs. It
halves the sub-lists every round, and finally build the sorted result. We can define this
as below (Curried form):

sort = sort′ ◦ group (13.35)

256 CHAPTER 13. QUICK SORT AND MERGE SORT

Where group breaks the list into ordered sub-lists:

group [] = [[]]
group [x] = [[x]]

group (x:y :xs) =

{
x < y : (x:g):gs,where : (g :gs) = group (y :xs)

otherwise : [x]:g :gs

(13.36)

sort′ [] = []
sort′ [g] = g
sort′ gs = sort′ (mergePairs gs)

(13.37)

Where mergePairs is defined as:

mergePairs (g1 :g2 :gs) = merge g1 g2 : mergePairs gs
mergePairs gs = gs

(13.38)

Alternatively, we can define sort′ as fold:

sort′ = foldr merge [] (13.39)

Exercise 13.2

1. Is the performance of mergePairs and folded merge same? If yes, prove it, if not,
which one is faster?

13.3.5 Bottom-up merge sort
We can develop the bottom-up merge sort from the above performance analysis for nature
merge sort. First wrap all elements as n singleton sub-lists. Then merge them in pairs to
obtain n

2 ordered sub-lists of length 2; If n is odd, there remains a single list. Repeat this
paired merge to the sort all the list. Knuth called it ‘straight two-way merge sort’ [51], as
shown in figure 13.17.

 ...

... ...

 ...

Figure 13.17: Bottom-up merge sort

13.4. PARALLELISM 257

We needn’t partition the list. When start, convert [x1, x2, ..., xn] to [[x1], [x2], ..., [xn]],
then apply paired merge:

sort = sort′ ◦map(x 7→ [x]) (13.40)

We reuse the mergePairs defined for nature merge sort, terminates when consolidate
to one list [3]. The bottom up sort is similar to the nature merge sort, different only in
partition method. It can be deduced from nature merge sort as a special case (the ‘worst’
case). Nature merge sort always span the ordered sub-sequence as long as possible;
while the bottom up merge sort only span the length to 1. From the tail recursive
implementation, we can eliminate the recursion and convert it to iterative way.

1: function Sort(A)
2: n← |A|
3: B ← Create-Array(n)
4: for i from 1 to n do
5: B[i] = [A[i]]

6: while n > 1 do
7: for i← from 1 to bn

2
c do

8: B[i]← Merge(B[2i− 1], B[2i])
9: if Odd(n) then

10: B[dn
2
e]← B[n]

11: n← dn
2
e

12: if B = [] then
13: return []

14: return B[1]

Exercise 13.3
1. Implement the bottom-up merge sort with fold

13.4 Parallelism
In quick sort implementation, we can parallel sorting the two sub-sequences after partition.
Similarly, to parallel merge sort. Actually, we don’t limit by two concurrent tasks, but
divide into p sub-sequences, where p is the number of processors. Ideally, if we can achieve
sorting in T ′ time with parallelism, where O(n lgn) = pT ′, we say it’s linear speed up, and
the algorithm is parallel optimal. However, it is not parallel optimal by choosing p − 1
pivots, and partition the sequence into p parts for quick sort. The bottleneck happens in
the divide phase, that can only achieve in O(n) time. While, the bottleneck is the merge
phase for parallel merge sort. Both need specific design to speed up. Basically, the divide
and conquer nature makes merge sort and quick sort relative easy for parallelism. Richard
Cole developed parallel merge sort achieved O(lgn) performance with n processors in
1986 [76]. Parallelism is a big and complex topic out of the elementary scope [76] [77].

13.5 Summary
This chapter gives two popular divide and conquer sort algorithms: quick sort and
merge sort. Both achieved the best performance of O(n lgn) for comparison based sort.
Sedgewick quoted quick sort as the greatest algorithm developed in the 20th century.

258 CHAPTER 13. QUICK SORT AND MERGE SORT

Many programming environments provide sort tool based on it. Merge sort is a powerful
tool when handling sequence of complex entities, or not persisted in array5. Quick sort
performs well in most cases with fewer swaps than other methods. However, swap is not
suitable for linked-list, while merge sort is. It costs constant spaces and the performance is
guaranteed for all cases. Quick sort has advantage for vector storage like arrays, because
it needn’t extra work area and can sort in-place. This is a valuable feature particularly
in embedded system where memory is limited. In-place merging is till an active research
area.

We can considered quick sort as the optimized tree sort. Similarly, we can also deduce
merge sort from tree sort [75]. We can categorize sort algorithms in different ways [51], for
example, the implementations of partition and merge [72]. Quick sort is easy to merge,
because all the elements in one sub-sequence are not greater than the other. Merge is
equivalent to concatenation. On the other hand, in merge sort, it’s more complex than
quick sort, but it is easy to partition no matter we cut at the middle, even-odd split,
nature split, or bottom up split. While it’s more difficult to achieve perfect partition
in quick sort or completely avoid the worst case no matter with median-of-three pivot,
random quick sort, or ternary quick sort.

As of this chapter, we’ve seen the elementary sort algorithms, including insert sort,
tree sort, selection sort, heap sort, quick sort, and merge sort. Sort is an important domain
in computer algorithm design. People are facing the ‘big data’ challenge when I wrote
this chapter. It becomes routine to sort hundreds of Gigabytes with limited resources and
time.

Exercise 13.4
1. Build a binary search tree from a sequence using the idea of merge sort.

13.6 Appendix: Example programs
In-place partition:
Int partition(K[] xs, Int l, Int u) {

for (Int pivot = l, Int r = l + 1; r < u; r = r + 1) {
if xs[pivot] ≥ xs[r] {

l = l + 1
swap(xs[l], xs[r])

}
}
swap(xs[pivot], xs[l])
return l + 1

}

void sort(K[] xs, Int l, Int u) {
if l < u {

Int m = partition(xs, l, u)
sort(xs, l, m - 1)
sort(xs, m, u)

}
}

Bi-directional scan:
void sort(K[] xs, Int l, Int u) {

if l < u - 1 {
Int pivot = l, Int i = l, Int j = u
loop {

5In practice, most are kind of hybrid sort, for example, fallback to insert sort for small sequence.

13.6. APPENDIX: EXAMPLE PROGRAMS 259

while i < u and xs[i] < xs[pivot] {
i = i + 1

}
while j ≥ l and xs[pivot] < xs[j] {

j = j - 1
}
if j < i then break
swap(xs[i], xs[j])

}
swap(xs[pivot], xs[j])
sort(xs, l, j)
sort(xs, i, u)

}
}

Merge sort:
K[] sort(K[] xs) {

Int n = length(xs)
if n > 1 {

var ys = sort(xs[0 ... n/2 - 1])
var zs = sort(xs[n/2 ...])
xs = merge(xs, ys, zs)

}
return xs

}

K[] merge(K[] xs, K[] ys, K[] zs) {
Int i = 0
while ys ̸= [] and zs ̸= [] {

xs[i] = if ys[0] < zs[0] then pop(ys) else pop(zs)
i = i + 1

}
xs[i...] = if ys ̸= [] then ys else zs
return xs

}

Merge sort with work area:
void sort(K[] xs) = msort(xs, copy(xs), 0, length(xs))

void msort(K[] xs, K[] ys, Int l, Int u) {
if (u - l > 1) {

Int m = l + (u - l) / 2
msort(xs, ys, l, m)
msort(xs, ys, m, u)
merge(xs, ys, l, m, u)

}
}

void merge(K[] xs, K[] ys, Int l, Int m, Int u) {
Int i = l, Int k = l; Int j = m
while i < m and j < u {

ys[k++] = if xs[i] < xs[j] then xs[i++] else xs[j++]
}
while i < m {

ys[k++] = xs[i++]
}
while j < u {

ys[k++] = xs[j++]
}
while l < u {

xs[l] = ys[l]
l++

}
}

260 Searching

In-place merge sort:
void merge(K[] xs, Range<Int> (i, m), Range<Int> (j, n), Int w) {

while i < m and j < n {
swap(xs, w++, if xs[i] < xs[j] then i++ else j++)

}
while i < m {

swap(xs, w++, i++)
}
while j < n {

swap(xs, w++, j++)
}

}

void wsort(K[] xs, Range<Int> (l, u), Int w) {
if u - l > 1 {

Int m = l + (u - l) / 2
imsort(xs, l, m)
imsort(xs, m, u)
merge(xs, (l, m), (m, u), w)

}
else {

while l < u { swap(xs, l++, w++) }
}

}

void imsort(K[] xs, Int l, Int u) {
if u - l > 1 {

Int m = l + (u - l) / 2
Int w = l + u - m
wsort(xs, l, m, w)
while w - l > 2 {

Int n = w
w = l + (n - l + 1) / 2;
wsort(xs, w, n, l);
merge(xs, (l, l + n - w), (n, u), w);

}
for Int n = w; n > l; --n {

for Int m = n; m < u and xs[m] < xs[m-1]; m++ {
swap(xs, m, m - 1)

}
}

}
}

Iterative bottom up merge sort:
K[] sort(K[] xs) {

var ys = [[x] | x in xs]
while length(ys) > 1 {

ys += merge(pop(ys), pop(ys))
}
return if ys == [] then [] else pop(ys)

}

K[] merge(K[] xs, K[] ys) {
K[] zs = []
while xs ̸= [] and ys ̸= [] {

zs += if xs[0] < ys[0] then pop(xs) else pop(ys)
}
return zs ++ (if xs ̸= [] then xs else ys)

}

Chapter 14

Searching

14.1 Introduction
Searching is quite a big and important area. Computer makes many hard searching
problems realistic. They are almost impossible for human beings. A modern industry
robot can even search and pick the correct gadget from the pipeline for assembly; A GPS
car navigator can search among the map, for the best route to a specific place. The
modern mobile phone is not only equipped with such map navigator, but it can also
search for the best price for Internet shopping.

This chapter just scratches the surface of elementary searching. One good thing that
computer offers is the brute-force scanning for a certain result in a large sequence. The
divide and conquer search strategy will be briefed with two problems, one is to find the
k-th big one among a list of unsorted elements; the other is the popular binary search
among a list of sorted elements. We’ll also introduce the extension of binary search for
multiple-dimension data.

Text matching is also very important in our daily life, two well-known searching al-
gorithms, Knuth-Morris-Pratt (KMP) and Boyer-Moore algorithms will be introduced.
They set good examples for another searching strategy: information reusing.

Besides sequence search, some elementary methods for searching solution for some
interesting problems will be introduced. They were mostly well studied in the early
phase of AI (artificial intelligence), including the basic DFS (Depth first search), and
BFS (Breadth first search).

Finally, Dynamic programming will be briefed for searching optimal solutions, and
we’ll also introduce about greedy algorithm which is applicable for some special cases.

All algorithms will be realized in both imperative and functional approaches.

14.2 Sequence search
Although modern computer offers fast speed for brute-force searching, and even if the
Moore’s law could be strictly followed, the grows of huge data is too fast to be handled
well in this way. We’ve seen a vivid example in the introduction chapter of this book.
It’s why people study the computer search algorithms.

14.2.1 Divide and conquer search
One solution is to use divide and conquer approach. That if we can repeatedly scale
down the search domain, the data being dropped needn’t be examined at all. This will

261

262 CHAPTER 14. SEARCHING

definitely speed up the search.

k-selection problem

Consider a problem of finding the k-th smallest one among n elements. The most straight-
forward idea is to find the minimum first, then drop it and find the second minimum
element among the rest. Repeat this minimum finding and dropping k steps will give the
k-th smallest one. Finding the minimum among n elements costs linear O(n) time. Thus
this method performs O(kn) time, if k is much smaller than n.

Another method is to use the ‘heap’ data structure we’ve introduced. No matter what
concrete heap is used, e.g. binary heap with implicit array, Fibonacci heap or others,
Accessing the top element followed by popping is typically bound O(lgn) time. Thus this
method, as formalized in equation (14.1) and (14.2) performs in O(k lgn) time, if k is
much smaller than n.

top(k, L) = find(k, heapify(L)) (14.1)

find(k,H) =

{
top(H) : k = 0

find(k − 1, pop(H)) : otherwise
(14.2)

However, heap adds some complexity to the solution. Is there any simple, fast method
to find the k-th element?

The divide and conquer strategy can help us. If we can divide all the elements into
two sub lists A and B, and ensure all the elements in A is not greater than any elements
in B, we can scale down the problem by following this method1:

1. Compare the length of sub list A and k;

2. If k < |A|, the k-th smallest one must be contained in A, we can drop B and further
search in A;

3. If |A| < k, the k-th smallest one must be contained in B, we can drop A and further
search the (k − |A|)-th smallest one in B.

Note that the italic font emphasizes the fact of recursion. The ideal case always divides
the list into two equally big sub lists A and B, so that we can halve the problem each
time. Such ideal case leads to a performance of O(n) linear time.

Thus the key problem is how to realize dividing, which collects the first m smallest
elements in one sub list, and put the rest in another.

This reminds us the partition algorithm in quick sort, which moves all the elements
smaller than the pivot in front of it, and moves those greater than the pivot behind it.
Based on this idea, we can develop a divide and conquer k-selection algorithm, which is
called quick selection algorithm.

1. Randomly select an element (the first for instance) as the pivot;

2. Moves all elements which aren’t greater than the pivot in a sub list A; and moves
the rest to sub list B;

3. Compare the length of A with k, if |A| = k − 1, then the pivot is the k-th smallest
one;

4. If |A| > k − 1, recursively find the k-th smallest one among A;
1This actually demands a more accurate definition of the k-th smallest in L: It’s equal to the k-the

element of L′, where L′ is a permutation of L, and L′ is in monotonic non-decreasing order.

14.2. SEQUENCE SEARCH 263

5. Otherwise, recursively find the (k − 1− |A|)-th smallest one among B;

This algorithm can be formalized in below equation. Suppose 0 < k ≤ |L| , where L
is a non-empty list of elements. Denote l1 as the first element in L. It is chosen as the
pivot; L′ contains the rest elements except for l1. (A,B) = partition(λx · x ≤ l1, L

′). It
partitions L′ by using the same algorithm defined in the chapter of quick sort.

top(k, L) =

 l1 : |A| = k − 1
top(k − 1− |A|, B) : |A| < k − 1

top(k,A) : otherwise
(14.3)

partition(p, L) =

 (ϕ, ϕ) : L = ϕ
({l1} ∪A,B) : p(l1), (A,B) = partition(p, L′)
(A, {l1} ∪B) : ¬p(l1)

(14.4)

The following Haskell example program implements this algorithm.
top n (x:xs) | len == n - 1 = x

| len < n - 1 = top (n - len - 1) bs
| otherwise = top n as

where
(as, bs) = partition (≤ x) xs
len = length as

The partition function is provided in Haskell standard library, the detailed implemen-
tation can be referred to previous chapter about quick sort.

The lucky case is that, the k-th smallest element is selected as the pivot at the very
beginning. The partition function examines the whole list, and finds that there are k− 1
elements not greater than the pivot, we are done in just O(n) time. The worst case is that
either the maximum or the minimum element is selected as the pivot every time. The
partition always produces an empty sub list, that either A or B is empty. If we always
pick the minimum as the pivot, the performance is bound to O(kn). If we always pick
the maximum as the pivot, the performance is O((n− k)n).

The best case (not the lucky case), is that the pivot always partition the list perfectly.
The length of A is nearly as same as the length of B. The list is halved every time. It
needs about O(lgn) partitions, each partition takes linear time proportion to the length
of the halved list. This can be expressed as O(n + n

2 + n
4 + ... + n

2m), where m is the
smallest number satisfies n

2m < k. Summing the series leads to the result of O(n).
The average case analysis needs tool of mathematical expectation. It’s quite similar

to the proof given in previous chapter of quick sort. It’s left as an exercise to the reader.
Similar as quick sort, this divide and conquer selection algorithm performs well most

time in practice. We can take the same engineering practice such as media-of-three, or
randomly select the pivot as we did for quick sort. Below is the imperative realization for
example.

1: function Top(k,A, l, u)
2: Exchange A[l]↔ A[Random(l, u)] ▷ Randomly select in [l, u]
3: p← Partition(A, l, u)
4: if p− l + 1 = k then
5: return A[p]

6: if k < p− l + 1 then
7: return Top(k,A, l, p− 1)
8: return Top(k − p+ l − 1, A, p+ 1, u)

This algorithm searches the k-th smallest element in range of [l, u] for array A. The
boundaries are included. It first randomly selects a position, and swaps it with the first

264 CHAPTER 14. SEARCHING

one. Then this element is chosen as the pivot for partitioning. The partition algorithm
in-place moves elements and returns the position where the pivot being moved. If the
pivot is just located at position k, then we are done; if there are more than k−1 elements
not greater than the pivot, the algorithm recursively searches the k-th smallest one in
range [l, p− 1]; otherwise, k is deduced by the number of elements before the pivot, and
recursively searches the range after the pivot [p+ 1, u].

There are many methods to realize the partition algorithm, below one is based on N.
Lumoto’s method. Other realizations are left as exercises to the reader.

1: function Partition(A, l, u)
2: p← A[l]
3: L← l
4: for R← l + 1 to u do
5: if ¬(p < A[R]) then
6: L← L+ 1
7: Exchange A[L]↔ A[R]

8: Exchange A[L]↔ p
9: return L

Below ANSI C example program implements this algorithm. Note that it handles the
special case that either the array is empty, or k is out of the boundaries of the array. It
returns -1 to indicate the search failure.
int partition(Key∗ xs, int l, int u) {

int r, p = l;
for (r = l + 1; r < u; ++r)

if (!(xs[p] < xs[r]))
swap(xs, ++l, r);

swap(xs, p, l);
return l;

}

/∗ The result is stored in xs[k], returns k if u-l ≥ k, otherwise -1 ∗/
int top(int k, Key∗ xs, int l, int u) {

int p;
if (l < u) {

swap(xs, l, rand() % (u - l) + l);
p = partition(xs, l, u);
if (p - l + 1 == k)

return p;
return (k < p - l + 1) ? top(k, xs, l, p) :

top(k- p + l - 1, xs, p + 1, u);
}
return -1;

}

There is a method proposed by Blum, Floyd, Pratt, Rivest and Tarjan in 1973, which
ensures the worst case performance being bound to O(n) [4], [81]. It divides the list into
small groups. Each group contains no more than 5 elements. The median of each group
among these 5 elements are identified quickly. Then there are n

5 median elements selected.
We repeat this step, and divide them again into groups of 5, and recursively select the
median of median. It’s obviously that the final ‘true’ median can be found in O(lgn)
time. This is the best pivot for partitioning the list. Next, we halve the list by this pivot
and recursively search for the k-th smallest one. The performance can be calculated as
the following.

T (n) = c1lgn+ c2n+ T (
n

2
) (14.5)

Where c1 and c2 are constant factors for the median of median and partition com-
putation respectively. Solving this equation with telescope method or the master theory

14.2. SEQUENCE SEARCH 265

in [4] gives the linear O(n) performance.
In case we just want to pick the top k smallest elements, but don’t care about the

order of them, the algorithm can be adjusted a little bit to fit.

tops(k, L) =


ϕ : k = 0 ∨ L = ϕ
A : |A| = k

A ∪ {l1} ∪ tops(k − |A| − 1, B) : |A| < k
tops(k,A) : otherwise

(14.6)

Where A, B have the same meaning as before that, (A,B) = partition(λx ·x ≤ l1, L
′)

if L isn’t empty. The relative example program in Haskell is given as below.
tops _ [] = []
tops 0 _ = []
tops n (x:xs) | len ==n = as

| len < n = as ++ [x] ++ tops (n-len-1) bs
| otherwise = tops n as

where
(as, bs) = partition (≤ x) xs
len = length as

binary search

Another popular divide and conquer algorithm is binary search. We’ve shown it in the
chapter about insertion sort. When I was in school, the teacher who taught math played
a magic to me, He asked me to consider a natural number less than 1000. Then he asked
me some questions, I only replied ‘yes’ or ‘no’, and finally he guessed my number. He
typically asked questions like the following:

• Is it an even number?

• Is it a prime number?

• Are all digits same?

• Can it be divided by 3?

• ...

Most of the time he guessed the number within 10 questions. My classmates and I all
thought it’s unbelievable.

This game will not be so interesting if it downgrades to a popular TV program, that
the price of a product is hidden, and you must figure out the exact price in 30 seconds.
The host of the program tells you if your guess is higher or lower to the fact. If you win,
the product is yours. The best strategy is to use similar divide and conquer approach to
perform a binary search. So it’s common to find such conversation between the player
and the host:

• P: 1000;

• H: High;

• P: 500;

• H: Low;

• P: 750;

266 CHAPTER 14. SEARCHING

• H: Low;

• P: 890;

• H: Low;

• P: 990;

• H: Bingo.

My math teacher told us that, because the number we considered is within 1000, if he
can halve the numbers every time by designing good questions, the number will be found
in 10 questions. This is because 210 = 1024 > 1000. However, it would be boring to just
ask it is higher than 500, is lower than 250, ... Actually, the question ‘is it even’ is very
good, because it always halve the numbers2.

Come back to the binary search algorithm. It is only applicable to a sequence of
ordered number. I’ve seen programmers tried to apply it to unsorted array, and took
several hours to figure out why it doesn’t work. The idea is quite straightforward, in
order to find a number x in an ordered sequence A, we firstly check middle point number,
compare it with x, if they are same, then we are done; If x is smaller, as A is ordered,
we need only recursively search it among the first half; otherwise we search it among the
second half. Once A gets empty and we haven’t found x yet, it means x doesn’t exist.

Before formalizing this algorithm, there is a surprising fact need to be noted. Donald
Knuth stated that ‘Although the basic idea of binary search is comparatively straightfor-
ward, the details can be surprisingly tricky¡ ’. Jon Bentley pointed out that most binary
search implementation contains errors, and even the one given by him in the first version
of ‘Programming pearls’ contains an error undetected over twenty years [4].

There are two kinds of realization, one is recursive, the other is iterative. The recursive
solution is as same as what we described. Suppose the lower and upper boundaries of the
array are l and u inclusive.

1: function Binary-Search(x,A, l, u)
2: if u < l then
3: Not found error
4: else
5: m← l + bu−l

2 c ▷ avoid overflow of b l+u
2 c

6: if A[m] = x then
7: return m
8: if x < A[m] then
9: return Binary-Search(x, A, l, m - 1)

10: else
11: return Binary-Search(x, A, m + 1, u)

As the comment highlights, if the integer is represented with limited words, we can’t
merely use b l+u

2 c because it may cause overflow if l and u are big.
Binary search can also be realized in iterative manner, that we keep updating the

boundaries according to the middle point comparison result.
1: function Binary-Search(x,A, l, u)
2: while l < u do
3: m← l + bu−l

2 c
4: if A[m] = x then
5: return m

2When the author revise this chapter, Microsoft released a game in social networks. User can consider
a person’s name, the AI robot asks 16 questions next. The user only answers with yes or no. The robot
will tell you who is that person. Can you figure out how the robot works?

14.2. SEQUENCE SEARCH 267

6: if x < A[m] then
7: u← m− 1
8: else
9: l← m+ 1

return NIL
The implementation is very good exercise, we left it to the reader. Please try all kinds

of methods to verify your program.
Since the array is halved every time, the performance of binary search is bound to

O(lgn) time.
In purely functional settings, the list is represented with singly linked-list. It’s linear

time to randomly access the element for a given position. Binary search doesn’t make
sense in such case. However, it good to analyze what the performance will downgrade to.
Consider the following equation.

bsearch(x, L) =


Err : L = ϕ

b1 : x = b1, (A,B) = splitAt(b |L|
2 c, L)

bsearch(x,A) : B = ϕ ∨ x < b1
bsearch(x,B′) : otherwise

Where b1 is the first element if B isn’t empty, and B′ holds the rest except for b1.
The splitAt function takes O(n) time to divide the list into two subs A and B (see the
appendix A, and the chapter about merge sort for detail). If B isn’t empty and x is equal
to b1, the search returns; Otherwise if it is less than b1, as the list is sorted, we need
recursively search in A, otherwise, we search in B. If the list is empty, we raise error to
indicate search failure.

As we always split the list in the middle point, the number of elements halves in each
recursion. In every recursive call, we takes linear time for splitting. The splitting function
only traverses the first half of the linked-list, Thus the total time can be expressed as.

T (n) = c
n

2
+ c

n

4
+ c

n

8
+ ...

This results O(n) time, which is as same as the brute force search from head to tail:

search(x, L) =

 Err : L = ϕ
l1 : x = l1

search(x, L′) : otherwise

As we mentioned in the chapter about insertion sort, the functional approach of binary
search is through binary search tree. That the ordered sequence is represented in a tree
(self balanced tree if necessary), which offers logarithm time searching 3.

Although it doesn’t make sense to apply divide and conquer binary search on linked-
list, binary search can still be very useful in purely functional settings. Consider solving
an equation ax = y, for given natural numbers a and y, where a ≤ y. We want to find
the integer solution for x if there is. Of course brute-force naive searching can solve it.
We can examine all numbers one by one from 0 for a0, a1, a2, ..., stops if ai = y or report
that there is no solution if ai < y < ai+1 for some i. We initialize the solution domain as
X = {0, 1, 2, ...}, and call the below exhausted searching function solve(a, y,X).

solve(a, y,X) =

 x1 : ax1 = y
solve(a, y,X ′) : ax1 < y

Err : otherwise

3Some readers may argue that array should be used instead of linked-list, for example in Haskell. This
book only deals with purely functional sequences in finger-tree. Different from the Haskell array, it can’t
support constant time random accessing

268 CHAPTER 14. SEARCHING

This function examines the solution domain in monotonic increasing order. It takes
the first candidate element x1 from X, compare ax1 and y, if they are equal, then x1 is the
solution and we are done; if it is less than y, then x1 is dropped, and we search among the
rest elements represented as X ′; Otherwise, since f(x) = ax is non-decreasing function
when a is natural number, so the rest elements will only make f(x) bigger and bigger.
There is no integer solution for this equation. The function returns error to indicate no
solution.

The computation of ax is expensive for big a and x if precession must be kept4. Can it
be improved so that we can compute as less as possible? The divide and conquer binary
search can help. Actually, we can estimate the upper limit of the solution domain. As
ay ≤ y, We can search in range {0, 1, ..., y}. As the function f(x) = ax is non-decreasing
against its argument x, we can firstly check the middle point candidate xm = b 0+y

2 c, if
axm = y, the solution is found; if it is less than y, we can drop all candidate solutions before
xm; otherwise we drop all candidate solutions after it; Both halve the solution domain.
We repeat this approach until either the solution is found or the solution domain becomes
empty, which indicates there is no integer solution.

The binary search method can be formalized as the following equation. The non-
decreasing function is abstracted as a parameter. To solve our problem, we can just call
it as bsearch(f, y, 0, y), where f(x) = ax.

bsearch(f, y, l, u) =


Err : u < l
m : f(m) = y,m = b l+u

2 c
bsearch(f, y, l,m− 1) : f(m) > y
bsearch(f, y,m+ 1, u) : f(m) < y

(14.7)

As we halve the solution domain in every recursion, this method computes f(x) in
O(log y) times. It is much faster than the brute-force searching.

2 dimensions search

It’s quite natural to think that the idea of binary search can be extended to 2 dimensions
or even more general – multiple-dimensions domain. However, it is not so easy.

Consider the example of a m × n matrix M . The elements in each row and each
column are in strict increasing order. Figure 14.1 illustrates such a matrix for example.

1 2 3 4 ...
2 4 5 6 ...
3 5 7 8 ...
4 6 8 9 ...
...


Figure 14.1: A matrix in strict increasing order for each row and column.

Given a value x, how to locate all elements equal to x in the matrix quickly? We need
develop an algorithm, which returns a list of locations (i, j) so that Mi,j = x.

Richard Bird in [1] mentioned that he used this problem to interview candidates for en-
try to Oxford. The interesting story was that, those who had some computer background
at school tended to use binary search. But it’s easy to get stuck.

The usual way follows binary search idea is to examine element at Mm
2 ,n2

. If it is less
than x, we can only drop the elements in the top-left area; If it is greater than x, only

4One alternative is to reuse the result of an when compute an+1 = aan. Here we consider for general
form monotonic function f(n)

14.2. SEQUENCE SEARCH 269

the bottom-right area can be dropped. Both cases are illustrated in figure 14.2, the gray
areas indicate elements can be dropped.

Figure 14.2: Left: the middle point element is smaller than x. All elements in the gray
area are less than x; Right: the middle point element is greater than x. All elements in
the gray area are greater than x.

The problem is that the solution domain changes from a rectangle to a ’L’ shape in
both cases. We can’t just recursively apply search on it. In order to solve this problem
systematically, we define the problem more generally, using brute-force search as a start
point, and keep improving it bit by bit.

Consider a function f(x, y), which is strict increasing for its arguments, for instance
f(x, y) = ax+ by, where a and b are natural numbers. Given a value z, which is a natural
number too, we want to solve the equation f(x, y) = z by finding all none negative integral
candidate pairs (x, y).

With this definition, the matrix search problem can be specialized by below function.

f(x, y) =

{
Mx,y : 1 ≤ x ≤ m, 1 ≤ y ≤ n
−1 : otherwise

Brute-force 2D search

As all solutions should be found for f(x, y). One can immediately give the brute force
solution by embedded looping.

1: function Solve(f, z)
2: A← ϕ
3: for x ∈ {0, 1, 2, ..., z} do
4: for y ∈ {0, 1, 2, ..., z} do
5: if f(x, y) = z then
6: A← A ∪ {(x, y)}
7: return A

This definitely calculates f for (z + 1)2 times. It can be formalized as in (14.8).

solve(f, z) = {(x, y)|x ∈ {0, 1, ..., z}, y ∈ {0, 1, ..., z}, f(x, y) = z} (14.8)

Saddleback search

We haven’t utilize the fact that f(x, y) is strict increasing yet. Dijkstra pointed out
in [82], instead of searching from bottom-left corner, starting from the top-left leads to

270 CHAPTER 14. SEARCHING

one effective solution. As illustrated in figure 14.3, the search starts from (0, z), for every
point (p, q), we compare f(p, q) with z:

• If f(p, q) < z, since f is strict increasing, for all 0 ≤ y < q, we have f(p, y) < z. We
can drop all points in the vertical line section (in red color);

• If f(p, q) > z, then f(x, q) > z for all p < x ≤ z. We can drop all points in the
horizontal line section (in blue color);

• Otherwise if f(p, q) = z, we mark (p, q) as one solution, then both line sections can
be dropped.

This is a systematical way to scale down the solution domain rectangle. We keep
dropping a row, or a column, or both.

Figure 14.3: Search from top-left.

This method can be formalized as a function search(f, z, p, q), which searches so-
lutions for equation f(x, y) = z in rectangle with top-left corner (p, q), and bottom-
right corner (z, 0). We start the searching by initializing (p, q) = (0, z) as solve(f, z) =
search(f, z, 0, z)

search(f, z, p, q) =


ϕ : p > z ∨ q < 0

search(f, z, p+ 1, q) : f(p, q) < z
search(f, z, p, q − 1) : f(p, q) > z

{(p, q)} ∪ search(f, z, p+ 1, q − 1) : otherwise

(14.9)

The first clause is the edge case, there is no solution if (p, q) isn’t top-left to (z, 0).
The following example Haskell program implements this algorithm.
solve f z = search 0 z where

search p q | p > z | | q < 0 = []
| z' < z = search (p + 1) q
| z' > z = search p (q - 1)
| otherwise = (p, q) : search (p + 1) (q - 1)

where z' = f p q

Considering the calculation of f may be expensive, this program stores the result of
f(p, q) to variable z′. This algorithm can also be implemented in iterative manner, that
the boundaries of solution domain keeps being updated in a loop.

1: function Solve(f, z)
2: p← 0, q ← z

14.2. SEQUENCE SEARCH 271

3: S ← ϕ
4: while p ≤ z ∧ q ≥ 0 do
5: z′ ← f(p, q)
6: if z′ < z then
7: p← p+ 1
8: else if z′ > z then
9: q ← q − 1

10: else
11: S ← S ∪ {(p, q)}
12: p← p+ 1, q ← q − 1

13: return S

It’s intuitive to translate this imperative algorithm to real program, as the following
example Python code.
def solve(f, z):

(p, q) = (0, z)
res = []
while p ≤ z and q ≥ 0:

z1 = f(p, q)
if z1 < z:

p = p + 1
elif z1 > z:

q = q - 1
else:

res.append((p, q))
(p, q) = (p + 1, q - 1)

return res

It is clear that in every iteration, At least one of p and q advances to the bottom-right
corner by one. Thus it takes at most 2(z + 1) steps to complete searching. This is the
worst case. There are three best cases. The first one happens that in every iteration,
both p and q advance by one, so that it needs only z + 1 steps; The second case keeps
advancing horizontally to right and ends when p exceeds z; The last case is similar, that
it keeps moving down vertically to the bottom until q becomes negative.

Figure 14.4 illustrates the best cases and the worst cases respectively. Figure 14.4 (a)
is the case that every point (x, z − x) in diagonal satisfies f(x, z − x) = z, it uses z + 1
steps to arrive at (z, 0); (b) is the case that every point (x, z) along the top horizontal
line gives the result f(x, z) < z, the algorithm takes z + 1 steps to finish; (c) is the case
that every point (0, x) along the left vertical line gives the result f(0, x) > z, thus the
algorithm takes z+1 steps to finish; (d) is the worst case. If we project all the horizontal
sections along the search path to x axis, and all the vertical sections to y axis, it gives
the total steps of 2(z + 1).

Compare to the quadratic brute-force method (O(z2)), we improve to a linear algo-
rithm bound to O(z).

Bird imagined that the name ‘saddleback’ is because the 3D plot of f with the smallest
bottom-left and the largest top-right and two wings looks like a saddle as shown in figure
14.5

Improved saddleback search

We haven’t utilized the binary search tool so far, even the problem extends to 2-dimension
domain. The basic saddleback search starts from the top-left corner (0, z) to the bottom-
right corner (z, 0). This is actually over-general domain. we can constraint it a bit more
accurate.

Since f is strict increasing, we can find the biggest number m, that 0 ≤ m ≤ z,
along the y axis which satisfies f(0,m) ≤ z; Similarly, we can find the biggest n, that

272 CHAPTER 14. SEARCHING

Figure 14.4: The best cases and the worst cases.

Figure 14.5: Plot of f(x, y) = x2 + y2.

14.2. SEQUENCE SEARCH 273

0 ≤ n ≤ z, along the x axis, which satisfies f(n, 0) ≤ z; And the solution domain shrinks
from (0, z)− (z, 0) to (0,m)− (n, 0) as shown in figure 14.6.

Figure 14.6: A more accurate search domain shown in gray color.

Of course m and n can be found by brute-force like below.

m = max({y|0 ≤ y ≤ z, f(0, y) ≤ z})
n = max({x|0 ≤ x ≤ z, f(x, 0) ≤ z}) (14.10)

When searching m, the x variable of f is bound to 0. It turns to be one dimension
search problem for a strict increasing function (or in functional term, a Curried function
f(0, y)). Binary search works in such case. However, we need a bit modification for
equation (14.7). Different from searching a solution l ≤ x ≤ u, so that f(x) = y for a
given y; we need search for a solution l ≤ x ≤ u so that f(x) ≤ y < f(x+ 1).

bsearch(f, y, l, u) =


l : u ≤ l

m : f(m) ≤ y < f(m+ 1),m = b l+u
2 c

bsearch(f, y,m+ 1, u) : f(m) ≤ y
bsearch(f, y, l,m− 1) : otherwise

(14.11)
The first clause handles the edge case of empty range. The lower boundary is returned

in such case; If the middle point produces a value less than or equal to the target, while
the next one evaluates to a bigger value, then the middle point is what we are looking for;
Otherwise if the point next to the middle also evaluates to a value not greater than the
target, the lower bound is set as the middle point plus one, and we perform recursively
binary search; In the last case, the middle point evaluates to a value greater than the
target, upper bound is updated as the point proceeds to the middle for further recursive
searching. The following Haskell example code implements this modified binary search.

bsearch f y (l, u) | u ≤ l = l
| f m ≤ y = if f (m + 1) ≤ y

then bsearch f y (m + 1, u) else m
| otherwise = bsearch f y (l, m-1)

where m = (l + u) `div` 2

Then m and n can be found with this binary search function.

m = bsearch(λy · f(0, y), z, 0, z)
n = bsearch(λx · f(x, 0), z, 0, z)

(14.12)

274 CHAPTER 14. SEARCHING

And the improved saddleback search shrinks to this new search domain solve(f, z) =
search(f, z, 0,m):

search(f, z, p, q) =


ϕ : p > n ∨ q < 0

search(f, z, p+ 1, q) : f(p, q) < z
search(f, z, p, q − 1) : f(p, q) > z

{(p, q)} ∪ search(f, z, p+ 1, q − 1) : otherwise

(14.13)

It’s almost as same as the basic saddleback version, except that it stops if p exceeds
n, but not z. In real implementation, the result of f(p, q) can be calculated once, and
stored in a variable as shown in the following Haskell example.
solve' f z = search 0 m where

search p q | p > n | | q < 0 = []
| z' < z = search (p + 1) q
| z' > z = search p (q - 1)
| otherwise = (p, q) : search (p + 1) (q - 1)

where z' = f p q
m = bsearch (f 0) z (0, z)
n = bsearch (λx→f x 0) z (0, z)

This improved saddleback search firstly performs binary search two rounds to find the
proper m, and n. Each round is bound to O(lg z) times of calculation for f ; After that,
it takes O(m + n) time in the worst case; and O(min(m,n)) time in the best case. The
overall performance is given in the following table.

times of evaluation f
worst case 2 log z +m+ n
best case 2 log z +min(m,n)

For some function f(x, y) = ax + by, for positive integers a and b, m and n will be
relative small, that the performance is close to O(lg z).

This algorithm can also be realized in imperative approach. Firstly, the binary search
should be modified.

