
Elementary Algorithms

Xinyu LIU 1

March 12, 2023

1Xinyu LIU

Version: e =

∞∑
n=0

1

n!
= 1 +

1

1
+

1

1 · 2 +
1

1 · 2 · 3 + · · · = 2.718283

Email: liuxinyu95@gmail.com

2

Preface

Programmers learn elementary algorithms at school. Except for programming contest or
code interview, they seldom use algorithms in commercial software development. When
talking about algorithms in AI and machine learning, people actually mean scientific
modeling, but not about data structure or elementary algorithm. Even when programmers
need them, they have already been provided in libraries. It seems quite enough to know
about how to use the library as a tool but not ‘re-invent the wheel’. Elementary algorithms
are fundamental things, Let’s start with two problems.

The smallest free number
Richard Bird gives an interesting problem to find the minimum number that not appears
in a given list (Chapter 1, [?]). People often use number to index entities. A number is
either occupied or free. When acquires, we want to always allocate the smallest available
one. Suppose numbers are non-negative integers and those being occupied are recorded
in a list, for example:

[18, 4, 8, 9, 16, 1, 14, 7, 19, 3, 0, 5, 2, 11, 6]

How can we find the smallest free number, 10 from the list? It seems quite easy with
exhaustive search:

1: function Min-Free(A)
2: x← 0
3: loop
4: if x /∈ A then
5: return x
6: else
7: x← x+ 1

Where the /∈ is realized like below.
1: function ‘/∈’(x,X)
2: for i← 1 to |X| do
3: if x = X[i] then
4: return False
5: return True
Where |X| is the length of X. Some environments have built-in implementation to

test existence of an element. When there are millions of numbers, this solution performs
poor. The time spent is quadratic to the length of the list. In a computer with 2 cores of
2.10 GHz CPU, and 2G RAM, the C implementation takes 5.4s to search the minimum
free number among 100,000 numbers, and takes more than 8 minutes to handle a million
numbers.

i

ii Preface

Improvement
For n numbers x1, x2, ..., xn, if there exists free number, some xi must be out of the range
[0, n); otherwise the list is exactly some permutation of 0, 1, ..., n − 1 hence n should be
returned as the minimum free number.

minfree(x1, x2, ..., xn) ≤ n (1)

We use an array F of n+ 1 flags to mark whether a number is free in [0, n].
1: function Min-Free(A)
2: F ←[False, False, ..., False] ▷ n+ 1
3: for x in A do
4: if x < n then
5: F [x]← True
6: for i← 0 to n do
7: if F [i] = False then
8: return i

Initializes F with all False values. For every number x in A, mark the flag F [x] true if
x < n. Finally, scan F to find the first false flag. This program takes time proportion to
n. It uses n+ 1 flags to cover the special case that sort(A) = [0, 1, 2, ..., n− 1]. It needs
O(n) space to store the flags F , then release it when finish. To avoid repeated allocation
and release, we can allocate a sufficient big one in advance for reusing, and change to bit-
wise flags instead of array. The C implementation handles 1 million numbers in 0.023s in
the same computer.

Divide and Conquer
The divide and conquer strategy breaks the problem into smaller ones, then solve them
separately. Collect the numbers xi ≤ bn/2c into a sub-list A′ and the rest into another
sub-list A′′. According to (1), if the length of A′ equals to bn/2c, it means A′ is ‘full’.
The minimum free number must be in A′′, otherwise in A′. Both cases lead to a smaller
problem. When search in A′′, the boundaries change. We do not start from 0, but from
bn/2c+1. We define the algorithm as search(A, l, u), where l is the lower bound and u is
the upper bound. When start l = 0, u = |A| − 1, i.e., minfree(A) = search(A, 0, |A| − 1)

search(∅, l, u) = l

search(A, l, u) =

{
|A′| = m− l + 1 : search(A′′,m+ 1, u)

otherwise : search(A′, l,m)

where: m = b l + u

2
c

A′ = [x ∈ A, x ≤ m], A′′ = [x ∈ A, x > m]

This algorithm doesn’t need additional space1. Each recursive call performs O(|A|)
comparisons to partition A′ and A′′, hence halves the problem as T (n) = T (n/2)+O(n).
We can reduce it to O(n) according to the master theorem. Alternatively, the first call
takes O(n) time to partition A′ and A′′, the second call takes O(n/2) time, the third call
takes O(n/4) time ... The total time is O(n + n/2 + n/4 + ...) = O(2n) = O(n). Below
example Haskell program implements this algorithm.

1The recursion takes O(lgn) stack spaces, but it can be eliminated through tail recursion optimization

Elementary Algorithms iii

minFree xs = bsearch xs 0 (length xs - 1)

bsearch xs l u | xs == [] = l
| length as == m - l + 1 = bsearch bs (m+1) u
| otherwise = bsearch as l m

where
m = (l + u) `div` 2
(as, bs) = partition (≤ m) xs

There are O(lgn) recursive calls. We can eliminate the recursion with loops:
1: function Min-Free(A)
2: l← 0, u← |A|
3: while u− l > 0 do
4: m← l +

u− l

2
5: left← l
6: for right← l to u− 1 do
7: if A[right] ≤ m then
8: Exchange A[left]↔ A[right]
9: left← left+ 1

10: if left < m+ 1 then
11: u← left
12: else
13: l← left

As shown in figure 1, this program re-arranges the array such that all elements before
left are less than or equal to m; while those between left and right are greater than m.

A[i]<=m A[i]>m ...?...

left right

Figure 1: All A[i] ≤ m where 0 ≤ i < left; while A[i] > m where left ≤ i < right. The
rest elements are yet to be scanned.

Regular number
The second problem is to find the 1,500-th number, which only contains factor 2, 3 or 5.
Such numbers are called the regular number, also known as 5-smooth in number theory,
and Hamming numbers named after Richard Hamming. 2, 3, and 5 are definitely regular
numbers. 60 = 223151 is the 25-th regular number. 21 = 203171 is not because it has a
factor of 7. Define 1 = 203050 as the 0-th regular number. The first 10 numbers are:

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, ...

The brute-force solution
We can check numbers one by one from 1, extract all factors of 2, 3 and 5 to see if the
remaining is 1:

1: function Regular-Number(n)

iv Preface

2: x← 1
3: while n > 0 do
4: x← x+ 1
5: if Valid?(x) then
6: n← n− 1

7: return x

8: function Valid?(x)
9: while x mod 2 = 0 do

10: x← x/2

11: while x mod 3 = 0 do
12: x← x/3

13: while x mod 5 = 0 do
14: x← x/5

15: return x = 1 ?
This ‘brute-force’ algorithm performs poor when n increases. The C implementation

takes 40.39s in above computer to find the 1500-th number (860934420).

Improvement
Modular and divide are expensive [2] operations. Instead of checking every number, we
can generate regular numbers with 2, 3, 5 in ascending order from 1. We can use the
queue data structure to solve this problem. A queue allows to add element to one end
(enqueue), and delete from the other end (dequeue). The element enqueued first will
be dequeued first (First In First Out). Initialize the queue with the 0th regular number
1, we repeatedly dequeue a number, multiply it by 2, 3, 5 to generate 3 numbers; then
add them to the queue in ascending order. If the generated number already exists in the
queue, we drop it to avoid duplication, as shown in figure 2.

1

1*2=2 1*3=3 1*5=5

(a) Start from 1

2 3 5

2*2=4 2*3=6 2*5=10

(b) Add 2, 3, 5

3 4 5 6 10

3*2=6 3*3=9 3*5=15

(c) Add 4, 6, 10

4 5 6 9 10 15

4*2=8 4*3=12 4*5=20

(d) Add 9, 15, drop 6

Figure 2: First 4 steps

We can design the algorithm based on this idea:
1: function Regular-Number(n)
2: Q← [1]
3: while n > 0 do
4: x← Dequeue(Q)
5: Unique-Enqueue(Q, 2x)
6: Unique-Enqueue(Q, 3x)

Elementary Algorithms v

7: Unique-Enqueue(Q, 5x)
8: n← n− 1

9: return x

10: function Unique-Enqueue(Q, x)
11: i← 0,m← |Q|
12: while i < m and Q[i] < x do
13: i← i+ 1

14: if i ≥ m or x 6= Q[i] then
15: Insert(Q, i, x)

The Unique-Enqueue function takes O(m) time to insert an unique element in as-
cending order, where m = |Q| is the length of the queue. m increases proportion to n
(Each time, we dequeue an element, and enqueue 3 new at most. The increase ratio ≤
2), the total time is O(1 + 2 + 3 + ...+ n) = O(n2). Figure3 shows the number of queue
access against n. It is a quadratic curve, which reflects the O(n2) performance.

Figure 3: Queue access count - n.

The corresponding C implementation takes 0.016s to output 860934420, about 2500
times faster than the brute-force solution. Let xs be the infinite list of all regular numbers
[x1, x2, x3, ...]. Multiply every number by 2, the result is again infinite many regular
numbers: [2x1, 2x2, 2x3, ...]. So as multiple by 3 and 5. If we merge the three infinite
series together, filter out the duplicated numbers, and prepend 1 as the first, then we get
xs again:

xs = 1 : [2x|x← xs] ∪ [3x|x← xs] ∪ [5x|x← xs] (2)

Where symbol x:xs links x before list xs. It is called ‘cons’ in Lisp. 1 is linked as the
head of the 0th regular number. ∪ implements the infinite lists merge:

(a:as) ∪ (b:bs) =

a < b : a : as ∪ (b:bs)

a = b : a : as ∪ bs

a > b : b : (a:as) ∪ bs

Below is the example program in Haskell:
xs = 1 : (map (∗2) xs) `merge` (map (∗3) xs) `merge` (map (∗5) xs)

merge (a:as) (b:bs) | a < b = a : merge as (b:bs)
| a == b = a : merge as bs
| otherwise = b : merge (a:as) bs

vi Preface

The 1500th number 860934420 is given by ns !! 1500. It takes 0.03s to output
the answer in the same computer.

Queues
The above solution generates and filters out duplicated numbers. It need scan the queue
to keep the ascending order. We category all regular numbers into 3 disjoint buckets:
Q2 = {2i|i > 0}, Q23 = {2i3j |i ≥ 0, j > 0}, and Q235 = {2i3j5k|i, j ≥ 0, k > 0}. The
constraints that j 6= 0 in Q23, and k 6= 0 in Q235 ensure there is no overlap. Realize the
buckets as 3 queues starting from Q2 = {2}, Q23 = {3}, and Q235 = {5}. Each time
extract the smallest number x from the three queues, then do the following:

• If x comes from Q2, enqueue 2x to Q2, 3x to Q23, and 5x to Q235;

• If x comes from Q23, enqueue 3x to Q23, and 5x to Q235. We do not add 2x to Q2,
because Q2 does not hold any numbers divisible by 3.

• If x comes from Q235, enqueue 5x to Q235. We do not add 2x to Q2, or 3x to Q23

because they don’t hold numbers divisible by 5.

We reach to the answer after dequeue n smallest numbers from the three queues.
Figure 4 gives the first 4 steps.

2

min=2

3 5

2*min=4 3*min=6 5*min=10

(a) Enqueue 4, 6, 10;

4

min=3

3 6 5 10

3*min=9 5*min=15

(b) Enqueue 9, 15;

4

min=4

6 9 5 10 15

2*min=8 3*min=12 5*min=20

(c) Enqueue 8, 12, 20;

8

min=5

6 9 12 5 10 15 20

5*min=25

(d) Enqueue 25.

Figure 4: First 4 steps with Q2, Q23, Q235.

1: function Regular-Number(n)
2: x← 1
3: Q2 ← {2}, Q23 ← {3}, Q235 ← {5}
4: while n > 0 do
5: x← min(Head(Q2), Head(Q23), Head(Q235))
6: if x = Head(Q2) then
7: Dequeue(Q2)
8: Enqueue(Q2, 2x)
9: Enqueue(Q23, 3x)

Elementary Algorithms vii

10: Enqueue(Q235, 5x)
11: else if x = Head(Q23) then
12: Dequeue(Q23)
13: Enqueue(Q23, 3x)
14: Enqueue(Q235, 5x)
15: else
16: Dequeue(Q235)
17: Enqueue(Q235, 5x)
18: n← n− 1

19: return x

This algorithm loops n times. Each time extracts the minimum number from three
queues in constant time. Then adds at most 3 numbers to the queues in constant time.
The overall performance is O(n).

Summary
Although the brute-force solution solve both puzzles, they can’t scale up. This book aims
to provide both functional and imperative elementary algorithms and data structures.
We referenced many results from Okasaki’s work [3] and classic text books [4]. We try to
avoid relying on any specific programming language, because the reader may or may not
be familiar with it, and programming languages keep changing. Instead, we use pseudo
code or mathematics notation to make the algorithm definition generic. When give code
examples, the functional ones look more like Haskell, and the imperative ones look like a
mix of several languages.

I wrote the first edition from 2009 to 2017, then rewrote the second edition from 2020
to 2023. The pdf version is available in github.

Exercise 1

1. For the free number puzzle, since all numbers are not negative, we can leverage the
sign as a flag to indicate a number exists. We can scan the number list, for every
number |x| < n (where n is the length), negate the number at position |x|. Then
we run another round of scan to find out the first positive number. It’s position is
the answer. Write a program to realize this method.

2. There are n numbers 1, 2, ..., n. After some processing, they are shuffled, and a
number x is altered to y. Suppose 1 ≤ y ≤ n, design a solution to find x and y in
linear time with constant space.

3. Below example program is a solution for the regular number puzzle. Is it equivalent
to the queue based solution?
Int regularNum(Int m) {

[Int] nums(m + 1)
Int n = 0, i = 0, j = 0, k = 0
nums[0] = 1
Int x2 = 2 ∗ nums[i]
Int x3 = 3 ∗ nums[j]
Int x5 = 5 ∗ nums[k]
while n < m {

n = n + 1
nums[n] = min(x2, x3, x5)
if x2 == nums[n] {

i = i + 1
x2 = 2 ∗ nums[i]

}

viii Preface

if x3 == nums[n] {
j = j + 1
x3 = 3 ∗ nums[j]

}
if x5 == nums[n] {

k = k + 1
x5 = 5 ∗ nums[k]

}
}
return nums[m]

}

Contents

Preface i

1 List 1
1.1 Introduction . 1
1.2 Definition . 1

1.2.1 Access . 2
1.3 Basic operations . 2

1.3.1 index . 2
1.3.2 Last . 3
1.3.3 Right index . 3
1.3.4 Mutate . 5

insert . 5
delete . 7
concatenate . 8

1.3.5 sum and product . 8
1.3.6 maximum and minimum . 10

1.4 Transform . 11
1.4.1 map and for-each . 12

For each . 13
1.4.2 reverse . 15

1.5 Sub-list . 16
1.5.1 break and group . 17

1.6 Fold . 19
1.7 Search and filter . 22
1.8 zip and unzip . 24

2 Binary Search Tree 27
2.1 Definition . 27
2.2 Insert . 29
2.3 Traverse . 30
2.4 Query . 32
2.5 Delete . 34
2.6 Random build . 37
2.7 Map . 37
2.8 Appendix: Example programs . 37

3 Insertion sort 39
3.1 Introduction . 39
3.2 Insertion . 40
3.3 Binary search . 41

ix

x CONTENTS

3.4 List . 41
3.5 Binary search tree . 42

4 Red-black tree 45
4.1 Balance . 45
4.2 Definition . 48
4.3 Insert . 50
4.4 Delete . 51
4.5 Imperative red-black tree⋆ . 55
4.6 Appendix: Example programs . 56

5 AVL tree 59
5.1 Definition . 59
5.2 Insert . 61

5.2.1 Balance . 62
5.2.2 Verification . 63

5.3 Imperative algorithm ⋆ . 64
5.4 Appendix: Example programs . 66

6 Radix tree 69
6.1 Integer trie . 69

6.1.1 Definition . 70
6.1.2 Insert . 70
6.1.3 Lookup . 72

6.2 Integer prefix tree . 72
6.2.1 Definition . 73
6.2.2 Insert . 73
6.2.3 Lookup . 77

6.3 Trie . 78
6.3.1 Insert . 78
6.3.2 Lookup . 80

6.4 Prefix tree . 80
6.4.1 Insert . 81
6.4.2 Lookup . 84

6.5 Applications of trie and prefix tree . 84
6.5.1 Dictionary and input completion 84
6.5.2 Predictive text input . 87

6.6 Appendix: Example programs . 89

7 B-Tree 95
7.1 Introduction . 95
7.2 Insert . 97

7.2.1 Insert then split . 97
7.2.2 Split before insert . 100
7.2.3 Paired lists . 102

7.3 Look up . 104
7.4 Delete . 106

7.4.1 Delete and fix . 106
7.4.2 Merge before delete . 109

7.5 Summary . 112
7.6 Appendix: Example programs . 113

CONTENTS xi

8 Binary Heaps 117
8.1 Definition . 117
8.2 Binary heap by array . 117

8.2.1 Heapify . 118
8.2.2 Build . 119
8.2.3 Heap operations . 120

Pop . 120
Top-k . 120
Increase priority . 122
Insertion . 122

8.2.4 Heap sort . 122
8.3 Leftist heap and skew heap . 123

8.3.1 Leftist heap . 124
Merge . 125
Top and pop . 125
Insert . 126
Heap sort . 126

8.3.2 Skew heap . 126
Merge . 127

8.4 Splay heap . 127
8.4.1 Splay . 128
8.4.2 Pop . 131
8.4.3 Merge . 132

8.5 Summary . 132
8.6 Appendix - example programs . 132

9 Selection sort 137
9.1 Introduction . 137
9.2 Find the minimum . 138

9.2.1 Performance . 139
9.3 Improvement . 139

9.3.1 Cock-tail sort . 140
9.4 Further improvement . 142

9.4.1 Tournament knock out . 142
9.4.2 Heap sort . 145

9.5 Appendix - example programs . 146

10 Binomial heap, Fibonacci heap, and pairing heap 149
10.1 Introduction . 149
10.2 Binomial Heaps . 149

Binomial tree . 150
10.2.1 Link . 152

Insert . 153
10.2.2 Merge . 154

Pop . 155
10.3 Fibonacci heap . 156

10.3.1 Insert . 157
Merge . 157
Pop . 158

10.3.2 Increase priority . 162
10.3.3 The name of Fibonacci heap . 163

10.4 Pairing Heaps . 164

xii CONTENTS

10.4.1 Definition . 165
10.4.2 Merge, insert, and top . 165
10.4.3 Increase priority . 165
10.4.4 Pop . 166

Delete . 167
10.5 Summary . 168
10.6 Appendix - example programs . 168

11 Queue 173
11.1 Introduction . 173
11.2 Linked-list queue . 173
11.3 Circular buffer . 174
11.4 Paired-list queue . 176
11.5 Balance Queue . 177
11.6 Real-time queue . 177
11.7 Lazy real-time queue . 180
11.8 Appendix - example programs . 181

12 Sequence 183
12.1 Introduction . 183
12.2 Binary random access list . 183
12.3 Numeric representation . 186
12.4 paired-array sequence . 189
12.5 Concatenate-able list . 190
12.6 Finger tree . 191

12.6.1 Insert . 192
12.6.2 Extract . 193
12.6.3 Append and remove . 195
12.6.4 concatenate . 195
12.6.5 Random access . 196

12.7 Appendix - example programs . 198

13 Quick sort and merge sort 203
13.1 Introduction . 203
13.2 Quick sort . 203

13.2.1 Partition . 204
13.2.2 In-place sort . 205
13.2.3 Performance . 207

Average case⋆ . 207
13.2.4 Improvement . 209

Worst cases . 213
13.2.5 quick sort and tree sort . 216

13.3 Merge sort . 216
13.3.1 Merge . 217
13.3.2 Performance . 218

Improvement . 219
13.3.3 In-place merge sort . 220
13.3.4 Nature merge sort . 223
13.3.5 Bottom-up merge sort . 226

13.4 Parallelism . 227
13.5 Summary . 227
13.6 Appendix: Example programs . 228

CONTENTS xiii

14 Solution search 231
14.1 k selection problem . 231
14.2 Binary search . 232

14.2.1 2D search . 233
14.3 The majority number . 241
14.4 Maximum sum of sub-vector . 242
14.5 String matching . 244
14.6 Solution search . 246

14.6.1 DFS and BFS . 246
Maze . 246
Eight queens puzzle . 248
Peg puzzle . 250
The wolf, goat, and cabbage puzzle 254
Water jugs puzzle . 257
Kloski . 261

14.6.2 Greedy algorithm . 265
Huffman coding . 265
Change making problem . 269

14.6.3 Dynamic programming . 270
Longest common sub-sequence . 272
Subset sum . 274

14.7 Appendix - example programs . 277

Appendices

Imperative delete for red-black tree 287

AVL tree - proofs and the delete algorithm 295
I Height increment . 295
II Balance adjustment after insert . 296
III Delete algorithm . 298

* Functional delete . 299
† Imperative delete . 300

IV Example program . 302

Answers 305

GNU Free Documentation License 325
1. APPLICABILITY AND DEFINITIONS . 325
2. VERBATIM COPYING . 326
3. COPYING IN QUANTITY . 327
4. MODIFICATIONS . 327
5. COMBINING DOCUMENTS . 329
6. COLLECTIONS OF DOCUMENTS . 329
7. AGGREGATION WITH INDEPENDENT WORKS 329
8. TRANSLATION . 330
9. TERMINATION . 330
10. FUTURE REVISIONS OF THIS LICENSE 330
11. RELICENSING . 331
ADDENDUM: How to use this License for your documents 331

xiv CONTENTS

Chapter 1

List

1.1 Introduction
List and array are build blocks for other complex data structure. Both hold multiple
elements as a container. Array is a range of consecutive cells indexed by a number
(address). It is typically bounded with fixed size. While list increases on-demand. One
can traverse a list one by one from head to tail. Particularly in functional settings, list
plays critical role to control the computation and logic flow1. Readers already be familiar
with map, filter, fold are safe to skip this chapter, and directly start from chapter 2.

1.2 Definition
List, or singly linked-list is a data structure recursively defined as: A list is either empty,
denoted as [] or NIL; or contains an element and liked with a list. Figure 1.1 shows a
list of nodes. Each contains two parts, an element (key), and a reference to the sub-list
(next). The next to the last node is empty (NIL).

NIL

Figure 1.1: A list of nodes

Every node links to the next or NIL. We often define list with the compound structure2,
for example:

data List<A> {
A key
List<A> next

}

Many traditional environments support the NIL concept. There are two ways to
represent the empty list: one is to use NIL (or null, or ∅) directly; the other is to create
a list, but put nothing as []. From implementation perspective, NIL need not allocate
any memories, while [] does.

1In low level, lambda calculus plays the most critical role as one of the computation model equivalent
to Turing machine [93], [99].

2In most cases, the data stored in list have the same type. However, there is also heterogeneous list,
like the list in Lisp for example.

1

2 CHAPTER 1. LIST

1.2.1 Access
Given a none empty list X, define two functions3 to access the first element, and the rest
sub-list. They are often called as first X and rest X, or head X and tail X4. Conversely,
we can construct a list from an element x and another list xs (can be empty), as x:xs. It
is called the cons operation. We have the following equations:{

head (x:xs) = x

tail (x:xs) = xs
(1.1)

For a none empty list X, we also denote the first element as x1, and the rest sub-list
as X ′. For example, when X = [x1, x2, x3, ...], then X ′ = [x2, x3, ...].

Exercise 1.2
1. For list of type A, suppose we can test if any two elements x, y ∈ A are equal,

define an algorithm to test if two lists are identical.

1.3 Basic operations
From the definition, we can count the length recursively. the length of the empty list is
0, or it is 1 plus the length of the sub-list.

length [] = 0
length (x:xs) = 1 + length xs

(1.2)

We traverse the list to count the length, the performance is bound to O(n), where n
is the number of elements. We use |X| as the length of X when the context is clear. To
avoid repeatedly counting, we can persist the length in a variable, and update it when
mutate (add or delete). Below is the iterative length counting:

1: function Length(X)
2: n← 0
3: while X 6= NIL do
4: n← n+ 1
5: X ← Next(X)
6: return n

1.3.1 index
Array supports random access at position i in constant time, while we need traverse the
list i steps to access the target element.

getAt i (x:xs) =

{
i = 0 : x

i 6= 0 : getAt (i− 1) xs
(1.3)

We leave the empty list not handled. The behavior when [] is undefined. As such, the
out of bound case also leads to the undefined behavior. If i > |X|, we end up the edge
case to access the (i− |X|) position of the empty list. On the other hand, if i < 0, after
minus it by one, it’s even farther away from 0, and finally ends up with some negative
position of the empty list. getAt is bound to O(i) time as it advances the list i steps.
Below is the imperative implementation:

3We often write function f(x) as f x, and f(x, y, ..., z) as f x y ... z.
4They are named as car and cdr in Lisp due to the design of machine registers [63].

1.3. BASIC OPERATIONS 3

1: function Get-At(i,X)
2: while i 6= 0 do
3: X ← Next(X) ▷ error when X = NIL
4: i← i− 1

5: return First(X)

Exercise 1.3
1. In the iterative Get-At(i,X) implementation, what is the behavior when X is

empty? what if i is out of the bound or negative?

1.3.2 Last
There is a pair of symmetric operations to ‘first/rest’, namely ‘last/init’. For a none empty
list X = [x1, x2, ..., xn], function last returns the tail element xn, while init returns the
sub-list of [x1, x2, ..., xn−1]. Although they are symmetric pairs left to right, ‘last/init’
need traverse the list, hence are linear time.

last [x] = x
last (x:xs) = last xs

init [x] = []
init (x : xs) = x : init xs

(1.4)

Both do not handle the empty list. The behavior is undefined with []. Below are the
iterative implementation:

1: function Last(X)
2: x← NIL
3: while X 6= NIL do
4: x← First(X)
5: X ← Rest(X)
6: return x

7: function Init(X)
8: X ′ ← NIL
9: while Rest(X) 6= NIL do ▷ Error when X is NIL

10: X ′ ← Cons(First(X), X ′)
11: X ← Rest(X)
12: return Reverse(X ′)

Init accumulates the result through Cons. However, the order is reversed. We need
reverse (section 1.4.2) it back.

1.3.3 Right index
last is a special case of right index. The generic case is to find the last i-th element (from
right). The naive implementation traverses two rounds: count the length n first, then
access the (n− i− 1)-th element from left:

lastAt i X = getAt (|X| − i− 1) L

The better solution uses two pointers p1, p2 with the distance if i, i.e., resti(p2) = p1,
where resti(p2) means repeatedly apply rest for i times. When advance p2 by i steps, it
meets p1. p2 starts from the head. Advance both pointers in parallel till p1 arrives at tail.
At this time point, p2 exactly points to the i-th element from right. as shown in figure
1.2. p1 and p2 form a sliding window of width i.

4 CHAPTER 1. LIST

x[1] x[2] ... x[i+1] ... x[n] .

p2 p1

(a) p2 starts from the head, behind p1 in i steps.

x[1] x[2] ... x[n-i] ... x[n] .

p2 p1

(b) When p1 reaches the tail, p2 points to the i-th element from right.

Figure 1.2: Sliding window

1: function Last-At(i,X)
2: p← X
3: while i > 0 do
4: X ← Rest(X) ▷ Error if out of bound
5: i← i− 1

6: while Rest(X) 6= NIL do
7: X ← Rest(X)
8: p← Rest(p)
9: return First(p)
We can’t alter the pointers in purely functional settings. Instead, we advance two

lists X = [x1, x2, ..., xn] and Y = [xi, xi+1, ..., xn] simultaneously, where Y is the sub-list
without the first i− 1 elements.

lastAt i X = slide X (drop i X) (1.5)

Where:

slide (x:xs) [y] = x
slide (x:xs) (y :ys) = slide xs ys

(1.6)

Function drop m X discards the first m elements.

drop 0 xs = xs
drop m [] = []

drop m (x:xs) = drop (m− 1) xs
(1.7)

Exercise 1.4
1. In the Init algorithm, can we use Append(X ′, First(X)) instead of Cons?
2. How to handle empty list or out of bound error in Last-At?

1.3. BASIC OPERATIONS 5

1.3.4 Mutate
Mutate includes append, insert, update, and delete. The functional environment actually
implements mutate by creating a new list for the changed part, while keeps (persists) the
original one for reuse, or release at sometime (chapter 2 in [3]).

Append is the symmetric operation of cons, it appends element to the tail, while cons
add from head. It is also known as ‘snoc’ (reverse of ‘cons’). As it need traverse the list
to the tail, the performance is O(n), where n is the length. To avoid repeatedly traverse,
we can persist the tail reference, and update it for changes.

append [] x = [x]
append (y :ys) x = y : append ys x

(1.8)

Below is the corresponding iterative implementation5:
1: function Append(X,x)
2: if X = NIL then
3: return Cons(x, NIL)
4: H ← X ▷ Copy of the head
5: while Rest(X) 6= NIL do
6: X ← Rest(X)
7: Rest(X) ← Cons(x, NIL)
8: return H

To update the Rest, it is typically implemented by updating the next reference, for
example:
List<A> append(List<A> xs, A x) {

if xs == null then return cons(x, null)
var head = xs
while xs.next ̸= null {

xs = xs.next
}
xs.next = cons(x, null)
return head

}

Similar to getAt, we need advance to the target position and change the element.

setAt 0 x (y :ys) = x : ys
setAt i x (y :ys) = y : setAt (i− 1) x ys

(1.9)

The setAt is bound to O(i) time, where i is the position for update.

Exercise 1.5
1. Add the ‘tail’ reference, optimize the append to constant time.
2. When need update the tail reference? How does it affect the performance?
3. Handle the empty list and out of bound error for setAt.

insert

There are two different cases about insertion: (1) insert an element at a given position:
insert i x X, similar to setAt; (2) insert an element to a sorted list, and maintain the
ordering.

insert 0 x ys = x : ys
insert i x (y :ys) = y : insert (i− 1) x ys

(1.10)

5The parameter orders are also symmetric: cons x xs and append xs x

6 CHAPTER 1. LIST

When i exceeds the length, treat it as append (the exercise of this section). Below is
the iterative implementation:

1: function Insert(i, x,X)
2: if i = 0 then
3: return Cons(x,X)
4: H ← X
5: p← X
6: while i > 0 and X 6= NIL do
7: p← X
8: X ← Rest(X)
9: i← i− 1

10: Rest(p) ← Cons(x,X)
11: return H

Let the list L = [x1, x2, ..., xn] be sorted, i.e., for any position 1 ≤ i ≤ j ≤ n, then
xi ≤ xj . Where ≤ is abstract ordering. It can be ≥, subset between sets, and etc. We
define insert to maintain the ordering.

insert x [] = [x]

insert x (y :ys) =

{
x ≤ y : x:y :ys

否则 : y : insert x ys

(1.11)

Since it need compare elements one by one, the performance is bound to O(n) time,
where n is the length. Below is the iterative implementation:

1: function Insert(x,X)
2: if X = NIL or x < First(X) then
3: return Cons(x,X)
4: H ← X
5: while Rest(X) 6= NIL and First(Rest(X)) < x do
6: X ← Rest(X)
7: Rest(X) ← Cons(x, Rest(X))
8: return H

With insert, we can further define the insertion sort: repeatedly insert elements to
the empty list. Since each insert takes liner time, the overall time is bound to O(n2).

sort [] = []
sort (x:xs) = insert x (sort xs)

(1.12)

We can eliminate the recursion to implement the iterative implementation. Scan the
list, and insert elements one by one:

1: function Sort(X)
2: S ← NIL
3: while X 6= NIL do
4: S ← Insert(First(X), S)
5: X ← Rest(X)
6: return S

At any time during loop, the S is sorted. The recursive implementation processes the
list from right, while the iterative one is from left. We’ll use ‘tail-recursion’ in section
1.3.5 to eliminate this difference. Chapter 3 is about insertion sort in detail, including
performance analysis and optimization.

Exercise 1.6

1.3. BASIC OPERATIONS 7

1. Handle the out-of-bound case when insert, treat it as append.
2. Implement insert for array. When insert at position i, all elements after i need

shift to the end.

delete

Symmetric to insert, there are two cases for deletion: (1). delete the element at a position
delAt i X; (2) look up then delete the element of a given value delete x X. To delete the
element at position i, we advance i steps to the target position, then by pass the element,
and link the rest sub-list.

delAt i [] = []
delAt 0 (x:xs) = xs
delAt i (x:xs) = x : delAt (i− 1) xs

(1.13)

It is bound to O(i) time as we need advance i steps to delete. Below is the iterative
implementation.

1: function Del-At(i,X)
2: S ← Cons(⊥, X) ▷ Sentinel node
3: p← S
4: while i > 0 and X 6= NIL do
5: i← i− 1
6: p← X
7: X ← Rest(X)
8: if X 6= NIL then
9: Rest(p) ← Rest(X)

10: return Rest(S)
To simplify the implementation, we introduce a sentinel node S, it contains a special

value ⊥, and points to X. With S, we are save to cut-off any node in X even for the
head. Finally, we return the list after S as the result, and discard S. For ‘find and delete’,
there are two sub-cases: (1) find and delete the first occurrence of a value; (2) remove all
the occurrences. The later is more generic (see the exercise).

delete x [] = []

delete x (y :ys) =

{
x = y : ys

x 6= y : y : delete x ys

(1.14)

Because we scan the lit to find the target element, the time is bound to O(n), where
n is the length. We use a sentinel node to simplify the iterative implementation too:

1: function Delete(x,X)
2: S ← Cons(⊥, X)
3: p← X
4: while X 6= NIL and First(X) 6= x do
5: p← X
6: X ← Rest(X)
7: if X 6= NIL then
8: Rest(p) ← Rest(X)
9: return Rest(S)

Exercise 1.7
1. Implement the algorithm to find and delete all occurrences of a given value.

8 CHAPTER 1. LIST

2. Design the delete algorithm for array, all elements after the delete position need
shift to front.

concatenate

Append is a special case for concatenation. It adds only one element, while concatenation
adds multiple. However, the performance would be quadratic if repeatedly append. Let
|xs| = n, |ys| = m be the lengths, we need advance to the tail of xs for m times, the
performance is O(n+ (n+ 1) + ...+ (n+m)) = O(nm+m2).

xs++ [] = xs
xs++ (y :ys) = append xs y ++ ys

While the ‘cons’ is fast (constant time), we can traverse to the tail of xs only once,
then link to ys.

[] ++ ys = ys
xs++ [] = xs

(x:xs) ++ ys = x : (xs++ ys)
(1.15)

This improvement has the performance of O(n). In imperative settings, we can im-
plement concatenation in constant time with the tail reference variable (see exercise).

1: function Concat(X,Y)
2: if X = NIL then
3: return Y
4: if Y = NIL then
5: return X
6: H ← X
7: while Rest(X) 6= NIL do
8: X ← Rest(X)
9: Rest(X) ← Y

10: return H

1.3.5 sum and product
We often need to calculate the sum or product of a list. They have the same structure.
We will introduce how to abstract them to higher order computation in section 1.6. For
empty list, define the sum as 0, the product as 1.

sum [] = 0
sum (x:xs) = x+ sum xs

product [] = 1
product(x:xs) = x · product xs (1.16)

Both need traverse the list, hence the performance is O(n), where n is the length.
They compute from right to left. We can change to accumulate the result from left. For
sum, accumulate from 0; while for product, accumulate from 1.

sum′ a [] = a
sum′ a (x:xs) = sum (x+ a) xs

prod′ a [] = a
prod′ a (x:xs) = prod′ (x · a) xs

(1.17)
Given a list, we call sum′ with 0, and prod′ with 1 as the accumulators:

sum xs = sum′ 0 xs product xs = prod′ 1 xs (1.18)

Or in Curried form:

1.3. BASIC OPERATIONS 9

sum = sum′ 0 product = prod′ 1

Curried form was introduced by Schönfinkel (1889 - 1942) in 1924, then widely used by
Haskell Curry from 1958. It is known as Currying [73]. For a function taking 2 parameters
f(x, y), when fix x with a value, it becomes a function of y: g(y) = f(x, y) or g = f x.
For multiple variables of f(x, y, ..., z), we convert it to a series of Curried functions:
f, f x, f x y, ..., each takes one parameter: f(x, y, ..., z) = f(x)(y)...(z) = f x y ... z.

The accumulated implementation computes from left to right, needn’t book keeping
any context, state, or intermediate result for recursion. All states are either passed
as argument (for example a), or dropped (for example the previous element). We can
further optimize such recursive calls to loops. Because the recursion happens at the tail
of the function, we call them tail recursion (or ‘tail call’), and the process to eliminate
recursion as ‘tail recursion optimization’ [61]. It greatly improves the performance and
avoid stack overflow due to deep recursions. In section 1.3.4 about insertion sort, the
recursive implementation sorts elements form right. We also optimize it to tail call:

sort′ a [] = a
sort′ a (x:xs) = sort′ (insert x a) xs

(1.19)

We pass [] to start sorting (Curried form): sort = sort′ []. As a typical tail call
example, consider how to compute bn effectively? (problem 1.16 in [63].) A direct imple-
mentation repeatedly multiplies b for n times from 1, which is bound to O(n) time:

1: function Pow(b, n)
2: x← 1
3: loop n times
4: x← x · b
5: return x

When compute b8, after the first 2 loops, we get x = b2. At this stage, we needn’t
multiply x with b to get b3, but directly compute x2, which gives b4. If do this again, we
get (b4)2 = b8. We only need loop 3 times, but not 8 times. If n = 2m for some none
negative integer m, we can compute bn fast as below:

b1 = b
bn = (b

n
2)2

We next extend this divide and conquer method to any none negative integer n: if
n = 0, define b0 = 1; if n is even, we halve n, to compute b

n
2 . Then square it; if n is odd,

since n− 1 is even, we recursively compute bn−1, then multiply b atop it.

b0 = 1

bn =

{
2|n : (b

n
2)2

otherwise : b · bn−1

(1.20)

However, the 2nd clause blocks us from turning it to tail recursive. Alternatively, we
square the base number, and halve the exponent.

b0 = 1

bn =

{
2|n : (b2)

n
2

otherwise : b · bn−1

(1.21)

With this change, we get a tail recursive function to compute bn = pow(b, n, 1).

pow(b, 0, a) = a

pow(b, n, a) =

{
2|n : pow(b2,

n

2
, a)

otherwise : pow(b, n− 1, ab)

(1.22)

10 CHAPTER 1. LIST

This implementation is bound to O(lgn) time. We can improve it further. Represent
n in binary format n = (amam−1...a1a0)2. We need compute b2

i if ai = 1, similar to
the Binomial heap (section 10.2, chapter 10) algorithm. Finally, we multiplying them
together. For example, when compute b11, as 11 = (1011)2 = 23 + 2 + 1, gives b11 =

b2
3 × b2 × b. We follow these steps:

1. compute b1, which is b;

2. Square to b2;

3. Square to b2
2 ;

4. Square to b2
3 .

Finally, multiply the result of step 1, 2, and 4 to get b11.
pow(b, 0, a) = a

pow(b, n, a) =

2|n : pow(b2,
n

2
, a)

otherwise : pow(b2, bn
2
c, ab)

(1.23)

This algorithm essentially shifts n to right 1 bit a time (divide n by 2). If the LSB
(the least significant bit) is 0, n is even, squares the base and keeps the accumulator a
unchanged. If the LSB is 1, n is odd, squares the base and accumulates it to a. When
n is zero, we exhaust all bits, a is the final result. At any time, the updated base b′, the
shifted exponent n′, and the accumulator a satisfy the invariant bn = a(b′)n

′ .The previous
implementation minus one for odd n, the improvement halves n every time. It exactly
runs m rounds, where m is the number of bits. We leave the imperative implementation
as exercise.

Back to the sum and product, the iterative implementation applies plus and multiply
while traversing:

1: function Sum(X)
2: s← 0
3: while X 6= NIL do
4: s← s+ First(X)
5: X ← Rest(X)
6: return s

7: function Product(X)
8: p← 1
9: while X 6= NIL do

10: p← p · First(X)
11: X ← Rest(X)
12: return p

With product, we can define factorial of n as: n! = product [1..n].

1.3.6 maximum and minimum
For a list of comparable elements (we can define order for any two elements), there is the
maximum and minimum. max/min share the same structure:

min [x] = x

min (x:xs) =

{
x < min xs : x

otherwise : min xs

max [x] = x

max (x:xs) =

{
x > max xs : x

otherwise : max xs

(1.24)

1.4. TRANSFORM 11

Both process the list from right. We can change them to tail recursive. It also makes
the computation ‘on-line’, that at any time, the accumulator is the min/max so far. Use
min for example:

min′ a [] = a

min′ a (x:xs) =

{
x < a : min′ x xs

否则 : min′ a xs

(1.25)

Different from sum′/prod′, we can’t pass a fixed starting value to min′/max′, unless
±∞ (Curried form):

min = min′ ∞ max = max′ −∞

We can pass the first element given min/max only takes none empty list:

min (x:xs) = min′ x xs max (x:xs) = max′ x xs (1.26)

We can optimize the tail recursive implementation with loops. Use the Min for ex-
ample.

1: function Min(X)
2: m← First(X)
3: X ← Rest(X)
4: while X 6= NIL do
5: if First(X) < m then
6: m← First(X)
7: X ← Rest(X)
8: return m

Alternatively, we can re-use the first element as the accumulator. Every time, we
compare the first two elements, and drop one. Below is the example for min. max is
symmetric.

min [x] = x

min (x1 :x2 :xs) =

{
x1 < x2 : min (x1 :xs)

otherwise : min (x2 :xs)

(1.27)

Exercise 1.8

1. Change length to tail recursive.
2. Change the insertion sort to tail recursive.
3. Compute bn through the binary format of n.

1.4 Transform

In algebra, there are two types of transformation: one keeps the list structure, but only
transforms the elements; the other alter the list structure, hence the result is not isomor-
phic. Particularly, we call the former map.

12 CHAPTER 1. LIST

1.4.1 map and for-each
The first example converts a list of numbers to strings. Transform [3, 1, 2, 4, 5] to [“three”,
“one”, “two”, “four”, “five”]

toStr [] = []
toStr (x:xs) = (str x) : toStr xs

(1.28)

For the second example, given a dictionary, which is a list of words grouped by their
initials:

[[a, an, another, ...],
[bat, bath, bool, bus, ...],
...,
[zero, zoo, ...]]

Next process a text (Hamlet for example), augment each word with the number of
occurrence, like:

[[(a, 1041), (an, 432), (another, 802), ...],
[(bat, 5), (bath, 34), (bool, 11), (bus, 0), ...],
...,
[(zero 12), (zoo, 0), ...]]

Now for every initial letter, which word does occur most? The answer is a list of words,
that every one has the most occurrences in the group, like [a, but, can, ...]. We
need a program that transforms a list of groups of word-number pairs into a list
of words. First, define a function, which takes a list of word-number pairs, finds the
word paired with the biggest number. Sort is overkill. We need a special max function
maxBy cmp xs, where cmp is the generic compare function.

maxBy cmp [x] = x

maxBy cmp (x1 :x2 :xs) =

{
cmp x1 x2 : maxBy cmp (x2 :xs)

otherwise : maxBy cmp (x1 :xs)

(1.29)

For a pair p = (a, b) we define two functions:{
fst (a, b) = a

snd (a, b) = b
(1.30)

Then define a special compare function for word-count pairs:

less p1 p2 = snd p1 < snd p2 (1.31)

Then pass less to maxBy (in Curried form): max′′ = maxBy less. Finally, call max′′

to process the list:

solve [] = []
solve (x:xs) = (fst (max′′ x)) : solve xs

(1.32)

solve and toStr share the same structure for different problems. We abstract this
common structure as map:

map f [] = []
map f (x:xs) = (f x) : map f xs

(1.33)

1.4. TRANSFORM 13

map takes a function f , applies it to every element to form a new list. A function that
computes with other functions is called high-order function. Let the type of f is A→ B.
It sends an element of A to the result of B, the type of map is:

map :: (A→ B)→ [A]→ [B] (1.34)

Read as: map takes a function of A → B, converts a list [A] to another list [B]. We
can define the above two examples with map as below (in Curried form):

toStr = map str solve = map (fst ◦max′′)

Where f ◦g is function composition, i.e. first apply g then apply f . (f ◦g) x = f(g(x)),
read as f after g. From the set theory point of view. Function y = f(x) defines the map
from x in set X to y in set Y :

Y = {f(x)|x ∈ X} (1.35)

This type of set definition is called Zermelo-Frankel set abstraction (known as ZF
expression) [72]. The difference is that the mapping is from a list (but not set) to an-
other: Y = [f(x)|x ← Y]. There can be duplicated elements. For list, such ZF style
expression is called list comprehension. It is a powerful tool. let us see how to realize the
permutation algorithm for example. Extend from full-permutations [72] [94], we define a
generic perm X r, that permutes r out of the total n elements in list X. There are total
P r
n =

n!

(n− r)!
permutations.

perm X r =

{
|X| < r or r = 0 : [[]]

otherwise : [x:ys | x← X, ys← perm (delete x X) (r − 1)]

(1.36)
If pick zero element, or there are too few (less than r), the result is a list of empty[[

]]; otherwise, for every x in X, we recursively pick r − 1 out of the rest n − 1 elements;
then prepend x for each.

We use a sentinel node in the iterative Map implementation.
1: function Map(f,X)
2: X ′ ← Cons(⊥, NIL) ▷ the sentinel
3: p← X ′

4: while X 6= NIL do
5: x← First(X)
6: X ← Rest(X)
7: Rest(p) ← Cons(f(x), NIL)
8: p← Rest(p)
9: return Rest(X ′) ▷ discard the sentinel

For each

Sometimes we only need process the elements one by one without building the new list,
for example, print every element:

1: function Print(X)
2: while X 6= NIL do
3: print First(X)
4: X ← Rest(X)
More generally, we pass a procedure P , then apply P to each element.

14 CHAPTER 1. LIST

1: function For-Each(P,X)
2: while X 6= NIL do
3: P(First(X))
4: X ← Rest(X)
For example, let us solve the “n-lights puzzle” [96] with map. There are n lights in a

room, all are off. We execute the following n rounds:

1. Switch all lights on;

2. Switch lights of number 2, 4, 6, ... , that every other light is switched;

3. Switch every third lights, number 3, 6, 9, ... ;

4. ...

At the last round, only the n-th light is switched. How many lights are on in the end?
We start with a brute-force solution. Represent the n lights as a list of 0/1 numbers (0:
off, 1: on). Start from all zeros: [0, 0, ..., 0]. Label the light from 1 to n, then map them
to (i, on/off) pairs:

lights = map (i 7→ (i, 0)) [1, 2, ..., n]

It binds each number to zero, i.e., a list of pairs: L = [(1, 0), (2, 0), ..., (n, 0)]. We
operate this list of pairs n rounds. In the i-th round, for every pair (j, x), if i|j (meaning
j mod i = 0), then switch it on/off. As 1− 0 = 1 and 1− 1 = 0, we switch x to 1− x.

switch i (j, x)) =

{
j mod i = 0 : (j, 1− x)

否则 : (j, x)
(1.37)

Realize the i-th round of operation as map (switch i) L (we use the Curried form of
switch). Next, define a function op(), which performs mapping on L over and over for n
rounds: op [1, 2, ..., n] L.

op [] L = L
op (i:is) L = op is (map (switch i) L)

(1.38)

Finally, sum the second value of each pair to get the answer.

solve n = sum (map snd (op [1, 2, ..., n] L)) (1.39)

Below is the example Haskell implementation:
solve = sum ◦ (map snd) ◦ proc where

lights = map (λi → (i, 0)) [1..n]
proc n = operate [1..n] lights
operate [] xs = xs
operate (i:is) xs = operate is (map (switch i) xs)
switch i (j, x) = if j `mod` i == 0 then (j, 1 - x) else (j, x)

Run this program from 1 to 100 lights, below are the answers (added line breaks):

[1,1,1,
2,2,2,2,2,
3,3,3,3,3,3,3,
4,4,4,4,4,4,4,4,4,
5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,6,6,6,6,6,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10]

1.4. TRANSFORM 15

They form a pattern: the first 3 answers are 1; the 4-th to the 8-th answers are 2; the
9-th to the 15-th answers are 3; ... It seems that the i2-th to the ((i+1)2− 1)-th answers
are i. Let’s prove it:

Proof. Given n lights labeled from 1 to n, all light are off when start. The lights which
are switched odd times are on finally. For every light i, we switch it at round j if j divides
i (j|i). Only the lights which have odd number of factors are on in the end. The key
point to solve this puzzle, is to find all the numbers that have odd number of factors. For
any natural number n, let S be the set of all factors of n. Initialize S as ∅. If p is a factor
of n, there must exist a natural number q such that n = pq. It means q is also a factor
of n. We add 2 different factors to set S if and only if p 6= q, which keeps |S| even all the
time unless p = q. In such case, n is a square number. We can only add 1 factor to set
S, which leads to odd number of factors.

We have a fast solution by counting the square numbers under n.

solve(n) = b
√
nc (1.40)

Below Haskell example program outputs the answer for 1, 2, ..., 100 lights:
map (floor ◦ sqrt) [1..100]

Map is abstract, does not limit to list, but applies to many complex algebraic struc-
tures. The next chapter explains how to map trees. We can apply mapping as long as we
can traverse the structure, and the empty is defined.

1.4.2 reverse
It’s a good exercise to reverse a singly linked-list with constant space. One must carefully
manipulate the node reference, while there exists an easy method: (1) Write a purely
recursive solution; (2) Change it to tail recursive; (3) Convert to imperative implementa-
tion. The purely recursive solution is direct:

reverse[] = []
reverse(x:xs) = append (reverse xs) x

Next convert it to tail recursive. Use an accumulator to store the reversed part, start
from an empty list: reverse = reverse′ []

reverse′ a [] = a
reverse′ a (x:xs) = reverse′ (x:a) xs

(1.41)

Different from appending, cons (:) takes constant time. We repeatedly extract the
head element, and prepend to the accumulator. It likes to store the elements in a stack,
then pop them out. The overall performance is O(n), where n is the length. Since tail
call need not keep the context, we next convert it to iterative loops:

1: function Reverse(X)
2: A← NIL
3: while X 6= NIL do
4: A← Cons(First(X), A)
5: X ← Rest(X)
6: return A

However, this implementation creates a new reversed list, but not reverses in-place.
We change it further:

16 CHAPTER 1. LIST

List<T> reverse(List<T> xs) {
List<T> p, ys = null
while xs ̸= null {
p = xs
xs = xs.next
p.next = ys
ys = p

}
return ys

}

Exercise 1.9
1. Given a number from 0 to 1 billion, write a program to ‘read’ it out. for example,

output string ‘one hundred and twenty three’ for 123. What if there is decimal
part?

2. Find the maximum v in a list of pairs [(k, v)] in tail recursive way.

1.5 Sub-list
One can slice an array fast, but need linear time to traverse and extract sub-list. take
extracts the first n elements, it is equivalent get a sub-list from 1 to n: sublist 1 n X.
drop discards the first n elements. It is equivalent to get a sub-list from right: sublist (n+
1) |X| X, which is symmetric to take:

take 0 xs = []
take n [] = []

take n (x:xs) = x : take (n− 1) xs

drop 0 xs = xs
drop n [] = []

drop n (x:xs) = drop (n− 1) xs
(1.42)

When n > |X| or n < 0, it ends up with the empty list case. We leave the imperative
implementation as exercise. We can extract the sub-list at any position for a given length:

sublist from cnt X = take cnt (drop (from− 1) X) (1.43)

Or slice the list with left and right boundaries:

slice from to X = drop (from− 1) (take to X) (1.44)

The range [from, to] includes both ends. We can split the list at a position:

splitAt i X = (take i X, drop i X) (1.45)

We can extend take/drop to keep taking or dropping as far as some condition is
satisfied, Define takeWhile/dropWhile, that scan every element with a predicate p, stop
when any element doesn’t satisfy. They ignore the rest even if some elements satisfy p.
We’ll see this difference in the section of filtering.

takeWhile p [] = []

takeWhile p (x:xs) =

{
(p x) : x : takeWhile p xs

otherwise : []

dropWhile p [] = []

dropWhile p (x:xs) =

{
(p x) : dropWhile p xs

otherwise : x:xs

(1.46)

Exercise 1.10
1. Define sublist and slice in Curried Form without X as parameter.

1.5. SUB-LIST 17

1.5.1 break and group
Break and group re-arrange a list into multiple sub-lists. They typically collect the sub-
lists while traversing to achieve linear performance. We can consider break/span generic
splitting. Not at a given position, break/span scans the list, extracts the longest prefix
with a prediction p. There are two cases for p: pick the elements satisfied; or pick those
not satisfied. The former is span, the later is break.

span p [] = ([], [])

span p (x:xs) =

{
(p x) : (x:as, bs) where : (as, bs) = span p xs

otherwise : ([], x:xs)

(1.47)

We define break by negating the predication: break p = span (¬p). span and break
find the longest prefix. They stop immediately when the condition is broken and ignore
the rest. Below is the iterative implementation of span:

1: function Span(p,X)
2: A← X
3: tail← NIL
4: while X 6= NIL and p(First(X)) do
5: tail← X
6: X ← Rest(X)
7: if tail = NIL then
8: return (NIL, X)
9: Rest(tail) ← NIL

10: return (A,X)

span and break cut the list into two parts, group divides list into multiple sub-lists. For
example, group a long string into small units, each contains consecutive same character:

group “Mississippi” = [“M”, “i”, “ss”, “i”, “ss”,“i”, “pp”, “i”]

For another example, given a list of numbers: X = [15, 9, 0, 12, 11, 7, 10, 5, 6, 13, 1,
4, 8, 3, 14, 2], divide it into small descending sub-lists:

group X = [[15, 9, 0], [12, 11, 7], [10, 5], [6], [13, 1], [4], [8, 3], [14, 2]]

Both are useful. We can build a Radix tree from string groups, support fast text
search (chapter 6). We can implement the nature merge sort algorithm from number
groups (chapter 13). Abstract the group condition as a relation ∼. It tests whether two
consecutive elements x, y are ‘equivalent’: x ∼ y. We scan the list, compare two elements
each time. If they are equivalent, then we add both to a group; otherwise put them to
two different ones.

group ∼ [] = [[]]
group ∼ [x] = [[x]]

group ∼ (x:y :xs) =

{
x ∼ y : (x:ys):yss,where : (ys:yss) = group ∼ (y :xs)

otherwise : [x]:ys:yss

(1.48)
It is bound to O(n) time, where n is the length. For the iterative implementation, if

the list X isn’t empty, initialize the result groups as [[x1]]. Scan from the second element,
append it to the last group if the two consecutive elements are ‘equivalent’; otherwise we
start a new group.

1: function Group(∼, X)

18 CHAPTER 1. LIST

2: if X = NIL then
3: return [[]]
4: x← First(X)
5: X ← Rest(X)
6: g ← [x]
7: G← [g]
8: while X 6= NIL do
9: y ← First(X)

10: if x ∼ y then
11: g ← Append(g, y)
12: else
13: g ← [y]
14: G← Append(G, g)
15: x← y
16: X ← Next(X)
17: return G

However, the performance will downgrade to quadratic without the tail reference opti-
mization for Append. We can change to Cons if don’t care the order. We can define the
above 2 examples with group as group (=) “Mississippi” and group (≥) X. Alternatively,
we can realize grouping with span. Given a predication p, span cuts the list into two
parts: the longest sub-list satisfies p and the rest. We can repeatedly apply span to the
rest till it becomes empty. However, span takes an unary function as the predication,
while the group predication is a binary function. We solve it with Currying: pass and fix
the first argument of the binary predication.

group ∼ [] = [[]]
group ∼ (x:xs) = (x:as) : group ∼ bs,where : (as, bs) = span (y 7→ x ∼ y) xs

(1.49)
Although the new function groups string correctly, it can’t group numbers descending

lists: group (≥) X = [[15,9,0,12,11,7,10,5,6,13,1,4,8,3,14,2]]. When put the first number
15 as the left hand of ≥, it is the maximum , hence span ends with putting all numbers
to as and leaves bs empty. It is not a defect, but the correct behavior. Because group
is defined to put equivalent elements together. The equivalent relation (∼) must satisfy
three axioms: reflexive, transitive, and symmetric.

1. Reflexive. x ∼ x;

2. Transitive. x ∼ y, y ∼ z ⇒ x ∼ z;

3. Symmetric. x ∼ y ⇔ y ∼ x.

When group “Mississippi”, the equal (=) operator satisfies the three axioms, and
generates the correct result. However, the Curried (≥) as an equivalent relationship,
violets both reflexive and symmetric axioms, hence generates unexpected result. The
second implementation via span, limits its use case to strict equivalence; while the first
one does not. It only tests the predication for every two elements matches, which is
weaker than equivalence.

Exercise 1.11
1. Change the take/drop implementation. When n is negative, returns [] for take,

and the entire list for drop.
2. Implement the in-place imperative take/drop.

1.6. FOLD 19

3. Implement the iterative ‘take while’ and ‘drop while’.
4. Consider the below span implementation:

span p [] = ([], [])

span p (x:xs) =

{
(p x) : (x : as, bs),where : (as, bs) = span(p, xs)

otherwise : (as, x : bs)

What is the difference here?

1.6 Fold
Almost all list algorithms share the common structure. It is not by chance. The common-
ality is rooted from the recursive nature of list. We can abstract the list algorithm to a
high level concept, fold6, which is essentially the initial algebra of all list computations [99].
Observe sum, product, and sort for the common structure: the result for empty list is
0 for sum, 1 for product, and [] for sort; the binary operation that applies to the head
and the recursive result. It’s plus for sum, multiply for product, and ordered insertion for
sort. We abstract the result for empty list as the initial value z (generic zero), the binary
operation as ⊕. define:

h ⊕ z [] = z
h ⊕ z (x:xs) = x⊕ (h ⊕ z xs)

(1.50)

Feed a list X = [x1, x2, ..., xn] and expand:

h ⊕ z [x1, x2, ..., xn]
= x1 ⊕ (h ⊕ z [x2, x3, ..., xn])
= x1 ⊕ (x2 ⊕ (h ⊕ z [x3, ..., xn]))

...
= x1 ⊕ (x2 ⊕ (...(xn ⊕ (h ⊕ z []))...))
= x1 ⊕ (x2 ⊕ (...(xn ⊕ z)...))

The parentheses are necessary, because the computation starts from the right-most
(xn ⊕ z), repeatedly folds left towards x1. This is quite similar to a fold-fan in figure 1.3.
Fold-fan is made of bamboo and paper. Multiple frames stack together with an axis at
one end. The arc shape paper is fully expanded by these frames; We can close the fan by
folding the paper. It ends up as a stick.

Figure 1.3: Fold fan
6also known as reduce

20 CHAPTER 1. LIST

Consider the fold-fan as a list of bamboo frames. The binary operation is to fold a
frame to the top of the stack (initialized empty). To fold the fan, start from one end,
repeatedly apply the binary operation, till all the frames are stacked. The sum and
product algorithms do the same thing essentially.

sum [1, 2, 3, 4, 5] = 1 + (2 + (3 + (4 + 5)))
= 1 + (2 + (3 + 9))
= 1 + (2 + 12)
= 1 + 14
= 15

product [1, 2, 3, 4, 5] = 1× (2× (3× (4× 5)))
= 1× (2× (3× 20))
= 1× (2× 60)
= 1× 120
= 120

We name this kind of processes fold. Particularly, since the computation is from right,
we denote it as foldr:

foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

(1.51)

Define sum and product with foldr as below:∑n
i=1 xi = x1 + (x2 + (x3 + ...+ (xn−1 + xn))...)

= foldr (+) 0 [x1, x2, ..., xn]
(1.52)

∏n
i=1 xi = x1 × (x2 × (x3 × ...+ (xn−1 × xn))...)

= foldr (×) 1 [x1, x2, ..., xn]
(1.53)

Or in Curried form: sum = foldr (+) 0, product = foldr (×) 1, for insertion-sort, it
is: sort = foldr insert [].

Convert foldr to tail recursive. It generates the result from left. denote it as foldl:

foldl f z [] = z
foldl f z (x:xs) = foldl f (f zx) xs

(1.54)

Use sum for example, we can see how the computation is expanded from left to right:

foldl (+) 0 [1, 2, 3, 4, 5]
= foldl (+) (0 + 1) [2, 3, 4, 5]
= foldl (+) (0 + 1 + 2) [3, 4, 5]
= foldl (+) (0 + 1 + 2 + 3) [4, 5]
= foldl (+) (0 + 1 + 2 + 3 + 4) [5]
= foldl (+) (0 + 1 + 2 + 3 + 4 + 5) []
= 0 + 1 + 2 + 3 + 4 + 5

The evaluation of f(z, x) is delayed in every step (the lazy evaluation). Otherwise,
they will be evaluated in sequence of [1, 3, 6, 10, 15] in each call. Generally, we can expand
foldl as (infix notation):

foldl (⊕) z [x1, x2, ..., xn] = z ⊕ x1 ⊕ x2 ⊕ ...⊕ xn (1.55)

foldl is tail recursive. We can convert it to loops, called Reduce.
1: function Reduce(f, z,X)
2: while X 6= NIL do
3: z ← f(z, First(X))
4: X ← Rest(X)
5: return z

1.6. FOLD 21

Both foldr and foldl have their own suitable use cases. They are not necessarily
exchangeable. For example, some container only allows to add element to one end (like
stack). We can define a function fromList to build such a container from a list (in Curried
form):

fromList = foldr add ∅

Where ∅ is the empty container. The singly linked-list is such a container. It performs
well (constant time) when add element to the head, but need linear time when append
to tail. foldr is a natural choice when duplicate a list while keeping the order. But foldl
will generate a reversed list. As a workaround, we first reverse the list, then reduce it:

1: function Reduce-Right(f, z,X)
2: return Reduce(f, z, Reverse(X))
One may prefer foldl as it is tail recursive, fits for both functional and imperative

settings as an online algorithm. However, foldr plays a critical role when handling infinite
list (modeled as stream) with lazy evaluation. For example, below program wraps every
natural number to a singleton list, and returns the first 10:

take 10 (foldr (x xs 7→ [x]:xs) [] [1, 2, ...])
⇒ [[1], [2], [3], [4], [5], [6], [7], [8], [9], [10]]

It does not work with foldl or the evaluation never ends. We use a unified notation
fold when both fold left and right work. We also use foldl and foldr to indicate direction
doesn’t matter. Although this chapter is about list, the fold concept is generic, can apply
to other algebraic structures. We can fold a tree (2.6 in [99]), a queue, and many other
things as long as the following 2 things are defined: (1) empty (for example the empty
tree); (2) decomposed recursive structure (like to decompose tree into sub-trees and key).
People abstract them further with concepts like foldable, monoid, and traversable.

For example, we implement the n-lights puzzle with fold and map. In the brute-force
solution, we create a list of pairs. Each pair (i, s) has a light number i, and on/off state
s. Every round j, we switch the i-th light when the j|i. Define this process with fold:

foldr step [(1, 0), (2, 0), ..., (n, 0)] [1, 2, ..., n]

All lights are off at the beginning. We fold the list of rounds 1 to n. Function step takes
two parameters: the round number i, and the list of pairs: step i L = map (switch i) L.
The result of foldr is the pairs of light number and final on/off state, we next extract the
state out through map, and count the number with sum:

sum (map snd (foldr step [(1, 0), (2, 0), ..., (n, 0)] [1, 2, ..., n])) (1.56)

What if we fold a list of lists with “++” (section 1.3.4)? It concatenates them to a
list, just like sum to numbers.

concat = foldr (++) [] (1.57)

For example: concat [[1], [2, 3, 4], [5, 6, 7, 8, 9]]⇒ [1, 2, 3, 4, 5, 6, 7, 8, 9].

Exercise 1.12
1. To define insertion-sort with foldr, we design the insert function as insert x X,

and sort as sort = foldr insert []. The type for foldr is:

foldr :: (A→ B → B)→ B → [A]→ B

Where its first parameter f has the type of A → B → B, the initial value z has
the type B. It folds a list of A, and builds the result of B. How to define the
insertion-sort with foldl? What is the type of foldl?

22 CHAPTER 1. LIST

2. What’s the performance of concat?
3. Design a linear time concat algorithm
4. Define map in foldr

1.7 Search and filter
Search and filter are generic concepts for a wide range of things. For list, it often takes
linear time to scan and find the result. First consider how to test if x is in list X? We
compare every element with x, until either they are equal, or reach to the end:

a ∈ [] = False

a ∈ (b : bs) =

{
b = a : True

b 6= a : a ∈ bs

(1.58)

The existence check is also called elem. The performance is O(n) where n is the
length. We can not improve it to O(lgn) with binary search directly even for ordered list.
This is because list does not support constant time random access (chapter 3).

Let’s extend elem. In the n-lights puzzle, we use a list of pairs [(k, v)]. Every pair
contains a key and a value. Such list is called ‘associate list’ (abbrev. assoc list). We can
lookup the value with a key.

lookup x [] = Nothing

lookup x ((k, v):kvs) =

{
k = x : Just (k, v)

k 6= x : lookup x kvs

(1.59)

Different from elem, we want to find the corresponding value besides the existence of
key x. However, it is not guaranteed the value always exists. We use the algebraic type
class ‘Maybe’. A type of Maybe A has two kinds of value. It may be some a in A or
nothing. Denoted as Just a and Nothing respectively. This is a way to deal with null
reference7 (4.2.2 in [99]).

We can make lookup generic, to find the element that satisfies a given predicate:

find p [] = Nothing

find p (x:xs) =

{
(p x) : Just x

otherwise : find p xs

(1.60)

Although there can be multiple elements satisfy p, the find function picks the first.
We can expand it to find all elements. It is called filter as shown in figure 1.4. Define
(ZF expression): filter p X = [x|x← X, p x].

filter pInput Output

Figure 1.4: Input: [x1, x2, ..., xn], Output: [x′
1, x

′
2, ..., x

′
m]. and ∀x′

i ⇒ p(x′
i).

Different from find, filter returns empty list instead of Nothing when no element
satisfies the predicate.

filter p [] = []

filter p (x:xs) =

{
(p x) : x : filter p xs

otherwise : filter p xs

(1.61)

7Similar to Optional<A> in some environments.

1.7. SEARCH AND FILTER 23

This definition builds the result from right. For iterative implementation, the perfor-
mance will drop to O(n2) if build the result with Append. If change to Cons, then the
order is reversed. We can further reverse it back in linear time (see the exercise).

1: function Filter(p,X)
2: X ′ ← NIL
3: while X 6= NIL do
4: if p(First(X)) then
5: X ′ ← Append(X ′, First(X)) ▷ Linear time
6: L← Rest(X)
The nature to build result from right reminds us foldr. Define f to test an element

against the predicate, and prepend it to the result: f p x as = if p x then x:as else as.
Use its Curried form to define filter:

filter p = foldr (x as 7→ f p x as) [] (1.62)

We can further simplify it (called η-conversion [73]) as:

filter p = foldr (f p) [] (1.63)

Filter is a generic concept not only limit to list. We can apply a predicate to any
traversable structure to extract things.

Match is to find a pattern from some structure. Even if limit to list and string, there
are still too many things to cover (chapter 14). The very basic problem is to test whether
list as exits in bs. There are two special cases: to test if as is prefix or suffix of bs. The
span function actually finds the longest prefix under a given predicate. Similarly, we can
compare each element between as and bs. Define as ⊆ bs if as is prefix of bs:

[] ⊆ bs = True
(a:as) ⊆ [] = False

(a:as) ⊆ (b:bs) =

{
a 6= b : False

a = b : as ⊆ bs

(1.64)

Prefix testing takes linear time to scan the two lists. However, we can not do suffix
testing in this way because it is expensive to align the right ends and scan backwards.
This is different from array. Alternatively, we can reverse both lists in linear time, convert
the problem to prefix testing:

A ⊇ B = reverse(A) ⊆ reverse(B) (1.65)

With ⊆, we can test if a list is the sub-list of another one (infix testing). Define empty
is infix of any list, we repeatedly apply prefix testing while traverse B:

infix? (a:as) [] = False

infix? A B =

{
A ⊆ B : True

otherwise : infix? A B′
(1.66)

Below is the iterative implementation:
1: function Is-Infix(A,B)
2: if A = NIL then
3: return TRUE
4: n← |A|
5: while B 6= NIL and n ≤ |B| do

24 CHAPTER 1. LIST

6: if A ⊆ B then
7: return TRUE
8: B ← Rest(B)
9: return FALSE
Because prefix testing runs in linear time, and is called in every loop. This implemen-

tation is bound to O(nm) time, where m,n are the length of the two lists. Symmetrically,
we can enumerate all suffixes of B, and test if A is prefix of any:

infix? A B = ∃S ∈ suffixes B,A ⊆ S (1.67)

Below example Haskell program implement infix testing with list comprehension:
isInfixOf a b = (not ◦ null) [s | s ← tails b, a `isPrefixOf` s]

Where isPrefixOf does the prefixing testing, tails generates all suffixes of a given
list (exercise of this section).

Exercise 1.13
1. Implement the linear time existence testing algorithm.
2. Implement the iterative lookup algorithm.
3. Implement the linear time filter algorithm through reverse.
4. Implement the iterative prefix testing algorithm.
5. Enumerate all suffixes of a list.

1.8 zip and unzip
The assoc list is a light weighted dictionary (map) for small data. It is easier than tree
or heap based dictionary with the overhead of linear time lookup performance. In the
‘n-lights’ puzzle, we build the assoc list as: map (i 7→ (i, 0)) [1, 2, ..., n]. We define a zip
function:

zip as [] = []
zip [] bs = []

zip (a:as) (b:bs) = (a, b) : zip as bs
(1.68)

This implementation works when the two lists have different lengths. The result has
the same length as the shorter one. We can even zip infinite lists (under lazy evaluation),
for example8: zip [0, 0, ...] [1, 2, ..., n]. For a list of words, we can index it as: zip [1, 2,
...] [a, an, another, ...]. zip builds the result from right. We can define it with foldr. It
is bound to O(m) time, where m is the length of the shorter list. When implement the
iterative zip, the performance will drop to quadratic if using Append, we can use Cons
then reverse the result. However, this method can’t handle two infinite lists. In imperative
settings, we can reuse A to hold the zip result (treat as transform every element to a pair).

1: function Zip(A,B)
2: C ← NIL
3: while A 6= NIL and B 6= NIL do
4: C ← Append(C, (First(A), First(B))) ▷ Linear time
5: A← Rest(A)
6: B ← Rest(B)
7: return C

8Or zip (repeat 0) [1..n], where repeat x = x : repeat x.

1.8. ZIP AND UNZIP 25

We can extend to zip multiple lists. Some programming environments provide, zip,
zip3, zip4, ... Sometimes, we want to apply a binary function to combine elements,
but not just form a pair. For example, given a list of unit prices [1.00, 0.80, 10.05, ...] for
fruits: apple, orange, banana, ... and a list of quantities, like [3, 1, 0, ...], meaning, buy 3
apples, 1 orange, 0 banana, ... Below program generates the payment list:

pays us [] = []
pays [] qs = []

pays (u:us) (q :qs) = uq : pays us qs

It has the same structure as zip except using multiply but not ‘cons’. We can abstract
the binary function as f :

zipWith f as [] = []
zipWith f [] bs = []

zipWith f (a:as) (b:bs) = (f a b) : zipWith f as bs
(1.69)

For example, we can define the inner-product (or dot-product) [98] as: A·B = sum (zipWith (·)AB),
or define the infinite Fibonacci sequence with lazy evaluation:

F = 0 : 1 : zipWith (+) F F ′ (1.70)

Let F be the infinite Fibonacci numbers, starts from 0 and 1. F ′ drops the head. From
the third number, every Fibonacci number is the sum of the corresponding numbers from
F and F ′ at the same position. Below example program takes the first 15 Fibonacci
numbers:
fib = 0 : 1 : zipWith (+) fib (tail fib)

take 15 fib
[0,1,1,2,3,5,8,13,21,34,55,89,144,233,377]

unzip is the inverse of zip. It converts a list of pairs to two separated lists. Define it
with foldr in Curried form:

unzip = foldr ((a, b) (as, bs) 7→ (a:as, b:bs)) ([], []) (1.71)

For the fruits example, given the unit price as an assoc list: U = [(apple, 1.00),
(orange, 0.80), (banana, 10.05), ...], the purchased quantity is also an assoc list: Q =
[(apple, 3), (orange, 1), (banana, 0), ...]. We extract the unit prices and the quantities,
then compute their inner-product:

pay = sum (zipWith (·) snd(unzip U) snd(unzip Q)) (1.72)

zip and unzip are generic. We can expand to zip two trees, where the nodes contain
paired elements from both. When traverse a collection of elements, we can also use the
generic zip and unzip to track the path. This is a method to mimic the ‘parent’ reference
in imperative implementation (last chapter of [10]).

List is fundamental to build more complex data structures and algorithms particularly
in functional settings. We introduced elementary algorithms to construct, access, update,
and transform list; how to search, filter data, and compute with list. Although most pro-
gramming environments provide pre-defined tools and libraries to support list, we should
not simply treat them as black-boxes. Rabhi and Lapalme introduce many functional al-
gorithms about list [72]. Haskell library provides detailed documentation about basic list
algorithms. Bird gives good examples of folding [1], and introduces about the fold fusion
law.

26 Binary search tree

Exercise 1.14
1. Design the iota (I) operator for list, below are the use cases:

• iota(..., n) = [1, 2, 3, ..., n];
• iota(m,n) = [m,m+ 1,m+ 2, ..., n], where m ≤ n;
• iota(m,m+ a, ..., n) = [m,m+ a,m+ 2a, ..., n];
• iota(m,m, ...) = repeat(m) = [m,m,m, ...];
• iota(m, ...) = [m,m+ 1,m+ 2, ...].

2. Implement the linear time imperative zip.
3. Define zip with foldr.
4. For the fruits example, suppose the quantity assoc list only contains the items

without zero quantity. i.e. instead of

Q = [(apple, 3), (banana, 0), (orange, 1), ...]

but
Q = [(apple, 3), (orange, 1), ...]

Write a program to calculate the total payment.
5. Implement lastAt with zip.
6. Write a program to remove the duplicated elements in a list while maintain the

original order. For imperative implementation, the elements should be removed in-
place. What is the complexity? How to simplify it with additional data structure?

7. List can represent decimal non-negative integer. For example 1024 as list is 4 →
2 → 0 → 1. Generally, n = dm...d2d1 can be represented as d1 → d2 → ... → dm.
Given two numbers a, b in list form. Realize arithmetic operations such as add
and subtraction.

8. In imperative settings, a circular linked-list is corrupted, that some node points
back to previous one, as shown in figure 1.5. When traverse, it falls into infinite
loops. Design an algorithm to detect if a list is circular. On top of that, improve
it to find the node where loop starts (the node being pointed by two precedents).

Figure 1.5: A circular linked-list

Chapter 2

Binary Search Tree

Array and list are typically considered the basic data structures. However, we’ll see they
are not necessarily easy to implement in chapter 12. Upon imperative settings, array is
the most elementary data structures. It is possible to implement linked-list using arrays
(Equation 3.4, chapter 3). While in functional settings, linked-list acts as the building
blocks to create array and other data structures. The binary search trees is another basic
data structure. Jon Bentley gives a problem in Programming Pearls [2]: how to count the
number of word occurrences in a text. Here is a solution:
void wordCount(Input in) {

Map<String, Int> map
while String w = read(in) {

map[w] = if map[w] == null then 1 else map[w] + 1
}
for var (w, c) in map {

print(w, ":", c)
}

}

2.1 Definition
The map is a binary search tree. Here we use the word as the key, and its occurrence
number as the value. This program is a typical application of binary search tree. Let
us firstly define the binary tree. A binary tree is either empty (∅)1; or contains 3 parts:
an element k, and two sub-trees called left(l) and right(r) children, denoted as (l, k, r).
A none empty binary tree consists of multiple nodes, each is either empty or stores the
element of type K. We define the type of the binary tree as Tree K. We say a node is a
leaf if both sub-trees are empty, or it’s a branch node.

A binary search tree is a special binary tree that its elements are comparable2, and
satisfies: for any non empty node (l, k, r), all the keys in the left sub-tree < k; k < any key
in the right sub-tree. Figure 2.2 shows an example of binary search tree. Comparing with
figure 2.1, we can see the differences in ordering. For this reason, we call the comparable
element as key, and the augmented data as value. The type is Tree (K,V).

Figure 2.3 shows the data layout. A node contains a key, a value (optional), left,
right sub-tree references, and a parent reference for easy backtracking. When the context

1The great mathematician André Weil invented this symbol for null set. It comes from the Norwegian
alphabet.

2It is abstract ordering, not limit to magnitude, but like precedence, subset of etc. the ‘less than’ (<)
is abstract.

27

28 CHAPTER 2. BINARY SEARCH TREE

k

L R

(a) Binary tree structure
16

4 10

14 7

2 8 1

9 3

(b) A binary tree

Figure 2.1: Binary tree

4

3 8

1

2

7 16

10

9 14

Figure 2.2: A binary search tree

2.2. INSERT 29

is clear, we skip the value (augmented data). The appendix of this chapter includes an
example definition. We needn’t reference for backtracking in functional settings, but use
top-down recursive computation. Below is the example functional definition:

key + satellite data

left

right

parent

key + satellite data

left

right

parent

key + satellite data

left

right

parent

...

Figure 2.3: Node layout with parent reference.

data Tree a = Empty | Node (Tree a) a (Tree a)

2.2 Insert
When insert a key k (with the value) to the binary search tree T , we need maintain the
ordering. If the tree is empty, create a leaf of k. Otherwise, let the tree be (l, x, r). If
k < x, insert it to the left sub-tree l; otherwise, insert to the right r. If k = x, it already
exists in the tree. We overwrite the value (update). Alternatively, we cab append the
data or do nothing. We skip this case. Below is the recursive definition and example
program:

insert k ∅ = (∅, k,∅)

insert k (l, x, r) =

{
k < x : (insert k l, x, r)

otherwise : (l, x, insert k r)

(2.1)

insert k Empty = Node Empty k Empty
insert k (Node l x r) | k < x = Node (insert k l) x r

| otherwise = Node l x (insert k r)

This implementation uses the pattern matching feature. We give another example
without pattern matching in the appendix. We can eliminate the recursion with iterative
loops:

1: function Insert(T, k)
2: root← T
3: x← Create-Leaf(k)
4: parent← NIL
5: while T 6= NIL do
6: parent← T
7: if k < Key(T) then
8: T ← Left(T)

30 CHAPTER 2. BINARY SEARCH TREE

9: else
10: T ← Right(T)
11: Parent(x) ← parent
12: if parent = NIL then ▷ T in empty
13: return x
14: else if k < Key(parent) then
15: Left(parent) ← x
16: else
17: Right(parent) ← x

18: return root

19: function Create-Leaf(k)
20: x← Empty-Node
21: Key(x) ← k
22: Left(x) ← NIL
23: Right(x) ← NIL
24: Parent(x) ← NIL
25: return x

We can repeat insert every element from a list, convert the list to a binary search tree:

fromList [] = ∅
fromList (x:xs) = insert x (fromList xs)

Or define it with fold (chapter 1) in Curried form: fromList = foldr insert ∅. We
arrange the input arguments in symmetric order: insert k t and Insert(T, k) for func-
tional and imperative implementations. Such that to use foldr for the former, and foldl
(or for-loop) for the latter:

1: function From-List(X)
2: T ← NIL
3: for each x in X do
4: T ← Insert(T, x)
5: return T

2.3 Traverse
Traverse is to visit every element in the binary search tree. There are 3 ways: pre-order,
in-order, and post-order tree walk. They are named to highlight the order of visiting key
between/before/after sub-trees.

• pre-order: key - left - right;

• in-order: left - key - right;

• post-order: left - right - key.

The ‘visit’ is recursive. For the tree in figure 2.2, the corresponding visiting orders are
as below:

• pre-order: 4, 3, 1, 2, 8, 7, 16, 10, 9, 14

• in-order: 1, 2, 3, 4, 7, 8, 9, 10, 14, 16

• post-order: 2, 1, 3, 7, 9, 14, 10, 16, 8, 4

2.3. TRAVERSE 31

It is not by accident that the in-order traverse gives an ascending list, but is guaranteed
by the definition of the binary search tree (see exercise). Define map that in-order
traverses and applies function f to every element of the tree. It transforms a tree to
another tree of the same structure (isomorphic).

map f ∅ = ∅
map f (l, k, r) = (map f l, f k,map f r)

(2.2)

If we only need manipulate keys but not transform the tree, we can implement in-order
traverse as below:

1: function Traverse(T, f)
2: if T 6= NIL then
3: Traverse(Left(T), f)
4: f(Key(T))
5: Traverse(Right(T , f))
We can change the map function, convert a binary search tree to a sorted list.

toList ∅ = []
toList (l, k, r) = toList l ++ [k] ++ toList r

(2.3)

We can develop a sort algorithm: convert a list to a binary search tree, then convert
the tree back to ordered list, namely ‘tree sort’: sort X = toList (fromList X), or write
as function composition [8]:

sort = toList ◦ fromList (2.4)

We define the generic fold for binary trees (see chapter 1 for fold):

foldt f g z ∅ = z
foldt f g z (l, k, r) = g (foldt f g z l) (f k) (foldt f g z r)

(2.5)

Where f : A → B, sends the key k of type A in the tree to m = f(k) of type B. It
recursively folds the left and right sub-trees (from z) to get x and y respectively, then
combines the three things together as g x m y. We can define map with foldt:

map f = foldt f (x m y 7→ (x,m, y)) ∅ (2.6)

foldt preserves the tree structure with the ternary function g. If don’t care about the
tree structure, we can use a binary function f : A×B → B to simplify, fold a tree of type
Tree A to a value of type B:

fold f z ∅ = z
fold f z (l, k, r) = fold f (f k (fold f z r)) l

(2.7)

For example: sum = fold (+) 0 sums all elements of the tree; length = fold (x n 7→
n + 1) 0 counts the number of elements in the tree. However, fold can not define map,
as the binary function f loss the tree structure.

Exercise 2.1
1. Given the in-order and pre-order traverse results, rebuild the tree, and output the

post-order traverse result. For example:
• Pre-order: 1, 2, 4, 3, 5, 6;
• In-order: 4, 2, 1, 5, 3, 6;

32 CHAPTER 2. BINARY SEARCH TREE

• Post-order: ?

2. Write a program to rebuild the binary tree from the pre-order and in-order traverse
lists.

3. For binary search tree, prove that the in-order traverse always gives ordered list.
4. What is its complexity of tree sort for n elements?
5. Define toList with fold.
6. Define depth t with folding, to calculate the height of a binary tree.

2.4 Query
Because the binary search tree organises element ordered recursively, it supports varies
of query efficiently. This is reason we name it ‘search’ tree. There are three types of
query: (1) lookup a key; (2) find the minimum or maximum element; (3) given a node,
find its predecessor or successor. Consider lookup the value of some key x in a tree of
type Tree (K,V):

• If the tree is empty, x does not exist;

• For tree (l, (k, v), r), if k = x, returns v;

• If x < k, then recursively lookup l, otherwise, lookup r.

lookup x ∅ = Nothing

lookup x (l, (k, v), r), x) =

k = x : Just v
x < k : lookup x l

否则 : lookup x r

(2.8)

We use the Maybe type3 to handle the ‘not found’ case. If the tree is balanced (see
chapter 4), the performance is O(lgn), where n is the number of elements. It decreases
to O(n) time in the worse case for extremely unbalanced tree. Let the height of the tree
be h, the performance of lookup is O(h). Below implementation eliminates the recursion
with loops:

1: function Lookup(T, x)
2: while T 6= NIL and Key(T) 6= x do
3: if x < Key(T) then
4: T ← Left(T)
5: else
6: T ← Right(T)
7: return Value(T) ▷ returns ∅ if T =NIL
In binary search tree, the less keys are on the left, while the greater keys are on the

right. To locate the minimum element, we keep going to the left till the left sub-tree is
empty. Symmetrically, we keep going to the right to find the maximum. Both min /max
are bound to O(h) time, where h is the height of the tree.

min (∅, k, r) = k
min (l, k, r) = min l

max (l, k,∅) = k
max (l, k, r) = max r

(2.9)

We sometimes need traverse a binary search tree as a container. Start from the
minimum element, keep moving forward step by step towards the maximum, or go back
and forth. Below example program prints elements in sorted order.

3Also known as Optional<T> type, see chapter 1.

2.4. QUERY 33

void printTree (Node<T> t) {
for var it = Iterator(t), it.hasNext(), it = it.next() {

print(it.get(), ", ")
}

}

Such use case need to find the successor or predecessor of a node. Define the successor
of x as the minimum y that x < y. If x has none empty right sub-tree r, the minimum
element of r is the successor. As shown in figure 2.4, to find the successor of 8, we search
the minimum in its right, which is 9. If the right sub-tree of x is empty, we need back-
track along the parent till the closest ancestor whose left sub-tree is also an ancestor of
x. In figure 2.4, since node 2 does not have right sub-tree, we go up to its parent of node
1. However, node 1 does not have left sub-tree, we need go up again, hence reach to node
3. As the left sub-tree of node 3 is also an ancestor of node 2, node 3 is the successor of
node 2.

4

3 8

1

2

7 16

10

9 14

Figure 2.4: The successor of 8 is 9, the minimum of its right; for the successor of 2, we
go up to its parent 1, then 3.

If we finally reach to the root along the parent path, but still can not find an ancestor
on the right, then the node does not have the successor (the last element). Below algorithm
finds the successor of x:

1: function Succ(x)
2: if Right(x) 6= NIL then
3: return Min(Right(x))
4: else
5: p← Parent(x)
6: while p 6= NIL and x = Right(p) do
7: x← p
8: p← Parent(p)
9: return p

This algorithm returns NIL when x hasn’t the successor. The predecessor algorithm
is symmetric:

1: function Pred(x)
2: if Left(x) 6= NIL then
3: return Max(Left(x))

34 CHAPTER 2. BINARY SEARCH TREE

4: else
5: p← Parent(x)
6: while p 6= NIL and x = Left(p) do
7: x← p
8: p← Parent(p)
9: return p

The purely functional settings don’t use parent reference4. Some implementation
records the visited paths for back-track or tree rebuilding, called zipper [?]. The original
purpose for Succ and Pred is ‘to traverse all the elements’ in the tree as a container.
However, in functional settings, we typically in-order traverse the tree through map. It
only meaningful to find the successor and predecessor in imperative settings.

Exercise 2.2

1. How to test whether an element k of type K exists in the tree t of type Tree K?
2. Use Pred and Succ to write an iterator to traverse the binary search tree as a

generic container. What’s the time complexity to traverse a tree of n elements?
3. One can traverse elements inside a range [a, b] for example:

for_each (m.lower_bound(12), m.upper_bound(26), f);
Write an equivalent functional program for binary search tree.

2.5 Delete
We need maintain the ordering while delete: for any node (l, k, r), all left are still less
than k, all right are still greater than k. Blindly deleting a node may break it. To delete
x [6]: (1) if x is a leaf or only has a none empty sub-tree, cut x off; (2) if x has two
none empty sub-trees, use the minimum y of its right sub-tree to replace x, then cut the
original y off. We use the fact that, the minimum of the right sub-tree can not have two
none empty children. Hence we convert case 2 to 1, directly cut the minimum node off,
as shown in figure 2.5, 2.6, and 2.7.

Tree

x

NIL NIL

Figure 2.5: Cut the leaf x off.

delete x ∅ = ∅

delete x (l, k, r) =

x < k : (delete xl, k, r)

x > k : (l, k, delete xr)

x = k : del l r

(2.10)

4There is ref in ML and OCaml, we limit to the purely functional settings.

2.5. DELETE 35

Tree

x

L NIL

(a) Before delete x.

Tree

L

(b) After delete x, cut x off, replace it
with the left sub-tree.

Tree

x

NIL R

(c) Before delete x.

Tree

R

(d) After delete x, cut x off, replace it
with the right sub-tree.

Figure 2.6: Delete a node with only a none empty sub-tree.

Tree

x

L R

(a) Before delete x.

Tree

min(R)

L delete(R, min(R))

(b) After delete x, replace x with
the minimum from its right sub-
tree.

Figure 2.7: Delete a node with two none empty sub-trees.

36 CHAPTER 2. BINARY SEARCH TREE

Where:
del ∅ r = r
del l ∅ = l
del l r = (l, y, delete y r), y = min r

(2.11)

The performance of delete is O(h), where h is the height of the tree. The imperative
implementation needs set the parent reference in addition.

1: function Delete(T, x)
2: r ← T
3: x′ ← x ▷ save x
4: p← Parent(x)
5: if Left(x) = NIL then
6: x← Right(x)
7: else if Right(x) = NIL then
8: x← Left(x)
9: else ▷ neither sub-tree is empty

10: y ← Min(Right(x))
11: Key(x) ← Key(y)
12: Value(x) ← Value(y)
13: if Parent(y) 6= x then ▷ y does not have left sub-tree
14: Left(Parent(y)) ← Right(y)
15: else ▷ y is the root of the right sub-tree
16: Right(x) ← Right(y)
17: if Right(y) 6= NIL then
18: Parent(Right(y)) ← Parent(y)
19: Remove y
20: return r
21: if x 6= NIL then
22: Parent(x) ← p

23: if p = NIL then ▷ remove the root
24: r ← x
25: else
26: if Left(p) = x′ then
27: Left(p) ← x
28: else
29: Right(p) ← x

30: Remove x′

31: return r

Assume x is not empty, first record the root, copy reference to x and its parent.
If either sub-tree is empty, then cut x off. If neither sub-tree is empty, we locate the
minimum node y of the right sub-tree, replace the content of x with y, then cut y off.
We also need handle the special case, that y is the root of the right sub-tree. Finally, we
need reset the stored parent if x has only one none empty sub-tree. If the copied parent
is empty, we are deleting the root. We return the new root in this case. After setting the
parent, we can safely remove x. The deletion algorithm is bound to O(h) time, where h
is the height of the tree.

Exercise 2.3
1. There is a symmetric deletion algorithm. When neither sub-tree is empty, we

replace with the maximum of the left sub-tree, then cut the maximum off. Write
a program to implement this solution.

2.6. RANDOM BUILD 37

2.6 Random build
The performance of the binary search tree algorithms depends on the height h of the tree.
When unbalanced, O(h) is close to O(n), while for well balanced tree, O(h) is close to
O(lgn). Chapter 4 and 5 introduce self-balanced solution, there is another simple method
to balance the tree: shuffle the elements, then build the tree [4]. It decreases the possibility
of poorly balanced tree.

Exercise 2.4
1. Write a randomly building algorithm for binary search tree.
2. How to find the two nodes with the greatest distance in a binary tree?

2.7 Map
We can use binary search tree to realize the map data structure (also known as associative
data structure or dictionary). A finite map is a collection of key-value pairs. Each key is
unique, and is mapped to some value. For keys of type K, values of type V , the type of
the map is Map K V or Map<K, V>. For none empty map, it contains n mappings of
{k1 7→ v1, k2 7→ v2, ..., kn 7→ vn}. When use the binary search tree to implement map, we
constrain K to be ordered set. Every node stores a pair of key and value. The type of
the tree is Tree (K,V). We use the tree insert/update operation to associate a key with
a value. Given a key k, we use lookup to find the mapped value v, or returns nothing or
∅ when k does not exist. The red-black tree and AVL tree in chapter 4 and 5 can also
implement map.

2.8 Appendix: Example programs
Definition of binary search tree node with parent reference.
data Node<T> {

T key
Node<T> left
Node<T> right
Node<T> parent

Node(T k) = Node(null, k, null)

Node(Node<T> l, T k, Node<T> r) {
left = l, key = k, right = r
if (left ̸= null) then left.parent = this
if (right ̸= null) then right.parent = this

}
}

Recursive insert without using pattern matching.
Node<T> insert (Node<T> t, T x) {

if (t == null) {
return Node(null, x, null)

} else if (t.key < x) {
return Node(insert(t.left, x), t.key, t.right)

} else {
return Node(t.left, t.key, insert(t.right, x))

}
}

38 Insertion sort

Map and fold:
mapt _ Empty = Empty
mapt f (Node l x r)= Node (mapt f l) (f x) (mapt f r)

foldt _ _ z Empty = z
foldt f g z (Node l k r) = g (foldt f g z l) (f k) (foldt f g z r)

maptr :: (a → b) → Tree a → Tree b
maptr f = foldt f Node Empty

fold _ z Empty = z
fold f z (Node l k r) = fold f (k `f` (fold f z r)) l

Iterative lookup without recursion:
Optional<Node<T>> lookup (Node<T> t, T x) {

while (t ̸= null and t.key ̸= x) {
if (x < t.key) {

t = t.left
} else {

t = t.right
}

}
return Optional.of(t);

}

Example iterative program to find the minimum of a tree.
Optional<Node<T>> min (Node<T> t) {

while (t ̸= null and t.left ̸= null) {
t = t.left

}
return Optional.of(t);

}

Iterative find the successor.
Optional<Node<T>> succ (Node<T> x) {

if (x == null) {
return Optional.Nothing

} else if (x.right ̸= null) {
return min(x.right)

} else {
p = x.parent
while (p ̸= null and x == p.right) {

x = p
p = p.parent

}
return Optional.of(p);

}
}

delete:
delete _ Empty = Empty
delete x (Node l k r) | x < k = Node (delete x l) k r

| x > k = Node l k (delete x r)
| otherwise = del l r

where
del Empty r = r
del l Empty = l
del l r = let k' = min r in Node l k' (delete k' r)

Chapter 3

Insertion sort

3.1 Introduction
Insertion sort is a straightforward sort algorithm1. We give its preliminary definition
for list in chapter 1. For a collection of comparable elements, we repeatedly pick one,
insert them to a list and maintain the ordering. As every insertion takes linear time, its
performance is bound to O(n2) where n is the number of elements. This performance is
not as good as the divide and conqueror sort algorithms, like quick sort and merge sort.
However, we can still find its application today. For example, a well tuned quick sort
implementation falls back to insertion sort for small data set. The idea of insertion sort is
similar to sort a deck of a poker cards([4] pp.15). The cards are shuffled. A player takes
card one by one. At any time, all cards on hand are sorted. When draws a new card, the
player inserts it in proper position according to the order of points as shown in figure 3.1.

Figure 3.1: Insert card 8 to a deck.

Based on this idea, we can implement insertion sort as below:
1: function Sort(A)
2: S ← []
3: for each a ∈ A do
4: Insert(a, S)
5: return S

We store the sorted result in a new array, alternatively, we can change it to in-place:
1: function Sort(A)

1We skip the ‘Bubble sort’ method

39

40 CHAPTER 3. INSERTION SORT

2: for i← 2 to |A| do
3: ordered insert A[i] to A[1...(i− 1)]

Where the index i ranges from 1 to n = |A|. We start from 2, because the singleton
sub-array [A[1]] is ordered. When process the i-th element, all elements before i are
sorted. We continuously insert elements till consuming all the unsorted ones, as shown in
figure 3.2.

 ... sorted elements ... x

insert

 ... unsorted elements ...

Figure 3.2: Continuously insert elements to the sorted part.

3.2 Insertion
In chapter 1, we give the ordered insertion algorithm for list. For array, we also scan it
to locate the insert position either from left or right. Below algorithm is from right:

1: function Sort(A)
2: for i← 2 to |A| do ▷ Insert A[i] to A[1...(i− 1)]
3: x← A[i] ▷ Save A[i] to x
4: j ← i− 1
5: while j > 0 and x < A[j] do
6: A[j + 1]← A[j]
7: j ← j − 1

8: A[j + 1]← x

It’s expensive to insert at arbitrary position, as array stores elements continuously.
When insert x at position i, we need shift all elements after i (i.e. A[i + 1], A[i + 2], ...)
one cell to right. After free up the cell at i, we put x in, as shown in figure 3.3.

A[1] A[2] ... A[i-1] A[i] A[i+1] A[i+2] ... A[n-1] A[n] empty

x

insert

Figure 3.3: Insert x to A at i.

For the array of length n, suppose after comparing x to the first i elements, we located
the position to insert. Then we shift the rest n − i + 1 elements, and put x in the i-th
cell. Overall, we need traverse the whole array if scan from left. On the other hand, if
scan from right to left, we examine n− i+ 1 elements, and perform the same amount of
shifts. We can also define a separated Insert() function, and call it inside the loop. The
insertion takes linear time no matter scans from left or right, hence the sort algorithm is
bound to O(n2), where n is the number of elements.

3.3. BINARY SEARCH 41

Exercise 3.1

1. Implement the insert to scan from left to right.
2. Define the insert function, and call it from the sort algorithm.

3.3 Binary search
When insert a poker card, human does not scan, but takes a quick glance at the deck to
locate the position. We can do this because the deck is sorted. Binary search is such a
method that applies to ordered sequence.

1: function Sort(A)
2: for i← 2 to |A| do
3: x← A[i]
4: p← Binary-Search(x,A[1...(i− 1)])
5: for j ← i down to p do
6: A[j]← A[j − 1]

7: A[p]← x

Binary search utilize the fact that the slice A[1...(i − 1)] is ordered. Suppose it is
ascending without loss of generality (as we can define ≤ abstract). To find the position
j that satisfies A[j − 1] ≤ x ≤ A[j], we compare x to the middle element A[m], where
m = b i

2
c. If x < A[m], we then recursively apply binary search to the first half; otherwise,

we search the second half. As every time, we halve the elements, binary search takes
O(lg i) time to locate the insert position.

1: function Binary-Search(x,A)
2: l← 1, u← 1 + |A|
3: while l < u do
4: m← b l + u

2
c

5: if A[m] = x then
6: return m ▷ Duplicated element
7: else if A[m] < x then
8: l← m+ 1
9: else

10: u← m
11: return l

The improved sort algorithm is still bound to O(n2). The one with scan takes O(n2)
comparisons and O(n2) shifts; with binary search, it overall takes O(n lgn) comparisons
and O(n2) shifts.

Exercise 3.2

1. Implement the recursive binary search.

3.4 List
With binary search, the search time improved to O(n lgn). However, as we need shift
array cells when insert, the overall time is still bound to O(n2). On the other hand, when
use list, the insert operation is constant time at a given node reference. In chapter 1, we

42 CHAPTER 3. INSERTION SORT

define the insertion sort algorithm for list as below:

sort [] = []
sort (x:xs) = insert x (sort xs)

(3.1)

Or define with foldr in Curried form:

sort = foldr insert [] (3.2)

However, the list insert algorithm still takes linear time, because we need scan to
locate the insert position:

insert x [] = [x]

insert x (y :ys) =

{
x ≤ y : x : y : ys

otherwise : y : insert x ys

(3.3)

Instead of using node reference, we can also realize list through an additional index
array. For every element A[i], Next[i] stores the index to the next element follows A[i],
i.e. A[Next[i]] is the next element of A[i]. There are two special indexes: for the tail node
A[m], we define Next[m] = −1, indicating it points to NIL; we also define Next[0] to
index the head element. With the index array, we can implement the insertion algorithm
as below:

1: function Insert(A,Next, i)
2: j ← 0 ▷ Next[0] for head
3: while Next[j] 6= −1 and A[Next[j]] < A[i] do
4: j ← Next[j]

5: Next[i]← Next[j]
6: Next[j]← i

7: function Sort(A)
8: n← |A|
9: Next = [1, 2, ..., n,−1] ▷ n+ 1 indexes

10: for i← 1 to n do
11: Insert(A,Next, i)
12: return Next

With list, although the insert operation changes to constant time, we need traverse
the list to locate the position. It is still bound to O(n2) times comparison. Unlike array,
list does not support random access, hence we can not use binary search to speed up.

Exercise 3.3
1. For the index array based list, we return the re-arranged index as result. Design

an algorithm to re-order the original array A from the index Next.

3.5 Binary search tree
We drive into a corner. We want to improve both comparison and insertion at the same
time, or will end up with O(n2) performance. For comparison, we need binary search
to achieve O(lgn) time; on the other hand, we need change the data structure, because
array can not support constant time insertion at a position. We introduce a powerful
data structure in chapter 2, the binary search tree. It supports binary search from its
definition by nature. At the same time, we can insert a new node in binary search tree
fast at the given location.

Elementary Algorithms 43

1: function Sort(A)
2: T ← ∅
3: for each x ∈ A do
4: T ← Insert-Tree(T, x)
5: return To-List(T)
Where Insert-Tree() and To-List() are defined in chapter 2. In average case, the

performance of tree sort is bound to O(n lgn), where n is the number of elements. This
is the lower limit of comparison based sort([?] pp.180-193). However, in the worst case,
if the tree is poor balanced the performance drops to O(n2).

Insertion sort is often used as the first example of sorting. It is straightforward and
easy to implement. However its performance is quadratic. Insertion sort does not only
appear in textbooks, it has practical use case in the quick sort implementation. It is an
engineering practice to fallback to insertion sort when the number of elements is small.

44 Red-black tree

Chapter 4

Red-black tree

As the example in chapter 2, we use the binary search tree as a dictionary to count the
word occurrence. One may want to feed a address book to a binary search tree, and use
it to lookup the contact as below example program:
void addrBook(Input in) {

Map<String, String> dict
while (String name, String addr) = read(in) {

dict[name] = addr
}
loop {

string name = read(Console)
var addr = dict[name]
if (addr == null) {

print("not found")
} else {

print("address: ", addr)
}

}
}

Unlike the word counter program, this one performs poorly, especially when search
names like Zara, Zed, Zulu, etc. This is because the address entries are typically in
lexicographic order. If insert numbers 1, 2, 3, ..., n to a binary search tree, it ends up
like in figure 4.1. It is an extremely unbalanced binary search tree. The lookup is bound
to O(h) time for a tree of height h. When the tree is well balanced, the performance is
O(lgn), where n is the number of elements. But in this extreme case, the performance
downgrades to O(n), same as list scan.

Exercise 4.1
1. For a big address entry list in lexicographic order, one may want to speed up

building the address book with two concurrent tasks: one reads from the head; the
other from the tail, till they meet at some middle point. What does the binary
search tree look like? What if split the list into multiple sections to scale the
concurrency?

2. Find more cases to exploit a binary search tree, for example in figure 4.2.

4.1 Balance
To avoid extremely unbalanced case, we can shuffle the input(?? in chapter 2), however,
when user enter input interactively, we can not randomize it. Most tree balancing solutions

45

46 CHAPTER 4. RED-BLACK TREE

1

2

3

...

n

Figure 4.1: unbalanced tree

rely on the rotation operation. Rotation changes the tree structure while maintain the
elements ordering. This chapter introduces the red-black tree, a popular self-balancing
binary search tree. Next chapter is about AVL tree, another self-balanced tree. Chapter
8 introduces the splay tree. It adjusts the tree in steps. There are multiple binary search
trees have the same in-order traverse result. Figure 4.3 shows the tree rotation. We can
define them with pattern matching:

rotatel (a, x, (b, y, c)) = ((a, x, b), y, c))
rotatel T = T

(4.1)

and

rotater ((a, x, b), y, c) = (a, x, (b, y, c))
rotater T = T

(4.2)

Each second clause keeps the tree unchanged if the pattern does not match (for exam-
ple, both sub-trees are empty). We can also implement tree rotation imperatively. We
need re-assign sub-trees and parent reference. When rotate, we pass both the root T , and
the node x as parameters:

1: function Left-Rotate(T, x)
2: p← Parent(x)
3: y ← Right(x) ▷ assume y 6= NIL
4: a← Left(x)
5: b← Left(y)
6: c← Right(y)
7: Replace(x, y) ▷ replace node x with y
8: Set-Subtrees(x, a, b) ▷ Set a, b as the sub-trees of x
9: Set-Subtrees(y, x, c) ▷ Set x, c as the sub-trees of y

10: if p = NIL then ▷ x was the root
11: T ← y

12: return T

The Right-Rotate is symmetric, we leave it as exercise. The Replace(x, y) uses
node y to replace x:

1: function Replace(x, y)
2: p← Parent(x)

4.1. BALANCE 47

n

n-1

n-2

...

1

(a)

1

2

n

3

n-1

4

...

(b)
m

m-1 m+1

m-2

...

1

m+2

...

n

(c)

Figure 4.2: Unbalanced trees

Figure 4.3: ‘left rotate’ and ‘right rotate’.

48 CHAPTER 4. RED-BLACK TREE

3: if p = NIL then ▷ x is the root
4: if y 6= NIL then Parent(y) ← NIL
5: else if Left(p) = x then
6: Set-Left(p, y)
7: else
8: Set-Right(p, y)
9: Parent(x) ← NIL
Procedure Set-Subtrees(x, L,R) assigns L as the left, and R as the right sub-trees

of x:
1: function Set-Subtrees(x, L,R)
2: Set-Left(x, L)
3: Set-Right(x,R)
It further calls Set-Left and Set-Right to set the two sub-trees:

1: function Set-Left(x, y)
2: Left(x) ← y
3: if y 6= NIL then Parent(y) ← x

4: function Set-Right(x, y)
5: Right(x) ← y
6: if y 6= NIL then Parent(y) ← x

We can see how pattern matching simplifies the tree rotation. Based on this idea,
Okasaki developed the purely functional algorithm for red-black tree in 1995 [13].

Exercise 4.2
1. Implement the Right-Rotate.

4.2 Definition
A red-black tree is a self-balancing binary search tree [14]. It is equivalent to 2-3-4 tree1.
By coloring the node red or black, and performing rotation, red-black tree provides an
efficient way to keep the tree balanced. On top of the binary search tree definition, we
label the node with a color. We say it is a red-black tree if the coloring satisfies the
following 5 rules([4] pp273):

1. Every node is either red or black.

2. The root is black.

3. Every NIL node is black.

4. If a node is red, then both sub-trees are black.

5. For every node, all paths from it to descendant leaves contain the same number of
black nodes.

Why do they keep the red-black tree balanced? The key point is that, the longest
path from the root to leaf can not exceed 2 times of the shortest path. Consider rule 4,
there can not be any two adjacent red nodes. Hence the shortest path only contains black
nodes. Any longer path must have red ones. In addition, rule 5 ensures all paths have

1Chapter 7, B-tree. For any 2-3-4 tree, there is at least one red-black tree has the same ordered data.

4.2. DEFINITION 49

the same number of black nodes. So as to the root. It eventually ensures any path can’t
exceed 2 times of the others [14]. Figure 4.4 gives an example of red-black tree.

13

8 17

1 11

NIL 6

NIL NIL

NIL NIL

15 25

NIL NIL 22 27

NIL NIL NIL NIL

Figure 4.4: A red-black tree

As all NIL nodes are black, we can hide them as shown in figure 4.5. All operations
including lookup, min /max, are same as the binary search tree. However, the insert and
delete are special, as we need maintain the coloring rules. Below example program adds
the color variable atop binary search tree definition. Denote the empty tree as ∅, the
none empty tree as (c, l, k, , r), where c is the color (red/black), k is the element, l and r
are left and right sub-trees.

13

8 17

1 11

6

15 25

22 27

Figure 4.5: Hide the NIL nodes

data Color = R | B
data RBTree a = Empty | Node Color (RBTree a) a (RBTree a)

Exercise 4.3

1. Prove the height h of a red-black tree of n nodes is at most 2 lg(n+ 1)

50 CHAPTER 4. RED-BLACK TREE

4.3 Insert
The insert operation takes two steps. The first step is as same as the binary search tree.
The second step if to resume the coloring if it becomes unbalanced. We always color the
new element red unless it is the root. Hence don’t break any coloring rules except the
4-th. Because it may bring two adjacent red nodes. There are 4 cases violate rule 4. They
share the same structure after fixing [13] as shown in figure 4.6.

Figure 4.6: Fix 4 cases to the same structure.

All 4 transformations move the redness one level up. When fix recursively bottom-up,
it may color the root red, hence violate rule 2. We need revert the root black finally.
With pattern matching, define a balance function to fix the coloring. Denote the color as
C with values black B, and red R.

balance B (R, (R, a, x, b), y, c) z d = (R, (B, a, x, b), y, (B, c, z, d))
balance B, (R, a, x, (R, b, y, c)) z d = (R, (B, a, x, b), y, (B, c, z, d))
balance B a x (R, b, y, (R, c, z, d)) = (R, (B, a, x, b), y, (B, c, z, d))
balance B a x (R, (R, b, y, c), z, d) = (R, (B, a, x, b), y, (B, c, z, d))

balance T = T

(4.3)

If none of the 4 patterns matches, we leave the tree unchanged. Define the red-black
tree insert as: insert x T = makeBlack (ins x T), or in Curried form:

insertx = makeBlack ◦ ins x (4.4)

Where:
ins x ∅ = (R,∅, x,∅)

ins x (C, l, k, r) =

{
x < k : balance C (ins x l) k r

x > k : balance C l k (ins x r)

(4.5)

If the tree is empty, we create a red leaf of x; otherwise, compare x and k, recursively
insert x to a sub-tree. After that, call balance to fix the coloring, finally force the root to
be black.

makeBlack (C, l, k, r) = (B, l, k, r) (4.6)

Below is the example program:

4.4. DELETE 51

insert x = makeBlack ◦ (ins x) where
ins x Empty = Node R Empty x Empty
ins x (Node color l k r)

| x < k = balance color (ins x l) k r
| otherwise = balance color l k (ins x r)

makeBlack (Node _ l k r) = Node B l k r

balance B (Node R (Node R a x b) y c) z d = Node R (Node B a x b) y (Node B c z d)
balance B (Node R a x (Node R b y c)) z d = Node R (Node B a x b) y (Node B c z d)
balance B a x (Node R b y (Node R c z d)) = Node R (Node B a x b) y (Node B c z d)
balance B a x (Node R (Node R b y c) z d) = Node R (Node B a x b) y (Node B c z d)
balance color l k r = Node color l k r

We skip to handle the duplicated keys. If the key already exists, we can overwrite,
drop, or store the values in a list ([4], pp269). Figure 4.7 shows two red-black trees built
from sequence 11, 2, 14, 1, 7, 15, 5, 8, 4 and 1, 2, ..., 8. The second example is well
balanced even for ordered input.

14

7

2

1 5 11 15

4 8

1

2

3

4

6

5 7

8

Figure 4.7: Red-black tree examples

The insert performs top-down recursive fixing. It is bound to O(h) time, where h is
the height. As the red-black tree coloring rules are maintained, h is logarithm to n, the
number of elements. The overall performance is O(lgn).

Exercise 4.4

1. Implement the insert without pattern matching, handle the 4 cases separately.

4.4 Delete
Delete is more complex than insert. We can simplify the recursive implementation with
pattern matching2. There are alternative implementation to mimic delete. Build a read-
only tree for frequently looking up [5]. When delete a node, mark it with a flag, and
trigger tree rebuilding if such nodes exceeds 50%. Delete may also violate the red-black
tree coloring rules, hence need fixing. The violation only happens when delete a black
node according to rule 5. The black nodes along the path decreases by one, causing not
all paths contain the same number of black nodes. To resume the blackness, we introduce
a special ‘doubly-black’ node([4], pp290). Such a node is counted as 2 black nodes. When
delete a black node x, move the blackness up to parent or down to a sub-tree. Let
node y accept the blackness. If y was red, turn it black; if y was already black, turn it
‘doubly-black’ as B2. Below example program adds the ‘doubly-black’ color.

2Actually, we reuse the unchanged part to rebuild the tree in purely functional settings, known as the
‘persist’ feature

52 CHAPTER 4. RED-BLACK TREE

data Color = R | B | BB
data RBTree a = Empty | BBEmpty | Node Color (RBTree a) a (RBTree a)

Because ever NIL is black, when push the blackness down to NIL, it becomes ‘doubly-
black’ empty (BBEmpty, or bold ∅∅∅). The first step is normal binary search tree delete;
then as the second step, if cut a black node off, shift the blackness, and fix the coloring.

delete x = makeBlack ◦ del x (4.7)

This is Curried definition. When delete a singleton tree, it becomes empty. To cover
this case, we modify makeBlack as below:

makeBlack ∅ = ∅
makeBlack (C, l, k, r) = (B, l, k, r) (4.8)

Where del accepts x and the tree:

del x ∅ = ∅

del x (C, l, k, r) =

x < k : fixB2(C, (del x l), k, r)

x > k : fixB2(C, l, k, (del x r))

x = k :

l = ∅ : if C = B then shiftB r else r

r = ∅ : if C = B then shiftB l else l

otherwise : fixB2(C, l,m, (del m r)),where : m = min(r)

(4.9)
When the tree is empty, the result is ∅; otherwise, we compare x and k. If x < k, we

recursively delete from left; otherwise delete from right. Because the recursive result may
contain doubly-black node, we apply fixB2 to fix. When x = k, we locate the node to
cut. If either sub-tree is empty, we replace the node with the none empty sub-tree, then
shift the blackness if the node is black. If neither sub-tree is empty, we cut the minimum
m = min r off, and use m to replace k. To reserve the blackness, shiftB makes a black
node doubly-black, and forces it black for other cases. It flips doubly-black to normal
black when applied twice.

shiftB (B, l, k, r) = (B2, l, k, r)
shiftB (C, l, k, r) = (B, l, k, r)

shiftB ∅ = ∅∅∅
shiftB ∅∅∅ = ∅

(4.10)

Below is the example program (except the doubly-black fixing part).
delete x = makeBlack ◦ (del x) where

del x Empty = Empty
del x (Node color l k r)

| x < k = fixDB color (del x l) k r
| x > k = fixDB color l k (del x r)
| isEmpty l = if color == B then shiftBlack r else r
| isEmpty r = if color == B then shiftBlack l else l
| otherwise = fixDB color l m (del m r) where m = min r

makeBlack (Node _ l k r) = Node B l k r
makeBlack _ = Empty

isEmpty Empty = True
isEmpty _ = False

shiftBlack (Node B l k r) = Node BB l k r
shiftBlack (Node _ l k r) = Node B l k r
shiftBlack Empty = BBEmpty
shiftBlack BBEmpty = Empty

4.4. DELETE 53

The fixB2 function eliminates the doubly-black by rotation and re-coloring. The
doubly-black node can be branch node or empty ∅∅∅. There are three cases:

Case 1. The sibling of the doubly-black node is black, and it has a red sub-tree. We
can fix this case with a rotation. There are 4 sub-cases, all can transform to the same
pattern, as shown in figure 37.

Figure 4.8: Transform 4 sub-cases to the same pattern

fixB2 C aB2 x (B, (R, b, y, c), z, d) = (C, (B, shiftB(a), x, b), y, (B, c, z, d))
fixB2 C aB2 x (B, b, y, (R, c, z, d)) = (C, (B, shiftB(a), x, b), y, (B, c, z, d))
fixB2 C (B, a, x, (R, b, y, c)) z dB2 = (C, (B, a, x, b), y, (B, c, z, shiftB(d)))
fixB2 C (B, (R, a, x, b), y, c) z dB2 = (C, (B, a, x, b), y, (B, c, z, shiftB(d)))

(4.11)
Where aB2 means node a is doubly-black.
Case 2. The sibling of the doubly-black is red. We can rotate the tree to turn it into

case 1 or 3, as shown in figure 38. We add this fixing as additional 2 rows in equation
(4.11):

Figure 4.9: The sibling of the doubly-black is red.

54 CHAPTER 4. RED-BLACK TREE

...
fixB2 B aB2 x (R, b, y, c) = fixB2 B (fixB2 R a x b) y c
fixB2 B (R, a, x, b) y cB2 = fixB2 B a x (fixB2 R b y c)

(4.12)

Case 3. The sibling of the doubly-black node, and its two sub-trees are all black. In
this case, we change the sibling to red, flip the doubly-black node to black, and propagate
the doubly-blackness a level up to parent as shown in figure 39. There are two symmetric
sub-cases. For the upper case, x was either red or black. x changes to black if it was red,
otherwise changes to doubly-black; Same coloring changes to y in the lower case. We add
this fixing to equation (4.12):

Figure 4.10: move the blackness up.

...
fixB2 C aB2 x (B, b, y, c) = shiftB (C, (shiftB a), x, (R, b, y, c))
fixB2 C (B, a, x, b) y cB2 = shiftB (C, (R, a, x, b), y, (shiftB c))

fixB2 C l k r = (C, l, k, r)

(4.13)

If none of the patterns match, the last row keeps the node unchanged. The doubly-
black fixing is recursive. It terminates in two ways: One is Case 1, the doubly-black
node is eliminated. Otherwise the blackness may move up till the root. Finally the we
force the root be black. Below example program puts all three cases together:
fixDB color a@(Node BB _ _ _) x (Node B (Node R b y c) z d)

= Node color (Node B (shiftBlack a) x b) y (Node B c z d)
fixDB color BBEmpty x (Node B (Node R b y c) z d)

= Node color (Node B Empty x b) y (Node B c z d)
fixDB color a@(Node BB _ _ _) x (Node B b y (Node R c z d))

= Node color (Node B (shiftBlack a) x b) y (Node B c z d)
fixDB color BBEmpty x (Node B b y (Node R c z d))

= Node color (Node B Empty x b) y (Node B c z d)
fixDB color (Node B a x (Node R b y c)) z d@(Node BB _ _ _)

= Node color (Node B a x b) y (Node B c z (shiftBlack d))
fixDB color (Node B a x (Node R b y c)) z BBEmpty

= Node color (Node B a x b) y (Node B c z Empty)
fixDB color (Node B (Node R a x b) y c) z d@(Node BB _ _ _)

= Node color (Node B a x b) y (Node B c z (shiftBlack d))
fixDB color (Node B (Node R a x b) y c) z BBEmpty

= Node color (Node B a x b) y (Node B c z Empty)
fixDB B a@(Node BB _ _ _) x (Node R b y c)

= fixDB B (fixDB R a x b) y c
fixDB B a@BBEmpty x (Node R b y c)

4.5. IMPERATIVE RED-BLACK TREE⋆ 55

= fixDB B (fixDB R a x b) y c
fixDB B (Node R a x b) y c@(Node BB _ _ _)

= fixDB B a x (fixDB R b y c)
fixDB B (Node R a x b) y c@BBEmpty

= fixDB B a x (fixDB R b y c)
fixDB color a@(Node BB _ _ _) x (Node B b y c)

= shiftBlack (Node color (shiftBlack a) x (Node R b y c))
fixDB color BBEmpty x (Node B b y c)

= shiftBlack (Node color Empty x (Node R b y c))
fixDB color (Node B a x b) y c@(Node BB _ _ _)

= shiftBlack (Node color (Node R a x b) y (shiftBlack c))
fixDB color (Node B a x b) y BBEmpty

= shiftBlack (Node color (Node R a x b) y Empty)
fixDB color l k r = Node color l k r

The delete algorithm is bound to O(h) time, where h is the height of the tree. As
red-black tree maintains the balance, h = O(lgn) for n nodes.

Exercise 4.5

1. Implement the ‘mark-rebuild’ delete algorithm: mark the node as deleted without
actually removing it. When the marked nodes exceed 50%, rebuild the tree.

4.5 Imperative red-black tree⋆
We simplify the red-black tree implementation with pattern matching. In this section, we
give the imperative algorithm for completeness. When insert, the first step is as same as
the binary search tree, then as the second step, we fix the balance through tree rotations.

1: function Insert(T, k)
2: root← T
3: x← Create-Leaf(k)
4: Color(x) ← RED
5: p← NIL
6: while T 6= NIL do
7: p← T
8: if k < Key(T) then
9: T ← Left(T)

10: else
11: T ← Right(T)
12: Parent(x) ← p
13: if p = NIL then ▷ tree T is empty
14: return x
15: else if k < Key(p) then
16: Left(p) ← x
17: else
18: Right(p) ← x

19: return Insert-Fix(root, x)
We make the new node red, and then perform fixing before return. There are 3 basic

cases, each one has a symmetric case, hence there are total 6 cases. Among them, we can
merge two cases, because both have a red ‘uncle’ node. We change the parent and uncle
to black, and set grand parent to red:

1: function Insert-Fix(T, x)
2: while Parent(x) 6= NIL and Color(Parent(x)) = RED do

56 CHAPTER 4. RED-BLACK TREE

3: if Color(Uncle(x)) = RED then ▷ Case 1, x’s uncle is red
4: Color(Parent(x)) ← BLACK
5: Color(Grand-Parent(x)) ← RED
6: Color(Uncle(x)) ← BLACK
7: x← Grand-Parent(x)
8: else ▷ x’s uncle is black
9: if Parent(x) = Left(Grand-Parent(x)) then

10: if x = Right(Parent(x)) then ▷ Case 2, x is on the right
11: x← Parent(x)
12: T ← Left-Rotate(T, x)

▷ Case 3, x is on the left
13: Color(Parent(x)) ← BLACK
14: Color(Grand-Parent(x)) ← RED
15: T ← Right-Rotate(T , Grand-Parent(x))
16: else
17: if x = Left(Parent(x)) then ▷ Case 2, Symmetric
18: x← Parent(x)
19: T ← Right-Rotate(T, x)

▷ Case 3, Symmetric
20: Color(Parent(x)) ← BLACK
21: Color(Grand-Parent(x)) ← RED
22: T ← Left-Rotate(T , Grand-Parent(x))
23: Color(T) ← BLACK
24: return T

This algorithm takes O(lgn) time to insert a key, where n is the number of nodes.
Compare to the balance function defined previously, they have different logic. Even input
the same sequence of keys, they build different red-black trees. Figure 4.11 shows the
result when input the same sequence of keys to the imperative algorithm. We can see the
difference from figure 4.7. There is a bit performance overhead in the pattern matching
algorithm. Okasaki discussed the difference in detail in [13].

We provide the imperative delete algorithm in Appendix A of the book. Red-black
tree is a popular self-balancing binary search tree. We introduce another one, AVL tree
in the next chapter. Red-black tree is a good start for more complex data structures. If
extend from 2 to k sub-trees and maintain the balance, we obtain B-tree; If store the data
along with the edge but not in node, we obtain the Radix tree. To maintain the balance,
we need handle multiple cases. Okasaki’s developed a method that makes the red-black
tree easy to implement. There are many implementations based on this idea [16]. We also
implement AVL tree and Splay tree based on pattern matching in this book.

4.6 Appendix: Example programs
Definition of red-black tree node with parent reference. Set the color red by default.

data Node<T> {
T key
Color color
Node<T> left
Node<T> right
Node<T> parent

Node(T x) = Node(null, x, null, Color.RED)

Node(Node<T> l, T k, Node<T> r, Color c) {
left = l, key = k, right = r, color = c

4.6. APPENDIX: EXAMPLE PROGRAMS 57

11

2 14

1 7

5 8

15

5

2 7

1 4

3

6 9

8

Figure 4.11: Red-black trees created by imperative algorithm.

if left ̸= null then left.parent = this
if right ̸= null then right.parent = this

}

Self setLeft(l) {
left = l
if l ̸= null then l.parent = this

}

Self setRight(r) {
right = r
if r ̸= null then r.parent = this

}

Node<T> sibling() = if parent.left == this then parent.right
else parent.left

Node<T> uncle() = parent.sibling()

Node<T> grandparent() = parent.parent
}

Insert a key to red-black tree:
Node<T> insert(Node<T> t, T key) {

root = t
x = Node(key)
parent = null
while (t ̸= null) {

parent = t
t = if (key < t.key) then t.left else t.right

}
if (parent == null) { //tree is empty

58 AVL tree

root = x
} else if (key < parent.key) {

parent.setLeft(x)
} else {

parent.setRight(x)
}
return insertFix(root, x)

}

Fix the balance:
// Fix the red→red violation
Node<T> insertFix(Node<T> t, Node<T> x) {

while (x.parent ̸= null and x.parent.color == Color.RED) {
if (x.uncle().color == Color.RED) {

// case 1: ((a:R x:R b) y:B c:R) =⇒ ((a:R x:B b) y:R c:B)
x.parent.color = Color.BLACK
x.grandparent().color = Color.RED
x.uncle().color = Color.BLACK
x = x.grandparent()

} else {
if (x.parent == x.grandparent().left) {

if (x == x.parent.right) {
// case 2: ((a x:R b:R) y:B c) =⇒ case 3
x = x.parent
t = leftRotate(t, x)

}
// case 3: ((a:R x:R b) y:B c) =⇒ (a:R x:B (b y:R c))
x.parent.color = Color.BLACK
x.grandparent().color = Color.RED
t = rightRotate(t, x.grandparent())

} else {
if (x == x.parent.left) {

// case 2': (a x:B (b:R y:R c)) =⇒ case 3'
x = x.parent
t = rightRotate(t, x)

}
// case 3': (a x:B (b y:R c:R)) =⇒ ((a x:R b) y:B c:R)
x.parent.color = Color.BLACK
x.grandparent().color = Color.RED
t = leftRotate(t, x.grandparent())

}
}

}
t.color = Color.BLACK
return t

}

Chapter 5

AVL tree

The idea of red-black tree is to limit the number nodes along a path within a range. AVL
tree takes a direct approach: quantify the difference between branches. For a node T ,
define:

δ(T) = |r| − |l| (5.1)

Where |T | is the height of tree T , l and r are the left and right sub-trees. Define
δ(∅) = 0 for the empty tree. If δ(T) = 0 for every node T , the tree is definitely balanced.
For example, a complete binary tree has n = 2h − 1 nodes for height h. There are not
any empty branches unless the leaves. The less absolute value of δ(T), the more balanced
between the sub-trees. We call δ(T) the balance factor of a binary tree.

5.1 Definition

4

2 8

1 3 6 9

5 7 10

Figure 5.1: an AVL tree

A binary search tree is an AVL tree if every sub-tree T satisfies:

|δ(T)| ≤ 1 (5.2)

There are three valid values for δ(T): ±1, and 0. Figure 5.1 shows an AVL tree. This
definition ensures the tree height h = O(lgn), where n is the number of nodes in the tree.

59

60 CHAPTER 5. AVL TREE

Let’s prove it. For an AVL tree of height h, the number of nodes varies. There are at
most 2h− 1 nodes for a complete binary tree case. We are interesting in how many nodes
at least. Let the minimum number be N(h). We have the following result:

• Empty tree ∅: h = 0, N(0) = 0;

• Singleton tree: h = 1, N(1) = 1;

Figure 5.2 shows an AVL tree T of height h. It contains three parts, the key k, and
two sub-trees l, r. We have the following equation:

k

h-1 h-2

Figure 5.2: An AVL tree of height h. The height of one sub-tree is h− 1, the other is no
less than h− 2.

h = max(|l|, |r|) + 1 (5.3)

There must be a sub-tree of height h− 1. From the definition. we have ||l| − |r|| ≤ 1
holds. Hence the height of the other tree can not be lower than h− 2. The total number
of the nodes in T is the sum of both sub-trees plus 1 (for the root):

N(h) = N(h− 1) +N(h− 2) + 1 (5.4)

This recursive equation is similar to Fibonacci numbers. Actually we can transform
it to Fibonacci numbers through N ′(h) = N(h) + 1. Equation (5.4) then changes to:

N ′(h) = N ′(h− 1) +N ′(h− 2) (5.5)

Lemma 5.1.1. Let N(h) be the minimum number of nodes for an AVL tree of height h,
and N ′(h) = N(h) + 1, then

N ′(h) ≥ ϕh (5.6)

Where ϕ =

√
5 + 1

2
is the golden ratio.

Proof. When h = 0 or 1, we have:

• h = 0: N ′(0) = 1 ≥ ϕ0 = 1

• h = 1: N ′(1) = 2 ≥ ϕ1 = 1.618...

For the induction case, assume N ′(h) ≥ ϕh.

N ′(h+ 1) = N ′(h) +N ′(h− 1) {Fibonacci}
≥ ϕh + ϕh−1 {induction hypothesis}

= ϕh−1(ϕ+ 1) {ϕ+ 1 = ϕ2 =

√
5 + 3

2
}

= ϕh+1

5.2. INSERT 61

From Lemma 5.1.1, we immediately obtain:

h ≤ logϕ(n+ 1) = logϕ2 · lg(n+ 1) ≈ 1.44 lg(n+ 1) (5.7)

The height of AVL tree is proportion to O(lgn), indicating AVL tree is balanced.
When insert or delete, the balance factor may exceed the valid value range, we need fix to
resume |δ| < 1. Traditionally, the fixing is through tree rotations. We give the simplified
implementation based on pattern matching. The idea is similar to the functional red-
black tree [13]. Because of this ‘modify-fix’ approach, AVL tree is also self-balancing
binary search tree. We can re-use the binary search tree definition. Although the balance
factor δ can be computed recursively, we record it inside each node as T = (l, k, r, δ), and
update it when mutate the tree1. Below example program adds δ as an Int:
data AVLTree a = Empty | Br (AVLTree a) a (AVLTree a) Int

For AVL tree, lookup, max, min are as same as the binary search tree. We focus on
insert and delete algorithms.

5.2 Insert
When insert a new element, |δ(T)| may exceed 1. We can use pattern matching similar to
red-black tree to develop a simplified solution. After insert element x, for those sub-trees
which are the ancestors of x, the height may increase at most by 1. We need recursively
update the balance factor along the path of insertion. Define the insert result as a pair
(T ′,∆H), where T ′ is the updated tree and ∆H is the increment of height. We modify
the binary search tree insert function as below:

insert x = fst ◦ ins x (5.8)

Where fst (a, b) = a returns the first element in a pair. ins x T inserts element x into
tree T :

ins x ∅ = ((∅, x,∅, 0), 1)

ins x (l, k, r, δ) =

{
x < k : tree (ins x l) k (r, 0) δ

x > k : tree (l, 0) k (ins x r) δ

(5.9)

If the tree is empty ∅, the result is a leaf of x with balance factor 0. The height
increases to 1. Otherwise let T = (l, k, r, δ). We compare x with k. If x < k, we
recursively insert x to l, otherwise insert to r. As the recursive insert result is a pair
of (l′,∆l) or (r′,∆r), we need adjust the balance factor and update tree height through
function tree, it takes 4 parameters: (l′,∆l), k′, (r′,∆r), and δ. The result is (T ′,∆H),
where T ′ is the new tree, and ∆H is defined as:

∆H = |T ′| − |T | (5.10)

We can further break it down into 4 cases:
∆H = |T ′| − |T |

= 1 +max(|r′|, |l′|)− (1 +max(|r|, |l|))
= max(|r′|, |l′|)−max(|r|, |l|)

=

δ ≥ 0, δ′ ≥ 0 : ∆r

δ ≤ 0, δ′ ≥ 0 : δ +∆r

δ ≥ 0, δ′ ≤ 0 : ∆l − δ

otherwise : ∆l

(5.11)

1Alternatively, we can record the height instead of δ [20].

62 CHAPTER 5. AVL TREE

Where δ′ = δ(T ′) = |r′|− |l′|, is the updated balance factor. Appendix B provides the
proof for it. We need determine δ′ before balance adjustment.

δ′ = |r′| − |l′|
= |r|+∆r − (|l|+∆l)
= |r| − |l|+∆r −∆l
= δ +∆r −∆l

(5.12)

With the changes in height and balance factor, we can define the tree function in
(5.9):

tree (l′,∆l) k (r′,∆r) δ = balance (l′, k, r′, δ′) ∆H (5.13)

Below example programs implements what we deduced so far:
insert x = fst ◦ ins x where

ins x Empty = (Br Empty x Empty 0, 1)
ins x (Br l k r d)

| x < k = tree (ins x l) k (r, 0) d
| x > k = tree (l, 0) k (ins x r) d

tree (l, dl) k (r, dr) d = balance (Br l k r d') deltaH where
d' = d + dr - dl
deltaH | d ≥ 0 && d' ≥ 0 = dr

| d ≤ 0 && d' ≥ 0 = d+dr
| d ≥ 0 && d' ≤ 0 = dl - d
| otherwise = dl

5.2.1 Balance
There are 4 cases need fix as shown in figure 5.3. The balance factor is ±2, exceeds the
range of [−1, 1]. We adjust them to a uniformed structure in the center, with the δ(y) = 0.

Figure 5.3: Fix 4 cases to the same structure

We call the 4 cases: left-left, right-right, right-left, and left-right. Denote the balance
factors before fixing as δ(x), δ(y), and δ(z); after fixing, they change to δ′(x), δ′(y) = 0,
and δ′(z) respectively. The values of δ′(x) and δ′(z) can be given as below. Appendix B
gives the proof.

5.2. INSERT 63

Left-left Right-right
δ′(x) = δ(x)

δ′(y) = 0

δ′(z) = 0

δ′(x) = 0

δ′(y) = 0

δ′(z) = δ(z)

(5.14)

Right-left and Left-right are same:

δ′(x) =

{
δ(y) = 1 : −1
otherwise : 0

δ′(y) = 0

δ′(z) =

{
δ(y) = −1 : 1

otherwise : 0

(5.15)

Based on this, we can implement the pattern matching fix as below:

balance (((a, x, b, δ(x)), y, c,−1), z, d,−2) ∆H = ((a, x, b, δ(x)), y, (c, z, d, 0), 0,∆H − 1)
balance (a, x, (b, y, (c, z, d, δ(z)), 1), 2) ∆H = ((a, x, b, 0), y, (c, z, d, δ(z)), 0,∆H − 1)

balance ((a, x, (b, y, c, δ(y)), 1), z, d,−2) ∆H = ((a, x, b, δ′(x)), y, (c, z, d, δ′(z)), 0,∆H − 1)
balance (a, x, ((b, y, c, δ(y)), z, d,−1), 2) ∆H = ((a, x, b, δ′(x)), y, (c, z, d, δ′(z)), 0,∆H − 1)

balance T ∆H = (T,∆H)

(5.16)
Where δ′(x) and δ′(z) are defined in (83). If none of the pattern matches, keep the

tree unchanged. Below is the example program implements balance:
balance (Br (Br (Br a x b dx) y c (-1)) z d (-2)) dH =

(Br (Br a x b dx) y (Br c z d 0) 0, dH-1)
balance (Br a x (Br b y (Br c z d dz) 1) 2) dH =

(Br (Br a x b 0) y (Br c z d dz) 0, dH-1)
balance (Br (Br a x (Br b y c dy) 1) z d (-2)) dH =

(Br (Br a x b dx') y (Br c z d dz') 0, dH-1) where
dx' = if dy == 1 then -1 else 0
dz' = if dy == -1 then 1 else 0

balance (Br a x (Br (Br b y c dy) z d (-1)) 2) dH =
(Br (Br a x b dx') y (Br c z d dz') 0, dH-1) where

dx' = if dy == 1 then -1 else 0
dz' = if dy == -1 then 1 else 0

balance t d = (t, d)

The performance of insert is proportion to the height of the tree. From (5.7), it is
bound to is O(lgn) where n is the number of elements in the tree.

5.2.2 Verification
To validate an AVL tree, we need verify two things: (1) It is a binary search tree; (2) For
every sub-tree T , equation (5.2): δ(T) ≤ 1 holds. Below function examines the height
difference between the two sub-trees recursively:

avl? ∅ = True
avl? T = avl? l and avl? r and ||r| − |l|| ≤ 1

(5.17)

Where l, r are the left and right sub-trees. The height is calculated recursively:

|∅| = 0
|T | = 1 +max(|r|, |l|) (5.18)

Below example program implements AVL tree height verification:

64 CHAPTER 5. AVL TREE

isAVL Empty = True
isAVL (Br l _ r _) = isAVL l && isAVL r && abs (height r - height l) ≤ 1

height Empty = 0
height (Br l _ r _) = 1 + max (height l) (height r)

Exercise 5.1
1. We only give the algorithm to test AVL height. Complete the program to test if a

binary tree is AVL tree.

5.3 Imperative algorithm ⋆
This section gives the imperative algorithm for completeness. Similar to the red-black
tree algorithm, we first re-use the binary search tree insert, then fix the balance through
tree rotations.

1: function Insert(T, k)
2: root← T
3: x← Create-Leaf(k)
4: δ(x) ← 0
5: parent← NIL
6: while T 6= NIL do
7: parent← T
8: if k < Key(T) then
9: T ← Left(T)

10: else
11: T ← Right(T)
12: Parent(x) ← parent
13: if parent = NIL then ▷ tree T is empty
14: return x
15: else if k < Key(parent) then
16: Left(parent) ← x
17: else
18: Right(parent) ← x

19: return AVL-Insert-Fix(root, x)
After insert, the balance factor δ may change because of the tree growth. Insert to the

right may increase δ by 1, while insert to the left may decrease it. We perform bottom-up
fixing from x to root. Denote the new balance factor as δ′, there are 3 cases:

• |δ| = 1, |δ′| = 0. The new node makes the tree well balanced. The height of the
parent keeps unchanged.

• |δ| = 0, |δ′| = 1. Either the left or the right sub-tree increases its height. We need
go on checking the upper level.

• |δ| = 1, |δ′| = 2. We need rotate the tree to fix the balance factor.