1: function Binary-Search(f, y, (l, u))
2: while l < u do
3: m← b l+u

2 c
4: if f(m) ≤ y then
5: if y < f(m+ 1) then
6: return m
7: l← m+ 1
8: else
9: u← m

10: return l

Utilize this algorithm, the boundaries m and n can be found before performing the
saddleback search.

1: function Solve(f, z)
2: m← Binary-Search(λy · f(0, y), z, (0, z))
3: n← Binary-Search(λx · f(x, 0), z, (0, z))
4: p← 0, q ← m
5: S ← ϕ
6: while p ≤ n ∧ q ≥ 0 do
7: z′ ← f(p, q)
8: if z′ < z then
9: p← p+ 1

10: else if z′ > z then

14.2. SEQUENCE SEARCH 275

11: q ← q − 1
12: else
13: S ← S ∪ {(p, q)}
14: p← p+ 1, q ← q − 1

15: return S

The implementation is left as exercise to the reader.

More improvement to saddleback search

In figure 14.2, two cases are shown for comparing the value of the middle point in a matrix
with the given value. One case is the center value is smaller than the given value, the
other is bigger. In both cases, we can only throw away 1

4 candidates, and left a ’L’ shape
for further searching.

Actually, one important case is missing. We can extend the observation to any point
inside the rectangle searching area. As shown in the figure 14.7.

(a) If f(p, q) ̸= z, only lower-left or upper-right
sub area (in gray color) can be thrown. Both
left a ’L’ shape.

(b) If f(p, q) = z, both sub areas can be thrown,
the scale of the problem is halved.

Figure 14.7: The efficiency of scaling down the search domain.

Suppose we are searching in a rectangle from the upper-left corner (a, b) to the lower-
right corner (c, d). If the (p, q) isn’t the middle point, and f(p, q) 6= z. We can’t ensure
the area to be dropped is always 1/4. However, if f(p, q) = z, as f is strict increasing, we

276 CHAPTER 14. SEARCHING

are not only sure both the lower-left and the upper-right sub areas can be thrown, but
also all the other points in the column p and row q. The problem can be scaled down
fast, because only 1/2 area is left.

This indicates us, instead of jumping to the middle point to start searching. A more
efficient way is to find a point which evaluates to the target value. One straightforward
way to find such a point, is to perform binary search along the center horizontal line or
the center vertical line of the rectangle.

The performance of binary search along a line is logarithmic to the length of that line.
A good idea is to always pick the shorter center line as shown in figure 14.8. That if
the height of the rectangle is longer than the width, we perform binary search along the
horizontal center line; otherwise we choose the vertical center line.

Figure 14.8: Binary search along the shorter center line.

However, what if we can’t find a point (p, q) in the center line, that satisfies f(p, q) = z?
Let’s take the center horizontal line for example. even in such case, we can still find a
point that f(p, q) < z < f(p+ 1, q). The only difference is that we can’t drop the points
in column p and row q completely.

Combine this conditions, the binary search along the horizontally line is to find a p,
satisfies f(p, q) ≤ z < f(p+1, q); While the vertical line search condition is f(p, q) ≤ z <
f(p, q + 1).

The modified binary search ensures that, if all points in the line segment give f(p, q) <
z, the upper bound will be found; and the lower bound will be found if they all greater
than z. We can drop the whole area on one side of the center line in such case.

Sum up all the ideas, we can develop the efficient improved saddleback search as the
following.

1. Perform binary search along the y axis and x axis to find the tight boundaries from
(0,m) to (n, 0);

2. Denote the candidate rectangle as (a, b)− (c, d), if the candidate rectangle is empty,
the solution is empty;

3. If the height of the rectangle is longer than the width, perform binary search along
the center horizontal line; otherwise, perform binary search along the center vertical
line; denote the search result as (p, q);

4. If f(p, q) = z, record (p, q) as a solution, and recursively search two sub rectangles
(a, b)− (p− 1, q + 1) and (p+ 1, q − 1)− (c, d);

14.2. SEQUENCE SEARCH 277

5. Otherwise, f(p, q) 6= z, recursively search the same two sub rectangles plus a line
section. The line section is either (p, q + 1) − (p, b) as shown in figure 14.9 (a); or
(p+ 1, q)− (c, q) as shown in figure 14.9 (b).

Figure 14.9: Recursively search the gray areas, the bold line should be included if f(p, q) 6=
z.

This algorithm can be formalized as the following. The equation (14.11), and (14.12)
are as same as before. A new search function should be defined.

Define Search(a,b),(c,d) as a function for searching rectangle with top-left corner (a, b),
and bottom-right corner (c, d).

search(a,b),(c,d) =

 ϕ : c < a ∨ d < b
csearch : c− a < b− d
rsearch : otherwise

(14.14)

Function csearch performs binary search in the center horizontal line to find a point
(p, q) that f(p, q) ≤ z < f(p + 1, q). This is shown in figure 14.9 (a). There is a special
edge case, that all points in the lines evaluate to values greater than z. The general binary
search will return the lower bound as result, so that (p, q) = (a, b b+d

2 c). The whole upper
side includes the center line can be dropped as shown in figure 14.10 (a).

Figure 14.10: Edge cases when performing binary search in the center line.

278 CHAPTER 14. SEARCHING

csearch =

 search(p,q−1),(c,d) : z < f(p, q)
search(a,b),(p−1,q+1) ∪ {(p, q)} ∪ search(p+1,q−1),(c,d) : f(p, q) = z

search(a,b),(p,q+1) ∪ search(p+1,q−1),(c,d) : otherwise
(14.15)

Where
q = b b+d

2 c)
p = bsearch(λx · f(x, q), z, (a, c))

Function rsearch is quite similar except that it searches in the center horizontal line.

rsearch =

 search(a,b),(p−1,q) : z < f(p, q)
search(a,b),(p−1,q+1) ∪ {(p, q)} ∪ search(p+1,q−1),(c,d) : f(p, q) = z

search(a,b),(p−1,q+1) ∪ search(p+1,q),(c,d) : otherwise
(14.16)

Where
p = ba+c

2 c)
q = bsearch(λy · f(p, y), z, (d, b))

The following Haskell program implements this algorithm.
search f z (a, b) (c, d) | c < a | | b < d = []

| c - a < b - d = let q = (b + d) `div` 2 in
csearch (bsearch (λx → f x q) z (a, c), q)

| otherwise = let p = (a + c) `div` 2 in
rsearch (p, bsearch (f p) z (d, b))

where
csearch (p, q) | z < f p q = search f z (p, q - 1) (c, d)

| f p q == z = search f z (a, b) (p - 1, q + 1) ++
(p, q) : search f z (p + 1, q - 1) (c, d)

| otherwise = search f z (a, b) (p, q + 1) ++
search f z (p + 1, q - 1) (c, d)

rsearch (p, q) | z < f p q = search f z (a, b) (p - 1, q)
| f p q == z = search f z (a, b) (p - 1, q + 1) ++

(p, q) : search f z (p + 1, q - 1) (c, d)
| otherwise = search f z (a, b) (p - 1, q + 1) ++

search f z (p + 1, q) (c, d)

And the main program calls this function after performing binary search in X and Y
axes.
solve f z = search f z (0, m) (n, 0) where

m = bsearch (f 0) z (0, z)
n = bsearch (λx → f x 0) z (0, z)

Since we drop half areas in every recursion, it takes O(log(mn)) rounds of search.
However, in order to locate the point (p, q), which halves the problem, we must perform
binary search along the center line. which will call f about O(log(min(m,n))) times.
Denote the time of searching a m×n rectangle as T (m,n), the recursion relationship can
be represented as the following.

T (m,n) = log(min(m,n)) + 2T (
m

2
,
n

2
) (14.17)

Suppose m > n, using telescope method, for m = 2i, and n = 2j . We have:

T (2i, 2j) = j + 2T (2i−1, 2j−1)

=

i−1∑
k=0

2k(j − k)

= O(2i(j − i))
= O(m log(n/m))

(14.18)

14.2. SEQUENCE SEARCH 279

Richard Bird proved that this is asymptotically optimal by a lower bound of searching
a given value in m× n rectangle [1].

The imperative algorithm is almost as same as the functional version. We skip it for
the sake of brevity.

Exercise 14.1

• Prove that the average case for the divide and conquer solution to k-selection prob-
lem is O(n). Please refer to previous chapter about quick sort.

• Implement the imperative k-selection problem with 2-way partition, and median-
of-three pivot selection.

• Implement the imperative k-selection problem to handle duplicated elements effec-
tively.

• Realize the median-of-median k-selection algorithm and implement it in your fa-
vorite programming language.

• The tops(k, L) algorithm uses list concatenation likes A∪{l1}∪ tops(k−|A|−1, B).
It is linear operation which is proportion to the length of the list to be concatenated.
Modify the algorithm so that the sub lists are concatenated by one pass.

• The author considered another divide and conquer solution for the k-selection prob-
lem. It finds the maximum of the first k elements and the minimum of the rest.
Denote them as x, and y. If x is smaller than y, it means that all the first k elements
are smaller than the rest, so that they are exactly the top k smallest; Otherwise,
There are some elements in the first k should be swapped.

1: procedure Tops(k,A)
2: l← 1
3: u← |A|
4: loop
5: i← Max-At(A[l..k])
6: j ← Min-At(A[k + 1..u])
7: if A[i] < A[j] then
8: break
9: Exchange A[l]↔ A[j]

10: Exchange A[k + 1]↔ A[i]
11: l← Partition(A, l, k)
12: u← Partition(A, k + 1, u)

Explain why this algorithm works? What’s the performance of it?

• Implement the binary search algorithm in both recursive and iterative manner, and
try to verify your version automatically. You can either generate randomized data,
test your program with the binary search invariant, or compare with the built-in
binary search tool in your standard library.

• Find the solution to calculate the median of two sorted arrays A and B. The time
should be bound to O(lg(|A|+ |B|)).

• Implement the improved saddleback search by firstly performing binary search to
find a more accurate solution domain in your favorite imperative programming
language.

280 CHAPTER 14. SEARCHING

• Realize the improved 2D search, by performing binary search along the shorter
center line, in your favorite imperative programming language.

• Someone considers that the 2D search can be designed as the following. When
search a rectangle, as the minimum value is at bottom-left, and the maximum at
to-right. If the target value is less than the minimum or greater than the maximum,
then there is no solution; otherwise, the rectangle is divided into 4 sub rectangles
at the center point, then perform recursively searching.

1: procedure Search(f, z, a, b, c, d) ▷ (a, b): bottom-left (c, d): top-right
2: if z ≤ f(a, b) ∨ f(c, d) ≥ z then
3: if z = f(a, b) then
4: record (a, b) as a solution
5: if z = f(c, d) then
6: record (c, d) as a solution
7: return
8: p← ba+c

2 c
9: q ← b b+d

2 c
10: Search(f, z, a, q, p, d)
11: Search(f, z, p, q, c, d)
12: Search(f, z, a, b, p, q)
13: Search(f, z, p, b, c, q)

What’s the performance of this algorithm?

14.2.2 Information reuse
One interesting behavior is that people learning while searching. We do not only remember
lessons which cause search fails, but also learn patterns which lead to success. This is a
kind of information reusing, no matter the information is positive or negative. However,
It’s not easy to determine what information should be kept. Too little information isn’t
enough to help effective searching, while keeping too much is expensive in term of spaces.

In this section, we’ll first introduce two interesting problems, Boyer-Moore majority
number problem and the maximum sum of sub vector problem. Both reuse information as
little as possible. After that, two popular string matching algorithms, Knuth-Morris-Pratt
algorithm and Boyer-Moore algorithm will be introduced.

Boyer-Moore majority number

Voting is quite critical to people. We use voting to choose the leader, make decision or
reject a proposal. In the months when I was writing this chapter, there are three countries
in the world voted their presidents. All of the three voting activities utilized computer to
calculate the result.

Suppose there is a country in a small island wants a new president. According to the
constitution, only if the candidate wins more than half of the votes can be selected as
the president. Given a serious of votes, such as A, B, A, C, B, B, D, ..., can we develop
a program tells who is the new president if there is, or indicate nobody wins more than
half of the votes?

Of course this problem can be solved with brute-force by using a map. As what we
did in the chapter of binary search tree5.

5There is a probabilistic sub-linear space counting algorithm published in 2004, named as ‘Count-min
sketch’ [84].

14.2. SEQUENCE SEARCH 281

template<typename T>
T majority(const T∗ xs, int n, T fail) {

map<T, int> m;
int i, max = 0;
T r;
for (i = 0; i < n; ++i)

++m[xs[i]];
for (typename map<T, int>::iterator it = m.begin(); it ̸= m.end(); ++it)

if (it→second > max) {
max = it→second;
r = it→first;

}
return max ∗ 2 > n ? r : fail;

}

This program first scan the votes, and accumulates the number of votes for each
individual with a map. After that, it traverse the map to find the one with the most of
votes. If the number is bigger than the half, the winner is found otherwise, it returns a
special value to indicate fail.

The following pseudo code describes this algorithm.
1: function Majority(A)
2: M ← empty map
3: for ∀a ∈ A do
4: Put(M , a, 1+ Get(M,a))
5: max← 0, m← NIL
6: for ∀(k, v) ∈M do
7: if max < v then
8: max← v, m← k

9: if max > |A|50% then
10: return m
11: else
12: fail

For m individuals and n votes, this program firstly takes about O(n logm) time to
build the map if the map is implemented in self balanced tree (red-black tree for instance);
or about O(n) time if the map is hash table based. However, the hash table needs more
space. Next the program takes O(m) time to traverse the map, and find the majority
vote. The following table lists the time and space performance for different maps.

map time space
self-balanced tree O(n logm) O(m)
hashing O(n) O(m) at least

Boyer and Moore invented a cleaver algorithm in 1980, which can pick the majority
element with only one scan if there is. Their algorithm only needs O(1) space [83].

The idea is to record the first candidate as the winner so far, and mark him with 1
vote. During the scan process, if the winner being selected gets another vote, we just
increase the vote counter; otherwise, it means somebody vote against this candidate, so
the vote counter should be decreased by one. If the vote counter becomes zero, it means
this candidate is voted out; We select the next candidate as the new winner and repeat
the above scanning process.

Suppose there is a series of votes: A, B, C, B, B, C, A, B, A, B, B, D, B. Below table
illustrates the steps of this processing.

282 CHAPTER 14. SEARCHING

winner count scan position
A 1 A, B, C, B, B, C, A, B, A, B, B, D, B
A 0 A, B, C, B, B, C, A, B, A, B, B, D, B
C 1 A, B, C, B, B, C, A, B, A, B, B, D, B
C 0 A, B, C, B, B, C, A, B, A, B, B, D, B
B 1 A, B, C, B, B, C, A, B, A, B, B, D, B
B 0 A, B, C, B, B, C, A, B, A, B, B, D, B
A 1 A, B, C, B, B, C, A, B, A, B, B, D, B
A 0 A, B, C, B, B, C, A, B, A, B, B, D, B
A 1 A, B, C, B, B, C, A, B, A, B, B, D, B
A 0 A, B, C, B, B, C, A, B, A, B, B, D, B
B 1 A, B, C, B, B, C, A, B, A, B, B, D, B
B 0 A, B, C, B, B, C, A, B, A, B, B, D, B
B 1 A, B, C, B, B, C, A, B, A, B, B, D, B

The key point is that, if there exits the majority greater than 50%, it can’t be voted
out by all the others. However, if there are not any candidates win more than half of the
votes, the recorded ‘winner’ is invalid. Thus it is necessary to perform a second round
scan for verification.

The following pseudo code illustrates this algorithm.
1: function Majority(A)
2: c← 0
3: for i← 1 to |A| do
4: if c = 0 then
5: x← A[i]

6: if A[i] = x then
7: c← c+ 1
8: else
9: c← c− 1

10: return x

If there is the majority element, this algorithm takes one pass to scan the votes. In
every iteration, it either increases or decreases the counter according to the vote is support
or against the current selection. If the counter becomes zero, it means the current selection
is voted out. So the new one is selected as the updated candidate for further scan.

The process is linear O(n) time, and the spaces needed are just two variables. One
for recording the selected candidate so far, the other is for vote counting.

Although this algorithm can find the majority element if there is. it still picks an
element even there isn’t. The following modified algorithm verifies the final result with
another round of scan.

1: function Majority(A)
2: c← 0
3: for i← 1 to |A| do
4: if c = 0 then
5: x← A[i]

6: if A[i] = x then
7: c← c+ 1
8: else
9: c← c− 1

10: c← 0
11: for i← 1 to |A| do
12: if A[i] = x then
13: c← c+ 1

14.2. SEQUENCE SEARCH 283

14: if c > %50|A| then
15: return x
16: else
17: fail

Even with this verification process, the algorithm is still bound to O(n) time, and the
space needed is constant. The following ISO C++ program implements this algorithm 6.

template<typename T>
T majority(const T∗ xs, int n, T fail) {

T m;
int i, c;
for (i = 0, c = 0; i < n; ++i) {

if (!c)
m = xs[i];

c += xs[i] == m ? 1 : -1;
}
for (i = 0, c = 0; i < n; ++i, c += xs[i] == m);
return c ∗ 2 > n ? m : fail;

}

Boyer-Moore majority algorithm can also be realized in purely functional approach.
Different from the imperative settings, which use variables to record and update informa-
tion, accumulators are used to define the core algorithm. Define function maj(c, n, L),
which takes a list of votes L, a selected candidate c so far, and a counter n. For non empty
list L, we initialize c as the first vote l1, and set the counter as 1 to start the algorithm:
maj(l1, 1, L

′), where L′ is the rest votes except for l1. Below are the definition of this
function.

maj(c, n, L) =


c : L = ϕ

maj(c, n+ 1, L′) : l1 = c
maj(l1, 1, L

′) : n = 0 ∧ l1 6= c
maj(c, n− 1, L′) : otherwise

(14.19)

We also need to define a function, which can verify the result. The idea is that, if the
list of votes is empty, the final result is a failure; otherwise, we start the Boyer-Moore
algorithm to find a candidate c, then we scan the list again to count the total votes c
wins, and verify if this number is not less than the half.

majority(L) =

 fail : L = ϕ
c : c = maj(l1, 1, L

′), |{x|x ∈ L, x = c}| > %50|L|
fail : otherwise

(14.20)

Below Haskell example code implements this algorithm.

majority :: (Eq a) ⇒ [a] → Maybe a
majority [] = Nothing
majority (x:xs) = let m = maj x 1 xs in verify m (x:xs)

maj c n [] = c
maj c n (x:xs) | c == x = maj c (n+1) xs

| n == 0 = maj x 1 xs
| otherwise = maj c (n-1) xs

verify m xs = if 2 ∗ (length $ filter (==m) xs) > length xs
then Just m else Nothing

6We actually uses the ANSI C style. The C++ template is only used to generalize the type of the
element

284 CHAPTER 14. SEARCHING

Maximum sum of sub vector

Jon Bentley presents another interesting puzzle which can be solved by using quite similar
idea in [4]. The problem is to find the maximum sum of sub vector. For example in the
following array, The sub vector {19, -12, 1, 9, 18} yields the biggest sum 35.

3 -13 19 -12 1 9 18 -16 15 -15
Note that it is only required to output the value of the maximum sum. If all the

numbers are positive, the answer is definitely the sum of all. Another special case is that
all numbers are negative. We define the maximum sum is 0 for an empty sub vector.

Of course we can find the answer with brute-force, by calculating all sums of sub
vectors and picking the maximum. Such naive method is typical quadratic.

1: function Max-Sum(A)
2: m← 0
3: for i← 1 to |A| do
4: s← 0
5: for j ← i to |A| do
6: s← s+A[j]
7: m← Max(m, s)
8: return m

The brute force algorithm does not reuse any information in previous search. Similar
with Boyer-Moore majority vote algorithm, we can record the maximum sum end to the
position where we are scanning. Of course we also need record the biggest sum found so
far. The following figure illustrates this idea and the invariant during scan.

... max ... max end at i ...

i

Figure 14.11: Invariant during scan.

At any time when we scan to the i-th position, the max sum found so far is recorded
as A. At the same time, we also record the biggest sum end at i as B. Note that A
and B may not be the same, in fact, we always maintain B ≤ A. and when B becomes
greater than A by adding with the next element, we update A with this new value.
When B becomes negative, this happens when the next element is a negative number, we
reset it to 0. The following tables illustrated the steps when we scan the example vector
{3,−13, 19,−12, 1, 9, 18,−16, 15,−15}.

max sum max end at i list to be scan
0 0 {3,−13, 19,−12, 1, 9, 18,−16, 15,−15}
3 3 {−13, 19,−12, 1, 9, 18,−16, 15,−15}
3 0 {19,−12, 1, 9, 18,−16, 15,−15}
19 19 {−12, 1, 9, 18,−16, 15,−15}
19 7 {1, 9, 18,−16, 15,−15}
19 8 {9, 18,−16, 15,−15}
19 17 {18,−16, 15,−15}
35 35 {−16, 15,−15}
35 19 {15,−15}
35 34 {−15}
35 19 {}

This algorithm can be described as below.

14.2. SEQUENCE SEARCH 285

1: function Max-Sum(V)
2: A← 0, B ← 0
3: for i← 1 to |V | do
4: B ← Max(B + V [i], 0)
5: A← Max(A,B)

It is trivial to implement this linear time algorithm, that we skip the details here.
This algorithm can also be defined in functional approach. Instead of mutating vari-

ables, we use accumulator to record A and B. In order to search the maximum sum of
list L, we call the below function with maxsum(0, 0, L).

maxsum(A,B,L) =

{
A : L = ϕ

maxsum(A′, B′, L′) : otherwise
(14.21)

Where
B′ = max(l1 +B, 0)
A′ = max(A,B′)

Below Haskell example code implements this algorithm.

maxsum = msum 0 0 where
msum a _ [] = a
msum a b (x:xs) = let b' = max (x+b) 0

a' = max a b'
in msum a' b' xs

KMP

String matching is another important type of searching. Almost all the software editors
are equipped with tools to find string in the text. In chapters about Trie, Patricia, and
suffix tree, we have introduced some powerful data structures which can help to search
string. In this section, we introduce another two string matching algorithms all based on
information reusing.

Some programming environments provide built-in string search tools, however, most
of them are brute-force solution including ‘strstr’ function in ANSI C standard library,
‘find’ in C++ standard template library, ‘indexOf’ in Java Development Kit etc. Figure
14.12 illustrate how such character-by-character comparison process works.

Suppose we search a pattern P in text T , as shown in figure 14.12 (a), at offset s = 4,
the process examines every character in P and T to check if they are same. It successfully
matches the first 4 characters ‘anan’. However, the 5th character in the pattern string is
‘y’. It doesn’t match the corresponding character in the text, which is ‘t’.

At this stage, the brute-force solution terminates the attempt, increases s by one to 5,
and restart the comparison between ‘ananym’ and ‘nantho...’. Actually, we can increase
s not only by one. This is because we have already known that the first four characters
‘anan’ have been matched, and the failure happens at the 5th position. Observe the two
letters prefix ‘an’ of the pattern string is also a suffix of ‘anan’ that we have matched so
far. A more effective way is to shift s by two but not one, which is shown in figure 14.12
(b). By this means, we reused the information that 4 characters have been matched. This
helps us to skip invalid positions as many as possible.

Knuth, Morris and Pratt presented this idea in [85] and developed a novel string match-
ing algorithm. This algorithm is later called as ‘KMP’, which is consist of the three
authors’ initials.

For the sake of brevity, we denote the first k characters of text T as Tk. Which means
Tk is the k-character prefix of T .

286 CHAPTER 14. SEARCHING

a n y a n a n t h o u s a n a n y m f l o w e r T

a n a n y m Ps

q

(a) The offset s = 4, after matching q = 4 characters, the 5th mismatch.

a n y a n a n t h o u s a n a n y m f l o w e r T

a n a n y m Ps

q

(b) Move s = 4 + 2 = 6, directly.

Figure 14.12: Match ‘ananym’ in ‘any ananthous ananym flower’.

The key point to shift s effectively is to find a function of q, where q is the number
of characters matched successfully. For instance, q is 4 in figure 14.12 (a), as the 5th
character doesn’t match.

Consider what situation we can shift s more than 1. As shown in figure 14.13, if we
can shift the pattern P ahead, there must exist k, so that the first k characters are as
same as the last k characters of Pq. In other words, the prefix Pk is suffix of Pq.

P[1] P[2] ... P[j] P[j+1] ... P[q] ...
s

... T[i] T[i+1] T[i+2] T[i+q-1] ... T

P[1] P[2] ... P[k] ...

P

P

Figure 14.13: Pk is both prefix of Pq and suffix of Pq.

It’s possible that there is no such a prefix that is the suffix at the same time. If we
treat empty string as both the prefix and the suffix of any others, there must be at least
one solution that k = 0. It’s also quite possible that there are multiple k satisfy. To avoid
missing any possible matching positions, we have to find the biggest k. We can define a
prefix function π(q) which tells us where we can fallback if the (q + 1)-th character does
not match [4].

π(q) = max{k|k < q ∧ Pk ⊐ Pq} (14.22)

Where ⊐ is read as ‘is suffix of’. For instance, A ⊐ B means A is suffix of B. This
function is used as the following. When we match pattern P against text T from offset
s, If it fails after matching q characters, we next look up π(q) to get a fallback q′, and
retry to compare P [q′] with the previous unmatched character. Based on this idea, the
core algorithm of KMP can be described as the following.

1: function KMP(T, P)

14.2. SEQUENCE SEARCH 287

2: n← |T |,m← |P |
3: build prefix function π from P
4: q ← 0 ▷ How many characters have been matched so far.
5: for i← 1 to n do
6: while q > 0 ∧ P [q + 1] 6= T [i] do
7: q ← π(q)

8: if P [q + 1] = T [i] then
9: q ← q + 1

10: if q = m then
11: found one solution at i−m
12: q ← π(q) ▷ look for next solution

Although the definition of prefix function π(q) is given in equation (14.22), realizing
it blindly by finding the longest suffix isn’t effective. Actually we can use the idea of
information reusing again to build the prefix function.

The trivial edge case is that, the first character doesn’t match. In this case the longest
prefix, which is also the suffix is definitely empty, so π(1) = k = 0. We record the longest
prefix as Pk. In this edge case Pk = P0 is the empty string.

After that, when we scan at the q-th character in the pattern string P , we hold the
invariant that the prefix function values π(i) for i in {1, 2, ..., q − 1} have already been
recorded, and Pk is the longest prefix which is also the suffix of Pq−1. As shown in figure
14.14, if P [q] = P [k + 1], A bigger k than before is found, we can increase the maximum
of k by one; otherwise, if they are not same, we can use π(k) to fallback to a shorter prefix
Pk′ where k′ = π(k), and check if the next character after this new prefix is same as the
q-th character. We need repeat this step until either k becomes zero (which means only
empty string satisfies), or the q-th character matches.

P[1] P[2] ... P[k] P[k+1] ... P[q-1] P[q] ...

P[1] P[2] ... P[k] P[k+1] ...

?

Figure 14.14: Pk is suffix of Pq−1, P [q] and P [k + 1] are compared.

Realizing this idea gives the KMP prefix building algorithm.
1: function Build-Prefix-Function(P)
2: m← |P |, k ← 0
3: π(1)← 0
4: for q ← 2 to m do
5: while k > 0 ∧ P [q] 6= P [k + 1] do
6: k ← π(k)

7: if P [q] = P [k + 1] then
8: k ← k + 1

9: π(q)← k

10: return π

The following table lists the steps of building prefix function for pattern string ‘ananym’.
Note that the k in the table actually means the maximum k satisfies equation (14.22).

288 CHAPTER 14. SEARCHING

q Pq k Pk

1 a 0 “”
2 an 0 “”
3 ana 1 a
4 anan 2 an
5 anany 0 “”
6 ananym 0 “”

Translating the KMP algorithm to Python gives the below example code.

def kmp_match(w, p):
n = len(w)
m = len(p)
fallback = fprefix(p)
k = 0 #how many elements have been matched so far.
res = []
for i in range(n):

while k > 0 and p[k] ̸= w[i]:
k = fallback[k] #fall back

if p[k] == w[i]:
k = k + 1

if k == m:
res.append(i+1-m)
k = fallback[k-1] #look for next

return res

def fprefix(p):
m = len(p)
t = [0]∗m #fallback table
k = 0
for i in range(2, m):

while k>0 and p[i-1] ̸= p[k]:
k = t[k-1] #fallback

if p[i-1] == p[k]:
k = k + 1

t[i] = k
return t

The KMP algorithm builds the prefix function for the pattern string as a kind of
pre-processing before the search. Because of this, it can reuse as much information of the
previous matching as possible.

The amortized performance of building the prefix function is O(m). This can be
proved by using potential method as in [4]. Using the similar method, it can be proved
that the matching algorithm itself is also linear. Thus the total performance is O(m+n)
at the expense of the O(m) space to record the prefix function table.

It seems that varies pattern string would affect the performance of KMP. Considering
the case that we are finding pattern string ‘aaa...a’ of length m in a string ‘aaa...a’ of
length n. All the characters are same, when the last character in the pattern is examined,
we can only fallback by 1, and this 1 character fallback repeats until it falls back to zero.
Even in this extreme case, KMP algorithm still holds its linear performance (why?).
Please try to consider more cases such as P = aaaa...b, T = aaaa...a and so on.

Purely functional KMP algorithm

It is not easy to realize KMP matching algorithm in purely functional manner. The
imperative algorithm represented so far intensely uses array to record prefix function
values. Although it is possible to utilize sequence like structure in purely functional
settings, it is typically implemented with finger tree. Unlike native arrays, finger tree

14.2. SEQUENCE SEARCH 289

needs logarithm time for random accessing7.
Richard Bird presents a formal program deduction to KMP algorithm by using fold

fusion law in chapter 17 of [1]. In this section, we show how to develop purely functional
KMP algorithm step by step from a brute-force prefix function creation method.

Both text string and pattern are represented as singly linked-list in purely functional
settings. During the scan process, these two lists are further partitioned, every one is
broken into two parts. As shown in figure 14.15, The first j characters in the pattern
string have been matched. T [i+1] and P [j+1] will be compared next. If they are same,
we need append the character to the matched part. However, since strings are essentially
singly linked list, such appending is proportion to j.

P[1] P[2] ... P[j]
s

T[1] T[2] T[i] T[i+1] T[i+2] T[n-1] T[n]

P[j+1] P[j+2] ... P[m]

?

T

P

Figure 14.15: The first j characters in P are matched, next compare P [j+1] with T [i+1].

Denote the first i characters as Tp, which means the prefix of T , the rest characters
as Ts for suffix; Similarly, the first j characters as Pp, and the rest as Ps; Denote the
first character of Ts as t, the first character of Ps as p. We have the following ‘cons’
relationship.

Ts = cons(t, T ′
s)

Ps = cons(p, P ′
s)

If t = p, note the following updating process is bound to linear time.

T ′
p = Tp ∪ {t}

P ′
p = Pp ∪ {p}

We’ve introduced a method in the chapter about purely functional queue, which can
solve this problem. By using a pair of front and rear list, we can turn the linear time
appending to constant time linking. The key point is to represent the prefix part in
reverse order.

T = Tp ∪ Ts = reverse(reverse(Tp)) ∪ Ts = reverse(
←−
Tp) ∪ Ts

P = Pp ∪ Ps = reverse(reverse(Pp)) ∪ Ps = reverse(
←−
Pp) ∪ Ps

(14.23)

The idea is to using pair (
←−
Tp, Ts) and (

←−
Pp, Ps) instead. With this change, the if t = p,

we can update the prefix part fast in constant time.
←−
T ′
p = cons(t,

←−
Tp)←−

P ′
p = cons(p,

←−
Pp)

(14.24)

The KMP matching algorithm starts by initializing the success prefix parts to empty
strings as the following.

search(P, T) = kmp(π, (ϕ, P)(ϕ, T)) (14.25)
7Again, we don’t use native array, even it is supported in some functional programming environments

like Haskell.

290 CHAPTER 14. SEARCHING

Where π is the prefix function we explained before. The core part of KMP algorithm,
except for the prefix function building, can be defined as below.

kmp(π, (
←−
Pp, Ps), (

←−
Tp, Ts)) =



{|
←−
Tp|} : Ps = ϕ ∧ Ts = ϕ

ϕ : Ps 6= ϕ ∧ Ts = ϕ

{|
←−
Tp} ∪ kmp(π, π(

←−
Pp, Ps), (

←−
Tp, Ts)) : Ps = ϕ ∧ Ts 6= ϕ

kmp(π, (
←−
P ′
p, P

′
s), (
←−
T ′
p, T

′
s)) : t = p

kmp(π, π(
←−
Pp, Ps), (

←−
T ′
p, T

′
s)) : t 6= p ∧

←−
Pp = ϕ

kmp(π, π(
←−
Pp, Ps), (

←−
Tp, Ts)) : t 6= p ∧

←−
Pp 6= ϕ

(14.26)
The first clause states that, if the scan successfully ends to both the pattern and text

strings, we get a solution, and the algorithm terminates. Note that we use the right
position in the text string as the matching point. It’s easy to use the left position by
subtracting with the length of the pattern string. For sake of brevity, we switch to right
position in functional solutions.

The second clause states that if the scan arrives at the end of text string, while there
are still rest of characters in the pattern string haven’t been matched, there is no solution.
And the algorithm terminates.

The third clause states that, if all the characters in the pattern string have been
successfully matched, while there are still characters in the text haven’t been examined,
we get a solution, and we fallback by calling prefix function π to go on searching other
solutions.

The fourth clause deals with the case, that the next character in pattern string and
text are same. In such case, the algorithm advances one character ahead, and recursively
performs searching.

If the the next characters are not same and this is the first character in the pattern
string, we just need advance to next character in the text, and try again. Otherwise if
this isn’t the first character in the pattern, we call prefix function π to fallback, and try
again.

The brute-force way to build the prefix function is just to follow the definition equation
(14.22).

π(
←−
Pp, Ps) = (

←−
P ′
p, P

′
s) (14.27)

where

P ′
p = longest({s|s ∈ prefixes(Pp), s ⊐ Pp})

P ′
s = P − P ′

p

Every time when calculate the fallback position, the algorithm naively enumerates all
prefixes of Pp, checks if it is also the suffix of Pp, and then pick the longest one as result.
Note that we reuse the subtraction symbol here for list differ operation.

There is a tricky case which should be avoided. Because any string itself is both its
prefix and suffix. Say Pp ⊏ Pp and Pp ⊐ Pp. We shouldn’t enumerate Pp as a candidate
prefix. One solution of such prefix enumeration can be realized as the following.

prefixes(L) =

{
{ϕ} : L = ϕ ∨ |L| = 1

cons(ϕ,map(λs · cons(l1, s), prefixes(L′))) : otherwise
(14.28)

Below Haskell example program implements this version of string matching algorithm.
kmpSearch1 ptn text = kmpSearch' next ([], ptn) ([], text)

14.2. SEQUENCE SEARCH 291

kmpSearch' _ (sp, []) (sw, []) = [length sw]
kmpSearch' _ _ (_, []) = []
kmpSearch' f (sp, []) (sw, ws) = length sw : kmpSearch' f (f sp []) (sw, ws)
kmpSearch' f (sp, (p:ps)) (sw, (w:ws))

| p == w = kmpSearch' f ((p:sp), ps) ((w:sw), ws)
| otherwise = if sp ==[] then kmpSearch' f (sp, (p:ps)) ((w:sw), ws)

else kmpSearch' f (f sp (p:ps)) (sw, (w:ws))

next sp ps = (sp', ps') where
prev = reverse sp
prefix = longest [xs | xs ← inits prev, xs `isSuffixOf` prev]
sp' = reverse prefix
ps' = (prev ++ ps) \\ prefix
longest = maximumBy (compare `on` length)

inits [] = [[]]
inits [_] = [[]]
inits (x:xs) = [] : (map (x:) $ inits xs)

This version does not only perform poorly, but it is also complex. We can simplify it
a bit. Observing the KMP matching is a scan process from left to the right of the text, it
can be represented with folding (refer to Appendix A for detail). Firstly, we can augment
each character with an index for folding like below.

zip(T, {1, 2, ...}) (14.29)

Zipping the text string with infinity natural numbers gives list of pairs. For example,
text string ‘The quick brown fox jumps over the lazy dog’ turns into (T, 1), (h, 2), (e, 3),
... (o, 42), (g, 43).

The initial state for folding contains two parts, one is the pair of pattern (Pp, Ps), with
prefix starts from empty, and the suffix is the whole pattern string (ϕ, P). For illustration
purpose only, we revert back to normal pairs but not (

←−
Pp, Ps) notation. It can be easily

replaced with reversed form in the finalized version. This is left as exercise to the reader.
The other part is a list of positions, where the successful matching are found. It starts
from empty list. After the folding finishes, this list contains all solutions. What we need
is to extract this list from the final state. The core KMP search algorithm is simplified
like this.

kmp(P, T) = snd(fold(search, ((ϕ, P), ϕ), zip(T, {1, 2, ...}))) (14.30)

The only ‘black box’ is the search function, which takes a state, and a pair of character
and index, and it returns a new state as result. Denote the first character in Ps as p and
the rest characters as P ′

s (Ps = cons(p, P ′
s)), we have the following definition.

search(((Pp, Ps), L), (c, i)) =


((Pp ∪ p, P ′

s), L ∪ {i}) : p = c ∧ P ′
s = ϕ

((Pp ∪ p, P ′
s), L) : p = c ∧ P ′

s 6= ϕ
((Pp, Ps), L) : Pp = ϕ

search((π(Pp, Ps), L), (c, i)) : otherwise
(14.31)

If the first character in Ps matches the current character c during scan, we need further
check if all the characters in the pattern have been examined, if so, we successfully find a
solution, This position i in list L is recorded; Otherwise, we advance one character ahead
and go on. If p does not match c, we need fallback for further retry. However, there is
an edge case that we can’t fallback any more. Pp is empty in this case, and we need do
nothing but keep the current state.