1: function AVL-Insert-Fix(T, x)
2: while Parent(x) 6= NIL do
3: P ← Parent(x)
4: L← Left(x)

5.3. IMPERATIVE ALGORITHM ⋆ 65

5: R← Right(x)
6: δ ← δ(P)
7: if x = Left(P) then
8: δ′ ← δ − 1
9: else

10: δ′ ← δ + 1

11: δ(P)← δ′

12: if |δ| = 1 and |δ′| = 0 then ▷ Height unchanged
13: return T
14: else if |δ| = 0 and |δ′| = 1 then ▷ Go on bottom-up update
15: x← P
16: else if |δ| = 1 and |δ′| = 2 then
17: if δ′ = 2 then
18: if δ(R) = 1 then ▷ Right-right
19: δ(P)← 0 ▷ By (72)
20: δ(R)← 0
21: T ← Left-Rotate(T, P)
22: if δ(R) = −1 then ▷ Right-left
23: δy ← δ(Left(R)) ▷ By (83)
24: if δy = 1 then
25: δ(P)← −1
26: else
27: δ(P)← 0

28: δ(Left(R)) ← 0
29: if δy = −1 then
30: δ(R)← 1
31: else
32: δ(R)← 0

33: T ← Right-Rotate(T,R)
34: T ← Left-Rotate(T, P)
35: if δ′ = −2 then
36: if δ(L) = −1 then ▷ Left-left
37: δ(P)← 0
38: δ(L)← 0
39: Right-Rotate(T, P)
40: else ▷ Left-Right
41: δy ← δ(Right(L))
42: if δy = 1 then
43: δ(L)← −1
44: else
45: δ(L)← 0

46: δ(Right(L)) ← 0
47: if δy = −1 then
48: δ(P)← 1
49: else
50: δ(P)← 0

51: Left-Rotate(T,L)
52: Right-Rotate(T, P)
53: break
54: return T

66 CHAPTER 5. AVL TREE

Besides rotation, we also need update δ for the impacted nodes. The right-right and
left-left cases need one rotation, while the right-left and left-right case need two rotations.
We skip the AVL tree delete algorithm in this chapter. Appendix B provides the delete
implementation.

AVL tree was developed in 1962 by Adelson-Velskii and Landis [18], [19]. It is named
after the two authors. AVL tree was developed earlier than the red-black tree. Both are
self-balance binary search trees. Most tree operations are bound O(lgn) time. From (5.7),
AVL tree is more rigidly balanced, and performs faster than red-black tree in looking up
intensive applications [18]. However, red-black tree performs better in frequently insertion
and removal cases. Many popular self-balance binary search tree libraries are implemented
on top of red-black tree. AVL tree also provides the intuitive and effective solution to the
balance problem.

5.4 Appendix: Example programs
Definition of AVL tree node.
data Node<T> {

int delta
T key
Node<T> left
Node<T> right
Node<T> parent

}

Fix the balance:
Node<T> insertFix(Node<T> t, Node<T> x) {

while (x.parent ̸= null) {
var (p, l, r) = (x.parent, x.parent.left, x.parent.right)
var d1 = p.delta
var d2 = if x == parent.left then d1 - 1 else d1 + 1
p.delta = d2

if abs(d1) == 1 and abs(d2) == 0 {
return t

} else if abs(d1) == 0 and abs(d2) == 1 {
x = p

} else if abs(d1) == 1 and abs(d2) == 2 {
if d2 == 2 {

if r.delta == 1 { //Right-right
p.delta = 0
r.delta = 0
t = rotateLeft(t, p)

} else if r.delta == -1 { //Right-Left
var dy = r.left.delta
p.delta = if dy == 1 then -1 else 0
r.left.delta = 0
r.delta = if dy == -1 then 1 else 0
t = rotateRight(t, r)
t = rotateLeft(t, p)

}
} else if d2 == -2 {

if l.delta == -1 { //Left-left
p.delta = 0
l.delta = 0
t = rotateRight(t, p)

} else if l.delta == 1 { //Left-right
var dy = l.right.delta
l.delta = if dy == 1 then -1 else 0
l.right.delta = 0

Elementary algorithms 67

p.delta = if dy == -1 then 1 else 0
t = rotateLeft(t, l)
t = rotateRight(t, p)

}
}
break

}
}
return t

}

68 Radix tree

Chapter 6

Radix tree

Binary search tree stores data in nodes. Can we use the edges to carry information? Radix
trees, including trie, prefix tree, and suffix tree are the data structures developed based
on this idea in 1960s. They are widely used in compiler design [21], and bio-information
processing, like DNA pattern matching [23].

0

0 1

1

10

0

011

1

100

0 1

1011

1

Figure 6.1: Radix tree.

Figure 6.1 shows a Radix tree. It contains bits 1011, 10, 011, 100 and 0. When lookup
a key k = (b0b1...bn)2, we take the first bit b0 (MSB from left), check whether it is 0 or 1.
For 0, turn left, else turn right. Then take the second bit and repeat looking up till either
reach a leaf node or consume all the n bits. We needn’t store keys in Radix tree node.
The information is represented by edges. The nodes labelled with key in figure 6.1 are
for illustration purpose. If the keys are integers, we can represent them in binary format,
and implement lookup with bit-wise manipulations.

6.1 Integer trie
We call the data structure in figure 6.1 binary trie. Trie was developed by Edward
Fredkin in 1960. It comes from “retrieval”, pronounce as /’tri:/ by Freddkin, while
others pronounce it as /’trai/ “try” [24]. Although it’s also called prefix tree in some
context, we treat trie and prefix tree different in this chapter. A binary trie is a special

69

70 CHAPTER 6. RADIX TREE

binary tree in which the placement of each key is controlled by its bits, each 0 means ‘go
left’ and each 1 means ‘go right’ [21]. Consider the binary trie in figure 6.2. The three
keys are different bit strings of “11”, “011”, and “0011” although they are all equal to 3.

0 1

0 1

1

0011

1

011

1

11

1

Figure 6.2: A big-endian trie.

It is inefficient to treat the prefix zeros as valid bits. For 32 bits integers, we need
a tree of 32 levels to insert number 1. Okasaki suggested to use little-endian integers
instead [21]. 1 is represented as bits (1)2, 2 as (01)2, and 3 is (11)2, ...

6.1.1 Definition
We can re-use binary tree structure to define the little-endian binary trie. A node is either
empty, or a branch containing the left, right sub-trees, and an optional value. The left
sub-tree is encoded as 0 and the right sub-tree is encoded as 1.
data IntTrie a = Empty | Branch (IntTrie a) (Maybe a) (IntTrie a)

Given a node in the binary trie, the integer key bound to it is uniquely determined
through its position. That is the reason we need not save the key, but only the value in
the node. The type of the key is always integer, we call the tree IntTrie A if the value is
of type A.

6.1.2 Insert
When insert an integer key k and a value x, we convert k into binary form. If k is even,
the lowest bit is 0, we recursively insert to the left sub-tree; otherwise if k is odd, the
lowest bit is 1, we recursively insert to the right. We next divide k by 2 to remove the
lowest bit. For none empty trie T = (l, v, r), where l, r are the left and right sub-trees,
and v is the optional value, function insert can be defined as below:

insert k x ∅ = insert k x (∅,Nothing,∅)
insert 0 x (l, v, r) = (l, Just x, r)

insert k x (l, v, r) =

even(k) : (insert

k

2
x l, v, r)

odd(k) : (l, v, insert bk
2
c x r)

(6.1)

If k = 0, we put x in the node. When T = ∅, it becomes (∅, Just x,∅). As far
as k 6= 0, we goes down along the tree based on the parity of k. We create empty leaf

6.1. INTEGER TRIE 71

(∅,Nothing,∅) whenever meet ∅ node. This algorithm overrides the value if k already
exists. Alternatively, we can store a list, and append x to it. Figure 6.3 shows an example
trie, generated by inserting the key-value pairs of {1→ a, 4→ b, 5→ c, 9→ d}. Below is
the example program implements insert:

0

1:a

1

0

4:b

1

0

0

5:c

1

9:d

1

Figure 6.3: A little-endian integer binary trie of {1→ a, 4→ b, 5→ c, 9→ d}.

insert k x Empty = insert k x (Branch Empty Nothing Empty)
insert 0 x (Branch l v r) = Branch l (Just x) r
insert k x (Branch l v r) | even k = Branch (insert (k `div` 2) x l) v r

| otherwise = Branch l v (insert (k `div` 2) x r)

We can define the even/odd testing by modular 2, and check if the remainder is 0
or not: even(k) = (k mod 2 = 0). Or use bit-wise operation in some environment, like
(k & 0x1) == 0. We can eliminate the recursion through loops to realize an iterative
implementation as below:

1: function Insert(T, k, x)
2: if T = NIL then
3: T ← Empty-Node ▷ (NIL, Nothing, NIL)
4: p← T
5: while k 6= 0 do
6: if Even?(k) then
7: if Left(p) = NIL then
8: Left(p) ← Empty-Node
9: p← Left(p)

10: else
11: if Right(p) = NIL then
12: Right(p) ← Empty-Node
13: p← Right(p)
14: k ← bk/2c
15: Value(p) ← x
16: return T

Insert takes, a trie T , a key k, and a value x. For integer k with m bits in binary, it
goes into m levels of the trie. The performance is bound to O(m). We design insert k x T

72 CHAPTER 6. RADIX TREE

and Insert(T, k, x) symmetric, apply foldr to the former, and foldl (or for-loops) to the
latter to convert a list of key-value pairs to tree. For example:

fromList = foldr (uncurry insert) ∅ (6.2)

The usage is fromList [(1, a), (4, b), (5, c), (9, d)], where uncurry is the revert of
Currying, it unpack a pair and feed to insert:

uncurry f (a, b) = f a b (6.3)

6.1.3 Lookup
When look up key k in a none empty integer trie, if k = 0, then the root node is the
target. Otherwise, we check the lowest bit, then recursively look up the left or right
sub-tree accordingly.

lookup k ∅ = Nothing
lookup 0 (l, v, r) = v

lookup k (l, v, r) =

even(k) : lookup

k

2
l

odd(k) : lookup bk
2
c r

(6.4)

We can eliminate the recursion to implement the iterative lookup as the following:
1: function Lookup(T, k)
2: while k 6= 0 and T 6=NIL do
3: if Even?(k) then
4: T ← Left(T)
5: else
6: T ← Right(T)
7: k ← bk/2c
8: if T 6= NIL then
9: return Value(T)

10: else
11: return NIL

The lookup function is bound to O(m) time, where m is the number of bits of k.

Exercise 6.1
1. Can we change the definition from Branch (IntTrie a) (Maybe a) (Int-

Trie a) to Branch (IntTrie a) a (IntTrie a), and return Nothing if
the value does not exist, and Just v otherwise?

6.2 Integer prefix tree
Trie is not space efficient. As shown in figure 6.3, there are only 4 nodes with value,
while the rest 5 are empty. The space usage is less than 50%. To improve the efficiency,
we can consolidate the chained nodes to one. Integer prefix tree is such a data struc-
ture developed by Donald R. Morrison in 1968. He named it as ‘Patricia’, standing for
Practical Algorithm To Retrieve Information Coded In Alphanumeric [22]. When the
keys are integer, we call it integer prefix tree or simply integer tree when the context
is clear. Okasaki provided the implementation in [21]. Consolidate the chained nodes in
figure 6.3, we obtained an integer tree as shown in figure 6.4. The key to the branch

6.2. INTEGER PREFIX TREE 73

node is the longest common prefix for its descendant trees. In other words, the sibling
sub-trees branch out at the bit where ends at their longest prefix. As the result, integer
tree eliminates the redundant spaces in trie.

4:b

001

1:a

1

0

9:d

01

5:c

1

Figure 6.4: Little endian integer tree for the map {1→ a, 4→ b, 5→ c, 9→ d}.

6.2.1 Definition
Integer prefix tree is a special binary tree. It is either empty ∅, or a leaf node of as (k, v),
that contains an integer key k and a value v; or a branch with the left and right sub-trees,
that share the longest common prefix bits for their keys. For the left sub-tree, the
next bit is 0, for the right, it is 1. Denoted as (p,m, l, r). Below example program defines
the integer prefix tree. The branch node contains 4 components: The longest prefix p,
a mask integer m indicating from which bit the sub-trees branch out, the left and right
sub-trees l and r. The mask is m = 2n for some integer n ≥ 0. All bits that are lower
than n do not belong to the common prefix.

data IntTree a = Empty
| Leaf Int a
| Branch Int Int (IntTree a) (IntTree a)

6.2.2 Insert
When insert integer y to tree T , if T is empty, we create a leaf of y; If T is a singleton
leaf of x, besides the new leaf of y, we need create a branch node, set x and y as the
two sub-trees. To determine whether y is on the left or right, we need find the longest
common prefix p of x and y. For example if x = 12 = (1100)2, y = 15 = (1111)2, then
p = (11oo)2, where o denotes the bits we don’t care. We can use another integer m to
mask those bits. In this example, m = 4 = (100)2. The next bit after p presents 21. It is
0 in x, 1 in y. Hence, we set x as the left sub-tree and y as the right, as shown in figure
6.5.

If T is neither empty nor a leaf, we firstly check if y matches the longest common
prefix p in the root, then recursively insert it to the sub-tree according to the next bit
after p. For example, when insert y = 14 = (1110)2 to the tree shown in figure 6.5, since
p = (11oo)2 and the next bit (the bit of 21) is 1, we recursively insert y to the right
sub-tree. If y does not match p in the root, we need branch a new leaf as shown in figure
6.6.

74 CHAPTER 6. RADIX TREE

12
prefix=1100
mask=100

12

0

15

1

Figure 6.5: Left: T is a leaf of 12; Right: After insert 15.

prefix=1100
mask=100

12

0

15

1

prefix=1100
mask=100

12

0

prefix=1110
mask=10

1

14

0

15

1

(a) Insert 14 = (1110)2, which matches
p = (1100)2. It is inserted to the right.

prefix=1100
mask=100

12

0

15

1

prefix=0
mask=10000

5

0

prefix=1110
mask=10

1

12

0

15

1

(b) Insert 5 = (101)2, which does not match
p = (1100)2. Branch out a new leaf.

Figure 6.6: The tree is a branch node.

6.2. INTEGER PREFIX TREE 75

For integer key k and value v, let (k, v) be the leaf. For branch node, denote it as
(p,m, l, r), where p is the longest common prefix, m is the mask, l and r are the left and
right sub-trees. Below insert function defines the above 3 cases:

insert k v ∅ = (k, v)
insert k v (k, v′) = (k, v)
insert k v (k′, v′) = join k (k, v) k′ (k′, v′)

insert k v (p,m, l, r) =

match(k, p,m) :

{
zero(k,m) : (p,m, insert k v l, r)

otherwise : (p,m, l, insert k v r)

otherwise : join k (k, v) p (p,m, l, r)

(6.5)
We create a leaf of (k, v) when T = ∅, override the value for the same key. Function

match(k, p,m) tests if integer k and prefix p have the same bits after masked with m
through: mask(k,m) = p, where mask(k,m) = m− 1&k. It applies bit-wise not to
m− 1, then does bit-wise and with k. zero(k,m) tests the next bit in k masked with m
is 0 or not. We shift m one bit to right, then do bit-wise and with k:

zero(k,m) = x&(m� 1) (6.6)

Function join(p1, T1, p2, T2) takes two different prefixes and trees. It extracts the
longest common prefix of p1 and p2 as (p,m) = LCP (p1, p2), creates a new branch node,
then set T1 and T2 as the two sub-trees:

join(p1, T1, p2, T2) =

{
zero(p1,m) : (p,m, T1, T2)

otherwise : (p,m, T2, T1)
(6.7)

To calculate the longest common prefix, we can firstly compute bit-wise exclusive-or
for p1 and p2, then count the highest bit highest(xor(p1, p2)) as:

highest(0) = 0
highest(n) = 1 + highest(n >> 1)

Then generate a mask m = 2highest(xor(p1,p2)). The longest common prefix p can be
given by masking the bits with m for either p1 or p2, like p = mask(p1,m). The following
example program implements the insert function:
insert k x t

= case t of
Empty → Leaf k x
Leaf k' x' → if k == k' then Leaf k x

else join k (Leaf k x) k' t
Branch p m l r
| match k p m → if zero k m

then Branch p m (insert k x l) r
else Branch p m l (insert k x r)

| otherwise → join k (Leaf k x) p t

join p1 t1 p2 t2 = if zero p1 m then Branch p m t1 t2
else Branch p m t2 t1

where
(p, m) = lcp p1 p2

lcp p1 p2 = (p, m) where
m = bit (highestBit (p1 `xor` p2))
p = mask p1 m

highestBit x = if x == 0 then 0 else 1 + highestBit (shiftR x 1)

76 CHAPTER 6. RADIX TREE

mask x m = x .&. complement (m - 1)

zero x m = x .&. (shiftR m 1) == 0

match k p m = (mask k m) == p

We can also implement insert imperatively:
1: function Insert(T, k, v)
2: if T = NIL then
3: return Create-Leaf(k, v)
4: y ← T
5: p← NIL
6: while y is not leaf, and Match(k, Prefix(y), Mask(y)) do
7: p← y
8: if Zero?(k, Mask(y)) then
9: y ← Left(y)

10: else
11: y ← Right(y)
12: if y is leaf, and k = Key(y) then
13: Value(y) ← v
14: else
15: z ← Branch(y, Create-Leaf(k, v))
16: if p = NIL then
17: T ← z
18: else
19: if Left(p) = y then
20: Left(p) ← z
21: else
22: Right(p) ← z

23: return T

Where Branch(T1, T2) creates a new branch node, extracts the longest common pre-
fix, then sets T1 and T2 as the two sub-trees.

1: function Branch(T1, T2)
2: T ← Empty-Node
3: (Prefix(T), Mask(T)) ← LCP(Prefix(T1), Prefix(T2))
4: if Zero?(Prefix(T1), Mask(T)) then
5: Left(T) ← T1

6: Right(T) ← T2

7: else
8: Left(T) ← T2

9: Right(T) ← T1

10: return T

11: function Zero?(x,m)
12: return (x&bm

2
c) = 0

Function LCP find the longest bit prefix from two integers:
1: function LCP(a, b)
2: d← xor(a, b)
3: m← 1
4: while d 6= 0 do

6.2. INTEGER PREFIX TREE 77

5: d← bd
2
c

6: m← 2m
7: return (MaskBit(a,m), m)

8: function MaskBit(x,m)
9: return x&m− 1

Figure 6.7 gives an example integer tree created from the insert algorithm. Although
integer prefix tree consolidates the chained nodes, the operation to extract the longest
common prefix need linear scan the bits. For integer of m bits, the insert is bound to
O(m).

prefix=0
mask=8

1:x

0

prefix=100
mask=2

1

4:y

0

5:z

1

Figure 6.7: Insert {1→ x, 4→ y, 5→ z} to the big-endian integer tree.

6.2.3 Lookup
When lookup key k, if the integer tree T = ∅ or it is a leaf of T = (k′, v) with different
key, then k does not exist; if k = k′, then v is the result; if T = (p,m, l, r) is a branch
node, we need check if the common prefix p matches k under the mask m, then recursively
lookup the sub-tree l or r upon next bit. If fails to match the common prefix p, then k
does not exist.

lookup k ∅ = Nothing

lookup k (k′, v) =

{
k = k′ : Just v
otherwise : Nothing

lookup k (p,m, l, r) =

match(k, p,m) :

{
zero(k,m) : lookup k l

otherwise : lookup k r

otherwise : Nothing

(6.8)

We can also eliminate the recursion to implement the iterative lookup algorithm.
1: function Look-Up(T, k)
2: if T = NIL then
3: return NIL
4: while T is not leaf, and Match(k, Prefix(T), Mask(T)) do
5: if Zero?(k, Mask(T)) then
6: T ← Left(T)

78 CHAPTER 6. RADIX TREE

7: else
8: T ← Right(T)
9: if T is leaf, and Key(T) = k then

10: return Value(T)
11: else
12: return NIL

The lookup algorithm is bound to O(m), where m is the number of bits in the key.

Exercise 6.2
1. Write a program to implement the lookup function.
2. Implement the pre-order traverse for both integer trie and integer tree. Only

output the keys when the nodes store values. What pattern does the result follow?

6.3 Trie
From integer trie and tree, we can extend the key to a list of elements. Particularly the
trie and tree with key in alphabetic string are powerful tools for text manipulation. When
extend the key type from 0/1 bits to generic list, the tree structure changes from binary
tree to multiple sub-trees. Taking English characters for example, there are up to 26
sub-trees when ignore the case as shown in figure 6.8.

Not all the 26 sub-trees contain data. In figure 6.8, there are only three none empty
sub-trees bound to ‘a’, ‘b’, and ‘z’. Other sub-trees, such as for ‘c’, are empty. We can
hide them in the figure. When it is case sensitive, or extent the key from alphabetic string
to generic list, we can adopt collection types, like map to define trie.

A trie of type Trie K V is either empty ∅ or a node of 2 kinds:

1. A leaf of value v without any sub-trees as (v,∅), where the type of v is V ;

2. A branch, containing a value v and multiple sub-trees. Each sub-tree is bound to an
element k of type K. Denoted as (v, ts), where ts = {k1 7→ T1, k2 7→ T2, ..., km 7→
Tm}, contains the mapping from ki to sub-tree Ti. It’s type is Map K (Trie K V).
The mapping can be assoc list or self-balancing trees (see chapter 4, 5).

Let the empty content be (Nothing,∅), Below example program defines trie.
data Trie k v = Trie { value :: Maybe v

, subTrees :: Map k (Trie k v)}

6.3.1 Insert
When insert a pair of key and value to the trie, where the key is a list of elements. Let
the trie be T = (v, ts), ts[k] looks up k in map ts, it returns empty tree when k doesn’t
exist; ts[k]← t insert a mapping from k to tree t, and returns the updated map.

insert [] v (v′, ts) = (Just v, ts)
insert (k :ks) v (v′, ts) = (v′, ts[k]← insert ks v ts[k])

(6.9)

Below is the example program:
insert [] x (Trie _ ts) = Trie (Just x) ts
insert (k:ks) x (Trie v ts) = Trie v (Map.insert k (insert ks x t) ts) where

t = case Map.lookup k ts of
Nothing → Trie Nothing Map.empty
(Just t) → t

6.3. TRIE 79

a

a b

nil

c

...

z

an

n

o

t

h

e

another

r

o

o

boy

y

bool

l

o

zoo

o

Figure 6.8: A trie of 26 branches, containing key ‘a’, ‘an’, ‘another’, ‘bool’, ‘boy’, and
‘zoo’.

80 CHAPTER 6. RADIX TREE

We can also eliminate the recursion with loops:
1: function Insert(T, k, v)
2: if T = NIL then
3: T ← Empty-Node
4: p← T
5: for each c in k do
6: if Sub-Trees(p)[c] = NIL then
7: Sub-Trees(p)[c] ← Empty-Node
8: p← Sub-Trees(p)[c]
9: Value(p) ← v

10: return T

For the key type [K] (list of K), if K is finite set of m elements, and the length of
the key is n, then the insert algorithm is bound to O(n lgm). When the key is lower
case English strings, then m = 26, the insert operation is proportion to the length of key
string.

6.3.2 Lookup
When look up a none empty key (k :ks) from trie T = (v, ts), starting from the first
element k, if there exists sub-tree T ′ mapped to k, we then recursively lookup ks in T ′.
When the key is empty, then return the value as result:

lookup [] (v, ts) = v

lookup (k :ks) (v, ts) =

{
ts[k] = Nothing : Nothing
ts[k] = Just t : lookup ks t

(6.10)

Below is the corresponding iterative implementation:
1: function Look-Up(T, key)
2: if T = NIL then
3: return Nothing
4: for each c in key do
5: if Sub-Trees(T)[c] = NIL then
6: return Nothing
7: T ← Sub-Trees(T)[c]
8: return Value(T)
The lookup algorithm is bound to O(n lgm), where n is the length of the key, and m

is the size of the element set.

6.4 Prefix tree
Trie is not space efficient. We can consolidate the chained nodes to obtain the prefix
tree. A prefix tree node t contains two parts: an optional value v; zero or multiple sub
prefix trees, each ti is bound to a list si. The sub-trees and their mappings are denoted
as [si 7→ ti]. These lists share the longest common prefix s bound to the node t. i.e. s is
the longest common prefix of s ++ s1, s ++ s2, ... For any i 6= j, list si and sj don’t have
none empty common prefix. Consolidate the chained nodes in figure 6.8, we obtain the
corresponding prefix tree in figure 6.9.

Below example program defines the prefix tree:
data PrefixTree k v = PrefixTree { value :: Maybe v

, subTrees :: [([k], PrefixTree k v)]}

6.4. PREFIX TREE 81

a

a bo

zoo

zoo

an

n

another

other

bool

ol

boy

y

Figure 6.9: A prefix tree with keys: ‘a’, ‘an’, ‘another’, ‘bool’, ‘boy’, ‘zoo’.

We denote prefix tree t = (v, ts). Particularly, (Nothing, []) is the empty node, and
(Just v, []) is a leaf node of value v.

6.4.1 Insert

When insert key s, if the prefix tree is empty, we create a leaf node of s as figure 6.10
(a); otherwise, if there exits common prefix between s and si, where si is bound to some
sub-tree ti, we branch out a new leaf tj , extract the common prefix, and map it to a new
internal branch node t′, then put ti and tj as two sub-trees of t′. Figure 6.10 (b) shows
this case. There are two special cases: s is the prefix of si as shown in figure 6.10 (c) →
(e); or si is the prefix of s as shown in figure 6.10 (d) → (e).

Figure 6.10: (a) insert ‘boy’ to empty tree; (b) insert ‘bool’, branch a new node out; (c)
insert ‘another’ to (b); (d) insert ‘an’ to (b); (e) insert ‘an’ to (c), same result as insert
‘another’ to (d)

82 CHAPTER 6. RADIX TREE

Below function inserts key s and value v to the prefix tree t = (v′, ts):

insert [] v (v′, ts) = (Just v, ts)
insert s v (v′, ts) = (v′, ins ts)

(6.11)

If the key s is empty, we overwrite the value to v; otherwise, we call ins to examine
the sub-trees and their prefixes.

ins [] = [s 7→ (Just v, [])]

ins ((s′ 7→ t):ts′) =

{
match s s′ : (branch s v s′ t) : ts′

otherwise : (s′ 7→ t) : ins ts′
(6.12)

If there is no sub-tree in the node, then we create a leaf of v as the single sub-tree, and
map s to it; otherwise, for each sub-tree mapping s′ 7→ t, we compare s′ with s. If they
have common prefix (tested by the match function), then we branch out new sub-tree.
We define two lists matching if they have common prefix:

match [] B = True
match A [] = True

match (a:as) (b:bs) = a = b
(6.13)

To extract the longest common prefix of two lists A and B, we define a function
(C,A′, B′) = lcp A B, where C ++ A′ = A and C ++ B′ = B hold. If either A or B is
empty, or their first elements are different, then the common prefix C = []; otherwise, we
recursively extract the longest common prefix from the rest lists, and preprend the head
element:

lcp [] B = ([], [], B)
lcp A [] = ([], A, [])

lcp (a:as) (b:bs) =

{
a 6= b : ([], a:as, b:bs)

otherwise : (a:cs, as′, bs′)

(6.14)

where (cs, as′, bs′) = lcp as bs in the recursive case. Function branch A v B t takes
two keys A, B, a value v, and a tree t. It extracts the longest common prefix C from A
and B, maps it to a new branch node, and assign sub-trees:

branch A v B t =

lcp A B =

(C, [], B′) : (C, (Just v, [B′ 7→ t]))

(C,A′, []) : (C, insert A′ v t)

(C,A′, B′) : (C, (Nothing, [A′ 7→ (Just v, []), B′ 7→ t]))

(6.15)

If A is the prefix of B, then A is mapped to the node of v, and the remaining list is
re-mapped to t, which is the single sub-tree in the branch; if B is the prefix of A, then we
recursively insert the remaining list and the value to t; otherwise, we create a leaf node
of v put it together with t as the two sub-trees of the branch. The following example
program implements the insert algorithm:
insert [] v (PrefixTree _ ts) = PrefixTree (Just v) ts
insert k v (PrefixTree v' ts) = PrefixTree v' (ins ts) where

ins [] = [(k, leaf v)]
ins ((k', t) : ts) | match k k' = (branch k v k' t) : ts

| otherwise = (k', t) : ins ts

leaf v = PrefixTree (Just v) []

6.4. PREFIX TREE 83

match [] _ = True
match _ [] = True
match (a:_) (b:_) = a == b

branch a v b t = case lcp a b of
(c, [], b') → (c, PrefixTree (Just v) [(b', t)])
(c, a', []) → (c, insert a' v t)
(c, a', b') → (c, PrefixTree Nothing [(a', leaf v), (b', t)])

lcp [] bs = ([], [], bs)
lcp as [] = ([], as, [])
lcp (a:as) (b:bs) | a ̸= b = ([], a:as, b:bs)

| otherwise = (a:cs, as', bs') where
(cs, as', bs') = lcp as bs

We can eliminate the recursion to implement the insert algorithm in loops.
1: function Insert(T, k, v)
2: if T = NIL then
3: T ← Empty-Node
4: p← T
5: loop
6: match← FALSE
7: for each si 7→ Ti in Sub-Trees(p) do
8: if k = si then
9: Value(Ti) ← v ▷ Overwrite

10: return T
11: c← LCP(k, si)
12: k1 ← k − c, k2 ← si − c
13: if c 6= NIL then
14: match← TRUE
15: if k2 = NIL then ▷ si is prefix of k
16: p← Ti, k ← k1
17: break
18: else ▷ Branch out a new leaf
19: Add(Sub-Trees(p), c 7→ Branch(k1, Leaf(v), k2, Ti))
20: Delete(Sub-Trees(p), si 7→ Ti)
21: return T
22: if not match then ▷ Add a new leaf
23: Add(Sub-Trees(p), k 7→ Leaf(v))
24: break
25: return T

Function LCP extracts the longest common prefix from two lists.
1: function LCP(A,B)
2: i← 1
3: while i ≤ |A| and i ≤ |B| and A[i] = B[i] do
4: i← i+ 1

5: return A[1...i− 1]

There is a special case in Branch(s1, T1, s2, T2). If s1 is empty, the key to be insert
is some prefix. We set T2 as the sub-tree of T1. Otherwise, we create a new branch node
and set T1 and T2 as the two sub-trees.

1: function Branch(s1, T1, s2, T2)
2: if s1 = NIL then
3: Add(Sub-Trees(T1), s2 7→ T2)
4: return T1

84 CHAPTER 6. RADIX TREE

5: T ← Empty-Node
6: Sub-Trees(T) ← {s1 7→ T1, s2 7→ T2}
7: return T

Although the prefix tree improves the space efficiency of trie, it is still bound to O(mn),
where n is the length of the key, and m is the size of the element set.

6.4.2 Lookup
When look up a key k, we start from the root. If k = [] is empty, then return the root
value as the result; otherwise, we examine the sub-tree mappings, locate the one si 7→ ti,
such that si is some prefix of k, then recursively look up k − si in sub-tree ti. If there
does not exist si as the prefix of k, then there is no such key in the prefix tree.

lookup [] (v, ts) = v
lookup k (v, ts) = find ((s, t) 7→ s v k) ts ={

Nothing : Nothing

Just (s, t) : lookup (k − s) t

(6.16)

Where A v B means list A is prefix of B. Function find is defined in chapter 1, which
searches element in a list with a given predication. Below example program implements
the look up algorithm.
lookup [] (PrefixTree v _) = v
lookup ks (PrefixTree v ts) =

case find (λ(s, t) → s `isPrefixOf` ks) ts of
Nothing → Nothing
Just (s, t) → lookup (drop (length s) ks) t

The prefix testing is linear to the length of the list, the lookup algorithm is bound to
O(mn) time, where m is the size of the element set, and n is the length of the key. We
skip the imperative implementation, and leave it as the exercise.

Exercise 6.3
1. Eliminate the recursion to implement the prefix tree lookup purely with loops

6.5 Applications of trie and prefix tree
We can use trie and prefix tree to solve many interesting problems, like implement a
dictionary, populate candidate inputs, and realize the textonym input method. Different
from the industry implementation, we give the examples to illustrate the ideas of trie and
prefix tree.

6.5.1 Dictionary and input completion
As shown in figure 6.11, when user enters some characters, the dictionary application
searches the library, populates a list of candidate words or phrases that start from what
input.

A dictionary can contain hundreds of thousands words. It’s expensive to perform a
complete search. Commercial dictionaries adopt varies engineering approach, like caching,
indexing to speed up search. Similarly, figure 6.12 shows a smart text input component.
When type some characters, it populates a candidate lists, with all items starting with
the input string.

6.5. APPLICATIONS OF TRIE AND PREFIX TREE 85

Figure 6.11: A dictionary application

Figure 6.12: A smart text input component

86 CHAPTER 6. RADIX TREE

Both examples give the ‘auto-completion’ functionality. We can implement it with
prefix tree. For illustration purpose, we limit to English characters, and set a upper
bound n for the number of candidates. A dictionary stores key-value pairs, where the
key is English word or phrase, the value is the corresponding meaning and explanation.
When user input string s, we look up the prefix tree for all keys start with s. If s is empty
we expand all sub-trees till reach to n candidates; otherwise, we locate the sub-tree from
the mapped key, and look up recursively. In the environment supports lazy evaluation,
we can expand all candidates, and take the first n on demand: take n (startsWith s t),
where t is the prefix tree.

startsWith [] (Nothing, ts) = enum ts
startsWith [] (Just x, ts) = ([], x) : enum ts

startsWith s (v, ts) = find ((k, t) 7→ s v k or k v s) ts ={
Nothing : []

Just (k, t) : [(k ++ a, b)|(a, b) ∈ startsWith (s− k) t]

(6.17)

Given a prefix s, function startsWith searches all candidates in the prefix tree starts
with s. If s is empty, it enumerates all sub-trees, and prepand ([], x) for none empty
value x in the root. Function enum ts is defined as:

enum = concatMap (k, t) 7→ [(k ++ a, b)|(a, b) ∈ startsWith [] t] (6.18)

Where concatMap (also known as flatMap) is an important concept for list compu-
tation. Literally, it results like firstly map on each element, then concatenate the result
together. It’s typically realized with ’build-foldr’ fusion law to eliminate the intermediate
list overhead. (see chapter 5 in my book Isomorphism – mathematics of programming)
If the input prefix s is not empty, we examine the sub-tree mappings, for each list and
sub-tree pair (k, t), if either s is prefix of k or vice versa, we recursively expand t and
prepand k to each result key; otherwise, s does not match any sub-trees, hence the result
is empty. Below example program implements this algorithm.
startsWith [] (PrefixTree Nothing ts) = enum ts
startsWith [] (PrefixTree (Just v) ts) = ([], v) : enum ts
startsWith k (PrefixTree _ ts) =

case find (λ(s, t) → s `isPrefixOf` k | | k `isPrefixOf` s) ts of
Nothing → []
Just (s, t) → [(s ++ a, b) |

(a, b) ← startsWith (drop (length s) k) t]

enum = concatMap (λ(k, t) → [(k ++ a, b) | (a, b) ← startsWith [] t])

We can also realize the algorithm Starts-With(T, k, n) imperatively. From the root,
we loop on every sub-tree mapping ki 7→ Ti. If k is the prefix for any sub-tree Ti, we
expand all things in it up to n items; if ki is the prefix of k, we then drop that prefix,
update the key to k − ki, then search Ti for this new key.

1: function Starts-With(T, k, n)
2: if T = NIL then
3: return NIL
4: s← NIL
5: repeat
6: match← FALSE
7: for ki 7→ Ti in Sub-Trees(T) do
8: if k is prefix of ki then
9: return Expand(s++ ki, Ti, n)

10: if ki is prefix of k then

6.5. APPLICATIONS OF TRIE AND PREFIX TREE 87

11: match← TRUE
12: k ← k − ki ▷ drop the prefix
13: T ← Ti

14: s← s++ ki
15: break
16: until not match
17: return NIL

Where function Expand(s, T, n) populates n results from T and prepand s to each
key. We implement it with ‘breadth first search’ method (see section 14.3):

1: function Expand(s, T, n)
2: R← NIL
3: Q← [(s, T)]
4: while |R| < n and Q 6= NIL do
5: (k, T)← Pop(Q)
6: v ← Value(T)
7: if v 6= NIL then
8: Insert(R, (k, v))
9: for ki 7→ Ti in Sub-Trees(T) do

10: Push(Q, (k ++ ki, Ti))

6.5.2 Predictive text input
Before 2010, most mobile phones had a small keypad as shown in 6.13, called ITU-T
keypad. It maps a digit to 3 - 4 characters. For example, when input word ‘home’, one
can press keys in below sequence:

Figure 6.13: The mobile phone ITU-T keypad.

1. Press key ‘4’ twice to enter ‘h’;

2. Press key ‘6’ three times to enter ‘o’;

3. Press key ‘6’ to enter ‘m’;

4. Press key ‘3’ twice to enter ‘e’;

A smarter input method allows to press less keys:

1. Press key sequence ‘4’, ‘6’, ‘6’, ‘3’, the word ‘home’ appears as a candidate;

2. Press key ‘*’ to change to next candidate, word ‘good’ appears;

3. Press key ’*’ again for another candidate, word ‘gone’ appears;

88 CHAPTER 6. RADIX TREE

4. ...

This is called predictive input, or abbreviated as ‘T9’ [25], [26]. We can realize it by
storing the word dictionary in a prefix tree. The commercial implementations uses multi-
ple layers of caches/index in both memory and file system. We simplify it as an example
of prefix tree application. First, we need define the digit key mappings:

MT9 = { 2 7→ "abc", 3 7→ "def", 4 7→ "ghi",
5 7→ "jkl", 6 7→ "mno", 7 7→ "pqrs",
8 7→ "tuv", 9 7→ "wxyz" }

(6.19)

MT9[i] gives the corresponding characters for digit i. We can also define the reversed
mapping from a character back to digit.

M−1
T9 = concatMap ((d, s) 7→ [(c, d)|c ∈ s]) MT9 (6.20)

Given a string, we can convert it to a sequence of digits by looking up M−1
T9 .

digits(s) = [M−1
T9 [c]|c ∈ s] (6.21)

For any character does not belong [a..z], we map it to a special key '#' as fallback.
Below example program defines the above two mappings.

mapT9 = Map.fromList [('2', ”abc”), ('3', ” def ”), ('4', ” ghi ”),
('5', ” j k l ”), ('6', ”mno”), ('7', ”pqrs”),
('8', ”tuv”), ('9', ”wxyz”)]

rmapT9 = Map.fromList $ concatMap (λ(d, s) → [(c, d) | c ← s]) $
Map.toList mapT9

digits = map (λc → Map.findWithDefault '#' c rmapT9)

Suppose we already build the prefix tree (v, ts) from all words in a dictionary. We
need change the above auto completion algorithm to process digit string ds. For every
sub-tree mappings (s 7→ t) ∈ ts, we convert the prefix s to digits(s), check if it matches
to ds (either one is the prefix of the other). There can be multiple sub-trees match ds as:

pfx = [(s, t)|(s 7→ t) ∈ ts, digits(s) v ds or ds v digits(s)]

findT9 t [] = [[]]
findT9 (v, ts) ds = concatMap find pfx (6.22)

For each mapping (s, t) in pfx, function find recursively lookup the remaining digits
ds′ in t, where ds′ = drop |s| ds, then prepend s to every candidate. However, the length
may exceeds the number of digits, we need cut and only take n = |ds| characters:

find (s, t) = [take n (s++ si)|si ∈ findT9 t ds′] (6.23)

The following example program implements the predictive input look up algorithm:

findT9 _ [] = [[]]
findT9 (PrefixTree _ ts) k = concatMap find pfx where

find (s, t) = map (take (length k) ◦ (s++)) $ findT9 t (drop (length s) k)
pfx = [(s, t) | (s, t) ← ts, let ds = digits s in

ds `isPrefixOf` k | | k `isPrefixOf` ds]

6.6. APPENDIX: EXAMPLE PROGRAMS 89

To realize the predictive text input imperatively, we can perform breadth first search
with a queue Q of tuples (prefix, D, t). Every tuple records the possible prefix searched so
far; the remaining digits D to be searched; and the sub-tree t we are going to search. Q is
initialized with the empty prefix, the whole digits sequence, and the root. We repeatedly
pop the tuple from the queue, and examine the sub-tree mappings. for every mapping
(s 7→ T ′), we convert s to digits(s). If D is prefix of it, then we find a candidate. We
append s to prefix, and record it in the result. If digits(s) is prefix of D, we need further
search the sub-tree T ′. We create a new tuple of (prefix ++ s,D′, T ′), where D′ is the
remaining digits to be searched. Then push this new tuple back to the queue.

1: function Look-Up-T9(T,D)
2: R← NIL
3: if T = NIL or D = NIL then
4: return R
5: n← |D|
6: Q← {(NIL, D, T)}
7: while Q 6= NIL do
8: (prefix, D, T)← Pop(Q)
9: for (s 7→ T ′) ∈ Sub-Trees(T) do

10: D′ ← Digits(s)
11: if D′ ⊏ D then ▷ D′ is prefix of D
12: Append(R, (prefix ++ s)[1..n]) ▷ limit the length to n
13: else if D ⊏ D′ then
14: Push(Q, (prefix ++ s,D −D′, T ′))
15: return R

We start from integer trie and prefix tree. By turning the integer key to binary format,
we re-used binary tree to realize the integer based map data structure. Then extend the
key from integer to generic list, and limit the list element to finite set. Particularly for
alphabetic strings, the generic trie and prefix tree can be used as tools to manipulate the
text information. We give example applications about auto-completion and predictive
text input. as another instance of radix tree, the suffix tree is closely related to trie and
prefix tree used in text, and DNA processing.

Exercise 6.4

1. Implement the auto-completion and predictive text input with trie.
2. How to ensure the candidates in lexicographic order in the auto-completion and

predictive text input program? What’s the performance change accordingly?
3. In the environment without lazy evaluation support, how to return the first n

candidates on-demand?

6.6 Appendix: Example programs
Definition of integer binary trie:

data IntTrie<T> {
IntTrie<T> left = null
IntTrie<T> right = null
Optional<T> value = Optional.Nothing

}

The following example insert program uses bit-wise operation to test even/odd, and
shift the bit to right:

90 CHAPTER 6. RADIX TREE

IntTrie<T> insert(IntTrie<T> t, Int key,
Optional<T> value = Optional.Nothing) {

if t == null then t = IntTrie<T>()
p = t
while key ̸= 0 {

if key & 1 == 0 {
p = if p.left == null then IntTrie<T>() else p.left

} else {
p = if p.right == null then IntTrie<T>() else p.right

}
key = key >> 1

}
p.value = Optional.of(value)
return t

}

Definition of integer prefix tree:
data IntTree<T> {

Int key
T value
Int prefix
Int mask = 1
IntTree<T> left = null
IntTree<T> right = null

IntTree(Int k, T v) {
key = k, value = v, prefix = k

}

bool isLeaf = (left == null and right == null)

Self replace(IntTree<T> x, IntTree<T> y) {
if left == x then left = y else right = y

}

bool match(Int k) = maskbit(k, mask) == prefix
}

Int maskbit(Int x, Int mask) = x & (~(mask - 1))

Insert key-value to integer prefix tree.
IntTree<T> insert(IntTree<T> t, Int key, T value) {

if t == null then return IntTree(key, value)
node = t
Node<T> parent = null
while (not node.isLeaf()) and node.match(key) {

parent = node
node = if zero(key, node.mask) then node.left else node.right

}
if node.isleaf() and key == node.key {

node.value = value
} else {

p = branch(node, IntTree(key, value))
if parent == null then return p
parent.replace(node, p)

}
return t

}

IntTree<T> branch(IntTree<T> t1, IntTree<T> t2) {
var t = IntTree<T>()
(t.prefix, t.mask) = lcp(t1.prefix, t2.prefix)
(t.left, t.right) = if zero(t1.prefix, t.mask) then (t1, t2)

6.6. APPENDIX: EXAMPLE PROGRAMS 91

else (t2, t1)
return t

}

bool zero(int x, int mask) = (x & (mask >> 1) == 0)

Int lcp(Int p1, Int p2) {
Int diff = p1 ^ p2
Int mask = 1
while diff ̸= 0 {

diff = diff >> 1
mask = mask << 1

}
return (maskbit(p1, mask), mask)

}

Definition of trie and the insert program:
data Trie<K, V> {

Optional<V> value = Optional.Nothing
Map<K, Trie<K, V>> subTrees = Map.empty()

}

Trie<K, V> insert(Trie<K, V> t, [K] key, V value) {
if t == null then t = Trie<K, V>()
var p = t
for c in key {

if p.subTrees[c] == null then p.subTrees[c] = Trie<K, V>()
p = p.subTrees[c]

}
p.value = Optional.of(value)
return t

}

Definition of Prefix Tree and insert program:
data PrefixTree<K, V> {

Optional<V> value = Optional.Nothing
Map<[K], PrefixTree<K, V>> subTrees = Map.empty()

Self PrefixTree(V v) {
value = Optional.of(v)

}
}

PrefixTree<K, V> insert(PrefixTree<K, V> t, [K] key, V value) {
if t == null then t = PrefixTree()
var node = t
loop {

bool match = false
for var (k, tr) in node.subtrees {

if key == k {
tr.value = value
return t

}
prefix, k1, k2 = lcp(key, k)
if prefix ̸= [] {

match = true
if k2 == [] {

node = tr
key = k1
break

} else {
node.subtrees[prefix] = branch(k1, PrefixTree(value),

k2, tr)
node.subtrees.delete(k)

92 CHAPTER 6. RADIX TREE

return t
}

}
}
if !match {

node.subtrees[key] = PrefixTree(value)
break

}
}
return t

}

The longest common prefix lcp and branch example programs.
([K], [K], [K]) lcp([K] s1, [K] s2) {

j = 0
while j < length(s1) and j < length(s2) and s1[j] == s2[j] {

j = j + 1
}
return (s1[0..j-1], s1[j..], s2[j..])

}

PrefixTree<K, V> branch([K] key1, PrefixTree<K, V> tree1,
[K] key2, PrefixTree<K, V> tree2) {

if key1 == []:
tree1.subtrees[key2] = tree2
return tree1

t = PrefixTree()
t.subtrees[key1] = tree1
t.subtrees[key2] = tree2
return t

}

Populate multiple candidates, they share the common prefix
[([K], V)] startsWith(PrefixTree<K, V> t, [K] key, Int n) {

if t == null then return []
[T] s = []
repeat {

bool match = false
for var (k, tr) in t.subtrees {

if key.isPrefixOf(k) {
return expand(s ++ k, tr, n)

} else if k.isPrefixOf(key) {
match = true
key = key[length(k)..]
t = tr
s = s ++ k
break

}
}

} until not match
return []

}

[([K], V)] expand([K] s, PrefixTree<K, V> t, Int n) {
[([K], V)] r = []
var q = Queue([(s, t)])
while length(r) < n and !q.isEmpty() {

var (s, t) = q.pop()
v = t.value
if v.isPresent() then r.append((s, v.get()))
for k, tr in t.subtrees {

q.push((s ++ k, tr))
}

}

Elementary Algorithms 93

return r
}

Predictive text input lookup
var T9MAP={'2':"abc", '3':"def", '4':"ghi", '5':"jkl", λ

'6':"mno", '7':"pqrs", '8':"tuv", '9':"wxyz"}

var T9RMAP = { c : d for var (d, cs) in T9MAP for var c in cs }

string digits(string w) = ''.join([T9RMAP[c] for c in w])

[string] lookupT9(PrefixTree<char, V> t, string key) {
if t == null or key == "" then return []
res = []
n = length(key)
q = Queue(("", key, t))
while not q.isEmpty() {

(prefix, key, t) = q.pop()
for var (k, tr) in t.subtrees {

ds = digits(k)
if key.isPrefixOf(ds) {

res.append((prefix ++ k)[:n])
} else if ds.isPrefixOf(key) {

q.append((prefix ++ k, key[length(k)..], tr))
}

}
}
return res

}

94 B-Tree

Chapter 7

B-Tree

7.1 Introduction
The integer prefix tree in previous chapter gives a way to encode the information in the
edge of the binary tree. Another way to extend the binary search tree is to increase
the sub-trees from 2 to k. B-tree is such a data structure, that can be considered as a
generic form of k-ary search tree. It is also developed to be self-balanced [39]. B-tree is
widely used in computer file system (some are based on B+ tree, an extension of B-tree)
and database system. Figure 7.1 gives an example B-tree, we can find the difference and
similarity between B-tree and binary search tree.

P

 C G M T X

A B D E F J K L N O Q R S U V Y Z

Figure 7.1: A B-Tree

A binary search tree is either empty or contains a key k and two sub-trees l and r.
Every key in l is less than k, while k is less than every key in r:

∀ x ∈ l, y ∈ r ⇒ x < k < y (7.1)

Extend to multiple keys and sub-trees, we obtain the B-tree. A B-tree is either empty
or contains n keys and n + 1 sub-trees, each sub-tree is also a B-Tree. We denote these
keys and sub-trees as k1, k2, ..., kn and t1, t2, ..., tn, tn+1, as shown in figure 7.2.

C[1] K[1] C[2] K[2] ... C[n] K[n] C[n+1]

Figure 7.2: A B-Tree node

For every node, the keys and sub-trees satisfy the following rules:

• Keys are in ascending order: k1 < k2 < ... < kn;

• For every key ki, all keys in sub-tree ti are less than it, while ki is less than every
key in sub-tree ti+1:

95

96 CHAPTER 7. B-TREE

∀ xi ∈ ti, i = 0, 1, ..., n ⇒ x1 < k1 < x2 < k2 < ... < xn < kn < xn+1 (7.2)

Leaf node has no sub-tree. There can be optional values bound to the keys in B-tree
node. We skip the values for simplicity. Let the type of keys be K, the type of the
B-tree is BTree K, or denoted as BTree<K>. On top of it, we also need define a set of
self-balance rules:

1. All leaves have the same depth;

2. Let d be the minimum degree number of a B-tree, such that each node:

• has at most 2d− 1 keys;

• has at least d− 1 keys, except for the root;

In summary:

d− 1 ≤ |keys(t)| ≤ 2d− 1 (7.3)

We next prove that a B-tree satisfying these rules is always balanced.

Proof. Consider a B-tree of n keys. The minimum degree d ≥ 2. Let the height be h. All
the nodes have at least d − 1 keys except for the root. The root contains at least 1 key.
There are at least 2 nodes at depth 1, at least 2d nodes at depth 2, at least 2d2 nodes at
depth 3, ..., at least 2dh−1 nodes at depth h. Multiply all nodes with d− 1 except for the
root, the total number of keys satisfies the following:

n ≥ 1 + (d− 1)(2 + 2d+ 2d2 + ...+ 2dh−1)

= 1 + 2(d− 1)

h−1∑
k=0

dk

= 1 + 2(d− 1)
dh − 1

d− 1
= 2dh − 1

(7.4)

It limits the tree height with logarithm of the number of keys.

h ≤ logd
n+ 1

2
(7.5)

Hence B-tree is balanced. The simplest B-tree is called 2-3-4 tree, where d = 2. Every
node except for the root contains 2, 3, or 4 sub-trees. Essentially, a red-black tree can be
mapped to a 2-3-4 tree. For a none empty B-tree of degree d, we denote it as (d, (ks, ts)),
where ks are the keys, ts are the sub-trees. Below example program defines the B-tree.

data BTree a = BTree [a] [BTree a]

The empty node is in the form of (∅,∅) or BTree [] []. Instead of storing d in
every node, we pass it together with B-tree t as a pair (d, t).

7.2. INSERT 97

Figure 7.3: Insert 22 to a 2-3-4 tree. 22 > 20, go to the right sub-tree; next as 22 < 26,
go to the first sub-tree; finally, 21 < 22 < 25, and the leaf is not full.

7.2 Insert
The idea is similar to the binary search tree. While we need deal with multiple keys and
sub-trees. When insert key x to B-tree t, starting from the root, we examine the keys in
the node to locate a position1 where all keys on the left are less than x, while the rest keys
on the right are greater than x. If the node is a leaf, and it is not full (|keys(t)| < 2d−1),
we insert x at this position. Otherwise, this position points to a sub-tree t′, we recursively
insert x to t′.

As an example, consider the 2-3-4 tree in figure 7.3. when insert x = 22, because
20 < 22, we next examine the sub-tree on the right, which contains 26, 38, 45. Since
22 < 26, we next go to the first sub-tree containing 21 and 25. This is a leaf, and it is
not full. Hence we insert 22 to this node.

However, if there are 2d− 1 keys in the leaf, we will break the B-tree rules after insert
x, as the node will be too ’full’. For the same B-tree in figure 7.3, we’ll meet this issue
when insert 18. There are two solutions: insert then split, and split before insert.

7.2.1 Insert then split
We can adopt the similar ‘insert then fix’ method for the red-black tree. First, we insert
the key to the proper ordering position without considering the B-tree balance rules. As
the next step, if the new tree violates the balance rules, we perform a recursive bottom-up
fixing by splitting the overly full node. We need define the function to test whether a
given node satisfies the minimum degree constraint or not.{

full d (ks, ts) = |ks| > 2d− 1

low d (ks, ts) = |ks| < d− 1
(7.6)

When the node contains too many keys and sub-trees, we define split function to
break it into 3 parts at a given position m as shown in figure 7.4:

split m (ks, ts) = ((ksl, tsl), k, (ksr, tsr)) (7.7)

We reuse the list splitAt function defined in chapter 1 (Equation 1.45) to realize it.
1In fact, it is sufficient to only support less-than and equality. See exercise 1.

98 CHAPTER 7. B-TREE

Figure 7.4: Split the node into 3 parts at m

{
(ksl, (k : ksr)) = splitAt (m− 1) ks

(tsl, tsr) = splitAt m ts

We can define the reversed operation unsplit to combine the 3 parts back into a B-tree
node.

unsplit (ksl, tsl) k (ksr, tsr) = (ksl ++ [k] ++ ksr, tsl ++ tsr) (7.8)

Below function first inserts x to the tree t, then calls fix to resume the B-tree balance
rules with the given degree d.

insert x (d, t) = fix (d, ins t) (7.9)

After ins, if the root contains too many keys, function fix calls split to break it and
build a new root.

fix (d, t) =

{
full d t : (d, ([k], [l, r])),where (l, k, r) = split d t

otherwise : (d, t)
(7.10)

ins need handle two cases: for leaf node, we can reuse the list ordered insert function
defined in chapter 1 (Equation 1.11); otherwise, we need find the position to recursively
insert to sub-tree. To do that, we define a partition function as:

partition x (ks, ts) = (l, t′, r) (7.11)

Where l = (ksl, tsl) and r = (ksr, tsr). It further uses the list partition function span
defined in chapter 1 (Equation 1.47):{

(ksl, ksr) = span (< x) ks

(tsl, (t
′ : tsr)) = splitAt |ksl| ts

As such, we separate all the keys and sub-trees less than x on the left as l, and those
greater than x on the right as r. The last sub-tree that less than x is extracted as t′. We
then recursively insert x to t′, as shown in figure 7.5.

ins (ks,∅) = (insertL x ks,∅) list insert for leaf
ins (ks, ts) = balance d l (ins t′) r where (l, t′, r) = partition x t

(7.12)

7.2. INSERT 99

Figure 7.5: partition a node with x

After insert x to t′, it may contains too many keys that violates B-tree rules. We
define function balance to recursively recover B-tree rules by splitting sub-tree.

balance d (ksl, tsl) t (ksr, tsr) =

{
full d t : fixf

otherwise : (ksl ++ ksr, tsl ++ [t] ++ tsr)
(7.13)

where fixf splits sub-tree t with degree d as (t1, k, t2) = split d t, then combine them
to a new B-tree node:

fixf = (ksl ++ [k] ++ ksr, tsl ++ [t1, t2] ++ tsr) (7.14)

The following example program implements insert for B-tree.
partition x (BTree ks ts) = (l, t, r) where

l = (ks1, ts1)
r = (ks2, ts2)
(ks1, ks2) = span (< x) ks
(ts1, (t:ts2)) = splitAt (length ks1) ts

split d (BTree ks ts) = (BTree ks1 ts1, k, BTree ks2 ts2) where
(ks1, k:ks2) = splitAt (d - 1) ks
(ts1, ts2) = splitAt d ts

insert x (d, t) = fixRoot (d, ins t) where
ins (BTree ks []) = BTree (List.insert x ks) []
ins t = balance d l (ins t') r where (l, t', r) = partition x t

fixRoot (d, t) | full d t = let (t1, k, t2) = split d t in
(d, BTree [k] [t1, t2])

| otherwise = (d, t)

balance d (ks1, ts1) t (ks2, ts2)
| full d t = fixFull
| otherwise = BTree (ks1 ++ ks2) (ts1 ++ [t] ++ ts2)

where
fixFull = let (t1, k, t2) = split d t in

BTree (ks1 ++ [k] ++ ks2) (ts1 ++ [t1, t2] ++ ts2)

100 CHAPTER 7. B-TREE

Figure 7.6 shows the example B-trees built by repeatedly insert elements from list
“GMPXACDEJKNORSTUVYZ”.

Figure 7.6: Repeatedly insert elements from “GMPXACDEJKNORSTUVYZ”. above:
d = 2 (2-3-4 tree), below: d = 3

7.2.2 Split before insert
The second method is to split a node before insertion to prevent it becoming overly
full. We often see this method in imperative implementations. When perform top-down
recursive insert, if we reach to a node with 2d− 1 keys, we divide it into 3 parts as shown
in figure 7.4, such that each new node has d−1 keys. They will be valid B-tree node after
insertion. For node x, let K(x) be the keys, T (x) be the sub-trees. Denote the i-th key
of x as ki(x), the j-th sub-tree as tj(x). Below algorithm splits the i-th sub-tree of node
z:

1: procedure Split(z, i)
2: d← Deg(z)
3: x← ti(z)
4: y ← Create-Node
5: K(y)← [kd+1(x), kd+2(x), ..., k2d−1(x)]
6: K(x)← [k1(x), k2(x), ..., kd−1(x)]
7: if x is not leaf then
8: T (y)← [td+1(x), td+2(x), ..., t2d(x)]
9: T (x)← [t1(x), t2(x), ..., td(x)]

10: Insert-At(K(z), i, kd(x))
11: Insert-At(T (z), i+ 1, y)

When split the node x = ti(z), we push the d-th key kd(x) up to the parent node z.
If z is already full, the pushing will break B-tree rules. To solve this problem, we need
do the top-down check from the root along the path when insert. Split any node with
2d − 1 keys. Since all parent nodes are processed to be not full, they can accept the
additional key pushed up. This method needs one single pass down the tree without any
back-tracking. If the root is full, we create a new node, and put the root as it singleton
sub-tree. Below is the insert algorithm:

1: function Insert(t, k)
2: r ← t

7.2. INSERT 101

3: if r is full then ▷ root is full
4: s← CREATE-NODE
5: T (s)← [r]
6: Split(s, 1)
7: r ← s
8: return Insert-Nonfull(r, k)

Where Insert-Nonfull assumes the node r passed in is not full. If r is a leaf, we
insert k to the keys based on order (Exercise 3 asks to realize the ordered insert with
binary search); otherwise, we locate the position, where ki(r) < k < ki+1(r). Split the
sub-tree ti(r) if it is full, and go on insert to this sub-tree.

1: function Insert-Nonfull(r, k)
2: n← |K(r)|
3: if r is leaf then
4: i← 1
5: while i ≤ n and k > ki(r) do
6: i← i+ 1

7: Insert-At(K(r), i, k)
8: else
9: i← n

10: while i > 1 and k < ki(r) do
11: i← i− 1

12: if ti(r) is full then
13: Split(r, i)
14: if k > ki(r) then
15: i← i+ 1

16: Insert-Nonfull(ti(r), k)
17: return r

This algorithm is recursive. Exercise 2 asks to eliminate the recursion with pure loops.
Figure 7.7 gives the result with the same input of “GMPXACDEJKNORSTUVYZ”.

Figure 7.7: Insert from “GMPXACDEJKNORSTUVYZ”. up: d = 2, 2-3-4 tree; bottom:
d = 3.

102 CHAPTER 7. B-TREE

7.2.3 Paired lists

When use list to store ordered keys, we always start from the first key, and scan the list
to find the insert position. If the keys are stored in array, we can improve it with binary
search. Can we start somewhere in the node, go left or right depending on the order of
keys? One idea is to separate the B-tree node into three parts: left l, a sub-tree t′, and
right r. Where left and right are lists of pairs, each pair contains a key and a sub-tree:
(ki, ti). However, l is reversed. In other words, l and r are head-to-head connected by t′

as a U-shape shown in figure 7.8. We can move forward and backward both in constant
time.

Figure 7.8: Define the B-tree node with a sub-tree and paired lists

Below example program defines B-tree node. It’s either empty, or contains 3 parts:
the left (key, sub-tree) list in reversed order, a sub-tree, and the right (key, sub-tree) list.
We denoted the none empty node as (l, t′, r).

data BTree a = Empty
| BTree [(a, BTree a)] (BTree a) [(a, BTree a)]

When move to right by a step, we take the first pair (k, t) from r, then form another
pair (k, t′) in front of l, and replace t′ with t. When move to left a step, it is symmetric.
Both operations take constant time.

stepl ((k, t) : l, t
′, r) = (l, t, (k, t′) : r)

stepr (l, t′, (k, t) : r) = ((k, t′) : l, t, r)
(7.15)

With the left/right moves, we can implement a generic partition function partition p t,
that separates the tree t with a given predicate p into 3 parts: left, middle, right: (l,m, r),
such that all sub-trees in l andm satisfy p, while the sub-trees in r do not. Let the function

7.2. INSERT 103

hd = fst ◦ head, which picks the first pair (a, b) from a list, then extracts a out.

partition p (∅,m, r) =

{
p(hd(r)) : partition p (stepr t)

otherwise : (∅,m, r)

partition p (l,m,∅) =

{
(not ◦ p)(hd(l)) : partition p (stepl t)

otherwise : (l,m,∅)

partition p (l,m, r) =

p(hd(l)) and (not ◦ p)(hd(r)) : (l,m, r)

p(hd(r)) : partition p (stepr t)

(not ◦ p)(hd(l)) : partition p (stepl t)

(7.16)
For example, partition (< k) t moves all keys and sub-trees in t less than k out of the

right part. Below example program implements the partition function:
partition p t@(BTree [] m r)
| p (hd r) = partition p (stepR t)
| otherwise = ([], m, r)

partition p t@(BTree l m [])
| (not ◦ p) (hd l) = partition p (stepL t)
| otherwise = (l, m, [])

partition p t@(BTree l m r)
| p (hd l) && (not ◦ p) (hd r) = (l, m, r)
| p (hd r) = partition p (stepR t)
| (not ◦ p) (hd l) = partition p (stepL t)

We can also use stepl/stepr to split a B-tree at position d when it becomes overly
full. Let n = |l| be the number of keys/sub-trees of the left part. fn(x) means repeatedly
apply function f to x for n times.

split d t =

n < d : sp(stepd−n

r (t))

n > d : sp(stepn−d
r (t))

otherwise : sp(t)

(7.17)

Where sp does the separation work as below:

sp (l, t, (k, t′) : r) = ((l, t,∅), k, (∅, t′, r)) (7.18)

With partition and split defined, we can define B-tree insert algorithm for the paired
lists implementation. Firstly, we need modify the low/full testing to count both left and
right parts:

full d ∅ = False
full d (l, t′, r) = |l|+ |r| > 2d− 1

(7.19)

and
low d ∅ = False
low d (l, t′, r) = |l|+ |r| < d− 1

(7.20)

When insert key x to B-tree t of degree d, we do the recursive insertion, then fix the
root if it gets overly full:

insert x (d, t) = fix (d, ins t) (7.21)

Where fix splits the root at d if needed:

fix (d, t) =

{
full d t : (d, (∅, t1, [(k, t2)] where (t1, k, t2) = split d t

otherwise : (d, t)
(7.22)

104 CHAPTER 7. B-TREE

Function ins need handle both t = ∅, and t 6= ∅ cases. For empty case, we create
a singleton leaf; otherwise, we call (l, t′, r) = partition (< x) t to locate the position for
recursive insert:

ins ∅ = (∅,∅, [(x,∅)])

ins t =

{
t′ = ∅ : balance d l ∅ ((x,∅) : r)

t′ 6= ∅ : balance d l (ins t′) r

(7.23)

Function balance examines if the sub-tree t contains too many keys, and splits it.

balance d l t r =

{
full d t : fixFull

otherwise : (l, t, r)
(7.24)

Where fixFull = (l, t1, ((k, t2) : r), and (t1, k, t2) = split d t. Below example program
implements the insert algorithm:
insert x (d, t) = fixRoot (d, ins t) where

ins Empty = BTree [] Empty [(x, Empty)]
ins t = let (l, t', r) = partition (< x) t in
case t' of

Empty → balance d l Empty ((x, Empty):r)
_ → balance d l (ins t') r

fixRoot (d, t) | full d t = let (t1, k, t2) = split d t in
(d, BTree [] t1 [(k, t2)])

| otherwise = (d, t)

balance d l t r | full d t = fixFull
| otherwise = BTree l t r

where
fixFull = let (t1, k, t2) = split d t in BTree l t1 ((k, t2):r)

split d t@(BTree l _ _) | n < d = sp $ iterate stepR t !! (d - n)
| n > d = sp $ iterate stepL t !! (n - d)
| otherwise = sp t

where
n = length l
sp (BTree l t ((k, t'):r)) = (BTree l t [], k, BTree [] t' r)

Exercise 7.1

1. Can we use ≤ to support duplicated keys in B-Tree?
2. For the ‘split then insert’ algorithm, eliminate the recursion with loops.
3. We use linear search among keys to find the proper insert position. Improve the im-

perative implementation with binary search. Is the big-O performance improved?

7.3 Look up
For look up, we can extend from the binary search tree to multiple branches, and obtain
the generic B-tree look up solution. There are only two directions when look up the
binary search tree: left and right, while, there are multiple ways in B-tree. Consider look
up k in B-tree t = (ks, ts), if t is a leaf (ts is empty), then the problem becomes list look
up; otherwise, we partition the t with k into three parts: l = (ksl, tsl), t

′, r = (ksr, tsr),
where all keys in l and sub-tree t′ are less then k, and the remaining (≥ k) is in r. If

7.3. LOOK UP 105

the first key in ksr equals k, then we find the answer; otherwise, we recursive look up in
sub-tree t′.

lookup k (ks,∅) =

{
k ∈ ks : Just (ks,∅)

otherwise : Nothing

lookup k (ks, ts) =

{
Just k = safeHd ksr : Just (ks, ts)
otherwise : lookup k t′

(7.25)

Where ((ksl, tsl), t
′, (ksr, tsr)) = partition k t, and

safeHd [] = Nothing
safeHd (x : xs) = Just x

Below example program2 implements lookup.
lookup k t@(BTree ks []) = if k `elem` ks then Just t else Nothing
lookup k t = if (Just k) == safeHd ks then Just t

else lookup k t' where
(_, t', (ks, _)) = partition k t

For the paired list implementation, the idea is similar. If the tree is not empty, we
partition it with the predicate ‘< k’. Then check if the first key in the right part equals
to k, or recursively look up the partitioned sub-tree:

lookup k ∅ = Nothing

lookup k t =

{
Just k = safeFst (safeHd r) : Just (l, t′, r)
otherwise : lookup k t′

(7.26)

Where (l, t′, r) = partition (< k) t for the none empty tree case. safeFst applies fst
function to a ‘Maybe’ value. Below example program utilizes fmap to do this:
lookup x Empty = Nothing
lookup x t = let (l, t', r) = partition (< x) t in

if (Just x) == fmap fst (safeHd r) then Just (BTree l t' r)
else lookup x t'

For the imperative implementation, we start from the root r, find a position i among
the keys, such that ki(r) ≤ k < ki+1(r). If ki(r) = k then return the node r and i as a
pair; otherwise, move to sub-tree ti(r) to go on looking up. If r is a leaf and k is not in
the keys, then return nothing. It means k does not exist in the tree.

1: function Look-Up(r, k)
2: loop
3: i← 1, n← |K(r)|
4: while i ≤ n and k > ki(r) do
5: i← i+ 1

6: if i ≤ n and k = ki(r) then
7: return (r, i)

8: if r is leaf then
9: return Nothing ▷ k does not exist

10: else
11: r ← ti(r) ▷ go to the i-th sub-tree

Exercise 7.2
1. Improve the imperative look up with binary search among keys.

2safeHd is provided as listToMaybe in some library.

106 CHAPTER 7. B-TREE

7.4 Delete
After delete a key, the number of keys may be too few to be a valid B-tree node. Except
the root, the number of keys should not be less than d − 1, where d is the minimum
degree. There are two methods symmetric to insert: we can either delete then fix, or
merge before delete.

7.4.1 Delete and fix
We first extend the delete algorithm for binary search tree to multiple branches, then fix
the B-tree balance rules. The main delete program is defined with these two steps:

delete x (d, t) = fix(d, del x t) (7.27)

Where function del is the one we extend to support multiple branches. If t is a leaf,
we merely delete x from the keys; otherwise, we partition the tree with x into 3 parts:
(l, t′, r). Where all the keys in l and sub-tree t′ are less than x, and the rest in r are
great than or equal (≥) to x. When r isn’t empty, we pick the first key ki from it. If
the key equals to x, (ki = x), we next replace it with the maximum key k′ of sub-tree t′

(k′ = max(t′)), and recursively delete k′ from t′ as shown in figure 7.9. Otherwise (either
r is empty, or ki 6= x), we recursively delete x from sub-tree t′.

Figure 7.9: Replace ki with k′ = max(t′), then recursively delete k′ from t′.

del x (ks,∅) = (deletel x ks,∅)

del x t =

{
Just x = safeHd ks′ : balance d l (del k′ t′) (k′ : (tail ks′), ts′)

otherwise : balance d l (del x t′) (ks′, ts′)

(7.28)
Where (l, t′, (ks′, ts′)) = partition x t, are the 3 parts partitioned by x. On top of it,

we extract the maximum key k′ from t′. The max function is defined as:

max (ks,∅) = last ks
max (ks, ts) = max (last ts)

(7.29)

Function last returns the last element from a list (Equation 1.4 in chapter 1). deletel
is the list delete algorithm (Equation 1.14 in chapter 1). tail drops the first element from
a list and returns the rest (Equation 1.1). We need modify the balance function, which

7.4. DELETE 107

we defined for insert before, with the additional logic to merge the node if it contains too
less keys.

balance d (ksl, tsl) t (ksr, tsr) =

full d t : fixf

low d t : fixl

otherwise : (ksl ++ ksr, tsl ++ [t] ++ tsr)

(7.30)

If t is overly low (< d − 1 keys), we call fixl to merge it with the left part (ksl, tsl)
or right part (ksr, tsr) depends on which side of keys is not empty. Use the left part for
example: we extract the last element from ksl and tsl respectively, say km and tm. Then
call unsplit (defined in Equation 7.8) to merge them with t as unsplit tm km t. It forms
a new sub-tree with more keys. Finally we call balance again to build the result B-tree.

fixl =

ksl 6= ∅ : balance d (init ksl, init tsl) (unsplit tm km t) (ksr, tsr)

ksr 6= ∅ : balance d (ksl, tsl) (unsplit t k1 t1) (tail ksr, tail tsr)

otherwise : t

(7.31)

The last case (otherwise) means ksl = ksr = ∅, both sides are empty. The tree is
a singleton leaf hence need not fixing. k1 and t1 are the first element in ksr and tsr
respectively. Finally, we need modify the fix function defined for insert, add new logic
for delete:

fix (d, (∅, [t])) = (d, t)

fix (d, t) =

{
full d t : (d, ([k], [l, r])),where (l, k, r) = split d t

otherwise : (d, t)

(7.32)

What we add is the first case. After delete, if the root contains nothing but a sub-tree,
we can shrink the height, pull the single sub-tree as the new root. The following example
program implements the delete algorithm.
delete x (d, t) = fixRoot (d, del x t) where

del x (BTree ks []) = BTree (List.delete x ks) []
del x t = if (Just x) == safeHd ks' then

let k' = max t' in
balance d l (del k' t') (k':(tail ks'), ts')

else balance d l (del x t') r
where
(l, t', r@(ks', ts')) = partition x t

fixRoot (d, BTree [] [t]) = (d, t)
fixRoot (d, t) | full d t = let (t1, k, t2) = split d t in

(d, BTree [k] [t1, t2])
| otherwise = (d, t)

balance d (ks1, ts1) t (ks2, ts2)
| full d t = fixFull
| low d t = fixLow
| otherwise = BTree (ks1 ++ ks2) (ts1 ++ [t] ++ ts2)

where
fixFull = let (t1, k, t2) = split d t in

BTree (ks1 ++ [k] ++ ks2) (ts1 ++ [t1, t2] ++ ts2)
fixLow | not $ null ks1 = balance d (init ks1, init ts1)

(unsplit (last ts1) (last ks1) t)
(ks2, ts2)

| not $ null ks2 = balance d (ks1, ts1)
(unsplit t (head ks2) (head ts2))
(tail ks2, tail ts2)

| otherwise = t

We leave the delete function for the ’paired list’ implementation as an exercise. Figure
7.10, 7.11, and 7.12 give examples of delete.

108 CHAPTER 7. B-TREE

P

 C G M T X

A B D E F J K L N O Q R S U V Y Z

Figure 7.10: Before delete

Figure 7.11: Delete ‘C’, then delete ‘J’

Figure 7.12: Delete ‘K’, then delete ‘N’

7.4. DELETE 109

7.4.2 Merge before delete
The other way is to merge the nodes before delete if there are too few keys. Consider
delete key x from the tree t, let us start from the easy case.

Case 1. If x exists in node t, and t is a leaf, we can directly remove x from t. If t is
the singleton node in the tree (root), we needn’t worry about too few keys.

Case 2. If x exists in node t, but t is not a leaf. There are three sub-cases:
Case 2a. As shown in figure 7.9, let the predecessor of ki = x be k′, where k′ =

max(ti). If ti has sufficient keys (≥ d), we replace ki with k′, then recursively delete k′

from ti.
Case 2b. If ti does not have enough keys, but the sub-tree ti+1 does (≥ d). Symmet-

rically, we replace ki with its successor k′′, where k′′ = min(ti+1), then recursively delete
k′′ from ti+1, as shown in figure 7.13.

Figure 7.13: Replace ki with k′′ = min(ti+1), then delete k′′ from ti+1.

Case 2c. If neither ti nor ti+1 contains sufficient keys (|ti| = |ti+1| = d−1), we merge
ti, x, ti+1 to a new node. This new node has 2d− 1 keys, we can safely perform delete on
it as shown in figure 7.14.

Figure 7.14: Merge before delete

Merge pushes a key ki to the sub-tree. After that, if node t becomes empty, it means
ki is the only key in t, and ti, ti+1 are the only two sub-trees. We need shrink the tree
height as shown in figure 7.15.

Case 3. If node t does not contain x, we need recursively delete x from a sub-tree ti.
There are two sub-cases if there are too few keys in ti:

Case 3a. Among the two siblings ti−1, ti+1, if either one has enough keys (≥ d),
we move a key from t to ti, then move a key from the sibling up to t, and move the
corresponding sub-tree from the sibling to ti. As shown in figure 7.16, ti received one
more key. We next recursively delete x from ti.

110 CHAPTER 7. B-TREE

Figure 7.15: Shrink

Figure 7.16: Borrow from the right sibling.

7.4. DELETE 111

Case 3b. If neither sibling has sufficient keys (|ti−1| = |ti+1| = d− 1), we merge ti, a
key from t, and either sibling into a new node, as shown in figure 7.17. Then recursively
delete x from it.

Figure 7.17: Merge ti, k, ti+1

Below Delete algorithm implements the ‘merge then delete’ method:
1: function Delete(t, k)
2: if t is empty then
3: return t
4: i← 1, n← |K(t)|
5: while i ≤ n and k > ki(t) do
6: i← i+ 1

7: if k = ki(t) then
8: if t is leaf then ▷ case 1
9: Remove(K(t), k)

10: else ▷ case 2
11: if |K(ti(t))| ≥ d then ▷ case 2a
12: ki(t)← Max(ti(t))
13: Delete(ti(t), ki(t))
14: else if |K(ti+1(t))| ≥ d then ▷ case 2b
15: ki(t)← Min(ti+1(t))
16: Delete(ti+1(t), ki(t))
17: else ▷ case 2c
18: Merge-At(t, i)
19: Delete(ti(t), k)
20: if K(T) is empty then
21: t← ti(t) ▷ Shrinks height
22: return t

112 CHAPTER 7. B-TREE

23: if t is not leaf then
24: if k > kn(t) then
25: i← i+ 1

26: if |K(ti(t))| < d then ▷ case 3
27: if i > 1 and |K(ti−1(t))| ≥ d then ▷ case 3a: left
28: Insert(K(ti(t)), ki−1(t))
29: ki−1(t)← Pop-Last(K(ti−1(t)))
30: if ti(t) is not leaf then
31: Insert(T (ti(t)), Pop-Back(T (ti−1(t))))
32: else if i ≤ n and |K(ti+1(t))| ≥ d then ▷ case 3a: right
33: Append(K(ti(t)), ki(t))
34: ki(t)← Pop-First(K(ti+1(t)))
35: if ti(t) is not leaf then
36: Append(T (ti(t)), Pop-First(T (ti+1(t))))
37: else ▷ case 3b
38: if i = n+ 1 then
39: i← i− 1

40: Merge-At(t, i)
41: Delete(ti(t), k)
42: if K(t) is empty then ▷ Shrinks height
43: t← t1(t)

44: return t

Where Merge-At(t, i) merges sub-tree ti(t), key ki(t), and ti+1(t) into one sub-tree.
1: procedure Merge-At(t, i)
2: x← ti(t)
3: y ← ti+1(t)
4: K(x)← K(x) ++ [ki(t)] ++K(y)
5: T (x)← T (x) ++ T (y)
6: Remove-At(K(t), i)
7: Remove-At(T (t), i+ 1)

Exercise 7.3

1. When delete a key k from the branch node, we use the maximum key from the
predecessor sub-tree k′ = max(t′) to replace k, then recursively delete k′ from
t′. There is a symmetric method, to replace k with the minimum key from the
successor sub-tree. Implement this solution.

2. Define the delete function for the ‘paired list’ implementation.

7.5 Summary

We extend the binary search tree to multiple branches, then constrain the branches within
a range to develop the B-tree. B-tree is used as a tool to control the magnetic disk access
(chapter 18, [4]). Because all B-tree nodes store keys in a range, not too few or too
many. B-tree is balanced. Most of the tree operations are proportion to the height. The
performance is bound to O(lgn) time, where n is the number of keys in B-tree.

7.6. APPENDIX: EXAMPLE PROGRAMS 113

7.6 Appendix: Example programs
Definition of B-tree:
data BTree<K, Int deg> {

[K] keys
[BTree<K>] subStrees;

}

Split node
void split(BTree<K, deg> z, Int i) {

var d = deg
var x = z.subTrees[i]
var y = BTree<K, deg>()
y.keys = x.keys[d ...]
x.keys = x.keys[... d - 1]
if not isLeaf(x) {

y.subTrees = x.subTrees[d ...]
x.subTrees = x.subTrees[... d]

}
z.keys.insert(i, x.keys[d - 1])
z.subTrees.insert(i + 1, y)

}

Bool isLeaf(BTree<K, deg> t) = t.subTrees == []

Insert a key to B-tree:
BTree<K, deg> insert(BTree<K, deg> tr, K key) {

var root = tr
if isFull(root) {

var s = BTree<K, deg>()
s.subTrees.insert(0, root)
split(s, 0)
root = s

}
return insertNonfull(root, key)

}

Insert a key to a non-full node.
BTree<K, deg> insertNonfull(BTree<K, deg> tr, K key) {

if isLeaf(tr) {
orderedInsert(tr.keys, key)

} else {
Int i = length(tr.keys)
while i > 0 and key < tr.keys[i - 1] {

i = i - 1
}
if isFull(tr.subTrees[i]) {

split(tr, i)
if key > tr.keys[i] then i = i + 1

}
insertNonfull(tr.subTree[i], key)

}
return tr

}

Where orderedInsert inserts an element to an ordered list.
void orderedInsert([K] lst, K x) {

Int i = length(lst)
lst.append(x)
while i > 0 and lst[i] < lst[i-1] {

114 CHAPTER 7. B-TREE

(lst[i-1], lst[i]) = (lst[i], lst[i-1])
i = i - 1

}
}

Bool isFull(BTree<K, deg> x) = length(x.keys) ≥ 2 ∗ deg - 1
Bool isLow(BTree<K, deg> x) = length(x.keys) ≤ deg - 1

Iterative look up:
Optional<(BTree<K, deg>, Int)> lookup(BTree<K, deg> tr, K key) {

loop {
Int i = 0, n = length(tr.keys)
while i < n and key > tr.keys[i] {

i = i + 1
}
if i < n and key == tr.keys[i] then return Optional.of((tr, i))
if isLeaf(tr) {

return Optional.Nothing
} else {

tr = tr.subTrees[i]
}

}
}

Imperative merge before delete:
BTree<K, deg> delete(BTree<K, deg> t, K x) {

if empty(t.keys) then return t
Int i = 0, n = length(t.keys)
while i < n and x > t.keys[i] { i = i + 1 }
if x == t.keys[i] {

if isLeaf(t) { // case 1
removeAt(t.keys, i)

} else {
var tl = t.subtrees[i]
var tr = t.subtrees[i + 1]
if not low(tl) { // case 2a

t.keys[i] = max(tl)
delete(tl, t.keys[i])

} else if not low(tr) { // case 2b
t.keys[i] = min(tr)
delete(tr, t.keys[i])

} else { // case 2c
mergeSubtrees(t, i)
delete(d, tl, x)
if empty(t.keys) then t = tl // shrink height

}
return t

}
if not isLeaf(t) {

if x > t.keys[n - 1] then i = i + 1
if low(t.subtrees[i]) {

var tl = if i == 0 then null else t.subtrees[i - 1]
var tr = if i == n then null else t.subtrees[i + 1]
if tl ̸= null and (not low(tl)) { // case 3a, left

insert(t.subtrees[i].keys, 0, t.keys[i - 1])
t.keys[i - 1] = popLast(tl.keys)
if not isLeaf(tl) {

insert(t.subtrees[i].subtrees, 0, popLast(tl.subtrees))
}

} else if tr ̸= null and (not low(tr)) { // case 3a, right
append(t.subtrees[i].keys, t.keys[i])
t.keys[i] = popFirst(tr.keys)
if not isLeaf(tr) {

append(t.subtrees[i].subtrees, popFirst(tr.subtrees))

Elementary Algorithms 115

}
} else { // case 3b

mergeSubtrees(t, if i < n then i else (i - 1))
if i == n then i = i - 1

}
delete(t.subtrees[i], x)
if empty(t.keys) then t = t.subtrees[0] // shrink height
}

}
return t

}

merge sub-trees, find the min/max key from a B-tree.
void mergeSubtrees(BTree<K, deg>, Int i) {

t.subtrees[i].keys += [t.keys[i]] + t.subtrees[i + 1].keys
t.subtrees[i].subtrees += t.subtrees[i + 1].subtrees
removeAt(t.keys, i)
removeAt(t.subtrees, i + 1)

}

K max(BTree<K, deg> t) {
while not empty(t.subtrees) {

t = last(t.subtrees)
}
return last(t.keys)

}

K min(BTree<K, deg> t) {
while not empty(t.subtrees) {

t = t.subtrees[0]
}
return t.keys[0]

}

116 Binary Heaps

Chapter 8

Binary Heaps

8.1 Definition
Heaps are widely used for sorting, priority scheduling and graph algorithms, and etc. [40].
The most popular implementation models the heap as a complete binary tree in array [4].
The most efficient heap sort algorithm developed by R.W. Floyd is also based on this
method [41] [42]. For the generic heap definition, we can implement with varies data struc-
tures but not limit to array. In this chapter, we focus on the heaps implemented with
binary trees, including leftist heap, skew heap, and splay heap [3]. A heap is either empty,
or stores comparable elements that satisfies a property and three operations:

1. The heap property: the top element is always the minimum;

2. Pop: removes the top element from the heap and maintain the heap property: the
new top is still the minimum in the rest;

3. Insert: add a new element to the heap and maintain the heap property;

4. Other: operations like merge also maintain the heap property.

Because elements are comparable, we can also define the heap always keeps the max-
imum on top. We call the heap with the minimum on top as min-heap, the maximum
on top as max-heap. When implement heap with a tree, we can put the minimum (or
the maximum) in the root. After pop, we remove the root, and rebuild the tree from the
sub-trees. We call the heap implemented with binary tree as binary heap. This chapter
gives three types of binary heap.

8.2 Binary heap by array
The first implementation is to represent the a complete binary tree with an array. The
complete binary tree is ‘almost’ full. The full binary tree of depth k contains 2k−1 nodes.
We can number every node top-down, from left to right as 1, 2, ..., 2k − 1. The node
number i in the complete binary tree is located at the same position in the full binary
tree. The leaves only appear in the bottom layer, or the second last layer. Figure 8.1
shows a complete binary tree and the array. As the complete binary tree, the i-th cell in
array corresponds to a node, its parent node maps to the bi/2c-th cell; the left sub-tree
maps to the 2i-th cell, and the right sub-tree maps to the 2i + 1-th cell. If any sub-tree
maps to an index out of the array bound, then the sub-tree does not exist (i.e. leaf node).
We can define the map as below (index starts from 1):

117

118 CHAPTER 8. BINARY HEAPS

16

14 10

8 7

2 4 1

9 3

Figure 8.1: Map between a complete binary tree and an array.

parent(i) = b i

2
c

left(i) = 2i

right(i) = 2i+ 1

(8.1)

8.2.1 Heapify
Heapify is the process maintain heap property, keep the minimum element on the top.
For binary heap, we can obtain a stronger property as the binary tree is recursive: every
sub-tree stores its minimum element in the root. In other words, every sub-tree is also
a binary heap. Consider the min-heap represented with array, for any cell index i, we
examine if all the elements in sub-trees are greater then or equal to it (≥). Exchange
when not satisfies. Repeat this for all sub-trees rooted at i.

1: function Heapify(A, i)
2: n← |A|
3: loop
4: s← i ▷ s is the smallest
5: l← Left(i), r ← Right(i)
6: if l ≤ n and A[l] < A[i] then
7: s← l
8: if r ≤ n and A[r] < A[s] then
9: s← r

10: if s 6= i then
11: Exchange A[i]↔ A[s]
12: i← s
13: else
14: return

8.2. BINARY HEAP BY ARRAY 119

For index i in array A, any sub-tree node should not be less than A[i]. Otherwise, we
exchange A[i] with the smallest one, and recursively check the sub-trees. As the process
time is proportion to the height of the tree, Heapify is bound to O(lgn), where n is the
length of the array. Figure 8.2 gives the steps when apply Heapify from 2 to array [1,
13, 7, 3, 10, 12, 14, 15, 9, 16]. The result is [1, 3, 7, 9, 10, 12, 14, 15, 13, 16].

Figure 8.2: Heapify. Step 1: the minimum of 13, 3, 10 is 3, exchange 3 ↔ 13; Step 2: the
minimum of 13, 15, 9 is 9, exchange 13 ↔ 9; Step 3: 13 is leaf, terminate.

8.2.2 Build
We can build heap from arbitrary array with Heapify. List how many nodes in each
level of a complete binary tree: 1, 2, 4, 8, They are all power of 2 except for the last
level. Because the tree is not necessarily full, there are at most 2p−1 nodes, where p is
the smallest integer satisfying 2p− 1 ≥ n, and n is the length of the array. Skip all leaves
because Heapify takes no effect on them, we start applying Heapify to the last branch
node (which index ≤ bn/2c) bottom-up. The build function is defined as below:

1: function Build-Heap(A)
2: n← |A|
3: for i← bn/2c down to 1 do
4: Heapify(A, i)

Although Heapify is bound O(lgn) time, Build-Heap is bound to O(n), but not
O(n lgn). We skip all leaves, check and move down a level at most for 1/4 nodes; check
and move down two levels at most for 1/8 nodes; check and move down three levels at

120 CHAPTER 8. BINARY HEAPS

most for 1/16 nodes... the total comparison and move times is up to:

S = n(
1

4
+ 2

1

8
+ 3

1

16
+ ...) (8.2)

Multiply by 2 for both sides:

2S = n(
1

2
+ 2

1

4
+ 3

1

8
+ ...) (8.3)

Subtract (8.2) from (8.3):

2S − S = n[
1

2
+ (2

1

4
− 1

4
) + (3

1

8
− 2

1

8
) + ...] shift by one and subtract

S = n[
1

2
+

1

4
+

1

8
+ ...] geometric series

= n

Figure 8.3 shows the steps to build a min-heap from array [4, 1, 3, 2, 16, 9, 10, 14, 8, 7].
The black node is where Heapify is applied. The grey nodes are swapped to maintain
the heap property.

8.2.3 Heap operations
Heap operations include access the top, pop, look up the top k elements, decrease an
element in min-heap (or increase an element in max-heap), and insert a new element.
For binary heap, the root stores the minimum element, corresponding to the first cell in
array:

1: function Top(A)
2: return A[1]

Pop

After pop, the remaining elements in array shift ahead by one. However, after removed
the root of the binary tree, the rest is not a binary tree any more. To avoid such situation,
we swap the first and the last element in array, then reduce the array length by one. It
equivalent to remove a leaf but not the root. We then apply Heapify to recover the heap
property:

1: function Pop(A)
2: x← A[1], n← |A|
3: Exchange A[1]↔ A[n]
4: Remove(A,n)
5: if A is not empty then
6: Heapify(A, 1)
7: return x

It takes constant time to remove the last element from array, hence pop is also bound
to O(lgn) time as same as Heapify.

Top-k

We can obtain top k elements by repeatedly applying pop.
1: function Top-k(A, k)
2: R← []
3: Build-Heap(A)

8.2. BINARY HEAP BY ARRAY 121

Figure 8.3: Build heap. (1) 16 > 7; (2) exchange 16 ↔ 7; (3) 2 < 14 and 2 < 8; (4) 3 < 9
and 3 < 10; (5) 1 < 2 and 1 < 7; (6) 1 < 4 and 1 < 3; (7) exchange 4 ↔ 1; (8) exchange
4 ↔ 2, end.

122 CHAPTER 8. BINARY HEAPS

4: loop Min(k, |A|) times ▷ cut off when k out of array bound
5: Append(R, Pop(A))
6: return R

Increase priority

We can implement a priority queue with heap, to schedule tasks with priorities. Every
time, we peek the high priority task to execute. To make an urgent task run earlier, we
can increase its priority. It corresponds to decrease an element in a min-heap, as shown
in 8.4.

Figure 8.4: Decrease 13 to 2. Exchange 2 and 9, then exchange with 3.

The heap property may not be satisfied when decrease some element in a min-heap.
Let the decreased element indexed at i in the array, below function resumes the heap
property bottom-up. It is bound to O(lgn) time.

1: function Heap-Fix(A, i)
2: while i > 1 and A[i] < A[Parent(i)] do
3: Exchange A[i]↔ A[Parent(i)]
4: i← Parent(i)

Insertion

We can realize push with Heap-Fix [4]. Use min-heap for example, we append the new
element k to the tail of the array, then apply Heap-Fix to recover the heap property:

1: function Push(A, k)
2: Append(A, k)
3: Heap-Fix(A, |A|)

8.2.4 Heap sort
We can sort elements with heap. Build a min-heap from a collection of n elements, the
repeatedly pop the top element to obtain the ascending result. It takes O(n) time to

8.3. LEFTIST HEAP AND SKEW HEAP 123

build the heap. The pop is bound to O(lgn) time, and runs for n times. Therefore, the
total time is bound to O(n lgn). The space is bound to O(n) as we need another list to
hold the result.

1: function Heap-Sort(A)
2: R← []
3: Build-Heap(A)
4: while A 6= [] do
5: Append(R, Pop(A))
6: return R

Robert. W. Floyd gave a fast implementation with max-heap. The top stores the
maximum one. Every time, swap the head and the tail elements in the array. After
that the maximum is stored to the expected position, and the previous tail becomes the
new top. We next decrease the heap size by one, and apply Heapify to maintain the
heap property. Repeat this till the heap size decrease to one. This algorithm needn’t the
additional space to store the result.

1: function Heap-Sort(A)
2: Build-Max-Heap(A)
3: n← |A|
4: while n > 1 do
5: Exchange A[1]↔ A[n]
6: n← n− 1
7: Heapify(A[1...n], 1)

Exercise 8.1

1. Consider another idea about in-place heap sort: Build a min-heap from the array
A, the first element a1 is in the right position. Treat the rest [a2, a3, ..., an] as the
new heap, and apply Heapify from a2. Repeat this till the last element. Is this
method correct?

1: function Heap-Sort(A)
2: Build-Heap(A)
3: for i = 1 to n− 1 do
4: Heapify(A[i...n], 1)

2. Similarly, can we apply Heapify k times from left to right to get the top-k ele-
ments?

1: function Top-K(A, k)
2: Build-Heap(A)
3: n← |A|
4: for i← 1 to min(k, n) do
5: Heapify(A[i...n], 1)

8.3 Leftist heap and skew heap

When implement the heap with a explicit binary tree, after pop the rot, there remain two
sub-trees. Both are heaps as shown in figure 8.5. How can we merge them to a new heap?
To maintain the heap property, the new root must be the minimum for the remaining.
We can give the first edge cases easily:

124 CHAPTER 8. BINARY HEAPS

Figure 8.5: Merge left and right sub-trees after pop.

merge(∅, R) = R
merge(L,∅) = L
merge(L,R) = ?

Both left and right sub-trees are heaps. When they are not empty, each root stores the
minimum respectively. We can compare the two roots, and peek the smaller as the new
root. Let L = (A, x,B), R = (A′, y, B′), where A, A′, B, B′ are sub-trees. If x < y, then
x is the new root. We keep A, and merge B and R recursively; alternatively, we can keep
B, and merge A and R. The new heap can be (merge(A,R), x, B) or (A, x,merge(B,R)).
Both are right. To simplify, we always merge the right sub-tree. This method generates
leftist heap.

8.3.1 Leftist heap
The leftist heap is implemented with leftist tree. C. A. Crane in 1972 [43] developed leftist
tree. He defined a rank for every node (also known as S-value) as the distance to the
nearest NIL. The rank of NIL is 0. As shown in 8.6, The nearest leaf node to 4 is 8, the
rank of 4 is 2; Both 4 and 8 are leaves, their ranks are 1. Although the left sub-tree of 5 is
not empty, its right sub-tree is NIL, hence the rank is 1. We can define the merge method
with rank as below. Let the ranks for left and right sub-trees be rl, rr respectively:

4

5 8

6 NIL

NIL NIL

NIL NIL

Figure 8.6: rank(4) = 2, rank(6) = rank(8) = rank(5) = 1.

1. Always merge the right sub-tree;

8.3. LEFTIST HEAP AND SKEW HEAP 125

2. When rl < rr, exchange the left and right sub-trees.

We call above merge rules ‘leftist property’. Basically, a leftist tree always has the
shortest path to some NIL on the right. It tends to be unbalanced, while maintain a
critical constraint:
Theorem 8.3.1. For a leftist tree T of n nodes, the path from root to the rightmost NIL
has at most blog(n+ 1)c nodes.

We skip the proof [44] [51]. With this theorem, algorithms process along this path are
ensured bound to O(lgn) time. We can define the leftist tree by reusing binary tree plus
an additional rank. Let the none empty leftist tree be (r, L, k,R):
data LHeap a = E −− Empty

| Node Int (LHeap a) a (LHeap a)

Function rank returns the rank value:
rank ∅ = 0

rank (r, L, k,R) = r
(8.4)

Merge

To merge two leftist heaps, we define a make function. It compares the ranks of the
sub-trees and swap them if necessary.

make(A, k,B) =

{
rank(A) < rank(B) : (rank(A) + 1, B, k,A)

否则 : (rank(B) + 1, A, k,B)
(8.5)

It takes two sub-trees A and B. If rank of A is smaller, we let B be the left sub-tree,
and A be the right. The rank of the new node is rank(A) + 1; otherwise if rank of B
is smaller, we let A be the left sub-tree, and B be the right. The rank of the new node
is rank(B) + 1. Given two leftist heaps H1 and H2, if they are not empty, let them be
(r1, L1,K1, R1) and (r2, L2, k2, R2) respectively. Below function defines merge:

merge ∅ H2 = H2

merge H1 ∅ = H1

merge H1 H2 =

{
k1 < k2 : make(L1, k1,merge R1 H2)

否则 : make(L2, k2,merge H1 R2)

(8.6)

We always apply merge to the right sub-tree recursively, hence the leftist property
is maintained, and it is bound to O(lgn) time.The binary heap implemented by array
performs well in most cases, and it suitable for the modern cache technology. However,
it takes O(n) time for merge. We need concatenate two arrays, and rebuild the heap [50].

1: function Merge-Heap(A,B)
2: C ← Concat(A,B)
3: Build-Heap(C)
We can define most heap operations with merge.

Top and pop

We can access the top element in O(1) time, assume the heap is not empty:

top (r, L, k,R) = k (8.7)

After pop the root, we merge the left and right sub-trees as a new heap. Same as
merge, pop is also bound to O(lgn) time.

pop (r, L, k,R) = merge L R (8.8)

126 CHAPTER 8. BINARY HEAPS

Insert

To insert a new element k, we build a singleton leaf of k, then merge it with the heap:

insert k H = merge (1,∅, k,∅) H (8.9)

Or write it in Curried form as build = foldr insert ∅.

1

2

4 3

7 9

16 10

14 8

Figure 8.7: Build the leftist heap from [9, 4, 16, 7, 10, 2, 14, 3, 8, 1].

Heap sort

Given a list, we build a leftist heap from it, then repeatedly pop the minimum element
from top to obtain the sorted result.

sort = heapSort ◦ build (8.10)

Where
heapSort [] = []
heapSort H = (top H) : (heapSort (pop H))

(8.11)

We call pop n times, each takes O(lgn) time. The total time is bound to O(n lgn).

8.3.2 Skew heap
Leftist heap may lead to unbalanced tree in some cases as shown in figure 8.8. Skew heap
is a self-adjusting heap. It simplifies the leftist heap and improves balance [46] [47]. When
build the leftist heap, we swap the left and right sub-trees when the rank on left is smaller
than the right. However, this method can’t handle the case when either sub-tree has a
NIL node. The rank is always 1 no matter how big the sub-tree is. Skew heap simplified
the merge, it always swap the left and right sub-trees.

Skew heap is implemented with skew tree. Skew tree is a binary tree. The root stores
the minimum element, every sub-tree is also a skew tree. Skew tree needn’t the rank. We
can directly re-use the binary tree definition. Let the none empty tree be (L, k,R).
data SHeap a = E −− Emtpy

| Node (SHeap a) a (SHeap a)

8.4. SPLAY HEAP 127

1

2

3 4

7

8 9

10

14

16

Figure 8.8: Leftist heap built from [16, 14, 10, 8, 7, 9, 3, 2, 4, 1].

Merge

When merge two none empty skew trees, we choose the smaller root as the new root.
Then merge the greater tree with a sub-tree, and swap the left and right sub-trees. Let
the two trees be H1 = (L1, k1, R1) and H2 = (L2, k2, R2). If k1 < k2, then choose k1 as
the new root. We can either merge H2 with L1, or merge H2 with R1. We choose R1,
and swap the left and right sub-trees. The result is (merge(R1,H2), k1, L1).

merge ∅ H2 = H2

merge H1 ∅ = H1

merge H1 H2 =

{
k1 < k2 : (merge(R1,H2), k1, L1)

otherwise : (merge(H1, R2), k2, L2)

(8.12)

Similar with leftist tree, the other operations, including insert, top, and pop are im-
plemented with merge. Skew heap outputs a balanced tree even for ordered list as shown
in figure 8.9.

8.4 Splay heap
The leftist heap and skew heap are implemented with binary tree. If change to binary
search tree, then the minimum element will not be in root. We need O(lgn) time to locate
the minimum. The performance will downgrade if the tree is not balanced. Although we
can use the red-black tree to secure balancing, the splay tree provides a light weight
implementation. It dynamically make the tree balanced. Splay tree takes cache-like
approach. It rotates the node currently being accessed to the root, reduces the access

128 CHAPTER 8. BINARY HEAPS

1

2

4 3

7 9

16 10

14 8

Figure 8.9: Skew tree built from [1, 2, ..., 10].

time for next visit. We define such operation as ’splay’. The tree tends to be more
balanced after several splay operations. Most splay tree operations perform in amortized
O(lgn) time. Daniel Dominic Sleator and Robert Endre Tarjan developed splay tree in
1985 [48] [49].

8.4.1 Splay

We introduce two methods to implement splay. The first is pattern matching, it need
match multiple cases; the second has the uniformed form, but the implementation is
complex. Let the node to be accessed be x, the parent node be p. If it has grand parent
node, then denote it as g. There are 3 cases, each has two symmetric sub-cases. We
explain one of them as shown in 8.10:

1. Zig-zig: Both x and p are on the left; or on the right. We rotate twice to make x as
root.

2. Zig-zag: x is on the left, while p is on the right; or x is on the right, while P is on
the left. After rotation, x becomes the root, p and g are siblings.

3. Zig: p is the root, we rotate to make x as root.

There are total 6 cases. Let the none empty tree be T = (L, k,R), define splay as

8.4. SPLAY HEAP 129

Figure 8.10: zig-zig: x and p are both on left or right, x becomes new root. zig-zag: x
and p are on different sides, x becomes new root, p and g are siblings. zig: p is root,
rotate to make x as root.

130 CHAPTER 8. BINARY HEAPS

below when access element y:

splay (((a, x, b), p, c), g, d) y =

{
x = y : (a, x, (b, p, (c, g, d)))

otherwise : T
zig-zig

splay (a, g, (b, p, (c, x, d))) y =

{
x = y : (((a, g, b), p, c), x, d)

otherwise : T
zig-zig symmetric

splay (a, p, (b, x, c), g, d) y =

{
x = y : ((a, p, b), x, (c, g, d))

otherwise : T
zig-zag

splay (a, g, ((b, x, c), p, d)) y =

{
x = y : ((a, g, b), x, (c, p, d))

otherwise : T
zig-zag symmetric

splay ((a, x, b), p, c) y =

{
x = y : (a, x, (b, p, c))

otherwise : T
zig

splay (a, p, (b, x, c)) y =

{
x = y : ((a, p, b), x, c)

otherwise : T
zig symmetric

splay T y = T others
(8.13)

The first two are ’zig-zig’ cases; then two ’zig-zag’ cases; then two zig cases. The tree
keeps changed for all other cases. Every time when insert a new element, we trigger splay
to adjust the balance. IF the tree is empty, the result is a singleton leaf; otherwise, we
compare the new element and the root, then recursively insert to left (less than) or right
(greater than) sub-tree and apply splay.

insert ∅ y = (∅, y,∅)

insert (L, x,R) y =

{
y < x : splay ((insert L y), x, R) y

otherwise : splay (L, x, (insert R y)) y

(8.14)

5

4 10

2

1 3

9

7

6 8

Figure 8.11: Splay tree built from [1, 2, ..., 10].

Figure 8.11 gives the splay tree built from [1, 2, ..., 10]. It generates a well balanced
tree. Okasaki found a simple rule for splaying [3]. Whenever we follow two left branches,
or two right branches continuously, we rotate the two nodes. When access node of x, if
move to left or right twice, then partition T as L and R, where L contains all the elements
less than x, while R contains the remaining. Then we create a new tree with x as the
root, and L, R as the left and right sub-trees. The partition process is recursively applied

8.4. SPLAY HEAP 131

to sub-trees.

partition ∅ y = (∅,∅)
partition (L, x,R) y =

x < y

R = ∅ (T,∅)

R = (L′, x′, R′)

x′ < y (((L, x, L′), x′, A), B)

where: (A,B) = partition R′ y

otherwise ((L, x,A), (B, x′, R′))

where: (A,B) = partition L′ y

otherwise

L = ∅ (∅, T)

L = (L′, x′, R′)

y < x′ (A, (L′, x′, (R′, x, R)))

where: (A,B) = partition L′ y

otherwise ((L′, x′, A), (B, x,R))

where: (A,B) = partition R′ y
(8.15)

Function partition takes a tree T , and a pivot y. For empty tree, the result is a pair of
empty trees; otherwise let the tree be (L, x,R). We compare the pivot y and the root x.
If x < y, there are two sub-cases: (1) R is empty. All elements in the binary search tree
are less then y, hence the result is (T,∅); (2) Let R = (L′, x′, R′), if x′ < y, we recursively
partition R′ with the pivot y. Put all the elements less than y in A, and the rest in B.
The result is a pair of trees: ((L, x, L′), x′, A) and B. If x′ > y, then recursively partition
L′ with y to obtain (A,B). The result is also a pair of (L, x,A) and (B, x′, R′). When
y < x, the result is symmetric.

Alternatively, we can define insert with partition. When insert a new element k to
splay heap T , we first partition the heap to two sub-trees of L and R. Where L contains
all elements smaller than k, while R contains the rest. Then construct a new tree with k
as the root, and L, R as the sub-trees.

insert T k = (L, k,R),其中：(L,R) = partition T k (8.16)

8.4.2 Pop
Since splay tree is essentially a binary search tree, the minimum is at the left most. We
need keep traversing the left sub-tree to access the heap ‘top’. Let the none empty tree
be T = (L, k,R), we define the top function as below:

top (∅, k, R) = k
top (L, k,R) = top L

(8.17)

This is equivalent to min for the binary search tree. When pop, we need remove the
minimum. We apply splay when move left twice.

pop (∅, k, R) = R
pop ((∅, k′, R′), k, R) = (R′, k, R)
pop ((L′, k′, R′), k, R) = (pop L′, k′, (R′, k, R))

(8.18)

The third row performs splaying without calling partition. It uses the binary search
tree property. Top and pop are bound to O(lgn) time when the splay tree is balanced.

132 CHAPTER 8. BINARY HEAPS

8.4.3 Merge
We can implement merge with partition to obtain the O(lgn) time bound. When merge
two none-empty splay trees, we choose a root as the pivot to partition the other tree,
then recursively merge the sub-trees:

merge ∅ T = T
merge (L, x,R) T = ((merge L L′) x (merge R R′))

(8.19)

where

(L′, R′) = partition T x

If a heap is empty, then the result is the other heap; otherwise, let a heap be (L, x,R).
We use x to partition T to (L′, R′), where L contains all elements less than x in T , while
R′ contains the rest. Then we recursively merge L and L′ to the left sub-tree, and merge
R and R′ to the right sub-tree.

8.5 Summary
We give the generic definition of binary heap in this chapter. There are several imple-
mentations. The array based representation is suitable for imperative implementation.
It maps a complete binary tree to array, supports random access any element. We also
directly use the binary tree to implement the heap in functional way. Most operations are
bound to O(lgn) time, some are O(1) amortized time. Okasaki gave detailed analysis [3].
When extend from binary tree to k-ary tree, we obtain binomial heap, Fibonacci heap,
and pairing heap. We introduce these heaps in chapter 10.

Exercise 8.2
1. Realize leftist heap, skew heap, and splay heap in imperative approach.
2. Define fold for heap.

8.6 Appendix - example programs
For the complete binary tree represented by array, access parent, and sub-trees with
bit-wise operation (index from 0):
Int parent(Int i) = ((i + 1) >> 1) - 1

Int left(Int i) = (i << 1) + 1

Int right(Int i) = (i + 1) << 1

Heapify, parameterized the comparison:
void heapify([K] a, Int i, Less<K> lt) {

Int l, r, m
Int n = length(a)
loop {

m = i
l = left(i)
r = right(i)
if l < n and lt(a[l], a[i]) then m = l
if r < n and lt(a[r], a[m]) then m = r
if m ̸= i {

8.6. APPENDIX - EXAMPLE PROGRAMS 133

swap(a, i, m);
i = m

} else {
break

}
}

}

Build the binary heap from array:
void buildHeap([K] a, Less<K> lt) {

Int n = length(a)
for Int i = (n-1) / 2 downto 0 {

heapify(a, i, lt)
}

}

Pop:
K pop([K] a, Less<K> lt) {

var n = length(a)
t = a[n]
swap(a, 0, n - 1)
remove(a, n - 1)
if a ̸= [] then heapify(a, 0, lt)
return t

}

Obtain the top-k elements:
[K] topk([K] a, Int k, Less<K> lt) {

buildHeap(a, lt)
[K] r = []
loop min(k, length(a)) {

append(r, pop(a, lt))
}
return r

}

Decrease the key in min-heap:
void decreaseKey([K] a, Int i, K k, Less<K> lt) {

if lt(k, a[i]) {
a[i] = k
heapFix(a, i, lt)

}
}

void heapFix([K] a, Int i, Less<K> lt) {
while i > 0 and lt(a[i], a[parent(i)]) {

swap(a, i, parent(i))
i = parent(i)

}
}

Push new element:
void push([K] a, K k, less<K> lt) {

append(a, k)
heapFix(a, length(a) - 1, lt)

}

Heap sort:
void heapSort([K] a, less<K> lt) {

buildHeap(a, not ◦ lt)

134 CHAPTER 8. BINARY HEAPS

n = length(a)
while n > 1 {

swap(a, 0, n - 1)
n = n - 1
heapify(a[0 .. (n - 1)], 0, not ◦ lt)

}
}

Merge two leftist heaps:
merge E h = h
merge h E = h
merge h1@(Node _ x l r) h2@(Node _ y l' r') =

if x < y then makeNode x l (merge r h2)
else makeNode y l' (merge h1 r')

makeNode x a b = if rank a < rank b then Node (rank a + 1) x b a
else Node (rank b + 1) x a b

Merge two skew heaps:
merge E h = h
merge h E = h
merge h1@(Node x l r) h2@(Node y l' r') =

if x < y then Node x (merge r h2) l
else Node y (merge h1 r') l'

Splay operation:
−− zig-zig
splay t@(Node (Node (Node a x b) p c) g d) y =

if x == y then Node a x (Node b p (Node c g d)) else t
splay t@(Node a g (Node b p (Node c x d))) y =

if x == y then Node (Node (Node a g b) p c) x d else t
−− zig-zag
splay t@(Node (Node a p (Node b x c)) g d) y =

if x == y then Node (Node a p b) x (Node c g d) else t
splay t@(Node a g (Node (Node b x c) p d)) y =

if x == y then Node (Node a g b) x (Node c p d) else t
−− zig
splay t@(Node (Node a x b) p c) y = if x == y then Node a x (Node b p c) else t
splay t@(Node a p (Node b x c)) y = if x == y then Node (Node a p b) x c else t
−− others
splay t _ = t

Insert new element to the splay heap:
insert E y = Node E y E
insert (Node l x r) y

| x > y = splay (Node (insert l y) x r) y
| otherwise = splay (Node l x (insert r y)) y

Partition the splay tree:
partition E _ = (E, E)
partition t@(Node l x r) y

| x < y =
case r of

E → (t, E)
Node l' x' r' →

if x' < y then
let (small, big) = partition r' y in
(Node (Node l x l') x' small, big)

else
let (small, big) = partition l' y in
(Node l x small, Node big x' r')

Elementary Algorithms 135

| otherwise =
case l of

E → (E, t)
Node l' x' r' →

if y < x' then
let (small, big) = partition l' y in
(small, Node l' x' (Node r' x r))

else
let (small, big) = partition r' y in
(Node l' x' small, Node big x r)

Merge two splay trees:
merge E t = t
merge (Node l x r) t = Node (merge l l') x (merge r r')

where (l', r') = partition t x

136 Selection sort

Chapter 9

Selection sort

9.1 Introduction
Selection sort is a straightforward sorting algorithm. It repeatedly selects the minimum
(or maximum) from a collection of elements. It performs below the divide and conqueror
sort algorithms, like quick sort and merge sort. We’ll give different ways to improve it,
and finally evolve it to heap sort, achieving O(n lgn), the upper limit of comparison based
sort algorithm time bound. When facing a bunch of grapes, there are two types of kids.
One pick the biggest grape to eat every time, the other always eat the smallest one. The
first type eats the grape in ascending order of size, the other eats in descending order. In
either case, the kid essentially applies selection sort method. It can be defined as:

1. If the collection is empty, the sorted result is empty;

2. Otherwise, select the minimum element, and append it to the sorted result.

It sorts elements in ascending order. We can obtain descending order by selecting the
maximum. The compare operation can be abstract.

sort [] = []
sort A = m : sort (A− [m]) where m = min A

(9.1)

Where A−[m] is the remaining elements in A exceptm. The corresponding imperative
implementation is as below:

1: function Sort(A)
2: X ← []
3: while A 6= [] do
4: x← Min(A)
5: Del(A, x)
6: Append(X,x)
7: return X

Figure 9.1 shows the process of selection sort. We can improve it to in-place sort. The
idea is to reuse A. Place the minimum element in A[1], the second smallest one in A[2],
...When find the i-th smallest element, swap it with A[i].

1: function Sort(A)
2: for i← 1 to |A| do
3: m← Min-At(A, i)
4: Exchange A[i]↔ A[m]

137

138 CHAPTER 9. SELECTION SORT

Figure 9.1: The left is sorted, repeatedly select the minimum of the rest and append.

Let A = [a1, a2, ..., an], when select the i-th smallest element, [a1, a2, ..., ai−1] are
sorted. We find the minimum of [ai, ai+1, ..., an], and swap it with ai. Repeat this to
process all elements as shown in figure 9.2.

... sorted ... x ... min ...

swap

Figure 9.2: The left is sorted, repeatedly find the minimum and swap to the right position.

9.2 Find the minimum
We can use the ‘compare and swap’ method to find the minimum element. Label the
elements with 1, 2, ..., n. Compare the elements of number 1 and 2, pick the smaller and
compare it with number 3, ... repeat till the last element of number n.

1: function Min-At(A, i)
2: m← i
3: for i← m+ 1 to |A| do
4: if A[i] < A[m] then
5: m← i
6: return m

The Min-At find the minimum m from slice A[i...]. Let m start pointing to A[i], then
scan A[i+ 1], A[i+ 2],

We can also find the minimum from list of elements L recursively. When L is a
singleton, the only element is the minimum; otherwise pick an element x from L, then
recursively find the minimum y from the remaining, the smaller one between x and y is
the minimum of L.

min [x] = (x, [])

min (x : xs) =

{
x < y : (x, xs), where (y, ys) = min xs

otherwise : (y, x : ys)

(9.2)

We can further improve it tail recursively. Divide the elements with two groups A
and B. A is initialized empty ([]), B contains all elements. We pick two elements
from B, compare and put the greater one to A, leave the smaller one as m. Then
repeatedly pick element from B, compare with m till B becomes empty. Finally, m is
the minimum element. At any time, we have the invariant: L = A ++ [m] ++ B, where
a ≤ m ≤ b, a ∈ A, b ∈ B.

min (x : xs) = min′ [] x xs (9.3)

9.3. IMPROVEMENT 139

Where:

min′ as m [] = (m,A)

min′ as m (b : bs) =

{
b < m : min′ (m : as) b bs

otherwise : min′ (b : as) m bs

(9.4)

Function min return a pair: the minimum and the remaining elements. We can define
selection sort as below:

sort [] = []
sort xs = m : (sort xs′), where (m,xs′) = min xs

(9.5)

9.2.1 Performance
Selection sort need scan the unsorted elements to find the minimum for n times. It
compares n+ (n− 1) + (n− 2) + ...+ 1 times. The time bound is O(

n(n+ 1)

2
) = O(n2).

Compare to the insertion sort, selection sort performs same in the best, worst, and average
cases. While insertion sort performs best at O(n) (the linked-list is in reversed ordered),
and worst at O(n2).

Exercise 9.1
1. What is the problem with below implementation of min?

min′ as m [] = (m,A)

min′ as m (b : bs) =

{
b < m : min′ (as++ [m]) b bs

否则 : min′ (as++ [b]) m bs

2. Implement the selection sort for both in-placed and not.

9.3 Improvement
To sort in ascending, descending, and varies of ordering, we abstract the comparison as
◁.

sortBy ◁ [] = []
sortBy ◁ xs = m : sortBy ◁ xs′, where (m,xs′) = minBy ◁ xs

(9.6)

We also use ◁ to find the ’minimum’:

minBy ◁ [x] = (x, [])

minBy ◁ (x : xs) =

{
x◁ y : (x, xs), where (y, ys) = minBy xs

otherwise : (y, x : ys)

(9.7)

For example, we pass the < to sort a collection of numbers in ascending order:
sortBy (<) [3, 1, 4, ...]. As the constraint, we need the comparison ◁ satisfy the strict
weak order [52].

• Irreflexivity: for all x, x < x is false;

• Asymmetry: for all x and y, if x < y, then y < x is false;

• Transitivity, for all x, y, and z, if x < y, and y < z, then x < z.

140 CHAPTER 9. SELECTION SORT

The in-place selection sort traverses all elements, we can find the minimum as an inner
loop to make the implementation compact:

1: procedure Sort(A)
2: for i← 1 to |A| do
3: m← i
4: for j ← i+ 1 to |A| do
5: if A[i] < A[m] then
6: m← i
7: Exchange A[i]↔ A[m]

After sort the first n − 1 elements, the last one must be the maximum. We can save
the last loop. Besides, we needn’t swap if the i-th smallest is exactly A[i].

1: procedure Sort(A)
2: for i← 1 to |A| − 1 do
3: m← i
4: for j ← i+ 1 to |A| do
5: if A[i] < A[m] then
6: m← i
7: if m 6= i then
8: Exchange A[i]↔ A[m]

9.3.1 Cock-tail sort
Knuth gives another selection sort implementation [51]. Select the maximum, but not the
minimum, and move it to the tail, as shown in figure ??. At any time, the right most
part is sorted. We scan the unsorted part, find the maximum and swap to the right.

1: procedure Sort’(A)
2: for i← |A| down-to 2 do
3: m← i
4: for j ← 1 to i− 1 do
5: if A[m] < A[i] then
6: m← i
7: Exchange A[i]↔ A[m]

... max ... x ... sorted ...

swap

Figure 9.3: Select the maximum and swap to tail

We obtain the ascending order as well. Further, we can pick both the minimum and
maximum in one pass, swap the minimum to the head, and the maximum to the tail. We
can halve the inner loop times. The method is called ‘cock-tail sort’.

1: procedure Sort(A)

2: for i← 1 to b |A|
2
c do

3: min← i
4: max← |A|+ 1− i
5: if A[max] < A[min] then
6: Exchange A[min]↔ A[max]

7: for j ← i+ 1 to |A| − i do
8: if A[j] < A[min] then

9.3. IMPROVEMENT 141

9: min← j

10: if A[max] < A[j] then
11: max← j

12: Exchange A[i]↔ A[min]
13: Exchange A[|A|+ 1− i]↔ A[max]

... sorted smaller ... x ... max ... min ... y ... sorted greater ...

swap

swap

Figure 9.4: Find the minimum and maximum, swap both to the right positions.

It’s necessary to swap if the right most element less than the right most one before the
inner loop. This is because the scan excludes them. We can also implement the cock-tail
sort recursively:

1. If the list is empty or singleton, it’s sorted;

2. Otherwise, we select the minimum and the maximum, move them to the head and
tail, then recursively sort the rest elements.

sort [] = []
sort [x] = [x]
sort xs = a : (sort xs′) ++ [b],where (a, b, xs′) = minMax xs

(9.8)

Where function minMax extracts the minimum and maximum from a list:
minMax (x : y : xs) = foldr sel(min x y,max x y, []) xs (9.9)

We initialize the minimum as the first element x0, and the maximum as the second
element x1, and process the list with foldr. Function sel is defined as:

sel x (x0, x1, xs) =

x < x0 : (x, x1, x0 : xs)

x1 < x : (x0, x, x1 : xs)

otherwsie : (x0, x1, x : xs)

Although minMax is bound to O(n) time, ++[b] is expensive. As shown in figure 9.4,
let the left sorted part be A, the right sorted part be B. We can turn the cock-tail sort
to tail recursive with A and B as the accumulators.

sort′ A B [] = A++B
sort′ A B [x] = A++ (x : B)

sort′ A B (x : xs) = sort′ (A++ [x0]) xs
′ (x1 : B)

(9.10)

Where (x0, x1, xs
′) = minMax xs. We pass empty A and B to initialize sorting:

sort = sort′ [] []. The append only happens to A ++ [x0], while x1 is linked before
B. Every recursion performs an append operation. To eliminate it, we can maintain A

in reversed order: ←−A , hence x0 is linked ahead but appended. We have the following
equations:

A′ = A++ [x]
= reverse (x : reverse A)

= reverse (x :
←−
A)

=
←−−−
x :
←−
A

(9.11)

142 CHAPTER 9. SELECTION SORT

Finally, we reverse
←−
A′ back to A′. We can improve the algorithm as below:

sort′ A B [] = (reverse A) ++B
sort′ A B [x] = (reverse x : A) ++B

sort′ A B (x : xs) = sort′ (x0 : A) xs′ (x1 : B)
(9.12)

9.4 Further improvement
Although cock-tail sort halves the loops, it’s still bound to O(n2) time. To sort by
comparison, we need the outer loop to examine all the elements for ordering. Do we need
scan all the elements to select the minimum every time? After find the first smallest one,
we’ve traversed the whole collection, obtain some information, like which are greater,
which are smaller. However, we discard such information for further selection, but restart
a fresh scan. The idea is information reusing. Let’s see one inspired from football match.

9.4.1 Tournament knock out
The football world cup is held every four years. There are 32 teams from different conti-
nent play the final games. Before 1982, there were 16 teams in the finals. Let’s go back to
1978 and imagine a special way to determine the champion: In the first round, the teams
are grouped into 8 pairs to play. There will be 8 winners, and 8 teams will be out. Then
in the second round, 8 teams are grouped into 4 pairs. There will be 4 winners. Then
the top 4 teams are grouped into 2 pairs, there will be two teams left for the final. The
champion is determined after 4 rounds of games. There are total 8+4+2+1 = 15 games.
Besides the champion, we also want to know which is the silver medal team. In the real
world cup, the team lost the final is the runner-up. However, it isn’t fair in some sense.
We often hear about the ‘group of death’. Suppose Brazil is grouped with Germam in
round one. Although both teams are strong, one team is knocked out. It’s quite possible
that team would beat other teams except for the champion, as shown in figure 9.5.

16

16 14

16 13

7 16

7 6 15 16

8 13

8 4 13 3

10 14

10 9

5 10 9 1

12 14

12 2 11 14

Figure 9.5: The element 15 is knocked out in the first round.

Assign every team a number to measure its strength. Suppose the team with greater
number always beats the smaller one (this is obviously not true in real world). The
champion number is 16. the runner-up is not 14, but 15, which is out in the first round.
We need figure out a way to quickly identify the second greater number in the tournament
tree. The apply it to select the 3rd, the 4th, ... to sort. We can mutate the champion
to a very small number, i.e. −∞, hence it won’t be selected next time, and the previous
runner-up will become the new champion. For 2m teams, wherem is some natural number,
it takes 2m−1 +2m−2 + ...+2+1 = 2m− 1 comparisons to determine the new champion.
This is same as before. Actually, we needn’t perform bottom-up comparisons because
the tournament tree stores sufficient ordering information. The champion must beat the
runner-up at sometime. We can locate the runner-up along the path from the root to

9.4. FURTHER IMPROVEMENT 143

the leaf of the champion. We grey the path in figure 9.5 of [14, 13, 7, 15]. This method is
defined as below:

1. Build a tournament tree with the maximum (the champion) at the root;

2. Take the root, replace it with −∞ along the path to leaf;

3. Perform a bottom-up back-track along the path, find the new champion and store
it in the root;

4. Repeat step 2 to process all elements.

15

15 14

15 13

7 15

7 6 15 -INF

8 13

8 4 13 3

10 14

10 9

5 10 9 1

12 14

12 2 11 14

Take 16, replace with −∞, 15 becomes the new root.
14

13 14

7 13

7 -INF

7 6 -INF -INF

8 13

8 4 13 3

10 14

10 9

5 10 9 1

12 14

12 2 11 14

Take 15, replace with −∞, 14 becomes the new root.
13

13 12

7 13

7 -INF

7 6 -INF -INF

8 13

8 4 13 3

10 12

10 9

5 10 9 1

12 11

12 2 11 -INF

Take 14, replace with −∞, 13 becomes the new root.

Figure 9.6: The first 3 steps of tournament tree sort.

To sort a collection of elements, we build a tournament tree from them, repeatedly
select the champion from it. Figure 9.6 gives the first 3 steps. We can re-use the binary
tree definition. To make back-track easy, we need the parent field in each node. When
n is not 2m form some natural number m, there is remaining element without “player”,
and directly enters the next round of games. To build the tournament tree, we build n
singleton trees from every element. Then pick every two t1, t2 to create a bigger binary
tree t. Where the root of t is max(key(t1), key(t2)), the left and right sub-trees are t1,

144 CHAPTER 9. SELECTION SORT

t2. Repeat to obtain a collection of new trees, each height increases by one. If there
is remaining, then enters the next round. After this round, trees halve to bn

2
c. Repeat

this to obtain the final tournament tree. The process is bound to O(n +
n

2
+

n

4
+ ...) =

O(2n) = O(n) time.
1: function Build-Tree(A)
2: T ← []
3: for each x ∈ A do
4: Append(T , Node(NIL, x, NIL))
5: while |T | > 1 do
6: T ′ ← []
7: for every t1, t2 ∈ T do
8: k ← Max(Key(t1), Key(t2))
9: Append(T ′, Node(t1, k, t2))

10: if |T| is odd then
11: Append(T ′, Last(T))
12: T ← T ′

13: return T [1]

We replace the root with −∞ top-down, then back-track through the parent field to
find the new maximum.

1: function Pop(T)
2: m← Key(T)
3: Key(T) ← −∞
4: while T is not leaf do ▷ top-down replace m with −∞.
5: if Key(Left(T)) = m then
6: T ← Left(T)
7: else
8: T ← Right(T)
9: Key(T) ← −∞

10: while Parent(T) 6= NIL do ▷ bottom-up to find the new maximum.
11: T ← Parent(T)
12: Key(T) ← Max(Key(Left(T)), Key(Right(T)))
13: return (m,T) ▷ the maximum and the new tree.

Pop process the tree in two passes, top-down, then bottom-up along the path of the
champion. Because the tournament tree is balanced, the length of this path, i.e. height
of the tree, is bound to O(lgn), where n is the number of the elements. Below is the
tournament tree sort. We first build the tree in O(n) time, then pop the maximum for n
times, each pop takes O(lgn) time. The total time is bound to O(n lgn).

procedure Sort(A)
T ← Build-Tree(A)
for i← |A| down to 1 do

A[i]← Extract-Max(T)
We can also implement tournament tree sort recursively. Reuse the binary search tree

definition, let an none empty tree be (l, k, r), where k is the element, l, r are the left and
right sub-trees. Define wrap x = (∅, x,∅) to create a leaf node. We can convert the n
elements to a list of n single trees: ts = map wrap xs. For every pair of trees t1, t2, we
merge them to a bigger tree, pick the greater element as the new root, and t1, t2 become
the left and right sub-trees.

merge t1 t2 = (t1,max k1 k2, t2) (9.13)

9.4. FURTHER IMPROVEMENT 145

Where k1 = key t1, k2 = key t2 are the elements at root respectively. Define a function
build ts to repeatedly merge two trees, and build the final tournament tree.

build [] = ∅
build [t] = t
build ts = build (pairs ts)

(9.14)

Where:

pairs (t1 : t2 : ts) = (merge t1 t2) : pairs ts
pairs ts = ts

(9.15)

When pop the champion, we examine the sub-trees to see which one holds the same
element as the root. Then recursively pop the champion from the sub-tree till the leaf
node. Then replace it with −∞.

pop (∅, k,∅) = (∅,−∞,∅)

pop (l, k, r) =

{
k = key l : (l′,max (key l′) (key r), r),wherel′ = pop l

k = key r : (l,max (key l) (key r′), r′),wherer′ = pop r

(9.16)
Then repeatedly pop from the tournament tree to sort (in descending order):

sort ∅ = []
sort (l,−∞, r) = []

sort t = (key t) : sort (pop t)
(9.17)

Exercise 9.2
1. Implement the recursive tournament tree sort in ascending order.
2. When there are duplicated elements, how to sort it with tournament tree?
3. Compare the tournament tree sort and binary search tree sort in terms of space

and time performance.
4. Compare heap sort and tournament tree sort in terms of space and time perfor-

mance.

9.4.2 Heap sort
We improve the selection based sort to O(n lgn) time through tournament tree. It is
the upper limit of the comparison based sort [51]. However, there are still rooms for
improvement. After sort, The binary holds all −∞, occupying 2n nodes for n elements.
It’s there a way to release node after pop? Can we halve 2n nodes to n? Treat the tree
as empty when the root element is −∞, and rename key to top, we can write (9.17) in a
generic way:

sort ∅ = []
sort t = (top t) : sort (pop t)

(9.18)

This is exactly as same as the definition of heap sort. Heap always stores the minimum
(or the maximum) on the top, and provides fast pop operation. The array implementation
encodes the binary tree structure as indices, uses exactly n cells to represent the heap.
The functional heaps, like the leftist heap and splay heap use n nodes as well. We’ll give
more well performed heaps in next chapter.

146 CHAPTER 9. SELECTION SORT

9.5 Appendix - example programs
Tail recursive selection sort:
sort [] = []
sort xs = x : sort xs'

where
(x, xs') = extractMin xs

extractMin (x:xs) = min' [] x xs
where
min' ys m [] = (m, ys)
min' ys m (x:xs) = if m < x then min' (x:ys) m xs

else min' (m:ys) x xs

Cock-tail sort:
[A] cocktailSort([A] xs) {

Int n = length(xs)
for Int i = 0 to n / 2 {

var (mi, ma) = (i, n - 1 -i)
if xs[ma] < xs[mi] then swap(xs[mi], xs[ma])
for Int j = i + 1 to n - 1 - i {

if xs[j] < xs[mi] then mi = j
if xs[ma] < xs[j] then ma = j

}
swap(xs[i], xs[mi])
swap(xs[n - 1 - i], xs[ma])

}
return xs

}

Tail recursive cock-tail sort:
csort xs = cocktail [] [] xs

where
cocktail as bs [] = reverse as ++ bs
cocktail as bs [x] = reverse (x:as) ++ bs
cocktail as bs xs = let (mi, ma, xs') = minMax xs

in cocktail (mi:as) (ma:bs) xs'

minMax (x:y:xs) = foldr sel (min x y, max x y, []) xs
where
sel x (mi, ma, ys) | x < mi = (x, ma, mi:ys)

| ma < x = (mi, x, ma:ys)
| otherwise = (mi, ma, x:ys)

Build the tournament tree (reuse the binary tree structure):
Node<T> build([T] xs) {

[T] ts = []
for x in xs {

append(ts, Node(null, x, null))
}
while length(ts) > 1 {

[T] ts' = []
for l, r in ts {

append(ts', Node(l, max(l.key, r.key), r))
}
if odd(length(ts)) then append(ts', last(ts))
ts = ts'

}
return ts[0];

}

Pop from the tournament tree:

Elementary Algorithms 147

T pop(Node<T> t) {
T m = t.key
t.key = -INF
while not isLeaf(t) {

t = if t.left.key == m then t→left else t→right
t.key = -INF

}
while (t.parent ̸= null) {

t = t.parent
t.key = max(t.left.key, t.right.key)

}
return (m, t);

}

Tournament tree sort:
void sort([A] xs) {

Node<T> t = build(xs)
for Int n = length(xs) - 1 downto 0 {

(xs[n], t) = pop(t)
}

}

Recursive tournament tree sort (descending order):
data Tr a = Empty | Br (Tr a) a (Tr a)

data Infinite a = NegInf | Only a | Inf deriving (Eq, Ord)

key (Br _ k _) = k

wrap x = Br Empty (Only x) Empty

merge t1@(Br _ k1 _) t2@(Br _ k2 _) = Br t1 (max k1 k2) t2

fromList = build ◦ (map wrap) where
build [] = Empty
build [t] = t
build ts = build (pairs ts)
pairs (t1:t2:ts) = (merge t1 t2) : pair ts
pairs ts = ts

pop (Br Empty _ Empty) = Br Empty NegInf Empty
pop (Br l k r) | k == key l = let l' = pop l in Br l' (max (key l') (key r)) r

| k == key r = let r' = pop r in Br l (max (key l) (key r')) r'

toList Empty = []
toList (Br _ Inf _) = []
toList t@(Br _ Only k _) = k : toList (pop t)

sort = toList ◦ fromList

148 Binomial heap, Fibonacci heap, and pairing heap

Chapter 10

Binomial heap, Fibonacci heap,
and pairing heap

10.1 Introduction

Binary heap stores elements in a binary tree, we can extend it to k-ary tree [54] (k > 2
multi-ways tree), or multiple trees. This chapter introduces binomial heap, which consists
of forest of k-ary trees. When delay some operations to a Binomial heap, we obtained
Fibonacci heap. It improves the heap merge performance from O(lgn) time bound to
amortized constant time. This is critical for graph algorithm design. We give pairing
heap as a simplified heap implementation with good overall performance.

10.2 Binomial Heaps
Binomial heap is named after Newton’s binomial theorem. It consists of a set of k-ary
trees (also called a forest). Every tree has the size equal to a binomial coefficient. Newton
proved that (a+ b)n expands to:

(a+ b)n = an +

(
n

1

)
an−1b+ ...+

(
n

n− 1

)
abn−1 + b (10.1)

When n is a natural number, the coefficients is some row in Pascal’s triangle1 [55].

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
...

The first row is 1, all the first and last numbers are 1 for every row. Any other number
is the sum of the top-left and top-right numbers in the previous row. There are many
methods to generate pascal triangles, like recursion.

1Also know as the Jia Xian’s triangle named after ancient Chinese mathematician Jia Xian (1010-
1070). Newton generalized n to rational numbers, later Euler expand it to real exponents.

149

150 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

Binomial tree

A binomial tree is a multi-ways tree with an integer rank. Denoted as B0 if the rank is
0, and Bn for rank n.

1. B0 has only one node;

2. Bn is formed by two Bn−1 trees, the one with the greater root element is the left
most sub-tree of the other, as shown in figure 10.1.

Figure 10.1: Binomial tree

Figure 10.2 gives examples of B0 to B4.
We can find the number of nodes in every row in Bn is a binomial coefficient. For

example in B4, there is a node (root) in level 0, 4 nodes in level 1, 6 nodes in level 2, 4
nodes in level 3, and a node in level 4. They are exactly same as the 4th row (start from
0) of Pascal’s triangle: 1, 4, 6, 4, 1. This is the reason why we name it binomial tree. We
can further know there are 2n elements in a Bn tree.

A binomial heap is a set of binomial trees (a forest) that satisfies the following two
rules:

1. Every tree satisfies the heap property, i.e. for min heap, the element in every node
is not less than (≥) its parent;

2. Every tree has unique rank. i.e. any two trees have different ranks.

From the 2nd rule, for a binomial heap of n elements, convert n to its binary format
(am...a1, a0)2, where a0 is the least significant bit (LSB) and am is the most significant
bit (MSB). If if ai = 0, there is no tree of rank i; if ai = 1, there is a tree of rank i.
For example, consider a binomial heap of 5 elements. As 5 is 101 in binary, there are
2 binomial trees, one is B0, the other is B2. The binomial heap in figure 10.3 has 19
elements, 19 is (10011)2. There is a B0, a B1, and a B4.

We define the binomial tree as (r, k, ts), where r is the rank, k is the element in the
root, and ts is the list of sub-trees ordered by rank.
data BiTree a = Node Int a [BiTree a]

type BiHeap a = [BiTree a]

10.2. BINOMIAL HEAPS 151

(a) B0

1

0

(b) B1

2

1 0

0

(c) B2

3

2 1 0

1 0

0

0

(d) B3

4

3 2 1 0

2 1 0

1 0

0

0

1 0

0

0

...
(e) B4

Figure 10.2: Binomial trees of rank 0, 1, 2, 3, 4, ...

18 3

37

6

8 29 10 44

30 23 22

45 32

55

24

48 31

50

17

Figure 10.3: A binomial heap with 19 elements

152 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

There is a method called ‘left-child, right-sibling’ [4], that can reuse the binary tree
data structure to define multi-ways tree. Every node has the left and right part. the
left references to the first sub-tree; the right references to its sibling. All siblings form a
list as shown in figure 10.4. Alternatively, we can use an array or a list to represent the
sub-trees.

Figure 10.4: R is the root, T1, T2, ..., Tm are sub-trees of R. The left of R is T1, the right
is NIL. T11, ..., T1p are sub-trees of T1. The left of T1 is T11, the right is its sibling T2.
The left of T2 is T21, the left is sibling.

10.2.1 Link
To link two Bn trees to a Bn+1 tree, we compare the two root elements, choose the smaller
one as the root, and put the other tree ahead of other sub-trees as shown in figure 10.5.

link (r, x, ts) (r, y, ts′) =

{
x < y : (r + 1, x, (r, t, ts′) : ts)

otherwise : (r + 1, y, (r, x, ts) : ts′)
(10.2)

x

y ...