The prefix-function π developed so far can also be improved a bit. Since we want
to find the longest prefix of Pp, which is also suffix of it, we can scan from right to left

292 CHAPTER 14. SEARCHING

instead. For any non empty list L, denote the first element as l1, and all the rest except
for the first one as L′, define a function init(L), which returns all the elements except for
the last one as below.

init(L) =

{
ϕ : |L| = 1

cons(l1, init(L
′)) : otherwise

(14.32)

Note that this function can not handle empty list. The idea of scan from right to left
for Pp is first check if init(Pp) ⊐ Pp, if yes, then we are done; otherwise, we examine if
init(init(Pp)) is OK, and repeat this till the left most. Based on this idea, the prefix-
function can be modified as the following.

π(Pp, Ps) =

{
(Pp, Ps) : Pp = ϕ

fallback(init(Pp), cons(last(Pp), Ps)) : otherwise
(14.33)

Where

fallback(A,B) =

{
(A,B) : A ⊐ Pp

(init(A), cons(last(A), B)) : otherwise
(14.34)

Note that fallback always terminates because empty string is suffix of any string. The
last(L) function returns the last element of a list, it is also a linear time operation (refer
to Appendix A for detail). However, it’s constant operation if we use ←−Pp approach. This
improved prefix-function is bound to linear time. It is still quite slower than the imperative
algorithm which can look up prefix-function in constant O(1) time. The following Haskell
example program implements this minor improvement.

failure ([], ys) = ([], ys)
failure (xs, ys) = fallback (init xs) (last xs:ys) where

fallback as bs | as `isSuffixOf` xs = (as, bs)
| otherwise = fallback (init as) (last as:bs)

kmpSearch ws txt = snd $ foldl f (([], ws), []) (zip txt [1..]) where
f (p@(xs, (y:ys)), ns) (x, n) | x == y = if ys==[] then ((xs++[y], ys), ns++[n])

else ((xs++[y], ys), ns)
| xs == [] = (p, ns)
| otherwise = f (failure p, ns) (x, n)

f (p, ns) e = f (failure p, ns) e

The bottleneck is that we can not use native array to record prefix functions in purely
functional settings. In fact the prefix function can be understood as a state transform
function. It transfer from one state to the other according to the matching is success or
fail. We can abstract such state changing as a tree. In environment supporting algebraic
data type, Haskell for example, such state tree can be defined like below.

data State a = E | S a (State a) (State a)

A state is either empty, or contains three parts: the current state, the new state if
match fails, and the new state if match succeeds. Such definition is quite similar to the
binary tree. We can call it ‘left-fail, right-success’ tree. The state we are using here is
(Pp, Ps).

Similar as imperative KMP algorithm, which builds the prefix function from the pat-
tern string, the state transforming tree can also be built from the pattern. The idea is
to build the tree from the very beginning state (ϕ, P), with both its children empty. We
replace the left child with a new state by calling π function defined above, and replace
the right child by advancing one character ahead. There is an edge case, that when the

14.2. SEQUENCE SEARCH 293

state transfers to (P, ϕ), we can not advance any more in success case, such node only
contains child for failure case. The build function is defined as the following.

build((Pp, Ps), ϕ, ϕ) =

{
build(π(Pp, Ps), ϕ, ϕ) : Ps = ϕ
build((Pp, Ps), L,R) : otherwise

(14.35)

Where
L = build(π(Pp, Ps), ϕ, ϕ)
R = build((Ps ∪ {p}, P ′

s), ϕ, ϕ))

The meaning of p and P ′
s are as same as before, that p is the first character in Ps, and

P ′
s is the rest characters. The most interesting point is that the build function will never

stop. It endless build a infinite tree. In strict programming environment, calling this
function will freeze. However, in environments support lazy evaluation, only the nodes
have to be used will be created. For example, both Haskell and Scheme/Lisp are capable
to construct such infinite state tree. In imperative settings, it is typically realized by
using pointers which links to ancestor of a node.

('', ananym)

('', ananym)

fail

(a, nanym)

match

('', ananym)

fail

(a, ananym)

match

('', ananym)

fail

(an, anym)

match

... ('', ananym)

fail

(ana, nym)

match

... (a, nanym)

fail

(anan, ym)

match

... (an, anym)

fail

(anany, m)

match

('', ananym)

fail

(ananym, '')

match

('', ananym)

fail

empty

Figure 14.16: The infinite state tree for pattern ‘ananym’.

Figure 14.16 illustrates such an infinite state tree for pattern string ‘ananym’. Note
that the right most edge represents the case that the matching continuously succeed for
all characters. After that, since we can’t match any more, so the right sub-tree is empty.
Base on this fact, we can define a auxiliary function to test if a state indicates the whole
pattern is successfully matched.

match((Pp, Ps), L,R) =

{
True : Ps = ϕ
False : otherwise

(14.36)

With the help of state transform tree, we can realize KMP algorithm in an automaton
manner.

kmp(P, T) = snd(fold(search, (Tr, []), zip(T, {1, 2, ...}))) (14.37)

294 CHAPTER 14. SEARCHING

Where the tree Tr = build((ϕ, P), ϕ, ϕ) is the infinite state transform tree. Function
search utilizes this tree to transform the state according to match or fail. Denote the
first character in Ps as p, the rest characters as P ′

s, and the matched positions found so
far as A.

search((((Pp, Ps), L,R), A), (c, i)) =


(R,A ∪ {i}) : p = c ∧match(R)

(R,A) : p = c ∧ ¬match(R)
((((Pp, Ps), L,R), A) : Pp = ϕ
search((L,A), (c, i)) : otherwise

(14.38)
The following Haskell example program implements this algorithm.

data State a = E | S a (State a) (State a) −− state, ok-state, fail-state
deriving (Eq, Show)

build :: (Eq a)⇒State ([a], [a]) → State ([a], [a])
build (S s@(xs, []) E E) = S s (build (S (failure s) E E)) E
build (S s@(xs, (y:ys)) E E) = S s l r where

l = build (S (failure s) E E) −− fail state
r = build (S (xs++[y], ys) E E)

matched (S (_, []) _ _) = True
matched _ = False

kmpSearch3 :: (Eq a) ⇒ [a] → [a] → [Int]
kmpSearch3 ws txt = snd $ foldl f (auto, []) (zip txt [1..]) where

auto = build (S ([], ws) E E)
f (s@(S (xs, ys) l r), ns) (x, n)

| [x] `isPrefixOf` ys = if matched r then (r, ns++[n])
else (r, ns)

| xs == [] = (s, ns)
| otherwise = f (l, ns) (x, n)

The bottle-neck is that the state tree building function calls π to fallback. While
current definition of π isn’t effective enough, because it enumerates all candidates from
right to the left every time.

Since the state tree is infinite, we can adopt some common treatment for infinite
structures. One good example is the Fibonacci series. The first two Fibonacci numbers
are defined as 0 and 1; the rest Fibonacci numbers can be obtained by adding the previous
two numbers.

F0 = 0
F1 = 1
Fn = Fn−1 + Fn−2

(14.39)

Thus the Fibonacci numbers can be list one by one as the following

F0 = 0
F1 = 1
F2 = F1 + F0

F3 = F2 + F1

...

(14.40)

We can collect all numbers in both sides, and define F = {0, 1, F1, F2, ...}, Thus we
have the following equation.

F = {0, 1, F1 + F0, F2 + F1, ...}
= {0, 1} ∪ {x+ y|x ∈ {F0, F1, F2, ...}, y ∈ {F1, F2, F3, ...}}
= {0, 1} ∪ {x+ y|x ∈ F, y ∈ F ′}

(14.41)

14.2. SEQUENCE SEARCH 295

Where F ′ = tail(F) is all the Fibonacci numbers except for the first one. In environ-
ments support lazy evaluation, like Haskell for instance, this definition can be expressed
like below.
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

The recursive definition for infinite Fibonacci series indicates an idea which can be
used to get rid of the fallback function π. Denote the state transfer tree as T , we can
define the transfer function when matching a character on this tree as the following.

trans(T, c) =

 root : T = ϕ
R : T = ((Pp, Ps), L,R), c = p

trans(L, c) : otherwise
(14.42)

If we match a character against empty node, we transfer to the root of the tree. We’ll
define the root later soon. Otherwise, we compare if the character c is as same as the first
character p in Ps. If they match, then we transfer to the right sub tree for this success
case; otherwise, we transfer to the left sub tree for fail case.

With transfer function defined, we can modify the previous tree building function
accordingly. This is quite similar to the previous Fibonacci series definition.

build(T, (Pp, Ps)) = ((Pp, Ps), T, build(trans(T, p), (Pp ∪ {p}, P ′
s)))

The right hand of this equation contains three parts. The first one is the state that we
are matching (Pp, Ps); If the match fails, Since T itself can handle any fail case, we use
it directly as the left sub tree; otherwise we recursive build the right sub tree for success
case by advancing one character ahead, and calling transfer function we defined above.

However, there is an edge case which has to be handled specially, that if Ps is empty,
which indicates a successful match. As defined above, there isn’t right sub tree any more.
Combining these cases gives the final building function.

build(T, (Pp, Ps)) =

{
((Pp, Ps), T, ϕ) : Ps = ϕ

((Pp, Ps), T, build(trans(T, p), (Pp ∪ {p}, P ′
s))) : otherwise

(14.43)
The last brick is to define the root of the infinite state transfer tree, which initializes

the building.

root = build(ϕ, (ϕ, P)) (14.44)

And the new KMP matching algorithm is modified with this root.

kmp(P, T) = snd(fold(trans, (root, []), zip(T, {1, 2, ...}))) (14.45)

The following Haskell example program implements this final version.
kmpSearch ws txt = snd $ foldl tr (root, []) (zip txt [1..]) where

root = build' E ([], ws)
build' fails (xs, []) = S (xs, []) fails E
build' fails s@(xs, (y:ys)) = S s fails succs where

succs = build' (fst (tr (fails, []) (y, 0))) (xs++[y], ys)
tr (E, ns) _ = (root, ns)
tr ((S (xs, ys) fails succs), ns) (x, n)

| [x] `isPrefixOf` ys = if matched succs then (succs, ns++[n]) else (succs, ns)
| otherwise = tr (fails, ns) (x, n)

Figure 14.17 shows the first 4 steps when search ‘anaym’ in text ’anal’. Since the first
3 steps all succeed, so the left sub trees of these 3 states are not actually constructed.
They are marked as ‘?’. In the fourth step, the match fails, thus the right sub tree needn’t

296 CHAPTER 14. SEARCHING

be built. On the other hand, we must construct the left sub tree, which is on top of the
result of trans(right(right(right(T))), n), where function right(T) returns the right sub
tree of T . This can be further expanded according to the definition of building and state
transforming functions till we get the concrete state ((a, nanym), L,R). The detailed
deduce process is left as exercise to the reader.

('', ananym)

?

fail

(a, nanym)

match

?

fail

(an, anym)

match

?

fail

(ana, nym)

match

(a, nanym)

fail

?

match

Figure 14.17: On demand construct the state transform tree when searching ‘ananym’ in
text ‘anal’.

This algorithm depends on the lazy evaluation critically. All the states to be trans-
ferred are built on demand. So that the building process is amortized O(m), and the total
performance is amortized O(n+m). Readers can refer to [1] for detailed proof of it.

It’s worth of comparing the final purely functional and the imperative algorithms.
In many cases, we have expressive functional realization, however, for KMP matching
algorithm, the imperative approach is much simpler and more intuitive. This is because
we have to mimic the raw array by a infinite state transfer tree.

Boyer-Moore

Boyer-Moore string matching algorithm is another effective solution invited in 1977 [86].
The idea of Boyer-Moore algorithm comes from the following observation.

The bad character heuristics

When attempt to match the pattern, even if there are several characters from the left
are same, it fails if the last one does not match, as shown in figure 14.18. What’s more,
we wouldn’t find a match even if we slide the pattern down by 1, or 2. Actually, the
length of the pattern ‘ananym’ is 6, the last character is ‘m’, however, the corresponding
character in the text is ‘h’. It does not appear in the pattern at all. We can directly slide
the pattern down by 6.

This leads to the bad-character rule. We can do a pre-processing for the pattern. If
the character set of the text is already known, we can find all characters which don’t
appear in the pattern string. During the later scan process, as long as we find such a bad
character, we can immediately slide the pattern down by its length. The question is what
if the unmatched character does appear in the pattern? While, in order not to miss any
potential matches, we have to slide down the pattern to check again. This is shown as in
the figure 14.19

14.2. SEQUENCE SEARCH 297

a n a n y m
s

a n y a n a n t h o u s a n a n y m f l o w e r T

P

q

Figure 14.18: Since character ‘h’ doesn’t appear in the pattern, we wouldn’t find a match
if we slide the pattern down less than the length of the pattern.

|
(a)
The
last
char-
ac-
ter
in
the
pat-
tern
‘e’
doesn’t
match
‘p’.
How-
ever,
‘p’
ap-
pears
in
the
pat-
tern.

i s s i m p l e ...

e x a m p l e

T

P

i s s i m p l e ...

e x a m p l e

T

P

(b) We have to slide the pattern
down by 2 to check again.

Figure 14.19: Slide the pattern if the unmatched character appears in the pattern.

298 CHAPTER 14. SEARCHING

It’s quite possible that the unmatched character appears in the pattern more than
one position. Denote the length of the pattern as |P |, the character appears in positions
p1, p2, ..., pi. In such case, we take the right most one to avoid missing any matches.

s = |P | − pi (14.46)

Note that the shifting length is 0 for the last position in the pattern according to the
above equation. Thus we can skip it in realization. Another important point is that since
the shifting length is calculated against the position aligned with the last character in the
pattern string, (we deduce it from |P |), no matter where the mismatching happens when
we scan from right to the left, we slide down the pattern string by looking up the bad
character table with the one in the text aligned with the last character of the pattern.
This is shown in figure 14.20.

i s s i m p l e ...

e x a m p l e

T

P

(a)

i s s i m p l e ...

e x a m p l e

T

P

(b)

Figure 14.20: Even the mismatching happens in the middle, between char ‘i’ and ‘a’, we
look up the shifting value with character ‘e’, which is 6 (calculated from the first ‘e’, the
second ‘e’ is skipped to avoid zero shifting).

There is a good result in practice, that only using the bad-character rule leads to a
simple and fast string matching algorithm, called Boyer-Moore-Horspool algorithm [87].

1: procedure Boyer-Moore-Horspool(T, P)
2: for ∀c ∈ Σ do
3: π[c]← |P |
4: for i← 1 to |P | − 1 do ▷ Skip the last position
5: π[P [i]]← |P | − i

6: s← 0
7: while s+ |P | ≤ |T | do
8: i← |P |
9: while i ≥ 1 ∧ P [i] = T [s+ i] do ▷ scan from right

10: i← i− 1

11: if i < 1 then
12: found one solution at s
13: s← s+ 1 ▷ go on finding the next
14: else
15: s← s+ π[T [s+ |P |]]

The character set is denoted as Σ, we first initialize all the values of sliding table π
as the length of the pattern string |P |. After that we process the pattern from left to
right, update the sliding value. If a character appears multiple times in the pattern, the
latter value, which is on the right hand, will overwrite the previous value. We start the
matching scan process by aligning the pattern and the text string from the very left.
However, for every alignment s, we scan from the right to the left until either there is
unmatched character or all the characters in the pattern have been examined. The latter
case indicates that we’ve found a match; while for the former case, we look up π to slide
the pattern down to the right.

The following example Python code implements this algorithm accordingly.

14.2. SEQUENCE SEARCH 299

def bmh_match(w, p):
n = len(w)
m = len(p)
tab = [m for _ in range(256)] #table to hold the bad character rule.
for i in range(m-1):

tab[ord(p[i])] = m - 1 - i
res = []
offset = 0
while offset + m ≤ n:

i = m - 1
while i ≥ 0 and p[i] == w[offset+i]:

i = i - 1
if i < 0:

res.append(offset)
offset = offset + 1

else:
offset = offset + tab[ord(w[offset + m - 1])]

return res

The algorithm firstly takes about O(|Σ| + |P |) time to build the sliding table. If the
character set size is small, the performance is dominated by the pattern and the text.
There is definitely the worst case that all the characters in the pattern and text are same,
e.g. searching ‘aa...a’ (m of ‘a’, denoted as am) in text ‘aa......a’ (n of ‘a’, denoted as an).
The performance in the worst case is O(mn). This algorithm performs well if the pattern
is long, and there are constant number of matching. The result is bound to linear time.
This is as same as the best case of full Boyer-Moore algorithm which will be explained
next.

The good suffix heuristics

Consider searching pattern ‘abbabab’ in text ‘bbbababbabab...’ like figure 14.21. By
using the bad-character rule, the pattern will be slided by two.

b b b a b a b b a b a b ...

a b b a b a b

X

T

P

(a)

b b b a b a b b a b a b ...

a b b a b a b

T

P

(b)

Figure 14.21: According to the bad-character rule, the pattern is slided by 2, so that the
next ‘b’ is aligned.

Actually, we can do better than this. Observing that before the unmatched point, we
have already successfully matched 6 characters ‘bbabab’ from right to the left. Since ‘ab’,
which is the prefix of the pattern is also the suffix of what we matched so far, we can
directly slide the pattern to align this suffix as shown in figure 14.22.

This is quite similar to the pre-processing of KMP algorithm, However, we can’t always
skip so many characters. Consider the following example as shown in figure 14.23. We

300 CHAPTER 14. SEARCHING

b b b a b a b b a b a b ...

a b b a b a b

T

P

Figure 14.22: As the prefix ‘ab’ is also the suffix of what we’ve matched, we can slide
down the pattern to a position so that ‘ab’ are aligned.

have matched characters ‘bab’ when the unmatch happens. Although the prefix ‘ab’ of
the pattern is also the suffix of ‘bab’, we can’t slide the pattern so far. This is because
‘bab’ appears somewhere else, which starts from the 3rd character of the pattern. In
order not to miss any potential matching, we can only slide the pattern by two.

b a a b b a b a b ...

a b b a b a b

X

T

P

(a)

b a a b b a b a b ...

a b b a b a b

T

P

(b)

Figure 14.23: We’ve matched ‘bab’, which appears somewhere else in the pattern (from
the 3rd to the 5th character). We can only slide down the pattern by 2 to avoid missing
any potential matching.

The above situation forms the two cases of the good-suffix rule, as shown in figure
14.24.

Both cases in good suffix rule handle the situation that there are multiple characters
have been matched from right. We can slide the pattern to the right if any of the the
following happens.

• Case 1 states that if a part of the matching suffix occurs as a prefix of the pattern,
and the matching suffix doesn’t appear in any other places in the pattern, we can
slide the pattern to the right to make this prefix aligned;

• Case 2 states that if the matching suffix occurs some where else in the pattern, we
can slide the pattern to make the right most occurrence aligned.

Note that in the scan process, we should apply case 2 first whenever it is possible, and
then examine case 1 if the whole matched suffix does not appears in the pattern. Observe
that both cases of the good-suffix rule only depend on the pattern string, a table can be
built by pre-process the pattern for further looking up.

For the sake of brevity, we denote the suffix string from the i-th character of P as Pi.
That Pi is the sub-string P [i]P [i+ 1]...P [m].

For case 1, we can check every suffix of P , which includes Pm, Pm−1, Pm−2, ..., P2 to
examine if it is the prefix of P . This can be achieved by a round of scan from right to the
left.

For case 2, we can check every prefix of P includes P1, P2, ..., Pm−1 to examine if the
longest suffix is also a suffix of P . This can be achieved by another round of scan from
left to the right.

1: function Good-Suffix(P)
2: m← |P |

14.2. SEQUENCE SEARCH 301

(a) Case 1, Only a part of the matching suffix occurs as a prefix of the pattern.

(b) Case 2, The matching suffix occurs some where else in the pattern.

Figure 14.24: The light gray section in the text represents the characters have been
matched; The dark gray parts indicate the same content in the pattern.

302 CHAPTER 14. SEARCHING

3: πs ← {0, 0, ..., 0} ▷ Initialize the table of length m
4: l← 0 ▷ The last suffix which is also prefix of P
5: for i← m− 1 down-to 1 do ▷ First loop for case 1
6: if Pi ⊏ P then ▷ ⊏ means ‘is prefix of’
7: l← i
8: πs[i]← l

9: for i← 1 to m do ▷ Second loop for case 2
10: s← Suffix-Length(Pi)
11: if s 6= 0 ∧ P [i− s] 6= P [m− s] then
12: πs[m− s]← m− i

13: return πs

This algorithm builds the good-suffix heuristics table πs. It first checks every suffix of
P from the shortest to the longest. If the suffix Pi is also the prefix of P , we record this
suffix, and use it for all the entries until we find another suffix Pj , j < i, and it is also
the prefix of P .

After that, the algorithm checks every prefix of P from the shortest to the longest. It
calls the function Suffix-Length(Pi), to calculate the length of the longest suffix of Pi,
which is also suffix of P . If this length s isn’t zero, which means there exists a sub-string,
that appears as the suffix of the pattern. It indicates that case 2 happens. The algorithm
overwrites the s-th entry from the right of the table πs. Note that to avoid finding the
same occurrence of the matched suffix, we test if P [i− s] and P [m− s] are same.

Function Suffix-Length is designed as the following.
1: function Suffix-Length(Pi)
2: m← |P |
3: j ← 0
4: while P [m− j] = P [i− j] ∧ j < i do
5: j ← j + 1

6: return j

The following Python example program implements the good-suffix rule.

def good_suffix(p):
m = len(p)
tab = [0 for _ in range(m)]
last = 0
#first loop for case 1
for i in range(m-1, 0, -1): #m-1, m-2, ..., 1

if is_prefix(p, i):
last = i

tab[i - 1] = last
#second loop for case 2
for i in range(m):

slen = suffix_len(p, i)
if slen ̸= 0 and p[i - slen] ̸= p[m - 1 - slen]:

tab[m - 1 - slen] = m - 1 - i
return tab

#test if p[i..m-1] ‘is prefix of‘ p
def is_prefix(p, i):

for j in range(len(p) - i):
if p[j] ̸= p [i+j]:

return False
return True

#length of the longest suffix of p[..i], which is also a suffix of p
def suffix_len(p, i):

m = len(p)

14.2. SEQUENCE SEARCH 303

j = 0
while p[m - 1 - j] == p[i - j] and j < i:

j = j + 1
return j

It’s quite possible that both the bad-character rule and the good-suffix rule can be
applied when the unmatch happens. The Boyer-Moore algorithm compares and picks the
bigger shift so that it can find the solution as quick as possible. The bad-character rule
table can be explicitly built as below

1: function Bad-Character(P)
2: for ∀c ∈ Σ do
3: πb[c]← |P |
4: for i← 1 to |P | − 1 do
5: πb[P [i]]← |P | − i

6: return πb

The following Python program implements the bad-character rule accordingly.
def bad_char(p):

m = len(p)
tab = [m for _ in range(256)]
for i in range(m-1):

tab[ord(p[i])] = m - 1 - i
return tab

The final Boyer-Moore algorithm firstly builds the two rules from the pattern, then
aligns the pattern to the beginning of the text and scans from right to the left for every
alignment. If any unmatch happens, it tries both rules, and slides the pattern with the
bigger shift.

1: function Boyer-Moore(T, P)
2: n← |T |,m← |P |
3: πb ← Bad-Character(P)
4: πs ← Good-Suffix(P)
5: s← 0
6: while s+m ≤ n do
7: i← m
8: while i ≥ 1 ∧ P [i] = T [s+ i] do
9: i← i− 1

10: if i < 1 then
11: found one solution at s
12: s← s+ 1 ▷ go on finding the next
13: else
14: s← s+max(πb[T [s+m]], πs[i])

Here is the example implementation of Boyer-Moore algorithm in Python.
def bm_match(w, p):

n = len(w)
m = len(p)
tab1 = bad_char(p)
tab2 = good_suffix(p)
res = []
offset = 0
while offset + m ≤ n:

i = m - 1
while i ≥ 0 and p[i] == w[offset + i]:

i = i - 1
if i < 0:

res.append(offset)

304 CHAPTER 14. SEARCHING

offset = offset + 1
else:

offset = offset + max(tab1[ord(w[offset + m - 1])], tab2[i])
return res

The Boyer-Moore algorithm published in original paper is bound to O(n+m) in worst
case only if the pattern doesn’t appear in the text [86]. Knuth, Morris, and Pratt proved
this fact in 1977 [88]. However, when the pattern appears in the text, as we shown above,
Boyer-Moore performs O(nm) in the worst case.

Richard Birds shows a purely functional realization of Boyer-Moore algorithm in chap-
ter 16 in [1]. We skipped it in this book.

Exercise 14.2

• Proof that Boyer-Moore majority vote algorithm is correct.

• Given a list, find the element occurs most. Are there any divide and conqueror
solutions? Are there any divide and conqueror data structures, such as map can be
used?

• How to find the elements occur more than 1/3 in a list? How to find the elements
occur more than 1/m in the list?

• If we reject the empty array as valid sub-array, how to realize the maximum sum of
sub-arrays puzzle?

• Bentley presents a divide and conquer algorithm to find the maximum sum in
O(n logn) time in [4]. The idea is to split the list at the middle point. We can
recursively find the maximum sum in the first half and second half; However, we
also need to find maximum sum cross the middle point. The method is to scan from
the middle point to both ends as the following.

1: function Max-Sum(A)
2: if A = ϕ then
3: return 0
4: else if |A| = 1 then
5: return Max(0, A[1])
6: else
7: m← b |A|

2 c
8: a← Max-From(Reverse(A[1...m]))
9: b← Max-From(A[m+ 1...|A|])

10: c← Max-Sum(A[1...m])
11: d← Max-Sum(A[m+ 1...|A|)
12: return Max(a+ b, c, d)

13: function Max-From(A)
14: sum← 0,m← 0
15: for i← 1 to |A| do
16: sum← sum+A[i]
17: m← Max(m, sum)
18: return m

It’s easy to deduce the time performance is T (n) = 2T (n/2) + O(n). Implement
this algorithm in your favorite programming language.

14.3. SOLUTION SEARCHING 305

• Given a m×n matrix contains positive and negative numbers, find the sub metrics
with maximum sum of its elements.

• Given n non-negative integers representing an elevation map where the width of
each bar is 1, compute how much water it is able to trap after raining. Figure 14.25
shows an example. For example, Given {0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 1}, the result is 6.

Figure 14.25: Shadowed areas are waters.

• Explain why KMP algorithm perform in linear time even in the seemed ‘worst’ case.

• Implement the purely functional KMP algorithm by using reversed Pp to avoid the
linear time appending operation.

• Deduce the state of the tree left(right(right(right(T)))) when searching ‘ananym’
in text ‘anal’.

14.3 Solution searching
One interesting thing that computer programming can offer is solving puzzles. In the
early phase of classic artificial intelligent, people developed many methods to search for
solutions. Different from the sequence searching and string matching, the solution doesn’t
obviously exist among a candidates set. It typically need construct the solution while
trying varies of attempts. Some problems are solvable, while others are not. Among the
solvable problems, not all of them just have one unique solution. For example, a maze
may have multiple ways out. People sometimes need search for the best one.

14.3.1 DFS and BFS
DFS and BFS stand for deep-first search and breadth-first search. They are typically
introduced as graph algorithms in textbooks. Graph is a comprehensive topic which is
hard to be covered in this elementary book. In this section, we’ll show how to use DFS
and BFS to solve some real puzzles without formal introduction about the graph concept.

Maze

Maze is a classic and popular puzzle. Maze is amazing to both kids and adults. Figure
14.26 shows an example maze. There are also real maze gardens can be found in parks
for fun. In the late 1990s, maze-solving games were quite often hold in robot mouse
competition all over the world.

306 CHAPTER 14. SEARCHING

Figure 14.26: A maze

There are multiple methods to solve maze puzzle. We’ll introduce an effective, yet not
the best one in this section. There are some well known sayings about how to find the
way out in maze, while not all of them are true.

For example, one method states that, wherever you have multiple ways, always turn
right. This doesn’t work as shown in figure 14.27. The obvious solution is first to go
along the top horizontal line, then turn right, and keep going ahead at the ’T’ section.
However, if we always turn right, we’ll endless loop around the inner big block.

Figure 14.27: It leads to loop way if always turns right.

This example tells us that the decision when there are multiple choices matters the
solution. Like the fairy tale we read in our childhood, we can take some bread crumbs
in a maze. When there are multiple ways, we can simply select one, left a piece of bread
crumbs to mark this attempt. If we enter a died end, we go back to the last place where
we’ve made a decision by back-tracking the bread crumbs. Then we can alter to another
way.

At any time, if we find there have been already bread crumbs left, it means we have
entered a loop, we must go back and try different ways. Repeat these try-and-check
steps, we can either find the way out, or give the ‘no solution’ fact. In the later case, we
back-track to the start point.

One easy way to describe a maze, is by a m× n matrix, each element is either 0 or 1,
which indicates if there is a way at this cell. The maze illustrated in figure 14.27 can be
defined as the following matrix.

14.3. SOLUTION SEARCHING 307

0 0 0 0 0 0
0 1 1 1 1 0
0 1 1 1 1 0
0 1 1 1 1 0
0 1 1 1 1 0
0 0 0 0 0 0
1 1 1 1 1 0

Given a start point s = (i, j), and a goal e = (p, q), we need find all solutions, that
are the paths from s to e.

There is an obviously recursive exhaustive search method. That in order to find all
paths from s to e, we can check all connected points to s, for every such point k, we
recursively find all paths from k to e. This method can be illustrated as the following.

• Trivial case, if the start point s is as same as the target point e, we are done;

• Otherwise, for every connected point k to s, recursively find the paths from k to e;
If e can be reached via k, put section s-k in front of each path between k and e.

However, we have to left ’bread crumbs’ to avoid repeatedly trying the same attempts.
This is because otherwise in the recursive case, we start from s, find a connected point
k, then we further try to find paths from k to e. Since s is connected to k as well, so in
the next recursion, we’ll try to find paths from s to e again. It turns to be the very same
origin problem, and we are trapped in infinite recursions.

Our solution is to initialize an empty list, use it to record all the points we’ve visited
so far. For every connected point, we look up the list to examine if it has already been
visited. We skip all the visited candidates and only try those new ones. The corresponding
algorithm can be defined like this.

solveMaze(m, s, e) = solve(s, {ϕ}) (14.47)

Where m is the matrix which defines a maze, s is the start point, and e is the end
point. Function solve is defined in the context of solveMaze, so that the maze and the
end point can be accessed. It can be realized recursively like what we described above8.

solve(s, P) =

 {{s} ∪ p|p ∈ P} : s = e
concat({ solve(s′, {{s} ∪ p|p ∈ P})|

s′ ∈ adj(s),¬visited(s′)}) : otherwise
(14.48)

Note that P also serves as an accumulator. Every connected point is recorded in all
the possible paths to the current position. But they are stored in reversed order, that is
the newly visited point is put to the head of all the lists, and the starting point is the last
one. This is because the appending operation is linear (O(n), where n is the number of
elements stored in a list), while linking to the head is just constant time. We can output
the result in correct order by reversing all possible solutions in equation (14.47)9:

solveMaze(m, s, e) = map(reverse, solve(s, {ϕ})) (14.49)

We need define functions adj(p) and visited(p), which finds all the connected points
to p, and tests if point p has been visited respectively. Two points are connected if and

8Function concat can flatten a list of lists. For example. concat({{a, b, c}, {x, y, z}}) = {a, b, c, x, y, z}.
Refer to appendix A for detail.

9the detailed definition of reverse can be found in the appendix A.

308 CHAPTER 14. SEARCHING

only if they are next cells horizontally or vertically in the maze matrix, and both have
zero value.

adj((x, y)) = {(x′, y′)| (x′, y′) ∈ {(x− 1, y), (x+ 1, y), (x, y − 1), (x, y + 1)},
1 ≤ x′ ≤M, 1 ≤ y′ ≤ N,mx′y′ = 0} (14.50)

Where M and N are the widths and heights of the maze.
Function visited(p) examines if point p has been recorded in any lists in P .

visited(p) = ∃path ∈ P, p ∈ path (14.51)

The following Haskell example code implements this algorithm.
solveMaze m from to = map reverse $ solve from [[]] where

solve p paths | p == to = map (p:) paths
| otherwise = concat [solve p' (map (p:) paths) |

p' ← adjacent p,
not $ visited p' paths]

adjacent (x, y) = [(x', y') |
(x', y') ← [(x-1, y), (x+1, y), (x, y-1), (x, y+1)],
inRange (bounds m) (x', y'),
m ! (x', y') == 0]

visited p paths = any (p `elem`) paths

For a maze defined as matrix like below example, all the solutions can be given by
this program.
mz = [[0, 0, 1, 0, 1, 1],

[1, 0, 1, 0, 1, 1],
[1, 0, 0, 0, 0, 0],
[1, 1, 0, 1, 1, 1],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 0]]

maze = listArray ((1,1), (6, 6)) ◦ concat

solveMaze (maze mz) (1,1) (6, 6)

As we mentioned, this is a style of ’exhaustive search’. It recursively searches all the
connected points as candidates. In a real maze solving game, a robot mouse competition
for instance, it’s enough to just find a route. We can adapt to a method close to what
described at the beginning of this section. The robot mouse always tries the first connected
point, and skip the others until it gets stuck. We need some data structure to store the
’bread crumbs’, which help to remember the decisions being made. As we always attempt
to find the way on top of the latest decision, it is the last-in, first-out manner. A stack
can be used to realize it.

At the very beginning, only the starting point s is stored in the stack. we pop it out,
find, for example, points a, and b, are connected to s. We push the two possible paths:
{a, s} and {b, s} to the stack. Next we pop {a, s} out, and examine connected points to a.
Then all the paths with 3 steps will be pushed back. We repeat this process. At anytime,
each element stored in the stack is a path, from the starting point to the farthest place
can arrive in the reversed order. This can be illustrated in figure 14.28.

The stack can be realized with a list. The latest option is picked from the head, and
the new candidates are also added to the head. The maze puzzle can be solved by using
such a list of paths:

solveMaze′(m, s, e) = reverse(solve′({{s}})) (14.52)

As we are searching the first, but not all the solutions, map isn’t used here. When
the stack is empty, it means that we’ve tried all the options and failed to find a way out.

14.3. SOLUTION SEARCHING 309

[s]
[a, s]

[b, s]
...

i

p

j k

[p, ... , s]

[q, ..., s]

...

[i, p, ... , s]

[j, p, ..., s]

[k, p, ..., s]

[q, ..., s]

...

Figure 14.28: The stack is initialized with a singleton list of the starting point s. s is
connected with point a and b. Paths {a, s} and {b, s} are pushed back. In some step,
the path ended with point p is popped. p is connected with points i, j, and k. These 3
points are expanded as different options and pushed back to the stack. The candidate
path ended with q won’t be examined unless all the options above fail.

There is no solution; otherwise, the top option is popped, expanded with all the adjacent
points which haven’t been visited before, and pushed back to the stack. Denote the stack
as S, if it isn’t empty, the top element is s1, and the new stack after the top being popped
as S′. s1 is a list of points represents path P . Denote the first point in this path as p1,
and the rest as P ′. The solution can be formalized as the following.

solve′(S) =


ϕ : S = ϕ
s1 : s1 = e

solve′(S′) : C = {c|c ∈ adj(p1), c 6∈ P ′} = ϕ
solve′({{p} ∪ P |p ∈ C} ∪ S) : otherwise, C 6= ϕ

(14.53)
Where the adj function is defined above. This updated maze solution can be imple-

mented with the below example Haskell program 10.

dfsSolve m from to = reverse $ solve [[from]] where
solve [] = []
solve (c@(p:path):cs)

| p == to = c −− stop at the first solution
| otherwise = let os = filter (`notElem` path) (adjacent p) in

if os == []
then solve cs
else solve ((map (:c) os) ++ cs)

It’s quite easy to modify this algorithm to find all solutions. When we find a path in
the second clause, instead of returning it immediately, we record it and go on checking
the rest memorized options in the stack till until the stack becomes empty. We left it as
an exercise to the reader.

The same idea can also be realized imperatively. We maintain a stack to store all
possible paths from the starting point. In each iteration, the top option path is popped,
if the farthest position is the end point, a solution is found; otherwise, all the adjacent,
not visited yet points are appended as new paths and pushed back to the stack. This is
repeated till all the candidate paths in the stacks are checked.

We use the same notation to represent the stack S. But the paths will be stored as
arrays instead of list in imperative settings as the former is more effective. Because of this

10The same code of adjacent function is skipped

310 CHAPTER 14. SEARCHING

the starting point is the first element in the path array, while the farthest reached place
is the right most element. We use pn to represent Last(P) for path P . The imperative
algorithm can be given as below.

1: function Solve-Maze(m, s, e)
2: S ← ϕ
3: Push(S, {s})
4: L← ϕ ▷ the result list
5: while S 6= ϕ do
6: P ← Pop(S)
7: if e = pn then
8: Add(L,P)
9: else

10: for ∀p ∈ Adjacent(m, pn) do
11: if p /∈ P then
12: Push(S, P ∪ {p})
13: return L

The following example Python program implements this maze solving algorithm.
def solve(m, src, dst):

stack = [[src]]
s = []
while stack ̸= []:

path = stack.pop()
if path[-1] == dst:

s.append(path)
else:

for p in adjacent(m, path[-1]):
if not p in path:

stack.append(path + [p])
return s

def adjacent(m, p):
(x, y) = p
ds = [(0, 1), (0, -1), (1, 0), (-1, 0)]
ps = []
for (dx, dy) in ds:

x1 = x + dx
y1 = y + dy
if 0 ≤ x1 and x1 < len(m[0]) and

0 ≤ y1 and y1 < len(m) and m[y][x] == 0:
ps.append((x1, y1))

return ps

And the same maze example given above can be solved by this program like the
following.
mz = [[0, 0, 1, 0, 1, 1],

[1, 0, 1, 0, 1, 1],
[1, 0, 0, 0, 0, 0],
[1, 1, 0, 1, 1, 1],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 0]]

solve(mz, (0, 0), (5,5))

It seems that in the worst case, there are 4 options (up, down, left, and right) at each
step, each option is pushed to the stack and eventually examined during backtracking.
Thus the complexity is bound to O(4n). The actual time won’t be so large because we
filtered out the places which have been visited before. In the worst case, all the reachable
points are visited exactly once. So the time is bound to O(n), where n is the number

14.3. SOLUTION SEARCHING 311

of points connected in total. As a stack is used to store candidate solutions, the space
complexity is O(n2).