...

Figure 10.5: If x < y, link y as the first sub-tree of x.

We can implement link with ‘left child, right sibling’ method as below. Link operation
is bound to constant time.

1: function Link(x, y)
2: if Key(y) < Key(x) then
3: Exchange x↔ y

4: Sibling(y) ← Sub-Trees(T1)
5: Sub-Trees(x) ← y
6: Parent(y) ← x

10.2. BINOMIAL HEAPS 153

7: Rank(x) ← Rank(y) + 1
8: return x

Exercise 10.1
1. Write a program to generate Pascal’s triangle.
2. Prove that the i-th row in tree Bn has

(
n
i

)
nodes.

3. Prove there are 2n elements in Bn tree.
4. Use a container to store sub-trees, how to implement link? How to secure the

operation is in constant time?

Insert

When insert a new tree, we keep the trees in binomial heap ordered by rank (ascending):

ins t [] = [t]

ins t (t′ : ts) =

rank t < rank t′ : t : t′ : ts

rank t′ < rank t : t′ : ins t ts

otherwise : ins (link t t′) ts

(10.3)

Where rank (r, k, ts) = r gives the rank of a tree. For empty heap [], it becomes a
single list of the new tree t; otherwise, we compare the rank of t with the first tree t′, if t
has less rank, then it becomes the new first one; if t′ has less rank, we recursively insert
t to the rest trees; if they have the same rank, then link t and t′ to a bigger tree, and
recursively insert to the rest. For n elements, there are at most O(lgn) binomial trees in
the heap. ins links O(lgn) time at most, as linking is bound to constant time, the overall
performance is bound to O(lgn)2. We can define insert for binomial heap with ins. First
wrap the new element x in a singleton tree, then insert the tree to the heap:

insert x = ins (0, x, []) (10.4)

This is a Curried definition, we can further insert a list of elements to the heap by
using fold:

fromList = foldr insert [] (10.5)

Below is the implementation with ’left child, right sibling’ method:
1: function Insert-Tree(T,H)
2: ⊥← p← Node(0, NIL, NIL)
3: while H 6= NIL 且 Rank(H) ≤ Rank(T) do
4: T1 ← H
5: H ← Sibling(H)
6: if Rank(T) = Rank(T1) then
7: T ← Link(T, T1)
8: else
9: Sibling(p) ← T1

10: p← T1

11: Sibling(p) ← T
12: Sibling(T) ← H
13: return Remove-First(⊥)

2It’s similar to adding two binary numbers. A more generic topic is numeric representation [3].

154 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

14: function Remove-First(H)
15: n← Sibling(H)
16: Sibling(H) ← NIL
17: return n

10.2.2 Merge
When merge two binomial heaps, we actually merge two lists of binomial trees. Every
tree has unique rank in merged result, and the ranks are in ascending order. The tree
merge process is similar to merge sort. Every time, we pick the first tree from each heap,
compare their ranks, put the smaller one to the result. If the two trees have the same
rank, we link them to a bigger one, and recursively insert to the merge result.

merge ts1 [] = ts1
merge [] ts2 = ts2

merge (t1 : ts1) (t2 : ts2) =

rank t1 < rank t2 : t1 : (merge ts1 (t2 : ts2))

rank t2 < rank t1 : t2 : (merge (t1 : ts1) ts2)

otherwise : ins (link t1 t2) (merge ts1 ts2)

(10.6)
Alternatively, when t1 and t2 have the same rank, we can insert the linked tree back

to either heap, and recursively merge:

merge (ins (link t1 t2) ts1) ts2

We can also eliminate recursion, and implement iterative merge:
1: function Merge(H1,H2)
2: H ← p← Node(0, NIL, NIL)
3: while H1 6= NIL and H2 6= NIL do
4: if Rank(H1) < Rank(H2) then
5: Sibling(p) ← H1

6: p← Sibling(p)
7: H1 ← Sibling(H1)
8: else if Rank(H2) < Rank(H1) then
9: Sibling(p) ← H2

10: p← Sibling(p)
11: H2 ← Sibling(H2)
12: else ▷ same rank
13: T1 ← H1, T2 ← H2

14: H1 ← Sibling(H1), H2 ← Sibling(H2)
15: H1 ← Insert-Tree(Link(T1, T2), H1)
16: if H1 6= NIL then
17: Sibling(p) ← H1

18: if H2 6= NIL then
19: Sibling(p) ← H2

20: return Remove-First(H)
If there are m1 trees in H1, m2 trees in H2. There are at most m1 + m2 trees

after merge. The merge is bound to O(m1 + m2) time if all trees have different ranks.
If there exist trees of the same rank, we call ins up to O(m1 + m2) times. Consider
m1 = 1+ blgn1c and m2 = 1+ blgn2c, where n1, n2 are the numbers of elements in each
heap, and blgn1c+ blgn2c ≤ 2blgnc, where n = n1 +n2. The final performance of merge
is O(lgn).

10.2. BINOMIAL HEAPS 155

Pop

Although every tree has the minimal element in its root, we don’t know which tree holds
the overall minimum in the heap. We need locate it from all trees. As there are O(lgn)
trees, it takes O(lgn) time to find the top element. For pop, we need further remove the
top element and maintain heap property. Let the trees be Bi, Bj , ..., Bp, ..., Bm in the
heap, and the minimum is in the root of Bp. After remove the top, there leave p sub
binomial trees with ranks of p−1, p−2, ..., 0. We can reverse them to form a new binomial
heap Hp. The other trees without Bp also form a binomial heap H ′ = H − [Bp]. We
merge Hp and H ′ to get the final result as shown in figure 10.6. Below is the definition
to access the minimal element in the heap.

Figure 10.6: Binomial heap pop.

top (t : ts) = foldr f (key t) ts (10.7)

f (r, x, ts) y = min x y

It’s means to traverse all trees and find the which root has the minimum.
1: function Top(H)
2: m←∞
3: while H 6= NIL do
4: m← Min(m, Key(H))
5: H ← Sibling(H)
6: return m

To support pop, we need extract the tree containing the minimum out:

min′ [t] = (t, [])

min′ (t : ts) =

{
key t < key t′ : (t, ts),其中 : (t′, ts′) = min′ ts

否则 : (t′, t : ts′)

(10.8)

Where key (r, k, ts) = k accesses the root element, the result of min′ is a pair: the
tree containing the minimum and the remaining trees. We next define pop with it:

pop H = (k,merge (reverse ts) H ′),其中 : ((r, k, ts),H ′) = min′ H (10.9)

The iterative implementation is as below:

156 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

1: function Pop(H)
2: (Tm,H)← Extract-Min(H)
3: H ← Merge(H, Reverse(Sub-Trees(Tm)))
4: Sub-Trees(Tm)
5: return (Key(Tm), H)
Where the list reverse is defined in chapter 1, Extract-Min is implemented as below:

1: function Extract-Min(H)
2: H ′ ← H, p← NIL
3: Tm ← Tp ← NIL
4: while H 6= NIL do
5: if Tm = NIL or Key(H) < Key(Tm) then
6: Tm ← H
7: Tp ← p

8: p← H
9: H ← Sibling(H)

10: if Tp 6= NIL then
11: Sibling(Tp) ← Sibling(Tm)
12: else
13: H ′ ← Sibling(Tm)
14: Sibling(Tm) ← NIL
15: return (Tm,H ′)

We can implement heap sort with pop. First build a binomial heap from a list of
elements, then repeatedly pop the smallest element.

sort = heapSort ◦ fromList (10.10)

Where heapSort is defined as:

heapSort [] = []
heapSort H = k : (heapSort H ′),where : (k,H ′) = pop H

(10.11)

Binomial heap insert and merge are bound to O(lgn) time in worst case, their amor-
tized performance are constant time, we skip the proof.

10.3 Fibonacci heap
Binomial heap is named from binomial theorem, Fibonacci heap is named after Fibonacci
numbers3. Fibonacci heap is essentially a ‘lazy’ binomial heap. It delays some operation.
However, it does not mean the binomial heap turns to be Fibonacci heap automatically in
lazy evaluation environment. Such environment only makes the implementation easy [56].
All operations except for pop are bound to amortized constant time [57].

When insert new element x to a binomial heap, we wrap x to a single tree, then
insert to the forest. We keep the rank ordering, if two ranks are same, we link them, and
recursively insert. The performance is bound to O(lgn) time. Taking lazy strategy, we
delay the ordered (by rank) insert and link later. Put the single tree of x directly to the
forest. To access the top element in constant time, we need record which tree has the
minimum in its root. A Fibonacci heap is either empty ∅, or a forest of trees denoted as
(n, tm, ts). Where tm is the tree holds the minimal element, n is the number of elements

3Michael L. Fredman and Robert E. Tarjan, used Fibonacci numbers to prove the performance time
bound, they decided to use Fibonacci to name this data structure. [4]

10.3. FIBONACCI HEAP 157

operation Binomial heap Fibonacci heap
insertion O(lgn) O(1)
merge O(lgn) O(1)
top O(lgn) O(1)
pop O(lgn) amortized O(lgn)

Table 10.1: Performance of Fibonacci heap and binomial heap

in the heap, and ts is the rest trees. Below example program defines Fibonacci heap
(reused the definition of binomial tree).
data FibHeap a = E | FH { size :: Int

, minTree :: BiTree a
, trees :: [BiTree a]}

We can access the top element in constant time: top H = key minTree H.

10.3.1 Insert
We define insert as a special case of merge: one heap contains a singleton tree:

insert x H = merge (singleton x) H

Or simplified in Curried form:

insert = merge ◦ singleton (10.12)

singleton x = (1, (1, x, []), [])

We can also implement insert as add a tree to the forest, then update the reference to
the tree holds the minimum.

1: function Insert(k,H)
2: x← Singleton(k) ▷ wrap k to a tree
3: Add(x, Trees(H))
4: Tm ← Min-Tree(H)
5: if Tm = NIL or k < Key(Tm) then
6: Min-Tree(H) ← x

7: Size(H) ← Size(H) + 1
Where Trees(H) access the list of trees in H, Min-Tree(H) returns the tree that

holds the minimal element.

Merge

Different from binomial heap, we delay the link operation, but only put the trees from
two heaps together, and pick the new top element.

merge h ∅ = h
merge ∅ h = h

merge (n, tm, ts) (n′, t′m, ts′) =

{
key tm < key t′m : (n+ n′, tm, t′m : ts++ ts′)

otherwise : (n+ n′, t′m, tm : ts++ ts′)

(10.13)
When neither tree is empty, the ++ takes time that is proportion to the number of

trees in one heap. We can improve it to constant time with doubly linked-list to store
trees as shown in below example program.

158 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

data Node<K> {
K key
Int rank
Node<k> next, prev, parent, subTrees

}

data FibHeap<K> {
Int size
Node<K> minTree, trees

}

1: function Merge(H1,H2)
2: H ← Fib-Heap
3: Trees(H) ← Concat(Trees(H1), Trees(H2))
4: if Key(Min-Tree(H1)) < Key(Min-Tree(H2)) then
5: Min-Tree(H) ← Min-Tree(H1)
6: else
7: Min-Tree(H) ← Min-Tree(H2)

Size(H) = Size(H1) + Size(H2)
8: return H

9: function Concat(s1, s2)
10: e1 ← Prev(s1)
11: e2 ← Prev(s2)
12: Next(e1) ← s2
13: Prev(s2) ← e1
14: Next(e2) ← s1
15: Prev(s1) ← e2
16: return s1

Pop

As the link operation is delayed to future during merge, we need ‘compensate’ it during
pop. We define it as tree consolidation. Consider another problem: given a list of numbers
of 2m (m is natural numbers), for e.g., L = [2, 1, 1, 4, 8, 1, 1, 2, 4], we repeatedly sum the
two equal numbers until all numbers are unique. The result is [8, 16]. This process is
shown in table 10.2. The first column gives the number we are ‘scanning’; the second
is the middle step, i.e. compare current number and the first number in result list, add
them when equal; the last column is the merge result, which inputs to the next step. The
consolidation process can be defined with fold:

number compare, add result
2 2 2
1 1, 2 1, 2
1 (1+1), 2 4
4 (4+4) 8
8 (8+8) 16
1 1, 16 1, 16
1 (1+1), 16 2, 16
2 (2+2), 16 4, 16
4 (4+4), 16 8, 16

Table 10.2: Consolidation steps.

10.3. FIBONACCI HEAP 159

consolidate = foldr melt [] (10.14)
Where melt is defined as below:

melt x [] = x

melt x (x′ : xs) =

x = x′ : melt 2x xs

x < x′ : x : x′ : xs

x > x′ : x′ : melt x xs

(10.15)

Let n = sum L, the sum of all numbers. consolidate actually represent n in binary
format. If the i-th bit is 1, then the result contains 2i (i starts from 0). For e.g.,
sum[2, 1, 1, 4, 8, 1, 1, 2, 4] = 24. It’s 11000 in binary, the 3rd and 4th bit are 1, hence the
result contains 23 = 8, 24 = 16. We can consolidate trees in similar way: compare the
rank, and link the trees:

melt t [] = [t]

melt t (t′ : ts) =

rank t = rank t′ : melt (link t t′) ts

rank t < rank t′ : t : t′ : ts

rank t > rank t′ : t′ : melt t ts

(10.16)

Figure 10.7 gives the consolidation steps. It is similar to number consolidation when
compare with table 10.2. We can use an auxiliary array A to do the consolidation. A[i]
stores the tree of rank i. We traverse the trees in the heap. If meet another tree of rank
i, we link them together to obtain a bigger tree of rank i+ 1, clean A[i], and next check
whether A[i+ 1] is empty or not. If there is a tree of rank i+ 1, then link them together
again. Array A stores the final consolidation result after traverse.

1: function Consolidate(H)
2: R← Max-Rank(Size(H))
3: A← [NIL, NIL, ..., NIL] ▷ total R cells
4: for each T in Trees(H) do
5: r ← Rank(T)
6: while A[r] 6= NIL do
7: T ′ ← A[r]
8: T ← Link(T, T ′)
9: A[r]← NIL

10: r ← r + 1

11: A[r]← T

12: Tm ← NIL
13: Trees(H) ← NIL
14: for each T in A do
15: if T 6= NIL then
16: append T to Trees(H)
17: if Tm = NIL or Key(T) < Key(Tm) then
18: Tm ← T

19: Min-Tree(H) ← Tm

It becomes a binomial heap after consolidation. There are O(lgn) trees. Max-
Rank(n) returns the upper limit of rank R in a heap of n elements. From the binomial
tree result, the biggest tree BR has 2R elements. We have 2R ≤ n < 2R+1, we estimate
the rough upper limit is R ≤ log2 n. We’ll give more accurate estimation of R in later
section. We need additionally scan all trees, find the minimal root element. We can reuse
min′ defined in (10.8) to extract the min-tree.

pop (1, (0, x, []), []) = (x, [])
pop (n, (r, x, tsm), ts) = (x, (n− 1, tm, ts′))

(10.17)

160 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

a

b

c d e

f g

i

h

j k m

q

l n o

p

r s

t

u

v w

x

Before

c a

b

Step 1, 2

a

b c

d

Step 3, link d and c, then
link a.

a

b c e

d f g

h

Step 4

a

b c e i

d f g

h

j k m

l n o

p

Step 5

q a

b c e i

d f g

h

j k m

l n o

p

Step 6
q

r s

a

t

b c e i

d f g

h

j k m

l n o

p

Step 7, 8, link r and q, then link s and q.

Figure 10.7: Consolidation

10.3. FIBONACCI HEAP 161

Where (tm, ts′) = min′ consolidate (tsm ++ ts). It takes O(|tsm|) time for ++ to
concatenate trees. The corresponding iterative implementation is as below:

1: function Pop(H)
2: Tm ← Min-Tree(H)
3: for each T in Sub-Trees(Tm) do
4: append T to Trees(H)
5: Parent(T) ← NIL
6: remove Tm from Trees(H)
7: Size(H) ← Size(H) - 1
8: Consolidate(H)
9: return (Key(Tm), H)
We use the ‘potential’ method to evaluate the amortized performance. The gravity

potential energy in physics is defined as:

E = mgh

As shown in figure 10.8, consider some process, that moves an object of mass m up
and down, and finally stops at height h′. Let the friction resistance be Wf , the process
works the following power:

W = mg(h′ − h) +Wf

Figure 10.8: Gravity potential energy.

Consider heap pop. To evaluate the cost, let the potential be Φ(H) before pop. It
is the result accumulated by a series of insert and merge operations. The heap becomes
H ′ after tree consolidation. The new potential is Φ(H ′). The difference between Φ(H ′)
and Φ(H), plus the cost of tree consolidation give the amortized performance. Define the
potential as:

Φ(H) = t(H) (10.18)

Where t(H) is the number of trees in the heap. Let the upper bound of rank for all
trees as R(n), where n is the number of elements in the heap. After tree consolidation,
there are at most t(H ′) = R(n)+1 trees. Before consolidation, there is another operation
contributes to running time. we removed the root of min-tree, then add all sub-trees to
the heap. We consolidate at most R(n)+ t(H)− 1 trees. Let the pop performance bound
to T , the consolidation bound to Tc, the amortized time is given as below:

T = Tc +Φ(H ′)− Φ(H)
= O(R(n) + t(H)− 1) + (R(n) + 1)− t(H)
= O(R(n))

(10.19)

162 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

Insert, merge, and pop ensure all trees are binomial trees, therefore, the upper bound
of R(n) is O(lgn).

10.3.2 Increase priority
We can use heap to manage tasks with priority. When need prioritize a task, we decrease
the corresponding element, making it close to the heap top. Some graph algorithms, like
the minimum spanning tree and Dijkstra’s algorithm rely on this heap operation [4] meet
amortized constant time. Let x be a node in the heap H, we need decrease its value to
k. As shown in figure 10.9, if the element in x is less than the one in its parent y, we
cut x off y, the add it the heap (forest). Although it ensures the parent still holds the
minimum in the tree, it is not binomial tree any more. The performance drops when loss
too many sub-trees. We add another rule to address this problem: If a node losses its
second sub-tree, it is immediately cut from parent, and added to the heap (forest).

Figure 10.9: If key x < key y, cut x off and add to the heap.

1: function Decrease(H,x, k)
2: Key(x) ← k
3: p← Parent(x)
4: if p 6= NIL and k < Key(p) then
5: Cut(H,x)
6: Cascade-Cut(H, p)
7: if k < Top(H) then
8: Min-Tree(H) ← x

Where function Cascade-Cut uses a mark to record whether a node lost sub-tree
before. The mark is cleared later in Cut function.

1: function Cut(H,x)
2: p← Parent(x)
3: remove x from p
4: Rank(p) ← Rank(p) - 1
5: add x to Trees(H)
6: Parent(x) ← NIL

10.3. FIBONACCI HEAP 163

7: Mark(x) ← False
During cascade cut, if node x is marked, it has lost some sub-tree before. We need

recursively cut along the parent till root.
1: function Cascade-Cut(H,x)
2: p← Parent(x)
3: if p 6= NIL then
4: if Mark(x) = False then
5: Mark(x) ← True
6: else
7: Cut(H,x)
8: Cascade-Cut(H, p)

Exercise 10.2
Prove Decrease is bound to amortized O(1) time.

10.3.3 The name of Fibonacci heap
We are yet to implement Max-Rank(n). It defines the upper bound of tree rank for a
Fibonacci heap of n elements.

Lemma 10.3.1. For any tree x in a Fibonacci Heap, let k = rank(x), and |x| = size(x),
then

|x| ≥ Fk+2 (10.20)

Where Fk is the k-th Fibonacci number:

F0 = 0
F1 = 1
Fk = Fk−1 + Fk−2

Proof. For tree x, let its k sub-trees be y1, y2, ..., yk, ordered by the time when they are
linked to x. Where y1 is the first, and yk is the latest. Obviously, |yi| ≥ 0. When link yi
to x, there have already been sub-trees of y1, y2, ..., yi−1. Because we only link nodes of
the same rank, by that time we have:

rank(yi) = rank(x) = i− 1

After that, yi can lost additional sub-tree at most, (through the Decrease). Once
loss the second sub-tree, it will be cut off then add to the forest. For any i = 2, 3, ..., k,
we have:

rank(yi) ≥ i− 2

Let sk be the minimum possible size of tree x, where k = rank(x). It starts from
s0 = 1, s1 = 2. i.e. there is at least a node in tree of rank 0, at least two nodes in tree of
rank 1, at least k nodes in tree of rank k.

|x| ≥ sk
= 2 + srank(y2) + srank(y3) + ...+ srank(yk)

≥ 2 + s0 + s1 + ...+ sk−2

164 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

The last row holds because rank(yi) ≥ i − 2, and sk is monotonic, hence srank(yi) ≥
si−2. We next show that sk > Fk+2. Apply induction. For edge case, s0 = 1 ≥ F2 = 1,
and s1 = 2 ≥ F3 = 2; For induction case k ≥ 2.

|x| ≥ sk
≥ 2 + s0 + s1 + ...+ sk−2

≥ 2 + F2 + F3 + ...+ Fk induction hypothesis
= 1 + F0 + F1 + F2 + ...+ Fk fromF0 = 0, F1 = 1

Next, we prove:

Fk+2 = 1 +

k∑
i=0

Fi (10.21)

Use induction again:

• Edge case, F2 = 1 + F0 = 2

• Induction case, suppose it’s true for k + 1.

Fk+2 = Fk+1 + Fk

= (1 +

k−1∑
i=0

Fi) + Fk induction hypothesis

= 1 +

k∑
i=0

Fi

Wrap up to the final result:
n ≥ |x| ≥ Fk+2 (10.22)

For Fibonacci sequence, Fk ≥ ϕk, where ϕ =
1 +
√
5

2
is the golden ratio. We prove

that pop is amortized O(lgn) algorithm. We can define maxRank as:

MaxRank(n) = 1 + blogϕ nc (10.23)

We can also implement Max-Degree from Fibonacci numbers:
1: function Max-Rank(n)
2: F0 ← 0, F1 ← 1
3: k ← 2
4: repeat
5: Fk ← Fk1 + Fk2

6: k ← k + 1
7: until Fk < n
8: return k − 2

10.4 Pairing Heaps
It’s complex to implement Fibonacci heap. Pairing heap provides another option. It’s
easy to implement, and the performance is good. Most operations, like insert, top, merge
are bound to constant time. the pop is conjectured to be amortized O(lgn) time [58] [3].

10.4. PAIRING HEAPS 165

10.4.1 Definition
A pairing heap is a multi-way tree. The root holds the minimum. A pairing heap is either
empty ∅, or a k-ary tree, consists of a root and multiple sub-trees, denoted as (x, ts). We
can also use ‘left child, right sibling’ way to define the tree.

data PHeap a = E | Node a [PHeap a]

10.4.2 Merge, insert, and top
There are two cases when merge two heaps:

1. Either heap is ∅, the result is the other heap;

2. Otherwise, compare the two roots, turn the greater one as the new sub-tree of the
other.

merge ∅ h2 = h2

merge h1 ∅ = h1

merge (x, ts1) (y, ts2) =

{
x < y : (x, (y, ts2) : ts1)

otherwise : (y, (x, ts1) : ts2)

(10.24)

merge is bound to constant time. With the ‘left-child, right sibling’ method, we link
the heap with greater root as the first sub-tree of the other.

1: function Merge(H1,H2)
2: if H1 = NIL then
3: return H2

4: if H2 = NIL then
5: return H1

6: if Key(H2) < Key(H1) then
7: Exchange(H1 ↔ H2)
8: Sub-Trees(H1) ← Link(H2, Sub-Trees(H1))
9: Parent(H2) ← H1

10: return H1

Similar to Fibonacci heap, we implement insert with merge as (10.12). We access the
top element from the root: top (x, ts) = x. Both operations are bound to constant time.

10.4.3 Increase priority
When decrease the value in a node, we cut the sub-tree rooted with this node, then merge
it back to the heap. If the node is the root, we can directly decrease its value.

1: function Decrease(H,x, k)
2: Key(x) ← k
3: p← Parent(x)
4: if p 6= NIL then
5: Remove x from Sub-Trees(p)
6: Parent(x) ← NIL
7: return Merge(H,x)
8: return H

166 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

10.4.4 Pop
After pop the root, we consolidate the remaining sub-trees to a tree:

pop (x, ts) = consolidate ts (10.25)

We firstly merge every two sub-trees from left to right, then merge these paired results
from right to left to a tree. This explains the why we name it ‘paring heap’. Figure 10.10
and 10.11 show the paired merge.

2

5 4 3 12 7 10 11 6 9

15 13 8 17 14

16

(a) Before pop.
5

15

4

13

3

8

12 7 10 11 6 9

17 14

16

(b) Pop 2, there are 9 sub-trees.
4

5 13

3

15

12 8

7

10

6

11

9

7 14

16

(c) Merge with pairs, leave the last
tree.

Figure 10.10: Pop the root, merge sub-trees in pairs.

consolidate [] = ∅
consolidate [t] = t

consolidate (t1 : t2 : ts) = merge (merge t1 t2) (consolidate ts)
(10.26)

The corresponding ‘left child, right sibling’ implementation is as below:
1: function Pop(H)
2: L← NIL
3: for every Tx, Ty in Sub-Trees(H) do
4: T ← Merge(Tx, Ty)
5: L← Link(T,L)
6: H ← NIL
7: for T in L do

10.4. PAIRING HEAPS 167

6

9 11

7 14

16

(a) Merge 9 and 6.

6

7 9 11

10 14

16

(b) Merge 7.
3

6 12 8

7 9 11

10 14

16

(c) Merge 3.

3

4 6 12 8

5 13

15

7 9 11

10 14

16

(d) Merge 4.

Figure 10.11: Merge from right to left.

8: H ← Merge(H,T)
9: return H

We iterate to merge Tx, Ty to T , and link ahead of L. When loop on L the second
time, we actually traversed from right to left. When there are odd number of sub-trees,
Ty = NIL at last, hence T = Tx in this case.

Delete

To delete a node x, we can first decrease the value in x to −∞, then followed with a pop.
There is an alternative method. If x is the root, we pop it; otherwise, we cut x off H,
then apply pop to x, and merge x back to H:

1: function Delete(H,x)
2: if H = x then
3: Pop(H)
4: else
5: H ← Cut(H,x)
6: x← Pop(x)
7: Merge(H,x)
As delete is implemented with pop, the performance is conjectured to be amortized

O(lgn) time.

Exercise 10.3
Implement delete for paring heap.

168 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

10.5 Summary
In this chapter, we extend the heap from binary tree based implementation to more data
structures. Binomial heap and Fibonacci heap use forest of multi-way trees, pairing heap
use a single multi-way tree.It’s a common practice to post pone some expensive operation,
and obtain better amortized performance.

10.6 Appendix - example programs
Definition of multi-way tree (left child, right sibling):
data Node<K> {

Int rank
K key
Node<K> parent, subTrees, sibling,
Bool mark

Node(K x) {
key = x
rank = 0
parent = subTrees = sibling = null
mark = false

}
}

Link binomial trees:
Node<K> link(Node<K> t1, Node<K> t2) {

if t2.key < t1.key then (t1, t2) = (t2, t1)
t2.sibling = t1.subTrees
t1.subTrees = t2
t2.parent = t1
t1.rank = t1.rank + 1
return t1

}

Binomial heap insert:
Node<K> insert(K x, Node<K> h) = insertTree(Node(x), h)

Node<K> insertTree(Node<K> t, Node<K> h) {
var h1 = Node()
var prev = h1
while h ̸= null and h.rank ≤ t.rank {

var t1 = h
h = h.sibling
if t.rank == t1.rank {

t = link(t, t1)
} else {

prev.sibling = t1
prev = t1

}
}
prev.sibling = t
t.sibling = h
return removeFirst(h1)

}

Node<K> removeFirst(Node<K> h) {
var next = h.sibling
h.sibling = null
return next

}

10.6. APPENDIX - EXAMPLE PROGRAMS 169

Binomial heap recursive insert:
data BiTree a = Node { rank :: Int

, key :: a
, subTrees :: [BiTree a]}

type BiHeap a = [BiTree a]

link t1@(Node r x c1) t2@(Node _ y c2) =
if x < y then Node (r + 1) x (t2:c1)
else Node (r + 1) y (t1:c2)

insertTree t [] = [t]
insertTree t ts@(t':ts') | rank t < rank t' = t:ts

| rank t > rank t' = t' : insertTree t ts'
| otherwise = insertTree (link t t') ts'

insert x = insertTree (Node 0 x [])

Binomial heap merge:
Node<K> merge(h1, h2) {

var h = Node()
var prev = h
while h1 ̸= null and h2 ̸= null {

if h1.rank < h2.rank {
prev.sibling = h1
prev = prev.sibling
h1 = h1.sibling

} else if h2.rank < h1.rank {
prev.sibling = h2
prev = prev.sibling
h2 = h2.sibling

} else {
var (t1, t2) = (h1, h2)
(h1, h2) = (h1.sibling, h2.sibling)
h1 = insertTree(link(t1, t2), h1)

}
if h1 ̸= null then prev.sibling = h1
if h2 ̸= null then prev.sibling = h2
return removeFirst(h)

}

Binomial heap recursive merge:
merge ts1 [] = ts1
merge [] ts2 = ts2
merge ts1@(t1:ts1') ts2@(t2:ts2')

| rank t1 < rank t2 = t1:(merge ts1' ts2)
| rank t1 > rank t2 = t2:(merge ts1 ts2')
| otherwise = insertTree (link t1 t2) (merge ts1' ts2')

Binomial tree pop:
Node<K> reverse(Node<K> h) {

Node<K> prev = null
while h ̸= null {

var x = h
h = h.sibling
x.sibling = prev
prev = x

}
return prev

}

(Node<K>, Node<K>) extractMin(Node<K> h) {

170 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

var head = h
Node<K> tp = null
Node<K> tm = null
Node<K> prev = null
while h ̸= null {

if tm == null or h.key < tm.key {
tm = h
tp = prev

}
prev = h
h = h.sibling

}
if tp ̸= null {

tp.sibling = tm.sibling
} else {

head = tm.sibling
}
tm.sibling = null
return (tm, head)

}

(K, Node<K>) pop(Node<K> h) {
var (tm, h) = extractMin(h)
h = merge(h, reverse(tm.subtrees))
tm.subtrees = null
return (tm.key, h)

}

Binomial heap recursive pop:
pop h = merge (reverse $ subTrees t) ts where

(t, ts) = extractMin h

extractMin [t] = (t, [])
extractMin (t:ts) = if key t < key t' then (t, ts)

else (t', t:ts') where
(t', ts') = extractMin ts

Merge Fibonacci heaps with bidirectional linked list:
FibHeap<K> merge(FibHeap<K> h1, FibHeap<K> h2) {

if isEmpty(h1) then return h2
if isEmpty(h2) then return h1
FibHeap<K> h = FibHeap<K>()
h.trees = concat(h1.trees, h2.trees)
h.minTree = if h1.minTree.key < h2.minTree.key

then h1.minTree else h2.minTree
h.size = h1.size + h2.size
return h

}

bool isEmpty(FibHeap<K> h) = (h == null or h.trees == null)

Node<K> concat(Node<K> first1, Node<K> first2) {
var last1 = first1.prev
var last2 = first2.prev
last1.next = first2
first2.prev = last1
last2.next = first1
first1.prev = last2
return first1

}

Consolidate trees in Fibonacci heap:
consolidate = foldr melt [] where

10.6. APPENDIX - EXAMPLE PROGRAMS 171

melt t [] = [t]
meld t (t':ts) | rank t == rank t' = meld (link t t') ts

| rank t < rank t' = t : t' : ts
| otherwise = t' : meld t ts

Consolidate trees with auxiliary array:
void consolidate(FibHeap<K> h) {

Int R = maxRank(h.size) + 1
Node<K>[R] a = [null, ...]
while h.trees ̸= null {

var x = h.trees
h.trees = remove(h.trees, x)
Int r = x.rank
while a[r] ̸= null {

var y = a[r]
x = link(x, y)
a[r] = null
r = r + 1

}
a[r] = x

}
h.minTr = null
h.trees = null
for var t in a if t ̸= null {

h.trees = append(h.trees, t)
if h.minTr == null or t.key < h.minTr.key then h.minTr = t

}
}

Fibonacci heap pop:
pop (FH _ (Node _ x []) []) = (x, E)
pop (FH sz (Node _ x tsm) ts) = (x, FH (sz - 1) tm ts') where

(tm, ts') = extractMin $ consolidate (tsm ++ ts)

Decrease value in Fibonacci heap:
void decrease(FibHeap<K> h, Node<K> x, K k) {

var p = x.parent
x.key = k
if p ̸= null and k < p.key {

cut(h, x)
cascadeCut(h, p)

}
if k < h.minTr.key then h.minTr = x

}

void cut(FibHeap<K> h, Node<K> x) {
var p = x.parent
p.subTrees = remove(p.subTrees, x)
p.rank = p.rank - 1
h.trees = append(h.trees, x)
x.parent = null
x.mark = false

}

void cascadeCut(FibHeap<K> h, Node<K> x) {
var p = x.parent
if p == null then return
if x.mark {

cut(h, x)
cascadeCut(h, p)

} else {
x.mark = true

}

172 Queue

}

Chapter 11

Queue

11.1 Introduction
Queue supports first-in, first-out (FIFO). There are many ways to implement queue,
e.g., through linked list, doubly liked list, circular buffer, etc. Okasaki gave 16 different
implementations in [3]. A queue satisfies the following two requirements:

1. Add a new element to the tail in constant time;

2. Access or remove an element from head in constant time.

It’s easy to realize queue with doubly linked list. We skip this implementation, and
focus on using other basic data structures, like (singly) linked list or array.

11.2 Linked-list queue
We can insert or remove element from the head of a linked list. However, to support
FIFO, we have to do one operation in head, and the other in tail. We need O(n) time
traverse to reach the tail, where n is the length. To achieve the constant time performance
goal, we use an extra variable to record the tail position, and apply a sentinel node S to
simplify the empty queue case handling, as shown in figure 11.1.
data Node<K> {

Key key
Node next

}

data Queue {
Node head, tail

}

S

head tail

Figure 11.1: Both head and tail point to S for empty queue.

173

174 CHAPTER 11. QUEUE

The two important queue operations are ‘enqueue’ (also called push, snoc, append, or
push back) and ‘dequeue’ (also called pop, or pop front). When implement queue with
list, we push on head, and pop from tail.

1: function Enqueue(Q, x)
2: p← Node(x)
3: Next(p) ← NIL
4: Next(Tail(Q)) ← p
5: Tail(Q) ← p

As there is at least a S node even for empty queue, we need not check if the tail is
NIL.

1: function Dequeue(Q)
2: x← Head(Q)
3: Next(Head(Q)) ← Next(x)
4: if x = Tail(Q) then ▷ Q is empty
5: Tail(Q) ← Head(Q)
6: return Key(x)
As the S node is ahead of all other nodes, Head actually returns the next node to S, as

shown in figure 11.2. It’s easy to expand this implementation to concurrent environment
with two locks on the head and tail respectively. S node helps to prevent dead-lock when
the queue is empty [59] [60].

Figure 11.2: List with S node.

11.3 Circular buffer
Symmetrically, we can append element to the tail of array, but it takes linear time O(n)
to remove element from head. This is because we need shift all elements one cell ahead.
The idea of circular buffer is to reuse the free cells before the first valid element after we
remove elements from head, as shown figure 11.4, and 11.3. We can use the head index,
the length count, and the size of the array to define a queue. It’s empty when the count is
0, it’s full when count = size, we can also simplify the enqueue/dequeue implementation
with modular operation.

1: function Enqueue(Q, x)
2: if not Full(Q) then
3: Count(Q) ← Count(Q) + 1
4: tail ← (Head(Q) + Count(Q)) mod Size(Q)
5: Buf(Q)[tail] ← x

1: function Dequeue(Q)
2: x← NIL
3: if not Empty(Q) then
4: h← Head(Q)
5: x← Buf(Q)[h]
6: Head(Q) ← (h + 1) mod Size(Q)

11.3. CIRCULAR BUFFER 175

Figure 11.3: Circular buffer.

a[0] a[1] ... a[i] ...

head tail boundary

(a) Enqueue some elements.

... a[j] ... a[i] ...

head tail boundary

(b) Free cells after dequeue.

... a[j] ... a[i]

head tail boundary

(c) Enqueue more elements to the
boundary

a[0] ... a[j] ...

headtail boundary

(d) Enqueue the next element to
the first cell.

a[0] a[1] ... a[j-1] a[j] ...

headtail boundary

(e) All cells are occupied, full.

Figure 11.4: Circular buffer queue

176 CHAPTER 11. QUEUE

7: Count(Q) ← Count(Q) - 1
8: return x

Exercise 11.1
The circular buffer is allocated with a predefined size. We can use two references head

and tail instead of count. How to determine if a circular buffer queue is full or empty?
(the head can be either ahead of tail or behind it.)

11.4 Paired-list queue
We can access list head in constant time, but need linear time to access the tail. We can
connect two lists ‘tail to tail’ to implement queue, as shown in figure 11.5. We define such
queue as (f, r), where f is the front list, and r is the rear list. The empty list is ([], []).
We push new element to the head of r, and pop from the tail of f . Both are constant
time.

Figure 11.5: paired-list queue.

{
push x (f, r) = (f, x:r)

pop (x:f, r) = (f, r)
(11.1)

f may become empty after a series of pops, while r still contains elements. To continue
pop, we reverse r to replace f , i.e., ([], r) 7→ (reverse r, []). We need check and adjust
balance after every push/pop:

balance [] r = (reverse r, [])
balance f r = (f, r)

(11.2)

Although the time is bound to linear time when reverse r, the amortised performance
is constant time. We adjust the push/pop as below:{

push x (f, r) = balance f (x:r)

pop (x:f, r) = balance f r
(11.3)

There is a symmetric implementation with a pair of arrays. Table 11.1 shows the
symmetric between list and array. We connect two arrays head to head to form a queue,
as shown in figure 11.6. When array R becomes empty, we reverse array F to replace R.

Exercise 11.2
1. Why need balance check and adjustment after push?
2. Prove the amortized performance of paired-list queue is constant time.
3. Implement the paired-array queue.

11.5. BALANCE QUEUE 177

operation array list
insert to head O(n) O(1)
append to tail O(1) O(n)
remove from head O(n) O(1)
remove from tail O(1) O(n)

Table 11.1: array and list

Figure 11.6: paired-array queue.

11.5 Balance Queue
Although paired-list queue performs in amortized constant time, it is linear time in worse
case. For e.g., there is an element in f , then repeat pushing n elements. Now it takes
O(n) time to pop. The lengths of f and r are unbalance in this case. To solve it, we add
another rule: keep the length of r is not greater than f , otherwise we reverse.

|r| ≤ |f | (11.4)

We check the lengths in every push/pop, however, it takes linear time to compute
length. We can record the length in a variable, and update it during push/pop. Denote
the paired-list queue as (f, n, r,m), where n = |f |, m = |r|. From the balance rule (11.4),
we can check the length of f to test if a queue is empty:

Q = ϕ ⇐⇒ n = 0 (11.5)

The definition of push/pop change to:{
push x (f, n, r,m) = balance (f, n, x:r,m+ 1)

pop (x:f, n, r,m) = balance (f, n− 1, r,m)
(11.6)

Where balance is defined as:

balance (f, n, r,m) =

{
m ≤ n : (f, n, r,m)

otherwise : (f ++ reverse r,m+ n, [], 0)
(11.7)

11.6 Real-time queue
It still takes linear time to reverse, concatenate lists in balanced queue. A real-time queue
need guarantee constant time in every push/pop operation. The performance bottleneck
happens in f ++ reverse r. At this time, m >, breaks the balance rule. Since m,n are
integers, we know m = n+1. ++ takes O(n) time, and reverse takes O(m) time. The total
time is bound to O(n+m), which is proportion to the number of elements. Our solution

178 CHAPTER 11. QUEUE

is to distribute this computation to multiple push and pop operations. Let’s revisit the
tail recursive [61] [62] reverse:

reverse = reverse′ [] (11.8)

This is in Curried form, where:

reverse′ a [] = a
reverse′ a (x:xs) = reverse′ (x:a) xs (11.9)

We can turn the tail recursive implementation to stepped computation. We model it
as a series of state transformation. Define a state machine with two states: reverse state
Sr, and complete state Sf . We slow-down the reverse computation as below:

step Sr a [] = (Sf , a)
step Sr a (x:xs) = (Sr, (x:a), xs)

(11.10)

Each step, we check and transform the state. Sr means the reverse is on going. If
there is no remaining element to reverse, we change the state to Sf (done); otherwise, we
pick the head element x, link it ahead of a. This step terminates, but not continues to
recursion. The new state with the intermediate reverse result will be input to the next
step. For example:

step Sr “hello” [] = (Sr, “ello”, “h”)
step Sr “ello” “h” = (Sr, “llo”, “eh”)

...
step Sr “o” “lleh” = (Sr, [], “olleh”)
step Sr [] “olleh” = (Sf , “olleh”)

We can next distribute the reverse steps to push/pop operations. However, it only
solves half problem. We next need slow-down ++ computation, which is more complex.
We use state machine too. To concatenate xs ++ ys, we first reverse xs to ←−xs, then pick
elements form ←−xs one by one, and link each head of ys. The idea is similar to reverse′:

xs++ ys = (reverse reverse xs) ++ ys
= (reverse′ [] (reverse xs)) ++ ys
= reverse′ ys (reverse xs)
= reverse′ ys ←−xs

(11.11)

We need add another state. After reverse r, we step by step concatenate from←−f . The
three states are: Sr of reverse, Sc of concatenate, Sf of completion. The two phases are:

1. Reverse f and r in parallel to: ←−f and ←−r step by step;

2. Stepped taking elements from ←−f , and link each ahead of ←−r .

next (Sr, f
′, x:f, r′, y :r) = (Sr, x:f

′, f, y :r′, r) reverse f, r
next (Sr, f

′, [], r′, [y]) = next (Sc, f
′, y :r′) reverse done, start concatenation

next (Sc, a, []) = (Sf , a) done
next (Sc, a, x:f

′) = (Sc, x:a, f
′) concatenation

(11.12)
We need arrange these steps to each push/pop next. From the balance rule, when

m = n + 1, we kick off f ++ reverse r. it takes n + 1 steps to reverse r, within these
steps, we reverse f in parallel. After that, we use another n + 1 steps to concatenate.

11.6. REAL-TIME QUEUE 179

2n+ 2 steps in total. The critical question is: Before we complete the 2n+ 2 steps, will
the queue become unbalanced due to a series of push/pop operations?

Luckily, repeat pushing won’t break the balance rule again before we complete f ++
reverse r in 2n+2 steps. We will obtain a new front list f ′ = f ++ reverse r after 2n+2
steps, while the time to break the balance rule again is:

|r′| = |f ′|+ 1
= |f |+ |r|+ 1
= 2n+ 2

(11.13)

Thanks to the balance rule. It means even repeat pushing as many elements as
possible, from the previous to the next time when the queue is unbalanced, the 2n + 2
steps are guaranteed to be completed, hence the new f is ready. We can next safely start
to compute f ′ ++ reverse r′.

However, pop may happen before the completion of 2n + 2 steps. We are facing the
situation that needs extract element from f , while the new front list f ′ = f ++ reverse r
hasn’t been ready yet. To solve this issue, we duplicate a copy of f when doing reverse f .
We are save even repeat pop for n times. Table 11.2 shows the queue during phase 1
(reverse f and r in parallel)1.

f copy on-going part new r

{fi, fi+1, ..., fn} (Sr, f̃ , ..., r̃, ...) {...}
first i− 1 elements out intermediate ←−f , ←−r newly pushed

Table 11.2: Before completion of the first n steps.

The copy of f is exhausted after repeated n pops. We are about to stepped concate-
nation. What if pop happens at this time? Since f is exhausted, it becomes []. We
needn’t concatenate anymore. This is because f ++ ←−r = [] ++ ←−r = ←−r . In fact, we
only need to concatenate the elements in f that haven’t been popped. Because we pop
elements from the head of f , we use a counter to record the remaining elements in f . It’s
initialized as 0. We apply +1 every time when reverse an element in f . It means we need
concatenate this element in the future; Whenever pop happens, we apply -1, means we
needn’t concatenate this one any more. We also decrease it during concatenation process,
and cancel the process when it is 0. Below is the updated state transformation:

next (Sr, n, f
′, x:f, r′, y :r) = (Sr, n+ 1, x:f ′, f, y :r′, r) reverse f, r

next (Sr, n, f
′, [], r′, [y]) = next (Sc, n, f

′, y :r′) reverse done, start concatenation
next (Sc, 0, a, f) = (Sf , a) done

next (Sc, n, a, x:f
′) = (Sc, n− 1, x:a, f ′) concatenation

next S0 = S0 idle
(11.14)

We define addition idle state S0 to simplify the transition logic. The queue contains 3
parts: the front list f with its length n, the state S of on going f++reverse r, and the rear
list r with its length m. Denoted as (f, n, S, r,m). The empty queue is ([], 0, S0, [], 0).
We can tell a queue is empty when n = 0 according to the balance rule. The push/pop
are updated as:{

push x (f, n, S, r,m) = balance f n S (x:r) (m+ 1)

pop (x:f, n, S, r,m) = balance f (n− 1) (abort S) r m
(11.15)

1Although it takes linear time to duplicate a list, however, the one time copying won’t happen at all.
We actually duplicate the reference to the front list, and delay the element level copying to each step

180 CHAPTER 11. QUEUE

Where abort decrease the counter in pop to cancel an element for concatenation. We’ll
define it later. balance triggers stepped f ++ reverse r if the queue is unbalanced, else
runs a step:

balance f n S r m =

{
m ≤ n : step f n S r m

otherwise : step f (n+m) (next (Sr, 0, [], f, [], r)) [] 0

(11.16)
Where step transforms the state machine to next state. It ends with the idle state S0

when completes.

step f n S r m = queue (next S) (11.17)

Where:

queue (Sf , f
′) = (f ′, n, S0, r,m) replace f with f ′

queue S′ = (f, n, S′, r,m)
(11.18)

We define abort to cancel an element:

abort (Sc, 0, (x:a), f
′) = (Sf , a)

abort (Sc, n, a, f
′) = (Sc, n− 1, a, f ′)

abort (Sr, n, f
′f, r′r) = (Sr, n− 1, f ′, f, r′, r)
abort S = S

(11.19)

Exercise 11.3
1. Why need rollback an element (we cancelled the previous ‘cons’, removed x and

return a as the result) when n = 0 in abort?

11.7 Lazy real-time queue
The key to realize real-time queue is to break down the expensive f ++ reverse r. We can
simplify it with lazy evaluation. Assume function rotate compute f ++ reverse r in steps,
i.e., below two functions are equivalent with an accumulator a.

rotate xs ys a = xs++ (reverse ys) ++ a (11.20)

We initialize xs as the front list f , ys as the rear list r, the accumulator a empty [].
We implement rotate from the edge case:

rotate [] [y] a = y :a (11.21)

The recursive case is:

rotate (x:xs) (y :ys) a
= (x:xs) ++ (reverse (y :ys)) ++ a from (11.20)
= x : (xs++ reverse (y :ys)) ++ a) concatenation is associative
= x : (xs++ reverse ys++ (y :a)) reverse property, and associative
= x : rotate xs ys (y :a) reverse of (11.20)

(11.22)

Summarize them together:

rotate [] [y] a = y :a
rotate (x:xs) (y :ys) a = x : rotate xs ys (y :a)

(11.23)

11.8. APPENDIX - EXAMPLE PROGRAMS 181

In lazy evaluation settings, (:) is delayed to push/pop, hence the rotate is broken
down. We change the paired-list queue definition to (f, r, rot), where rot is the on going
f ++ reverse r computation. It is initialized empty [].{

push x (f, r, rot) = balance f (x:r) rot

pop (x:f, r, rot) = balance f r rot
(11.24)

Every time, balance advances the rotation one step, and starts another round when
completes.

balance f r [] = (f ′, [], f ′) 其中 : f ′ = rotate f r []
balance f r (x:rot) = (f, r, rot) 推进轮转 (11.25)

Exercise 11.4
Implement bidirectional queue, support add/remove elements on both head and tail

in constant time.

11.8 Appendix - example programs
List implemented queue:
Queue<K> enQ(Queue<K> q, K x) {

var p = Node(x)
p.next = null
q.tail.next = p
q.tail = p
return q

}

K deQ(Queue<K> q) {
var p = q.head.next //the next of S
q.head.next = p.next
if q.tail == p then q.tail = q.head //empty
return p.key

}

Circular buffer queue:
data Queue<K> {

[K] buf
int head, cnt, size

Queue(int max) {
buf = Array<K>(max)
size = max
head = cnt = 0

}
}

Enqueue, dequeue implementation for circular buffer queue:
N offset(N i, N size) = if i < size then i else i - size

void enQ(Queue<K> q, K x) {
if q.cnt < q.size {

q.buf[offset(q.head + q.cnt, q.size)] = x;
q.cnt = q.cnt + 1

}
}

182 Sequence

K head(Queue<K> q) = if q.cnt == 0 then null else q.buf[q.head]

K deQ(Queue<K> q) {
K x = null
if q.cnt > 0 {

x = head(q)
q.head = offset(q→head + 1, q→size);
q.cnt = q.cnt -1

}
return x

}

Real-time queue:
data State a = Empty

| Reverse Int [a] [a] [a] [a] −− n, acc f, f, acc r, r
| Concat Int [a] [a] −− n, acc, reversed f
| Done [a] −− f’ = f ++ reverse r

−− f, n = length f, state, r, m = length r
data RealtimeQueue a = RTQ [a] Int (State a) [a] Int

push x (RTQ f n s r m) = balance f n s (x:r) (m + 1)

pop (RTQ (_:f) n s r m) = balance f (n - 1) (abort s) r m

top (RTQ (x:_) _ _ _ _) = x

balance f n s r m
| m ≤ n = step f n s r m
| otherwise = step f (m + n) (next (Reverse 0 [] f [] r)) [] 0

step f n s r m = queue (next s) where
queue (Done f') = RTQ f' n Empty r m
queue s' = RTQ f n s' r m

next (Reverse n f' (x:f) r' (y:r)) = Reverse (n + 1) (x:f') f (y:r') r
next (Reverse n f' [] r' [y]) = next $ Concat n (y:r') f'
next (Concat 0 acc _) = Done acc
next (Concat n acc (x:f')) = Concat (n-1) (x:acc) f'
next s = s

abort (Concat 0 (_:acc) _) = Done acc −− rollback 1 elem
abort (Concat n acc f') = Concat (n - 1) acc f'
abort (Reverse n f' f r' r) = Reverse (n - 1) f' f r' r
abort s = s

Lazy real-time queue:
data LazyRTQueue a = LQ [a] [a] [a] −− front, rear, f ++ reverse r

empty = LQ [] [] []

push (LQ f r rot) x = balance f (x:r) rot

pop (LQ (_:f) r rot) = balance f r rot

top (LQ (x:_) _ _) = x

balance f r [] = let f' = rotate f r [] in LQ f' [] f'
balance f r (_:rot) = LQ f r rot

rotate [] [y] acc = y:acc
rotate (x:xs) (y:ys) acc = x : rotate xs ys (y:acc)

Chapter 12

Sequence

12.1 Introduction
Sequence is a combination of array and list. We set the following goals for the ideal
sequence:

1. Add, remove element on head and tail in constant time;

2. Fast (no slower than linear time) concatenate two sequences;

3. Fast access, update element at any position;

4. Fast split at any position;

Array and list only satisfy these goals partially as shown in below table. Where n
is the length for the sequence. If there are two sequences, then we use n1, n2 for their
lengths respectively.

operation array list
add/remove on head O(n) O(1)
add/remove on tail O(1) O(n)
concatenate O(n2) O(n1)
random access at i O(1) O(i)
remove at i O(n− i) O(i)

We give three implementations: binary random access list, concatenate-able list, and
finger tree.

12.2 Binary random access list
The binary random access list is a set of full binary trees (forest). The elements are stored
in leaves. For any integer n ≥ 0, we know how many trees need to hold n elements from its
binary format. Every bit of 1 represents a binary tree, the tree size is determined by the
magnitude of the bit. For any index 1 ≤ i ≤ n, we can locate the binary tree that stores the
i-th element. As shown in figure 12.1, tree t1, t2 represent sequence [x1, x2, x3, x4, x5, x6].

183

184 CHAPTER 12. SEQUENCE

t1

x1 x2

t2

x3 x4 x5 x6

Figure 12.1: A sequence of 6 elements.

Denote the full binary tree of depth i+ 1 as ti. t0 only has a leaf node. There are 2i

leaves in ti. For sequence of n elements, represent n in binary as n = (emem−1...e1e0)2,
where ei is either 1 or 0.

n = 20e0 + 21e1 + ...+ 2mem (12.1)

If ei 6= 0, there is a full binary tree ti of size 2i. For example in figure 12.1, the length
of the sequence is 6 = (110)2. The lowest bit is 0, there’s no tree of size 1; the 2nd bit is
1, there is t1 of size 2; the highest bit is 1, there is t2 of size 4. In this way, we represent
sequence [x1, x2, ..., xn] as a list of trees. Each tree has unique size, in ascending order.
We call it binary random access list [3]. We can customize the binary tree definition: (1)
only store the element in leaf node as (x); (2) augment the size in each branch node as
(s, l, r), where s is the size of the tree, l, r are left and right tree respectively. We get the
size information as below:

size (x) = 1
size (s, l, r) = s

(12.2)

To add a new element y before sequence S, we create a singleton t0 tree t′ = (y), then
insert it to the forest. insert y S = insertT (y) S, or define it in Curried form:

insert y = insertT (y) (12.3)

We compare t′ with the first tree ti in the forest, if ti is bigger, then put t′ ahead of
the forest (in constant time); if they have the same size, then link them to a bigger tree
(in constant time): t′i+1 = (2s, ti, t

′), then recursively insert t′i+1 to the forest, as shown
in figure 12.2.

insertT t [] = [t]

insertT t (t1 :ts) =

{
size t < size t1 : t : t1 : ts

otherwise : insertT (link t t1) ts

(12.4)

Where link links two trees of the same size: link t1 t2 = (size t1 + size t2, t1, t2).
For n elements, there are m = O(lgn) trees in the forest. The performance is bound

to O(lgn) time. We’ll prove the amortized performance is constant time.
Symmetrically, we can reverse the insert process to define remove. If the first tree is

t0 (singleton leaf), we remove t0; otherwise, we repeat splitting the first tree to obtain a
t0 and remove it, as shown in figure 12.3.

extract ((x):ts) = (x, ts)
extract ((s, t1, t2):ts) = extract (t1 :t2 :ts)

(12.5)

12.2. BINARY RANDOM ACCESS LIST 185

x1

(a) Insert x1

t1

x2 x1

(b) Insert x2, link to [t1].

x3 x2

t1

x1

(c) Insert x3, result [t0, t1].

t2

x4 x3 x2 x1

(d) Insert x4, link
twice, generate [t2].

x5

t2

x4 x3 x2 x1

(e) Insert x5, result [t0, t2].

t1

x6 x5

t2

x4 x3 x2 x1

(f) Insert x6, result [t1, t2].

Figure 12.2: Insert x1, x2, ..., x6.

x5

t2

x4 x3 x2 x1

(a) Sequence x1, x2, ..., x5 as
[t0, t2].

t2

x4 x3 x2 x1

(b) Remove x5. Re-
move t0 directly.

x3 x2

t1

x1

(c) Remove x4. Split twice to get [t0, t0, t1], then re-
move the head to get [t0, t1].

Figure 12.3: Remove

186 CHAPTER 12. SEQUENCE

We call extract to remove element from head:{
head = fst ◦ extract
tail = snd ◦ extract

(12.6)

Where fst (a, b) = a, snd (a, b) = b access the component in a pair.
The trees divides elements into chunks. For a given index 1 ≤ i ≤ n, we first locate

the corresponding tree, then lookup the tree to access the element.

1. For the first tree t in the forest, if i ≤ size(t), then the element is in t, we next
lookup t for the target element;

2. Otherwise, let i′ = i− size(t), then recursively lookup the i′-th element in the rest
trees.

(t:ts)[i] =

{
i ≤ size t : lookupT i t

otherwise : ts[i− size t]
(12.7)

Where lookupT applies binary search. If i = 1, returns the root, else divides the tree
and recursively lookup:

lookupT 1 (x) = x

lookupT i (s, t1, t2) =

i ≤ bs
2
c : lookupT i t1

otherwise : lookupT (i− bs
2
c) t2

(12.8)

Figure 12.4 gives the steps to lookup the 4-th element in a sequence of length 6. The
size of the first tree is 2 < 4, move to the next tree and update the index to i′ = 4−2. The
size of the second tree is 4 > i′ = 2, we need lookup it. Because the index 2 is less than
the half size 4/2 = 2, we lookup the left, then the right, and finally locate the element.
Similarly, we can alter an element at a given position.

There are O(lgn) full binary trees to hold n elements. For index i, we need at most
O(lgn) time to locate the tree, the next lookup time is proportion to the height, which
is O(lgn) at most. The overall random access time is bound to O(lgn).

Exercise 12.1
How to handle the out of bound exception?

12.3 Numeric representation
The binary form of n = 20e0+21e1+ ...+2mem maps to the forest. The ei is the i-th bit.
If ei = 1, there is a full binary tree of size 2i. Adding an element corresponds to +1 to
a binary number; while deleting corresponds to -1. We call such correspondence numeric
representation [3]. To explicitly express this correspondence, we define two states: Zero
means none existence of the binary tree, while One t means there exits tree t. As such,
we represent the forest as a list of binary states, and implement insert as binary add.

add t [] = [One t]
add t (Zero:ds) = (One t) : ds

add t (One t′ :ds) = Zero : add (link t t′) ds
(12.9)

When add tree t, if the forest is empty, we create a state of One t, it’s the only
bit, corresponding to 0 + 1 = 1. If the forest isn’t empty, and the first bit is Zero, we

12.3. NUMERIC REPRESENTATION 187

t1

x6 x5

t2

x4 x3 x2 x1

(a) S[4], 4 > size(t1) = 2

t2

x4 x3 x2 x1

(b) S′[4− 2] ⇒ lookupT 2 t2

left(t2)

x4 x3

(c) 2 ≤ ⌊size(t2)
2

⌋ ⇒ lookupT 2 left(t2)

x3

(d) lookupT 1 right(left(t2)), return x3

Figure 12.4: Steps to access S[4]

188 CHAPTER 12. SEQUENCE

use the state One t to replace Zero, corresponding to binary add (...digits...0)2 + 1 =
(...digits...1)2. For e.g. 6+1 = (110)2+1 = (111)2 = 7. If the first bit is One t′, we assume
t and t′ have the same size because we always start to insert from a singleton leaf t0 = (x).
The tree size increase as a sequence of 1, 2, 4, ..., 2i, We link t and t′, recursively insert
to the rest bits. The original One t′ is replaced by Zero. It corresponds to binary add
(...digits...1)2 + 1 = (...digits′...0)2. For e.g. 7 + 1 = (111)2 + 1 = (1000)2 = 8.

Symmetrically, we can implement remove as binary subtraction. If the sequence is a
singleton bit One t, it becomes empty after remove, corresponding to 1− 1 = 0. If there
are multiple bits and the first one is One t, we replace it by Zero. This corresponds to
(...digits...1)2 − 1 = (...digits...0)2. For e.g., 7 − 1 = (111)2 − 1 = (110)2 = 6. If the
first bit is Zero, we need borrow. We cursively extract tree from the rest bits, split into
two t1, t2, replace Zero to One t2, and remove t1. It corresponds to (...digits...0)2 − 1 =
(...digits′...1)2. For e.g., 4− 1 = (100)2 − 1 = (11)2 = 3.

minus [One t] = (t, [])
minus ((One t):ts) = (t, Zero:ts)

minus (Zero:ts) = (t1, (One t2):ts
′),where : (s, t1, t2) = minus ts

(12.10)

Numeric representation doesn’t change the performance. We next evaluate the amor-
tized time by aggregation. The steps to insert n = 2m elements to empty is given as table
12.1:

i binary (MSB ... LSB)
0 0, 0, ..., 0, 0
1 0, 0, ..., 0, 1
2 0, 0, ..., 1, 0
3 0, 0, ..., 1, 1
... ...
2m − 1 1, 1, ..., 1, 1
2m 1, 0, 0, ..., 0, 0
bits changed 1, 1, 2, ... 2m−1, 2m

Table 12.1: Insert 2m elements.

The LSB changes every time when insert, total 2m times. The second bit changes
every other time (link trees), total 2m−1 times. The second highest bit only changes 1
time, links all trees to a final one. The highest bit changes to 1 after insert the last
element. Sum all times: T = 1+1+2+4+ ...+2m−1+2m = 2m+1. Hence the amortized
performance is:

O(T/n) = O(
2m+1

2m
) = O(1) (12.11)

Proved the amortized constant time performance.

Exercise 12.2
1. Implement the random access for numeric representation S[i], 1 ≤ i ≤ n, where n

is the length of the sequence.
2. Prove the amortized performance of delete is constant time. (hint: use aggregation

method).
3. We can represent the full binary tree with array of length 2m, where m is none

negative integer. Implement the binary tree forest, insert, and random access.
What are the performance?

12.4. PAIRED-ARRAY SEQUENCE 189

12.4 paired-array sequence
We give paired-array queue in chapter 11. We can expand it to paired-array sequence
as array supports random access. As shown in figure 12.5, we link two arrays head to
head. When add an element from left, we append to the tail of f ; when add from right,
we append to the tail of r. We denote the sequence as a pair S = (f, r), Front(S) = f ,
Rear(S) = r access them respectively. We implement insert/append as below:

Figure 12.5: Paired-array sequence.

1: function Insert(x, S)
2: Append(x, Front(S))
3: function Append(x, S)
4: Append(x, Rear(S))
When access the i-th element, we first determine i index to f or r, then locate the

position. If i ≤ |f |, the element is in f . Because f and r are connected head to head, we
need index from right of f at position |f | − i+1; if i > |f |, the element is in r. We index
from left at position i− |f |.

1: function Get(i, S)
2: f, r ← Front(S), Rear(S)
3: n← Size(f)
4: if i ≤ n then
5: return f [n− i+ 1] ▷ reversed
6: else
7: return r[i− n]

Removing can makes f or r empty ([]), while the other is not. To re-balance, we
halve the none empty one, and reverse either half to form a new pair. As f and r are
symmetric, we can swap them, call Balance, then swap back.

1: function Balance(S)
2: f ← Front(S), r ← Rear(S)
3: n← Size(f), m← Size(r)
4: if F = [] then
5: k ← bm

2
c

6: return (Reverse(r[1...k]), r[(k + 1)...m])

7: if R = [] then
8: k ← bn

2
c

9: return (f [(k + 1)...n],Reverse(f [1...k]))
10: return (f, r)

Every time when delete, we check f , r and balance them:
1: function Remove-Head(S)
2: Balance(S)
3: f, r ← Front(S), Rear(S)
4: if f = [] then ▷ S = ([], [x])
5: r ← []

190 CHAPTER 12. SEQUENCE

6: else
7: Remove-Last(f)

8: function Remove-Tail(S)
9: Balance(S)

10: f, r ← Front(S), Rear(S)
11: if r = [] then ▷ S = ([x], [])
12: f ← []
13: else
14: Remove-Last(r)

Due to reverse, the performance is O(n) in the worst case, where n is the number of
elements, while it is amortized constant time.

Exercise 12.3

1. For paired-array delete, prove the amortized performance is constant time.

12.5 Concatenate-able list

We achieve O(lgn) time insert, delete, random index with binary tree forest. However,
it’s not easy to concatenate two sequences. We can’t merely merge trees, but need link
trees with the same size. Figure 12.6 shows an implementation of concatenate-able list.
The first element x1 is in root, the rest is organized with smaller sequences, each one is
a sub-tree. These sub-trees are put in a real-time queue (see chapter 11). We denote
the sequence as (x1, Qx) = [x1, x2, ..., xn]. When concatenate with another sequence
of (y1, Qy) = [y1, y2, ..., ym], we append it to Qx. The real-time queue guarantees the
en-queue in constant time, hence the concatenate performance is in constant time.

x[1]

c[1] c[2] ... c[n]

x[2]...x[i] x[i+1]...x[j] x[k]...x[n]

(a) (x1, Qx) = [x1, x2, ..., xn]

x[1]

c[1] c[2] ... c[n] c[n+1]

x[2]...x[i] x[i+1]...x[j] x[k]...x[n] y[1]...y[m]

(b) Concatenate with (y1, Qy) = [y1, y2, ..., ym], addcn+1 to Qx

Figure 12.6: Concatenate-able list

12.6. FINGER TREE 191

s++∅ = s
∅++ s = s

(x,Q) ++ s = (x, push s Q)
(12.12)

When insert new element z, we create a singleton of (z,∅), then concatenate it to the
sequence: {

insert x s = (x,∅) ++ s

append x s = s++ (x,∅)
(12.13)

When delete x1 from head, we lose the root. The rest sub-trees are all concatenate-able
lists. We concatenate them all to a new sequence.

concat ∅ = ∅
concat Q = (top Q) ++ concat (pop Q)

(12.14)

The real-time queue hold sub-trees, we pop the first c1, and recursively concatenate
the rest to s, then concatenate c1 and s. We define delete from head with concat.

tail (x,Q) = concat Q (12.15)

Function concat traverses the queue, and reduces to a result, it essentially folds on
Q [10].

fold f z ∅ = z
fold f z Q = f (top Q) (fold f z (pop Q))

(12.16)

Where f is a binary function, z is zero unit. Here are examples of folding on queue
Q = [1, 2, ..., 5]:

fold (+) 0 Q = 1 + (2 + (3 + (4 + (5 + 0)))) = 15
fold (×) 1 Q = 1× (2× (3× (4× (5× 1)))) = 120
fold (×) 0 Q = 1× (2× (3× (4× (5× 0)))) = 0

We can define concat with fold (Curried form):

concat = fold (++) ∅ (12.17)

The performance is bound to linear time in worst case: delete after repeatedly add n
elements. All n − 1 sub-trees are singleton. concat takes O(n) time to consolidate. The
amortized performance is constant time if add, append, delete randomly happen.

Exercise 12.4
1. Prove the amortized performance for delete is constant time

12.6 Finger tree
Binary random access list supports to insert, remove from head in amortized constant
time, and index in logarithm time. But we can’t easily append element to tail, or fast
concatenate. With concatenate-able list, we can concatenate, insert, and append in amor-
tized constant time, but can’t easily index element. From these two examples, we need:
1, access head, tail fast to insert or delete; 2, the recursive structure, e.g., tree, realizes
random access as divide and conquer search. Finger tree [66] implements sequence with
these two ideas [65]. It’s critical to maintain the tree balanced to guarantee search perfor-
mance. Finger tree leverages 2-3 tree (a type of B-tree). A 2-3 tree is consist of 2 or 3
sub-trees, as (t1, t2) or (t1, t2, t3).

192 CHAPTER 12. SEQUENCE

data Node a = Br2 a a | Br3 a a a

We define a finger tree as one of below three:

1. empty ∅;

2. a singleton leaf (x);

3. a tree with three parts: a sub-tree, left and right finger, denoted as (f, t, r). Each
finger is a list up to 3 elements1.

data Tree a = Empty
| Lf a
| Tr [a] (Tree (Node a)) [a]

12.6.1 Insert

NIL

(a) ∅

a

(b) (x)

b NIL a

(c) ([b],∅, [a])

Figure 12.7: Finger tree, example 1

e d c b NIL a

(a) Insert 3 elements
to f , not a valid, bal-
anced 2-3 tree.

f e a

d c b

(b) Re-balance.
there are two
elements in f ;
the middle is a
singleton of a 2-3
tree.

Figure 12.8: Finger tree, example 2
1f: front, r: rear

12.6. FINGER TREE 193

As shown in figure 12.7 and 12.8. Example 1 (a) is ∅, (b) is a singleton, (c) has two
element in f and r for each. When add more, f will exceeds 2-3 tree, as in example 2
(a). We need re-balance as in (b). There are two elements in f , the middle is singleton
of a 2-3 tree. These examples are list as below:

∅ Empty
(a) Lf a
([b],∅, [a]) Tr [b] Empty [a]
([e, d, c, b],∅, [a]) Tr [e, d, c, b] Empty [a]
([f, e], (d, c, b), [a]) Tr [f, e] Lf (Br3 d c b) [a]

In example 2 (b), the middle component is a singleton leaf. Finger tree is recursive,
apart from f and r, the middle is a deeper finger tree of type Tree (Node a). One more
wrap, one level deeper. Summarize above examples, we define insert a to tree T as below:

1. If T = ∅, the result is a singleton (a);

2. If T = (b) is a leaf, the result is ([a],∅, [b]);

3. For T = (f, t, r), if there are ≤ 3 elements in f , we insert a to f , otherwise (> 3),
extract the last 3 elements from f to a 2-3 tree t′, recursively insert t′ to t, then
insert a to f .

insert a ∅ = (x)
insert a (b) = ([a],∅, [b])

insert a ([b, c, d, e], t, r) = ([a, b], insert (c, d, e) t, r)
insert a (f, t, r) = (a:f, t, r)

(12.18)

The insert performance is constant time except for the recursive case. The recursion
time is proportion to the height of the tree h. Because of 2-3 trees, it’s balanced, hence
h = O(lgn), where n is the number of elements. When distribute the recursion to other
cases, the amortized performance is constant time [3] [65]. We can repeatedly insert a list
of elements by folding:

xs� t = foldr insert t xs (12.19)

Exercise 12.5
1. Eliminate recursion, implement insert with loop.

12.6.2 Extract
We implement extract as the reverse of insert.

extract (a) = (a,∅)
extract ([a],∅, [b]) = (a, (b))

extract ([a],∅, b:bs) = (a, ([b],∅, bs))
extract ([a], t, r) = (a, (toList f, t′, r)),where : (f, t′) = extract t

extract (a:as, t, r) = (a, (as, t, r))

(12.20)

Where toList flatten a 2-3 tree to list:

toList (a, b) = [a, b]
toList (a, b, c) = [a, b, c]

(12.21)

194 CHAPTER 12. SEQUENCE

We skip error handling (e.g., extract from empty tree). If the tree is a singleton leaf,
the result is empty; if there are two elements, the result is a singleton; if f is a singleton
list, the middle is empty, while r isn’t empty, we extract the only one in f , then borrow
one from r to f ; if the middle isn’t empty, we recursively extract a node from the middle,
flatten that node to list to replace f (the original one is extracted). If f has more than
one element, we extract the first. Figure 12.9 gives examples that extract 2 elements.

x[10] x[9] x[2] x[1]

NIL

x[8] x[7] x[6] x[5] x[4] x[3]

(a) A sequence of 10 elements.

x[9] x[2] x[1]

NIL

x[8] x[7] x[6] x[5] x[4] x[3]

(b) Extract one, f becomes a sin-
gleton list.

x[8] x[7] x[6] x[2] x[1]

x[5] x[4] x[3]

(c) Extract another, borrow an element from the middle,
flatten the 2-3 tree to a list as the new f .

Figure 12.9: Extract

We can define head, tail with extract.{
head = fst ◦ extract
tail = snd ◦ extract

(12.22)

12.6. FINGER TREE 195

Exercise 12.6
1. Eliminate recursion, implement extract in loops.

12.6.3 Append and remove
We implement append, remove on right symmetrically.

append ∅ a = (a)
append (a) b = ([a],∅, [b])

append (f, t, [a, b, c, d]) e = (f, append t (a, b, c), [d, e])
append (f, t, r) a = (f, t, r ++ [a])

(12.23)

If there are no more 4 elements in r, we append the new element to tail of r. Otherwise,
we extract the first 3 from r, form a new 2-3 tree, and recursively append it to the middle.
We can repeatedly append a list of elements by folding from left:

t� xs = foldl append t xs (12.24)

The remove is reversed operation of append:

remove (a) = (∅, a)
remove ([a],∅, [b]) = ((a), b)
remove (f,∅, [a]) = ((initf,∅, [lastf]), a)
remove (f, t, [a]) = ((f, t′, toList r), a),其中 : (t′, r) = remove t
remove (f, t, r) = ((f, t, init r), last r)

(12.25)

Where last accesses the last element of a list, init returns the rest (see chapter 1).

12.6.4 concatenate
When concatenate two none empty finger trees T1 = (f1, t1, r1), T2 = (f2, t2, r2), we use
f1 as the result front f , r2 as the result rear r. Then merge t1, r1, f2, t2 as the middle
tree. Because both r1 and f2 are list of nodes, it equivalent to the below problem:

merge t1 (r1 ++ f2) t2 =?

Both t1 and t2 are finger trees deeper than T1 and T2 a level. If the type of element
in T1 is a, then the type of element in t1 Node a. We recursively merge, keep the front
of t1 and rear of t2, then further merge the middle of t1, t2, and the rear of t1, the front
of t2.

merge ∅ ts t2 = ts� t2
merge t1 ts ∅ = t1 � ts

merge (a) ts t2 = merge ∅ (a:ts) t2
merge t1 ts (a) = merge t1 (ts++ [a]) ∅

merge (f1, t1, r1) ts (f2, t2, r2) = (f1,merge t1 (nodes (r1 ++ ts++ f2)) t2, r2)
(12.26)

Where nodes collects elements to a list of 2-3 trees. This is because type of the element
in the middle is deeper than the finger.

nodes [a, b] = [(a, b)]
nodes [a, b, c] = [(a, b, c)]

nodes [a, b, c, d] = [(a, b), (c, d)]
nodes (a:b:c:ts) = (a, b, c):nodes ts

(12.27)

196 CHAPTER 12. SEQUENCE

We then define finger tree concatenation with merge:

(f1, t1, r1) ++ (f2, t2, r2) = (f1,merge t1 (r1 ++ f2) t2, r2) (12.28)

Compare with (12.26), concatenation is essentially merge, we can define them in a
unified way:

T1 ++ T2 = merge T1 [] T2 (12.29)

The performance is proportion to the number of recursions, which is the smaller height
of the two trees. The 2-3 trees are balanced, the height is O(lgn), where n is the number
of elements. In edge cases, merge performs as same as insert (call insert at most 8 times)
in amortized constant time; In worst case, the performance is O(m), where m is the height
difference between the two trees. The overall performance is bound O(lgn), where n is
the total elements of the two trees.

12.6.5 Random access
The idea is to turn random access into tree search. To avoid repeatedly compute tree
size, we augment a size variable s to each branch node as (s, f, t, r).

data Tree a = Empty
| Lf a
| Tr Int [a] (Tree (Node a)) [a]

size ∅ = 0
size (x) = size x

size (s, f, t, r) = s
(12.30)

Here size (x) is not necessarily 1. x can be a deeper node, like Node a. It is only 1
at level one. For termination, we wrap x as an element cell (x)e, and define size (x)e = 1
(see the example in appendix).{

x◁ t = insert (x)e t

t▷ x = append t (x)e
(12.31)

and: {
xs� t = foldr (◁) t xs

t� xs = foldl (▷) t xs
(12.32)

We also need calculate the size of a 2-3 tree:

size (t1, t2) = size t1 + size t2
size (t1, t2, t3) = size t1 + size t2 + size t3

(12.33)

Given a list of nodes (e.g., finger at deeper level), we calculate size from sum ◦
(map size). We need update the size when insert or delete element. With size aug-
mented, we can lookup the tree for any position i. The finger tree (s, f, t, r) has recursive
structure. Let the size of these components be sf , st, sr, and s = sf + st + sr. If i ≤ sf ,
the location is in f , we further lookup f ; if sf < i ≤ sf + st, then the location is in t,
we need recursively lookup t; otherwise, we lookup r. We also need handle leaf case of

12.6. FINGER TREE 197

(x). We use a pair (i, t) to define the position i at data structure t, and define lookupT
as below:

lookupT i (x) = (i, x)

lookupT i (s, f, t, r) =

i < sf : lookups i f

sf ≤ i < sf + st : lookupN (lookupT (i− sf) t)

otherwise : lookups (i− sf − st) r

(12.34)

Where sf = sum (map size f), st = size t, are the sizes of the first two components.
When lookup location i, if the tree is a leaf (x), the result is (i, x); otherwise we need
figure out which component among (s, f, t, r) that i points to. If it either in f or r, then
we lookup the figure:

lookups i (x:xs) =

{
i < size x : (i, x)

otherwise : lookups (i− size x) xs
(12.35)

If i is in some element x (i < size x), we return (i, x); otherwise, we continue looking
up the rest elements. If i points to the middle t, we recursively lookup to obtain a place
(i′,m), where m is a 2-3 tree. We next lookup m:

lookupN i (t1, t2) =

{
i < size t1 : (i, t1)

otherwise : (i− size t1, t2)

lookupN i (t1, t2, t3) =

i < size t1 : (i, t1)

size t1 ≤ i < size t1 + size t2 : (i− size t1, t2)

otherwise : (i− size t1 − size t2, t3)

(12.36)
Because we previously wrapped x inside (x)e, we need extract x out finally:

T [i] =

{
if lookupT i T = (i′, (x)e) : Just x
otherwise : Nothing

(12.37)

We return the result of type Maybe a = Nothing|Just a, means either found, or lookup
failed2. The random access looks up the finger tree recursively, proportion to the tree
depth. Because finger tree is balanced, the performs is bound to O(lgn), where n is the
number of elements.

We achieved balanced performance with finger tree implementation. The operations
at head and tail are bound to amortized constant time, concatenation, split, and random
access are in logarithm time [67]. By the end of this chapter, we’ve seen many elementary
data structures. They are useful to solve some classic problems. For example, we can use
sequence to implement MTF (move-to-front3) encoding algorithm [68]. MTF move any
element at position i to the front of the sequence:

mtf i S = x◁ S′,where(x, S′) = extractAt i S

In the next chapters, we’ll go through the classic divide and conquer sorting algo-
rithms, including quick sort, merge sort and their variants; then give the string matching
algorithms and elementary search algorithms.

Exercise 12.7
1. For random access, how to handle empty tree ∅ and out of bound cases?
2. Implement cut i S, split sequence S at position i.

2Many programming environments provide equivalent tool, like the Optional<T> in Java/C++.
3Used in Burrows-Wheeler transform (BWT) data compression algorithm.

198 CHAPTER 12. SEQUENCE

12.7 Appendix - example programs
Binary random access list (forest):
data Tree a = Leaf a

| Node Int (Tree a) (Tree a)

type BRAList a = [Tree a]

size (Leaf _) = 1
size (Node sz _ _) = sz

link t1 t2 = Node (size t1 + size t2) t1 t2

insert x = insertTree (Leaf x) where
insertTree t [] = [t]
insertTree t (t':ts) = if size t < size t' then t:t':ts

else insertTree (link t t') ts

extract ((Leaf x):ts) = (x, ts)
extract ((Node _ t1 t2):ts) = extract (t1:t2:ts)

head' = fst ◦ extract
tail' = snd ◦ extract

getAt i (t:ts) | i < size t = lookupTree i t
| otherwise = getAt (i - size t) ts

where
lookupTree 0 (Leaf x) = x
lookupTree i (Node sz t1 t2)

| i < sz `div` 2 = lookupTree i t1
| otherwise = lookupTree (i - sz `div` 2) t2

Numeric representation of binary random access list:
data Digit a = Zero | One (Tree a)

type RAList a = [Digit a]

insert x = add (Leaf x) where
add t [] = [One t]
add t (Zero:ts) = One t : ts
add t (One t' :ts) = Zero : add (link t t') ts

minus [One t] = (t, [])
minus (One t:ts) = (t, Zero:ts)
minus (Zero:ts) = (t1, One t2:ts') where

(Node _ t1 t2, ts') = minus ts

head' ts = x where (Leaf x, _) = minus ts
tail' = snd ◦ minus

Paired-array sequence:
Data Seq<K> {

[K] front = [], rear = []
}

Int length(S<K> s) = length(s.front) + length(s.rear)

void insert(K x, Seq<K> s) = append(x, s.front)

void append(K x, Seq<K> s) = append(x, s.rear)

K get(Int i, Seq<K> s) {

12.7. APPENDIX - EXAMPLE PROGRAMS 199

Int n = length(s.front)
return if i < n then s.front[n - i - 1] else s.rear[i - n]

}

Concatenate-able list:
data CList a = Empty | CList a (Queue (CList a))

wrap x = CList x emptyQ

x ++ Empty = x
Empty ++ y = y
(CList x q) ++ y = CList x (push q y)

fold f z q | isEmpty q = z
| otherwise = (top q) `f` fold f z (pop q)

concat = fold (++) Empty

insert x xs = (wrap x) ++ xs
append xs x = xs ++ wrap x

head (CList x _) = x
tail (CList _ q) = concat q

Finger tree:
−− 2-3 tree
data Node a = Tr2 Int a a

| Tr3 Int a a a

−− finger tree
data Tree a = Empty

| Lf a
| Br Int [a] (Tree (Node a)) [a] −− size, front, mid, rear

newtype Elem a = Elem { getElem :: a } −− wrap element

newtype Seq a = Seq (Tree (Elem a)) −− sequence

class Sized a where −− support size measurement
size :: a → Int

instance Sized (Elem a) where
size _ = 1 −− 1 for any element

instance Sized (Node a) where
size (Tr2 s _ _) = s
size (Tr3 s _ _ _) = s

instance Sized a ⇒ Sized (Tree a) where
size Empty = 0
size (Lf a) = size a
size (Br s _ _ _) = s

instance Sized (Seq a) where
size (Seq xs) = size xs

tr2 a b = Tr2 (size a + size b) a b
tr3 a b c = Tr3 (size a + size b + size c) a b c

nodesOf (Tr2 _ a b) = [a, b]
nodesOf (Tr3 _ a b c) = [a, b, c]

−− left
x <| Seq xs = Seq (Elem x `cons` xs)

200 CHAPTER 12. SEQUENCE

cons :: (Sized a) ⇒ a → Tree a → Tree a
cons a Empty = Lf a
cons a (Lf b) = Br (size a + size b) [a] Empty [b]
cons a (Br s [b, c, d, e] m r) = Br (s + size a) [a, b] ((tr3 c d e) `cons` m) r
cons a (Br s f m r) = Br (s + size a) (a:f) m r

head' (Seq xs) = getElem $ fst $ uncons xs
tail' (Seq xs) = Seq $ snd $ uncons xs

uncons :: (Sized a) ⇒ Tree a → (a, Tree a)
uncons (Lf a) = (a, Empty)
uncons (Br _ [a] Empty [b]) = (a, Lf b)
uncons (Br s [a] Empty (r:rs)) = (a, Br (s - size a) [r] Empty rs)
uncons (Br s [a] m r) = (a, Br (s - size a) (nodesOf f) m' r)

where (f, m') = uncons m
uncons (Br s (a:f) m r) = (a, Br (s - size a) f m r)

−− right
Seq xs |> x = Seq (xs `snoc` Elem x)

snoc :: (Sized a) ⇒ Tree a → a → Tree a
snoc Empty a = Lf a
snoc (Lf a) b = Br (size a + size b) [a] Empty [b]
snoc (Br s f m [a, b, c, d]) e = Br (s + size e) f (m `snoc` (tr3 a b c)) [d, e]
snoc (Br s f m r) a = Br (s + size a) f m (r ++ [a])

last' (Seq xs) = getElem $ snd $ unsnoc xs
init' (Seq xs) = Seq $ fst $ unsnoc xs

unsnoc :: (Sized a) ⇒ Tree a → (Tree a, a)
unsnoc (Lf a) = (Empty, a)
unsnoc (Br _ [a] Empty [b]) = (Lf a, b)
unsnoc (Br s f@(_:_:_) Empty [a]) = (Br (s - size a) (init f) Empty [last f], a)
unsnoc (Br s f m [a]) = (Br (s - size a) f m' (nodesOf r), a)

where (m', r) = unsnoc m
unsnoc (Br s f m r) = (Br (s - size a) f m (init r), a) where a = last r

−− concatenate
Seq xs +++ Seq ys = Seq (xs >+< ys)

xs >+< ys = merge xs [] ys

t <<< xs = foldl snoc t xs
xs >>> t = foldr cons t xs

merge :: (Sized a) ⇒ Tree a → [a] → Tree a → Tree a
merge Empty es t2 = es >>> t2
merge t1 es Empty = t1 <<< es
merge (Lf a) es t2 = merge Empty (a:es) t2
merge t1 es (Lf a) = merge t1 (es++[a]) Empty
merge (Br s1 f1 m1 r1) es (Br s2 f2 m2 r2) =

Br (s1 + s2 + (sum $ map size es)) f1 (merge m1 (trees (r1 ++ es ++ f2)) m2) r2

trees [a, b] = [tr2 a b]
trees [a, b, c] = [tr3 a b c]
trees [a, b, c, d] = [tr2 a b, tr2 c d]
trees (a:b:c:es) = (tr3 a b c):trees es

−− index
data Place a = Place Int a

getAt :: Seq a → Int → Maybe a
getAt (Seq xs) i | i < size xs = case lookupTree i xs of

Place _ (Elem x) → Just x

Elementary Algorithms 201

| otherwise = Nothing

lookupTree :: (Sized a) ⇒ Int → Tree a → Place a
lookupTree n (Lf a) = Place n a
lookupTree n (Br s f m r) | n < sf = lookups n f

| n < sm = case lookupTree (n - sf) m of
Place n' xs → lookupNode n' xs

| n < s = lookups (n - sm) r
where sf = sum $ map size f

sm = sf + size m

lookupNode :: (Sized a) ⇒ Int → Node a → Place a
lookupNode n (Tr2 _ a b) | n < sa = Place n a

| otherwise = Place (n - sa) b
where sa = size a

lookupNode n (Tr3 _ a b c) | n < sa = Place n a
| n < sab = Place (n - sa) b
| otherwise = Place (n - sab) c

where sa = size a
sab = sa + size b

lookups :: (Sized a) ⇒ Int → [a] → Place a
lookups n (x:xs) = if n < sx then Place n x

else lookups (n - sx) xs
where sx = size x

202 Quick sort and merge sort

Chapter 13

Quick sort and merge sort

13.1 Introduction
People proved the performance upper limit be O(n lgn) for comparison based sort [51].
This chapter gives two divide and conquer sort algorithms: quick sort and merge sort,
both achieve O(n lgn) time bound. We also give their variants, like natural merge sort,
in-place merge sort, and etc.

13.2 Quick sort

Consider arrange kids in a line ordered by height.

1. The first kid raises hand, all shorter one move to left, and the others move to right;

2. All kids on the left and right repeat.

For example, the heights (in cm) are [102, 100, 98, 95, 96, 99, 101, 97]. Table 13.1 gives
the steps. (1) The kid of 102 cm raises hand as the pivot (underlined in the first row). It
happens the tallest, hence all others move to the left as shown in the second row in the
table. (2) The kid of 100 cm is the pivot. Kids of height 98, 95, 96, and 99 cm move to
the left, and the kid of 101 cm move to the right, as shown in the third row. (3) The kid

203

204 CHAPTER 13. QUICK SORT AND MERGE SORT

of 98 cm is the left pivot, while 101 cm is the right pivot. Because there is only one kid
on the right, it’s sorted. Repeat this to sort all kids.

102 100 98 95 96 99 101 97
100 98 95 96 99 101 97 ‘102’
98 95 96 99 97 ‘100’ 101 ‘102’
95 96 97 ‘98’ 99 ‘100’ ‘101’ ‘102’
‘95’ 96 97 ‘98’ ‘99’ ‘100’ ‘101’ ‘102’
‘95’ ‘96’ 97 ‘98’ ‘99’ ‘100’ ‘101’ ‘102’
‘95’ ‘96’ ‘97’ ‘98’ ‘99’ ‘100’ ‘101’ ‘102’

Table 13.1: Sort steps

We can summarize the quick sort definition, when sort list L:

• If L is empty[], the result is [];

• Otherwise, select an element as the pivot p, recursively sort elements ≤ p to the
left; and sort other elements > p to the right.

We say and, but not ‘then’, indicate we can parallel sort left and right. C. A. R.
Hoare developed quick sort in 1960 [51] [78]. There are varies of ways to pick the pivot, for
example, always choose the first element.

sort [] = []
sort (x:xs) = sort [y|y ∈ xs, y ≤ x] ++ [x] ++ sort [y|y ∈ xs, x < y]

(13.1)

We use the Zermelo Frankel expression (ZF expression)1. {a|a ∈ S, p1(a), p2(a), ...}
selects elements in set S, that satisfy every the predication p1, p2, ... (see chapter 1). Below
is example code:
sort [] = []
sort (x:xs) = sort [y | y←xs, y ≤ x] ++ [x] ++ sort [y | y←xs, x < y]

We assume to sort in ascending order. We can abstract the comparison to sort different
things like numbers, strings, and etc. (see chapter 3) We needn’t total ordering, but at
least need strict weak ordering [79] [52](see chapter 9). We use ≤ as the abstract comparison.

13.2.1 Partition
We traverse elements in two passes: first filter all elements ≤ x ; next filter all > x. We
can combine them into one pass:

part p [] = ([], [])

part p (x:xs) =

{
p(x) : (x:as, bs),where : (as, bs) = part p xs

otherwise : (as, x:bs)

(13.2)

And change the quick sort definition to:

sort [] = []
sort (x:xs) = sort as++ [x] ++ sort bs,where : (as, bs) = part (≤ x) xs

(13.3)

We can also define partition with fold:

part p = foldr f ([], []) (13.4)
1Name after two mathematicians found the modern set theory.

13.2. QUICK SORT 205

Where f is defined as:

f (as, bs) x =

{
p(x) : (x:as, bs)

otherwise : (as, x:bs)
(13.5)

It’s essentially to accumulate to (as, bs). If p(x) holds, then add x to as, otherwise to
bs. We can implement a tail recursive partition:

part p [] as bs = (as, bs)

part p (x:xs) as bs =

{
p(x) : part p xs (x:as) bs

otherwise : part p xs as (x:bs)

(13.6)

To partition x:xs, we call:

(as, bs) = part (≤ x) xs [] []

We change concatenation sort as++ [x] ++ sort bs with accumulator as:

sort s [] = s
sort s (x:xs) = sort (x : sort s bs) as

(13.7)

Where s is the accumulator, we initialize sort with an empty list: qsort = sort [].
After partition, we need recursively sort as, bs. We can first sort bs, prepend x, then pass
it as the new accumulator to sort as:
sort = sort' []

sort' acc [] = acc
sort' acc (x:xs) = sort' (x : sort' acc bs) as where

(as, bs) = part xs [] []
part [] as bs = (as, bs)
part (y:ys) as bs | y ≤ x = part ys (y:as) bs

| otherwise = part ys as (y:bs)

13.2.2 In-place sort
Figure 13.1 gives a way to partition in-place [2] [4]. We scan from left to right. At any
time, the array is consist of three parts as shown in figure 13.1 (a):

• The pivot is the left element p = x[l]. It moves to the final position after partition;

• A section of elements ≤ p, extend right to L;

• A section of elements > p, extend right to R. The elements between L and R > p;

• Elements after R haven’t been partitioned (may >,=, < p).

When partition starts, L points to p, R points to the next, as shown in figure 13.1
(b). We advance R to right till reach to the array boundary. Every time, we compare
x[R] and p. If x[R] > p, it should be between L and R, we move R forward; otherwise if
X[R] ≤ p, it should be on the left of L. We advance L a step, then swap x[L] ↔ x[R].
When R passes the last element, the partition ends. Elements > p move to the right of
L, while others on the left side. We need move p to the position between the two parts.
To do that, we swap p↔ x[L], as shown in 13.1 (c). L finally points to p, partitioned the
array in two parts. We return L + 1 as the result, that points to the first element > p.
Let the array be A, the lower, upper boundary be l, u. The in-place partition is defined
below:

206 CHAPTER 13. QUICK SORT AND MERGE SORT

x[l] ... ≤ p > p?... x[u]

p = x[l] left L right R

(a) Partition invariant

x[l] x[l+1] ...?... x[u]

p L R

(b) Initialize

x[l] ... ≤ p ... x[L] ... > p ... x[u]

p L R

swap

(c) Terminate

Figure 13.1: In-place partition, pivot p = x[l]

1: function Partition(A, l, u)
2: p← A[l] ▷ pivot
3: L← l ▷ left
4: for R in [l + 1, u] do ▷ iterate right
5: if p ≥ A[R] then
6: L← L+ 1
7: Exchange A[L]↔ A[R]

8: Exchange A[L]↔ p
9: return L+ 1 ▷ partition position
Table 13.2 lists the steps to partition [3, 2, 5, 4, 0, 1, 6, 7].

3(l) 2(r) 5 4 0 1 6 7 start, p = 3、l = 1、r = 2
3 2(l)(r) 5 4 0 1 6 7 2 < 3, advance l（r = l）
3 2(l) 5(r) 4 0 1 6 7 5 > 3, move on
3 2(l) 5 4(r) 0 1 6 7 4 > 3, move on
3 2(l) 5 4 0(r) 1 6 7 0 < 3
3 2 0(l) 4 5(r) 1 6 7 advance l, swap with r
3 2 0(l) 4 5 1(r) 6 7 1 < 3
3 2 0 1(l) 5 4(r) 6 7 advance l, swap with r
3 2 0 1(l) 5 4 6(r) 7 6 > 3, move on
3 2 0 1(l) 5 4 6 7(r) 7 > 3, move on
1 2 0 3 5(l+1) 4 6 7 terminate, swap p and l

Table 13.2: Partition array

With Partition defined, we implement quick sort as below:
1: procedure Quick-Sort(A, l, u)
2: if l < u then
3: m← Partition(A, l, u)

13.2. QUICK SORT 207

4: Quick-Sort(A, l,m− 1)
5: Quick-Sort(A,m, u)
We pass the array and its boundaries, as Quick-Sort(A, 1, |A|) to sort. When the

array is empty or singleton, sort returns immediately.

Exercise 13.1

1. Improve the basic quick sort definition when the list is singleton.

13.2.3 Performance
Quick sort performs well in most cases. We start from the best/worst cases. For the best
case, we always halve the elements into two equal sized parts. As shown in figure 13.2,
there are total O(lgn) levels of recursions. At level one, we processes n elements with
one partition; at level two, we partition twice, each processes n/2 elements, taking total
2O(n/2) = O(n) time; at level three, we partition four times, each process n/4 elements,
taking total O(n) time too, ..., at the last level, there are n singleton segments, taking
total O(n) time. Sum all levels, the time is bound to O(n lgn).

 n

 n / 2 n / 2

 n /4 n /4 n /4 n /4

...lg(n)...

11 ...n... 1

Figure 13.2: The best case, halve every time.

For the worst case, the partition is totally unbalanced, one part is of O(1) length, the
other is O(n). The level of recursions decays to O(n). Model the partition as a tree.
It’s balanced binary tree in the best case, while it becomes a linked-list of O(n) length
in the worst case. Every branch node has an empty sub-tree. At each level, we process
all elements, hence the total time is bound to O(n2). This is same as insertion sort, and
selection sort. We can list several worst cases, for example, there are many duplicated
elements, or the sequence is largely ordered, and so on. There isn’t a method can avoid
the worst case completely.

Average case⋆

Quick sort performs well in average. For example, even if every partition gives two parts
of 1:9, the performance still achieves O(n lgn) [4]. We give two method to evaluate the
performance. The first one is based on the fact, that the performance is proportion to
the number of comparisons. In selection sort, every two elements are compared, while in

208 CHAPTER 13. QUICK SORT AND MERGE SORT

quick sort, we save many comparisons. When partition sequence [a1, a2, a3, ..., an] with a1
as the pivot, we obtain two sub sequences A = [x1, x2, ..., xk] and B = [y1, y2, ..., yn−k−1].
After that, none element in A will compare with any one in B. Let the sorted result be
[a1, a2, ..., an], if ai < aj , we do not compare them if and only if there is some element ak,
where ai < ak < aj , is picked as the pivot before either ai or aj being the pivot. In other
word, the only chance that we compare ai and aj is either ai or aj is chosen as the pivot
before any other elements in ai+1 < ai+2 < ... < aj−1 being the pivot. Let P (i, j) be the
probability that we compare ai and aj . We have:

P (i, j) =
2

j − i+ 1
(13.8)

The total number of comparisons is:

C(n) =

n−1∑
i=1

n∑
j=i+1

P (i, j) (13.9)

If we compare ai and aj , we won’t compare aj and ai again, and we never compare ai
with itself. The upper bound of i is n− 1, and the lower bound of j is i+ 1. Substitute
the probability:

C(n) =

n−1∑
i=1

n∑
j=i+1

2

j − i+ 1

=

n−1∑
i=1

n−i∑
k=1

2

k + 1

(13.10)

Use the result of harmonic series [80].

Hn = 1 +
1

2
+

1

3
+ = lnn+ γ + ϵn

C(n) =

n−1∑
i=1

O(lgn) = O(n lgn) (13.11)

The other method uses the recursion. Let the length of the sequence be n, we partition
it into two parts of length i and n−i−1. The partition takes cn time because it compares
every element with the pivot. The total time is:

T (n) = T (i) + T (n− i− 1) + cn (13.12)

Where T (n) is the time to sort n elements. i equally distributes across 0, 1, ..., n− 1.
Taking math expectation:

T (n) = E(T (i)) + E(T (n− i− 1)) + cn

=
1

n

n−1∑
i=0

T (i) +
1

n

n−1∑
i=0

T (n− i− 1) + cn

=
1

n

n−1∑
i=0

T (i) +
1

n

n−1∑
j=0

T (j) + cn

=
2

n

b−1∑
i=0

T (i) + cn

(13.13)

13.2. QUICK SORT 209

Multiply n to both sides:

nT (n) = 2

n−1∑
i=0

T (i) + cn2 (13.14)

Substitute n to n− 1:

(n− 1)T (n− 1) = 2

n−2∑
i=0

T (i) + c(n− 1)2 (13.15)

Take (13.14) - (13.15), cancel all T (i) for 0 ≤ i < n− 1.

nT (n) = (n+ 1)T (n− 1) + 2cn− c (13.16)

Drop the constant c, we obtain:

T (n)

n+ 1
=

T (n− 1)

n
+

2c

n+ 1
(13.17)

Assign n to n− 1, n− 2, ..., to give n− 1 equations.

T (n− 1)

n
=

T (n− 2)

n− 1
+

2c

n

T (n− 2)

n− 1
=

T (n− 3)

n− 2
+

2c

n− 1

...

T (2)

3
=

T (1)

2
+

2c

3

Sum up and cancel the same components on both sides, we get a function of n.

T (n)

n+ 1
=

T (1)

2
+ 2c

n+1∑
k=3

1

k
(13.18)

Use the result of the harmonic series:

O(
T (n)

n+ 1
) = O(

T (1)

2
+ 2c lnn+ γ + ϵn) = O(lgn) (13.19)

Therefore:

O(T (n)) = O(n lgn) (13.20)

13.2.4 Improvement
The Partition procedure doesn’t perform well when there are many duplicated elements.
Consider the extreme case that all n elements are equal [x, x, ..., x]:

1. From the quick sort definition: pick any element as the pivot, hence p = x, partition
into two sub-sequences. One is [x, x, ..., x] of length n− 1, the other is empty. Next
recursively sort the n− 1 elements, the total time decays to O(n2).

2. Modify the partition with < x and > x. The result are two empty sub-sequences,
and n elements equal to x. The recursion on empty sequence terminates immedi-
ately. The result is [] ++ [x, x, ..., x] ++ []. The performance is O(n).

210 CHAPTER 13. QUICK SORT AND MERGE SORT

We improve from binary partition to ternary partition to handle duplicated elements:

sort [] = []
sort (x:xs) = sort S ++ sort E ++ sort G

(13.21)

Where:
S = [y|y ∈ xs, y < x]

E = [y|y ∈ xs, y = x]

G = [y|y ∈ xs, y > x]

To concatenate three lists in linear time, we can use an accumulator: qsort = sort [],
where:

sort A [] = A
sort A (x:xs) = sort (E ++ sort A G) S

(13.22)

We partition the list in three parts: S,E,G, where E contains elements of same value,
hence sorted. We first sort G with accumulator A, append the result to E as the new
accumulator, and use it to sort S. We also improve the partition with accumulator:

part S E G x [] = (S,E,G)

part S E G x (y :ys) =

y < x : (y :S,E,G)

y = x : (S, y :E,G)

y > x : (S,E, y :G)

(13.23)

Richard Bird developed another improvement [1], instead concatenate the recursive
sort results, put them in a list and concatenate finally:
sort :: (Ord a) ⇒ [a] → [a]
sort = concat ◦ (pass [])

pass xss [] = xss
pass xss (x:xs) = step xs [] [x] [] xss where

step [] as bs cs xss = pass (bs : pass xss cs) as
step (x':xs') as bs cs xss | x' < x = step xs' (x':as) bs cs xss

| x' == x = step xs' as (x':bs) cs xss
| x' > x = step xs' as bs (x':cs) xss

Robert Sedgewick developed two-way partition method [69] [2]. Use two pointers i, j
from left and right boundaries. Pick the first element as the pivot p. Advance i to right
till an element ≥ p; while (in parallel) move j to left till an element ≤ p. At this time,
all elements left to i are less than the pivot (< p), while those right to j are greater than
the pivot (> p). i points to one that ≥ p, and j points to one that ≤ p, as shown in
figure 13.3 (a). To move all elements ≤ p to left, and the remaining to right, we exchange
x[i] ↔ x[j], then continue scan. We repeat this till i and j meet. At any time, we keep
the invariant: All elements left to i (include i) are ≤ p; while all right to j (include j) are
≥ p. The elements between i and j are yet to scan, as shown in figure 13.3 (b).

When i meets j, we need an extra exchange, swap the pivot p to position j. Then
recursive sort sub-array A[l...j) and A[i...u).

1: procedure Sort(A, l, u) ▷ sort range [l, u)
2: if u− l > 1 then ▷ At least 2 elements
3: i← l, j ← u
4: pivot← A[l]
5: loop

13.2. QUICK SORT 211

x[l] ... < p ... x[i] ... ? ... x[j] ... > p ...

pivot p ≥ p ≤ p

(a) When i and j stop

x[l] ... ≤ p ? ≥ p ...

pivot p i j

(b) Partition invariant

Figure 13.3: 2-way scan

6: repeat
7: i← i+ 1
8: until A[i] ≥ pivot ▷ Ignore i ≥ u
9: repeat

10: j ← j − 1
11: until A[j] ≤ pivot ▷ Ignore j < l
12: if j < i then
13: break
14: Exchange A[i]↔ A[j]

15: Exchange A[l]↔ A[j] ▷ Move the pivot
16: Sort(A, l, j)
17: Sort(A, i, u)

Consider the special case that all elements are equal, the array is partitioned into two
same parts with n

2
swaps. Because of the balanced partition, the performance is O(n lgn).

It takes less swaps than the one pass scan method, since it skips the elements on the right
side of the pivot. We can combine 2-way scan and ternary partition. Only recursively
sort the elements different with the pivot. Jon Bentley and Douglas McIlroy developed
a method as shown in figure 13.4 (a), that store the elements equal to the pivot on both
sides [70] [71].

x[l] ... = < ? > = ...

pivot p i j q

(a) Ternary partition invariant.

... < = > ...

i j

(b) Swap the elements = p to the middle.

Figure 13.4: Ternary partition

We scan from two sides, pause when i reach an element ≥ the pivot, and j reach one ≤

212 CHAPTER 13. QUICK SORT AND MERGE SORT

the pivot. If i doesn’t meet or pass j, we exchange A[i]↔ A[j], then check if A[i] or A[j]
equals to the pivot. If yes, we exchange A[i]↔ A[p] or A[j]↔ A[q] respectively. Finally,
we swap all the elements equal to the pivot to the middle. This step do nothing if all
elements are unique. The partition result is shown as 13.4 (b). We next only recursively
sort the elements not equal to the pivot.

1: procedure Sort(A, l, u)
2: if u− l > 1 then
3: i← l, j ← u
4: p← l, q ← u ▷ point to the boundaries of duplicated elements
5: pivot← A[l]
6: loop
7: repeat
8: i← i+ 1
9: until A[i] ≥ pivot ▷ Ignore i ≥ u case

10: repeat
11: j ← j − 1
12: until A[j] ≤ pivot ▷ Ignore j < l case
13: if j ≤ i then
14: break
15: Exchange A[i]↔ A[j]
16: if A[i] = pivot then ▷ duplicated element
17: p← p+ 1
18: Exchange A[p]↔ A[i]

19: if A[j] = pivot then
20: q ← q − 1
21: Exchange A[q]↔ A[j]

22: if i = j and A[i] = pivot then
23: j ← j − 1, i← i+ 1

24: for k from l to p do ▷ Swap the duplicated elements to the middle
25: Exchange A[k]↔ A[j]
26: j ← j − 1

27: for k from u− 1 down-to q do
28: Exchange A[k]↔ A[i]
29: i← i+ 1

30: Sort(A, l, j + 1)
31: Sort(A, i, u)

It becomes complex when combine 2-way scan and ternary partition. We can change
the one pass scan to ternary partition directly. Pick the first element as the pivot, as
shown in figure ??. At any time, the left part contains elements < p; the next part
contains those = p; and the right part contains those > p. The boundaries are i, k, j.
Elements between [k, j) are yet to be partitioned. We scan from left to right. When start,
the part < p is empty; the part = p has an element; i points to the lower boundary, k
points to the next. The part > p is empty too, j points to the upper boundary.

... < p = p ? > p ...

i k j

Figure 13.5: 1 way scan ternary partition

13.2. QUICK SORT 213

We iterate on k, if A[k] = p, then move k to the next; if A[k] > p, then exchange
A[k]↔ A[j − 1], the range of elements that > p increases by one. Its boundary j moves
to left a step. Because we don’t know if the element moved to k is still > p, we compare
again and repeat. Otherwise if A[k] < p, we exchange A[k]↔ A[i], where A[i] is the first
element that = p. The partition terminates when k meets j.

1: procedure Sort(A, l, u)
2: if u− l > 1 then
3: i← l, j ← u, k ← l + 1
4: pivot← A[i]
5: while k < j do
6: while pivot < A[k] do
7: j ← j − 1
8: Exchange A[k]↔ A[j]

9: if A[k] < pivot then
10: Exchange A[k]↔ A[i]
11: i← i+ 1

12: k ← k + 1

13: Sort(A, l, i)
14: Sort(A, j, u)

Compare with the ternary partition through 2-way scan, this implementation is less
complex but need more swaps.

Worst cases

Although ternary partition handles duplicated elements well, there are the worst cases.
For example, when most elements are ordered (ascending or descending), the partition is
unbalanced. Figure 13.6 gives two of the worst cases: [x1 < x2 < ... < xn] and [y1 > y2 >
... > yn]. It’s easy to give more, for example: [xm, xm−1, ..., x2, x1, xm+1, xm+2, ...xn],
where [x1 < x2 < ... < xn], and [xn, x1, xn−1, x2, ...] as shown in figure 13.7.

In these worst cases, the partition is unbalanced when choose the first element as the
pivot. Robert Sedgwick improved the pivot selection [69]: Instead pick a fixed position,
sample several elements to avoid bad pivot. We sample the first, the middle, and the
last, pick the median as the pivot. We can either compare every two (total 3 times) [70],
or swap the least one to head, swap the greatest one end, and move the median to the
middle.

1: procedure Sort(A, l, u)
2: if u− l > 1 then
3: m← b l + u

2
c ▷ or l + u− l

2
to void overflow

4: if A[m] < A[l] then ▷ Ensure A[l] ≤ A[m]
5: Exchange A[l]↔ A[m]

6: if A[u− 1] < A[l] then ▷ Ensure A[l] ≤ A[u− 1]
7: Exchange A[l]↔ A[u− 1]

8: if A[u− 1] < A[m] then ▷ Ensure A[m] ≤ A[u− 1]
9: Exchange A[m]↔ A[u− 1]

10: Exchange A[l]↔ A[m]
11: (i, j)← Partition(A, l, u)
12: Sort(A, l, i)
13: Sort(A, j, u)

This implementation handles the above four worst cases well. We call it ‘median of
three’. Alternatively, we can randomly pick pivot:

214 CHAPTER 13. QUICK SORT AND MERGE SORT

[]

[]

[]

[]

x[1] x[2] ... x[n]

x[2] x[3] ... x[n]

x[3] x[4] ... x[n]

...

x[n]

(a) Partition tree of [x1 < x2 < ... < xn], the sub-trees of ≤ p are empty.

y[1] y[2] ... y[n]

y[2] y[3] ... y[n] []

y[3] y[4] ... y[n] []

... []

y[n] []

(b) Partition tree of [y1 > y2 > ... > yn], the sub-trees of ≥ p are
empty.

Figure 13.6: The worst cases - 1.

13.2. QUICK SORT 215

x[m] x[m-1] ... x[1] x[m+1] x[m+2] ... x[n]

x[m-1] x[m-2] ... x[1] x[m+1] x[m+2] ... x[n]

x[m-2] x[m-3] ... x[1] []

... []

x[1] []

[] x[m+2] x[m+3] ... x[n]

[] ...

[] x[n]

(a) Unbalanced partitions except for the first time.

x[n] x[1] x[n-1] x[2] ...

x[1] x[n-1] x[2] x[n-2] x[2] ...

[] x[n-1] x[2] x[n-2] x[3] ...

x[2] x[n-2] x[3] x[n-3] ...

[] x[n-2] x[3] x[n-3] x[4] ...

x[3] x[n-3] x[4] x[n-4] ... []

[] ...

(b) A zig-zag partition tree.

Figure 13.7: The worst cases - 2.

216 CHAPTER 13. QUICK SORT AND MERGE SORT

1: procedure Sort(A, l, u)
2: if u− l > 1 then
3: Exchange A[l]↔ A[Random(l, u)]
4: (i, j)← Partition(A, l, u)
5: Sort(A, l, i)
6: Sort(A, j, u)
Where Random(l, u) returns integer l ≤ i < u randomly. We swap A[i] with the

first element as the pivot. This method is called random quick sort [4]. Theoretically,
neither ‘median of three’ nor random quick sort can avoid the worst case completely. If
the sequence is random, it’s same to choose any one as the pivot. Nonetheless, these
improvements are widely used in engineering practice.

There are other improvements besides partition. Sedgewick found quick sort had
overhead when the list is short, while insert sort performed better [2] [70]. Sedgewick,
Bentley and McIlroy evaluated varies thresholds, as ‘cut-off’. When the elements are less
than the ‘cut-off’, then switch to insert sort.

1: procedure Sort(A, l, u)
2: if u− l > Cut-Off then
3: Quick-Sort(A, l, u)
4: else
5: Insertion-Sort(A, l, u)

13.2.5 quick sort and tree sort
The ‘true quick sort’ is the combination of multiple engineering improvements, falls back
to insert sort for small sequence, in-place swaps, choose the pivot as the ‘median of
three’, 2-way scan, and ternary partition. Some people think the basic recursive defi-
nition is essentially tree sort. Richard Bird derived quick sort from binary tree sort by
deforestation [72]. Define unfold that converts a list to binary search tree:

unfold [] = ∅
unfold (x:xs) = (unfold [a|a ∈ xs, a ≤ x], x, unfold [a|a ∈ xs, a > x])

(13.24)

Compare with the binary tree insert (see chapter 2), unfold creates the tree differently.
If the list is empty, the tree is empty; otherwise, use the first element x as the key, then
recursively build the left, right sub-trees. Where the left sub-tree has the elements ≤ x;
and the right tree has elements that > x. While to convert a binary search tree to ordered
list, we define in-order traverse as:

toList ∅ = []
toList (l, k, r) = toList l ++ [k] ++ toList r (13.25)

We define quick sort by composing the two functions:

sort = toList ◦ unfold (13.26)

We first build the binary search tree through unfold, then pass it to toList to generate
the list, and discard the tree. When eliminate the intermediate tree (through deforestation
by Burstle-Darlington’s work [?]), we obtain the quick sort.

13.3 Merge sort
Quick sort performs well in most cases. However, there are the worst cases can’t be
completely avoided. Merge sort guarantees O(n lgn) performance in all cases. It sup-
ports both arrays and lists. Many programming environments provide merge sort as the

13.3. MERGE SORT 217

standard sort tool2. Merge sort takes divide and conquer approach. It always splits the
sequence in half and half, recursively sort them and merge.

sort [] = []
sort [x] = [x]
sort xs = merge (sort as) (sort bs),where : (as, bs) = halve xs

(13.27)

Where halve splits the sequence, for array, we can cut at the middle: splitAt b |xs|
2
c xs.

However, it takes linear time to move to the middle point of a list (see chapter 1):

splitAt n xs = shift n [] xs (13.28)

Where:

shift 0 as bs = (as, bs)
shift n as (b:bs) = shift (n− 1) (b:as) bs

(13.29)

Because halve needn’t keep the relative order among elements, we can simplify the
implementation with odd-even split. There are same number of elements in odd and even
positions, or they only differ by one. halve = split [] [], where:

split as bs [] = (as, bs)
split as bs [x] = (x:as, bs)

split as bs (x:y :xs) = split (x:as) (y :bs) xs
(13.30)

We can further simplify it with folding, as in below example, we add x to a every
time, then swap as↔ bs:
halve = foldr f ([], []) where

f x (as, bs) = (bs, x : as)

13.3.1 Merge
Merge is demonstrated as figure 13.8. Consider two groups of kids, already ordered from
short to tall. They need pass a gate, one kid per time. We arrange the first kid from each
group to compare, the shorter one pass the gate. Repeat this till a group pass the gate,
then the remaining kids pass the gate one by one.

Figure 13.8: Merge

merge [] bs = bs
merge as [] = as

merge (a:as) (b:bs) =

{
a < b : a : merge as (b:bs)

otherwise : b : merge (a:as) bs

(13.31)

For array, we directly cut at the middle position, recursively sort two halves, then
merge:

2For example in the standard library of Haskell, Python, and Java.

218 CHAPTER 13. QUICK SORT AND MERGE SORT

1: procedure Sort(A)
2: n← |A|
3: if n > 1 then
4: m← bn

2
c

5: X ← Copy-Array(A[1...m])
6: Y ← Copy-Array(A[m+ 1...n])
7: Sort(X)
8: Sort(Y)
9: Merge(A,X, Y)

We allocated additional space of the same size of A because Merge is not in-pace.
We repeatedly compare elements from X and Y , pick the less one to A. When either
sub-array finish, we add all the remaining to A.

1: procedure Merge(A,X, Y)
2: i← 1, j ← 1, k ← 1
3: m← |X|, n← |Y |
4: while i ≤ m and j ≤ n do
5: if X[i] < Y [j] then
6: A[k]← X[i]
7: i← i+ 1
8: else
9: A[k]← Y [j]

10: j ← j + 1

11: k ← k + 1

12: while i ≤ m do
13: A[k]← X[i]
14: k ← k + 1
15: i← i+ 1

16: while j ≤ n do
17: A[k]← Y [j]
18: k ← k + 1
19: j ← j + 1

13.3.2 Performance

Merge sort has two steps: partition and merge. We always halve the sequence. The
partition tree is a balanced binary tree as shown in figure 13.2. The height is O(lgn), so
as the recursion depth. The merge happens at every level, compares elements one by one
from each sorted sub-sequence. Hence merge takes linear time. For sequence of length n,
let T (n) be the merge sort time, we have below recursive breakdown:

T (n) = T (
n

2
) + T (

n

2
) + cn = 2T (

n

2
) + cn (13.32)

The time consists of three parts: sort the first half, sort the second half, each takes
T (

n

2
) time; and merge in cn time, where c is a constant. Solving this equation gives

O(n lgn) result. The other performance factor is space. Varies implementation differ
a lot. The basic merge sort allocates the space of the same size as the array in each
recursion, copies elements and sorts, then release the space. When reach to the deepest
recursion, consume the largest space of O(n lgn).

13.3. MERGE SORT 219

Improvement

To simplify merge, we append ∞ to X and Y 3.
1: procedure Merge(A,X, Y)
2: Append(X,∞)
3: Append(Y,∞)
4: i← 1, j ← 1, n← |A|
5: for k ← from 1 to n do
6: if X[i] < Y [j] then
7: A[k]← X[i]
8: i← i+ 1
9: else

10: A[k]← Y [j]
11: j ← j + 1

It’s expensive to allocate/release space repeatedly [2]. We can pre-allocate a work area
of the same size as A. Reuse it during recursive merge, and finally release it.

1: procedure Sort(A)
2: n← |A|
3: Sort′(A, Create-Array(n), 1, n)

4: procedure Sort′(A,B, l, u)
5: if u− l > 0 then
6: m← b l + u

2
c

7: Sort′(A,B, l,m)
8: Sort′(A,B,m+ 1, u)
9: Merge′(A,B, l,m, u)
We need update Merge′ with the passed in work area:

1: procedure Merge′(A,B, l,m, u)
2: i← l, j ← m+ 1, k ← l
3: while i ≤ m and j ≤ u do
4: if A[i] < A[j] then
5: B[k]← A[i]
6: i← i+ 1
7: else
8: B[k]← A[j]
9: j ← j + 1

10: k ← k + 1

11: while i ≤ m do
12: B[k]← A[i]
13: k ← k + 1
14: i← i+ 1

15: while j ≤ u do
16: B[k]← A[j]
17: k ← k + 1
18: j ← j + 1

19: for i← from l to u do ▷ copy back
20: A[i]← B[i]

This implementation reduces the space from O(n lgn) to O(n), improve performance

3−∞ for descending order

220 CHAPTER 13. QUICK SORT AND MERGE SORT

20% to 25% for 100,000 numeric elements.

13.3.3 In-place merge sort
To avoid additional space, we consider how to reuse the array as the work area. As shown
in figure 13.9, sub-array A and B are sorted, when merge in-place, the part before l are
merged and ordered. If A[l] < A[m], move l to right a step; otherwise if A[l] ≥ A[m], we
need move A[m] to merge result before l. We need shift all elements between l and m
(including l) to right a step.

merged A[l] ... sorted X... A[m] ... sorted Y ...

if A[l] ≥ A[m], then shift X

Figure 13.9: In-place shift and merge

1: procedure Merge(A, l,m, u)
2: while l ≤ m ∧m ≤ u do
3: if A[l] < A[m] then
4: l← l + 1
5: else
6: x← A[m]
7: for i← m down-to l + 1 do ▷ Shift
8: A[i]← A[i− 1]

9: A[l]← x

However, the in-place shift and merge downgrades the performance to O(n2) time.
Array shift takes linear time, proportion to the length of X. When sort a sub-array, our
idea is to reuse the remaining part as the work area, and avoid overwriting the elements
in it. When compare elements from sorted sub-array A and B, we chose the less one and
store it in the work area, but we need exchange the element out to free up the cell. After
merge, A and B together store the content of the original work area, as shown in figure
13.10.

... reuse ... A[i] reuse ... B[j] ...

... merged ... C[k] ...

compare

if A[i] < B[j] then exchange A[i]↔ C[k]

Figure 13.10: Merge and swap

The sorted array A, B, and work area C are all part of the array. We pass the start,
end positions of A and B as ranges [i,m), [j, n)4. The work area starts from k.

1: procedure Merge(A, [i,m), [j, n), k)
2: while i < m and j < n do
3: if A[i] < A[j] then

4range [a, b) includes a, but excludes b.

13.3. MERGE SORT 221

4: Exchange A[k]↔ A[i]
5: i← i+ 1
6: else
7: Exchange A[k]↔ A[j]
8: j ← j + 1

9: k ← k + 1

10: while i < m do
11: Exchange A[k]↔ A[i]
12: i← i+ 1
13: k ← k + 1

14: while j < m do
15: Exchange A[k]↔ A[j]
16: j ← j + 1
17: k ← k + 1

The work area satisfies below two rules:

1. The work area has sufficient size to hold elements swapped in;

2. The work area can overlap with either sorted sub-arrays, but not overwrite any
unmerged elements.

We can use half array as the work area to sort the other half, as shown in figure 13.11.

... unsorted sorted ...

Figure 13.11: Merge and sort half array

We next sort further half of the work area (remaining 1

4
), as shown in figure 13.12.

We must merge A (1
2

array) and B (1
4

array) later sometime. However, the work area

can only hold 1

4
array, insufficient for size of A+B.

Figure 13.12: Work area can’t support merge A and B.

The second rule gives us an opportunity: arrange the work area overlapped with either
sub-array, and only override the merged part. We first sort the second 1/2 of the work
area, as the result, swap B to the first 1/2, the new work area is between A and B, as
shown in the upper of figure 13.13. The work area is overlapped with A [74]. Consider two
extremes:

1. x < y, for all x in B, y in A. After merge, contents of B and the work area are
swapped (the size of B equals to the work area);

2. y < x, for all x in B, y in A. During merge, we repeatedly swap content of A and
the work area. After half of A is swapped, we start overriding A. Fortunately, we
only override the merged content. The right boundary of work area keep moving to
the 3/4 of the array. After that, we start swap the content of B and the work area.
Finally, the work area moves to the left side of the array, as shown in the bottom
of figure 13.13 (b).

222 CHAPTER 13. QUICK SORT AND MERGE SORT

Figure 13.13: Merge A and B with the work area.

The other cases are between the above two extremes. The work area finally moves to
the first 1/4 of the array. Repeat this, we always sort the second 1/2 of the work area,
swap the result to the first 1/2, and keep the work area in the middle. We halve the work
area every time 1

2
,
1

4
,
1

8
, ... of the array, terminate when there is only one element left.

We cal also switch to insert sort for the last few elements.
1: procedure Sort(A, l, u)
2: if u− l > 0 then
3: m← b l + u

2
c

4: w ← l + u−m
5: Sort’(A, l,m,w) ▷ sort half
6: while w − l > 1 do
7: u′ ← w

8: w ← d l + u′

2
e ▷ halve the work area

9: Sort’(A,w, u′, l) ▷ sort the remaining half
10: Merge(A, [l, l + u′ − w], [u′, u], w)
11: for i← w down-to l do ▷ Switch to insert sort
12: j ← i
13: while j ≤ u and A[j] < A[j − 1] do
14: Exchange A[j]↔ A[j − 1]
15: j ← j + 1

We round up the work area to ensure sufficient size, then pass the range and work
area to Merge. We next update Sort’, which calls Sort to swap the work area and
merged part.

1: procedure Sort’(A, l, u, w)
2: if u− l > 0 then
3: m← b l + u

2
c

4: Sort(A, l,m)
5: Sort(A,m+ 1, u)
6: Merge(A, [l,m), [m+ 1, u), w)
7: else ▷ Swap elements to the work area
8: while l ≤ u do
9: Exchange A[l]↔ A[w]

10: l← l + 1
11: w ← w + 1

This implementation needn’t shift sub-array, it keeps reducing the unordered part:

13.3. MERGE SORT 223

n

2
,
n

4
,
n

8
, ..., completes in O(lgn) steps. Every step sorts half of the remaining, then

merge in linear time. Let the time to sort n elements be T (n), we have the following
recursive result:

T (n) = T (
n

2
) + c

n

2
+ T (

n

4
) + c

3n

4
+ T (

n

8
) + c

7n

8
+ ... (13.33)

For half elements, the time is:

T (
n

2
) = T (

n

4
) + c

n

4
+ T (

n

8
) + c

3n

8
+ T (

n

16
) + c

7n

16
+ ... (13.34)

Subtract (13.33) and (13.34):

T (n)− T (
n

2
) = T (

n

2
) + cn(

1

2
+

1

2
+ ...)

Add 1

2
total lgn times, hence:

T (n) = 2T (
1

2
) +

c

2
n lgn

Apply telescope method, obtain the result O(n lg2 n).

13.3.4 Nature merge sort

Figure 13.14: Burn from both ends

Knuth gives another implementation, called nature merge sort. It likes burning a
candle from both ends [51]. For any sequence, one can always find a ordered segment from
any position. Particularly, we can find such a segment from left end as shown in below
table.

15, 0, 4, 3, 5, 2, 7, 1, 12, 14, 13, 8, 9, 6, 10, 11
8, 12, 14, 0, 1, 4, 11, 2, 3, 5, 9, 13, 10, 6, 15, 7
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

The first row is the extreme case of a singleton segment, the second is less than the
first; the third row is the other extreme that the segment extends to the right end, the
whole sequence is ordered. Symmetrically, we can always find the ordered segment from
right end. We can merge the two sorted segments, one from left, another from right. The
advantage is to re-use the nature ordered sub-sequences for partition.

As shown in figure 13.15, we scan from both ends, find the two longest ordered seg-
ments respectively. Then merge them to the left of the work area. Next, we repeat to

224 CHAPTER 13. QUICK SORT AND MERGE SORT

8, 12, 14 0, 1, 4, 11 2, 3, 5 9 13, 10, 6 15, 7

7, 8, 12, 14, 15 ... free cells ... 13, 11, 10, 6, 4, 1, 0

merge merge

Figure 13.15: Nature merge sort

scan from left and right to center. This time, we merge the two segments for the right
to left of the work area. We switch the merge direction right/left in-turns. After scan all
elements and merge them to the work area, we swap the original array and the work area,
then start a new round of bi-directional scan and merge, terminates when the ordered
segment extends to cover the whole array. This implementation process the array from
both directions based on nature ordering. We called it nature two-way merge sort. As
shown in figure 13.16, elements before a and after d are scanned. We span the ordered
segment [a, b) to right, meanwhile, span [c, d) to left. For the work area, elements before
f and after f are merged (consist of multiple sub-sequences). In odd rounds, we merge
[a, b) and [c, d) from f to right; in even rounds, we merge from r to left.

... scanned span [a, b) ? span [c, d) scanned ...

a b c d

... merged free cells merged ...

f r

Figure 13.16: A status of nature merge sort

When sort starts, we allocate a work area with the same size of the array. a and b
point to the left side, c and d point to the right side. f and r point to the two sides of
the work area respectively.

1: function Sort(A)
2: if |A| > 1 then
3: n← |A|
4: B ← Create-Array(n) ▷ the work area
5: loop
6: [a, b)← [1, 1)
7: [c, d)← [n+ 1, n+ 1)
8: f ← 1, r ← n ▷ front, rear of the work area
9: t← 1 ▷ even/odd round

10: while b < c do ▷ elements yet to scan
11: repeat ▷ Span [a, b)

13.3. MERGE SORT 225

12: b← b+ 1
13: until b ≥ c ∨A[b] < A[b− 1]
14: repeat ▷ Span [c, d)
15: c← c− 1
16: until c ≤ b ∨A[c− 1] < A[c]
17: if c < b then ▷ Avoid overlap
18: c← b
19: if b− a ≥ n then ▷ Terminates if [a, b) spans the whole array
20: return A
21: if t is odd then ▷ merge to front
22: f ← Merge(A, [a, b), [c, d), B, f, 1)
23: else ▷ merge to rear
24: r ← Merge(A, [a, b), [c, d), B, r,−1)
25: a← b, d← c
26: t← t+ 1

27: Exchange A↔ B ▷ Switch work area
28: return A

We need pass the merge direction in:
1: function Merge(A, [a, b), [c, d), B,w,∆)
2: while a < b and c < d do
3: if A[a] < A[d− 1] then
4: B[w]← A[a]
5: a← a+ 1
6: else
7: B[w]← A[d− 1]
8: d← d− 1

9: w ← w +∆

10: while a < b do
11: B[w]← A[a]
12: a← a+ 1
13: w ← w +∆

14: while c < d do
15: B[w]← A[d− 1]
16: d← d− 1
17: w ← w +∆

18: return w

The performance does not depend on how ordered the elements are. In the ‘worst’
case, the ordered sub-sequences are all singleton. After merge, the length of the new
ordered sub-sequences are at least 2. Suppose we still encounter the ‘worst’ case in the
second round, the merged sub-sequences have length at least 4, ... every round double the
sub-sequence length, hence we need at most O(lgn) rounds. Because we can all elements
every round, the total time is bound to O(n lgn). For list, we can’t scan from tail back
easily as array. A list consists multiple ordered sub-lists, we can merge them in pairs. It
halves the sub-lists every round, and finally build the sorted result. We can define this
as below (Curried form):

sort = sort′ ◦ group (13.35)

226 CHAPTER 13. QUICK SORT AND MERGE SORT

Where group breaks the list into ordered sub-lists:

group [] = [[]]
group [x] = [[x]]

group (x:y :xs) =

{
x < y : (x:g):gs,where : (g :gs) = group (y :xs)

otherwise : [x]:g :gs

(13.36)

sort′ [] = []
sort′ [g] = g
sort′ gs = sort′ (mergePairs gs)

(13.37)

Where mergePairs is defined as:

mergePairs (g1 :g2 :gs) = merge g1 g2 : mergePairs gs
mergePairs gs = gs

(13.38)

Alternatively, we can define sort′ as fold:

sort′ = foldr merge [] (13.39)

Exercise 13.2

1. Is the performance of mergePairs and folded merge same? If yes, prove it, if not,
which one is faster?

13.3.5 Bottom-up merge sort
We can develop the bottom-up merge sort from the above performance analysis for nature
merge sort. First wrap all elements as n singleton sub-lists. Then merge them in pairs to
obtain n

2 ordered sub-lists of length 2; If n is odd, there remains a single list. Repeat this
paired merge to the sort all the list. Knuth called it ‘straight two-way merge sort’ [51], as
shown in figure 13.17.

 ...

... ...

 ...

Figure 13.17: Bottom-up merge sort

13.4. PARALLELISM 227

We needn’t partition the list. When start, convert [x1, x2, ..., xn] to [[x1], [x2], ..., [xn]],
then apply paired merge:

sort = sort′ ◦map(x 7→ [x]) (13.40)

We reuse the mergePairs defined for nature merge sort, terminates when consolidate
to one list [3]. The bottom up sort is similar to the nature merge sort, different only in
partition method. It can be deduced from nature merge sort as a special case (the ‘worst’
case). Nature merge sort always span the ordered sub-sequence as long as possible;
while the bottom up merge sort only span the length to 1. From the tail recursive
implementation, we can eliminate the recursion and convert it to iterative way.

1: function Sort(A)
2: n← |A|
3: B ← Create-Array(n)
4: for i from 1 to n do
5: B[i] = [A[i]]

6: while n > 1 do
7: for i← from 1 to bn

2
c do

8: B[i]← Merge(B[2i− 1], B[2i])
9: if Odd(n) then

10: B[dn
2
e]← B[n]

11: n← dn
2
e

12: if B = [] then
13: return []

14: return B[1]

Exercise 13.3
1. Implement the bottom-up merge sort with fold

13.4 Parallelism
In quick sort implementation, we can parallel sorting the two sub-sequences after partition.
Similarly, to parallel merge sort. Actually, we don’t limit by two concurrent tasks, but
divide into p sub-sequences, where p is the number of processors. Ideally, if we can achieve
sorting in T ′ time with parallelism, where O(n lgn) = pT ′, we say it’s linear speed up, and
the algorithm is parallel optimal. However, it is not parallel optimal by choosing p − 1
pivots, and partition the sequence into p parts for quick sort. The bottleneck happens in
the divide phase, that can only achieve in O(n) time. While, the bottleneck is the merge
phase for parallel merge sort. Both need specific design to speed up. Basically, the divide
and conquer nature makes merge sort and quick sort relative easy for parallelism. Richard
Cole developed parallel merge sort achieved O(lgn) performance with n processors in
1986 [76]. Parallelism is a big and complex topic out of the elementary scope [76] [77].

13.5 Summary
This chapter gives two popular divide and conquer sort algorithms: quick sort and
merge sort. Both achieved the best performance of O(n lgn) for comparison based sort.
Sedgewick quoted quick sort as the greatest algorithm developed in the 20th century.

228 CHAPTER 13. QUICK SORT AND MERGE SORT

Many programming environments provide sort tool based on it. Merge sort is a powerful
tool when handling sequence of complex entities, or not persisted in array5. Quick sort
performs well in most cases with fewer swaps than other methods. However, swap is not
suitable for linked-list, while merge sort is. It costs constant spaces and the performance is
guaranteed for all cases. Quick sort has advantage for vector storage like arrays, because
it needn’t extra work area and can sort in-place. This is a valuable feature particularly
in embedded system where memory is limited. In-place merging is till an active research
area.

We can considered quick sort as the optimized tree sort. Similarly, we can also deduce
merge sort from tree sort [75]. We can categorize sort algorithms in different ways [51], for
example, the implementations of partition and merge [72]. Quick sort is easy to merge,
because all the elements in one sub-sequence are not greater than the other. Merge is
equivalent to concatenation. On the other hand, in merge sort, it’s more complex than
quick sort, but it is easy to partition no matter we cut at the middle, even-odd split,
nature split, or bottom up split. While it’s more difficult to achieve perfect partition
in quick sort or completely avoid the worst case no matter with median-of-three pivot,
random quick sort, or ternary quick sort.

As of this chapter, we’ve seen the elementary sort algorithms, including insert sort,
tree sort, selection sort, heap sort, quick sort, and merge sort. Sort is an important domain
in computer algorithm design. People are facing the ‘big data’ challenge when I wrote
this chapter. It becomes routine to sort hundreds of Gigabytes with limited resources and
time.

Exercise 13.4
1. Build a binary search tree from a sequence using the idea of merge sort.

13.6 Appendix: Example programs
In-place partition:
Int partition([K] xs, Int l, Int u) {

for (Int pivot = l, Int r = l + 1; r < u; r = r + 1) {
if xs[pivot] ≥ xs[r] {

l = l + 1
swap(xs[l], xs[r])

}
}
swap(xs[pivot], xs[l])
return l + 1

}

Void sort([K] xs, Int l, Int u) {
if l < u {

Int m = partition(xs, l, u)
sort(xs, l, m - 1)
sort(xs, m, u)

}
}

Bi-directional scan:
Void sort([K] xs, Int l, Int u) {

if l < u - 1 {
Int pivot = l, Int i = l, Int j = u
loop {

5In practice, most are kind of hybrid sort, for example, fallback to insert sort for small sequence.

13.6. APPENDIX: EXAMPLE PROGRAMS 229

while i < u and xs[i] < xs[pivot] {
i = i + 1

}
while j ≥ l and xs[pivot] < xs[j] {

j = j - 1
}
if j < i then break
swap(xs[i], xs[j])

}
swap(xs[pivot], xs[j])
sort(xs, l, j)
sort(xs, i, u)

}
}

Merge sort:
[K] sort([K] xs) {

Int n = length(xs)
if n > 1 {

var ys = sort(xs[0 ... n/2 - 1])
var zs = sort(xs[n/2 ...])
xs = merge(xs, ys, zs)

}
return xs

}

[K] merge([K] xs, [K] ys, [K] zs) {
Int i = 0
while ys ̸= [] and zs ̸= [] {

xs[i] = if ys[0] < zs[0] then pop(ys) else pop(zs)
i = i + 1

}
xs[i...] = if ys ̸= [] then ys else zs
return xs

}

Merge sort with work area:
Void sort([K] xs) = msort(xs, copy(xs), 0, length(xs))

Void msort([K] xs, [K] ys, Int l, Int u) {
if (u - l > 1) {

Int m = l + (u - l) / 2
msort(xs, ys, l, m)
msort(xs, ys, m, u)
merge(xs, ys, l, m, u)

}
}

Void merge([K] xs, [K] ys, Int l, Int m, Int u) {
Int i = l, Int k = l; Int j = m
while i < m and j < u {

ys[k++] = if xs[i] < xs[j] then xs[i++] else xs[j++]
}
while i < m {

ys[k++] = xs[i++]
}
while j < u {

ys[k++] = xs[j++]
}
while l < u {

xs[l] = ys[l]
l++

}
}

230 Solution search

In-place merge sort:
Void merge([K] xs, (Int i, Int m), (Int j, Int n), Int w) {

while i < m and j < n {
swap(xs, w++, if xs[i] < xs[j] then i++ else j++)

}
while i < m {

swap(xs, w++, i++)
}
while j < n {

swap(xs, w++, j++)
}

}

Void wsort([K] xs, (Int l, Int u), Int w) {
if u - l > 1 {

Int m = l + (u - l) / 2
imsort(xs, l, m)
imsort(xs, m, u)
merge(xs, (l, m), (m, u), w)

}
else {

while l < u { swap(xs, l++, w++) }
}

}

Void imsort([K] xs, Int l, Int u) {
if u - l > 1 {

Int m = l + (u - l) / 2
Int w = l + u - m
wsort(xs, l, m, w)
while w - l > 2 {

Int n = w
w = l + (n - l + 1) / 2;
wsort(xs, w, n, l);
merge(xs, (l, l + n - w), (n, u), w);

}
for Int n = w; n > l; --n {

for Int m = n; m < u and xs[m] < xs[m-1]; m++ {
swap(xs, m, m - 1)

}
}

}
}

Iterative bottom up merge sort:
[K] sort([K] xs) {

var ys = [[x] | x in xs]
while length(ys) > 1 {

ys += merge(pop(ys), pop(ys))
}
return if ys == [] then [] else pop(ys)

}

[K] merge([K] xs, [K] ys) {
[K] zs = []
while xs ̸= [] and ys ̸= [] {

zs += if xs[0] < ys[0] then pop(xs) else pop(ys)
}
return zs ++ (if xs ̸= [] then xs else ys)

}

Chapter 14

Solution search

We can search the solution for many problem with computer. For example, we build
robot to search and pick the right gadget in assembly lane; we develop car navigator
to search the map for the best route. We make smart phone application to search the
best shopping plan. This chapter surveys the elementary lookup, matching, and solution
search algorithms.