Eight queens puzzle

The eight queens puzzle is also a famous problem. Although cheese has very long history,
this puzzle was first published in 1848 by Max Bezzel [89]. Queen in the cheese game is
quite powerful. It can attack any other pieces in the same row, column and diagonal at
any distance. The puzzle is to find a solution to put 8 queens in the board, so that none
of them attack each other. Figure 14.29 (a) illustrates the places can be attacked by a
queen and 14.29 (b) shows a solution of 8 queens puzzle.

(a) A queen piece. (b) An example solution

Figure 14.29: The eight queens puzzle.

It’s obviously that the puzzle can be solved by brute-force, which takes P 8
64 times.

This number is about 4 × 1010. It can be easily improved by observing that, no two
queens can be in the same row, and each queen must be put on one column between 1
to 8. Thus we can represent the arrangement as a permutation of {1, 2, 3, 4, 5, 6, 7, 8}.
For instance, the arrangement {6, 2, 7, 1, 3, 5, 8, 4} means, we put the first queen at row 1,
column 6, the second queen at row 2 column 2, ..., and the last queen at row 8, column
4. By this means, we need only examine 8! = 40320 possibilities.

We can find better solutions than this. Similar to the maze puzzle, we put queens one
by one from the first row. For the first queen, there are 8 options, that we can put it at
one of the eight columns. Then for the next queen, we again examine the 8 candidate
columns. Some of them are not valid because those positions will be attacked by the first
queen. We repeat this process, for the i-th queen, we examine the 8 columns in row i,
find which columns are safe. If none column is valid, it means all the columns in this row
will be attacked by some queen we’ve previously arranged, we have to backtrack as what
we did in the maze puzzle. When all the 8 queens are successfully put to the board, we
find a solution. In order to find all the possible solutions, we need record it and go on to
examine other candidate columns and perform back tracking if necessary. This process
terminates when all the columns in the first row have been examined. The below equation
starts the search.

solve({ϕ}, ϕ) (14.54)

In order to manage the candidate attempts, a stack S is used as same as in the maze
puzzle. The stack is initialized with one empty element. And a list L is used to record all
possible solutions. Denote the top element in the stack as s1. It’s actually an intermediate
state of assignment, which is a partial permutation of 1 to 8. after pops s1, the stack

312 CHAPTER 14. SEARCHING

becomes S′. The solve function can be defined as the following.

solve(S,L) =


L : S = ϕ

solve(S′, {s1} ∪ L) : |s1| = 8

solve(

 {i} ∪ s1| i ∈ [1, 8],
i /∈ s1,
safe(i, s1)

 ∪ S′, L) : otherwise
(14.55)

If the stack is empty, all the possible candidates have been examined, it’s not possible
to backtrack any more. L has been accumulated all found solutions and returned as the
result; Otherwise, if the length of the top element in the stack is 8, a valid solution is
found. We add it to L, and go on finding other solutions; If the length is less than 8,
we need try to put the next queen. Among all the columns from 1 to 8, we pick those
not already occupied by previous queens (through the i /∈ s1 clause), and must not be
attacked in diagonal direction (through the safe predication). The valid assignments will
be pushed to the stack for the further searching.

Function safe(x,C) detects if the assignment of a queen in position x will be attacked
by other queens in C in diagonal direction. There are 2 possible cases, 45◦ and 135◦

directions. Since the row of this new queen is y = 1 + |C|, where |C| is the length of C,
the safe function can be defined as the following.

safe(x,C) = ∀(c, r) ∈ zip(reverse(C), {1, 2, ...}), |x− c| 6= |y − r| (14.56)

Where zip takes two lists, and pairs every elements in them to a new list. Thus If
C = {ci−1, ci−2, ..., c2, c1} represents the column of the first i−1 queens has been assigned,
the above function will check list of pairs {(c1, 1), (c2, 2), ..., (ci−1, i − 1)} with position
(x, y) forms any diagonal lines.

Translating this algorithm into Haskell gives the below example program.
solve = dfsSolve [[]] [] where

dfsSolve [] s = s
dfsSolve (c:cs) s

| length c == 8 = dfsSolve cs (c:s)
| otherwise = dfsSolve ([(x:c) | x ← [1..8] \\ c,

not $ attack x c] ++ cs) s
attack x cs = let y = 1 + length cs in

any (λ(c, r) → abs(x - c) == abs(y - r)) $
zip (reverse cs) [1..]

Observing that the algorithm is tail recursive, it’s easy to transform it into imperative
realization. Instead of using list, we use array to represent queens assignment. Denote the
stack as S, and the possible solutions as A. The imperative algorithm can be described
as the following.

1: function Solve-Queens
2: S ← {ϕ}
3: L← ϕ ▷ The result list
4: while S 6= ϕ do
5: A← Pop(S) ▷ A is an intermediate assignment
6: if |A| = 8 then
7: Add(L,A)
8: else
9: for i← 1 to 8 do

10: if Valid(i, A) then
11: Push(S,A ∪ {i})
12: return L

14.3. SOLUTION SEARCHING 313

The stack is initialized with the empty assignment. The main process repeatedly pops
the top candidate from the stack. If there are still queens left, the algorithm examines
possible columns in the next row from 1 to 8. If a column is safe, that it won’t be attacked
by any previous queens, this column will be appended to the assignment, and pushed back
to the stack. Different from the functional approach, since array, but not list, is used, we
needn’t reverse the solution assignment any more.

Function Valid checks if column x is safe with previous queens put in A. It filters out
the columns have already been occupied, and calculates if any diagonal lines are formed
with existing queens.

1: function Valid(x,A)
2: y ← 1 + |A|
3: for i← 1 to |A| do
4: if x = A[i] ∨ |y − i| = |x−A[i]| then
5: return False
6: return True

The following Python example program implements this imperative algorithm.
def solve():

stack = [[]]
s = []
while stack ̸= []:

a = stack.pop()
if len(a) == 8:

s.append(a)
else:

for i in range(1, 9):
if valid(i, a):

stack.append(a+[i])
return s

def valid(x, a):
y = len(a) + 1
for i in range(1, y):

if x == a[i-1] or abs(y - i) == abs(x - a[i-1]):
return False

return True

Although there are 8 optional columns for each queen, not all of them are valid and
thus further expanded. Only those columns haven’t been occupied by previous queens
are tried. The algorithm only examines 15720, which is far less than 88 = 16777216,
possibilities [89].

It’s quite easy to extend the algorithm, so that it can solve n queens puzzle, where
n ≥ 4. However, the time cost increases fast. The backtrack algorithm is just slightly
better than the one permuting the sequence of 1 to 8 (which is bound to o(n!)). Another
extension to the algorithm is based on the fact that the chess board is square, which is
symmetric both vertically and horizontally. Thus a solution can generate other solutions
by rotating and flipping. These aspects are left as exercises to the reader.

Peg puzzle

I once received a puzzle of the leap frogs. It said to be homework for 2nd grade student
in China. As illustrated in figure 14.30, there are 6 frogs in 7 stones. Each frog can either
hop to the next stone if it is not occupied, or leap over one frog to another empty stone.
The frogs on the left side can only move to the right, while the ones on the right side can
only move to the left. These rules are described in figure 14.31

The goal of this puzzle is to arrange the frogs to jump according to the rules, so that
the positions of the 3 frogs on the left are finally exchange with the ones on the right. If

314 CHAPTER 14. SEARCHING

Figure 14.30: The leap frogs puzzle.

we denote the frog on the left as ’A’, on the right as ’B’, and the empty stone as ’O’. The
puzzle is to find a solution to transform from ’AAAOBBB’ to ’BBBOAAA’.

(a) Jump to
the next stone

(b) Jump over
to the right

(c) Jump over to
the left

Figure 14.31: Moving rules.

This puzzle is just a special form of the peg puzzles. The number of pegs is not limited
to 6. it can be 8 or other bigger even numbers. Figure 14.32 shows some variants.

(a) Solitaire (b) Hop over (c) Draught
board

Figure 14.32: Variants of the peg puzzles from http://home.comcast.net/~stegmann/
jumping.htm

We can solve this puzzle by programing. The idea is similar to the 8 queens puzzle.
Denote the positions from the left most stone as 1, 2, ..., 7. In ideal cases, there are 4
options to arrange the move. For example when start, the frog on 3rd stone can hop right
to the empty stone; symmetrically, the frog on the 5th stone can hop left; Alternatively,
the frog on the 2nd stone can leap right, while the frog on the 6th stone can leap left.

We can record the state and try one of these 4 options at every step. Of course not all
of them are possible at any time. If get stuck, we can backtrack and try other options.

As we restrict the left side frogs only moving to the right, and the right frogs only
moving to the left, the moves are not reversible. There won’t be any repetition cases as
what we have to deal with in the maze puzzle. However, we still need record the steps in
order to print them out finally.

In order to enforce these restriction, let A, O, B in representation ’AAAOBBB’ be -1,
0, and 1 respectively. A state L is a list of elements, each element is one of these 3 values.
It starts from {−1,−1,−1, 0, 1, 1, 1}. L[i] access the i-th element, its value indicates if
the i-th stone is empty, occupied by a frog from left side, or occupied by a frog from right

http://home.comcast.net/~stegmann/jumping.htm
http://home.comcast.net/~stegmann/jumping.htm

14.3. SOLUTION SEARCHING 315

side. Denote the position of the vacant stone as p. The 4 moving options can be stated
as below.

• Leap left: p < 6 and L[p+ 2] > 0, swap L[p]↔ L[p+ 2];

• Hop left: p < 7 and L[p+ 1] > 0, swap L[p]↔ L[p+ 1];

• Leap right: p > 2 and L[p− 2] < 0, swap L[p− 2]↔ L[p];

• Hop right: p > 1 and L[p− 1] < 0, swap L[p− 1]↔ L[p].

Four functions leapl(L), hopl(L), leapr(L) and hopr(L) are defined accordingly. If
the state L does not satisfy the move restriction, these function return L unchanged,
otherwise, the changed state L′ is returned accordingly.

We can also explicitly maintain a stack S to the attempts as well as the historic
movements. The stack is initialized with a singleton list of starting state. The solution is
accumulated to a list M , which is empty at the beginning:

solve({{−1,−1,−1, 0, 1, 1, 1}}, ϕ) (14.57)

As far as the stack isn’t empty, we pop one intermediate attempt. If the latest state
is equal to {1, 1, 1, 0,−1,−1,−1}, a solution is found. We append the series of moves till
this state to the result list M ; otherwise, We expand to next possible state by trying all
four possible moves, and push them back to the stack for further search. Denote the top
element in the stack S as s1, and the latest state in s1 as L. The algorithm can be defined
as the following.

solve(S,M) =

 M : S = ϕ
solve(S′, {reverse(s1)} ∪M) : L = {1, 1, 1, 0,−1,−1,−1}

solve(P ∪ S′,M) : otherwise
(14.58)

Where P are possible moves from the latest state L:

P = {L′|L′ ∈ {leapl(L), hopl(L), leapr(L), hopr(L)}, L 6= L′}

Note that the starting state is stored as the last element, while the final state is the
first. That is the reason why we reverse it when adding to solution list.

Translating this algorithm to Haskell gives the following example program.
solve = dfsSolve [[[-1, -1, -1, 0, 1, 1, 1]]] [] where

dfsSolve [] s = s
dfsSolve (c:cs) s

| head c == [1, 1, 1, 0, -1, -1, -1] = dfsSolve cs (reverse c:s)
| otherwise = dfsSolve ((map (:c) $ moves $ head c) ++ cs) s

moves s = filter (/=s) [leapLeft s, hopLeft s, leapRight s, hopRight s] where
leapLeft [] = []
leapLeft (0:y:1:ys) = 1:y:0:ys
leapLeft (y:ys) = y:leapLeft ys
hopLeft [] = []
hopLeft (0:1:ys) = 1:0:ys
hopLeft (y:ys) = y:hopLeft ys
leapRight [] = []
leapRight (-1:y:0:ys) = 0:y:(-1):ys
leapRight (y:ys) = y:leapRight ys
hopRight [] = []
hopRight (-1:0:ys) = 0:(-1):ys
hopRight (y:ys) = y:hopRight ys

316 CHAPTER 14. SEARCHING

Running this program finds 2 symmetric solutions, each takes 15 steps. One solution
is list in the below table.

step -1 -1 -1 0 1 1 1
1 -1 -1 0 -1 1 1 1
2 -1 -1 1 -1 0 1 1
3 -1 -1 1 -1 1 0 1
4 -1 -1 1 0 1 -1 1
5 -1 0 1 -1 1 -1 1
6 0 -1 1 -1 1 -1 1
7 1 -1 0 -1 1 -1 1
8 1 -1 1 -1 0 -1 1
9 1 -1 1 -1 1 -1 0
10 1 -1 1 -1 1 0 -1
11 1 -1 1 0 1 -1 -1
12 1 0 1 -1 1 -1 -1
13 1 1 0 -1 1 -1 -1
14 1 1 1 -1 0 -1 -1
15 1 1 1 0 -1 -1 -1

Observe that the algorithm is in tail recursive manner, it can also be realized imper-
atively. The algorithm can be more generalized, so that it solve the puzzles of n frogs on
each side. We represent the start state {-1, -1, ..., -1, 0, 1, 1, ..., 1} as s, and the mirrored
end state as e.

1: function Solve(s, e)
2: S ← {{s}}
3: M ← ϕ
4: while S 6= ϕ do
5: s1 ← Pop(S)
6: if s1[1] = e then
7: Add(M , Reverse(s1))
8: else
9: for ∀m ∈ Moves(s1[1]) do

10: Push(S, {m} ∪ s1)
11: return M

The possible moves can be also generalized with procedure Moves to handle arbitrary
number of frogs. The following Python program implements this solution.

def solve(start, end):
stack = [[start]]
s = []
while stack ̸= []:

c = stack.pop()
if c[0] == end:

s.append(reversed(c))
else:

for m in moves(c[0]):
stack.append([m]+c)

return s

def moves(s):
ms = []
n = len(s)
p = s.index(0)
if p < n - 2 and s[p+2] > 0:

ms.append(swap(s, p, p+2))
if p < n - 1 and s[p+1] > 0:

ms.append(swap(s, p, p+1))

14.3. SOLUTION SEARCHING 317

if p > 1 and s[p-2] < 0:
ms.append(swap(s, p, p-2))

if p > 0 and s[p-1] < 0:
ms.append(swap(s, p, p-1))

return ms

def swap(s, i, j):
a = s[:]
(a[i], a[j]) = (a[j], a[i])
return a

For 3 frogs in each side, we know that it takes 15 steps to exchange them. It’s
interesting to examine the table that how many steps are needed along with the number
of frogs in each side. Our program gives the following result.

number of frogs 1 2 3 4 5 ...
number of steps 3 8 15 24 35 ...

It seems that the number of steps are all square numbers minus one. It’s natural to
guess that the number of steps for n frogs in one side is (n + 1)2 − 1. Actually we can
prove it is true.

Compare to the final state and the start state, each frog moves ahead n + 1 stones
in its opposite direction. Thus total 2n frogs move 2n(n+ 1) stones. Another important
fact is that each frog on the left has to meet every one on the right one time. And leap
will happen when meets. Since the frog moves two stones ahead by leap, and there are
total n2 meets happen, so that all these meets cause moving 2n2 stones ahead. The rest
moves are not leap, but hop. The number of hops are 2n(n+ 1)− 2n2 = 2n. Sum up all
n2 leaps and 2n hops, the total number of steps are n2 + 2n = (n+ 1)2 − 1.

Summary of DFS

Observe the above three puzzles, although they vary in many aspects, their solutions
show quite similar common structures. They all have some starting state. The maze
starts from the entrance point; The 8 queens puzzle starts from the empty board; The
leap frogs start from the state of ’AAAOBBB’. The solution is a kind of searching, at each
attempt, there are several possible ways. For the maze puzzle, there are four different
directions to try; For the 8 queens puzzle, there are eight columns to choose; For the leap
frogs puzzle, there are four movements of leap or hop. We don’t know how far we can go
when make a decision, although the final state is clear. For the maze, it’s the exit point;
For the 8 queens puzzle, we are done when all the 8 queens being assigned on the board;
For the leap frogs puzzle, the final state is that all frogs exchanged.

We use a common approach to solve them. We repeatedly select one possible candidate
to try, record where we’ve achieved; If we get stuck, we backtrack and try other options.
We are sure by using this strategy, we can either find a solution, or tell that the problem
is unsolvable.

Of course there can be some variation, that we can stop when find one answer, or go
on searching all the solutions.

If we draw a tree rooted at the starting state, expand it so that every branch stands
for a different attempt, our searching process is in a manner, that it searches deeper and
deeper. We won’t consider any other options in the same depth unless the searching fails
so that we’ve to backtrack to upper level of the tree. Figure 14.33 illustrates the order we
search a state tree. The arrow indicates how we go down and backtrack up. The number
of the nodes shows the order we visit them.

This kind of search strategy is called ’DFS’ (Deep-first-search). We widely use it
unintentionally. Some programming environments, Prolog for instance, adopt DFS as the
default evaluation model. A maze is given by a set of rule base, such as:

318 CHAPTER 14. SEARCHING

Figure 14.33: Example of DFS search order.

c(a, b). c(a, e).
c(b, c). c(b, f).
c(e, d), c(e, f).
c(f, c).
c(g, d). c(g, h).
c(h, f).

Where predicate c(X,Y) means place X is connected with Y . Note that this is a
directed predicate, we can make Y to be connected with X as well by either adding a
symmetric rule, or create a undirected predicate. Figure 14.34 shows such a directed
graph. Given two places X and Y , Prolog can tell if they are connected by the following
program.

a

b e

c

f d

g

h

Figure 14.34: A directed graph.

go(X, X).
go(X, Y) :- c(X, Z), go(Z, Y)

This program says that, a place is connected with itself. Given two different places X
and Y , if X is connected with Z, and Z is connected with Y , then X is connected with
Y . Note that, there might be multiple choices for Z. Prolog selects a candidate, and go
on further searching. It only tries other candidates if the recursive searching fails. In that
case, Prolog backtracks and tries other alternatives. This is exactly what DFS does.

DFS is quite straightforward when we only need a solution, but don’t care if the
solution takes the fewest steps. For example, the solution it gives, may not be the shortest
path for the maze. We’ll see some more puzzles next. They demands to find the solution
with the minimum attempts.

14.3. SOLUTION SEARCHING 319

The wolf, goat, and cabbage puzzle

This puzzle says that a farmer wants to cross a river with a wolf, a goat, and a bucket
of cabbage. There is a boat. Only the farmer can drive it. But the boat is small. it
can only hold one of the wolf, the goat, and the bucket of cabbage with the farmer at a
time. The farmer has to pick them one by one to the other side of the river. However,
the wolf would eat the goat, and the goat would eat the cabbage if the farmer is absent.
The puzzle asks to find the fast solution so that they can all safely go cross the river.

Figure 14.35: The wolf, goat, cabbage puzzle

The key point to this puzzle is that the wolf does not eat the cabbage. The farmer can
safely pick the goat to the other side. But next time, no matter if he pick the wolf or the
cabbage to cross the river, he has to take one back to avoid the conflict. In order to find
the fast the solution, at any time, if the farmer has multiple options, we can examine all of
them in parallel, so that these different decisions compete. If we count the number of the
times the farmer cross the river without considering the direction, that crossing the river
back and forth means 2 times, we are actually checking the complete possibilities after
1 time, 2 times, 3 times, ... When we find a situation, that they all arrive at the other
bank, we are done. And this solution wins the competition, which is the fast solution.

The problem is that we can’t examine all the possible solutions in parallel ideally.
Even with a super computer equipped with many CPU cores, the setup is too expensive
to solve such a simple puzzle.

Let’s consider a lucky draw game. People blindly pick from a box with colored balls.
There is only one black ball, all the others are white. The one who pick the black ball wins
the game; Otherwise, he must return the ball to the box and wait for the next chance. In
order to be fair enough, we can setup a rule that no one can try the second time before
all others have tried. We can line people to a queue. Every time the first guy pick a ball,
if he does not win, he then stands at the tail of the queue to wait for the second try. This
queue helps to ensure our rule.

We can use the quite same idea to solve our puzzle. The two banks of the river can
be represented as two sets A and B. A contains the wolf, the goat, the cabbage and the
farmer; while B is empty. We take an element along with the farmer from one set to the
other each time. The two sets can’t hold conflict things if the farmer is absent. The goal
is to exchange the contents of A and B with fewest steps.

We initialize a queue with state A = {w, g, c, p}, B = ϕ as the only element. As far as
the queue isn’t empty, we pick the first element from the head, expand it with all possible

320 CHAPTER 14. SEARCHING

Figure 14.36: A lucky-draw game, the i-th person goes from the queue, pick a ball, then
join the queue at tail if he fails to pick the black ball.

options, and put these new expanded candidates to the tail of the queue. If the first
element on the head is the final goal, that A = ϕ,B = {w, g, c, p}, we are done. Figure
14.37 illustrates the idea of this search order. Note that as all possibilities in the same
level are examined, there is no need for back-tracking.

Figure 14.37: Start from state 1, check all possible options 2, 3, and 4 for next step; then
all nodes in level 3, ...

There is a simple way to treat the set. A four bits binary number can be used, each
bit stands for a thing, for example, the wolf w = 1, the goat g = 2, the cabbage c = 4,
and the farmer p = 8. That 0 stands for the empty set, 15 stands for a full set. Value
3, solely means there are a wolf and a goat on the river bank. In this case, the wolf will
eat the goat. Similarly, value 6 stands for another conflicting case. Every time, we move
the highest bit (which is 8), or together with one of the other bits (4 or 2, or 1) from one

14.3. SOLUTION SEARCHING 321

number to the other. The possible moves can be defined as below.

mv(A,B) =

{
{(A− 8− i, B + 8 + i)|i ∈ {0, 1, 2, 4}, i = 0 ∨A∧i 6= 0} : B < 8
{(A+ 8 + i, B − 8− i)|i ∈ {0, 1, 2, 4}, i = 0 ∨B∧i 6= 0} : Otherwise

(14.59)
Where ∧ is the bitwise-and operation.
the solution can be given by reusing the queue defined in previous chapter. Denote

the queue as Q, which is initialed with a singleton list {(15, 0)}. If Q is not empty,
function DeQ(Q) extracts the head element M , the updated queue becomes Q′. M is a
list of pairs, stands for a series of movements between the river banks. The first element
in m1 = (A′, B′) is the latest state. Function EnQ′(Q,L) is a slightly different enqueue
operation. It pushes all the possible moving sequences in L to the tail of the queue one
by one and returns the updated queue. With these notations, the solution function is
defined like below.

solve(Q) =


ϕ : Q = ϕ

reverse(M) : A′ = 0

solve(EnQ′(Q′,

{
{m} ∪M | m ∈ mv(m1),

valid(m,M)

}
)) : otherwise

(14.60)
Where function valid(m,M) checks if the new moving candidate m = (A′′, B′′) is

valid. That neither A′′ nor B′′ is 3 or 6, and m hasn’t been tried before in M to avoid
any repeatedly attempts.

valid(m,M) = A′′ 6= 3, A′′ 6= 6, B′′ 6= 3, B′′ 6= 6,m /∈M (14.61)

The following example Haskell program implements this solution. Note that it uses a
plain list to represent the queue for illustration purpose.
import Data.Bits

solve = bfsSolve [[(15, 0)]] where
bfsSolve :: [[(Int, Int)]] → [(Int, Int)]
bfsSolve [] = [] −− no solution
bfsSolve (c:cs) | (fst $ head c) == 0 = reverse c

| otherwise = bfsSolve (cs ++ map (:c)
(filter (`valid` c) $ moves $ head c))

valid (a, b) r = not $ or [a `elem` [3, 6], b `elem` [3, 6],
(a, b) `elem` r]

moves (a, b) = if b < 8 then trans a b else map swap (trans b a) where
trans x y = [(x - 8 - i, y + 8 + i)

| i ←[0, 1, 2, 4], i == 0 | | (x .&. i) /= 0]
swap (x, y) = (y, x)

This algorithm can be easily modified to find all the possible solutions, but not just
stop after finding the first one. This is left as the exercise to the reader. The following
shows the two best solutions to this puzzle.

Solution 1:
Left river Right
wolf, goat, cabbage, farmer
wolf, cabbage goat, farmer
wolf, cabbage, farmer goat
cabbage wolf, goat, farmer
goat, cabbage, farmer wolf
goat wolf, cabbage, farmer
goat, farmer wolf, cabbage

wolf, goat, cabbage, farmer

322 CHAPTER 14. SEARCHING

Solution 2:
Left river Right
wolf, goat, cabbage, farmer
wolf, cabbage goat, farmer
wolf, cabbage, farmer goat
wolf goat, cabbage, farmer
wolf, goat, farmer cabbage
goat wolf, cabbage, farmer
goat, farmer wolf, cabbage

wolf, goat, cabbage, farmer
This algorithm can also be realized imperatively. Observing that our solution is in tail

recursive manner, we can translate it directly to a loop. We use a list S to hold all the
solutions can be found. The singleton list {(15, 0)} is pushed to queue when initializing.
As long as the queue isn’t empty, we extract the head C from the queue by calling DeQ
procedure. Examine if it reaches the final goal, if not, we expand all the possible moves
and push to the tail of the queue for further searching.

1: function Solve
2: S ← ϕ
3: Q← ϕ
4: EnQ(Q, {(15, 0)})
5: while Q 6= ϕ do
6: C ← DeQ(Q)
7: if c1 = (0, 15) then
8: Add(S, Reverse(C))
9: else

10: for ∀m ∈ Moves(C) do
11: if Valid(m,C) then
12: EnQ(Q, {m} ∪ C)
13: return S

Where Moves, and Valid procedures are as same as before. The following Python
example program implements this imperative algorithm.

def solve():
s = []
queue = [[(0xf, 0)]]
while queue ̸= []:

cur = queue.pop(0)
if cur[0] == (0, 0xf):

s.append(reverse(cur))
else:

for m in moves(cur):
queue.append([m]+cur)

return s

def moves(s):
(a, b) = s[0]
return valid(s, trans(a, b) if b < 8 else swaps(trans(b, a)))

def valid(s, mv):
return [(a, b) for (a, b) in mv

if a not in [3, 6] and b not in [3, 6] and (a, b) not in s]

def trans(a, b):
masks = [8 | (1<<i) for i in range(4)]
return [(a ^ mask, b | mask) for mask in masks if a & mask == mask]

def swaps(s):

14.3. SOLUTION SEARCHING 323

return [(b, a) for (a, b) in s]

There is a minor difference between the program and the pseudo code, that the func-
tion to generate candidate moving options filters the invalid cases inside it.

Every time, no matter the farmer drives the boat back and forth, there are m options
for him to choose, where m is the number of objects on the river bank the farmer drives
from. m is always less than 4, that the algorithm won’t take more than n4 times at step
n. This estimation is far more than the actual time, because we avoid trying all invalid
cases. Our solution examines all the possible moving in the worst case. Because we check
recorded steps to avoid repeated attempt, the algorithm takes about O(n2) time to search
for n possible steps.

Water jugs puzzle

This is a popular puzzle in classic AI. The history of it should be very long. It says that
there are two jugs, one is 9 quarts, the other is 4 quarts. How to use them to bring up
from the river exactly 6 quarts of water?

There are varies versions of this puzzle, although the volume of the jugs, and the
target volume of water differ. The solver is said to be young Blaise Pascal when he was
a child, the French mathematician, scientist in one story, and Simèon Denis Poisson in
another story. Later in the popular Hollywood movie ‘Die-Hard 3’, actor Bruce Willis
and Samuel L. Jackson were also confronted with this puzzle.

Pòlya gave a nice way to solve this problem backwards in [90].

Figure 14.38: Two jugs with volume of 9 and 4.

Instead of thinking from the starting state as shown in figure 14.38. Pòlya pointed out
that there will be 6 quarts of water in the bigger jugs at the final stage, which indicates
the second last step, we can fill the 9 quarts jug, then pour out 3 quarts from it. In order
to achieve this, there should be 1 quart of water left in the smaller jug as shown in figure
14.39.

It’s easy to see that fill the 9 quarters jug, then pour to the 4 quarters jug twice
can bring 1 quarters of water. As shown in figure 14.40. At this stage, we’ve found
the solution. By reversing our findings, we can give the correct steps to bring exactly 6
quarters of water.

Pòlya’s methodology is general. It’s still hard to solve it without concrete algorithm.
For instance, how to bring up 2 gallons of water from 899 and 1147 gallon jugs?

There are 6 ways to deal with 2 jugs in total. Denote the smaller jug as A, the bigger
jug as B.

• Fill jug A from the river;

324 CHAPTER 14. SEARCHING

Figure 14.39: The last two steps.

Figure 14.40: Fill the bigger jugs, and pour to the smaller one twice.

• Fill jug B from the river;

• Empty jug A;

• Empty jug B;

• Pour water from jug A to B;

• Pour water from jug B to A.

The following sequence shows an example. Note that in this example, we assume that
a < b < 2a.

A B operation
0 0 start
a 0 fill A
0 a pour A into B
a a fill A
2a - b b pour A into B
2a - b 0 empty B
0 2a - b pour A into B
a 2a - b fill A
3a - 2b b pour A into B
...

No matter what the above operations are taken, the amount of water in each jug can
be expressed as xa+yb, where a and b are volumes of jugs, for some integers x and y. All
the amounts of water we can get are linear combination of a and b. We can immediately
tell given two jugs, if a goal g is solvable or not.

14.3. SOLUTION SEARCHING 325

For instance, we can’t bring 5 gallons of water with two jugs of volume 4 and 6 gallon.
The number theory ensures that, the 2 water jugs puzzle can be solved if and only if g
can be divided by the greatest common divisor of a and b. Written as:

gcd(a, b)|g (14.62)

Where m|n means n can be divided by m. What’s more, if a and b are relatively
prime, which means gcd(a, b) = 1, it’s possible to bring up any quantity g of water.

Although gcd(a, b) enables us to determine if the puzzle is solvable, it doesn’t give us
the detailed pour sequence. If we can find some integer x and y, so that g = xa+ yb. We
can arrange a sequence of operations (even it may not be the best solution) to solve it.
The idea is that, without loss of generality, suppose x > 0, y < 0, we need fill jug A by x
times, and empty jug B by y times in total.

Let’s take a = 3, b = 5, and g = 4 for example, since 4 = 3× 3− 5, we can arrange a
sequence like the following.

A B operation
0 0 start
3 0 fill A
0 3 pour A into B
3 3 fill A
1 5 pour A into B
1 0 empty B
0 1 pour A into B
3 1 fill A
0 4 pour A into B

In this sequence, we fill A by 3 times, and empty B by 1 time. The procedure can be
described as the following:

Repeat x times:

1. Fill jug A;

2. Pour jug A into jug B, whenever B is full, empty it.

So the only problem left is to find the x and y. There is a powerful tool in number
theory called, Extended Euclid algorithm, which can achieve this. Compare to the classic
Euclid GCD algorithm, which can only give the greatest common divisor, The extended
Euclid algorithm can give a pair of x, y as well, so that:

(d, x, y) = gcdext(a, b) (14.63)

where d = gcd(a, b) and ax+ by = d. Without loss of generality, suppose a < b, there
exits quotation q and remainder r that:

b = aq + r (14.64)

Since d is the common divisor, it can divide both a and b, thus d can divide r as well.
Because r is less than a, we can scale down the problem by finding GCD of a and r:

(d, x′, y′) = gcdext(r, a) (14.65)

Where d = x′r + y′a according to the definition of the extended Euclid algorithm.
Transform b = aq + r to r = b− aq, substitute r in above equation yields:

d = x′(b− aq) + y′a
= (y′ − x′q)a+ x′b

(14.66)

326 CHAPTER 14. SEARCHING

This is the linear combination of a and b, so that we have:{
x = y′ − x′ b

a
y = x′

(14.67)

Note that this is a typical recursive relationship. The edge case happens when a = 0.

gcd(0, b) = b = 0a+ 1b (14.68)

Summarize the above result, the extended Euclid algorithm can be defined as the
following:

gcdext(a, b) =

{
(b, 0, 1) : a = 0

(d, y′ − x′ b

a
, x′) : otherwise

(14.69)

Where d, x′, y′ are defined in equation (14.65).
The 2 water jugs puzzle is almost solved, but there are still two detailed problems

need to be tackled. First, extended Euclid algorithm gives the linear combination for the
greatest common divisor d. While the target volume of water g isn’t necessarily equal to
d. This can be easily solved by multiplying x and y by m times, where m = g/gcd(a, b);
Second, we assume x > 0, to form a procedure to fill jug A with x times. However, the
extended Euclid algorithm doesn’t ensure x to be positive. For instance gcdext(4, 9) =
(1,−2, 1). Whenever we get a negative x, since d = xa + yb, we can continuously add b
to x, and decrease y by a till x is greater than zero.

At this stage, we are able to give the complete solution to the 2 water jugs puzzle.
Below is an example Haskell program.

extGcd 0 b = (b, 0, 1)
extGcd a b = let (d, x', y') = extGcd (b `mod` a) a in

(d, y' - x' ∗ (b `div` a), x')

solve a b g | g `mod` d /= 0 = [] −− no solution
| otherwise = solve' (x ∗ g `div` d)

where
(d, x, y) = extGcd a b
solve' x | x < 0 = solve' (x + b)

| otherwise = pour x [(0, 0)]
pour 0 ps = reverse ((0, g):ps)
pour x ps@((a', b'):_) | a' == 0 = pour (x - 1) ((a, b'):ps) −− fill a

| b' == b = pour x ((a', 0):ps) −− empty b
| otherwise = pour x ((max 0 (a' + b' - b),

min (a' + b') b):ps)

Although we can solve the 2 water jugs puzzle with extended Euclid algorithm, the
solution may not be the best. For instance, when we are going to bring 4 gallons of
water from 3 and 5 gallons jugs. The extended Euclid algorithm produces the following
sequence:

[(0,0),(3,0),(0,3),(3,3),(1,5),(1,0),(0,1),(3,1),
(0,4),(3,4),(2,5),(2,0),(0,2),(3,2),(0,5),(3,5),
(3,0),(0,3),(3,3),(1,5),(1,0),(0,1),(3,1),(0,4)]

It takes 23 steps to achieve the goal, while the best solution only need 6 steps:

[(0,0),(0,5),(3,2),(0,2),(2,0),(2,5),(3,4)]

14.3. SOLUTION SEARCHING 327

Observe the 23 steps, and we can find that jug B has already contained 4 gallons of
water at the 8-th step. But the algorithm ignores this fact and goes on executing the left
15 steps. The reason is that the linear combination x and y we find with the extended
Euclid algorithm are not the only numbers satisfying g = xa+ by. For all these numbers,
the smaller |x| + |y|, the less steps are needed. There is an exercise to addressing this
problem in this section.

The interesting problem is how to find the best solution? We have two approaches,
one is to find x and y to minimize |x|+ |y|; the other is to adopt the quite similar idea as
the wolf-goat-cabbage puzzle. We focus on the latter in this section. Since there are at
most 6 possible options: fill A, fill B, pour A into B, pour B into A, empty A and empty
B, we can try them in parallel, and check which decision can lead to the best solution.
We need record all the states we’ve achieved to avoid any potential repetition. In order to
realize this parallel approach with reasonable resources, a queue can be used to arrange
our attempts. The elements stored in this queue are series of pairs (p, q), where p and q
represent the volume of waters contained in each jug. These pairs record the sequence of
our operations from the beginning to the latest. We initialize the queue with the singleton
list contains the starting state {(0, 0)}.

solve(a, b, g) = solve′{{(0, 0)}} (14.70)

Every time, when the queue isn’t empty, we pick a sequence from the head of the
queue. If this sequence ends with a pair contains the target volume g, we find a solution,
we can print this sequence by reversing it; Otherwise, we expand the latest pair by trying
all the possible 6 options, remove any duplicated states, and add them to the tail of the
queue. Denote the queue as Q, the first sequence stored on the head of the queue as S,
the latest pair in S as (p, q), and the rest of pairs as S′. After popping the head element,
the queue becomes Q′. This algorithm can be defined like below:

solve′(Q) =

 ϕ : Q = ϕ
reverse(S) : p = g ∨ q = g

solve′(EnQ′(Q′, {{s′} ∪ S′|s′ ∈ try(S)})) : otherwise
(14.71)

Where function EnQ′ pushes a list of sequence to the queue one by one. Function
try(S) will try all possible 6 options to generate new pairs of water volumes:

try(S) = {s′|s′ ∈

 fillA(p, q), fillB(p, q),
pourA(p, q), pourB(p, q),
emptyA(p, q), emptyB(p, q)

 , s′ /∈ S′} (14.72)

It’s intuitive to define the 6 options. For fill operations, the result is that the volume of
the filled jug is full; for empty operation, the result volume is empty; for pour operation,
we need test if the jug is big enough to hold all the water.

fillA(p, q) = (a, q) fillB(p, q) = (p, b)
emptyA(p, q) = (0, q) emptyB(p, q) = (p, 0)
pourA(p, q) = (max(0, p+ q − b),min(x+ y, b))
pourB(p, q) = (min(x+ y, a),max(0, x+ y − a))

(14.73)

The following example Haskell program implements this method:
solve' a b g = bfs [[(0, 0)]] where

bfs [] = []
bfs (c:cs) | fst (head c) == g | | snd (head c) == g = reverse c

| otherwise = bfs (cs ++ map (:c) (expand c))
expand ((x, y):ps) = filter (`notElem` ps) $ map (λf → f x y)

[fillA, fillB, pourA, pourB, emptyA, emptyB]

328 CHAPTER 14. SEARCHING

fillA _ y = (a, y)
fillB x _ = (x, b)
emptyA _ y = (0, y)
emptyB x _ = (x, 0)
pourA x y = (max 0 (x + y - b), min (x + y) b)
pourB x y = (min (x + y) a, max 0 (x + y - a))

This method always returns the fast solution. It can also be realized in imperative
approach. Instead of storing the complete sequence of operations in every element in the
queue, we can store the unique state in a global history list, and use links to track the
operation sequence, this can save spaces.