14.1 k selection problem
A selection algorithm is to find the k-th smallest (or largest) element in a list or array.
The ordering is abstract, we use ≤ for example. The simplest method is to repeatedly find
the minimum for k times. It takes O(n) time to find the minimum, the total performance
is bound to O(kn). We can also use heap to update, access the top element in O(lgn)
time, hence find the k-th element in O(k lgn) time.

top k xs = find k (heapify xs) (14.1)

Or in Curried form:

top k = (find k) ◦ heapify (14.2)

Where:

find 0 = top
find k = (find (k − 1)) ◦ pop (14.3)

We can do it even better. Apply the divide and conquer approach, split the elements
into A and B, where all elements in A isn’t greater (≤) than any one B. Let m = |A| be
the size of A, compare m and k:

1. If k < m, the k-th element is in A, drop B and recursively search in A;

2. If m < k, the k-th element is in B, drop A and recursively search the (k −m)-th
element in B.

In ideal case, the split is balanced (the sizes of A and B almost same). We halve the
size every time, the performance is O(n+n/2+n/4+ ...) = O(n). Reuse the part function
in quick sort (chapter 13), select an element (for example the first) as the pivot p. Collect

231

232 CHAPTER 14. SOLUTION SEARCH

all elements ≤ p in A, the rest in B. If m = k − 1, then p is the k-th element; otherwise,
we recursively find in A or B.

top k (x:xs) =

m = k − 1 : x,where : m = |A|, (A,B) = part (≤ x) xs

m < k − 1 : top (k −m− 1) B

otherwise : top k A

(14.4)

Same as the quick sort algorithm, the worst case happens when the partition is always
unbalanced. The performance downgrades to O(kn) or O((n − k)n). In average case,
we can find the k-th element in linear time. All engineering practices in quick sort are
applicable too, like the ‘media of three’1, and randomly select the pivot:

1: function Top(k,A, l, u)
2: Exchange A[l]↔ A[Random(l, u)] ▷ Randomly select in [l, u]
3: p← Partition(A, l, u)
4: if p− l + 1 = k then
5: return A[p]

6: if k < p− l + 1 then
7: return Top(k,A, l, p− 1)
8: return Top(k − p+ l − 1, A, p+ 1, u)
We can change to return all the top k elements (in arbitrary order), as below example

program:
tops _ [] = []
tops 0 _ = []
tops n (x:xs) | len == n = as

| len < n = as ++ [x] ++ tops (n - len - 1) bs
| otherwise = tops n as

where
(as, bs) = partition (≤ x) xs
len = length as

14.2 Binary search
My high school teacher once played a ‘math magic’. He asked a student pick a number
from 0 to 1000 in mind. He asked 10 questions, then figured out that number from the yes
or no answers from the student. For example: is it even? is it prime? can it be divided
by 3? and etc. If halves the numbers with every question, one can find any number
within 1000 because 210 = 1024 > 1000. The question whether it is even, perfectly halves
numbers2. This kind of games becomes not so interesting when a player guess the price
in TV programs: 1000, high, 50, low, 750, low, 890, low, 990, correct!. The player applied
the binary search method. To find x in an ordered sequence A, one firstly tries the middle
point y. Done if x = y; if x < y, then drop the second half of A as it’s ordered; otherwise
drop the first half. When it becomes A = [], then x doesn’t exist. A need be ordered, I
often see people are struggled with unordered data, confusing why the binary search does
not work. ‘Although the basic idea of binary search is comparatively straightforward, the
details can be surprisingly tricky’ said by Donald Knuth. Jon Bentley said most binary
search implementations had error, including the one he given in ‘Programming pearls’. He

1Blum, Floyd, Pratt, Rivest, and Tarjan developed a linear timer algorithm in 1973 [4] [81]. Split the
elements into groups, each has 5 elements at most. It gives n/5 medians. Repeat this to pick the median
of median.

2There’s a ‘mind reading’ game in social network. One thinks about a person in mind. The AI robot
asks 16 questions, and tells who that person is from the yes or no answers

14.2. BINARY SEARCH 233

corrected the error after two decades [2]. Below is the binary search definition, where the
lower and upper bounds of A is l and u (exclude u).

bsearch x A (l, u) =

u < l : Nothing

x = A[m] : m,where : m = l + bu− l

2
c

x < A[m] : bsearch x A (l,m− 1)

otherwise : bsearch x A (m+ 1, u)

(14.5)

We can eliminate the recursion, implement with a loop.
1: function Binary-Search(x,A, l, u)
2: while l < u do
3: m← l + bu− l

2
c ▷ avoid b l + u

2
c overflow

4: if A[m] = x then
5: return m
6: if x < A[m] then
7: u← m− 1
8: else
9: l← m+ 1

10: Not found
The performance of binary search is bound to O(lgn) because it halves A every time.

We can extend it to solve equation of monotone functions, for example ax = y, where
a ≤ y, a and y are nature numbers. To find the integral x, we can exhaust a0, a1, a2, ...,
till ai = y or ai < y < ai+1 (no solution). If a and x are big numbers, it’s expensive
to compute ax3. Let’s apply binary search. As ay ≥ y, we search in range [0, 1, ..., y].
Function f(x) = ax is monotone, fix x, we examine the middle point: xm = b0 + y

2
c. If

axm = y, then xm is the solution; if am < y, we discard the range before xm; otherwise
discard the range after xm. Both halve the search range. When the range becomes
empty, it means no solution. Below are the binary search implementation. We denote the
monotone function as f , call bsearch f y (0, y), where f(x) = ax. We only need compute
f(x) for O(lg y) times, better than the exhaustive search.

bsearch f y (l, u) =

u < l : Nothing

f(m) = y : m,where : m = b l + u

2
c

f(m) < y : bsearch f y (m+ 1, u)

f(m) > y : bsearch f y (l,m− 1)

(14.6)

14.2.1 2D search
We can extend binary search to 2D or even higher dimension. Let the matrix M of size
m×n. Its elements in each row, column are ascending nature numbers as shown in figure
14.1. How to locate all elements equal to z? i.e. find all locations of (i, j), such that
Mi,j = z.

[(x, y)|x← [1, 2, ...,m], y ← [1, 2, ..., n],Mx,y = z] (14.7)

Richard Bird used to interview students with this question [1]. Those who had pro-
gramming experience at school tended to apply binary search. But it was easy to get
stuck. One often checks the middle point Mm

2 ,n2
. If it is less than z, then drop the

3One can reuse the result of an to compute an+1 = aan. We consider generic monotone f(n).

234 CHAPTER 14. SOLUTION SEARCH
1 2 3 4 ...
2 4 5 6 ...
3 5 7 8 ...
4 6 8 9 ...
...

Figure 14.1: Each row, column is ascending.

top-left rectangle; if greater than z then drop the bottom-right rectangle, as shown in
figure 14.2, discard the shaded rectangle. Both cases lead to a L-shape search area, where
we can’t apply recursive search directly. We define the 2D search as: given f(x, y),
search integer solution (x, y), such that f(x, y) = z in an area. The matrix search can be
specialized as below:

Figure 14.2: Left: the middle point < z, all shaded rectangle < z; Right: the middle
point > z, all shaded rectangle > z.

f(x, y) =

{
1 ≤ x ≤ m, 1 ≤ y ≤ n : Mx,y

otherwise : −1

For monotone function f(x, y), e.g., f(x, y) = xa = yb, where a, b are nature numbers,
the effective solution is search from the top-left, but not bottom-left [82]. As shown in
figure 14.3, start from (0, z), for each location (p, q), compare f(p, q) and z:

1. If f(p, q) < z, since f is monotone increasing, f(p, y) < z for all 0 ≤ y < q. We
drop all points in the vertical line segment (red);

2. If f(p, q) > z, then f(x, q) > z for all p < x ≤ z. We drop all points in the horizontal
line segment (blue);

3. If f(p, q) = z, then (p, q) is a solution. We drop both line segments.

We line by line reduce the search rectangle. Every time drop a row, or a column, or
both.

14.2. BINARY SEARCH 235

Figure 14.3: Search from top-left.

Define search function, and pass the top-left corner: search(f, z, 0, z)

search f z p q =

p > z或q < 0 : []

f(p, q) < z : search f z (p+ 1) q

f(p, q) > z : search f z p (q − 1)

f(p, q) = z : (p, q) : search f z (p+ 1) (q − 1)

(14.8)

Every time, at least one of p and q advance towards the bottom or right by one step.
It needs at most 2(z + 1) steps to complete. There are three best cases: (1) both p and
q advance a step a time, in total z + 1 steps; (2) move to the right horizontally till p
exceeds z; (3) move down vertically till q becomes negative. Figure 14.4 gives these cases.
In 14.4 (a), all points in the diagonal line (x, z − x) satisfy f(x, z − x) = z. It takes
total z + 1 steps to reach (z, 0); in (b), all points in the top horizontal line (x, z) satisfy
f(x, z) < z. It terminates after z+1 steps; in (c), all points in the left vertical line (0, x)
satisfy f(0, x) > z. It terminates after z+1 steps; (d) is the worst case. If project all the
horizontal sections in the search path to x axis, all the vertical sections to y axis, it gives
the total steps of 2(z + 1). This method improved the performance of exhaustive search
from O(z2) to O(z).

Figure 14.4: The best and worst cases.

This algorithm is called ‘saddle back’ search. The plot image of f has the smallest
bottom-left and the largest top-right. It looks like a saddle with two wings as shown

236 CHAPTER 14. SOLUTION SEARCH

in figure 14.5. The search rectangle is (0, z) − (z, 0), we can further reduce it. f is
monotone increasing, we can find the maximum m along y axis, satisfying f(0,m) ≤ z;
find the maximum n along x axis, satisfying f(n, 0) ≤ z. Reduce the search rectangle to
(0,m)− (n, 0), as shown in figure 14.6.

Figure 14.5: Plot of f(x, y) = x2 + y2.

Figure 14.6: Reduced search rectangle.

m = max({y|0 ≤ y ≤ z, f(0, y) ≤ z})
n = max({x|0 ≤ x ≤ z, f(x, 0) ≤ z}) (14.9)

We can apply binary search to find m, n (fix x = 0 to search m, fix y = 0 to search
n). Modify (14.6), search l ≤ x ≤ u satisfying f(x) ≤ y < f(x+ 1).

bsearch f y (l, u) =

u ≤ l : l

f(m) ≤ y < f(m+ 1) : m,where : m = b l + u

2
c

f(m) ≤ y : bsearch f y (m+ 1, u)

f(m) > y : bsearch f y (l,m− 1)

(14.10)

14.2. BINARY SEARCH 237

Then determine m, n with binary search:{
m = bsearch (y 7→ f(0, y)) z (0, z)

n = bsearch (x 7→ f(x, 0)) z (0, z)
(14.11)

Finally, apply saddle back search in this smaller rectangle: solve(f, z) = search(f, z, 0,mmm)

search f z p q =

p > nnnorq < 0 : []

f(p, q) < z : search f z (p+ 1) q

f(p, q) > z : search f z p (q − 1)

f(p, q) = z : (p, q) : search f z (p+ 1) (q − 1)

(14.12)

We apply two rounds of binary search to find m, n, each round compute f for O(lg z)
times; The saddle back search compute f for O(m + n) times in the worst case; it’s
O(min(m,n)) in the best case. Below table gives the total performance. For functions
like f(x, y) = xa + yb, where a, b are nature numbers, the boundary m, n are very small.
The total performance is close to O(lg z).

compute f
worst 2 log z +m+ n
best 2 log z +min(m,n)

As shown in figure 14.7, for a point (p, q) in rectangle (a, b)− (c, d), if f(p, q) 6= z, we
can only discard the shaded part (≤ 1/4). If f(p, q) = z, we can discard the bottom-left,
top-right parts, and all points in row p and column q since f is monotone. Hence reduced
the search rectangle by 1/2. To find the point satisfying f(p, q) = z, we apply binary
search along the horizontal or vertical central line. Because the performance is bound to
O(lg |L|) for line L, we chose the shorter central line as shown in figure 14.8.

If there is no point satisfying f(p, q) = z, we find a point, such that f(p, q) < z <
f(p+1, q) in the horizontal central line (f(p, q) < z < f(p, q+1) for vertical central line).
We can’t discard all points in row p and column q. In summary, we apply binary search
along horizontal central line for the point: f(p, q) ≤ z < f(p+1, q); or search the vertical
central line for the point: f(p, q) ≤ z < f(p, q + 1). If all points in the line segment are
f(p, q) < z, then return the upper bound; if all are f(p, q) > z, then return the lower
bound. We can discard half side in this case. Below is the improved saddle back search:

1. Apply binary search along the x, y axes for the search rectangle (0,m)− (n, 0);

2. For rectangle (a, b) − (c, d), if the height > width, apply binary search along the
horizontal central line; otherwise search along the vertical central line for the point
(p, q);

3. If f(p, q) = z, it is a solution. Recursively search rectangles (a, b) − (p − 1, q + 1)
and (p+ 1, q − 1)− (c, d);

4. If f(p, q) 6= z, recursively search the two rectangles and a line section, either (p, q+
1)− (p, b) in figure 14.9 (a); or (p+ 1, q)− (c, q) in figure 14.9 (b).

search (a, b) (c, d) =

c < aord < b : []

c− a < b− d : csearch
otherwise : rsearch

(14.13)

238 CHAPTER 14. SOLUTION SEARCH

(a) If f(p, q) ̸= z, we can only drop the shaded
area, the remaining is a ’L’ shape.

(b) If f(p, q) = z, we can drop 1/2 rectangle.

Figure 14.7: Reduce the search rectangle.

Figure 14.8: Chose the shorter center line.

14.2. BINARY SEARCH 239

Figure 14.9: Recursively search the shaded parts, include the bold line if f(p, q) 6= z.

Where csearch apply binary search to the horizontal central line for point (p, q), such
that f(p, q) ≤ z < f(p + 1, q), as shown in figure 14.9 (a). If all function values are
greater than z, then return the lower bound (a, bb+ d

2
c). Drop the above side (include

the central line) as shown in figure 14.10 (a).

Figure 14.10: Special case.

Let q = bb+ d

2
c

p = bsearch (x 7→ f(x, q)) z (a, c)

csearch =

f(p, q) > z : search (p, q − 1) (c, d)

f(p, q) = z : search (a, b) (p− 1, q + 1) ++ [(p, q)] ++ search (p+ 1, q − 1) (c, d)

f(p, q) < z : search (a, b) (p, q + 1) ++ search (p+ 1, q − 1) (c, d)

(14.14)
Function rsearch is symmetric along the vertical central line. Below example program

implements the improved saddle back search:
solve f z = search f z (0, m) (n, 0) where

m = bsearch (f 0) z (0, z)
n = bsearch (λx → f x 0) z (0, z)

240 CHAPTER 14. SOLUTION SEARCH

search f z (a, b) (c, d)
| c < a | | b < d = []
| c - a < b - d = let q = (b + d) `div` 2 in

csearch (bsearch (λx → f x q) z (a, c), q)
| otherwise = let p = (a + c) `div` 2 in

rsearch (p, bsearch (f p) z (d, b))
where
csearch (p, q)

| z < f p q = search f z (p, q - 1) (c, d)
| f p q == z = search f z (a, b) (p - 1, q + 1) ++

(p, q) : search f z (p + 1, q - 1) (c, d)
| otherwise = search f z (a, b) (p, q + 1) ++

search f z (p + 1, q - 1) (c, d)
rsearch (p, q)

| z < f p q = search f z (a, b) (p - 1, q)
| f p q == z = search f z (a, b) (p - 1, q + 1) ++

(p, q) : search f z (p + 1, q - 1) (c, d)
| otherwise = search f z (a, b) (p - 1, q + 1) ++

search f z (p + 1, q) (c, d)

As we halve the rectangle every time, we search O(lg(mn)) rounds. We apply binary
search along the central line for (p, q), compute f for O(lg(min(m,n))) times. Let the
time be T (m,n) when search m× n rectangle. We have the following recursive equation:

T (m,n) = lg(min(m,n)) + 2T (
m

2
,
n

2
) (14.15)

Suppose m = 2i > n = 2j , use telescope method:

T (2i, 2j) = j + 2T (2i−1, 2j−1)

=

i−1∑
k=0

2k(j − k)

= O(2i(j − i))
= O(m lg(n/m))

(14.16)

Richard Bird proved this is asymptotically optimal by a lower bound of searching a
given value in m× n rectangle [1].

Exercise 14.1
1. Prove the performance of k-selection problem is O(n) in average (refer to the quick

sort performance analysis).
2. To find the top k element inA, we can search x = max (take k A), y = min (drop k A).

If x < y, then the first k elements in A is the answer; otherwise, we partition the
first k elements with x, partition the rest with y, then recursively find in sub-
sequence [a|a ← A, x < a < y] for the top k′ elements, where k′ = k − |[a|a ←
A, a ≤ x]|. Implement this solution, and evaluate its performance.

3. Find the median of two sorted arrays A and B in O(lg(m+ n)) time, where m =
|A|, n = |B|. The median x is defined as ||{a ≤ x : a ∈ A}| + |{b ≤ x : b ∈
B}| − |{a > x : a ∈ A}| − |{b > x : b ∈ B}|| ≤ 1.

4. For the saddle back search, eliminate recursion, implement it in loops to update
the boundary.

5. For 2D search, let the bottom-left be the minimum, the top-right be the maximum.
if z is less than the minimum or greater than the maximum, then no solution;
otherwise cut the rectangle into 4 parts with a horizontal line and a vertical line
crossed at the center. then recursive search in these 4 small rectangles. Implement
this solution and evaluate its performance.

14.3. THE MAJORITY NUMBER 241

14.3 The majority number
People often vote and use computer to count the result. Suppose the candidate wins if
and only if get more than half votes. From the votes sequence A, B, A, C, B, B, D, ...,
how to find the winner efficiently? We can use a map to count the result (see chapter 2)4.
Optional<T> majority([T] xs) {

Map<T, Int> m
for var x in xs {

if x in m then m[x]++ else mx[x] = 0
}
var (r, v) = (Optional<T>.Nothing, length(xs) / 2 - 1)
for var (x, c) in m {

if c > v then (r, v) = (Optional.of(x), c)
}
return r

}

We can implement the map with the red-black tree or hash table. For m candidates,
n votes, below table gives the performance:

map time space
tree O(n lgm) O(m)
hash O(n) at least O(m)

Define the element occurs over 50% as ‘majority’. Boyer and Moore developed an
algorithm in 1980, which picks the majority element in one scan if there is. The algorithm
needs constant space [83]. There is at most 1 majority, if repeat dropping two different
elements till all remaining ones are same. If the majority exists, then it is the remaining.
Start from the first vote, let the candidate be the winner so far with point 1. If the next
one votes the same candidate, then add the winner point by 1, otherwise deduce by 1.
The candidate won’t be the winner when the point reduces to 0. We pick the candidate
of the next vote as the new winner and go on. As shown in below table, if there exists
majority m, then other candidate can’t beat m. Otherwise if the majority doesn’t exist
(invalid vote result, no winner), then we need discard the recorded ‘winner’. We need
another scan to valid the winner.

winner count position
A 1 A, B, C, B, B, C, A, B, A, B, B, D, B
A 0 A, B, C, B, B, C, A, B, A, B, B, D, B
C 1 A, B, C, B, B, C, A, B, A, B, B, D, B
C 0 A, B, C, B, B, C, A, B, A, B, B, D, B
B 1 A, B, C, B, B, C, A, B, A, B, B, D, B
B 0 A, B, C, B, B, C, A, B, A, B, B, D, B
A 1 A, B, C, B, B, C, A, B, A, B, B, D, B
A 0 A, B, C, B, B, C, A, B, A, B, B, D, B
A 1 A, B, C, B, B, C, A, B, A, B, B, D, B
A 0 A, B, C, B, B, C, A, B, A, B, B, D, B
B 1 A, B, C, B, B, C, A, B, A, B, B, D, B
B 0 A, B, C, B, B, C, A, B, A, B, B, D, B
B 1 A, B, C, B, B, C, A, B, A, B, B, D, B

4There is a probabilistic sub-linear space counting algorithm published in 2004, named as ‘Count-min
sketch’ [84].

242 CHAPTER 14. SOLUTION SEARCH

maj [] = ∅
maj (x:xs) = scan (x, 1) xs

(14.17)

Where scan is defined as:
scan (m, v) [] = m

scan (m, v) (x:xs) =

m = x : scan (m, v + 1) xs

v = 0 : scan (x, 1) xs

otherwise : scan (m, v − 1) xs

(14.18)

We can also implement with fold:maj = foldr f (∅, 0), where:

f x (m, v) =

x = m : (m, v + 1)

v = 0 : (x, 1)

otherwise : (m, v − 1)

(14.19)

Finally, we need verify the winner is the true majority element:

verify m = if 2|filter (= m) xs| > |xs| then Just m else ∅ (14.20)

Below is the corresponding iterative implementation:
1: function Majority(A)
2: c← 0,m← ∅
3: for each a in A do
4: if c = 0 then
5: m← a
6: if a = m then
7: c← c+ 1
8: else
9: c← c− 1

10: c← 0
11: for each a in A do
12: if a = m then
13: c← c+ 1

14: if c > %50|A| then
15: return x
16: else
17: return ∅

Exercise 14.2
1. Extend to find k majorities that occurs over bn/kc in collection A, where n = |A|.

Hint: Drop k different elements every time, till the remaining is less than k unique
candidates. Any k-majority (the one over bn/kc) must remain in the end.

14.4 Maximum sum of sub-vector
For vector V , define a range V [i...j] as sub-vector, the sum of sub-vector is S = V [i] +
V [i + 1] + ... + V [j]. Empty vector [] is sub-vector of any vector with sum 0. How to
find the maximum sum of a given vector V [2]? For example, in vector [3, -13, 19, -12, 1,
9, 18, -16, 15, -15], the sub-vector [19, -12, 1, 9, 18] gives the maximum sum of 35. If all
elements are positive, then the max is the total sum. If all are negative, then the empty
vector gives the max sum of 0. Below is the exhaustive search implementation:

14.4. MAXIMUM SUM OF SUB-VECTOR 243

1: function Max-Sum(V)
2: m← 0, n← |V |
3: for i← 1 to n do
4: s← 0
5: for j ← i to n do
6: s← s+ V [j]
7: m← Max(m, s)
8: return m

The performance of exhaustive search is O(n2), where n is the vector length. Similar
to majority number algorithm, we scan the vector. For every position i, record the sum of
sub-vector ends with i as A, and the maximum sum so far as B. As shown in figure 14.11.
A is not necessarily equal to B. We maintain B ≤ A always hold. When B + V [i] > A,
we replace A with this greater value. When B + V [i] < 0, we reset B to 0. Below table
gives the steps when scan [3,−13, 19,−12, 1, 9, 18,−16, 15,−15].

... A ... B ...

i

Figure 14.11: A: max sum so far; B: sum of the sub-vector ends with i.

max sum max end at i yet to scan
0 0 [3,−13, 19,−12, 1, 9, 18,−16, 15,−15]
3 3 [−13, 19,−12, 1, 9, 18,−16, 15,−15]
3 0 [19,−12, 1, 9, 18,−16, 15,−15]
19 19 [−12, 1, 9, 18,−16, 15,−15]
19 7 [1, 9, 18,−16, 15,−15]
19 8 [9, 18,−16, 15,−15]
19 17 [18,−16, 15,−15]
35 35 [−16, 15,−15]
35 19 [15,−15]
35 34 [−15]
35 19 []

1: function Max-Sum(V)
2: A← 0, B ← 0, n← |V |
3: for i← 1 to n do
4: B ← Max(B + V [i], 0)
5: A← Max(A,B)
6: return A

We can also find the maximum sum with fold: Smax = fst ◦ foldr f (0, 0), where f
update the maximum sum so far:

f x (Sm, S) = (S′
m = max(Sm, S′), S′ = max(0, x+ S)) (14.23)

Exercise 14.3

244 CHAPTER 14. SOLUTION SEARCH

1. Modify the solution that finds the max sum of sub-vector, returns the sub-vector
of the maximum sum.

2. Bentley gives a divide and conquer algorithm to find the max sum in O(n lgn)
time [2]. Split the vector at middle, recursively find the max sum in two halves,
and the max sum that crosses the middle. Then pick the greatest. Implement this
solution.

3. Find the sub-metrics in a m× n metrics that gives the maximum sum.

14.5 String matching
String matching is widely used in editor applications. We can use data structures like
radix tree, prefix tree (chapter 6) to search string. We can also directly match the string,
as shown in figure 14.125.

a n y a n a n t h o u s a n a n y m f l o w e r T

a n a n y m Ps

q

(a) The offset s = 4, after matching q = 4 characters, the 5th mismatches.

a n y a n a n t h o u s a n a n y m f l o w e r T

a n a n y m Ps

q

(b) Move s = 4 + 2 = 6.

Figure 14.12: Match ‘ananym’ in ‘any ananthous ananym flower’.

We match a pattern P in text T . As shown in figure 14.12 (a), at offset s = 4, we one
by one match characters in P and T . The first 4 are same, the 5th is ‘y’ in P , but ‘t’ in
T . We terminate matching, add s by 1 (move P to right by 1). Then restart matching
‘ananym’ and ‘nantho...’. Actually, we can increase smore than 1. The first two characters
‘an’ happen to be the suffix of ‘anan’. We can add s by 2 (move P to right 2 steps) as
shown in figure 14.12 (b). We reuse the information from the 4 matched characters, skip
some positions. Knuth, Morris and Pratt developed an efficient matching algorithm from
this idea [85], known as ‘KMP’. the initials of the three authors.

Denote the first k characters of text T as Tk (the k-character prefix of T). To shift P
to the right s steps as many as possible, we need reuse the information of the matched q
characters. As shown in figure 14.13, if we can shift P ahead, there exists some k, such
that the first k characters are same as the last k characters of Pq, i.e., the prefix Pk is
suffix of Pq. Define empty string “” is both the prefix and suffix of any string, hence the
minimum k = 0 always exists. We need find the maximum k for the string that is both
the prefix and suffix. Define the prefix function π(q), that gives where to fallback when
the (q + 1)-th character doesn’t match [4].

5Some programming environment provide match tool, like strstr in C library, find in C++ library,
indexOf in Java library.

14.5. STRING MATCHING 245

P[1] P[2] ... P[j] P[j+1] ... P[q] ...
s

... T[i] T[i+1] T[i+2] T[i+q-1] ... T

P[1] P[2] ... P[k] ...

P

P

Figure 14.13: Pk is both the prefix and suffix of Pq.

π(q) = max{k|0 ≤ k < q, and Pk is suffix of Pq} (14.24)

When match pattern P against text T from offset s, if fails after matching q characters,
we next look up q′ = π(q) to get a fallback position q′. Then retry to compare P [q′] with
the text:

1: function KMP(T, P)
2: π ← Build-Prefixes(P)
3: n← |T |,m← |P |, q ← 0
4: for i← 1 to n do
5: while q > 0 and P [q + 1] 6= T [i] do
6: q ← π(q)

7: if P [q + 1] = T [i] then
8: q ← q + 1

9: if q = m then
10: position i−m is a solution
11: q ← π(q) ▷ search further

The definition (14.24) is not practical to build π(q). We can pre-process P as the
following. If the first character doesn’t match, then the longest prefix and suffix is empty:
π(1) = 0, i.e., Pk = P0 = []. When scan the q-th character in P , the prefix function
values π(i), i = 1, 2, ..., q − 1, are already known, and so far, the longest prefix Pk is also
the suffix of Pq−1. As shown in figure 14.14, if P [q] = P [k + 1], we find a greater k. We
increase k by 1; otherwise, if P [q] 6= P [k + 1], we lookup π(k), and fallback to a shorter
prefix Pk′ , where k′ = π(k). Then compare the next character of this new prefix with
the q-th character. Repeat this till k becomes zero (empty string), or the q-th character
matches. Below table gives the prefix function values of ‘ananym’. The k column is the
maximum satisfying (14.24).

P[1] P[2] ... P[k] P[k+1] ... P[q-1] P[q] ...

P[1] P[2] ... P[k] P[k+1] ...

?

Figure 14.14: Pk is suffix of Pq−1, compare P [q] and P [k + 1].

246 CHAPTER 14. SOLUTION SEARCH

q Pq k Pk

1 a 0 “”
2 an 0 “”
3 ana 1 a
4 anan 2 an
5 anany 0 “”
6 ananym 0 “”

1: function Build-Prefixes(P)
2: m← |P |, k ← 0
3: π(1)← 0
4: for q ← 2 to m do
5: while k > 0 and P [q] 6= P [k + 1] do
6: k ← π(k)

7: if P [q] = P [k + 1] then
8: k ← k + 1

9: π(q)← k

10: return π

The KMP algorithm pre-process the pattern string to build the prefix function in
amortized O(m) time [4]. The string matching is amortized O(n) time. The total perfor-
mance is O(m + n), with additional O(m) space to store the prefix function. Varies of
pattern string P don’t impact the performance. Consider match pattern ‘aaa...ab’ (length
of m) in string ‘aaa...a’ (length of n). The m-th character doesn’t match, we can only
fallback by 1 repeatedly. The algorithm is still bound to linear time in this case.

14.6 Solution search
In early years of artificial intelligent, people developed methods to search for solutions.
Different from the sequence searching and string matching, the solution may not directly
exist among a set of candidates. We need construct the solution while try varies of
options. Some problems are not solvable. Among the solvable ones, there can be multiple
solutions. For example, a maze may have multiple ways out. We need find the optimal
solution sometimes.

14.6.1 DFS and BFS
DFS stands for deep-first search, and BFS stands for breadth-first search. They are typical
graph search algorithms. We give examples of them and skip the concept of graph.

Maze

Maze is a classic puzzle. There is saying: always turn right. However, it ends into loop as
shown in figure 14.15. The decision matters when there are multiple ways. In fairy tales,
one take some bread crumbs in a maze. Select a way, leave a piece of bread. If later enter
a died end, then go back to the last place through the bread crumbs. Then go to another
way. Whenever see bread crumbs left, one knows he visited it before. Then go back and
try a different way. Repeat the ‘try and check’ step, one will either find the way out, or
go back to the starting point (no solution). We use m× n matrix to define a maze, each
element is 0, 1, means there is a way or not. Below matrix defines the maze in figure
14.15:

14.6. SOLUTION SEARCH 247

(a) Maze (b) Loop when keep turning
right.

Figure 14.15: Maze

0 0 0 0 0 0
0 1 1 1 1 0
0 1 1 1 1 0
0 1 1 1 1 0
0 1 1 1 1 0
0 0 0 0 0 0
1 1 1 1 1 0

Given a start point s = (i, j), a destination e = (p, q), we need find all paths from s
to e. We first examine all points connected with s. For every such point k, recursively
find all paths from k to e. Then prepend path s-k to every path from k to e. We need
leave some ‘bread crumbs’ to avoid looping. We use a list P to record all visited points.
Look it up and only try new ways.

solveMaze M s e = solve s [[]] (14.25)

Where:

solve s P =

{
s = e : map (reverse ◦ (s :)) P
otherwise : concat [solve k (map (s :) P)|k ← adj s, k /∈ P]

(14.26)

The paths in P are reversed, we reverse the result back finally. Function adj p enu-
merates adjacent points to p:

adj (x, y) = [(x′, y′)| (x′, y′)← [(x− 1, y), (x+ 1, y), (x, y − 1), (x, y + 1)],
1 ≤ x′ ≤ m, 1 ≤ y′ ≤ n,Mx′y′ = 0} (14.27)

This is essentially ‘exhaustive search’ all possible paths. We only need one way out. We
need some data structure serves for the ’bread crumbs’, recording the previous decisions.
We always search on top of the latest decision. We can use stack to realize this is the
last-in, first-out order. The stack starts from [s]. Pop s out and find all connected points
of a, b, ..., push the new paths [a, s], [b, s] to the stack. Next pop [a, s] out, examine all
points connected to a. Then push new paths consist of 3 steps to the stack. Repeat this.
The stack records paths in reversed order: from the farthest place back to the starting
point, as shown in figure 14.16. If the stack becomes empty, we’ve tried all ways, and
terminate the search; otherwise, we pop a path, expand to new adjacent points, and push
the new paths back.

solveMaze M s e = solve [[s]] (14.28)

248 CHAPTER 14. SOLUTION SEARCH

[s]
[a, s]

[b, s]
...

i

p

j k

[p, ... , s]

[q, ..., s]

...

[i, p, ... , s]

[j, p, ..., s]

[k, p, ..., s]

[q, ..., s]

...

Figure 14.16: Search with a stack

Where:

solve [] = []

solve ((p:ps):cs) =

c = e : reverse (p:ps)

ks = [] : solve cs,where ks = filter (/∈ ps) (adj p)

ks 6= [] : solve ((map (: p:ps) ks) ++ cs)

(14.29)
Below is the iterative implementation:

1: function Solve-Maze(M, s, e)
2: S ← [s], L = []
3: while S 6= [] do
4: P ← Pop(S)
5: p← Last(P)
6: if e = p then
7: Add(L,P) ▷ find a solution
8: else
9: for each k in Adjacent(M,p) do

10: if k /∈ P then
11: Push(S, P ++ [k])
12: return L

Each step tries 4 options (up, down, left, and right) through the backtrack. It seems
the performance is O(4n), where n is the length of the path. The actual time won’t be so
large because we skip the visited places. In the worst case, we traverse all the reachable
points exactly once. Hence the time is bound to O(n), where n is the number of connected
points. We need additional O(n2) space for the stack.

Exercise 14.4

1. Modify the implementation with stack, find all ways to the maze.

Eight queens puzzle

Although cheese has very long history, it was late in 1848, that Max Bezzel gave the 8
queens puzzle [89]. The queue is a powerful piece, it can attack any other pieces in the
same row, column or diagonal at any distance, as shown in figure 14.17 (a). How to put
8 queens in the cheese board, such that none of them attack each other. Figure 14.17 (b)
gives a solution.

14.6. SOLUTION SEARCH 249

(a) Queen (b) A solution

Figure 14.17: The eight queens puzzle.

To put 8 queens in 64 cells, there are total P 8
64 permutations, about 4 × 1010. Since

no two queens can be in the same row or column. A solution must be a permutation of
[1, 2, 3, 4, 5, 6, 7, 8]. For example, the permutation [6, 2, 7, 1, 3, 5, 8, 4] means the first queen
is at row 1, column 6, the second queen is at row 2 column 2, ..., and the 8th queen is at
row 8, column 4. As such, we reduced the solution domain to 8! = 40320 permutations.
We arrange queues from the first row, there are 8 options (columns). For the next queue,
we need skip some columns to avoid attacking the first queue. For the i-th queue, we
need find the columns at row i, that not being attached by the first i− 1 queues. If all 8
columns are invalid, we go back to adjust the previous i − 1 queues. We find a solution
after arrange all 8 queues. We record it and further search/backtrack to find all solutions.
We start the search with a stack and a list: solve [[]] []

solve [] s = s

solve (c:cs) s =

{
|c| = 8 : solve cs (c:s)

otherwise : solve ([x:c|x← [1..8], x /∈ c, safe x c] ++ cs) s

(14.30)
We’ve exhausted all options when the stack becomes empty, s records all the solutions;

If the top arrangement c has length of 8, we add this newly find solution to s, then continue
search; if |c| < 8, we find the columns that are not occupied (x /∈ c), and attached by
other queues in diagonal (through safe x c). Then push the new valid arrangement to the
stack.

safe x c = ∀(i, j)← zip (reverse c) [1, 2, ...] ⇒ |x−i| 6= |y−j|,where : y = 1+ |c| (14.31)

safe checks if the queue at y = 1+ |c| row, x column is in the diagonal with any other
queue. Let c = [iy−1, iy−2, ..., i1] be the columns of the first y − 1 queues. We reverse c,
zip with 1, 2, ... to form coordinates: [(i1, 1), (i2, 2), ..., (iy−1, y − 1)]. Then check every
(i, j) forms a diagonal with (x, y): |x− i| 6= |y− j|. This implementation is tail recursive,
we can eliminate recursion with loops:

1: function Solve-Queens
2: S ← [[]]
3: L← [] ▷ Stores the solution
4: while S 6= [] do
5: A← Pop(S) ▷ A: arrangement
6: if |A| = 8 then
7: Add(L,A)
8: else
9: for i← 1 to 8 do

250 CHAPTER 14. SOLUTION SEARCH

10: if Valid(i, A) then
11: Push(S,A++ [i])
12: return L

13: function Valid(x,A)
14: y ← 1 + |A|
15: for i← 1 to |A| do
16: if x = A[i] or |y − i| = |x−A[i]| then
17: return False
18: return True

We only try the unoccupied columns among the 8, in total 15720 arrangements. It
is far less than 88 = 16777216 [89]. Because the square board is horizontal and vertical
symmetric, when find a solution, we can rotate, flip to obtain other symmetric solutions.
We can expand to solve n queues puzzle, where n ≥ 4. However, the time increase fast
along with n. The backtrack algorithm is slightly better than the exhaustive permutations
of 8 (bound to o(n!)).

Exercise 14.5

1. There are 92 solutions to the 8 queens puzzle. For any solution, we can rotate 90◦,
180◦, 270◦, and flip it to obtain symmetric solutions. We can generate all solutions
from 12 unique ones. Implement this method.

2. Extend the 8 queens to n queens.

Peg puzzle

As shown in figure 14.18, 6 frogs stay in 7 stones. Each frog can hop to the next stone if
not occupied, or leap over to another empty one. The frogs can only move forward or stop,
but not go back. Figure 14.19 give the rules. How to arrange the frogs to hop, leap, such
that the left and right swap? Mark the left frogs as -1, the right as 1, the empty stone as 0.
We are seeking the solution from s = [−1,−1,−1, 0, 1, 1, 1] to e = [1, 1, 1, 0,−1,−1,−1].

Figure 14.18: The leap frogs puzzle.

(a) Hop to the
next stone

(b) Leap over to
the right

(c) Leap over to
the left

Figure 14.19: Moving rules.

14.6. SOLUTION SEARCH 251

This is a special form of the peg puzzle. The number of pegs can be 8 or other even
numbers. Figure 14.20 shows some variants6.

(a) Solitaire (b) Hop over (c) Draught
board

Figure 14.20: Variants of the peg puzzle

Label the stones from left as 1, 2, ..., 7. There are at most 4 options for every move.
When start for example, the frog on the 3rd stone can hop right to the empty stone;
the frog on the 5th stone can hop left; the frog on the 2nd stone can leap right, the
frog on the 6th stone can leap left. We record the stone status and try the 4 options at
every step. backtrack and try other options when get stuck. Because every frog can only
moves forward, the movement is not revertible. We needn’t worry about repetition. We
record the steps only for the final output. State L is some permutation of s. L[i] is ±1, 0,
indicates there is a frog on the i-th stone heading left, right, or the stone is empty. Let
the empty stone be p, the 4 movements are:

1. Leap left: p < 6 and L[p+ 2] > 0, swap L[p]↔ L[p+ 2];

2. Hop left: p < 7 and L[p+ 1] > 0, swap L[p]↔ L[p+ 1];

3. Leap right: p > 2 and L[p− 2] < 0, swap L[p− 2]↔ L[p];

4. Hop right: p > 1 and L[p− 1] < 0, swap L[p− 1]↔ L[p].

Define four functions: leapl, hopl, leapr, and hopr, transition the status L 7→ L′.
If can’t move, then returns L unchanged. We use a stack S to record the attempts.
The stack starts from a singleton list, containing the initial status. List M records all
solutions. We repeat pop the stack. If state L = e, then we add this new solution to M ;
otherwise, we try 4 moves on top of L, and push the new status back.

solve [[−1,−1,−1, 0, 1, 1, 1]] [] (14.32)

Where:

solve [] s = s

solve (c:cs) s =

{
L = e : solve cs(reverse c : s),where : L = head c

otherwise : solve ((map (: c) (moves L)) ++ cs) s

(14.33)

function moves tries 4 movements atop L:

moves L = filter(6= L) [leapl L, hopl L, leapr L, hopr L] (14.34)

The corresponding iterative implementation is as below:
1: function Solve(s, e)
2: S ← [[s]]

6from http://home.comcast.net/~stegmann/jumping.htm

http://home.comcast.net/~stegmann/jumping.htm

252 CHAPTER 14. SOLUTION SEARCH

3: M ← []
4: while S 6= [] do
5: s← Pop(S)
6: if s[1] = e then
7: Add(M , Reverse(s))
8: else
9: for each m in Moves(s[1]) do

10: Push(S, m:s)
11: return M

This method gives two symmetric solution (15 steps for each). Below table lists one:

step -1 -1 -1 0 1 1 1
1 -1 -1 0 -1 1 1 1
2 -1 -1 1 -1 0 1 1
3 -1 -1 1 -1 1 0 1
4 -1 -1 1 0 1 -1 1
5 -1 0 1 -1 1 -1 1
6 0 -1 1 -1 1 -1 1
7 1 -1 0 -1 1 -1 1
8 1 -1 1 -1 0 -1 1
9 1 -1 1 -1 1 -1 0
10 1 -1 1 -1 1 0 -1
11 1 -1 1 0 1 -1 -1
12 1 0 1 -1 1 -1 -1
13 1 1 0 -1 1 -1 -1
14 1 1 1 -1 0 -1 -1
15 1 1 1 0 -1 -1 -1

For 3 frogs in each side, it takes 15 steps. Extend this solution, we obtain a table of
number of steps against the number of frogs in each side:

n frogs on each side 1 2 3 4 5 ...
number of steps 3 8 15 24 35 ...

The number of steps are all square numbers minus one: (n+ 1)2 − 1. Let us prove it:

Proof. Compare the start and end states, every frog moves ahead n + 1 stones. The 2n
frogs in total move 2n(n + 1) stones. Every frog on the left must meet every one from
right once. The frog must leap over another one when meet. Because there are total n2

meets, they cause all frogs move ahead 2n2 stones. The remaining moves are not leaps,
but hops. There are total 2n(n+ 1)− 2n2 = 2n hops. Sum up all n2 leaps and 2n hops,
the total steps are n2 + 2n = (n+ 1)2 − 1.

The three puzzles share a common solution structure: start from some state. For
example, the entrance to the maze; the empty chess board; pegs of [-1, -1, -1, 0, 1, 1,
1]. Search the solution, try multiple options every step. For example, 4 directions of
up, down, left, and right in maze; 8 columns at each row; leap and hop, right and left.
Although we don’t know how far a decision leads to, we clearly know the final state. For
example, the exit of the maze; complete arranging 8 queens; all pegs are swapped.

14.6. SOLUTION SEARCH 253

We apply the same strategy: repeatedly try an option; record it with the new state
we obtain; backtrack when stuck and try another option. We either find a solution or
exhaust all options and know the problem is unsolvable. There are variants, like to stop
when find a solution, or continue search all solutions. If build a tree rooted at the starting
state, every branch is an option, the search grows the tree deeper and deeper. We don’t
try alternatives at the same depth until fail and backtrack. Figure 14.21 shows the search
order with arrows that go down then backtrack.

Figure 14.21: DFS search order.

We call it deep first search (DFS), and widely use it in practice. Some programming
environments, like Prolog, use DFS as the default evaluation model. Prolog define a maze
with rules:

c(a, b). c(a, e).
c(b, c). c(b, f).
c(e, d), c(e, f).
c(f, c).
c(g, d). c(g, h).
c(h, f).

Where predicate c(X,Y) means X is connected with Y . This is a directed predicate,
we can add a symmetric rule c(Y,X) or create a undirected predicate. Figure 14.22 shows
a directed graph. Given two places X and Y , Prolog tells if they are connected with the
following program:

a

b e

c

f d

g

h

Figure 14.22: A directed graph.

254 CHAPTER 14. SOLUTION SEARCH

go(X, X).
go(X, Y) :- c(X, Z), go(Z, Y)

This program says: a place X is connected with itself. Given two places X and Y ,
if X is connected with Z, and Z is connected with Y , then X is connected with Y . For
multiple choices of Z, Prolog chooses one, and go on searching. It only tries another Z
if the recursive search fails and backtrack. This is exactly the DFS. We can apply DFS
when only need a solution, but don’t care the number of steps. For example, we need a
way out of the maze, although it may not be the shortest.

Exercise 14.6

1. Extend the pegs puzzle solution for n pegs on each side.

The wolf, goat, and cabbage puzzle

This traditional puzzle says that a farmer need cross the river with a wolf, a goat, and
a bucket of cabbage. There is a boat. Only the farmer can drive it. The boat can only
carry one thing a time. The wolf would kill the goat; the goat would bite the cabbage if
they stay alone without the farmer. The puzzle asks to find the best solution to cross the
river.

Since the wolf doesn’t bite the cabbage, the farmer can safely carry the goal to the
other side and go back. No matter carry the wolf or the cabbage next, the farmer need
carry one back to avoid conflict. To find the best the solution, we parallel try all options
and compare. Despite the direction, count back and forth 2 steps. We check all possible
status after 1 step, 2 steps, 3 steps, ... till the farmer and all things move to the other
side at n steps. This is the best solution.

But how to parallel try all options? Consider a lucky draw. People pick one from a
box of colored balls. There is a black ball, and the rest are white. The one pick the black
wins, or need return the white ball back to the box and wait for the next draw. We can
define the rule that nobody try a second draw before all others pick. We line people in
a queue. Every time the first person picks a ball, move to the tail if doesn’t win. The
queue ensures the fairness.

We apply the same method for the cross river puzzle. Let set A, B contains the things
on each side. When start, A = {w, g, c, p} includes the wolf, the goat, the cabbage, and
the farmer; B = ∅. We move the farmer with or without another element between A
and B. If a set doesn’t contain the farmer, then it should has conflict elements. The goal
is to swap elements in A and B with the fewest steps. We initiate a queue Q with the
start status: A = {w, g, c, p}, B =3. As far as Q isn’t empty, we de-queue the head, try
all options, then en-queue the new status back to the tail. We find the solution when
the head becomes A = ∅、B = {w, g, c, p}. Figure 14.24 shows the search order. As all
options at the same level are tried, we needn’t backtrack.

We can represent the set with a four bits binary number, each bit stands for an
element, e.g., the wolf w = 1, the goat g = 2, the cabbage c = 4, and the farmer p = 8.
0 is the empty set, 15 is the full set. 3 = 1 + 2, means the set {wolf, goat}. It’s invalid
because the wolf will kill the goat; 6 = 2 + 4, is another conflict {goat, cabbage}. Every
time, we move the highest bit (8), with or without another bit (4, 2, 1) from one number
to the other. The options are:

mv A B =

{
B < 8 : [(A− 8− i, B + 8 + i)|i← [0, 1, 2, 4], i = 0 or A∧i 6= 0]

otherwise : [(A+ 8 + i, B − 8− i)|i← [0, 1, 2, 4], i = 0 or B∧i 6= 0]

(14.35)

14.6. SOLUTION SEARCH 255

Figure 14.23: The i-th person de-queues, draw, then in-queue if doesn’t win.

Figure 14.24: Start from 1, check all options 2, 3, 4 for the next step; then all option for
the 3rd step, ...

256 CHAPTER 14. SOLUTION SEARCH

Where ∧ is bitwise-and. We start searching from Q = {[(15, 0)]}, as: solve Q

solve ∅ = ∅

solve Q =

{
A = 0 : reverse c,where : (A,B) = c, (c,Q′) = pop Q

where : solve (pushAll (map (: c) (filter (valid c) (mv A B))) Q′)

(14.36)
Where valid c checks if the move (A,B) is valid, neither is 3 or 6, and is new (not in

c):

A,B 6= 3 or 6, (A,B) /∈ c (14.37)

Below is the iterative implementation:
1: function Solve
2: S ← []
3: Q← {[(15, 0)]}
4: while Q 6= ∅ do
5: C ← DeQ(Q)
6: if C[1] = (0, 15) then
7: Add(S, Reverse(C))
8: else
9: for each m in Moves(C) do

10: if Valid(m,C) then
11: EnQ(Q,m:C)
12: return S

It outputs two best solutions:

Left river Right
wolf, goat, cabbage, farmer
wolf, cabbage goat, farmer
wolf, cabbage, farmer goat
cabbage wolf, goat, farmer
goat, cabbage, farmer wolf
goat wolf, cabbage, farmer
goat, farmer wolf, cabbage

wolf, goat, cabbage, farmer

Left river Right
wolf, goat, cabbage, farmer
wolf, cabbage goat, farmer
wolf, cabbage, farmer goat
wolf goat, cabbage, farmer
wolf, goat, farmer cabbage
goat wolf, cabbage, farmer
goat, farmer wolf, cabbage

wolf, goat, cabbage, farmer

14.6. SOLUTION SEARCH 257

Water jugs puzzle

Given two water jugs, 9 litres and 4 litres. How to get 6 litres from river? This puzzle
has history back to ancient Greece. A story said the French mathematician Simèon Denis
Poisson solved this puzzle when he was a child. It also appears in Hollywood movie
‘Die-Hard 3’. Pòlya uses this puzzle as an example of backwards induction [90].

Figure 14.25: The last two steps.

After fill the 9 litres jug, then pour to the 4 litres jug twice, then we obtain 1 litre
of water, as shown in figure 14.26. Backwards induction is a strategy, but not detailed
algorithm. It can’t directly answer how to get 2 litres of water from two jugs of 899 litres
and 1147 litres for example.

Figure 14.26: Fill the bigger jug, then pour to the smaller one twice.

Let the small jug be A, the big jug be B. There are 6 operations each time: (1) Fill
jug A; (2) Fill jug B; (3) Empty jug A; (4) Empty jug B; (5) Pour from jug A to B; (6)
Pour water from jug B to A. Below lists a series of operations (assume a < b < 2a).

258 CHAPTER 14. SOLUTION SEARCH

A B operation
0 0 start
a 0 fill A
0 a pour A to B
a a fill A
2a - b b pour A to B
2a - b 0 empty B
0 2a - b pour A to B
a 2a - b fill A
3a - 2b b pour A to B
...

Whatever operations, the water in each jug must be xa+yb, from some integers x and
y, where a and b are jug volumes. From the number theory, we can get g litres of water
if and only if g is dividable by the greatest common divisor of a and b, i.e., gcd(a, b)|g.
If gcd(a, b) = 1 (a and b are coprime), then we can get any nature number g litres of
water. Although we know the existence of the solution, we don’t know the detailed steps.
We can solve the Diophantine equation g = xa+ yb, design the operations from x and y.
Assume x > 0, y < 0, we fill jug A total x times, empty jug B total y times. For example,
the small jug a = 3 litres, the big jug b = 5 litres, and the goal is to get g = 4 litres of
water. Because 4 = 3× 3− 5, we design below operations:

A B operation
0 0 start
3 0 fill A
0 3 pour A to B
3 3 fill A
1 5 pour A to B
1 0 empty B
0 1 pour A to B
3 1 fill A
0 4 pour A to B

We fill jug A 3 times, empty jug B 1 time. We can apply the Extended Euclid algorithm
in number theory to find x and y:

(d, x, y) = gcdext(a, b) (14.38)

Where d = gcd(a, b), ax + by = d. Assume a < b, the quotient q and remainder r
satisfy b = aq + r. The common divisor d divides both a and b, hence d divides r too.
Because r < a, we can scale down the problem to find gcd(a, r):

(d, x′, y′) = gcdext(r, a) (14.39)

Where d = x′r + y′a. Substitute r = b− aq in:
d = x′(b− aq) + y′a

= (y′ − x′q)a+ x′b
(14.40)

Compare with d = ax+ by, we have the following recursion:x = y′ − x′ b

a
y = x′

(14.41)

14.6. SOLUTION SEARCH 259

The edge case happens when a = 0: gcd(0, b) = b = 0a + 1b. Hence the extended
Euclid algorithm can be defined as:

gcdext(0, b) = (b, 0, 1)

gcdext(a, b) = (d, y′ − x′ b

a
, x′)

(14.42)

Where d, x′, y′ are defined in (14.39). If g = md, then mx and my is a solution; if
x < 0, for example: gcdext(4, 9) = (1,−2, 1). Since d = xa+ yb, we repeatedly add x by
b, and decrease y by a till x > 0. Such solution may not be the best one. For example, to
get 4 litres of water from two jugs of 3 and 5 liters, the extended Euclid algorithm gives
23 steps:
[(0,0),(3,0),(0,3),(3,3),(1,5),(1,0),(0,1),(3,1),
(0,4),(3,4),(2,5),(2,0),(0,2),(3,2),(0,5),(3,5),
(3,0),(0,3),(3,3),(1,5),(1,0),(0,1),(3,1),(0,4)]

While the best solution only need 6 steps:
[(0,0),(0,5),(3,2),(0,2),(2,0),(2,5),(3,4)]

There are infinite many solutions for the Diophantine equation g = xa + by. The
smaller |x| + |y|, the fewer steps. We can apply the same method as the ‘cross river’
puzzle. Try the 6 operations (fill A, fill B, pour A into B, pour B into A, empty A and
empty B) in parallel to find the best solution. We use a queue to arrange the attempts.
The element in the queue are series of pairs (p, q), where p and q are waters in each jug,
as operations from the beginning. The queue starts from {[(0, 0)]}.

solve a b g = bfs{[(0, 0)]} (14.43)

As far as the queue isn’t empty, we pop a sequence from the head. If the last pair of
the sequence contains g litres, we find a solution. We reverse and output the sequence;
otherwise, we try 6 operations atop the latest pair, filter out the duplicated ones and add
back to the queue.

bfs ∅ = []

bfs Q =

{
p or q = g : reverse s,where : (p, q) = head s, (s,Q′) = pop Q

otherwise : bfs (pushAll (map (: s) (try s)) Q′)

(14.44)

try s = filter (/∈ s) [f (p, q)|f ← {flA, f lB , prA, prB , emA, emB}] (14.45)

Where:

flA (p, q) = (a, q)

flB (p, q) = (p, b)

emA (p, q) = (0, q)

emB (p, q) = (p, 0)

prA (p, q) = (max(0, p+ q − b),min(x+ y, b))

prB (p, q) = (min(x+ y, a),max(0, x+ y − a))

(14.46)

This method returns the solution with the fewest steps. To avoid storing the complete
operation sequence in the queue, we can use a global history list, and link every operation
back to its predecessor. As shown in figure 14.27, the start state is (0, 0), only ‘fill A’
and ‘fill B’ are applicable. We next try ‘fill B’ atop (3, 0), record the new state (3, 5). If
apply ‘empty A’ to (3, 0), we’ll go back to the starting point (0, 0). We skip it (shaded
state). We add a ‘parent’ reference to each node in 14.27, and backtrack along it to the
beginning.

260 CHAPTER 14. SOLUTION SEARCH

(0, 0)

(3, 0)

fill A

(0, 5)

flll B

(3, 5)

fill B

(0, 0)

empty A

(0, 3)

pour A

(3, 5)

fill A

(0, 0)

empty B

(3, 2)

pour B

...

(0, 0)

(3, 0)

(0, 5)

(3, 5)

(0, 3)

(3, 2)

...

Figure 14.27: Store all states with a global list.

1: function Solve(a, b, g)
2: Q← {(0, 0,NIL)} ▷ Queue
3: V ← {(0, 0,NIL)} ▷ Visited set
4: while Q 6= ∅ do
5: s← Pop(Q)
6: if p(s) = g or q(s) = g then
7: return Back-track(s)
8: else
9: for each c in Expand(s, a, b) do

10: if c 6= s and c /∈ V then
11: Push(Q, c)
12: Add(V, c)
13: return NIL

14: function Expand(s, a, b)
15: p← p(s), q ← q(s)
16: return [(a, q, s), (p, b, s), (0, q, s), (p, 0, s), (max(0, p+q−b),min(p+q, b), s), (min(p+

q, a),max(0, p+ q − a), s)]

17: function Back-track(s)
18: r ← []
19: while s 6= NIL do
20: (p, q, s′) = s
21: r ← (p, q):r
22: s← s′

23: return r

Exercise 14.7

1. Implement the solution to the water jugs puzzle with the extended Euclid algo-
rithm.

14.6. SOLUTION SEARCH 261

2. Improve the extended Euclid algorithm, find the x and y that minimize |x| + |y|
for the optimal solution.

Kloski

Kloski is a block slide puzzle, as shown in figure 14.28. There are 10 blocks of 3 sizes: 4
pieces of 1× 1; 4 pieces of 1× 2, 1 piece of 2× 1, 1 piece of 2× 2. The goal is to slide the
big block to the bottom slot. Figure 14.29 shows variants of this puzzle in Japan.

(a) Initial layout (b) Layout after sev-
eral movements

Figure 14.28: ‘Huarong Escape’, the traditional Chinese Kloski puzzle.

Figure 14.29: ‘Daughter in the box’, the Japanese Kloski puzzle.

We define the board as a 5 × 4 matrix, the row and column start from 0. Label the
pieces from 1 to 10. 0 means empty cell. The matrix M gives the initial layout. The cells
with value i is occupied by piece i. We use a map L to represent the layout, where L[i]
is the set of cells occupied by piece i. For example, L[4] = {(2, 1), (2, 2)} means the 4th
piece occupies cells (2, 1) and (2, 2). Label all 20 cells from 0 to 19, we can convert a pair
of row, col to label: c = 4y + x. The 4th piece occupies cells L[4] = {9, 10}.

M =

1 10 10 2
1 10 10 2
3 4 4 5
3 7 8 5
6 0 0 9

 L =

1 7→ {0, 4}, 2 7→ {3, 7}, 3 7→ {8, 12},
4 7→ {9, 10}, 5 7→ {11, 15},
6 7→ {16}, 7 7→ {13}, 8 7→ {14},
9 7→ {19}, 10 7→ {1, 2, 5, 6}

Define map φ(M) 7→ L and its reverse φ−1(L) 7→M to convert board and layout:

1: function φ(M)

262 CHAPTER 14. SOLUTION SEARCH

2: L← {}
3: for y ← 0 ∼ 4 do
4: for x← 0 ∼ 3 do
5: k ←M [y][x]
6: L[k]← Add(L[k], 4y + x)
7: return L

8: function φ−1(L)
9: M ← [[0]× 4]× 5

10: for each (k 7→ S) in L do
11: for each c in S do
12: x← c mod 4, y ← bc/4c
13: M [y][x]← k

14: return M

We try all the 10 blocks in 4 directions: up, down, left, and right. For board matrix,
the movement means: (∆y,∆x) = (0,±1), (±1, 0); for layout of cell labels, it means:
d = ±1,±4. For example, move piece L[i] = {c1, c2} to left, it becomes: {c1−1, c2−1}. We
need avoid invalid movement in two edge cases: d = 1, c mod 4 = 3 and d = −1, c mod 4 =
0, they are invalid because the piece jump from one side to the other. Consider the two
free cells, there are at most 8 movements. For example, the first step only have 4 options:
move piece 6 right, move piece 7 or 8 down, move piece 9 left. Figure 14.30 shows how to
verify the movement is valid.

Figure 14.30: Left: two cells of 1 can move; Right: the lower cell of 1 conflicts with the
cell of 2.

For the movement of piece k, it is valid if the target cells have value of 0 or k:

valid L[k] d :
∀c ∈ L[k]⇒ y = bc/4c+ bd/4c, x = (c mod 4) + (d mod 4),

(0, 0) ≤ (y, x) ≤ (4, 3),M [y][x] ∈ {k, 0}
(14.47)

We may return to some layout after a series of slides. It’s insufficient to only avoid
duplicated matrix. Although M1 6= M2, they are essentially the same layout.

14.6. SOLUTION SEARCH 263

M1 =

1 10 10 2
1 10 10 2
3 4 4 5
3 7 8 5
6 0 0 9

 M2 =

2 10 10 1
2 10 10 1
3 4 4 5
3 7 6 5
8 0 0 9

We need avoid duplicated layout. Treat all pieces of the same size same, we define

normalized layout as: ‖L‖ = {p|(k 7→ p) ∈ L}, the set of all cell labels in L. Both matrix
above have the same normalized layout as {{1, 2, 5, 6}, {0, 4}, {3, 7}, {8, 12}, {9, 10},
{11, 15}, {16}, {13}, {14}, {19}}. We also need avoid mirrored layout, for example:

M1 =

10 10 1 2
10 10 1 2
3 5 4 4
3 5 8 9
6 7 0 0

 M2 =

3 1 10 10
3 1 10 10
4 4 2 5
7 6 2 5
0 0 9 8

Both have the same normalized layout. Define the mirror function:

mirror(‖L‖) = {{f(c)|c ∈ s}|s ∈ ‖L‖} (14.48)

Where f(c) = 4y′ + x′, y′ = bc/4c, x′ = 3− (c mod 4). We use a queue to arrange the
search. The element in the queue has two parts: a series of movements, and the resulted
layout. The movement is a pair (k, d), means move piece k by d (±1,±4). Initialize the
queue Q = {(s, [])}, where s is the start layout. As far as the queue isn’t empty Q 6= ∅,
we get its head, examine whether the big block (piece 10) arrives at t = {13, 14, 17, 18},
i.e., L[10] = t. Terminates if yes; otherwise, we try up, down, left, right for every piece,
add every valid (k, d), that leads to unique layout to the queue. We use a set H to records
all visited normalized layouts to avoid repetition.

solve ∅ H = []

solve Q H =

{
L[10] = t : reverse ms,where : ((L,ms), Q′) = pop Q

otherwise : solve (pushAll cs Q′) H ′
(14.49)

Where cs = [(move L e, e:ms)|e← expand L] are the new movements expanded.

expand L = {(k, d)| k ← [1, 2, ..., 10], d← [±1,±4],
valid k d, unique k d} (14.50)

Function move slides piece L[k] by d to: move L (k, d) = map (+d) L[k]. unique
checks if the normalized layout ‖L′‖ /∈ H and its mirror mirror(‖L′‖) /∈ H. Add them
to H ′ if new. Below are the iterative implementation. The solution has 116 steps (1 cell
a step). The last 3 are:

1: function Solve(s, e)
2: H ← {‖s‖}
3: Q← {(s,∅)}
4: while Q 6= ∅ do
5: (L, p)← Pop(Q)
6: if L[10] = e then
7: return (L, p)
8: else
9: for each L′ in Expand(L,H) do

10: Push(Q, (L′, L))
11: Add(H, ‖L′‖)

264 CHAPTER 14. SOLUTION SEARCH

12: return ∅

['5', '3', '2', '1']
['5', '3', '2', '1']
['7', '9', '4', '4']
['A', 'A', '6', '0']
['A', 'A', '0', '8']

['5', '3', '2', '1']
['5', '3', '2', '1']
['7', '9', '4', '4']
['A', 'A', '0', '6']
['A', 'A', '0', '8']

['5', '3', '2', '1']
['5', '3', '2', '1']
['7', '9', '4', '4']
['0', 'A', 'A', '6']
['0', 'A', 'A', '8']

The cross river puzzle, water jugs puzzle, and the Kloski puzzle share the common
solution structure. Similar to the DFS, they have start and end states. For example, the
cross river puzzle starts with all things on one side, the other side is empty; it ends with
all things on the other side. The water jugs puzzle starts with tow empty jugs; it ends
with either jug has g litres of water. The Klotski puzzle starts with some layout, it ends
with some layout that the big block arrives at the bottom slot. Every puzzle have a set
of rules, transfer from a state to another. We ‘parallel’ try all options. We don’t search
further until complete trying all options of the same step. This search strategy ensure we
find the solution with the fewest step before others. Because we expand horizontally, it’s
called Breadth-first search. Figure 14.31 compares DFS and BFS.

(a) DFS (b) BFS

Figure 14.31: DFS and BFS.

Because we can’t really search in parallel, we realize BFS with a queue. Repeat de-
queue the candidate with fewer steps from head, and en-queue new candidate with more
steps to tail. BFS provides a simple method to search the solution with the fewest steps.
However, it can’t directly search for generic optimal solution. Consider the directed graph
in figure 14.32, the length of each section varies. We can’t use BFS to find the shortest
path between two cities. For example, the shortest path from a to c is not the one with
the fewest steps: a → b → c. The total length is 22, but the path with more steps
a→ e→ f → c has the length of 20.

Exercise 14.8

14.6. SOLUTION SEARCH 265

a

b

15

e

4

c

7 f

11 10

d

5

6

g

8h

9

12

Figure 14.32: A weighted directed graph.

1. John Conway gives a slide tile puzzle. Figure 14.33 is a simplified example. There
are 8 cells, 7 are occupied. Label the pieces from 1 to 7. Each piece can slide to
the connected free cell. (two cells are connected if there is a line between them.)
How to reverse the pieces from 1, 2, 3, 4, 5, 6, 7 to 7, 6, 5, 4, 3, 2, 1 by sliding?
Write a program to solve this puzzle.

1

2

3

4

5

6

7

Figure 14.33: Conway slide puzzle

14.6.2 Greedy algorithm
People need find the ‘best’ solution to minimize time, space, cost, energy, and etc. It’s
not easy to find the optimal solution within limited resource. Many problem don’t have
solution in polynomial time, however, there exist simple solution for a small portion of
special problems.

Huffman coding

Huffman coding encodes information with the shortest length. The ASCII code needs 7
bits to encode characters, digits, and symbols. It can represent 27 = 128 symbols. We
need at least log2 n 0/1 bits to distinguish n symbols. Below table encodes upper case
English letters, maps A to Z from 0 to 25, each with 5 bits. Zero is padded as 00000 but
not 0. Such scheme is called fixed-length coding.

266 CHAPTER 14. SOLUTION SEARCH

char code char code
A 00000 N 01101
B 00001 O 01110
C 00010 P 01111
D 00011 Q 10000
E 00100 R 10001
F 00101 S 10010
G 00110 T 10011
H 00111 U 10100
I 01000 V 10101
J 01001 W 10110
K 01010 X 10111
L 01011 Y 11000
M 01100 Z 11001

It encodes ‘INTERNATIONAL’ to a binary number of 65 bits:

00010101101100100100100011011000000110010001001110101100000011010

Another scheme is variable-length coding. Encode A as single bit 0, encode C as 10
of two bits, encode Z as 11001 of 5 bits. Although the code length is shorter, it has
ambiguity when decode. For example, the binary number 1101 can stand for 1 followed
with 101 (decoded as ‘BF’) or 110 followed with 1 (decoded as ‘GB’), or 1101 (decoded as
N). The Morse code is variable-length. It encodes the most used letter ‘E’ as ‘.’, encodes
‘Z’ as ‘- -..’. Particularly, it uses a special pause separator to indicate the termination of
a code, eliminates the ambiguity. Below code table is ambiguity free:

char code char code
A 110 E 1110
I 101 L 1111
N 01 O 000
R 001 T 100

It encodes ‘INTERNATIONAL’ with 38 bits only:

10101100111000101110100101000011101111

The reason why it’s ambiguity free is because there is no code is the prefix of the
other. Such code is called prefix-code. (but not the ‘non-prefix code’.) Since the prefix-
code needn’t separator, we can further shorten the code length. Given a text, can we find
a prefix-code scheme, that produces the shortest code? In 1951, Robert M. Fano told
the class that those who could solve this problem needn’t take the final exam. Huffman
was still a student in MIT [91]. He almost gave up and started preparing the final exam
when found the answer. Huffman created the coding table according to the frequency of
the symbol appeared in the text. The more used one is assigned with the shorter code.
Process the text, and calculate the occurrence for each symbol. Define the weight as
the frequency. Huffman uses a binary tree to generate the prefix-code. The symbols are
stored in the leaf nodes. Traverse from the root to generate the code, add 0 when go left,
1 when go right, as shown in figure 14.34. For example, starting from the root, go left,
then right, we arrive at ‘N’. Therefore, ‘N’ is encoded as ‘01’; While the paths of ‘A’ is
right, right, left, encoded as ‘110’.

14.6. SOLUTION SEARCH 267

13

5 8

2 N, 3

O, 1 R, 1

4 4

T, 2 I, 2 A, 2 2

E, 1 L, 1

Figure 14.34: Huffman tree

We can use the tree to decode as well. Scan the binary bits, go left for 0, and right
for 1. When arrive at a leaf, we decode the symbol from it. Then restart from the root to
continue scan. Huffman build the tree in bottom-up way. When start, wrap all symbols
in leaves. Every time, pick two nodes with the minimum weights, merge them to a branch
node of weight w. where w = w1 + w2 is the sum of the two weights. Repeat pick and
merge the two smallest weighted trees till we get the final tree, as shown in figure 14.35.