(0, 0)

(3, 0)

fill A

(0, 5)

flll B

(3, 5)

fill B

(0, 0)

empty A

(0, 3)

pour A

(3, 5)

fill A

(0, 0)

empty B

(3, 2)

pour B

...

(0, 0)

(3, 0)

(0, 5)

(3, 5)

(0, 3)

(3, 2)

...

Figure 14.41: All attempted states are stored in a global list.

The idea is illustrated in figure 14.41. The initial state is (0, 0). Only ‘fill A’ and ‘fill
B’ are possible. They are tried and added to the record list; Next we can try and record
‘fill B’ on top of (3, 0), which yields new state (3, 5). However, when try ‘empty A’ from
state (3, 0), we would return to the start state (0, 0). As this previous state has been
recorded, it is ignored. All the repeated states are in gray color in this figure.

With such settings, we needn’t remember the operation sequence in each element in
the queue explicitly. We can add a ‘parent’ link to each node in figure 14.41, and use it to
back-traverse to the starting point from any state. The following example ANSI C code
shows such a definition.

struct Step {
int p, q;
struct Step∗ parent;

};

struct Step∗ make_step(int p, int q, struct Step∗ parent) {
struct Step∗ s = (struct Step∗) malloc(sizeof(struct Step));
s→p = p;
s→q = q;
s→parent = parent;
return s;

}

Where p, q are volumes of water in the 2 jugs. For any state s, define functions p(s)

14.3. SOLUTION SEARCHING 329

and q(s) return these 2 values, the imperative algorithm can be realized based on this
idea as below.

1: function Solve(a, b, g)
2: Q← ϕ
3: Push-and-record(Q, (0, 0))
4: while Q 6= ϕ do
5: s← Pop(Q)
6: if p(s) = g ∨ q(s) = g then
7: return s
8: else
9: C ← Expand(s)

10: for ∀c ∈ C do
11: if c 6= s ∧ ¬ Visited(c) then
12: Push-and-record(Q, c)
13: return NIL

Where Push-and-record does not only push an element to the queue, but also
record this element as visited, so that we can check if an element has been visited before
in the future. This can be implemented with a list. All push operations append the new
elements to the tail. For pop operation, instead of removing the element pointed by head,
the head pointer only advances to the next one. This list contains historic data which
has to be reset explicitly. The following ANSI C code illustrates this idea.
struct Step ∗steps[1000], ∗∗head, ∗∗tail = steps;

void push(struct Step∗ s) { ∗tail++ = s; }

struct Step∗ pop() { return ∗head++; }

int empty() { return head == tail; }

void reset() {
struct Step ∗∗p;
for (p = steps; p ̸= tail; ++p)

free(∗p);
head = tail = steps;

}

In order to test a state has been visited, we can traverse the list to compare p and q.
int eq(struct Step∗ a, struct Step∗ b) {

return a→p == b→p && a→q == b→q;
}

int visited(struct Step∗ s) {
struct Step ∗∗p;
for (p = steps; p ̸= tail; ++p)

if (eq(∗p, s)) return 1;
return 0;

}

The main program can be implemented as below:
struct Step∗ solve(int a, int b, int g) {

int i;
struct Step ∗cur, ∗cs[6];
reset();
push(make_step(0, 0, NULL));
while (!empty()) {

cur = pop();
if (cur→p == g | | cur→q == g)

330 CHAPTER 14. SEARCHING

return cur;
else {

expand(cur, a, b, cs);
for (i = 0; i < 6; ++i)

if(!eq(cur, cs[i]) && !visited(cs[i]))
push(cs[i]);

}
}
return NULL;

}

Where function expand tries all the 6 possible options:
void expand(struct Step∗ s, int a, int b, struct Step∗∗ cs) {

int p = s→p, q = s→q;
cs[0] = make_step(a, q, s); /∗fill A∗/
cs[1] = make_step(p, b, s); /∗fill B∗/
cs[2] = make_step(0, q, s); /∗empty A∗/
cs[3] = make_step(p, 0, s); /∗empty B∗/
cs[4] = make_step(max(0, p + q - b), min(p + q, b), s); /∗pour A∗/
cs[5] = make_step(min(p + q, a), max(0, p + q - a), s); /∗pour B∗/

}

And the result steps is back tracked in reversed order, it can be output with a recursive
function:
void print(struct Step∗ s) {

if (s) {
print(s→parent);
printf("%d, %dλn", s→p, s→q);

}
}

Kloski

Kloski is a block sliding puzzle. It appears in many countries. There are different sizes
and layouts. Figure 14.42 illustrates a traditional Kloski game in China.

(a) Initial layout of
blocks

(b) Block layout after
several movements

Figure 14.42: ‘Huarong Dao’, the traditional Kloski game in China.

In this puzzle, there are 10 blocks, each is labeled with text or icon. The smallest
block has size of 1 unit square, the biggest one is 2× 2 units size. Note there is a slot of
2 units wide at the middle-bottom of the board. The biggest block represents a king in
ancient time, while the others are enemies. The goal is to move the biggest block to the
slot, so that the king can escape. This game is named as ‘Huarong Dao’, or ‘Huarong

14.3. SOLUTION SEARCHING 331

Escape’ in China. Figure 14.43 shows the similar Kloski puzzle in Japan. The biggest
block means daughter, while the others are her family members. This game is named as
‘Daughter in the box’ in Japan (Japanese name: hakoiri musume).

Figure 14.43: ‘Daughter in the box’, the Kloski game in Japan.

In this section, we want to find a solution, which can slide blocks from the initial state
to the final state with the minimum movements.

The intuitive idea to model this puzzle is to use a 5×4 matrix representing the board.
All pieces are labeled with a number. The following matrix M , for example, shows the
initial state of the puzzle.

M =


1 10 10 2
1 10 10 2
3 4 4 5
3 7 8 5
6 0 0 9


In this matrix, the cells of value i mean the i-th piece covers this cell. The special

value 0 represents a free cell. By using sequence 1, 2, ... to identify pieces, a special
layout can be further simplified as an array L. Each element is a list of cells covered by
the piece indexed with this element. For example, L[4] = {(3, 2), (3, 3)} means the 4-th
piece covers cells at position (3, 2) and (3, 3), where (i, j) means the cell at row i and
column j.

The starting layout can be written as the following Array.

{{(1, 1), (2, 1)}, {(1, 4), (2, 4)}, {(3, 1), (4, 1)}, {(3, 2), (3, 3)}, {(3, 4), (4, 4)},
{(5, 1)}, {(4, 2)}, {(4, 3)}, {(5, 4)}, {(1, 2), (1, 3), (2, 2), (2, 3)}}

When moving the Kloski blocks, we need examine all the 10 blocks, checking each
block if it can move up, down, left and right. it seems that this approach would lead to
a very huge amount of possibilities, because each step might have 10 × 4 options, there
will be about 40n cases in the n-th step.

Actually, there won’t be so much options. For example, in the first step, there are
only 4 valid moving: the 6-th piece moves right; the 7-th and 8-th move down; and the
9-th moves left.

All others are invalid moving. Figure 14.44 shows how to test if the moving is possible.
The left example illustrates sliding block labeled with 1 down. There are two cells

covered by this block. The upper 1 moves to the cell previously occupied by this same
block, which is also labeled with 1; The lower 1 moves to a free cell, which is labeled with
0;

The right example, on the other hand, illustrates invalid sliding. In this case, the
upper cells could move to the cell occupied by the same block. However, the lower cell
labeled with 1 can’t move to the cell occupied by other block, which is labeled with 2.

332 CHAPTER 14. SEARCHING

Figure 14.44: Left: both the upper and the lower 1 are OK; Right: the upper 1 is OK,
the lower 1 conflicts with 2.

In order to test the valid moving, we need examine all the cells a block will cover. If
they are labeled with 0 or a number as same as this block, the moving is valid. Otherwise
it conflicts with some other block. For a layout L, the corresponding matrix is M , suppose
we want to move the k-th block with (∆x,∆y), where |∆x| ≤ 1, |∆y| ≤ 1. The following
equation tells if the moving is valid:

valid(L, k,∆x,∆y) :
∀(i, j) ∈ L[k]⇒ i′ = i+∆y, j′ = j +∆x,

(1, 1) ≤ (i′, j′) ≤ (5, 4),Mi′j′ ∈ {k, 0}
(14.74)

Another important point to solve Kloski puzzle, is about how to avoid repeated at-
tempts. The obvious case is that after a series of sliding, we end up a matrix which
have been transformed from. However, it is not enough to only avoid the same matrix.
Consider the following two metrics. Although M1 6= M2, we need drop options to M2,
because they are essentially the same.

M1 =


1 10 10 2
1 10 10 2
3 4 4 5
3 7 8 5
6 0 0 9

 M2 =


2 10 10 1
2 10 10 1
3 4 4 5
3 7 6 5
8 0 0 9


This fact tells us, that we should compare the layout, but not merely matrix to avoid

repetition. Denote the corresponding layouts as L1 and L2 respectively, it’s easy to verify
that ||L1|| = ||L2||, where ||L|| is the normalized layout, which is defined as below:

||L|| = sort({sort(li)|∀li ∈ L}) (14.75)

In other words, a normalized layout is ordered for all its elements, and every element
is also ordered. The ordering can be defined as that (a, b) ≤ (c, d) ⇔ an + b ≤ cn + d,
where n is the width of the matrix.

Observing that the Kloski board is symmetric, thus a layout can be mirrored from
another one. Mirrored layout is also a kind of repeating, which should be avoided. The
following M1 and M2 show such an example.

14.3. SOLUTION SEARCHING 333

M1 =


10 10 1 2
10 10 1 2
3 5 4 4
3 5 8 9
6 7 0 0

 M2 =


3 1 10 10
3 1 10 10
4 4 2 5
7 6 2 5
0 0 9 8


Note that, the normalized layouts are symmetric to each other. It’s easy to get a

mirrored layout like this:

mirror(L) = {{(i, n− j + 1)|∀(i, j) ∈ l}|∀l ∈ L} (14.76)

We find that the matrix representation is useful in validating the moving, while the
layout is handy to model the moving and avoid repeated attempt. We can use the similar
approach to solve the Kloski puzzle. We need a queue, every element in the queue contains
two parts: a series of moving and the latest layout led by the moving. Each moving is in
form of (k, (∆y,∆x)), which means moving the k-th block, with ∆y in row, and ∆x in
column in the board.

The queue contains the starting layout when initialized. Whenever this queue isn’t
empty, we pick the first one from the head, checking if the biggest block is on target,
that L[10] = {(4, 2), (4, 3), (5, 2), (5, 3)}. If yes, then we are done; otherwise, we try to
move every block with 4 options: left, right, up, and down, and store all the possible,
unique new layout to the tail of the queue. During this searching, we need record all the
normalized layouts we’ve ever found to avoid any duplication.

Denote the queue as Q, the historic layouts as H, the first layout on the head of the
queue as L, its corresponding matrix as M . and the moving sequence to this layout as S.
The algorithm can be defined as the following.

solve(Q,H) =

 ϕ : Q = ϕ
reverse(S) : L[10] = {(4, 2), (4, 3), (5, 2), (5, 3)}

solve(Q′,H ′) : otherwise
(14.77)

The first clause says that if the queue is empty, we’ve tried all the possibilities and
can’t find a solution; The second clause finds a solution, it returns the moving sequence in
reversed order; These are two edge cases. Otherwise, the algorithm expands the current
layout, puts all the valid new layouts to the tail of the queue to yield Q′, and updates
the normalized layouts to H ′. Then it performs recursive searching.

In order to expand a layout to valid unique new layouts, we can define a function as
below:

expand(L,H) = {(k, (∆y,∆x)| ∀k ∈ {1, 2, ..., 10},
∀(∆y,∆x) ∈ {(0,−1), (0, 1), (−1, 0), (1, 0)},
valid(L, k,∆x,∆y), unique(L′,H)}

(14.78)

Where L′ is the the new layout by moving the k-th block with (∆y,∆x) from L, M ′

is the corresponding matrix, and M ′′ is the matrix to the mirrored layout of L′. Function
unique is defined like this:

unique(L′,H) = M ′ /∈ H ∧M ′′ /∈ H (14.79)

We’ll next show some example Haskell Kloski programs. As array isn’t mutable in
the purely functional settings, tree based map is used to represent layout 11. Some type
synonyms are defined as below:

11Alternatively, finger tree based sequence shown in previous chapter can be used

334 CHAPTER 14. SEARCHING

import qualified Data.Map as M
import Data.Ix
import Data.List (sort)

type Point = (Integer, Integer)
type Layout = M.Map Integer [Point]
type Move = (Integer, Point)

data Ops = Op Layout [Move]

The main program is almost as same as the solve(Q,H) function defined above.
solve :: [Ops] → [[[Point]]]→ [Move]
solve [] _ = [] −− no solution
solve (Op x seq : cs) visit

| M.lookup 10 x == Just [(4, 2), (4, 3), (5, 2), (5, 3)] = reverse seq
| otherwise = solve q visit'

where
ops = expand x visit
visit' = map (layout ◦ move x) ops ++ visit
q = cs ++ [Op (move x op) (op:seq) | op ← ops]

Where function layout gives the normalized form by sorting. move returns the
updated map by sliding the i-th block with (∆y,∆x).
layout = sort ◦ map sort ◦ M.elems

move x (i, d) = M.update (Just ◦ map (flip shift d)) i x

shift (y, x) (dy, dx) = (y + dy, x + dx)

Function expand gives all the possible new options. It can be directly translated from
expand(L,H).
expand :: Layout → [[[Point]]] → [Move]
expand x visit = [(i, d) | i ←[1..10],

d ← [(0, -1), (0, 1), (-1, 0), (1, 0)],
valid i d, unique i d] where

valid i d = all (λp → let p' = shift p d in
inRange (bounds board) p' &&
(M.keys $ M.filter (elem p') x) `elem` [[i], []])

(maybe [] id $ M.lookup i x)
unique i d = let mv = move x (i, d) in

all (`notElem` visit) (map layout [mv, mirror mv])

Note that we also filter out the mirrored layouts. The mirror function is given as
the following.
mirror = M.map (map (λ (y, x) → (y, 5 - x)))

This program takes several minutes to produce the best solution, which takes 116
steps. The final 3 steps are shown as below:

...

['5', '3', '2', '1']
['5', '3', '2', '1']
['7', '9', '4', '4']
['A', 'A', '6', '0']
['A', 'A', '0', '8']

['5', '3', '2', '1']

14.3. SOLUTION SEARCHING 335

['5', '3', '2', '1']
['7', '9', '4', '4']
['A', 'A', '0', '6']
['A', 'A', '0', '8']

['5', '3', '2', '1']
['5', '3', '2', '1']
['7', '9', '4', '4']
['0', 'A', 'A', '6']
['0', 'A', 'A', '8']

total 116 steps

The Kloski solution can also be realized imperatively. Note that the solve(Q,H) is
tail-recursive, it’s easy to transform the algorithm with looping. We can also link one
layout to its parent, so that the moving sequence can be recorded globally. This can save
some spaces, as the queue needn’t store the moving information in every element. When
output the result, we only need back-tracking to the starting layout from the last one.

Suppose function Link(L′, L) links a new layout L′ to its parent layout L. The
following algorithm takes a starting layout, and searches for best moving sequence.

1: function Solve(L0)
2: H ← ||L0||
3: Q← ϕ
4: Push(Q, Link(L0, NIL))
5: while Q 6= ϕ do
6: L← Pop(Q)
7: if L[10] = {(4, 2), (4, 3), (5, 2), (5, 3)} then
8: return L
9: else

10: for each L′ ∈ Expand(L,H) do
11: Push(Q, Link(L′, L))
12: Append(H, ||L′||)
13: return NIL ▷ No solution

The following example Python program implements this algorithm:
class Node:

def __init__(self, l, p = None):
self.layout = l
self.parent = p

def solve(start):
visit = set([normalize(start)])
queue = deque([Node(start)])
while queue:

cur = queue.popleft()
layout = cur.layout
if layout[-1] == [(4, 2), (4, 3), (5, 2), (5, 3)]:

return cur
else:

for brd in expand(layout, visit):
queue.append(Node(brd, cur))
visit.add(normalize(brd))

return None #no solution

Where normalize and expand are implemented as below:
def normalize(layout):

336 CHAPTER 14. SEARCHING

return tuple(sorted([tuple(sorted(r)) for r in layout]))

def expand(layout, visit):
def bound(y, x):

return 1 ≤ y and y ≤ 5 and 1 ≤ x and x ≤ 4
def valid(m, i, y, x):

return m[y - 1][x - 1] in [0, i]
def unique(brd):

(m, n) = (normalize(brd), normalize(mirror(brd)))
return m not in visit and n not in visit

s = []
d = [(0, -1), (0, 1), (-1, 0), (1, 0)]
m = matrix(layout)
for i in range(1, 11):

for (dy, dx) in d:
if all(bound(y + dy, x + dx) and valid(m, i, y + dy, x + dx)

for (y, x) in layout[i - 1]):
brd = move(layout, (i, (dy, dx)))
if unique(brd):

s.append(brd)
return s

Like most programming languages, arrays are indexed from 0 but not 1 in Python.
This has to be handled properly. The rest functions including mirror, matrix, and
move are implemented as the following.

def mirror(layout):
return [[(y, 5 - x) for (y, x) in r] for r in layout]

def matrix(layout):
m = [[0]∗4 for _ in range(5)]
for (i, ps) in zip(range(1, 11), layout):

for (y, x) in ps:
m[y - 1][x - 1] = i

return m

def move(layout, delta):
(i, (dy, dx)) = delta
m = dup(layout)
m[i - 1] = [(y + dy, x + dx) for (y, x) in m[i - 1]]
return m

def dup(layout):
return [r[:] for r in layout]

It’s possible to modify this Kloski algorithm, so that it does not only stop at the first
solution, but also search all the solutions. In such case, the computation time is bound to
the size of a space V , where V holds all the layouts can be transformed from the starting
layout. If all these layouts are stored globally, with a parent field point to the predecessor,
the space requirement of this algorithm is also bound to O(V).

Summary of BFS

The above three puzzles, the wolf-goat-cabbage puzzle, the water jugs puzzle, and the
Kloski puzzle show some common solution structure. Similar to the DFS problems, they
all have the starting state and the end state. The wolf-goat-cabbage puzzle starts with
the wolf, the goat, the cabbage and the farmer all in one side, while the other side is
empty. It ends up in a state that they all moved to the other side. The water jugs puzzle
starts with two empty jugs, and ends with either jug contains a certain volume of water.
The Kloski puzzle starts from a layout and ends to another layout that the biggest block
begging slided to a given position.

14.3. SOLUTION SEARCHING 337

All problems specify a set of rules which can transfer from one state to another. Dif-
ferent form the DFS approach, we try all the possible options ‘in parallel’. We won’t
search further until all the other alternatives in the same step have been examined. This
method ensures that the solution with the minimum steps can be found before those with
more steps. Review and compare the two figures we’ve drawn before shows the differ-
ence between these two approaches. For the later one, because we expand the searching
horizontally, it is called as Breadth-first search (BFS for short).

(a) Depth First Search (b) Breadth First Search

Figure 14.45: Search orders for DFS and BFS.

As we can’t perform search really in parallel, BFS realization typically utilizes a queue
to store the search options. The candidate with less steps pops from the head, while the
new candidate with more steps is pushed to the tail of the queue. Note that the queue
should meet constant time enqueue and dequeue requirement, which we’ve explained in
previous chapter of queue. Strictly speaking, the example functional programs shown
above don’t meet this criteria. They use list to mimic queue, which can only provide
linear time pushing. Readers can replace them with the functional queue we explained
before.

BFS provides a simple method to search for optimal solutions in terms of the number
of steps. However, it can’t search for more general optimal solution. Consider another
directed graph as shown in figure 14.46, the length of each section varies. We can’t use
BFS to find the shortest route from one city to another.

a

b

15

e

4

c

7 f

11 10

d

5

6

g

8h

9

12

Figure 14.46: A weighted directed graph.

Note that the shortest route from city a to city c isn’t the one with the fewest steps

338 CHAPTER 14. SEARCHING

a→ b→ c. The total length of this route is 22; But the route with more steps a→ e→
f → c is the best. The length of it is 20. The coming sections introduce other algorithms
to search for optimal solution.

14.3.2 Search the optimal solution
Searching for the optimal solution is quite important in many aspects. People need the
‘best’ solution to save time, space, cost, or energy. However, it’s not easy to find the
best solution with limited resources. There have been many optimal problems can only
be solved by brute-force. Nevertheless, we’ve found that, for some of them, There exists
special simplified ways to search the optimal solution.

Grady algorithm

Huffman coding

Huffman coding is a solution to encode information with the shortest length of code.
Consider the popular ASCII code, which uses 7 bits to encode characters, digits, and
symbols. ASCII code can represent 27 = 128 different symbols. With 0, 1 bits, we need
at least log2 n bits to distinguish n different symbols. For text with only case insensitive
English letters, we can define a code table like below.

char code char code
A 00000 N 01101
B 00001 O 01110
C 00010 P 01111
D 00011 Q 10000
E 00100 R 10001
F 00101 S 10010
G 00110 T 10011
H 00111 U 10100
I 01000 V 10101
J 01001 W 10110
K 01010 X 10111
L 01011 Y 11000
M 01100 Z 11001

With this code table, text ‘INTERNATIONAL’ is encoded to 65 bits.

00010101101100100100100011011000000110010001001110101100000011010

Observe the above code table, which actually maps the letter ‘A’ to ’Z’ from 0 to 25.
There are 5 bits to represent every code. Code zero is forced as ’00000’ but not ’0’ for
example. Such kind of coding method, is called fixed-length coding.

Another coding method is variable-length coding. That we can use just one bit ‘0’
for ‘A’, two bits ‘10’ for C, and 5 bits ‘11001’ for ‘Z’. Although this approach can shorten
the total length of the code for ‘INTERNATIONAL’ from 65 bits dramatically, it causes
problem when decoding. When processing a sequence of bits like ‘1101’, we don’t know
if it means ‘1’ followed by ‘101’, which stands for ‘BF’; or ‘110’ followed by ‘1’, which is
‘GB’, or ‘1101’ which is ‘N’.

The famous Morse code is variable-length coding system. That the most used letter
‘E’ is encoded as a dot, while ‘Z’ is encoded as two dashes and two dots. Morse code uses
a special pause separator to indicate the termination of a code, so that the above problem
won’t happen. There is another solution to avoid ambiguity. Consider the following code
table.

14.3. SOLUTION SEARCHING 339

char code char code
A 110 E 1110
I 101 L 1111
N 01 O 000
R 001 T 100

Text ‘INTERNATIONAL’ is encoded to 38 bits only:

10101100111000101110100101000011101111

If decode the bits against the above code table, we won’t meet any ambiguity symbols.
This is because there is no code for any symbol is the prefix of another one. Such code
is called prefix-code. (You may wonder why it isn’t called as non-prefix code.) By using
prefix-code, we needn’t separators at all. So that the length of the code can be shorten.

This is a very interesting problem. Can we find a prefix-code table, which produce the
shortest code for a given text? The very same problem was given to David A. Huffman
in 1951, who was still a student in MIT [91]. His professor Robert M. Fano told the class
that those who could solve this problem needn’t take the final exam. Huffman almost
gave up and started preparing the final exam when he found the most efficient answer.

The idea is to create the coding table according to the frequency of the symbol ap-
peared in the text. The more used symbol is assigned with the shorter code.

It’s not hard to process some text, and calculate the occurrence for each symbol. So
that we have a symbol set, each one is augmented with a weight. The weight can be
the number which indicates the frequency this symbol occurs. We can use the number of
occurrence, or the probabilities for example.

Huffman discovered that a binary tree can be used to generate prefix-code. All symbols
are stored in the leaf nodes. The codes are generated by traversing the tree from root.
When go left, we add a zero; and when go right we add a one.

Figure 14.47 illustrates a binary tree. Taking symbol ’N’ for example, starting from
the root, we first go left, then right and arrive at ’N’. Thus the code for ’N’ is ’01’; While
for symbol ’A’, we can go right, right, then left. So ’A’ is encode to ’110’. Note that this
approach ensures none code is the prefix of the other.

13

5 8

2 N, 3

O, 1 R, 1

4 4

T, 2 I, 2 A, 2 2

E, 1 L, 1

Figure 14.47: An encoding tree.

Note that this tree can also be used directly for decoding. When scan a series of bits,
if the bit is zero, we go left; if the bit is one, we go right. When arrive at a leaf, we decode
a symbol from that leaf. And we restart from the root of the tree for the coming bits.

340 CHAPTER 14. SEARCHING

Given a list of symbols with weights, we need build such a binary tree, so that the
symbol with greater weight has shorter path from the root. Huffman developed a bottom-
up solution. When start, all symbols are put into a leaf node. Every time, we pick two
nodes, which has the smallest weight, and merge them into a branch node. The weight of
this branch is the sum of its two children. We repeatedly pick the two smallest weighted
nodes and merge till there is only one tree left. Figure 14.48 illustrates such a building
process.

2

E, 1 L, 1

(a) 1.

2

O, 1 R, 1

(b) 2.

4

T, 2 I, 2

(c) 3.
4

A, 2 2

E, 1 L, 1

(d) 4.

5

2 N, 3

O, 1 R, 1

(e) 5.
8

4 4

T, 2 I, 2 A, 2 2

E, 1 L, 1

(f) 6.
13

5 8

2 N, 3

O, 1 R, 1

4 4

T, 2 I, 2 A, 2 2

E, 1 L, 1

(g) 7.

Figure 14.48: Steps to build a Huffman tree.

We can reuse the binary tree definition to formalize Huffman coding. We augment
the weight information, and the symbols are only stored in leaf nodes. The following C
like definition, shows an example.
struct Node {

int w;
char c;
struct Node ∗left, ∗right;

};

Some limitation can be added to the definition, as empty tree isn’t allowed. A Huffman
tree is either a leaf, which contains a symbol and its weight; or a branch, which only holds

14.3. SOLUTION SEARCHING 341

total weight of all leaves. The following Haskell code, for instance, explicitly specifies these
two cases.
data HTr w a = Leaf w a | Branch w (HTr w a) (HTr w a)

When merge two Huffman trees T1 and T2 to a bigger one, These two trees are set as
its children. We can select either one as the left, and the other as the right. the weight
of the result tree T is the sum of its two children. so that w = w1+w2. Define T1 < T2 if
w1 < w2, One possible Huffman tree building algorithm can be realized as the following.

build(A) =

{
T1 : A = {T1}

build({merge(Ta, Tb)} ∪A′) : otherwise
(14.80)

A is a list of trees. It is initialized as leaves for all symbols and their weights. If there
is only one tree in this list, we are done, the tree is the final Huffman tree. Otherwise,
The two smallest tree Ta and Tb are extracted, and the rest trees are hold in list A′. Ta

and Tb are merged to one bigger tree, and put back to the tree list for further recursive
building.

(Ta, Tb, A
′) = extract(A) (14.81)

We can scan the tree list to extract the 2 nodes with the smallest weight. Below
equation shows that when the scan begins, the first 2 elements are compared and initialized
as the two minimum ones. An empty accumulator is passed as the last argument.

extract(A) = extract′(min(T1, T2),max(T1, T2), {T3, T4, ...}, ϕ) (14.82)

For every tree, if its weight is less than the smallest two we’ve ever found, we update
the result to contain this tree. For any given tree list A, denote the first tree in it as T1,
and the rest trees except T1 as A′. The scan process can be defined as the following.

extract′(Ta, Tb, A,B) =

 (Ta, Tb, B) : A = ϕ
extract′(T ′

a, T
′
b, A

′, {Tb} ∪A) : T1 < Tb

extract′(Ta, Tb, A
′, {T1} ∪A) : otherwise

(14.83)

Where T ′
a = min(T1, Ta), T ′

b = max(T1, Ta) are the updated two trees with the
smallest weights.

The following Haskell example program implements this Huffman tree building algo-
rithm.
build [x] = x
build xs = build ((merge x y) : xs') where

(x, y, xs') = extract xs

extract (x:y:xs) = min2 (min x y) (max x y) xs [] where
min2 x y [] xs = (x, y, xs)
min2 x y (z:zs) xs | z < y = min2 (min z x) (max z x) zs (y:xs)

| otherwise = min2 x y zs (z:xs)

This building solution can also be realized imperatively. Given an array of Huffman
nodes, we can use the last two cells to hold the nodes with the smallest weights. Then we
scan the rest of the array from right to left. Whenever there is a node with the smaller
weight, this node will be exchanged with the bigger one of the last two. After all nodes
have been examined, we merge the trees in the last two cells, and drop the last cell. This
shrinks the array by one. We repeat this process till there is only one tree left.

1: function Huffman(A)
2: while |A| > 1 do

342 CHAPTER 14. SEARCHING

3: n← |A|
4: for i← n− 2 down to 1 do
5: if A[i] < Max(A[n], A[n− 1]) then
6: Exchange A[i] ↔ Max(A[n], A[n− 1])
7: A[n− 1]← Merge(A[n], A[n− 1])
8: Drop(A[n])
9: return A[1]

The following C++ example program implements this algorithm. Note that this
algorithm needn’t the last two elements being ordered.
typedef vector<Node∗> Nodes;

bool lessp(Node∗ a, Node∗ b) { return a→w < b→w; }

Node∗ max(Node∗ a, Node∗ b) { return lessp(a, b) ? b : a; }

void swap(Nodes& ts, int i, int j, int k) {
swap(ts[i], ts[ts[j] < ts[k] ? k : j]);

}

Node∗ huffman(Nodes ts) {
int n;
while((n = ts.size()) > 1) {

for (int i = n - 3; i ≥ 0; --i)
if (lessp(ts[i], max(ts[n-1], ts[n-2])))

swap(ts, i, n-1, n-2);
ts[n-2] = merge(ts[n-1], ts[n-2]);
ts.pop_back();

}
return ts.front();

}

The algorithm merges all the leaves, and it need scan the list in each iteration. Thus
the performance is quadratic. This algorithm can be improved. Observe that each time,
only the two trees with the smallest weights are merged. This reminds us the heap data
structure. Heap ensures to access the smallest element fast. We can put all the leaves
in a heap. For binary heap, this is typically a linear operation. Then we extract the
minimum element twice, merge them, then put the bigger tree back to the heap. This is
O(lgn) operation if binary heap is used. So the total performance is O(n lgn), which is
better than the above algorithm. The next algorithm extracts the node from the heap,
and starts Huffman tree building.

build(H) = reduce(top(H), pop(H)) (14.84)

This algorithm stops when the heap is empty; Otherwise, it extracts another nodes
from the heap for merging.

reduce(T,H) =

{
T : H = ϕ

build(insert(merge(T, top(H)), pop(H))) : otherwise
(14.85)

Function build and reduce are mutually recursive. The following Haskell example
program implements this algorithm by using heap defined in previous chapter.
huffman' :: (Num a, Ord a) ⇒ [(b, a)] → HTr a b
huffman' = build' ◦ Heap.fromList ◦ map (λ(c, w) → Leaf w c) where

build' h = reduce (Heap.findMin h) (Heap.deleteMin h)
reduce x Heap.E = x
reduce x h = build' $ Heap.insert (Heap.deleteMin h) (merge x (Heap.findMin h))

14.3. SOLUTION SEARCHING 343

The heap solution can also be realized imperatively. The leaves are firstly transformed
to a heap, so that the one with the minimum weight is put on the top. As far as there are
more than 1 elements in the heap, we extract the two smallest, merge them to a bigger
one, and put back to the heap. The final tree left in the heap is the result Huffman tree.

1: function Huffman’(A)
2: Build-Heap(A)
3: while |A| > 1 do
4: Ta ← Heap-Pop(A)
5: Tb ← Heap-Pop(A)
6: Heap-Push(A, Merge(Ta, Tb))
7: return Heap-Pop(A)

The following example C++ code implements this heap solution. The heap used here
is provided in the standard library. Because the max-heap, but not min-heap would be
made by default, a greater predication is explicitly passed as argument.

bool greaterp(Node∗ a, Node∗ b) { return b→w < a→w; }

Node∗ pop(Nodes& h) {
Node∗ m = h.front();
pop_heap(h.begin(), h.end(), greaterp);
h.pop_back();
return m;

}

void push(Node∗ t, Nodes& h) {
h.push_back(t);
push_heap(h.begin(), h.end(), greaterp);

}

Node∗ huffman1(Nodes ts) {
make_heap(ts.begin(), ts.end(), greaterp);
while (ts.size() > 1) {

Node∗ t1 = pop(ts);
Node∗ t2 = pop(ts);
push(merge(t1, t2), ts);

}
return ts.front();

}

When the symbol-weight list has been already sorted, there exists a linear time method
to build the Huffman tree. Observe that during the Huffman tree building, it produces a
series of merged trees with weight in ascending order. We can use a queue to manage the
merged trees. Every time, we pick the two trees with the smallest weight from both the
queue and the list, merge them and push the result to the queue. All the trees in the list
will be processed, and there will be only one tree left in the queue. This tree is the result
Huffman tree. This process starts by passing an empty queue as below.

build′(A) = reduce′(extract′′(ϕ,A)) (14.86)

Suppose A is in ascending order by weight, At any time, the tree with the smallest
weight is either the header of the queue, or the first element of the list. Denote the header
of the queue is Ta, after pops it, the queue is Q′; The first element in A is Tb, the rest
elements are hold in A′. Function extract′′ can be defined like the following.

extract′′(Q,A) =

 (Tb, (Q,A′)) : Q = ϕ
(Ta, (Q

′, A)) : A = ϕ ∨ Ta < Tb

(Tb, (Q,A′)) : otherwise
(14.87)

344 CHAPTER 14. SEARCHING

Actually, the pair of queue and tree list can be viewed as a special heap. The tree
with the minimum weight is continuously extracted and merged.

reduce′(T, (Q,A)) ={
T : Q = ϕ ∧A = ϕ

reduce′(extract′′(push(Q′′,merge(T, T ′)), A′′)) : otherwise
(14.88)

Where (T ′, (Q′′, A′′)) = extract′′(Q,A), which means extracting another tree. The
following Haskell example program shows the implementation of this method. Note that
this program explicitly sort the leaves, which isn’t necessary if the leaves are ordered.
Again, the list, but not a real queue is used here for illustration purpose. List isn’t good
at pushing new element, please refer to the chapter of queue for details about it.
huffman'' :: (Num a, Ord a) ⇒ [(b, a)] → HTr a b
huffman'' = reduce ◦ wrap ◦ sort ◦ map (λ(c, w) → Leaf w c) where

wrap xs = delMin ([], xs)
reduce (x, ([], [])) = x
reduce (x, h) = let (y, (q, xs)) = delMin h in

reduce $ delMin (q ++ [merge x y], xs)
delMin ([], (x:xs)) = (x, ([], xs))
delMin ((q:qs), []) = (q, (qs, []))
delMin ((q:qs), (x:xs)) | q < x = (q, (qs, (x:xs)))

| otherwise = (x, ((q:qs), xs))

This algorithm can also be realized imperatively.
1: function Huffman”(A) ▷ A is ordered by weight
2: Q← ϕ
3: T ← Extract(Q,A)
4: while Q 6= ϕ ∨A 6= ϕ do
5: Push(Q, Merge(T , Extract(Q,A)))
6: T ← Extract(Q,A)
7: return T

Where function Extract(Q,A) extracts the tree with the smallest weight from the
queue and the array of trees. It mutates the queue and array if necessary. Denote the
head of the queue is Ta, and the first element of the array as Tb.

1: function Extract(Q,A)
2: if Q 6= ϕ ∧ (A = ϕ ∨ Ta < Tb) then
3: return Pop(Q)
4: else
5: return Detach(A)

Where procedure Detach(A), removes the first element from A, and returns this
element as result. In most imperative settings, as detaching the first element is slow linear
operation for array, we can store the trees in descending order by weight, and remove the
last element. This is a fast constant time operation. The below C++ example code shows
this idea.
Node∗ extract(queue<Node∗>& q, Nodes& ts) {

Node∗ t;
if (!q.empty() && (ts.empty() | | lessp(q.front(), ts.back()))) {

t = q.front();
q.pop();

} else {
t = ts.back();
ts.pop_back();

}
return t;

}

14.3. SOLUTION SEARCHING 345

Node∗ huffman2(Nodes ts) {
queue<Node∗> q;
sort(ts.begin(), ts.end(), greaterp);
Node∗ t = extract(q, ts);
while (!q.empty() | | !ts.empty()) {

q.push(merge(t, extract(q, ts)));
t = extract(q, ts);

}
return t;

}

Note that the sorting isn’t necessary if the trees have already been ordered. It can be
a linear time reversing in case the trees are in ascending order by weight.

There are three different Huffman man tree building methods explained. Although
they follow the same approach developed by Huffman, the result trees varies. Figure 14.49
shows the three different Huffman trees built with these methods.

13

5 8

A, 2 N, 3 4 4

2 T, 2

L, 1 E, 1

2 I, 2

O, 1 R, 1

(a) Created by scan method.

13

5 8

2 N, 3

O, 1 R, 1

4 4

T, 2 I, 2 A, 2 2

E, 1 L, 1

(b) Created by heap method.
13

5 8

2 N, 3

O, 1 R, 1

4 4

A, 2 I, 2 T, 2 2

E, 1 L, 1

(c) Linear time building for sorted list.

Figure 14.49: Variation of Huffman trees for the same symbol list.

Although these three trees are not identical. They are all able to generate the most
efficient code. The formal proof is skipped here. The detailed information can be referred
to [91] and Section 16.3 of [4].

The Huffman tree building is the core idea of Huffman coding. Many things can be
easily achieved with the Huffman tree. For example, the code table can be generated by
traversing the tree. We start from the root with the empty prefix p. For any branches, we
append a zero to the prefix if turn left, and append a one if turn right. When a leaf node
is arrived, the symbol represented by this node and the prefix are put to the code table.
Denote the symbol of a leaf node as c, the children for tree T as Tl and Tr respectively.
The code table association list can be built with code(T, ϕ), which is defined as below.

code(T, p) =

{
{(c, p)} : leaf(T)

code(Tl, p ∪ {0}) ∪ code(Tr, p ∪ {1}) : otherwise
(14.89)

346 CHAPTER 14. SEARCHING

Where function leaf(T) tests if tree T is a leaf or a branch node. The following Haskell
example program generates a map as the code table according to this algorithm.
code tr = Map.fromList $ traverse [] tr where

traverse bits (Leaf _ c) = [(c, bits)]
traverse bits (Branch _ l r) = (traverse (bits ++ [0]) l) ++

(traverse (bits ++ [1]) r)

The imperative code table generating algorithm is left as exercise. The encoding
process can scan the text, and look up the code table to output the bit sequence. The
realization is skipped here.

The decoding process is realized by looking up the Huffman tree according to the bit
sequence. We start from the root, whenever a zero is received, we turn left, otherwise
if a one is received, we turn right. If a leaf node is arrived, the symbol represented by
this leaf is output, and we start another looking up from the root. The decoding process
ends when all the bits are consumed. Denote the bit sequence as B = {b1, b2, ...}, all bits
except the first one are hold in B′, below definition realizes the decoding algorithm.

decode(T,B) =


{c} : B = ϕ ∧ leaf(T)

{c} ∪ decode(root(T), B) : leaf(T)
decode(Tl, B

′) : b1 = 0
decode(Tr, B

′) : otherwise

(14.90)

Where root(T) returns the root of the Huffman tree. The following Haskell example
code implements this algorithm.
decode tr cs = find tr cs where

find (Leaf _ c) [] = [c]
find (Leaf _ c) bs = c : find tr bs
find (Branch _ l r) (b:bs) = find (if b == 0 then l else r) bs

Note that this is an on-line decoding algorithm with linear time performance. It con-
sumes one bit per time. This can be clearly noted from the below imperative realization,
where the index keeps increasing by one.

1: function Decode(T,B)
2: W ← ϕ
3: n← |B|, i← 1
4: while i < n do
5: R← T
6: while ¬ Leaf(R) do
7: if B[i] = 0 then
8: R← Left(R)
9: else

10: R← Right(R)
11: i← i+ 1

12: W ←W∪ Symbol(R)
13: return W

This imperative algorithm can be implemented as the following example C++ pro-
gram.
string decode(Node∗ root, const char∗ bits) {

string w;
while (∗bits) {

Node∗ t = root;
while (!isleaf(t))

t = '0' == ∗bits++ ? t→left : t→right;
w += t→c;

14.3. SOLUTION SEARCHING 347

}
return w;

}

Huffman coding, especially the Huffman tree building shows an interesting strategy.
Each time, there are multiple options for merging. Among the trees in the list, Huffman
method always selects two trees with the smallest weight. This is the best choice at that
merge stage. However, these series of local best options generate a global optimal prefix
code.

It’s not always the case that the local optimal choice also leads to the global optimal
solution. In most cases, it doesn’t. Huffman coding is a special one. We call the strategy
that always choosing the local best option as greedy strategy.

Greedy method works for many problems. However, it’s not easy to tell if the greedy
method can be applied to get the global optimal solution. The generic formal proof is
still an active research area. Section 16.4 in [4] provides a good treatment for Matroid
tool, which covers many problems that greedy algorithm can be applied.

Change-making problem

We often change money when visiting other countries. People tend to use credit card
more often nowadays than before, because it’s quite convenient to buy things without
considering much about changes. If we changed some money in the bank, there are often
some foreign money left by the end of the trip. Some people like to change them to coins
for collection. Can we find a solution, which can change the given amount of money with
the least number of coins?

Let’s use USA coin system for example. There are 5 different coins: 1 cent, 5 cent,
25 cent, 50 cent, and 1 dollar. A dollar is equal to 100 cents. Using the greedy method
introduced above, we can always pick the largest coin which is not greater than the
remaining amount of money to be changed. Denote list C = {1, 5, 25, 50, 100}, which
stands for the value of coins. For any given money X, the change coins can be generated
as below.

change(X,C) =

 ϕ : X = 0

{cm} ∪ change(X − cm, C) :
otherwise,
cm = max({c ∈ C, c ≤ X})

(14.91)
If C is in descending order, cm can be found as the first one not greater than X. If we

want to change 1.42 dollar, This function produces a coin list of {100, 25, 5, 5, 5, 1, 1}. The
output coins list can be easily transformed to contain pairs {(100, 1), (25, 1), (5, 3), (1, 2)}.
That we need one dollar, a quarter, three coins of 5 cent, and 2 coins of 1 cent to make
the change. The following Haskell example program outputs result as such.
solve x = assoc ◦ change x where

change 0 _ = []
change x cs = let c = head $ filter (≤ x) cs in c : change (x - c) cs

assoc = (map (λcs → (head cs, length cs))) ◦ group

As mentioned above, this program assumes the coins are in descending order, for
instance like below.
solve 142 [100, 50, 25, 5, 1]

This algorithm is tail recursive, it can be transformed to a imperative looping.
1: function Change(X,C)
2: R← ϕ

348 CHAPTER 14. SEARCHING

3: while X 6= 0 do
4: cm = max({c ∈ C, c ≤ X})
5: R← {cm} ∪R
6: X ← X − cm
7: return R

The following example Python program implements this imperative version and man-
ages the result with a dictionary.
def change(x, coins):

cs = {}
while x ̸= 0:

m = max([c for c in coins if c ≤ x])
cs[m] = 1 + cs.setdefault(m, 0)
x = x - m

return cs

For a coin system like USA, the greedy approach can find the optimal solution. The
amount of coins is the minimum. Fortunately, our greedy method works in most countries.
But it is not always true. For example, suppose a country have coins of value 1, 3, and
4 units. The best change for value 6, is to use two coins of 3 units, however, the greedy
method gives a result of three coins: one coin of 4, two coins of 1. Which isn’t the optimal
result.

Summary of greedy method

As shown in the change making problem, greedy method doesn’t always give the best
result. In order to find the optimal solution, we need dynamic programming which will
be introduced in the next section.

However, the result is often good enough in practice. Let’s take the word-wrap problem
for example. In modern software editors and browsers, text spans to multiple lines if the
length of the content is too long to be hold. With word-wrap supported, user needn’t
hard line breaking. Although dynamic programming can wrap with the minimum number
of lines, it’s overkill. On the contrary, greedy algorithm can wrap with lines approximate
to the optimal result with quite effective realization as below. Here it wraps text T , not
to exceeds line width W , with space s between each word.

1: L←W
2: for w ∈ T do
3: if |w|+ s > L then
4: Insert line break
5: L←W − |w|
6: else
7: L← L− |w| − s

For each word w in the text, it uses a greedy strategy to put as many words in a line
as possible unless it exceeds the line width. Many word processors use a similar algorithm
to do word-wrapping.

There are many cases, the strict optimal result, but not the approximate one is nec-
essary. Dynamic programming can help to solve such problems.

Dynamic programming

In the change-making problem, we mentioned the greedy method can’t always give the
optimal solution. For any coin system, are there any way to find the best changes?

Suppose we have find the best solution which makes X value of money. The coins
needed are contained in Cm. We can partition these coins into two collections, C1 and

14.3. SOLUTION SEARCHING 349

C2. They make money of X1, and X2 respectively. We’ll prove that C1 is the optimal
solution for X1, and C2 is the optimal solution for X2.

Proof. For X1, Suppose there exists another solution C ′
1, which uses less coins than C1.

Then changing solution C ′
1 ∪C2 uses less coins to make X than Cm. This is conflict with

the fact that Cm is the optimal solution to X. Similarity, we can prove C2 is the optimal
solution to X2.

Note that it is not true in the reverse situation. If we arbitrary select a value Y <
X, divide the original problem to find the optimal solutions for sub problems Y and
X − Y . Combine the two optimal solutions doesn’t necessarily yield optimal solution for
X. Consider this example. There are coins with value 1, 2, and 4. The optimal solution
for making value 6, is to use 2 coins of value 2, and 4; However, if we divide 6 = 3 + 3,
since each 3 can be made with optimal solution 3 = 1+2, the combined solution contains
4 coins (1 + 1 + 2 + 2).

If an optimal problem can be divided into several sub optimal problems, we call it has
optimal substructure. We see that the change-making problem has optimal substructure.
But the dividing has to be done based on the coins, but not with an arbitrary value.

The optimal substructure can be expressed recursively as the following.

change(X) =

{
ϕ : X = 0

least({c ∪ change(X − c)|c ∈ C, c ≤ X}) : otherwise
(14.92)

For any coin system C, the changing result for zero is empty; otherwise, we check
every candidate coin c, which is not greater then value X, and recursively find the best
solution for X−c; We pick the coin collection which contains the least coins as the result.

Below Haskell example program implements this top-down recursive solution.
change _ 0 = []
change cs x = minimumBy (compare `on` length)

[c:change cs (x - c) | c ← cs, c ≤ x]

Although this program outputs correct answer [2, 4] when evaluates change [1,
2, 4] 6, it performs very bad when changing 1.42 dollar with USA coins system. It
failed to find the answer within 15 minutes in a computer with 2.7GHz CPU and 8G
memory.

The reason why it’s slow is because there are a lot of duplicated computing in the top-
down recursive solution. When it computes change(142), it needs to examine change(141), change(137), change(117), change(92),
and change(42). While change(141) next computes to smaller values by deducing with
1, 2, 25, 50 and 100 cents. it will eventually meets value 137, 117, 92, and 42 again. The
search space explodes with power of 5.

This is quite similar to compute Fibonacci numbers in a top-down recursive way.

Fn =

{
1 : n = 1 ∨ n = 2

Fn−1 + Fn−2 : otherwise
(14.93)

When we calculate F8 for example, we recursively calculate F7 and F6. While when
we calculate F7, we need calculate F6 again, and F5, ... As shown in the below expand
forms, the calculation is doubled every time, and the same value is calculate again and
again.

F8 = F7 + F6

= F6 + F5 + F5 + F4

= F5 + F4 + F4 + F3 + F4 + F3 + F3 + F2

= ...

350 CHAPTER 14. SEARCHING

In order to avoid duplicated computation, a table F can be maintained when calcu-
lating the Fibonacci numbers. The first two elements are filled as 1, all others are left
blank. During the top-down recursive calculation, If need Fk, we first look up this table
for the k-th cell, if it isn’t blank, we use that value directly. Otherwise we need further
calculation. Whenever a value is calculated, we store it in the corresponding cell for
looking up in the future.

1: F ← {1, 1, NIL,NIL, ...}
2: function Fibonacci(n)
3: if n > 2 ∧ F [n] = NIL then
4: F [n]← Fibonacci(n− 1) + Fibonacci(n− 2)
5: return F [n]

By using the similar idea, we can develop a new top-down change-making solution.
We use a table T to maintain the best changes, it is initialized to all empty coin list.
During the top-down recursive computation, we look up this table for smaller changing
values. Whenever a intermediate value is calculated, it is stored in the table.

1: T ← {ϕ, ϕ, ...}
2: function Change(X)
3: if X > 0 ∧ T [X] = ϕ then
4: for c ∈ C do
5: if c ≤ X then
6: Cm ← {c}∪ Change(X − c)
7: if T [X] = ϕ ∨ |Cm| < |T [X]| then
8: T [X]← Cm

9: return T [X]

The solution to change 0 money is definitely empty ϕ, otherwise, we look up T [X] to
retrieve the solution to change X money. If it is empty, we need recursively calculate it.
We examine all coins in the coin system C which is not greater than X. This is the sub
problem of making changes for money X − c. The minimum amount of coins plus one
coin of c is stored in T [X] finally as the result.

The following example Python program implements this algorithm just takes 8000 ms
to give the answer of changing 1.42 dollar in US coin system.

tab = [[] for _ in range(1000)]

def change(x, cs):
if x > 0 and tab[x] == []:

for s in [[c] + change(x - c, cs) for c in cs if c ≤ x]:
if tab[x] == [] or len(s) < len(tab[x]):

tab[x] = s
return tab[x]

Another solution to calculate Fibonacci number, is to compute them in order of
F1, F2, F3, ..., Fn. This is quite natural when people write down Fibonacci series.

1: function Fibo(n)
2: F = {1, 1, NIL,NIL, ...}
3: for i← 3 to n do
4: F [i]← F [i− 1] + F [i− 2]

5: return F [n]

We can use the quite similar idea to solve the change making problem. Starts from
zero money, which can be changed by an empty list of coins, we next try to figure out
how to change money of value 1. In US coin system for example, A cent can be used; The
next values of 2, 3, and 4, can be changed by two coins of 1 cent, three coins of 1 cent,

14.3. SOLUTION SEARCHING 351

and 4 coins of 1 cent. At this stage, the solution table looks like below
0 1 2 3 4
ϕ {1} {1, 1} {1, 1, 1} {1, 1, 1, 1}

The interesting case happens for changing value 5. There are two options, use another
coin of 1 cent, which need 5 coins in total; The other way is to use 1 coin of 5 cent, which
uses less coins than the former. So the solution table can be extended to this.

0 1 2 3 4 5
ϕ {1} {1, 1} {1, 1, 1} {1, 1, 1, 1} {5}

For the next change value 6, since there are two types of coin, 1 cent and 5 cent, are
less than this value, we need examine both of them.

• If we choose the 1 cent coin, we need next make changes for 5; Since we’ve already
known that the best solution to change 5 is {5}, which only needs a coin of 5 cents,
by looking up the solution table, we have one candidate solution to change 6 as
{5, 1};

• The other option is to choose the 5 cent coin, we need next make changes for 1; By
looking up the solution table we’ve filled so far, the sub optimal solution to change
1 is {1}. Thus we get another candidate solution to change 6 as {1, 5};

It happens that, both options yield a solution of two coins, we can select either of
them as the best solution. Generally speaking, the candidate with fewest number of coins
is selected as the solution, and filled into the table.

At any iteration, when we are trying to change the i < X value of money, we examine
all the types of coin. For any coin c not greater than i, we look up the solution table to
fetch the sub solution T [i− c]. The number of coins in this sub solution plus the one coin
of c are the total coins needed in this candidate solution. The fewest candidate is then
selected and updated to the solution table.

The following algorithm realizes this bottom-up idea.
1: function Change(X)
2: T ← {ϕ, ϕ, ...}
3: for i← 1 to X do
4: for c ∈ C, c ≤ i do
5: if T [i] = ϕ ∨ 1 + |T [i− c]| < |T [i]| then
6: T [i]← {c} ∪ T [i− c]

7: return T [X]

This algorithm can be directly translated to imperative programs, like Python for
example.
def changemk(x, cs):

s = [[] for _ in range(x+1)]
for i in range(1, x+1):

for c in cs:
if c ≤ i and (s[i] == [] or 1 + len(s[i-c]) < len(s[i])):

s[i] = [c] + s[i-c]
return s[x]

Observe the solution table, it’s easy to find that, there are many duplicated contents
being stored.

6 7 8 9 10 ...
{1, 5} {1, 1, 5} {1, 1, 1, 5} {1, 1, 1, 1, 5} {5, 5} ...

This is because the optimal sub solutions are completely copied and saved in parent
solution. In order to use less space, we can only record the ‘delta’ part from the sub
optimal solution. In change-making problem, it means that we only need to record the
coin being selected for value i.

352 CHAPTER 14. SEARCHING

1: function Change’(X)
2: T ← {0,∞,∞, ...}
3: S ← {NIL,NIL, ...}
4: for i← 1 to X do
5: for c ∈ C, c ≤ i do
6: if 1 + T [i− c] < T [i] then
7: T [i]← 1 + T [i− c]
8: S[i]← c

9: while X > 0 do
10: Print(S[X])
11: X ← X − S[X]

Instead of recording the complete solution list of coins, this new algorithm uses two
tables T and S. T holds the minimum number of coins needed for changing value 0, 1, 2,
...; while S holds the first coin being selected for the optimal solution. For the complete
coin list to change money X, the first coin is thus S[X], the sub optimal solution is to
change money X ′ = X − S[X]. We can look up table S[X ′] for the next coin. The coins
for sub optimal solutions are repeatedly looked up like this till the beginning of the table.
Below Python example program implements this algorithm.

def chgmk(x, cs):
cnt = [0] + [x+1] ∗ x
s = [0]
for i in range(1, x+1):

coin = 0
for c in cs:

if c ≤ i and 1 + cnt[i-c] < cnt[i]:
cnt[i] = 1 + cnt[i-c]
coin = c

s.append(coin)
r = []
while x > 0:

r.append(s[x])
x = x - s[x]

return r

This change-making solution loops n times for given money n. It examines at most
the full coin system in each iteration. The time is bound to Θ(nk) where k is the number
of coins for a certain coin system. The last algorithm adds O(n) spaces to record sub
optimal solutions with table T and S.

In purely functional settings, There is no means to mutate the solution table and look
up in constant time. One alternative is to use finger tree as we mentioned in previous
chapter 12. We can store the minimum number of coins, and the coin leads to the sub
optimal solution in pairs.

The solution table, which is a finger tree, is initialized as T = {(0, 0)}. It means
change 0 money need no coin. We can fold on list {1, 2, ..., X}, start from this table,
with a binary function change(T, i). The folding will build the solution table, and we can
construct the coin list from this table by function make(X,T).

makeChange(X) = make(X, fold(change, {(0, 0)}, {1, 2, ..., X})) (14.94)

In function change(T, i), all the coins not greater than i are examined to select the
one lead to the best result. The fewest number of coins, and the coin being selected are

12Some purely functional programming environments, Haskell for instance, provide built-in array; while
other almost pure ones, such as ML, provide mutable array

14.3. SOLUTION SEARCHING 353

formed to a pair. This pair is inserted to the finger tree, so that a new solution table is
returned.

change(T, i) = insert(T, fold(sel, (∞, 0), {c|c ∈ C, c ≤ i})) (14.95)

Again, folding is used to select the candidate with the minimum number of coins. This
folding starts with initial value (∞, 0), on all valid coins. function sel((n, c), c′) accepts
two arguments, one is a pair of length and coin, which is the best solution so far; the
other is a candidate coin, it examines if this candidate can make better solution.

sel((n, c), c′) =

{
(1 + n′, c′) : 1 + n′ < n, (n′, c′) = T [i− c′]

(n, c) : otherwise
(14.96)

After the solution table is built, the coins needed can be generated from it.

make(X,T) =

{
ϕ : X = 0

{c} ∪make(X − c, T) : otherwise, (n, c) = T [X]
(14.97)

The following example Haskell program uses Data.Sequence, which is the library
of finger tree, to implement change making solution.
import Data.Sequence (Seq, singleton, index, (|>))

changemk x cs = makeChange x $ foldl change (singleton (0, 0)) [1..x] where
change tab i = let sel c = min (1 + fst (index tab (i - c)), c)

in tab |> (foldr sel ((x + 1), 0) $ filter (≤ i) cs)
makeChange 0 _ = []
makeChange x tab = let c = snd $ index tab x in c : makeChange (x - c) tab

It’s necessary to memorize the optimal solution to sub problems no matter using the
top-down or the bottom-up approach. This is because a sub problem is used many times
when computing the overall optimal solution. Such properties are called overlapping sub
problems.

Properties of dynamic programming

Dynamic programming was originally named by Richard Bellman in 1940s. It is a powerful
tool to search for optimal solution for problems with two properties.

• Optimal sub structure. The problem can be broken down into smaller problems,
and the optimal solution can be constructed efficiently from solutions of these sub
problems;

• Overlapping sub problems. The problem can be broken down into sub problems
which are reused several times in finding the overall solution.

The change-making problem, as we’ve explained, has both optimal sub structures, and
overlapping sub problems.

Longest common subsequence problem

The longest common subsequence problem, is different with the longest common substring
problem. We’ve show how to solve the later in the chapter of suffix tree. The longest
common subsequence needn’t be consecutive part of the original sequence.

For example, The longest common substring for text “Mississippi”, and “Missunder-
standing” is “Miss”, while the longest common subsequence for them are “Misssi”. This
is shown in figure 14.50.

354 CHAPTER 14. SEARCHING

Figure 14.50: The longest common subsequence

If we rotate the figure vertically, and consider the two texts as two pieces of source
code, it turns to be a ‘diff’ result between them. Most modern version control tools need
calculate the difference content among the versions. The longest common subsequence
problem plays a very important role.

If either one of the two strings X and Y is empty, the longest common subse-
quence LCS(X,Y) is definitely empty; Otherwise, denote X = {x1, x2, ..., xn}, Y =
{y1, y2, ..., ym}, if the first elements x1 and y1 are same, we can recursively find the
longest subsequence of X ′ = {x2, x3, ..., xn} and Y ′ = {y2, y3, ..., ym}. And the final re-
sult LCS(X,Y) can be constructed by concatenating x1 with LCS(X ′, Y ′); Otherwise if
x1 6= y1, we need recursively find the longest common subsequences of LCS(X,Y ′) and
LCS(X ′, Y), and pick the longer one as the final result. Summarize these cases gives the
below definition.

LCS(X,Y) =

 ϕ : X = ϕ ∨ Y = ϕ
{x1} ∪ LCS(X ′, Y ′) : x1 = y1

longer(LCS(X,Y ′), LCS(X ′, Y)) : otherwise
(14.98)

Note that this algorithm shows clearly the optimal substructure, that the longest
common subsequence problem can be broken to smaller problems. The sub problem is
ensured to be at least one element shorter than the original one.

It’s also clear that, there are overlapping sub-problems. The longest common subse-
quences to the sub strings are used multiple times in finding the overall optimal solution.

The existence of these two properties, the optimal substructure and the overlapping
sub-problem, indicates the dynamic programming can be used to solve this problem.

A 2-dimension table can be used to record the solutions to the sub-problems. The
rows and columns represent the substrings of X and Y respectively.

14.3. SOLUTION SEARCHING 355

a n t e n n a
1 2 3 4 5 6 7

b 1
a 2
n 3
a 4
n 5
a 6

This table shows an example of finding the longest common subsequence for strings
“antenna” and “banana”. Their lengths are 7, and 6. The right bottom corner of this
table is looked up first, Since it’s empty we need compare the 7th element in “antenna”
and the 6th in “banana”, they are both ‘a’, Thus we need next recursively look up the
cell at row 5, column 6; It’s still empty, and we repeated this till either get a trivial case
that one substring becomes empty, or some cell we are looking up has been filled before.
Similar to the change-making problem, whenever the optimal solution for a sub-problem
is found, it is recorded in the cell for further reusing. Note that this process is in the
reversed order comparing to the recursive equation given above, that we start from the
right most element of each string.

Considering that the longest common subsequence for any empty string is still empty,
we can extended the solution table so that the first row and column hold the empty
strings.

a n t e n n a
ϕ ϕ ϕ ϕ ϕ ϕ ϕ

b ϕ
a ϕ
n ϕ
a ϕ
n ϕ
a ϕ

Below algorithm realizes the top-down recursive dynamic programming solution with
such a table.

1: T ← NIL
2: function LCS(X,Y)
3: m← |X|, n← |Y |
4: m′ ← m+ 1, n′ ← n+ 1
5: if T = NIL then
6: T ← {{ϕ, ϕ, ..., ϕ}, {ϕ,NIL,NIL, ...}, ...} ▷ m′ × n′

7: if X 6= ϕ ∧ Y 6= ϕ ∧ T [m′][n′] = NIL then
8: if X[m] = Y [n] then
9: T [m′][n′]← Append(LCS(X[1..m− 1], Y [1..n− 1]), X[m])

10: else
11: T [m′][n′]← Longer(LCS(X,Y [1..n− 1]), LCS(X[1..m− 1], Y))
12: return T [m′][n′]

The table is firstly initialized with the first row and column filled with empty strings;
the rest are all NIL values. Unless either string is empty, or the cell content isn’t NIL, the
last two elements of the strings are compared, and recursively computes the longest com-
mon subsequence with substrings. The following Python example program implements
this algorithm.
def lcs(xs, ys):

m = len(xs)
n = len(ys)

356 CHAPTER 14. SEARCHING

global tab
if tab is None:

tab = [[""]∗(n+1)] + [[""] + [None]∗n for _ in xrange(m)]
if m ̸= 0 and n ̸= 0 and tab[m][n] is None:

if xs[-1] == ys[-1]:
tab[m][n] = lcs(xs[:-1], ys[:-1]) + xs[-1]

else:
(a, b) = (lcs(xs, ys[:-1]), lcs(xs[:-1], ys))
tab[m][n] = a if len(b) < len(a) else b

return tab[m][n]

The longest common subsequence can also be found in a bottom-up manner as what
we’ve done with the change-making problem. Besides that, instead of recording the whole
sequences in the table, we can just store the lengths of the longest subsequences, and later
construct the subsubsequence with this table and the two strings. This time, the table is
initialized with all values set as 0.

1: function LCS(X,Y)
2: m← |X|, n← |Y |
3: T ← {{0, 0, ...}, {0, 0, ...}, ...} ▷ (m+ 1)× (n+ 1)
4: for i← 1 to m do
5: for j ← 1 to n do
6: if X[i] = Y [j] then
7: T [i+ 1][j + 1]← T [i][j] + 1
8: else
9: T [i+ 1][j + 1]← Max(T [i][j + 1], T [i+ 1][j])

10: return Get(T,X, Y,m, n)

11: function Get(T,X, Y, i, j)
12: if i = 0 ∨ j = 0 then
13: return ϕ
14: else if X[i] = Y [j] then
15: return Append(Get(T,X, Y, i− 1, j − 1), X[i])
16: else if T [i− 1][j] > T [i][j − 1] then
17: return Get(T,X, Y, i− 1, j)
18: else
19: return Get(T,X, Y, i, j − 1)

In the bottom-up approach, we start from the cell at the second row and the second
column. The cell is corresponding to the first element in both X, and Y . If they are
same, the length of the longest common subsequence so far is 1. This can be yielded
by increasing the length of empty sequence, which is stored in the top-left cell, by one;
Otherwise, we pick the maximum value from the upper cell and left cell. The table is
repeatedly filled in this manner.

After that, a back-track is performed to construct the longest common subsequence.
This time we start from the bottom-right corner of the table. If the last elements in X
and Y are same, we put this element as the last one of the result, and go on looking up
the cell along the diagonal line; Otherwise, we compare the values in the left cell and the
above cell, and go on looking up the cell with the bigger value.

The following example Python program implements this algorithm.
def lcs(xs, ys):

m = len(xs)
n = len(ys)
c = [[0]∗(n+1) for _ in xrange(m+1)]
for i in xrange(1, m+1):

for j in xrange(1, n+1):

14.3. SOLUTION SEARCHING 357

if xs[i-1] == ys[j-1]:
c[i][j] = c[i-1][j-1] + 1

else:
c[i][j] = max(c[i-1][j], c[i][j-1])

return get(c, xs, ys, m, n)

def get(c, xs, ys, i, j):
if i==0 or j==0:

return []
elif xs[i-1] == ys[j-1]:

return get(c, xs, ys, i-1, j-1) + [xs[i-1]]
elif c[i-1][j] > c[i][j-1]:

return get(c, xs, ys, i-1, j)
else:

return get(c, xs, ys, i, j-1)

The bottom-up dynamic programming solution can also be defined in purely functional
way. The finger tree can be used as a table. The first row is filled with n+1 zero values.
This table can be built by folding on sequence X. Then the longest common subsequence
is constructed from the table.

LCS(X,Y) = construct(fold(f, {{0, 0, ..., 0}}, zip({1, 2, ...}, X))) (14.99)

Note that, since the table need be looked up by index, X is zipped with natural
numbers. Function f creates a new row of this table by folding on sequence Y , and
records the lengths of the longest common sequence for all possible cases so far.

f(T, (i, x)) = insert(T, fold(longest, {0}, zip({1, 2, ...}, Y))) (14.100)

Function longest takes the intermediate filled row result, and a pair of index and
element in Y , it compares if this element is the same as the one in X. Then fills the new
cell with the length of the longest one.

longest(R, (j, y)) =

{
insert(R, 1 + T [i− 1][j − 1]) : x = y

insert(R,max(T [i− 1][j], T [i][j − 1])) : otherwise
(14.101)

After the table is built. The longest common sub sequence can be constructed recur-
sively by looking up this table. We can pass the reversed sequences ←−X , and ←−Y together
with their lengths m and n for efficient building.

construct(T) = get((
←−
X,m), (

←−
Y , n)) (14.102)

If the sequences are not empty, denote the first elements as x and y. The rest elements
are hold in ←−X ′ and ←−Y ′ respectively. The function get can be defined as the following.

get((
←−
X, i), (

←−
Y , j)) =


ϕ :

←−
X = ϕ ∧

←−
Y = ϕ

get((
←−
X ′, i− 1), (

←−
Y ′, j − 1)) ∪ {x} : x = y

get((
←−
X ′, i− 1), (

←−
Y , j)) : T [i− 1][j] > T [i][j − 1]

get((
←−
X, i), (

←−
Y ′, j − 1)) : otherwise

(14.103)
Below Haskell example program implements this solution.

lcs' xs ys = construct $ foldl f (singleton $ fromList $ replicate (n+1) 0)
(zip [1..] xs) where

(m, n) = (length xs, length ys)
f tab (i, x) = tab |> (foldl longer (singleton 0) (zip [1..] ys)) where
longer r (j, y) = r |> if x == y

358 CHAPTER 14. SEARCHING

then 1 + (tab `index` (i-1) `index` (j-1))
else max (tab `index` (i-1) `index` j) (r `index` (j-1))

construct tab = get (reverse xs, m) (reverse ys, n) where
get ([], 0) ([], 0) = []
get ((x:xs), i) ((y:ys), j)
| x == y = get (xs, i-1) (ys, j-1) ++ [x]
| (tab `index` (i-1) `index` j) > (tab `index` i `index` (j-1)) =

get (xs, i-1) ((y:ys), j)
| otherwise = get ((x:xs), i) (ys, j-1)

Subset sum problem

Dynamic programming does not limit to solve the optimization problem, but can also
solve some more general searching problems. Subset sum problem is such an exam-
ple. Given a set of integers, is there a non-empty subset sums to zero? for example,
there are two subsets of {11, 64,−82,−68, 86, 55,−88,−21, 51} both sum to zero. One is
{64,−82, 55,−88, 51}, the other is {64,−82,−68, 86}.

Of course summing to zero is a special case, because sometimes, people want to find
a subset, whose sum is a given value s. Here we are going to develop a method to find all
the candidate subsets.

There is obvious a brute-force exhausting search solution. For every element, we can
either pick it or not. So there are total 2n options for set with n elements. Because for
every selection, we need check if it sums to s. This is a linear operation. The overall
complexity is bound to O(n2n). This is the exponential algorithm, which takes very huge
time if the set is big.

There is a recursive solution to subset sum problem. If the set is empty, there is no
solution definitely; Otherwise, let the set is X = {x1, x2, ...}. If x1 = s, then subset
{x1} is a solution, we need next search for subsets X ′ = {x2, x3, ...} for those sum to s;
Otherwise if x1 6= s, there are two different kinds of possibilities. We need search X ′ for
both sum s, and sum s− x1. For any subset sum to s− x1, we can add x1 to it to form
a new set as a solution. The following equation defines this algorithm.

solve(X, s) =

 ϕ : X = ϕ
{{x1}} ∪ solve(X ′, s) : x1 = s

solve(X ′, s) ∪ {{x1} ∪ S|S ∈ solve(X ′, s− x1)} : otherwise
(14.104)

There are clear substructures in this definition, although they are not in a sense of
optimal. And there are also overlapping sub-problems. This indicates the problem can
be solved with dynamic programming with a table to memorize the solutions to sub-
problems.

Instead of developing a solution to output all the subsets directly, let’s consider how
to give the existence answer firstly. That output ’yes’ if there exists some subset sum to
s, and ’no’ otherwise.

One fact is that, the upper and lower limit for all possible answer can be calculated in
one scan. If the given sum s doesn’t belong to this range, there is no solution obviously.{

sl =
∑
{x ∈ X,x < 0}

su =
∑
{x ∈ X,x > 0} (14.105)

Otherwise, if sl ≤ s ≤ su, since the values are all integers, we can use a table, with
su − sl + 1 columns, each column represents a possible value in this range, from sl to su.
The value of the cell is either true or false to represents if there exists subset sum to this
value. All cells are initialized as false. Starts from the first element x1 in X, definitely,
set {x1} can sum to x1, so that the cell represents this value in the first row can be filled
as true.

14.3. SOLUTION SEARCHING 359

sl sl + 1 ... x1 ... su
x1 F F ... T ... F

With the next element x2, There are three possible sums. Similar as the first row, {x2}
sums to x2; For all possible sums in previous row, they can also been achieved without
x2. So the cell below to x1 should also be filled as true; By adding x2 to all possible sums
so far, we can also get some new values. That the cell represents x1 + x2 should be true.

sl sl + 1 ... x1 ... x2 ... x1 + x2 ... su
x1 F F ... T ... F ... F ... F
x2 F F ... T ... T ... T ... F

Generally speaking, when fill the i-th row, all the possible sums constructed with
{x1, x2, ..., xi−1} so far can also be achieved with xi. So the cells previously are true
should also be true in this new row. The cell represents value xi should also be true since
the singleton set {xi} sums to it. And we can also adds xi to all previously constructed
sums to get the new results. Cells represent these new sums should also be filled as true.

When all the elements are processed like this, a table with |X| rows is built. Looking
up the cell represents s in the last row tells if there exists subset can sum to this value.
As mentioned above, there is no solution if s < sl or su < s. We skip handling this case
for the sake of brevity.

1: function Subset-Sum(X, s)
2: sl ←

∑
{x ∈ X,x < 0}

3: su ←
∑
{x ∈ X,x > 0}

4: n← |X|
5: T ← {{False, False, ...}, {False, False, ...}, ...} ▷ n× (su − sl + 1)
6: for i← 1 to n do
7: for j ← sl to su do
8: if X[i] = j then
9: T [i][j]← True

10: if i > 1 then
11: T [i][j]← T [i][j] ∨ T [i− 1][j]
12: j′ ← j −X[i]
13: if sl ≤ j′ ≤ su then
14: T [i][j]← T [i][j] ∨ T [i− 1][j′]

15: return T [n][s]

Note that the index to the columns of the table, doesn’t range from 1 to su − sl + 1,
but maps directly from sl to su. Because most programming environments don’t support
negative index, this can be dealt with T [i][j−sl]. The following example Python program
utilizes the property of negative indexing.
def solve(xs, s):

low = sum([x for x in xs if x < 0])
up = sum([x for x in xs if x > 0])
tab = [[False]∗(up-low+1) for _ in xs]
for i in xrange(0, len(xs)):

for j in xrange(low, up+1):
tab[i][j] = (xs[i] == j)
j1 = j - xs[i];
tab[i][j] = tab[i][j] or tab[i-1][j] or

(low ≤ j1 and j1 ≤ up and tab[i-1][j1])
return tab[-1][s]

Note that this program doesn’t use different branches for i = 0 and i = 1, 2, ..., n− 1.
This is because when i = 0, the row index to i − 1 = −1 refers to the last row in the
table, which are all false. This simplifies the logic one more step.

With this table built, it’s easy to construct all subsets sum to s. The method is to

360 CHAPTER 14. SEARCHING

look up the last row for cell represents s. If the last element xn = s, then {xn} definitely
is a candidate. We next look up the previous row for s, and recursively construct all the
possible subsets sum to s with {x1, x2, x3, ..., xn−1}. Finally, we look up the second last
row for cell represents s − xn. And for every subset sums to this value, we add element
xn to construct a new subset, which sums to s.

1: function Get(X, s, T, n)
2: S ← ϕ
3: if X[n] = s then
4: S ← S ∪ {X[n]}
5: if n > 1 then
6: if T [n− 1][s] then
7: S ← S∪ Get(X, s, T, n− 1)
8: if T [n− 1][s−X[n]] then
9: S ← S ∪ {{X[n]} ∪ S′|S′ ∈ Get(X, s−X[n], T, n− 1) }

10: return S

The following Python example program translates this algorithm.
def get(xs, s, tab, n):

r = []
if xs[n] == s:

r.append([xs[n]])
if n > 0:

if tab[n-1][s]:
r = r + get(xs, s, tab, n-1)

if tab[n-1][s - xs[n]]:
r = r + [[xs[n]] + ys for ys in get(xs, s - xs[n], tab, n-1)]

return r

This dynamic programming solution to subset sum problem loops O(n(su − sl + 1))
times to build the table, and recursively uses O(n) time to construct the final solution
from this table. The space it used is also bound to O(n(su − sl + 1)).

Instead of using table with n rows, a vector can be used alternatively. For every
cell represents a possible sum, the list of subsets are stored. This vector is initialized to
contain all empty sets. For every element in X, we update the vector, so that it records
all the possible sums which can be built so far. When all the elements are considered, the
cell corresponding to s contains the final result.

1: function Subset-Sum(X, s)
2: sl ←

∑
{x ∈ X,x < 0}

3: su ←
∑
{x ∈ X,x > 0}

4: T ← {ϕ, ϕ, ...} ▷ su − sl + 1
5: for x ∈ X do
6: T ′ ← Duplicate(T)
7: for j ← sl to su do
8: j′ ← j − x
9: if x = j then

10: T ′[j]← T ′[j] ∪ {x}
11: if sl ≤ j′ ≤ su ∧ T [j′] 6= ϕ then
12: T ′[j]← T ′[j] ∪ {{x} ∪ S|S ∈ T [j′]}
13: T ← T ′

14: return T [s]

The corresponding Python example program is given as below.
def subsetsum(xs, s):

low = sum([x for x in xs if x < 0])

14.3. SOLUTION SEARCHING 361

up = sum([x for x in xs if x > 0])
tab = [[] for _ in xrange(low, up+1)]
for x in xs:

tab1 = tab[:]
for j in xrange(low, up+1):

if x == j:
tab1[j].append([x])

j1 = j - x
if low ≤ j1 and j1 ≤ up and tab[j1] ̸= []:

tab1[j] = tab1[j] + [[x] + ys for ys in tab[j1]]
tab = tab1

return tab[s]

This imperative algorithm shows a clear structure, that the solution table is built by
looping every element. This can be realized in purely functional way by folding. A finger
tree can be used to represents the vector spans from sl to su. It is initialized with all
empty values as in the following equation.

subsetsum(X, s) = fold(build, {ϕ, ϕ, ..., }, X)[s] (14.106)

After folding, the solution table is built, the answer is looked up at cell s13.
For every element x ∈ X, function build folds the list {sl, sl + 1, ..., su}, with every

value j, it checks if it equals to x and appends the singleton set {x} to the j-th cell. Not
that here the cell is indexed from sl, but not 0. If the cell corresponding to j − x is not
empty, the candidate solutions stored in that place are also duplicated and add element
x is added to every solution.

build(T, x) = fold(f, T, {sl, sl + 1, ..., su}) (14.107)

f(T, j) =

{
T ′[j] ∪ {{x} ∪ Y |Y ∈ T [j′]} : sl ≤ j′ ≤ su ∧ T [j′] 6= ϕ, j′ = j − x

T ′ : otherwise
(14.108)

Here the adjustment is applied on T ′, which is another adjustment to T as shown as
below.

T ′ =

{
{x} ∪ T [j] : x = j

T : otherwise
(14.109)

Note that the first clause in both equation (14.108) and (14.109) return a new table
with certain cell being updated with the given value.

The following Haskell example program implements this algorithm.
subsetsum xs s = foldl build (fromList [[] | _ ← [l..u]]) xs `idx` s where

l = sum $ filter (< 0) xs
u = sum $ filter (> 0) xs
idx t i = index t (i - l)
build tab x = foldl (λt j → let j' = j - x in

adjustIf (l ≤ j' && j' ≤ u && tab `idx` j' /= [])
(++ [(x:ys) | ys ← tab `idx` j']) j
(adjustIf (x == j) ([x]:) j t)) tab [l..u]

adjustIf pred f i seq = if pred then adjust f (i - l) seq else seq

Some materials like [16] provide common structures to abstract dynamic programming.
So that problems can be solved with a generic solution by customizing the precondition,
the comparison of candidate solutions for better choice, and the merge method for sub
solutions. However, the variety of problems makes things complex in practice. It’s im-
portant to study the properties of the problem carefully.

13Again, here we skip the error handling to the case that s < sl or s > su. There is no solution if s is
out of range.

362 CHAPTER 14. SEARCHING

Exercise 14.3

• Realize a maze solver by using the stack approach, which can find all the possible
paths.

• There are 92 distinct solutions for the 8 queens puzzle. For any one solution, rotating
it 90◦, 180◦, 270◦ gives solutions too. Also flipping it vertically and horizontally also
generate solutions. Some solutions are symmetric, so that rotation or flip gives the
same one. There are 12 unique solutions in this sense. Modify the program to find
the 12 unique solutions. Improve the program, so that the 92 distinct solutions can
be found with fewer search.

• Make the 8 queens puzzle solution generic so that it can solve n queens puzzle.

• Make the functional solution to the leap frogs puzzle generic, so that it can solve n
frogs case.

• Modify the wolf, goat, and cabbage puzzle algorithm, so that it can find all possible
solutions.

• Give the complete algorithm definition to solve the 2 water jugs puzzle with extended
Euclid algorithm.

• We needn’t the exact linear combination information x and y in fact. After we know
the puzzle is solvable by testing with GCD, we can blindly execute the process that:
fill A, pour A into B, whenever B is full, empty it till there is expected volume in
one jug. Realize this solution. Can this one find faster solution than the original
version?

• Compare to the extended Euclid method, the BFS approach is a kind of brute-
force searching. Improve the extended Euclid approach by finding the best linear
combination which minimize |x|+ |y|.

• John Horton Conway introduced the sliding tile puzzle. Figure 14.51 shows a sim-
plified verson. There are 8 cells, 7 of them are occupied by pieces labeled from 1 to
7. Each piece can slide to the free cell if they are connected. The line between cells
means there is a connectoin. The goal is to reverse the pieces from 1, 2, 3, 4, 5, 6,
7 to 7, 6, 5, 4, 3, 2, 1 by sliding. Develop a program to solve this puzzle.

1

2

3

4

5

6

7

Figure 14.51: Conway sliding puzzle

• Realize the imperative Huffman code table generating algorithm.

14.4. SHORT SUMMARY 363

• One option to realize the bottom-up solution for the longest common subsequence
problem is to record the direction in the table. Thus, instead of storing the length
information, three values like ’N’, for north, ’W’ for west, and ’NW’ for northwest
are used to indicate how to construct the final result. We start from the bottom-
right corner of the table, if the cell value is ’NW’, we go along the diagonal by
moving to the cell in the upper-left; if it’s ’N’, we move vertically to the upper
row; and move horizontally if it’s ’W’. Implement this approach in your favorite
programming language.

• Given a list of non-negative integers, find the maximum sum composed by numbers
that none of them are adjacent.

• Levenshtein edit distance is defined as the cost of converting from one string s to
another string t. It is widely used in spell-checking, OCR correction etc. There
are three operations allowed in Levenshtein edit distance. Insert a character; delete
a character; and substitute a character. Each operation mutate one character a
time. The following exaple shows how to convert string “kitten” to “sitting”. The
Levenshtein edit distance is 3 in this case.

1. kitten → sitten (substitution of ’s’ for ’k’);
2. sitten → sittin (substitution of ’i’ for ’e’);
3. sitten → sitting (insertion of ’g’ at the end).

Develop a program to calculate Levenshtein edit distance for two strings with Dy-
namic Programming.

14.4 Short summary
This chapter introduces the elementary methods about searching. Some of them instruct
the computer to scan for interesting information among the data. They often have some
structure, that can be updated during the scan. This can be considered as a special case
for the information reusing approach. The other commonly used strategy is divide and
conquer, that the scale of the search domain is kept decreasing till some obvious result.
This chapter also explains methods to search for solutions among domains. The solutions
typically are not the elements being searched. They can be a series of decisions or some
operation arrangement. If there are multiple solutions, sometimes, people want to find
the optimized one. For some spacial cases, there exist simplified approach such as the
greedy methods. And dynamic programming can be used for more wide range of problems
when they shows optimal substructures.

364 CHAPTER 14. SEARCHING

Bibliography

[1] Donald E. Knuth. “The Art of Computer Programming, Volume 3: Sorting and
Searching (2nd Edition)”. Addison-Wesley Professional; 2 edition (May 4, 1998)
ISBN-10: 0201896850 ISBN-13: 978-0201896855

[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein. “In-
troduction to Algorithms, Second Edition”. ISBN:0262032937. The MIT Press. 2001

[3] M. Blum, R.W. Floyd, V. Pratt, R. Rivest and R. Tarjan, ”Time bounds for selec-
tion,” J. Comput. System Sci. 7 (1973) 448-461.

[4] Jon Bentley. “Programming pearls, Second Edition”. Addison-Wesley Professional;
1999. ISBN-13: 978-0201657883

[5] Richard Bird. “Pearls of functional algorithm design”. Chapter 3. Cambridge Uni-
versity Press. 2010. ISBN, 1139490605, 9781139490603

[6] Edsger W. Dijkstra. “The saddleback search”. EWD-934. 1985. http://www.cs.
utexas.edu/users/EWD/index09xx.html.

[7] Robert Boyer, and Strother Moore. “MJRTY - A Fast Majority Vote Algorithm”.
Automated Reasoning: Essays in Honor of Woody Bledsoe, Automated Reasoning
Series, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991, pp. 105-117.

[8] Cormode, Graham; S. Muthukrishnan (2004). “An Improved Data Stream Summary:
The Count-Min Sketch and its Applications”. J. Algorithms 55: 29¨C38.

[9] Knuth Donald, Morris James H., jr, Pratt Vaughan. “Fast pattern matching in
strings”. SIAM Journal on Computing 6 (2): 323¨C350. 1977.

[10] Robert Boyer, Strother Moore. “A Fast String Searching Algorithm”. Comm. ACM
(New York, NY, USA: Association for Computing Machinery) 20 (10): 762¨C772.
1977

[11] R. N. Horspool. “Practical fast searching in strings”. Software - Practice & Experience
10 (6): 501¨C506. 1980.

[12] Wikipedia. “Boyer-Moore string search algorithm”. https://en.wikipedia.org/wiki/
Boyer-Moore_string_search_algorithm

[13] Wikipedia. “Eight queens puzzle”. https://en.wikipedia.org/wiki/Eight_queens_
puzzle

[14] George Pólya. “How to solve it: A new aspect of mathematical method”. Princeton
University Press(April 25, 2004). ISBN-13: 978-0691119663

[15] Wikipedia. “David A. Huffman”. https://en.wikipedia.org/wiki/David_A._Huffman

365

http://www.cs.utexas.edu/users/EWD/index09xx.html
http://www.cs.utexas.edu/users/EWD/index09xx.html
https://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm
https://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm
https://en.wikipedia.org/wiki/Eight_queens_puzzle
https://en.wikipedia.org/wiki/Eight_queens_puzzle
https://en.wikipedia.org/wiki/David_A._Huffman

366 Red-black tree

[16] Fethi Rabhi, Guy Lapalme “Algorithms: a functional programming approach”. Sec-
ond edition. Addison-Wesley.

Appendix A

Imperative delete for red-black
tree

We need handle more cases for imperative delete than insert. To resume balance after
cutting off a node fro the red-black tree, we perform rotations and re-coloring. When
delete a black node, rule 5 will be violated because the number of black nodes along the
path through that node reduces by one. We introduce ‘doubly-black’ to maintain the
number of black nodes unchanged. Below example program adds ‘doubly black’ to the
color definition:
data Color {RED, BLACK, DOUBLY_BLACK}

When delete a node, we re-use the binary search tree delete in the first step, then
further fix the balance if the node is black.

1: function Delete(T, x)
2: p← Parent(x)
3: q ← NIL
4: if Left(x) = NIL then
5: q ← Right(x)
6: Replace(x, Right(x)) ▷ replace x with its right sub-tree
7: else if Right(x) = NIL then
8: q ← Left(x)
9: Replace(x, Leftx()) ▷ replace x with its left sub-tree

10: else
11: y ← Min(Right(x))
12: p← Parent(y)
13: q ← Right(y)
14: Key(x) ← Key(y)
15: copy data from y to x
16: Replace(y, Right(y)) ▷ replace y with its right sub-tree
17: x← y

18: if Color(x) = BLACK then
19: T ← Delete-Fix(T , Make-Black(p, q), q = NIL?)
20: release x
21: return T

Delete takes the root T and the node x to be deleted as the parameters. x can be
located through lookup. If x has an empty sub-tree, we cut off x, then replace it with
the other sub-tree q. Otherwise, we locate the minimum node y in the right sub-tree of

367

368 APPENDIX A. IMPERATIVE DELETE FOR RED-BLACK TREE

x, then replace x with y. We cut off y after that. If x is black, we call Make-Black(p,
q) to maintain the blackness before further fixing.

1: function Make-Black(p, q)
2: if p = NIL and q = NIL then
3: return NIL ▷ The tree was singleton
4: else if q = NIL then
5: n← Doubly Black NIL
6: Parent(n) ← p
7: return n
8: else
9: return Blacken(q)

If both p and q are empty, we are deleting the only leaf from a singleton tree. The
result is empty. If the parent p is not empty, but q is, we are deleting a black leaf. We use
NIL to replace that black leaf. As NIL is already black, we change it to ’doubly black’ NIL
to maintain the blackness. Otherwise, if neither p nor q is empty, we call Blacken(q).
If q is red, it changes to black; if q is already black, it changes to doubly black. As the
next step, we need eliminate the doubly blackness through tree rotations and re-coloring.
There are three different cases ([4], pp292). The doubly black node can be NIL or not in
all the cases.

Case 1. The sibling of the doubly black node is black, and it has a red sub-tree. We
can rotate the tree to fix the doubly black. There are 4 sub-cases, all can be transformed
to a uniformed structure as shown in figure A.1.

Figure A.1: The doubly black node has a black sibling, and a red nephew. It can be fixed
with a rotation.

1: function Delete-Fix(T , x, f)
2: n← NIL
3: if f = True then ▷ x is doubly black NIL
4: n← x
5: if x = NIL then ▷ Delete the singleton leaf
6: return NIL
7: while x 6= T and Color(x) = B2 do ▷ x is doubly black, but not the root
8: if Sibling(x) 6= NIL then ▷ The sibling is not empty
9: s← Sibling(x)

369

10: ...
11: if s is black and Left(s) is red then
12: if x = Left(Parent(x)) then ▷ x is the left
13: set x, Parent(x), and Left(s) all black
14: T ← Rotate-Right(T , s)
15: T ← Rotate-Left(T , Parent(x))
16: else ▷ x is the right
17: set x, Parent(x), s, and Left(s) all black
18: T ← Rotate-Right(T , Parent(x))
19: else if s is black and Right(s) is red then
20: if x = Left(Parent(x)) then ▷ x is the left
21: set x, Parent(x), s, and Right(s) all black
22: T ← Rotate-Left(T , Parent(x))
23: else ▷ x is the right
24: set x, Parent(x), and Right(s) all black
25: T ← Rotate-Left(T , s)
26: T ← Rotate-Right(T , Parent(x))
27: ...

Case 2. The sibling of the doubly black is red. We can rotate the tree to change the
doubly black node to black. As shown in figure A.2, change a or c to black. We can add
this fixing to the previous implementation.

Figure A.2: The sibling of the doubly black is red

1: function Delete-Fix(T , x, f)
2: n← NIL
3: if f = True then ▷ x is doubly black NIL
4: n← x
5: if x = NIL then ▷ Delete the singleton leaf
6: return NIL
7: while x 6= T and Color(x) = B2 do
8: if Sibling(x) 6= NIL then
9: s← Sibling(x)

10: if s is red then ▷ The sibling is red
11: set Parent(x) red
12: set s black
13: if x = Left(Parent(x)) then ▷ x is the left

370 APPENDIX A. IMPERATIVE DELETE FOR RED-BLACK TREE

14: T ← Rotate-LeftT , Parent(x)
15: else ▷ x is the right
16: T ← Rotate-RightT , Parent(x)
17: else if s is black and Left(s) is red then
18: ...

Case 3. The sibling of the doubly black node, and its two sub-trees are all black.
In this case, we re-color the sibling to red, change the doubly black node back to black,
then move the doubly blackness up to the parent. As shown in figure A.3, there are two
symetric sub-cases.

Figure A.3: move the blackness up

The sibling of the doubly black isn’t empty in all above 3 cases. Otherwise, we change
the doubly black node back to black, and move the blackness up. When reach the root,
we force the root to be black to complete fixing. It also terminates if the doubly black
node is eliminated after re-color in the midway. At last, if the doubly black node passed
in is empty, we turn it back to normal NIL.

1: function Delete-Fix(T , x, f)
2: n← NIL
3: if f = True then ▷ x is a doubly black NIL
4: n← x
5: if x = NIL then ▷ Delete the singleton leaf
6: return NIL
7: while x 6= T and Color(x) = B2 do
8: if Sibling(x) 6= NIL then ▷ The sibling is not empty
9: s← Sibling(x)

10: if s is red then ▷ The sibling is red
11: set Parent(x) red
12: set s black
13: if x = Left(Parent(x)) then ▷ x is the left
14: T ← Rotate-LeftT , Parent(x)
15: else ▷ x is the right
16: T ← Rotate-RightT , Parent(x)
17: else if s is black and Left(s) is red then
18: if x = Left(Parent(x)) then ▷ x is the left
19: set x, Parent(x), and Left(s) all black
20: T ← Rotate-Right(T , s)

371

21: T ← Rotate-Left(T , Parent(x))
22: else ▷ x is the right
23: set x, Parent(x), s, and Left(s) all black
24: T ← Rotate-Right(T , Parent(x))
25: else if s is black and Right(s) is red then
26: if x = Left(Parent(x)) then ▷ x is the left
27: set x, Parent(x), s, and Right(s) all black
28: T ← Rotate-Left(T , Parent(x))
29: else ▷ x is the right
30: set x, Parent(x), and Right(s) all black
31: T ← Rotate-Left(T , s)
32: T ← Rotate-Right(T , Parent(x))
33: else if s, Left(s), and Right(s) are all black then
34: set x black
35: set s red
36: Blacken(Parent(x))
37: x← Parent(x)
38: else ▷ move the blackness up
39: set x black
40: Blacken(Parent(x))
41: x← Parent(x)
42: set T black
43: if n 6= NIL then
44: replace n with NIL
45: return T

When fixing, we pass in the root T , the node x (can be doubly black), and a flag f .
The flag is true if x is doubly black NIL. We record it with n, and replace n with the
normal NIL after fixing.

Below is the example program implements delete:

Node del(Node t, Node x) {
if x == null then return t
var parent = x.parent;
Node db = null; //doubly black

if x.left == null {
db = x.right
x.replaceWith(db)

} else if x.right == null {
db = x.left
x.replaceWith(db)

} else {
var y = min(x.right)
parent = y.parent
db = y.right
x.key = y.key
y.replaceWith(db)
x = y

}
if x.color == Color.BLACK {

t = deleteFix(t, makeBlack(parent, db), db == null);
}
remove(x)
return t

}

372 APPENDIX A. IMPERATIVE DELETE FOR RED-BLACK TREE

Where makeBlack checks if the node changes to doubly black, and handles the special
case of doubly black NIL.
Node makeBlack(Node parent, Node x) {

if parent == null and x == null then return null
return if x == null

then replace(parent, x, Node(0, Color.DOUBLY_BLACK))
else blacken(x)

}

The function replace(parent, x, y) replaces the child of the parent, which is
x, with y.
Node replace(Node parent, Node x, Node y) {

if parent == null {
if y ̸= null then y.parent = null

} else if parent.left == x {
parent.setLeft(y)

} else {
parent.setRight(y)

}
if x ̸= null then x.parent = null
return y

}

The function blacken(node) changes the red node to black, and the black node to
doubly black:
Node blacken(Node x) {

x.color = if isRed(x) then Color.BLACK else Color.DOUBLY_BLACK
return x

}

Below example program implements the fixing:
Node deleteFix(Node t, Node db, Bool isDBEmpty) {

var dbEmpty = if isDBEmpty then db else null
if db == null then return null // delete the root
while (db ̸= t and db.color == Color.DOUBLY_BLACK) {

var s = db.sibling()
var p = db.parent
if (s ̸= null) {

if isRed(s) {
// the sibling is red
p.color = Color.RED
s.color = Color.BLACK
t = if db == p.left then leftRotate(t, p)

else rightRotate(t, p)
} else if isBlack(s) and isRed(s.left) {

// the sibling is black, and one sub-tree is red
if db == p.left {

db.color = Color.BLACK
p.color = Color.BLACK
s.left.color = p.color
t = rightRotate(t, s)
t = leftRotate(t, p)

} else {
db.color = Color.BLACK
p.color = Color.BLACK
s.color = p.color
s.left.color = Color.BLACK
t = rightRotate(t, p)

}
} else if isBlack(s) and isRed(s.right) {

if (db == p.left) {

Elementary Algorithms 373

db.color = Color.BLACK
p.color = Color.BLACK
s.color = p.color
s.right.color = Color.BLACK
t = leftRotate(t, p)

} else {
db.color = Color.BLACK
p.color = Color.BLACK
s.right.color = p.color
t = leftRotate(t, s)
t = rightRotate(t, p)

}
} else if isBlack(s) and isBlack(s.left) and

isBlack(s.right) {
// the sibling and both sub-trees are black.
// move blackness up
db.color = Color.BLACK
s.color = Color.RED
blacken(p)
db = p

}
} else { // no sibling, move blackness up

db.color = Color.BLACK
blacken(p)
db = p

}
}
t.color = Color.BLACK
if (dbEmpty ̸= null) { // change the doubly black nil to nil

dbEmpty.replaceWith(null)
delete dbEmpty

}
return t

}

Where isBlack(x) tests if a node is black, the NIL node is also black.
Bool isBlack(Node x) = (x == null or x.color == Color.BLACK)

Bool isRed(Node x) = (x ̸= null and x.color == Color.RED)

Before returning the final result, we check the doubly black NIL, and call the replaceWith
function defined in Node.
data Node<T> {

//...
void replaceWith(Node y) = replace(parent, this, y)

}

The program terminates when reach the root or the doubly blackness is eliminated.
As we maintain the red-black tree balanced, the delete algorithm is bound to O(lgn) time
for the tree of n nodes.

Exercise A.1
1. Write a program to test if a tree satisfies the 5 red-black tree rules. Use this

program to verify the red-black tree delete implementation.

374 AVL tree - proofs and the delete algorithm

Appendix B

AVL tree - proofs and the
delete algorithm

B.1 Height increment
When insert an element, the increment of the height can be deduced into 4 cases:

∆H = |T ′| − |T |
= 1 +max(|r′|, |l′|)− (1 +max(|r|, |l|))
= max(|r′|, |l′|)−max(|r|, |l|)

=


δ ≥ 0, δ′ ≥ 0 : ∆r

δ ≤ 0, δ′ ≥ 0 : δ +∆r

δ ≥ 0, δ′ ≤ 0 : ∆l − δ

otherwise : ∆l

(B.1)

Proof. When insert, the height can not increase both on left and right. We can explain
the 4 cases from the balance factor definition, which is the difference of the right and left
sub-trees:

1. If δ ≥ 0 and δ′ ≥ 0, it means the height of the right sub-tree is not less than the
left sub-tree before and after insertion. In this case, the height increment is only
‘contributed’ from the right, which is ∆r.

2. If δ ≤ 0, it means the height of left sub-tree is not less than the right before. Since
δ′ ≥ 0 after insert, we know the height of right sub-tree increases, and the left side
keeps same (|l′| = |l|). The height increment is:

∆H = max(|r′|, |l′|)−max(|r|, |l|) {δ ≤ 0 and δ′ ≥ 0}
= |r′| − |l| {|l| = |l′|}
= |r|+∆r − |l|
= δ +∆r

3. If δ ≥ 0 and δ′ ≤ 0, similar to the above case, we have the following:

∆H = max(|r′|, |l′|)−max(|r|, |l|) {δ ≥ 0 and δ′ ≤ 0}
= |l′| − |r|
= |l|+∆l − |r|
= ∆l − δ

375

376 APPENDIX B. AVL TREE - PROOFS AND THE DELETE ALGORITHM

4. Otherwise, δ and δ′ are not bigger than zero. It means the height of the left sub-tree
is not less than the right. The height increment is only ‘contributed’ from the left,
which is ∆l.

B.2 Balance adjustment after insert

The balance factors are ±2 in the 4 cases shown in figure B.1. After fixing, δ(y) resumes
to 0. The height of left and right sub-trees are equal.

Figure B.1: Fix 4 cases to the same structure

The four cases are left-left, right-right, right-left, and left-right. Let the balance
factors before fixing be δ(x), δ(y), and δ(z), after fixing, they change to δ′(x), δ′(y), and
δ′(z) respectively. We next prove that, δ(y) = 0 for all 4 cases after fixing, and give the
result of δ′(x) and δ′(z).

Proof. We break into 4 cases:
Left-left
The sub-tree x keeps unchanged, hence δ′(x) = δ(x). As δ(y) = −1 and δ(z) = −2,

we have:

δ(y) = |c| − |x| = −1 ⇒ |c| = |x| − 1
δ(z) = |d| − |y| = −2 ⇒ |d| = |y| − 2

(B.2)

After fixing:

δ′(z) = |d| − |c| {from(B.2)}
= |y| − 2− (|x| − 1)
= |y| − |x| − 1 {x is sub-tree of y ⇒ |y| − |x| = 1}
= 0

(B.3)

B.2. BALANCE ADJUSTMENT AFTER INSERT 377

For δ′(y), we have the following:

δ′(y) = |z| − |x|
= 1 +max(|c|, |d|)− |x| {by (B.3), |c| = |d|}
= 1 + |c| − |x| {by (B.2)}
= 1 + |x| − 1− |x|
= 0

(B.4)

Summarize the above, the balance factors change to the following in left-left case:

δ′(x) = δ(x)
δ′(y) = 0
δ′(z) = 0

(B.5)

Right-right
The right-right case is symmetric to left-left:

δ′(x) = 0
δ′(y) = 0
δ′(z) = δ(z)

(B.6)

Right-left
Consider δ′(x), after fixing, it is:

δ′(x) = |b| − |a| (B.7)

Before fixing, the height of z can be obtained as:

|z| = 1 +max(|y|, |d|) {δ(z) = −1⇒ |y| > |d|}
= 1 + |y|
= 2 +max(|b|, |c|)

(B.8)

Since δ(x) = 2, we have:

δ(x) = 2 ⇒ |z| − |a| = 2 {by (B.8)}
⇒ 2 +max(|b|, |c|)− |a| = 2
⇒ max(|b|, |c|)− |a| = 0

(B.9)

If δ(y) = |c| − |b| = 1, then:

max(|b|, |c|) = |c| = |b|+ 1 (B.10)

Take this into (B.9) gives:

|b|+ 1− |a| = 0⇒ |b| − |a| = −1 {by (B.7) }
⇒ δ′(x) = −1 (B.11)

If δ(y) 6= 1, then max(|b|, |c|) = |b|. Take this into (B.9) gives:

|b| − |a| = 0 {by (B.7)}
⇒ δ′(x) = 0

(B.12)

Summarize the 2 cases, we obtain the result of δ′(x) in δ(y) as the following:

δ′(x) =

{
δ(y) = 1 : −1
otherwise : 0

(B.13)

378 APPENDIX B. AVL TREE - PROOFS AND THE DELETE ALGORITHM

For δ′(z), from the definition, it equals to:

δ′(z) = |d| − |c| {δ(z) = −1 = |d| − |y|}
= |y| − |c| − 1 {|y| = 1 +max(|b|, |c|)}
= max(|b|, |c|)− |c|

(B.14)

If δ(y) = |c| − |b| = −1, then max(|b|, |c|) = |b| = |c| + 1. Take this into (B.14), we
have δ′(z) = 1. If δ(y) 6= −1, then max(|b|, |c|) = |c|. We have δ′(z) = 0. Combined these
two cases, we obtain the result of δ′(z) in δ(y) as below:

δ′(z) =

{
δ(y) = −1 : 1

otherwise : 0
(B.15)

Finally, for δ′(y), we deduce it like below:

δ′(y) = |z| − |x|
= max(|c|, |d|)−max(|a|, |b|) (B.16)

There are three cases:

1. If δ(y) = 0, then |b| = |c|. According to (B.13) and (B.15), we have δ′(x) = 0 ⇒
|a| = |b|, and δ′(z) = 0⇒ |c| = |d|. These lead to δ′(y) = 0.

2. If δ(y) = 1, from (B.15), we have δ′(z) = 0⇒ |c| = |d|.

δ′(y) = max(|c|, |d|)−max(|a|, |b|) {|c| = |d|}
= |c| −max(|a|, |b|) {from (B.13): δ′(x) = −1⇒ |b| − |a| = −1}
= |c| − (|b|+ 1) {δ(y) = 1⇒ |c| − |b| = 1}
= 0

3. If δ(y) = −1, from (B.13), we have δ′(x) = 0⇒ |a| = |b|.

δ′(y) = max(|c|, |d|)−max(|a|, |b|) {|a| = |b|}
= max(|c|, |d|)− |b| {from (B.15): |d| − |c| = 1}
= |c|+ 1− |b| {δ(y) = −1⇒ |c| − |b| = −1}
= 0

All three cases lead to the same result δ′(y) = 0. Summarize all above, we get the
updated balance factors after fixing as below:

δ′(x) =

{
δ(y) = 1 : −1
otherwise : 0

δ′(y) = 0

δ′(z) =

{
δ(y) = −1 : 1

otherwise : 0

(B.17)

Left-right
Left-right is symmetric to the right-left case. With similar method, we can obtain the

new balance factors that is identical to (B.17).

B.3 Delete algorithm
Deletion may reduce the height of the sub-tree. If the balance factor exceeds the range
of [−1, 1], then we need fixing.

B.3. DELETE ALGORITHM 379

B.3.1 Functional delete
When delete, we re-use the binary search tree delete in the first step, then check the
balance factors and perform fixing. The result is a pair (T ′,∆H), where T ′ is the new
tree and ∆H is the height decrement. We define delete as below:

delete = fst ◦ del (B.18)

where del(T, k) does the actual work to delete element k from T :

del ∅ k = (∅, 0)

del (l, k′, r, δ) =



k < k′ : tree (del l k) k′ (r, 0) δ

k > k′ : tree (l, 0) k′ (del r k) δ

k = k′ :


l = ∅ : (r,−1)
r = ∅ : (l,−1)
else : tree (l, 0) k′′ (del r k′′) δ

where k′′ = min(r)

(B.19)

If the tree is empty, the result is (∅, 0); otherwise, let the tree be T = (l, k′, r, δ). We
compare the k and k′, lookup and delete recursively. When k = k′, we locate the node to
be deleted. If it has either empty sub-tree, we cut the node off, and replace it with the
other sub-tree; otherwise, we use the minimum k′′ in the right sub-tree to replace k′, and
cut k′′ off. We re-use the tree function and ∆H result. Additional to the insert cases,
there are two cases violate AVL rule, and need fixing. As shown in figure B.2, both cases
can be fixed by a tree rotation. We define them as pattern matching:

y

x c

a b

δ(y) = −2

δ(x) = 0

x

a y

b c

δ(x)′ = δ(x) + 1

δ(y)′ = −1
=⇒

(a) Fix case A

x

a y

b c

δ(x) = 2

δ(y) = 0

y

x c

a b

δ(y)′ = δ(y)− 1

δ(x)′ = 1

=⇒

(b) Fix case B

Figure B.2: delete fix

...
balance ((a, x, b, δ(x)), y, c,−2) ∆H = (a, x, (b, y, c,−1), δ(x) + 1,∆H)
balance (a, x, (b, y, c, δ(y)), 2) ∆H = ((a, x, b, 1), y, c, δ(y)− 1,∆H)

...

(B.20)

Below is the example program:

380 APPENDIX B. AVL TREE - PROOFS AND THE DELETE ALGORITHM

delete t x = fst $ del t x where
del Empty _ = (Empty, 0)
del (Br l k r d) x
| x < k = node (del l x) k (r, 0) d
| x > k = node (l, 0) k (del r x) d
| isEmpty l = (r, -1)
| isEmpty r = (l, -1)
| otherwise = node (l, 0) k' (del r k') d where k' = min r

Where min and isEmpty are defined as below:
min (Br Empty x _ _) = x
min (Br l _ _ _) = min l

isEmpty Empty = True
isEmpty _ = False

With the additional two, there are total 7 cases in balance implementation:
balance (Br (Br (Br a x b dx) y c (-1)) z d (-2), dH) =

(Br (Br a x b dx) y (Br c z d 0) 0, dH-1)
balance (Br a x (Br b y (Br c z d dz) 1) 2, dH) =

(Br (Br a x b 0) y (Br c z d dz) 0, dH-1)
balance (Br (Br a x (Br b y c dy) 1) z d (-2), dH) =

(Br (Br a x b dx') y (Br c z d dz') 0, dH-1) where
dx' = if dy == 1 then -1 else 0
dz' = if dy == -1 then 1 else 0

balance (Br a x (Br (Br b y c dy) z d (-1)) 2, dH) =
(Br (Br a x b dx') y (Br c z d dz') 0, dH-1) where

dx' = if dy == 1 then -1 else 0
dz' = if dy == -1 then 1 else 0

−− Delete specific
balance (Br (Br a x b dx) y c (-2), dH) =

(Br a x (Br b y c (-1)) (dx+1), dH)
balance (Br a x (Br b y c dy) 2, dH) =

(Br (Br a x b 1) y c (dy-1), dH)
balance (t, d) = (t, d)

B.3.2 Imperative delete
The imperative delete uses tree rotations for fixing. In the first step, we re-use the binary
search tree algorithm to delete the node x from tree T ; then in the second step, check the
balance factor and perform rotation.

1: function Delete(T, x)
2: if x = NIL then
3: return T
4: p← Parent(x)
5: if Left(x) = NIL then
6: y ← Right(x)
7: replace x with y
8: else if Right(x) = NIL then
9: y ← Left(x)

10: replace x with y
11: else
12: z ← Min(Right(x))
13: copy data from z to x
14: p← Parent(z)
15: y ← Right(z)

B.3. DELETE ALGORITHM 381

16: replace z with y

17: return AVL-Delete-Fix(T, p, y)
When delete node x, we record its parent in p. If either sub-tree is empty, we cut

off x, and replace it with the other sub-tree. Otherwise if neither sub-tree is empty, we
locate the minimum element z of the right sub-tree, copy data from z to x, then cut z off.
Finally, we call AVL-Delete-Fix with the root T , the parent p, and the replacement
node y. Let the balance factor of p be δ(p), and it changes to δ(p)′ after delete. There
are three cases:

1. |δ(p)| = 0, |δ(p)′| = 1. After delete, although a sub-tree height decreases, the parent
still satisfies the AVL rule. The algorithm terminates as the tree is still balanced;

2. |δ(p)| = 1, |δ(p)′| = 0. Before the delete, the height difference between the two
sub-trees is 1; while after delete, the higher sub-tree shrinks by 1. Both sub-trees
have the same height now. As the result, the height of the parent also decrease by
1. We need continue the bottom-up update along the parent reference to the root;

3. |δ(p)| = 1, |δ(p)′| = 2. After delete, the tree violates the AVL height rule, we need
rotate the tree to fix it.

For case 3, the implementation is similar to the insert fixing. We need add two
additional sub-cases as shown in figure B.2.

1: function AVL-Delete-Fix(T, p, x)
2: while p 6= NIL do
3: l← Left(p), r ← Right(p)
4: δ ← δ(p), δ′ ← δ
5: if x = l then
6: δ′ ← δ′ + 1
7: else
8: δ′ ← δ′ − 1

9: if p is leaf then ▷ l = r = NIL
10: δ′ ← 0
11: if |δ| = 1 ∧ |δ′| = 0 then
12: x← p
13: p← Parent(x)
14: else if |δ| = 0 ∧ |δ′| = 1 then
15: return T
16: else if |δ| = 1 ∧ |δ′| = 2 then
17: if δ′ = 2 then
18: if δ(r) = 1 then ▷ Right-right
19: δ(p)← 0
20: δ(r)← 0
21: p← r
22: T ← Left-Rotate(T, p)
23: else if δ(r) = −1 then ▷ Right-left
24: δy ← δ(Left(r))
25: if δy = 1 then
26: δ(p)← −1
27: else
28: δ(p)← 0

29: δ(Left(r))← 0
30: if δy = −1 then

382 APPENDIX B. AVL TREE - PROOFS AND THE DELETE ALGORITHM

31: δ(r)← 1
32: else
33: δ(r)← 0

34: else ▷ Delete specific right-right
35: δ(p)← 1
36: δ(r)← δ(r)− 1
37: T ← Left-Rotate(T, p)
38: break ▷ No furthur height change
39: else if δ′ = −2 then
40: if δ(l) = −1 then ▷ Left-left
41: δ(p)← 0
42: δ(l)← 0
43: p← l
44: T ← Right-Rotate(T, p)
45: else if δ(l) = 1 then ▷ Left-right
46: δy ← δ(Right(l))
47: if δy = −1 then
48: δ(p)← 1
49: else
50: δ(p)← 0

51: δ(Right(l))← 0
52: if δy = 1 then
53: δ(l)← −1
54: else
55: δ(l)← 0

56: else ▷ Delete specific left-left
57: δ(p)← −1
58: δ(l)← δ(l) + 1
59: T ← Right-Rotate(T, p)
60: break ▷ No furthur height change

▷ Height decreases, go on bottom-up updating
61: x← p
62: p← Parent(x)
63: if p = NIL then ▷ Delete the root
64: return x
65: return T

Exercise B.1

1. Compare the imperative tree fixing for insert and delete, there are similarities.
Develop a common fix function for both insert and delete.

B.4 Example program
The main delete program:

Node del(Node t, Node x) {
if x == null then return t
Node y
var parent = x.parent
if x.left == null {

y = x.replaceWith(x.right)

B.4. EXAMPLE PROGRAM 383

} else if x.right == null {
y = x.replaceWith(x.left)

} else {
y = min(x.right)
x.key = y.key
parent = y.parent
x = y
y = y.replaceWith(y.right)

}
t = deleteFix(t, parent, y)
release(x)
return t

}

Where replaceWith is defined in the chapter of red-black tree. release(x) re-
leases the memory of a node. Function deleteFix is implemented as below:
Node deleteFix(Node t, Node parent, Node x) {

int d1, d2, dy
Node p, l, r
while parent ̸= null {

d2 = d1 = parent.delta
d2 = d2 + if x == parent.left then 1 else -1
if isLeaf(parent) then d2 = 0
parent.delta = d2
p = parent
l = parent.left
r = parent.right
if abs(d1) == 1 and abs(d2) == 0 {

x = parent
parent = x.parent

} else if abs(d1) == 0 and abs(d2) == 1 {
return t

} else if abs(d1) == 1 and abs(d2) == 2 {
if d2 == 2 {

if r.delta == 1 { // right-right
p.delta = 0
r.delta = 0
parent = r
t = leftRotate(t, p)

} else if r.delta == -1 { // right-left
dy = r.left.delta
p.delta = if dy == 1 then -1 else 0
r.left.delta = 0
r.delta = if dy == -1 then 1 else 0
parent = r.left
t = rightRotate(t, r)
t = leftRotate(t, p)

} else { // delete specific right-right
p.delta = 1
r.delta = r.delta - 1
t = leftRotate(t, p)
break // no further height change

}
} else if d2 == -2 {

if (l.delta == -1) { // left-left
p.delta = 0
l.delta = 0
parent = l
t = rightRotate(t, p)

} else if l.delta == 1 { // left-right
dy = l.right.delta
l.delta = if dy == 1 then -1 else 0
l.right.delta = 0
p.delta = if dy == -1 then 1 else 0
parent = l.right;

384 APPENDIX B. AVL TREE - PROOFS AND THE DELETE ALGORITHM

t = leftRotate(t, l)
t = rightRotate(t, p)

} else { // delete specific left-left
p.delta = -1
l.delta = l.delta + 1
t = rightRotate(t, p)
break // no further height change

}
}
// height decreases, go on bottom-up update
x = parent
parent = x.parent

}
}
if parent == null then return x // delete the root
return t

}

Bibliography

[1] Richard Bird. “Pearls of functional algorithm design”. Cambridge University Press;
1 edition (November 1, 2010). ISBN-10: 0521513383. pp1 - pp6.

[2] Jon Bentley. “Programming Pearls(2nd Edition)”. Addison-Wesley Professional; 2
edition (October 7, 1999). ISBN-13: 978-0201657883.

[3] Chris Okasaki. “Purely Functional Data Structures”. Cambridge university press,
(July 1, 1999), ISBN-13: 978-0521663502

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein. “In-
troduction to Algorithms, Second Edition”. The MIT Press, 2001. ISBN: 0262032937.

[5] Chris Okasaki. “Ten Years of Purely Functional Data Structures”. http://okasaki.
blogspot.com/2008/02/ten-years-of-purely-functional-data.html

[6] SGI. “Standard Template Library Programmer’s Guide”. http://www.sgi.com/tech/
stl/

[7] Wikipedia. “Fold(high-order function)”. https://en.wikipedia.org/wiki/Fold_
(higher-order_function)

[8] Wikipedia. “Function Composition”. https://en.wikipedia.org/wiki/Function_
composition

[9] Wikipedia. “Partial application”. https://en.wikipedia.org/wiki/Partial_application

[10] Miran Lipovaca. “Learn You a Haskell for Great Good! A Beginner’s Guide”. No
Starch Press; 1 edition April 2011, 400 pp. ISBN: 978-1-59327-283-8

[11] Wikipedia. “Bubble sort”. https://en.wikipedia.org/wiki/Bubble_sort

[12] Donald E. Knuth. “The Art of Computer Programming, Volume 3: Sorting and
Searching (2nd Edition)”. Addison-Wesley Professional; 2 edition (May 4, 1998)
ISBN-10: 0201896850 ISBN-13: 978-0201896855

[13] Chris Okasaki. “FUNCTIONAL PEARLS Red-Black Trees in a Functional Setting”.
J. Functional Programming. 1998

[14] Wikipedia. “Red-black tree”. https://en.wikipedia.org/wiki/Red-black_tree

[15] Lyn Turbak. “Red-Black Trees”. http://cs.wellesley.edu/~cs231/fall01/red-black.pdf
Nov. 2, 2001.

[16] Rosetta Code. “Pattern matching”. http://rosettacode.org/wiki/Pattern_matching

[17] Hackage. “Data.Tree.AVL”. http://hackage.haskell.org/packages/archive/AvlTree/
4.2/doc/html/Data-Tree-AVL.html

385

http://okasaki.blogspot.com/2008/02/ten-years-of-purely-functional-data.html
http://okasaki.blogspot.com/2008/02/ten-years-of-purely-functional-data.html
http://www.sgi.com/tech/stl/
http://www.sgi.com/tech/stl/
https://en.wikipedia.org/wiki/Fold_(higher-order_function)
https://en.wikipedia.org/wiki/Fold_(higher-order_function)
https://en.wikipedia.org/wiki/Function_composition
https://en.wikipedia.org/wiki/Function_composition
https://en.wikipedia.org/wiki/Partial_application
https://en.wikipedia.org/wiki/Bubble_sort
https://en.wikipedia.org/wiki/Red-black_tree
http://cs.wellesley.edu/~cs231/fall01/red-black.pdf
http://rosettacode.org/wiki/Pattern_matching
http://hackage.haskell.org/packages/archive/AvlTree/4.2/doc/html/Data-Tree-AVL.html
http://hackage.haskell.org/packages/archive/AvlTree/4.2/doc/html/Data-Tree-AVL.html

386 BIBLIOGRAPHY

[18] Wikipedia. “AVL tree”. https://en.wikipedia.org/wiki/AVL_tree

[19] Guy Cousinear, Michel Mauny. “The Functional Approach to Programming”. Cam-
bridge University Press; English Ed edition (October 29, 1998). ISBN-13: 978-
0521576819

[20] Pavel Grafov. “Implementation of an AVL tree in Python”. http://github.com/
pgrafov/python-avl-tree

[21] Chris Okasaki and Andrew Gill. “Fast Mergeable Integer Maps”. Workshop on ML,
September 1998, pages 77-86.

[22] D.R. Morrison, “PATRICIA – Practical Algorithm To Retrieve Information Coded
In Alphanumeric”, Journal of the ACM, 15(4), October 1968, pages 514-534.

[23] Wikipedia. “Suffix Tree”. https://en.wikipedia.org/wiki/Suffix_tree

[24] Wikipedia. “Trie”. https://en.wikipedia.org/wiki/Trie

[25] Wikipedia. “T9 (predictive text)”. https://en.wikipedia.org/wiki/T9_(predictive_
text)

[26] Wikipedia. “Predictive text”. https://en.wikipedia.org/wiki/Predictive_text

[27] Esko Ukkonen. “On-line construction of suffix trees”. Algorithmica 14 (3): 249–260.
doi:10.1007/BF01206331. http://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.
pdf

[28] Weiner, P. “Linear pattern matching algorithms”, 14th Annual IEEE Symposium on
Switching and Automata Theory, pp. 1-11, doi:10.1109/SWAT.1973.13

[29] Esko Ukkonen. “Suffix tree and suffix array techniques for pattern analysis in strings”.
http://www.cs.helsinki.fi/u/ukkonen/Erice2005.ppt

[30] Suffix Tree (Java). http://en.literateprograms.org/Suffix_tree_(Java)

[31] Robert Giegerich and Stefan Kurtz. “From Ukkonen to McCreight and Weiner: A
Unifying View of Linear-Time Suffix Tree Construction”. Science of Computer Pro-
gramming 25(2-3):187-218, 1995. http://citeseer.ist.psu.edu/giegerich95comparison.
html

[32] Robert Giegerich and Stefan Kurtz. “A Comparison of Imperative and
Purely Functional Suffix Tree Constructions”. Algorithmica 19 (3): 331–353.
doi:10.1007/PL00009177. http://www.zbh.uni-hamburg.de/pubs/pdf/GieKur1997.
pdf

[33] Bryan O’Sullivan. “suffixtree: Efficient, lazy suffix tree implementation”. http://
hackage.haskell.org/package/suffixtree

[34] Danny. http://hkn.eecs.berkeley.edu/~dyoo/plt/suffixtree/

[35] Dan Gusfield. “Algorithms on Strings, Trees and Sequences Computer Science and
Computational Biology”. Cambridge University Press; 1 edition (May 28, 1997)
ISBN: 9780521585194

[36] Lloyd Allison. “Suffix Trees”. http://www.allisons.org/ll/AlgDS/Tree/Suffix/

[37] Esko Ukkonen. “Suffix tree and suffix array techniques for pattern analysis in strings”.
http://www.cs.helsinki.fi/u/ukkonen/Erice2005.ppt

https://en.wikipedia.org/wiki/AVL_tree
http://github.com/pgrafov/python-avl-tree
http://github.com/pgrafov/python-avl-tree
https://en.wikipedia.org/wiki/Suffix_tree
https://en.wikipedia.org/wiki/Trie
https://en.wikipedia.org/wiki/T9_(predictive_text)
https://en.wikipedia.org/wiki/T9_(predictive_text)
https://en.wikipedia.org/wiki/Predictive_text
http://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
http://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
http://www.cs.helsinki.fi/u/ukkonen/Erice2005.ppt
http://en.literateprograms.org/Suffix_tree_(Java)
http://citeseer.ist.psu.edu/giegerich95comparison.html
http://citeseer.ist.psu.edu/giegerich95comparison.html
http://www.zbh.uni-hamburg.de/pubs/pdf/GieKur1997.pdf
http://www.zbh.uni-hamburg.de/pubs/pdf/GieKur1997.pdf
http://hackage.haskell.org/package/suffixtree
http://hackage.haskell.org/package/suffixtree
http://hkn.eecs.berkeley.edu/~dyoo/plt/suffixtree/
http://www.allisons.org/ll/AlgDS/Tree/Suffix/
http://www.cs.helsinki.fi/u/ukkonen/Erice2005.ppt

BIBLIOGRAPHY 387

[38] Esko Ukkonen “Approximate string-matching over suffix trees”. Proc. CPM 93. Lec-
ture Notes in Computer Science 684, pp. 228-242, Springer 1993. http://www.cs.
helsinki.fi/u/ukkonen/cpm931.ps

[39] Wikipeida. “B-tree”. https://en.wikipedia.org/wiki/B-tree

[40] Wikipedia. “Heap (data structure)”. https://en.wikipedia.org/wiki/Heap_(data_
structure)

[41] Wikipedia. “Heapsort”. https://en.wikipedia.org/wiki/Heapsort

[42] Rosetta Code. “Sorting algorithms/Heapsort”. http://rosettacode.org/wiki/Sorting_
algorithms/Heapsort

[43] Wikipedia. “Leftist Tree”. https://en.wikipedia.org/wiki/Leftist_tree

[44] Bruno R. Preiss. Data Structures and Algorithms with Object-Oriented Design Pat-
terns in Java. http://www.brpreiss.com/books/opus5/index.html

[45] Donald E. Knuth. “The Art of Computer Programming. Volume 3: Sorting and
Searching.”. Addison-Wesley Professional; 2nd Edition (October 15, 1998). ISBN-13:
978-0201485417. Section 5.2.3 and 6.2.3

[46] Wikipedia. “Skew heap”. https://en.wikipedia.org/wiki/Skew_heap

[47] Sleator, Daniel Dominic; Jarjan, Robert Endre. “Self-adjusting heaps” SIAM Journal
on Computing 15(1):52-69. doi:10.1137/0215004 ISSN 00975397 (1986)

[48] Wikipedia. “Splay tree”. https://en.wikipedia.org/wiki/Splay_tree

[49] Sleator, Daniel D.; Tarjan, Robert E. (1985), “Self-Adjusting Binary Search Trees”,
Journal of the ACM 32(3):652 - 686, doi: 10.1145/3828.3835

[50] NIST, “binary heap”. http://xw2k.nist.gov/dads//HTML/binaryheap.html

[51] Donald E. Knuth. “The Art of Computer Programming, Volume 3: Sorting and
Searching (2nd Edition)”. Addison-Wesley Professional; 2 edition (May 4, 1998)
ISBN-10: 0201896850 ISBN-13: 978-0201896855

[52] Wikipedia. “Strict weak order”. https://en.wikipedia.org/wiki/Strict_weak_order

[53] Wikipedia. “FIFA world cup”. https://en.wikipedia.org/wiki/FIFA_World_Cup

[54] Wikipedia. “K-ary tree”. https://en.wikipedia.org/wiki/K-ary_tree

[55] Wikipedia, “Pascal’s triangle”. https://en.wikipedia.org/wiki/Pascal’s_triangle

[56] Hackage. “An alternate implementation of a priority queue based on a Fibonacci
heap.”, http://hackage.haskell.org/packages/archive/pqueue-mtl/1.0.7/doc/html/
src/Data-Queue-FibQueue.html

[57] Chris Okasaki. “Fibonacci Heaps.” http://darcs.haskell.org/nofib/gc/fibheaps/orig

[58] Michael L. Fredman, Robert Sedgewick, Daniel D. Sleator, and Robert E. Tarjan.
“The Pairing Heap: A New Form of Self-Adjusting Heap” Algorithmica (1986) 1:
111-129.

[59] Maged M. Michael and Michael L. Scott. “Simple, Fast, and Practical Non-
Blocking and Blocking Concurrent Queue Algorithms”. http://www.cs.rochester.
edu/research/synchronization/pseudocode/queues.html

http://www.cs.helsinki.fi/u/ukkonen/cpm931.ps
http://www.cs.helsinki.fi/u/ukkonen/cpm931.ps
https://en.wikipedia.org/wiki/B-tree
https://en.wikipedia.org/wiki/Heap_(data_structure)
https://en.wikipedia.org/wiki/Heap_(data_structure)
https://en.wikipedia.org/wiki/Heapsort
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
https://en.wikipedia.org/wiki/Leftist_tree
http://www.brpreiss.com/books/opus5/index.html
https://en.wikipedia.org/wiki/Skew_heap
https://en.wikipedia.org/wiki/Splay_tree
http://xw2k.nist.gov/dads//HTML/binaryheap.html
https://en.wikipedia.org/wiki/Strict_weak_order
https://en.wikipedia.org/wiki/FIFA_World_Cup
https://en.wikipedia.org/wiki/K-ary_tree
https://en.wikipedia.org/wiki/Pascal's_triangle
http://hackage.haskell.org/packages/archive/pqueue-mtl/1.0.7/doc/html/src/Data-Queue-FibQueue.html
http://hackage.haskell.org/packages/archive/pqueue-mtl/1.0.7/doc/html/src/Data-Queue-FibQueue.html
http://darcs.haskell.org/nofib/gc/fibheaps/orig
http://www.cs.rochester.edu/research/synchronization/pseudocode/queues.html
http://www.cs.rochester.edu/research/synchronization/pseudocode/queues.html

388 BIBLIOGRAPHY

[60] Herb Sutter. “Writing a Generalized Concurrent Queue”. Dr. Dobb’s Oct 29, 2008.
http://drdobbs.com/cpp/211601363?pgno=1

[61] Wikipedia. “Tail-call”. https://en.wikipedia.org/wiki/Tail_call

[62] Wikipedia. “Recursion (computer science)”. https://en.wikipedia.org/wiki/
Recursion_(computer_science)#Tail-recursive_functions

[63] Harold Abelson, Gerald Jay Sussman, Julie Sussman. “Structure and Interpretation
of Computer Programs, 2nd Edition”. MIT Press, 1996, ISBN 0-262-51087-1.

[64] Chris Okasaki. “Purely Functional Random-Access Lists”. Functional Programming
Languages and Computer Architecture, June 1995, pages 86-95.

[65] Ralf Hinze and Ross Paterson. “Finger Trees: A Simple General-purpose Data
Structure,” in Journal of Functional Programming 16:2 (2006), pages 197-217.
http://www.soi.city.ac.uk/~ross/papers/FingerTree.html

[66] Guibas, L. J., McCreight, E. M., Plass, M. F., Roberts, J. R. (1977), ”A new repre-
sentation for linear lists”. Conference Record of the Ninth Annual ACM Symposium
on Theory of Computing, pp. 49-60.

[67] Generic finger-tree structure. http://hackage.haskell.org/packages/archive/
fingertree/0.0/doc/html/Data-FingerTree.html

[68] Wikipedia. “Move-to-front transform”. https://en.wikipedia.org/wiki/Move-to-
front_transform

[69] Robert Sedgewick. “Implementing quick sort programs”. Communication of ACM.
Volume 21, Number 10. 1978. pp.847 - 857.

[70] Jon Bentley, Douglas McIlroy. “Engineering a sort function”. Software Practice and
experience VOL. 23(11), 1249-1265 1993.

[71] Robert Sedgewick, Jon Bentley. “Quicksort is optimal”. http://www.cs.princeton.
edu/~rs/talks/QuicksortIsOptimal.pdf

[72] Fethi Rabhi, Guy Lapalme. “Algorithms: a functional programming approach”. Sec-
ond edition. Addison-Wesley, 1999. ISBN: 0201-59604-0

[73] Simon Peyton Jones. “The Implementation of functional programming languages”.
Prentice-Hall International, 1987. ISBN: 0-13-453333-X

[74] Jyrki Katajainen, Tomi Pasanen, Jukka Teuhola. “Practical in-place mergesort”.
Nordic Journal of Computing, 1996.

[75] Josè Bacelar Almeida and Jorge Sousa Pinto. “Deriving Sorting Algorithms”. Tech-
nical report, Data structures and Algorithms. 2008.

[76] Cole, Richard (August 1988). “Parallel merge sort”. SIAM J. Comput. 17 (4): 770-
785. doi:10.1137/0217049. (August 1988)

[77] Powers, David M. W. “Parallelized Quicksort and Radixsort with Optimal Speedup”,
Proceedings of International Conference on Parallel Computing Technologies. Novosi-
birsk. 1991.

[78] Wikipedia. “Quicksort”. https://en.wikipedia.org/wiki/Quicksort

[79] Wikipedia. “Total order”. http://en.wokipedia.org/wiki/Total_order

http://drdobbs.com/cpp/211601363?pgno=1
https://en.wikipedia.org/wiki/Tail_call
https://en.wikipedia.org/wiki/Recursion_(computer_science)#Tail-recursive_functions
https://en.wikipedia.org/wiki/Recursion_(computer_science)#Tail-recursive_functions
http://www.soi.city.ac.uk/~ross/papers/FingerTree.html
http://hackage.haskell.org/packages/archive/fingertree/0.0/doc/html/Data-FingerTree.html
http://hackage.haskell.org/packages/archive/fingertree/0.0/doc/html/Data-FingerTree.html
https://en.wikipedia.org/wiki/Move-to-front_transform
https://en.wikipedia.org/wiki/Move-to-front_transform
http://www.cs.princeton.edu/~rs/talks/QuicksortIsOptimal.pdf
http://www.cs.princeton.edu/~rs/talks/QuicksortIsOptimal.pdf
https://en.wikipedia.org/wiki/Quicksort
http://en.wokipedia.org/wiki/Total_order

BIBLIOGRAPHY 389

[80] Wikipedia. “Harmonic series (mathematics)”. https://en.wikipedia.org/wiki/
Harmonic_series_(mathematics)

[81] M. Blum, R.W. Floyd, V. Pratt, R. Rivest and R. Tarjan, ”Time bounds for selec-
tion,” J. Comput. System Sci. 7 (1973) 448-461.

[82] Edsger W. Dijkstra. “The saddleback search”. EWD-934. 1985. http://www.cs.
utexas.edu/users/EWD/index09xx.html.

[83] Robert Boyer, and Strother Moore. “MJRTY - A Fast Majority Vote Algorithm”.
Automated Reasoning: Essays in Honor of Woody Bledsoe, Automated Reasoning
Series, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991, pp. 105-117.

[84] Cormode, Graham; S. Muthukrishnan (2004). “An Improved Data Stream Summary:
The Count-Min Sketch and its Applications”. J. Algorithms 55: 29-38.

[85] Knuth Donald, Morris James H., jr, Pratt Vaughan. “Fast pattern matching in
strings”. SIAM Journal on Computing 6 (2): 323-350. 1977.

[86] Robert Boyer, Strother Moore. “A Fast String Searching Algorithm”. Comm. ACM
(New York, NY, USA: Association for Computing Machinery) 20 (10): 762-772. 1977

[87] R. N. Horspool. “Practical fast searching in strings”. Software - Practice & Experience
10 (6): 501-506. 1980.

[88] Wikipedia. “Boyer-Moore string search algorithm”. https://en.wikipedia.org/wiki/
Boyer-Moore_string_search_algorithm

[89] Wikipedia. “Eight queens puzzle”. https://en.wikipedia.org/wiki/Eight_queens_
puzzle

[90] George Pólya. “How to solve it: A new aspect of mathematical method”. Princeton
University Press(April 25, 2004). ISBN-13: 978-0691119663

[91] Wikipedia. “David A. Huffman”. https://en.wikipedia.org/wiki/David_A._Huffman

[92] Andrei Alexandrescu. “Modern C++ design: Generic Programming and Design Pat-
terns Applied”. Addison Wesley February 01, 2001, ISBN 0-201-70431-5

[93] Benjamin C. Pierce. “Types and Programming Languages”. The MIT Press, 2002.
ISBN:0262162091

[94] Joe Armstrong. “Programming Erlang: Software for a Concurrent World”. Pragmatic
Bookshelf; 1 edition (July 18, 2007). ISBN-13: 978-1934356005

[95] SGI. “transform”. http://www.sgi.com/tech/stl/transform.html

[96] ACM/ICPC. “The drunk jailer.” Peking University judge online for ACM/ICPC.
http://poj.org/problem?id=1218.

[97] Haskell wiki. “Haskell programming tips”. 4.4 Choose the appropriate fold. http:
//www.haskell.org/haskellwiki/Haskell_programming_tips

[98] Wikipedia. “Dot product”. https://en.wikipedia.org/wiki/Dot_product

[99] Xinyu LIU. “Isomorphism - mathematics of programming”. https://github.com/
liuxinyu95/unplugged

https://en.wikipedia.org/wiki/Harmonic_series_(mathematics)
https://en.wikipedia.org/wiki/Harmonic_series_(mathematics)
http://www.cs.utexas.edu/users/EWD/index09xx.html
http://www.cs.utexas.edu/users/EWD/index09xx.html
https://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm
https://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm
https://en.wikipedia.org/wiki/Eight_queens_puzzle
https://en.wikipedia.org/wiki/Eight_queens_puzzle
https://en.wikipedia.org/wiki/David_A._Huffman
http://www.sgi.com/tech/stl/transform.html
http://poj.org/problem?id=1218
http://www.haskell.org/haskellwiki/Haskell_programming_tips
http://www.haskell.org/haskellwiki/Haskell_programming_tips
https://en.wikipedia.org/wiki/Dot_product
https://github.com/liuxinyu95/unplugged
https://github.com/liuxinyu95/unplugged

390 BIBLIOGRAPHY

GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble
The purpose of this License is to make a manual, textbook, or other functional and

useful document “free” in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or noncom-
mercially. Secondarily, this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for modifications made by
others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, be-
cause free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a

notice placed by the copyright holder saying it can be distributed under the terms of this
License. Such a notice grants a world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein. The “Document”, below, refers
to any such manual or work. Any member of the public is a licensee, and is addressed
as “you”. You accept the license if you copy, modify or distribute the work in a way
requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document
or a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Doc-
ument that deals exclusively with the relationship of the publishers or authors of the
Document to the Document’s overall subject (or to related matters) and contains nothing
that could fall directly within that overall subject. (Thus, if the Document is in part a

391

http://fsf.org/

392 BIBLIOGRAPHY

textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for re-
vising the document straightforwardly with generic text editors or (for images composed
of pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup, or absence of markup, has been arranged to thwart or dis-
courage subsequent modification by readers is not Transparent. An image format is not
Transparent if used for any substantial amount of text. A copy that is not “Transparent”
is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title
either is precisely XYZ or contains XYZ in parentheses following text that translates
XYZ in another language. (Here XYZ stands for a specific section name mentioned below,
such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To
“Preserve the Title” of such a section when you modify the Document means that it
remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any
other implication that these Warranty Disclaimers may have is void and has no effect on
the meaning of this License.

2. VERBATIM COPYING

BIBLIOGRAPHY 393

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers)

of the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of
these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you use
the latter option, you must take reasonably prudent steps, when you begin distribution of
Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible
at the stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions

of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

394 BIBLIOGRAPHY

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section Entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These titles
must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

BIBLIOGRAPHY 395

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace
the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,

under the terms defined in section 4 above for modified versions, provided that you in-
clude in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the various
original documents, forming one section Entitled “History”; likewise combine any sections
Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete
all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released

under this License, and replace the individual copies of this License in the various docu-
ments with a single copy that is included in the collection, provided that you follow the
rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individ-
ually under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT
WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Docu-
ment, then if the Document is less than one half of the entire aggregate, the Document’s

396 BIBLIOGRAPHY

Cover Texts may be placed on covers that bracket the Document within the aggregate, or
the electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of

the Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers.
In case of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly

provided under this License. Any attempt otherwise to copy, modify, sublicense, or dis-
tribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to 60 days after the
cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free

Documentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If
the Document specifies that a proxy can decide which future versions of this License can

http://www.gnu.org/copyleft/

BIBLIOGRAPHY 397

be used, that proxy’s public statement of acceptance of a version permanently authorizes
you to choose that version for the Document.

11. RELICENSING
“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide

Web server that publishes copyrightable works and also provides prominent facilities for
anybody to edit those works. A public wiki that anybody can edit is an example of such a
server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the site means
any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all
works that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or
invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in
the document and put the following copyright and license notices just after the title page:

Copyright © YEAR YOUR NAME. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documenta-
tion License, Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is included in the section entitled “GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with … Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover
Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend re-
leasing these examples in parallel under your choice of free software license, such as the
GNU General Public License, to permit their use in free software.

Index

8 queens puzzle, 311

Auto completion, 115
AVL tree, 89

balance, 92
definition, 89
imperative insert, 94
insert, 91
verification, 93

B-tree, 125
delete, 136
insert, 127
look up, 134

BFS, 336
Binary heap, 147

build, 149
decrease key, 152
Heapify, 148
insertion, 152
pop, 150
push, 152
top, 150
top-k, 150

binary heap by array, 147
Binary Random Access List

insert, 214
random access, 216
remove, 214

Binary search, 265
binary search tree, 53

data layout, 55
delete, 61
insertion, 55
looking up, 59
min/max, 60
random build, 64
search, 59
succ/pred, 60
traverse, 57

binary tree, 53
Binomial Heap

Link, 182

Binomial heap, 179
definition, 180
insert, 183
pop, 185
push, 183

Binomial tree, 180
merge, 184

Boyer-Moor majority number, 280
Boyer-Moore algorithm, 296
Breadth-first search, 336

Change-making problem, 347
Cock-tail sort, 170
complete binary tree, 147
Curried Form, 29
Currying, 29

Deep-first search, 305
DFS, 305
Dynamic programming, 348

equivalent, 41

Fibonacci Heap
decrease key, 192
delete min, 188
insert, 187
merge, 187
pop, 188

Fibonacci heap, 186
Finger tree

Append to right, 225
Concatenate, 225
insert to left, 223
Random access, 226
Remove from left, 223
Remove from right, 225

fold, 42

Grady algorithm, 338

Heap sort, 152
Huffman coding, 338

in-order traverse, 57

398

INDEX 399

Insertion sort
binary search, 69
binary search tree, 70
linked-list setting, 69

insertion sort, 67
insertion, 68

Integer Patricia, 102
Integer prefix tree, 102
Integer tree

insert, 103
lookup, 107

Integer trie, 99
insert, 100
look up, 102

Kloski puzzle, 330
KMP, 285
Knuth-Morris-Pratt algorithm, 285

LCS, 353
left child, right sibling, 182
Leftist heap, 154

heap sort, 156
insert, 156
merge, 155
pop, 155
rank, 154
S-value, 154
top, 155

List
append, 23
break, 39
concat, 27
concats, 46
cons, 20
Construction, 20
definition, 19
delete, 26
delete at, 26
drop, 38
drop while, 39
elem, 46
empty, 20
empty testing, 20
existence testing, 46
Extract sub-list, 38
filter, 47
find, 47
fold from left, 44
fold from right, 42
foldl, 44
foldr, 42

for each, 35
get at, 20
group, 40
head, 20
index, 20
infix, 48
init, 21
insert, 25
insert at, 25
last, 21
length, 20
lookup, 47
map, 33, 34
matching, 48
maximum, 31
minimum, 31
mutate, 23
prefix, 48
product, 28
reverse, 37
Reverse index, 22
rindex, 22
set at, 24
span, 39
split at, 38
suffix, 48
sum, 28
tail, 20
take, 38
take while, 39
Transform, 32
unzip, 49
zip, 49

Longest common subsequence problem, 353

Maximum sum problem, 284
Maze problem, 305
Merge Sort, 246

Bottom-up merge sort, 256
In-place merge sort, 250
Merge, 247
Nature merge sort, 253
Performance, 248
Work area, 249, 250

minimum free number, 10
MTF, 227

Paired-array sequence
random access, 219
remove and balance, 219

Pairing heap, 194
decrease key, 195

400 INDEX

definition, 195
delete, 197
insert, 195
pop, 196
top, 195

Parallel merge sort, 257
Parallel quick sort, 257
Patricia, 111
Peg puzzle, 313
post-order traverse, 57
pre-order traverse, 57
Prefix tree, 111

insert, 111
look up, 114

Queue
Balance Queue, 207
Circular buffer, 204
Lazy real-time queue, 210
linked-list, 203
Paired-array queue, 206
Paired-list queue, 206
Real-time queue, 207

Quick Sort
2-way partition, 240
3-way partition, 241
Average case, 237

Quick sort, 233
Improvement, 239
partition, 234
Performance, 237
Ternary partition, 239

Radix tree, 99
range traverse, 61
Red-black tree

Imperative delete, 367
red-black tree, 73, 76

delete, 80
imperative insertion, 84
insert, 78
red-black properties, 76

reduce, 44

Saddelback search, 269
Selection algorithm, 262
selection sort, 167

min, 168
tail-recursive min, 168

Sequence
Binary random access list, 213
Concatenate-able list, 220
finger tree, 221

numeric representation, 216
Paired-array sequence, 219

Skew heap, 156
insertion, 157
merge, 157
pop, 157
top, 157

Splay heap, 157
insert, 161
merge, 162
pop, 161
splay, 158
top, 161

strict weak order, 169
Subset sum problem, 358

T9, 117
Tail call, 29
Tail recursion, 29
Tail recursive call, 29
The wolf, goat, and cabbage puzzle, 319
Tournament knock out, 172
tree reconstruction, 58
tree rotation, 74
Trie, 108

insert, 108
look up, 110

Water jugs puzzle, 323
word counter, 53

	0.1 The smallest free number
	0.1.1 Improvement
	0.1.2 Divide and Conquer
	0.1.3 Expressiveness and performance

	0.2 Regular number
	0.2.1 The brute-force solution
	0.2.2 Improvement
	0.2.3 Queues

	0.3 Summary
	1 List
	1.1 Introduction
	1.2 Definition
	1.2.1 Access

	1.3 Basic operations
	1.3.1 index
	1.3.2 Last
	1.3.3 Reverse index
	1.3.4 Mutate
	Append
	Set value
	insert
	delete
	concatenate

	1.3.5 sum and product
	Recursive sum and product
	Tail call recursion

	1.3.6 maximum and minimum

	1.4 Transform
	1.4.1 map and for-each
	Map
	For each
	Examples

	1.4.2 reverse

	1.5 Sub-list
	1.5.1 take, drop, and split-at
	conditional take and drop

	1.5.2 break and group
	break and span
	group

	1.6 Fold
	1.6.1 fold right
	1.6.2 fold left
	1.6.3 example
	concatenate

	1.7 Search and filter
	1.7.1 Exist
	1.7.2 Look up
	1.7.3 find and filter
	1.7.4 Match

	1.8 zip and unzip
	1.9 Further reading

	2 Binary Search Tree
	2.1 Introduction
	2.2 Data Layout
	2.3 Insertion
	2.4 Traverse
	2.5 Query
	2.5.1 Look up
	2.5.2 Minimum and maximum
	2.5.3 Successor and predecessor

	2.6 Deletion
	2.7 Random build
	2.8 Map
	2.9 Appendix: Example programs

	3 Insertion sort
	3.1 Introduction
	3.2 Insertion
	3.3 Binary search
	3.4 List
	3.5 Binary search tree
	3.6 Summary

	4 Red-black tree
	4.1 Introduction
	4.1.1 Balance
	4.1.2 Tree rotation

	4.2 Definition
	4.3 Insert
	4.4 Delete
	4.5 Imperative red-black tree algorithm
	4.6 Summary
	4.7 Appendix: Example programs

	5 AVL tree
	5.1 Introduction
	5.2 Definition
	5.3 Insert
	5.3.1 Balance
	Verification

	5.4 Imperative AVL tree algorithm
	5.5 Summary
	5.6 Appendix: Example programs

	6 Radix tree
	6.1 Integer trie
	6.1.1 Definition
	6.1.2 Insert
	6.1.3 Look up

	6.2 Integer prefix tree
	6.2.1 Definition
	6.2.2 Insert
	6.2.3 Lookup

	6.3 Trie
	6.3.1 Definition
	6.3.2 Insert
	6.3.3 Look up

	6.4 Prefix tree
	6.4.1 Definition
	6.4.2 Insert
	6.4.3 Look up

	6.5 Applications of trie and prefix tree
	6.5.1 Dictionary and input completion
	6.5.2 Predictive text input

	6.6 Summary
	6.7 Appendix: Example programs

	7 B-Tree
	7.1 Introduction
	7.2 Insert
	7.2.1 Insert then split
	7.2.2 Split before insert
	7.2.3 Paired lists

	7.3 Look up
	7.4 Delete
	7.4.1 Delete and fix
	7.4.2 Merge before delete

	7.5 Summary
	7.6 Appendix: Example programs

	8 Binary Heaps
	8.1 Definition
	8.2 Binary heap by array
	8.2.1 Heapify
	8.2.2 Build
	8.2.3 Heap operations
	Pop
	Top-k
	Increase priority
	Insertion

	8.2.4 Heap sort

	8.3 Leftist heap and skew heap
	8.3.1 Leftist heap
	Merge
	Top and pop
	Insert
	Heap sort

	8.3.2 Skew heap
	Merge

	8.4 Splay heap
	8.4.1 Splay
	8.4.2 Pop
	8.4.3 Merge

	8.5 Summary
	8.6 Appendix - example programs

	9 Selection sort
	9.1 Introduction
	9.2 Find the minimum
	9.2.1 Performance

	9.3 Improvement
	9.3.1 Cock-tail sort

	9.4 Further improvement
	9.4.1 Tournament knock out
	9.4.2 Heap sort

	9.5 Appendix - example programs

	10 Binomial heap, Fibonacci heap, and pairing heap
	10.1 Introduction
	10.2 Binomial Heaps
	Binomial tree
	10.2.1 Link
	Insert

	10.2.2 Merge
	Pop

	10.3 Fibonacci heap
	10.3.1 Insert
	Merge
	Pop

	10.3.2 Increase priority
	10.3.3 The name of Fibonacci heap

	10.4 Pairing Heaps
	10.4.1 Definition
	10.4.2 Merge, insert, and top
	10.4.3 Increase priority
	10.4.4 Pop
	Delete

	10.5 Summary
	10.6 Appendix - example programs

	11 Queue
	11.1 Introduction
	11.2 Linked-list queue
	11.3 Circular buffer
	11.4 Paired-list queue
	11.5 Balance Queue
	11.6 Real-time queue
	11.7 Lazy real-time queue
	11.8 Appendix - example programs

	12 Sequence
	12.1 Introduction
	12.2 Binary random access list
	12.3 Numeric representation
	12.4 paired-array sequence
	12.5 Concatenate-able list
	12.6 Finger tree
	12.6.1 Insert
	12.6.2 Extract
	12.6.3 Append and remove
	12.6.4 concatenate
	12.6.5 Random access

	12.7 Appendix - example programs

	13 Quick sort and merge sort
	13.1 Introduction
	13.2 Quick sort
	13.2.1 Partition
	13.2.2 In-place sort
	13.2.3 Performance
	Average case★

	13.2.4 Improvement
	Worst cases

	13.2.5 quick sort and tree sort

	13.3 Merge sort
	13.3.1 Merge
	13.3.2 Performance
	Improvement

	13.3.3 In-place merge sort
	13.3.4 Nature merge sort
	13.3.5 Bottom-up merge sort

	13.4 Parallelism
	13.5 Summary
	13.6 Appendix: Example programs

	14 Searching
	14.1 Introduction
	14.2 Sequence search
	14.2.1 Divide and conquer search
	k-selection problem
	binary search
	2 dimensions search
	Brute-force 2D search
	Saddleback search
	Improved saddleback search
	More improvement to saddleback search

	14.2.2 Information reuse
	Boyer-Moore majority number
	Maximum sum of sub vector
	KMP
	Purely functional KMP algorithm

	Boyer-Moore
	The bad character heuristics
	The good suffix heuristics

	14.3 Solution searching
	14.3.1 DFS and BFS
	Maze
	Eight queens puzzle
	Peg puzzle
	Summary of DFS
	The wolf, goat, and cabbage puzzle
	Water jugs puzzle
	Kloski
	Summary of BFS

	14.3.2 Search the optimal solution
	Grady algorithm
	Huffman coding
	Change-making problem
	Summary of greedy method

	Dynamic programming
	Properties of dynamic programming
	Longest common subsequence problem
	Subset sum problem

	14.4 Short summary

	A Imperative delete for red-black tree
	B AVL tree - proofs and the delete algorithm
	B.1 Height increment
	B.2 Balance adjustment after insert
	B.3 Delete algorithm
	B.3.1 Functional delete
	B.3.2 Imperative delete

	B.4 Example program

	GNU Free Documentation License
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	11. RELICENSING
	ADDENDUM: How to use this License for your documents