We reuse the binary tree definition for Huffman tree. We augment the weight and only
hold the symbol in leaf node. Let the branch node be (w, l, r), where w is the weight, l
and r are the left and right sub-trees. Let the leaf be (w, c), where c is the symbol. When
merge trees, we sum the weight: merge a b = (weight a+ weight b, a, b), where:

weight (w, a) = w
weight (w, l, r) = w

(14.51)

Below function repeatedly pick and merge the minimum weighted trees:

build [t] = t
build ts = build (merge t1t2) ts

′,where : (t1, t2, ts′) = extract ts
(14.52)

Function extract picks two trees with minimal weight. Define t1 < t2 if weight t1 <
weight t2.

extract(t1 :t2 :ts) = foldr min2 (min t1 t2,max t1 t2, []) ts (14.53)

Where:

min2 t (t1, t2, ts) =

{
t < t2 : (min t t1,max t t1, t2 :ts)

otherwise : (t1, t2, t:ts)
(14.54)

To iterate building Huffman tree, we store n sub-trees in array A. Scan A from right
to left, if the weight of A[i] is less than A[n− 1] or A[n], we swap A[i] and MAX(A[n−
1], A[n]). Merge A[n] and A[n − 1] after scan, and shrink the array by one. Repeat this
to build the Huffman tree:

1: function Huffman(A)
2: while |A| > 1 do
3: n← |A|

268 CHAPTER 14. SOLUTION SEARCH

2

E, 1 L, 1

(a) 1.

2

O, 1 R, 1

(b) 2.

4

T, 2 I, 2

(c) 3.
4

A, 2 2

E, 1 L, 1

(d) 4.

5

2 N, 3

O, 1 R, 1

(e) 5.
8

4 4

T, 2 I, 2 A, 2 2

E, 1 L, 1

(f) 6.
13

5 8

2 N, 3

O, 1 R, 1

4 4

T, 2 I, 2 A, 2 2

E, 1 L, 1

(g) 7.

Figure 14.35: Build a Huffman tree.

14.6. SOLUTION SEARCH 269

4: for i← n− 2 down to 1 do
5: T ← Max(A[n], A[n− 1])
6: if A[i] < T then
7: Exchange A[i] ↔ T

8: A[n− 1]← Merge(A[n], A[n− 1])
9: Drop(A[n])

10: return A[1]

We can build the code table from the Huffman tree. Let p = []. Traverse from the
root, update p← 0:p when go left; p← 1:p when go right. When arrive at leaf of symbol
c, record c 7→ reverse p to the code table. Define (Curried form): code = traverse [],
where:

traverse p (w, c) = [c 7→ reverse p]
traverse p (w, l, r) = traverse (0:p) l ++ traverse (1:p) l

(14.55)

When encoding, we scan the text w while looking up the code table dict to generate
binary bits:

encode dict w = concatMap (c 7→ dict[c]) w,where : dict = code T (14.56)

Conversely, when decoding, we scan the binary bits bs while looking up the tree. Start
from the root, go left for 0, right for 1; output symbol c when arrive at leaf; then reset to
the root to continue. decode T bs = lookup T bs, where:

lookup (w, c) [] = [c]
lookup (w, c) bs = c : lookup T bs

lookup (w, l, r) (b:bs) = lookup (if b = 0 then l else r) bs
(14.57)

Huffman tree building reflects a special strategy: always pick the two trees with the
minimal weight for merge every time. The series of local optimal options generate a global
optimal prefix-code. Local optimal sub-solutions are not necessary lead to global optimal
solution usually. Huffman coding is an exception. We call the strategy that always choose
the local optimal option as the greedy strategy. Greedy method simplifies and works for
many problems. However, it’s not easy to tell whether the greedy method generates the
global optimal solution. The generic formal proof is still an active research area [4].

Exercise 14.9

1. Implement the imperative Huffman code table algorithm.

Change making problem

How to change money with as few coins as possible? Suppose there are 5 values of coins:
1, 5, 25, 50, and 100. We define it as a set C = {1, 5, 25, 50, 100}. To change x money,
we can apply the greedy method, always choose the coin values most:

change 0 = []
change x = cm : change (x− cm),where : cm = max {c ∈ C, c ≤ x} (14.58)

For example, to change 142 money, this function output a coin list: [100, 25, 5, 5, 5,
1, 1]. We can convert it to [(100, 1), (25, 1), (5, 3), (1, 2)], meaning 1 coin of 100, 1 coin
of 25, 3 coins of 5, 2 coins of 1. For the coin system of C, the greedy method can find the
optimal solution. Actually, it is applicable for most coin systems in the world. There are

270 CHAPTER 14. SOLUTION SEARCH

exceptions for example: C = {1, 3, 4}. To change money x = 6, the optimal solution is 2
coins of 3, however, the greedy method gives 6 = 4 + 1 + 1, total 3 coins.

Although it’s not the optimal solution, the greedy method often gives a simplified
sub-optimal implementation. The result is often good enough in practice. For example,
the word-wrap is a common functionality in editors. If the length of the text T exceeds
the page width w, we need break it into lines. Let the space between words be s, below
greedy implementation gives the approximate optimal solution: put as many words as
possible in a line.

1: L←W
2: for w ∈ T do
3: if |w|+ s > L then
4: Insert line break
5: L←W − |w|
6: else
7: L← L− |w| − s

Exercise 14.10

1. Use heap to build the Huffman tree: take two trees from the top, merge then add
back to the heap.

2. If we sort the symbols by their weight as A, there is a linear time algorithm to
build the Huffman tree: use a tree Q to store the merge result, repeat take the
minimal weighted tree from Q and the head of A, merge then add to the queue.
After process all trees in A, there is a single tree in the Q, which is the Huffman
tree. Implement this algorithm.

3. Given a Huffman tree T , implement the decode algorithm with fold left.

14.6.3 Dynamic programming
Consider how to find the best solution to change money for any coin system. Let the
best solution to change x money is Cm (the list of coins). We can partition Cm into
two groups: C1 and C2, with values x1 and x2 respectively, i.e., Cm = C1 ++ C2 and
x = x1 + x2. We’ll prove that C1 is the optimal solution to change x1, and C2 is the
optimal solution to change x2.

Proof. For x1, suppose there exists another solution C ′
1 with less coins than C1. Then the

solution C ′
1++C2 changes x with less coins than Cm. This conflicts with the fact that Cm

is the optimal solution to change x. We can prove C2 is the optimal solution to change
X2 in the same way.

The reverse predication is not true. for any integer y < x, divide the original problem
to two sub-problems: change y and x− y. It’s not necessary the overall optimal solution
when combine the two optimal solutions. For example, use 3 values C = {1, 2, 4} to
change x = 6. The optimal solution needs two coins: 2+4. As 6 = 3+3, divide it to two
same sub-problems of changing 3. Each sub-problem has the optimal solution: 3 = 1+,
however, the combination (1 + 2) + (1 + 2) needs 4 coins. If an optimal problem can
be divided into several sub optimal problems, we call it has optimal substructure. The
change money problem has optimal substructure, but we need divide based on the coin
value, but not an arbitrary integer.

change 0 = []
change x = min [c : change (x− c)|c ∈ C, c < x]

(14.59)

14.6. SOLUTION SEARCH 271

Where min picks the shortest list, However, this definition is impractical. There
are too much duplicated computation. For example C = {1, 2, 25, 50, 100}, when com-
putes change(142), it needs further compute change(141), change(137), change(117),
change(92), change(42). For change(141), minus it by 1, 2, 25, 50, 100, we go back to
137, 117, 92, 42. The search domain expands at 5n. Reuse the idea to generate Fibonacci
numbers, we can use a table T to records the optimal solution to the sub-problems. T
starts from empty. When change money y, we lookup T [y] first. If T [y] = ∅, then
recursively compute the sub-problem, then save the sub-solution in T [y].

1: T ← [[],∅,∅, ...] ▷ T [0] = []
2: function Change(x)
3: if x > 0 and T [x] = ∅ then
4: for each c in C and c ≤ x do
5: Cm ← c : Change(x− c)
6: if T [x] = ∅ or |Cm| < |T [x]| then
7: T [x]← Cm

8: return T [x]

We can bottom-up generate optimal solutions for each sub-problem. From T [0] = [],
generate T [1] = [1], T [2] = [1, 1], T [3] = [1, 1, 1], T [4] = [1, 1, 1, 1], as shown in table
14.1(a). There are two options for T [5]: 5 coins of 1, or a coin of 5. The latter need fewer
coins. We update the optimal table to 14.1(b), T [5] = [5]. Next change money x = 6.
Both 1 and 5 are less than 6, there are two options: (1) 1 + T [5] gives [1, 5]; (2) 5 + T [1]
gives [5, 1]. They are equivalent, we pick either T [6] = [1, 5]. For T [i], where i ≤ x, we
check every coin value c ≤ i. Lookup T [i − c] for the sub-problem, then plus c to get a
new solution. We pick the fewest one as T [i].

x 0 1 2 3 4
optimal solution [] [1] [1, 1] [1, 1, 1] [1, 1, 1, 1]

(a) Optimal solution for x ≤ 4

x 0 1 2 3 4 5
optimal solution [] [1] [1, 1] [1, 1, 1] [1, 1, 1, 1] [5]

(b) Optimal solution for x ≤ 5

Table 14.1: Optimal solution table

1: function Change(x)
2: T ← [[],∅, ...]
3: for i← 1 to x do
4: for each c in C and c ≤ i do
5: if T [i] = ∅ or 1 + |T [i− c]| < |T [i]| then
6: T [i]← c : T [i− c]

7: return T [x]

There are many duplicated content in the optimal solution table as below. A solution
contains the sub-solutions. We can only record the changed part: the coin c we chosen
for T [i] and the number n of coins, i.e., T [i] = (n, c). To generate the list of coins for x,
we lookup T [x] to get c, then lookup T [x− c] to get c′, ... repeat this to T [0].

value 6 7 8 9 10 ...
optimal solution [1, 5] [1, 1, 5] [1, 1, 1, 5] [1, 1, 1, 1, 5] [5, 5] ...

272 CHAPTER 14. SOLUTION SEARCH

1: function Change(x)
2: T ← [(0,∅), (∞,∅), (∞,∅), ...]
3: for i← 1 to x do
4: for each c in C and c ≤ i do
5: (n,_)← T [i− c], (m,_)← T [i]
6: if 1 + n < m then
7: T [i]← (1 + n, c)

8: s← []
9: while x > 0 do

10: (_, c)← T [x]
11: s← c : s
12: x← x− c

13: return s

We can build the optimal solution table T with left fold: foldl fill [(0, 0)] [1, 2, ...],
where:

fill T x = T ▷min {(fst T [x− c], c)|c ∈ C, c ≤ x} (14.60)

Where s ▷ a append a to the right of s (see finger tree in chapter 12). Then rebuild
the optimal solution backwards from T :

change 0 T = []
change x T = c : change (x− c) T,where : c = snd T [x]

(14.61)

For x = n, we loop n times, check at most k = |C| coins. The performance is
bound to Θ(nk)7, and need O(n) space to persist T both in the top-down and bottom-up
implementations. The solution to the sub-problem is used many times to compute the
global optimal solution. We call it overlapping sub-problems. Richard Bellman developed
dynamic programming in 1940s. It has two properties.

1. Optimal sub-structure. The problem can be broken down into small problems. The
optimal solution can be constructed from the solutions of these sub-problems;

2. Overlapping sub-problems. The solution of the sub-problem is reused multiple times
to find the overall solution.

Longest common sub-sequence

Different with sub-string, the sub-sequence needn’t be consecutive. For example: the
longest common sub-string of ‘Mississippi’ and ‘Missunderstanding’ is ‘Miss’, while the
longest common sub-sequence is ‘Misssi’ as shown in figure 14.36. If rotate the figure by
90°, it turns to be a ‘diff’ result between them. This is a common function in version
control tools. The longest common sub-sequence of x and y are defined as below:

LCS([], ys) = []
LCS(xs, []) = []

LCS(x:xs, y :ys) =

{
x = y : x : LCS(xs, ys)

otherwise : max LCS(x:xs, ys) LCS(xs, y :ys)

(14.62)

Where max picks the longer sequence. There is optimal sub-structure in the definition
of LCS. It can be broken down into sub-problems. The sequence length reduced at least
by 1 every time. There are overlapping sub-problems. The longest common sub-sequence

7upper bound

14.6. SOLUTION SEARCH 273

Figure 14.36: The longest common sub-sequence

of the sub-strings are reused multiple times to find the global optimal solution. We use
a 2D table T to record the optimal solution of the sub-problems. The row and column
represent xs and ys respectively. Index the sequence from 0. Row 0, column 0 represents
the empty sequence. T [i][j] is the length of LCS(xs[0..j], ys[0..i]). We finally build the
longest common sub-sequences from T . Because LCS([], ys) = LCS(xs, []) = [], row
0 and column 0 are all 0s. Consider ‘antenna’ and ‘banana’ for example, we fill row
1 from T [1][1]. ‘b’ is different from any one in ‘antenna’, hence row 1 are all 0s. For
T [2][1], the row and column are corresponding to ‘a’, T [2][1] = T [1][0] + 1 = 1, i.e.,
LCS(a,ba) = a. Next move to T [2][2], ‘a’ neq ‘n’, we choose the greater one between
the above (LCS(an,b)) and the left (LCS(a,ba)) as T [2][2], which equals to 1, i.e.,
LCS(ba, an) = a. In this way, we step by step fill the table out. The rule is: for T [i][j],
if xs[i − 1] = ys[i − 1], then T [i][j] = T [i − 1][j − 1] + 1; otherwise, pick the greater one
from above T [i− 1][j] and the left T [i][j − 1].

0 1 2 3 4 5 6 7
[] a n t e n n a

0 [] 0 0 0 0 0 0 0 0
1 b 0 0 0 0 0 0 0 0
2 a 0 1 1 1 1 1 1 1
3 n 0 1 2 2 2 2 2 2
4 a 0 1 2 2 2 2 2 3
5 n 0 1 2 2 2 3 3 3
6 a 0 1 2 2 2 3 3 4

1: function LCS(xs, ys)
2: m← |xs|, n← |ys|
3: T ← [[0, 0, ...], [0, 0, ...], ...] ▷ (m+ 1)× (n+ 1)
4: for i← 1 to m do
5: for j ← 1 to n do

274 CHAPTER 14. SOLUTION SEARCH

6: if xs[i] = ys[j] then
7: T [i+ 1][j + 1]← T [i][j] + 1
8: else
9: T [i+ 1][j + 1]← Max(T [i][j + 1], T [i+ 1][j])

10: return Fetch(T, xs, ys) ▷ build the LCS
We next build the longest common sub-sequence from T . Start from the bottom-

right, if xs[m] = ys[n], then xs[m] is the tail of the LCS, we next compare xs[m− 1] and
ys[n− 1]; otherwise, we pick the greater one from T [m− 1][n] and T [m][n− 1] and go on.

1: function Fetch(T, xs, ys)
2: m← |xs|, n← |ys|
3: r ← []
4: while m > 0 and n > 0 do
5: if xs[m− 1] = ys[n− 1] then
6: r ← xs[m− 1] : r
7: m← m− 1
8: n← n− 1
9: else if T [m− 1][n] > T [m][n− 1] then

10: m← m− 1
11: else
12: n← n− 1

13: return r

Exercise 14.11
1. For the longest common sub-sequence, build the optimal solution table with fold.

Subset sum

Given a set X of integers, how to find all the subsets S ⊆ X, that the sum of elements
in S is s, i.e.,

∑
S =

∑
i∈S

i = s? For example, X = {11, 64, -82, -68, 86, 55, -88, -21, 51},

there are three subsets with sum s = 0: S = ∅, {64, -82, 55, -88, 51}, {64, -82, -68, 86}.
We need exhaust 2n subset sums, where n = |X|, the performance is O(n2n).

sets s ∅ = [∅]

sets s (x:xs) =

{
s = x : {x} : sets s xs

otherwise : (sets s xs) ++ [x:S|S ∈ sets (s− x) xs]

(14.63)

There is sub-structure and overlapping sub-problems in above exhaustive search defi-
nition, we can apply dynamic programming method. We bottom-up build solution table
T , and generate the final subset. First consider the existence of some subset S, satisfying∑

S = s. We scan the elements to determine the bottom/up bound of the subset sum
l ≤ s ≤ u. if s < l or s > u, then there’s no solution.

l =
∑
{x ∈ X,x < 0}, u =

∑
{x ∈ X,x > 0} (14.64)

As the elements are integers, there are m = u − l + 1 columns in table T , each
corresponds to a value: l ≤ j ≤ u. There are n = |X|+1 rows, each corresponds to some
element xi. T [i][j] indicates whether exists some subset S ⊆ {x1, x2, ..., xi}, satisfying∑

S = j. Row 0 is special, represents the sum of empty set ∅. All entries in T start
from false F except T [0][0] = T, meaning

∑
∅ = 0. Start from x1 to build row 1. Besides∑

∅ = 0,
∑
{x1} = x1, hence T [1][0] =T, T [1][x1] =T.

14.6. SOLUTION SEARCH 275

l l + 1 ... 0 ... x1 ... u
∅ F F ... T ... F ... F
x1 F F ... T ... T ... F
... F F ... T ... T ... F

Add x2, we get 4 possible subset sums:
∑

∅ = 0,
∑
{x1} = x1,

∑
{x2} = x2,∑

{x1, x2} = x1 + x2.

l l + 1 ... 0 ... x1 ... x2 ... x1 + x2 ... u
∅ F F ... T ... T ... F ... F ... F
x1 F F ... T ... T ... F ... F ... F
x2 F F ... T ... T ... T ... T ... F
... F F ... T ... T ... T ... T ... F

We add element xi to fill row i. We can obtain all subset sums from previous elements:
{x1, x2, ..., xi−1}, hence all the entries of true in previous row are still true. Because∑
{xi} = xi, hence T [i][xi] = T. We add xi to each previous sum, generate some new

sums, the corresponding entries of them are all true. After add all n elements, the Boolean
value of T [n][s] gives whether the subset sum s exists.

1: function Subset-Sum(X, s)
2: l←

∑
{x ∈ X,x < 0}, u←

∑
{x ∈ X,x > 0}

3: n← |X|
4: T ← {{F,F, ...}, {F,F, ...}, ...} ▷ (n+ 1)× (u− l + 1)
5: T [0][0]← T ▷

∑
∅ = 0

6: for i← 1 to n do
7: T [i][X[i]]←T
8: for j ← l to u do
9: T [i][j]← T [i][j] ∨ T [i− 1][j]

10: j′ ← j −X[i]
11: if l ≤ j′ ≤ u then
12: T [i][j]← T [i][j] ∨ T [i− 1][j′]

13: return T [n][s]

The column index j does not start from 0, but from l to u. We can convert it by
j − l in programming environment. We next generate all subsets S satisfying

∑
S = s

from table T . If T [n][s] =F then there’s no solution; otherwise, there are two cases: (1) if
xn = s, then the singleton set {xn} is a solution. We next lookup T [n− 1][s], if it’s true
T , then recursively generate all subsets from {x1, x2, x3, ..., xn−1} that the sum is s. (2)
let s′ = s− xn, if l ≤ s′ ≤ u and T [n− 1][s′] is true, we recursively generate subsets from
{x1, x2, x3, ..., xn−1} that the sum is s′, then add xn to each subset.

1: function Get(X, s, T, n)
2: r ← []
3: if X[n] = s then
4: r ← {X[n]} : r
5: if n > 1 then
6: if T [n− 1][s] then
7: r ← r++ Get(X, s, T, n− 1)
8: s′ ← s−X[n]
9: if l ≤ s′ ≤ u and T [n− 1][s′] then

276 CHAPTER 14. SOLUTION SEARCH

10: r ← r ++ [(X[n]:r′)|r′ ← Get(X, s′, T, n− 1)]
11: return r

The dynamic programming method loops O(n(u− l+1)) times to build table T , then
recursively generate the solution in O(n) levels. The 2D table need O(n(u− l+1)) space.
We can replace it with a 1D vector V of u− l+ 1 entries. each V [j] = {S1, S2, ...} stores
the subsets that

∑
S1 =

∑
S2 = ... = j. V start from all empty entries. For each xi, we

update V a round, add the new obtained sums with xi. The final solution is in V [s].
1: function Subset-Sum(X, s)
2: l←

∑
{x ∈ X,x < 0}, u←

∑
{x ∈ X,x > 0}

3: V ← [∅,∅, ...] ▷ u− l + 1
4: for each x in X do
5: U ← Copy(V)
6: for j ← l to u do
7: if x = j then
8: U [j]← {{x}} ∪ U [j]

9: j′ ← j − x
10: if l ≤ j′ ≤ u and V [j′] 6= ∅ then
11: U [j]← U [j] ∪ {({x} ∪ S)|S ∈ V [j′]}
12: V ← U
13: return V [s]

We can build the solution vector with left fold: V = foldl bld (replicate(u−l+1) ∅)X,
where replicate n a generates list [a, a, ..., a] of length n. bld updates V with each elements
in X.

bld V x = foldl f V [l, l + 1..., u] (14.65)

Where:

f V j =

j = x : V [j] ∪ {{x}}
l ≤ j′ ≤ u and T [j′] 6= ∅ : V [j] ∪ {{x}S|S ∈ T [j′]},where : j′ = j − x

otherwise : V

(14.66)

Exercise 14.12
1. For the longest common sub-sequence problem, an alternative solution is to record

the direction in the table. There are three directions: ’N’ for north, ’W’ for west,
and ’NW’. Given such a table, we can build the longest common sub-sequence from
the bottom-right entry. If the entry is ’NW’, next go to the upper-left entry; if it’s
’N’, go to the above row; and go to the previous entry if it’s ’W’. Implement this
solution.

2. For the subset sum upper/lower bound, does l ≤ 0 ≤ u always hold? can we reduce
the range between the bounds?

3. Given a list of non-negative integers, find the maximum sum composed by numbers
that none of them are adjacent.

4. Edit distance (also known as Levenshtein edit distance) is defined as the cost of
converting from one string s to another string t. It is widely used in spell-checking,
OCR correction etc. There are three symbol changes: insert, delete, and replace.
Each operation mutate a character a time. For example the edit distance is 3 for
‘kitten’ 7→ ‘sitting’:

1. kitten → sitten (k 7→ s);

14.7. APPENDIX - EXAMPLE PROGRAMS 277

2. sitten → sittin (e 7→ i);
3. sittin → sitting (+ g).

Compute the edit distance with dynamic programming.

14.7 Appendix - example programs
Find the top-k element:
Optional<K> top(Int k, [K] xs, Int l, Int u) {

if l < u {
swap(xs, l, rand(l, u))
var p = partition(xs, l, u)
if p - l + 1 == k

return Optional.of(xs[p])
return if k < p - l + 1 then top(k, xs, l, p)

else top(k- p + l - 1, xs, p + 1, u)
}
return Optional.Nothing

}

Int partition([K] xs, Int l, Int u) {
var p = l
for var r = l + 1 to u {

if not xs[p] < xs[r] {
l = l + 1
swap(xs, l, r)

}
}
swap(xs, p, l)
return l

}

Saddle back search:
solve f z = search 0 m where

search p q | p > n | | q < 0 = []
| z' < z = search (p + 1) q
| z' > z = search p (q - 1)
| otherwise = (p, q) : search (p + 1) (q - 1)

where z' = f p q
m = bsearch (f 0) z (0, z)
n = bsearch (λx→f x 0) z (0, z)

bsearch f y (l, u) | u ≤ l = l
| f m ≤ y = if f (m + 1) ≤ y then bsearch f y (m + 1, u) else m
| otherwise = bsearch f y (l, m-1)

where m = (l + u) `div` 2

Boyer-Moore majority:
Optional<T> majority([T] xs) {

var (m, c) = (Optional<T>.Nothing, 0)
for var x in xs {

if c == 0 then (m, c) = (Optional.of(x), 0)
if x == m then c++ else c--

}
c = 0
for var x in xs {

if x == m then c++
}
return if c > length(xs)/2 then m else Optional<T>.Nothing

}

278 CHAPTER 14. SOLUTION SEARCH

Find the majority with fold:
majority xs = verify $ foldr maj (Nothing, 0) xs where

maj x (Nothing, 0) = (Just x, 1)
maj x (Just y, v) | x == y = (Just y, v + 1)

| v == 0 = (Just x, 1)
| otherwise = (Just y, v - 1)

verify (Nothing, _) = Nothing
verify (Just m, _) = if 2 ∗ (length $ filter (==m) xs) > length xs

then Just m else Nothing

The maximum sum of sub-vector:
maxSum :: (Ord a, Num a) ⇒ [a] → a
maxSum = fst ◦ foldr f (0, 0) where

f x (m, mSofar) = (m', mSofar') where
mSofar' = max 0 (mSofar + x)
m' = max mSofar' m

KMP string matching:
[Int] match([T] w, [T]p) {

n = length(w), m = length(p)
[Int] fallback = prefixes(p)
[Int] r = []
Int k = 0
for i = 0 to n {

while k > 0 and p[k] ̸= w[i] {
k = fallback[k]

}
if p[k] == w[i] then k = k + 1
if k == m {

add(r, i + 1 - m)
k = fallback[k - 1]

}
}
return r

}

[Int] prefixes([T] p) {
m = length(p)
[Int] t = [0] ∗ m //fallback table
Int k = 0
for i = 2 to m {

while k > 0 and p[i-1] ̸= p[k] {
k = t[k-1] #fallback

}
if p[i-1] == p[k] then k = k + 1
t[i] = k

}
return t

}

The maze puzzle:
dfsSolve m from to = solve [[from]] where

solve [] = []
solve (c@(p:path):cs)

| p == to = reverse c
| otherwise = let os = filter (`notElem` path) (adj p) in

if os == [] then solve cs
else solve ((map (:c) os) ++ cs)

adj (x, y) = [(x', y') | (x', y') ← [(x-1, y), (x+1, y), (x, y-1), (x, y+1)],
inRange (bounds m) (x', y'), m ! (x', y') == 0]

The eight queens puzzle:

14.7. APPENDIX - EXAMPLE PROGRAMS 279

solve = dfsSolve [[]] [] where
dfsSolve [] s = s
dfsSolve (c:cs) s

| length c == 8 = dfsSolve cs (c:s)
| otherwise = dfsSolve ([(x:c) | x ← [1..8] \\ c,

not $ attack x c] ++ cs) s
attack x c = let y = 1 + length c in

any (λ(i, j) → abs(x - i) == abs(y - j)) $
zip (reverse c) [1..]

The peg puzzle:
solve = dfsSolve [[[-1, -1, -1, 0, 1, 1, 1]]] [] where

dfsSolve [] s = s
dfsSolve (c:cs) s

| head c == [1, 1, 1, 0, -1, -1, -1] = dfsSolve cs (reverse c:s)
| otherwise = dfsSolve ((map (:c) $ moves $ head c) ++ cs) s

moves s = filter (̸= s) [leapLeft s, hopLeft s, leapRight s, hopRight s] where
leapLeft [] = []
leapLeft (0:y:1:ys) = 1:y:0:ys
leapLeft (y:ys) = y:leapLeft ys
hopLeft [] = []
hopLeft (0:1:ys) = 1:0:ys
hopLeft (y:ys) = y:hopLeft ys
leapRight [] = []
leapRight (-1:y:0:ys) = 0:y:(-1):ys
leapRight (y:ys) = y:leapRight ys
hopRight [] = []
hopRight (-1:0:ys) = 0:(-1):ys
hopRight (y:ys) = y:hopRight ys

Iterative solution to the peg puzzle:
[Int] solve([Int] start, [Int] end) {

stack = [[start]]
s = []
while stack ̸= [] {

c = pop(stack)
if c[0] == end {

s += reverse(c)
} else {

for [Int] m in moves(c[0]) {
stack += (m:c)

}
}

}
return s

}

[[Int]] moves([Int] s) {
[[Int]] ms = []
n = length(s)
p = find(s, 0)
if p < n - 2 and s[p+2] > 0 then ms += swap(s, p, p+2)
if p < n - 1 and s[p+1] > 0 then ms += swap(s, p, p+1)
if p > 1 and s[p-2] < 0 then ms += swap(s, p, p-2)
if p > 0 and s[p-1] < 0 then ms += swap(s, p, p-1)
return ms

}

[Int] swap([Int] s, Int i, Int j) {
a = copy(s)
(a[i], a[j]) = (a[j], a[i])
return a

280 CHAPTER 14. SOLUTION SEARCH

}

The wolf, goat, cabbage cross river puzzle:
import Data.Bits
import qualified Data.Sequence as Queue
import Data.Sequence (Seq((:<|)), (><))

solve = bfsSolve $ Queue.singleton [(15, 0)] where
bfsSolve Queue.Empty = [] −− no solution
bfsSolve (c@(p:_) :<| cs)
| fst p == 0 = reverse c
| otherwise = bfsSolve (cs >< (Queue.fromList $ map (:c)

(filter (`valid` c) $ moves p)))

valid (a, b) r = not $ or [a `elem` [3, 6], b `elem` [3, 6], (a, b) `elem` r]

moves (a, b) = if b < 8 then trans a b else map swap (trans b a) where
trans x y = [(x - 8 - i, y + 8 + i)

| i ←[0, 1, 2, 4], i == 0 | | (x .&. i) ̸= 0]
swap (x, y) = (y, x)

The extended Euclid algorithm to solve the water jugs puzzle:
extGcd 0 b = (b, 0, 1)
extGcd a b = let (d, x', y') = extGcd (b `mod` a) a in

(d, y' - x' ∗ (b `div` a), x')

solve a b g | g `mod` d ̸= 0 = []
| otherwise = solve' (x ∗ g `div` d)

where
(d, x, y) = extGcd a b
solve' x | x < 0 = solve' (x + b)

| otherwise = pour x [(0, 0)]
pour 0 ps = reverse ((0, g):ps)
pour x ps@((a', b'):_) | a' == 0 = pour (x - 1) ((a, b'):ps)

| b' == b = pour x ((a', 0):ps)
| otherwise = pour x ((max 0 (a' + b' - b),

min (a' + b') b):ps)

BFS solution to the water jugs puzzle:
import qualified Data.Sequence as Queue
import Data.Sequence (Seq((:<|)), (><))

solve' a b g = bfs $ Queue.singleton [(0, 0)] where
bfs Queue.Empty = []
bfs (c@(p:_) :<| cs)
| fst p == g | | snd p == g = reverse c
| otherwise = bfs (cs >< (Queue.fromList $ map (:c) $ expand c))

expand ((x, y):ps) = filter (`notElem` ps) $ map (λf → f x y)
[fillA, fillB, pourA, pourB, emptyA, emptyB]

fillA _ y = (a, y)
fillB x _ = (x, b)
emptyA _ y = (0, y)
emptyB x _ = (x, 0)
pourA x y = (max 0 (x + y - b), min (x + y) b)
pourB x y = (min (x + y) a, max 0 (x + y - a))

Iterative BFS for water jugs puzzle:
data Step {

Pair<Int> (p, q)
Step parent
Step(Pair<Int>(x, y), Step p = null) {

(p, q) = (x, y), parent = p

14.7. APPENDIX - EXAMPLE PROGRAMS 281

}
}

Bool (==) (Step a, Step b) = {a.(p, q) == b.(p, q)}
Bool (̸=) (Step a, Step b) = not ◦ (==)

[Step] expand(Step s, Int a, Int b) {
var (p, q) = s.(p, q)
return [Step(a, q, s), /∗fill A∗/

Step(p, b, s), /∗fill B∗/
Step(0, q, s), /∗empty A∗/
Step(p, 0, s), /∗empty B∗/
Step(max(0, p + q - b), min(p + q, b), s), /∗pour A into B∗/
Step(min(p + q, a), max(0, p + q - a), s)] /∗pour B into A∗/

}

Optional<[Step]> solve(Int a, Int b, Int g) {
q = Queue<Step>(Step(0, 0))
Set<Step> visited = {head(q)}
while not empty(q) {

var cur = pop(q)
if cur.p == g | | cur.q == g {

return Optional.of(backtrack(cur))
} else {

for s in expand(cur, a, b) {
if cur ̸= s and s not in visited {

push(q, s)
visited += s

}
}

}
}
return Optional.Nothing

}

[Step] backtrack(Step s) {
[Step] seq
while s ̸= null {

seq = s : seq
s = s.parent

}
return seq

}

Klotski puzzle:
import qualified Data.Map as Map
import qualified Data.Set as Set
import qualified Data.Sequence as Queue
import Data.Sequence (Seq((:<|)), (><))

cellOf (y, x) = y ∗ 4 + x
posOf c = (c `div` 4, c `mod` 4)

cellSet = Set.fromList ◦ (map cellOf)

type Layout = Map.Map Integer (Set.Set Integer)
type NormLayout = Set.Set (Set.Set Integer)
type Move = (Integer, Integer)

start = Map.map cellSet $ Map.fromList
[(1, [(0, 0), (1, 0)]),
(2, [(0, 3), (1, 3)]),
(3, [(2, 0), (3, 0)]),
(4, [(2, 1), (2, 2)]),
(5, [(2, 3), (3, 3)]),

282 CHAPTER 14. SOLUTION SEARCH

(6, [(4, 0)]), (7, [(3, 1)]), (8, [(3, 2)]), (9, [(4, 3)]),
(10, [(0, 1), (0, 2), (1, 1), (1, 2)])]

end = cellSet [(3, 1), (3, 2), (4, 1), (4, 2)]

normalize = Set.fromList ◦ Map.elems

mirror = Map.map (Set.map f) where
f c = let (y, x) = posOf c in cellOf (y, 3 - x)

klotski = solve q visited where
q = Queue.singleton (start, [])
visited = Set.singleton (normalize start)

solve Queue.Empty _ = []
solve ((x, ms) :<| cs) visited | Map.lookup 10 x == Just end = reverse ms

| otherwise = solve q visited'
where
q = cs >< (Queue.fromList [(move x op, op:ms) | op ← ops])
visited' = foldr Set.insert visited (map (normalize ◦ move x) ops)
ops = expand x visited

expand x visited = [(i, d) | i ←[1..10], d ← [-1, 1, -4, 4],
valid i d, unique i d]

where
valid i d = let p = trans d (maybe Set.empty id $ Map.lookup i x) in

(not $ any (outside d) p) &&
(Map.keysSet $ Map.filter (overlapped p) x)

`Set.isSubsetOf` Set.singleton i
outside d c = c < 0 | | c ≥ 20 | |

(d == 1 && c `mod` 4 == 0) | | (d == -1 && c `mod` 4 == 3)
unique i d = let ly = move x (i, d) in all (`Set.notMember` visited)

[normalize ly, normalize (mirror ly)]

move x (i, d) = Map.update (Just ◦ trans d) i x

trans d = Set.map (d+)

overlapped :: (Set.Set Integer) → (Set.Set Integer) → Bool
overlapped a b = (not ◦ Set.null) $ Set.intersection a b

Iterative solution to the Klotski puzzle:
type Layout = [Set<Int>]

Layout START = [{0, 4}, {3, 7}, {8, 12}, {9, 10},
{11, 15},{16},{13}, {14}, {19}, {1, 2, 5, 6}]

Set<Int> END = {13, 14, 17, 18}

(Int, Int) pos(Int c) = (y = c / 4, x = c mod 4)

[[Int]] matrix(Layout layout) {
[[Int]] m = replicate(replicate(0, 4), 5)
for Int i, var p in (zip([1, 2, ...], layout)) {

for var c in p {
y, x = pos(c)
m[y][x] = i

}
}
return m

}

data Node {
Node parent
Layout layout

14.7. APPENDIX - EXAMPLE PROGRAMS 283

Node(Layout l, Node p = null) {
layout = l, parent = p

}
}

//usage: solve(START, END)
Optional<Node> solve(Layout start, Set<Int> end) {

var visit = {Set(start)}
var queue = Queue.of(Node(start))
while not empty(queue) {

cur = pop(queue)
if last(cur.layout) == end {

return Optional.of(cur)
} else {

for ly in expand(cur.layout, visit) {
push(queue, Node(ly, cur))
add(visit, Set(ly))

}
}

}
return Optional.None

}

[Layout] expand(Layout layout, Set<Set<Layout>> visit):
Bool bound(Set<Int> piece, Int d) {

for c in piece {
if c + d < 0 or c + d ≥ 20 then return False
if d == 1 and c mod 4 == 3 then return False
if d == -1 and c mod 4 == 0 then return False

}
return True

}

var m = matrix(layout)
Bool valid(Set<Int> piece, Int d, Int i) {

for c in piece {
y, x = pos(c + d)
if m[y][x] not in [0, i] then return False

}
return True

}

Bool unique(Layout ly) {
n = Set(ly)
Set<Set<Int>> m = map(map(c → 4 ∗ (c / 4) + 3 - (c mod 4), p), n)
return (n not in visit) and (m not in visit)

}

[Layout] s = []
for i, p in zip([1, 2, ...], layout) {

for d in [-1, 1, -4, 4] {
if bound(p, d) and valid(p, d, i) {

ly = move(layout, i - 1, d)
if unique(ly) then s.append(ly)

}
}

}
return

}

Layout move(Layout layout, Int i, Int d) {
ly = clone(layout)
ly[i] = map((d+), layout[i])
return ly

284 CHAPTER 14. SOLUTION SEARCH

}

Code, decode with a Huffman tree:
code = Map.fromList ◦ (traverse []) where

traverse bits (Leaf _ c) = [(c, reverse bits)]
traverse bits (Branch _ l r) = traverse (0:bits) l ++ traverse (1:bits) r

encode dict = concatMap (dict !)

decode tr cs = find tr cs where
find (Leaf _ c) [] = [c]
find (Leaf _ c) bs = c : find tr bs
find (Branch _ l r) (b:bs) = find (if b == 0 then l else r) bs

Greedy change-making:
import qualified Data.Set as Set
import Data.List (group)

solve x = assoc ◦ change x where
change 0 _ = []
change x cs = let c = Set.findMax $ Set.filter (≤ x) cs in c : change (x - c) cs
assoc = (map (λcs → (head cs, length cs))) ◦ group

example = solve 142 $ Set.fromList [1, 5, 25, 50, 100]

Dynamic programming change-making:
[Int] change(Int x, Set<Int> cs) {

t = [(0, None)] ++ [(x + 1, None)] ∗ x
for i = 1 to x {

for c in cs {
if c ≤ i {

(n, _) = t[i - c]
(m, _) = t[i]
if 1 + n < m then t[i] = (1 + n, c)

s = []
while x > 0:

(_, c) = t[x]
s += c
x = x - c

return s
}

Dynamic programming with fold to solve the change-making problem:
import qualified Data.Set as Set
import Data.Sequence ((|>), singleton, index)

changemk x cs = makeChange x $ foldl fill (singleton (0, 0)) [1..x] where
fill tab i = tab |> (n, c) where
(n, c) = minimum $ Set.map lookup $ Set.filter (≤ i) cs
lookup c = (1 + fst (tab `index` (i - c)), c)

makeChange 0 _ = []
makeChange x tab = let c = snd $ tab `index` x in c : makeChange (x - c) tab

The longest common sub-sequence:
[K] lcs([K] xs, [K] ys) {

Int m = length(xs), n = length(ys)
[[Int]] c = [[0]∗(n + 1)]∗(m + 1)
for i = 1 to m {

for j = 1 to n {
if xs[i-1] == ys[j-1] {

c[i][j] = c[i-1][j-1] + 1

14.7. APPENDIX - EXAMPLE PROGRAMS 285

} else {
c[i][j] = max(c[i-1][j], c[i][j-1])

}
}

}
return fetch(c, xs, ys)

}

[K] fetch([[Int]] c, [K] xs, [K] ys) {
[K] r = []
var m = length(xs), n = length(ys)
while m > 0 and n > 0 {

if xs[m - 1] == ys[n - 1] {
r += xs[m - 1]
m = m - 1
n = n - 1

} else if c[m - 1][n] > c[m][n - 1] {
m = m - 1

} else {
n = n - 1

}
}
return reverse(r)

}

Existence of the subset sum:
Bool subsetsum([Int] xs, Int s) {

Int l = 0, u = 0, n = length(xs)
for x in xs {

if x > 0 then u++ else l++
}
tab = [[False]∗(u - l + 1)] ∗ (n + 1)
tab = [0][0 - l] = True
for i, x in zip([1, 2, ..., n], xs) {

tab[i][x - l] = True
for j = l to u {

tab[i][j - l] or = tab[i-1][j - l]
j1 = j - x
if l ≤ j1 ≤ u then tab[i][j - l] or = tab[i-1][j1 - l]

}
}
return tab[n][s - l]

}

Solve the subset sum with a vector:
{{Int}} subsetsum(xs, s) {

Int l = 0, u = 0, n = length(xs)
for x in xs {

if x > 0 then u++ else l++
}
tab = {} ∗ (u - l + 1)
for x in xs {

tab1 = copy(tab)
for j = low to up {

if x == j then add(tab1[j], {x})
j1 = j - x
if low ≤ j1 ≤ up and tab[j1] {

tab1[j] |= {add(ys, x) for ys in tab[j1]}
}

}
tab = tab1

}
return tab[s]

}

286 CHAPTER 14. SOLUTION SEARCH

Imperative delete for red-black
tree

We need handle more cases for imperative delete than insert. To resume balance after
cutting off a node fro the red-black tree, we perform rotations and re-coloring. When
delete a black node, rule 5 will be violated because the number of black nodes along the
path through that node reduces by one. We introduce ‘doubly-black’ to maintain the
number of black nodes unchanged. Below example program adds ‘doubly black’ to the
color definition:
data Color {RED, BLACK, DOUBLY_BLACK}

When delete a node, we re-use the binary search tree delete in the first step, then
further fix the balance if the node is black.

1: function Delete(T, x)
2: p← Parent(x)
3: q ← NIL
4: if Left(x) = NIL then
5: q ← Right(x)
6: Replace(x, Right(x)) ▷ replace x with its right sub-tree
7: else if Right(x) = NIL then
8: q ← Left(x)
9: Replace(x, Leftx()) ▷ replace x with its left sub-tree

10: else
11: y ← Min(Right(x))
12: p← Parent(y)
13: q ← Right(y)
14: Key(x) ← Key(y)
15: copy data from y to x
16: Replace(y, Right(y)) ▷ replace y with its right sub-tree
17: x← y

18: if Color(x) = BLACK then
19: T ← Delete-Fix(T , Make-Black(p, q), q = NIL?)
20: release x
21: return T

Delete takes the root T and the node x to be deleted as the parameters. x can be
located through lookup. If x has an empty sub-tree, we cut off x, then replace it with
the other sub-tree q. Otherwise, we locate the minimum node y in the right sub-tree of
x, then replace x with y. We cut off y after that. If x is black, we call Make-Black(p,
q) to maintain the blackness before further fixing.

1: function Make-Black(p, q)
2: if p = NIL and q = NIL then

287

288 IMPERATIVE DELETE FOR RED-BLACK TREE

3: return NIL ▷ The tree was singleton
4: else if q = NIL then
5: n← Doubly Black NIL
6: Parent(n) ← p
7: return n
8: else
9: return Blacken(q)
If both p and q are empty, we are deleting the only leaf from a singleton tree. The

result is empty. If the parent p is not empty, but q is, we are deleting a black leaf. We use
NIL to replace that black leaf. As NIL is already black, we change it to ’doubly black’ NIL
to maintain the blackness. Otherwise, if neither p nor q is empty, we call Blacken(q).
If q is red, it changes to black; if q is already black, it changes to doubly black. As the
next step, we need eliminate the doubly blackness through tree rotations and re-coloring.
There are three different cases ([4], pp292). The doubly black node can be NIL or not in
all the cases.

Case 1. The sibling of the doubly black node is black, and it has a red sub-tree. We
can rotate the tree to fix the doubly black. There are 4 sub-cases, all can be transformed
to a uniformed structure as shown in figure 37.

Figure 37: The doubly black node has a black sibling, and a red nephew. It can be fixed
with a rotation.

1: function Delete-Fix(T , x, f)
2: n← NIL
3: if f = True then ▷ x is doubly black NIL
4: n← x
5: if x = NIL then ▷ Delete the singleton leaf
6: return NIL
7: while x 6= T and Color(x) = B2 do ▷ x is doubly black, but not the root
8: if Sibling(x) 6= NIL then ▷ The sibling is not empty
9: s← Sibling(x)

10: ...
11: if s is black and Left(s) is red then
12: if x = Left(Parent(x)) then ▷ x is the left
13: set x, Parent(x), and Left(s) all black

289

14: T ← Rotate-Right(T , s)
15: T ← Rotate-Left(T , Parent(x))
16: else ▷ x is the right
17: set x, Parent(x), s, and Left(s) all black
18: T ← Rotate-Right(T , Parent(x))
19: else if s is black and Right(s) is red then
20: if x = Left(Parent(x)) then ▷ x is the left
21: set x, Parent(x), s, and Right(s) all black
22: T ← Rotate-Left(T , Parent(x))
23: else ▷ x is the right
24: set x, Parent(x), and Right(s) all black
25: T ← Rotate-Left(T , s)
26: T ← Rotate-Right(T , Parent(x))
27: ...

Case 2. The sibling of the doubly black is red. We can rotate the tree to change the
doubly black node to black. As shown in figure 38, change a or c to black. We can add
this fixing to the previous implementation.

Figure 38: The sibling of the doubly black is red

1: function Delete-Fix(T , x, f)
2: n← NIL
3: if f = True then ▷ x is doubly black NIL
4: n← x
5: if x = NIL then ▷ Delete the singleton leaf
6: return NIL
7: while x 6= T and Color(x) = B2 do
8: if Sibling(x) 6= NIL then
9: s← Sibling(x)

10: if s is red then ▷ The sibling is red
11: set Parent(x) red
12: set s black
13: if x = Left(Parent(x)) then ▷ x is the left
14: T ← Rotate-LeftT , Parent(x)
15: else ▷ x is the right
16: T ← Rotate-RightT , Parent(x)
17: else if s is black and Left(s) is red then

290 IMPERATIVE DELETE FOR RED-BLACK TREE

18: ...
Case 3. The sibling of the doubly black node, and its two sub-trees are all black.

In this case, we re-color the sibling to red, change the doubly black node back to black,
then move the doubly blackness up to the parent. As shown in figure 39, there are two
symetric sub-cases.

Figure 39: move the blackness up

The sibling of the doubly black isn’t empty in all above 3 cases. Otherwise, we change
the doubly black node back to black, and move the blackness up. When reach the root,
we force the root to be black to complete fixing. It also terminates if the doubly black
node is eliminated after re-color in the midway. At last, if the doubly black node passed
in is empty, we turn it back to normal NIL.

1: function Delete-Fix(T , x, f)
2: n← NIL
3: if f = True then ▷ x is a doubly black NIL
4: n← x
5: if x = NIL then ▷ Delete the singleton leaf
6: return NIL
7: while x 6= T and Color(x) = B2 do
8: if Sibling(x) 6= NIL then ▷ The sibling is not empty
9: s← Sibling(x)

10: if s is red then ▷ The sibling is red
11: set Parent(x) red
12: set s black
13: if x = Left(Parent(x)) then ▷ x is the left
14: T ← Rotate-LeftT , Parent(x)
15: else ▷ x is the right
16: T ← Rotate-RightT , Parent(x)
17: else if s is black and Left(s) is red then
18: if x = Left(Parent(x)) then ▷ x is the left
19: set x, Parent(x), and Left(s) all black
20: T ← Rotate-Right(T , s)
21: T ← Rotate-Left(T , Parent(x))
22: else ▷ x is the right
23: set x, Parent(x), s, and Left(s) all black
24: T ← Rotate-Right(T , Parent(x))

291

25: else if s is black and Right(s) is red then
26: if x = Left(Parent(x)) then ▷ x is the left
27: set x, Parent(x), s, and Right(s) all black
28: T ← Rotate-Left(T , Parent(x))
29: else ▷ x is the right
30: set x, Parent(x), and Right(s) all black
31: T ← Rotate-Left(T , s)
32: T ← Rotate-Right(T , Parent(x))
33: else if s, Left(s), and Right(s) are all black then
34: set x black
35: set s red
36: Blacken(Parent(x))
37: x← Parent(x)
38: else ▷ move the blackness up
39: set x black
40: Blacken(Parent(x))
41: x← Parent(x)
42: set T black
43: if n 6= NIL then
44: replace n with NIL
45: return T

When fixing, we pass in the root T , the node x (can be doubly black), and a flag f .
The flag is true if x is doubly black NIL. We record it with n, and replace n with the
normal NIL after fixing.

Below is the example program implements delete:
Node del(Node t, Node x) {

if x == null then return t
var parent = x.parent;
Node db = null; //doubly black

if x.left == null {
db = x.right
x.replaceWith(db)

} else if x.right == null {
db = x.left
x.replaceWith(db)

} else {
var y = min(x.right)
parent = y.parent
db = y.right
x.key = y.key
y.replaceWith(db)
x = y

}
if x.color == Color.BLACK {

t = deleteFix(t, makeBlack(parent, db), db == null);
}
remove(x)
return t

}

Where makeBlack checks if the node changes to doubly black, and handles the special
case of doubly black NIL.
Node makeBlack(Node parent, Node x) {

if parent == null and x == null then return null
return if x == null

292 IMPERATIVE DELETE FOR RED-BLACK TREE

then replace(parent, x, Node(0, Color.DOUBLY_BLACK))
else blacken(x)

}

The function replace(parent, x, y) replaces the child of the parent, which is
x, with y.
Node replace(Node parent, Node x, Node y) {

if parent == null {
if y ̸= null then y.parent = null

} else if parent.left == x {
parent.setLeft(y)

} else {
parent.setRight(y)

}
if x ̸= null then x.parent = null
return y

}

The function blacken(node) changes the red node to black, and the black node to
doubly black:
Node blacken(Node x) {

x.color = if isRed(x) then Color.BLACK else Color.DOUBLY_BLACK
return x

}

Below example program implements the fixing:
Node deleteFix(Node t, Node db, Bool isDBEmpty) {

var dbEmpty = if isDBEmpty then db else null
if db == null then return null // delete the root
while (db ̸= t and db.color == Color.DOUBLY_BLACK) {

var s = db.sibling()
var p = db.parent
if (s ̸= null) {

if isRed(s) {
// the sibling is red
p.color = Color.RED
s.color = Color.BLACK
t = if db == p.left then leftRotate(t, p)

else rightRotate(t, p)
} else if isBlack(s) and isRed(s.left) {

// the sibling is black, and one sub-tree is red
if db == p.left {

db.color = Color.BLACK
p.color = Color.BLACK
s.left.color = p.color
t = rightRotate(t, s)
t = leftRotate(t, p)

} else {
db.color = Color.BLACK
p.color = Color.BLACK
s.color = p.color
s.left.color = Color.BLACK
t = rightRotate(t, p)

}
} else if isBlack(s) and isRed(s.right) {

if (db == p.left) {
db.color = Color.BLACK
p.color = Color.BLACK
s.color = p.color
s.right.color = Color.BLACK
t = leftRotate(t, p)

} else {

Elementary Algorithms 293

db.color = Color.BLACK
p.color = Color.BLACK
s.right.color = p.color
t = leftRotate(t, s)
t = rightRotate(t, p)

}
} else if isBlack(s) and isBlack(s.left) and

isBlack(s.right) {
// the sibling and both sub-trees are black.
// move blackness up
db.color = Color.BLACK
s.color = Color.RED
blacken(p)
db = p

}
} else { // no sibling, move blackness up

db.color = Color.BLACK
blacken(p)
db = p

}
}
t.color = Color.BLACK
if (dbEmpty ̸= null) { // change the doubly black nil to nil

dbEmpty.replaceWith(null)
delete dbEmpty

}
return t

}

Where isBlack(x) tests if a node is black, the NIL node is also black.
Bool isBlack(Node x) = (x == null or x.color == Color.BLACK)

Bool isRed(Node x) = (x ̸= null and x.color == Color.RED)

Before returning the final result, we check the doubly black NIL, and call the replaceWith
function defined in Node.
data Node<T> {

//...
void replaceWith(Node y) = replace(parent, this, y)

}

The program terminates when reach the root or the doubly blackness is eliminated.
As we maintain the red-black tree balanced, the delete algorithm is bound to O(lgn) time
for the tree of n nodes.

Exercise .13
1. Write a program to test if a tree satisfies the 5 red-black tree rules. Use this

program to verify the red-black tree delete implementation.

294 AVL tree - proofs and the delete algorithm

AVL tree - proofs and the
delete algorithm

I Height increment
When insert an element, the increment of the height can be deduced into 4 cases:

∆H = |T ′| − |T |
= 1 +max(|r′|, |l′|)− (1 +max(|r|, |l|))
= max(|r′|, |l′|)−max(|r|, |l|)

=

δ ≥ 0, δ′ ≥ 0 : ∆r

δ ≤ 0, δ′ ≥ 0 : δ +∆r

δ ≥ 0, δ′ ≤ 0 : ∆l − δ

otherwise : ∆l

(67)

Proof. When insert, the height can not increase both on left and right. We can explain
the 4 cases from the balance factor definition, which is the difference of the right and left
sub-trees:

1. If δ ≥ 0 and δ′ ≥ 0, it means the height of the right sub-tree is not less than the
left sub-tree before and after insertion. In this case, the height increment is only
‘contributed’ from the right, which is ∆r.

2. If δ ≤ 0, it means the height of left sub-tree is not less than the right before. Since
δ′ ≥ 0 after insert, we know the height of right sub-tree increases, and the left side
keeps same (|l′| = |l|). The height increment is:

∆H = max(|r′|, |l′|)−max(|r|, |l|) {δ ≤ 0 and δ′ ≥ 0}
= |r′| − |l| {|l| = |l′|}
= |r|+∆r − |l|
= δ +∆r

3. If δ ≥ 0 and δ′ ≤ 0, similar to the above case, we have the following:

∆H = max(|r′|, |l′|)−max(|r|, |l|) {δ ≥ 0 and δ′ ≤ 0}
= |l′| − |r|
= |l|+∆l − |r|
= ∆l − δ

4. Otherwise, δ and δ′ are not bigger than zero. It means the height of the left sub-tree
is not less than the right. The height increment is only ‘contributed’ from the left,
which is ∆l.

295

296 AVL TREE - PROOFS AND THE DELETE ALGORITHM

II Balance adjustment after insert
The balance factors are ±2 in the 4 cases shown in figure 40. After fixing, δ(y) resumes
to 0. The height of left and right sub-trees are equal.

Figure 40: Fix 4 cases to the same structure

The four cases are left-left, right-right, right-left, and left-right. Let the balance
factors before fixing be δ(x), δ(y), and δ(z), after fixing, they change to δ′(x), δ′(y), and
δ′(z) respectively. We next prove that, δ(y) = 0 for all 4 cases after fixing, and give the
result of δ′(x) and δ′(z).

Proof. We break into 4 cases:
Left-left
The sub-tree x keeps unchanged, hence δ′(x) = δ(x). As δ(y) = −1 and δ(z) = −2,

we have:

δ(y) = |c| − |x| = −1 ⇒ |c| = |x| − 1
δ(z) = |d| − |y| = −2 ⇒ |d| = |y| − 2

(68)

After fixing:

δ′(z) = |d| − |c| {from(68)}
= |y| − 2− (|x| − 1)
= |y| − |x| − 1 {x is sub-tree of y ⇒ |y| − |x| = 1}
= 0

(69)

For δ′(y), we have the following:

δ′(y) = |z| − |x|
= 1 +max(|c|, |d|)− |x| {by (69), |c| = |d|}
= 1 + |c| − |x| {by (68)}
= 1 + |x| − 1− |x|
= 0

(70)

II. BALANCE ADJUSTMENT AFTER INSERT 297

Summarize the above, the balance factors change to the following in left-left case:

δ′(x) = δ(x)
δ′(y) = 0
δ′(z) = 0

(71)

Right-right
The right-right case is symmetric to left-left:

δ′(x) = 0
δ′(y) = 0
δ′(z) = δ(z)

(72)

Right-left
Consider δ′(x), after fixing, it is:

δ′(x) = |b| − |a| (73)

Before fixing, the height of z can be obtained as:

|z| = 1 +max(|y|, |d|) {δ(z) = −1⇒ |y| > |d|}
= 1 + |y|
= 2 +max(|b|, |c|)

(74)

Since δ(x) = 2, we have:

δ(x) = 2 ⇒ |z| − |a| = 2 {by (74)}
⇒ 2 +max(|b|, |c|)− |a| = 2
⇒ max(|b|, |c|)− |a| = 0

(75)

If δ(y) = |c| − |b| = 1, then:

max(|b|, |c|) = |c| = |b|+ 1 (76)

Take this into (75) gives:

|b|+ 1− |a| = 0⇒ |b| − |a| = −1 {by (73) }
⇒ δ′(x) = −1 (77)

If δ(y) 6= 1, then max(|b|, |c|) = |b|. Take this into (75) gives:

|b| − |a| = 0 {by (73)}
⇒ δ′(x) = 0

(78)

Summarize the 2 cases, we obtain the result of δ′(x) in δ(y) as the following:

δ′(x) =

{
δ(y) = 1 : −1
otherwise : 0

(79)

For δ′(z), from the definition, it equals to:

δ′(z) = |d| − |c| {δ(z) = −1 = |d| − |y|}
= |y| − |c| − 1 {|y| = 1 +max(|b|, |c|)}
= max(|b|, |c|)− |c|

(80)

298 AVL TREE - PROOFS AND THE DELETE ALGORITHM

If δ(y) = |c| − |b| = −1, then max(|b|, |c|) = |b| = |c|+ 1. Take this into (80), we have
δ′(z) = 1. If δ(y) 6= −1, then max(|b|, |c|) = |c|. We have δ′(z) = 0. Combined these two
cases, we obtain the result of δ′(z) in δ(y) as below:

δ′(z) =

{
δ(y) = −1 : 1

otherwise : 0
(81)

Finally, for δ′(y), we deduce it like below:

δ′(y) = |z| − |x|
= max(|c|, |d|)−max(|a|, |b|) (82)

There are three cases:

1. If δ(y) = 0, then |b| = |c|. According to (79) and (81), we have δ′(x) = 0⇒ |a| = |b|,
and δ′(z) = 0⇒ |c| = |d|. These lead to δ′(y) = 0.

2. If δ(y) = 1, from (81), we have δ′(z) = 0⇒ |c| = |d|.

δ′(y) = max(|c|, |d|)−max(|a|, |b|) {|c| = |d|}
= |c| −max(|a|, |b|) {from (79): δ′(x) = −1⇒ |b| − |a| = −1}
= |c| − (|b|+ 1) {δ(y) = 1⇒ |c| − |b| = 1}
= 0

3. If δ(y) = −1, from (79), we have δ′(x) = 0⇒ |a| = |b|.

δ′(y) = max(|c|, |d|)−max(|a|, |b|) {|a| = |b|}
= max(|c|, |d|)− |b| {from (81): |d| − |c| = 1}
= |c|+ 1− |b| {δ(y) = −1⇒ |c| − |b| = −1}
= 0

All three cases lead to the same result δ′(y) = 0. Summarize all above, we get the
updated balance factors after fixing as below:

δ′(x) =

{
δ(y) = 1 : −1
otherwise : 0

δ′(y) = 0

δ′(z) =

{
δ(y) = −1 : 1

otherwise : 0

(83)

Left-right
Left-right is symmetric to the right-left case. With similar method, we can obtain the

new balance factors that is identical to (83).

III Delete algorithm
Deletion may reduce the height of the sub-tree. If the balance factor exceeds the range
of [−1, 1], then we need fixing.

III. DELETE ALGORITHM 299

* Functional delete
When delete, we re-use the binary search tree delete in the first step, then check the
balance factors and perform fixing. The result is a pair (T ′,∆H), where T ′ is the new
tree and ∆H is the height decrement. We define delete as below:

delete = fst ◦ del (84)

where del(T, k) does the actual work to delete element k from T :

del ∅ k = (∅, 0)

del (l, k′, r, δ) =

k < k′ : tree (del l k) k′ (r, 0) δ

k > k′ : tree (l, 0) k′ (del r k) δ

k = k′ :

l = ∅ : (r,−1)
r = ∅ : (l,−1)
else : tree (l, 0) k′′ (del r k′′) δ

where k′′ = min(r)

(85)

If the tree is empty, the result is (∅, 0); otherwise, let the tree be T = (l, k′, r, δ). We
compare the k and k′, lookup and delete recursively. When k = k′, we locate the node to
be deleted. If it has either empty sub-tree, we cut the node off, and replace it with the
other sub-tree; otherwise, we use the minimum k′′ in the right sub-tree to replace k′, and
cut k′′ off. We re-use the tree function and ∆H result. Additional to the insert cases,
there are two cases violate AVL rule, and need fixing. As shown in figure 41, both cases
can be fixed by a tree rotation. We define them as pattern matching:

y

x c

a b

δ(y) = −2

δ(x) = 0

x

a y

b c

δ(x)′ = δ(x) + 1

δ(y)′ = −1
=⇒

(a) Fix case A

x

a y

b c

δ(x) = 2

δ(y) = 0

y

x c

a b

δ(y)′ = δ(y)− 1

δ(x)′ = 1

=⇒

(b) Fix case B

Figure 41: delete fix

...
balance ((a, x, b, δ(x)), y, c,−2) ∆H = (a, x, (b, y, c,−1), δ(x) + 1,∆H)
balance (a, x, (b, y, c, δ(y)), 2) ∆H = ((a, x, b, 1), y, c, δ(y)− 1,∆H)

...

(86)

Below is the example program:

300 AVL TREE - PROOFS AND THE DELETE ALGORITHM

delete t x = fst $ del t x where
del Empty _ = (Empty, 0)
del (Br l k r d) x
| x < k = node (del l x) k (r, 0) d
| x > k = node (l, 0) k (del r x) d
| isEmpty l = (r, -1)
| isEmpty r = (l, -1)
| otherwise = node (l, 0) k' (del r k') d where k' = min r

Where min and isEmpty are defined as below:
min (Br Empty x _ _) = x
min (Br l _ _ _) = min l

isEmpty Empty = True
isEmpty _ = False

With the additional two, there are total 7 cases in balance implementation:
balance (Br (Br (Br a x b dx) y c (-1)) z d (-2), dH) =

(Br (Br a x b dx) y (Br c z d 0) 0, dH-1)
balance (Br a x (Br b y (Br c z d dz) 1) 2, dH) =

(Br (Br a x b 0) y (Br c z d dz) 0, dH-1)
balance (Br (Br a x (Br b y c dy) 1) z d (-2), dH) =

(Br (Br a x b dx') y (Br c z d dz') 0, dH-1) where
dx' = if dy == 1 then -1 else 0
dz' = if dy == -1 then 1 else 0

balance (Br a x (Br (Br b y c dy) z d (-1)) 2, dH) =
(Br (Br a x b dx') y (Br c z d dz') 0, dH-1) where

dx' = if dy == 1 then -1 else 0
dz' = if dy == -1 then 1 else 0

−− Delete specific
balance (Br (Br a x b dx) y c (-2), dH) =

(Br a x (Br b y c (-1)) (dx+1), dH)
balance (Br a x (Br b y c dy) 2, dH) =

(Br (Br a x b 1) y c (dy-1), dH)
balance (t, d) = (t, d)

† Imperative delete
The imperative delete uses tree rotations for fixing. In the first step, we re-use the binary
search tree algorithm to delete the node x from tree T ; then in the second step, check the
balance factor and perform rotation.

1: function Delete(T, x)
2: if x = NIL then
3: return T
4: p← Parent(x)
5: if Left(x) = NIL then
6: y ← Right(x)
7: replace x with y
8: else if Right(x) = NIL then
9: y ← Left(x)

10: replace x with y
11: else
12: z ← Min(Right(x))
13: copy data from z to x
14: p← Parent(z)
15: y ← Right(z)

III. DELETE ALGORITHM 301

16: replace z with y

17: return AVL-Delete-Fix(T, p, y)
When delete node x, we record its parent in p. If either sub-tree is empty, we cut

off x, and replace it with the other sub-tree. Otherwise if neither sub-tree is empty, we
locate the minimum element z of the right sub-tree, copy data from z to x, then cut z off.
Finally, we call AVL-Delete-Fix with the root T , the parent p, and the replacement
node y. Let the balance factor of p be δ(p), and it changes to δ(p)′ after delete. There
are three cases:

1. |δ(p)| = 0, |δ(p)′| = 1. After delete, although a sub-tree height decreases, the parent
still satisfies the AVL rule. The algorithm terminates as the tree is still balanced;

2. |δ(p)| = 1, |δ(p)′| = 0. Before the delete, the height difference between the two
sub-trees is 1; while after delete, the higher sub-tree shrinks by 1. Both sub-trees
have the same height now. As the result, the height of the parent also decrease by
1. We need continue the bottom-up update along the parent reference to the root;

3. |δ(p)| = 1, |δ(p)′| = 2. After delete, the tree violates the AVL height rule, we need
rotate the tree to fix it.

For case 3, the implementation is similar to the insert fixing. We need add two
additional sub-cases as shown in figure 41.

1: function AVL-Delete-Fix(T, p, x)
2: while p 6= NIL do
3: l← Left(p), r ← Right(p)
4: δ ← δ(p), δ′ ← δ
5: if x = l then
6: δ′ ← δ′ + 1
7: else
8: δ′ ← δ′ − 1

9: if p is leaf then ▷ l = r = NIL
10: δ′ ← 0
11: if |δ| = 1 ∧ |δ′| = 0 then
12: x← p
13: p← Parent(x)
14: else if |δ| = 0 ∧ |δ′| = 1 then
15: return T
16: else if |δ| = 1 ∧ |δ′| = 2 then
17: if δ′ = 2 then
18: if δ(r) = 1 then ▷ Right-right
19: δ(p)← 0
20: δ(r)← 0
21: p← r
22: T ← Left-Rotate(T, p)
23: else if δ(r) = −1 then ▷ Right-left
24: δy ← δ(Left(r))
25: if δy = 1 then
26: δ(p)← −1
27: else
28: δ(p)← 0

29: δ(Left(r))← 0
30: if δy = −1 then

302 AVL TREE - PROOFS AND THE DELETE ALGORITHM

31: δ(r)← 1
32: else
33: δ(r)← 0

34: else ▷ Delete specific right-right
35: δ(p)← 1
36: δ(r)← δ(r)− 1
37: T ← Left-Rotate(T, p)
38: break ▷ No furthur height change
39: else if δ′ = −2 then
40: if δ(l) = −1 then ▷ Left-left
41: δ(p)← 0
42: δ(l)← 0
43: p← l
44: T ← Right-Rotate(T, p)
45: else if δ(l) = 1 then ▷ Left-right
46: δy ← δ(Right(l))
47: if δy = −1 then
48: δ(p)← 1
49: else
50: δ(p)← 0

51: δ(Right(l))← 0
52: if δy = 1 then
53: δ(l)← −1
54: else
55: δ(l)← 0

56: else ▷ Delete specific left-left
57: δ(p)← −1
58: δ(l)← δ(l) + 1
59: T ← Right-Rotate(T, p)
60: break ▷ No furthur height change

▷ Height decreases, go on bottom-up updating
61: x← p
62: p← Parent(x)
63: if p = NIL then ▷ Delete the root
64: return x
65: return T

Exercise .14

1. Compare the imperative tree fixing for insert and delete, there are similarities.
Develop a common fix function for both insert and delete.

IV Example program
The main delete program:

Node del(Node t, Node x) {
if x == null then return t
Node y
var parent = x.parent
if x.left == null {

y = x.replaceWith(x.right)

IV. EXAMPLE PROGRAM 303

} else if x.right == null {
y = x.replaceWith(x.left)

} else {
y = min(x.right)
x.key = y.key
parent = y.parent
x = y
y = y.replaceWith(y.right)

}
t = deleteFix(t, parent, y)
release(x)
return t

}

Where replaceWith is defined in the chapter of red-black tree. release(x) re-
leases the memory of a node. Function deleteFix is implemented as below:
Node deleteFix(Node t, Node parent, Node x) {

int d1, d2, dy
Node p, l, r
while parent ̸= null {

d2 = d1 = parent.delta
d2 = d2 + if x == parent.left then 1 else -1
if isLeaf(parent) then d2 = 0
parent.delta = d2
p = parent
l = parent.left
r = parent.right
if abs(d1) == 1 and abs(d2) == 0 {

x = parent
parent = x.parent

} else if abs(d1) == 0 and abs(d2) == 1 {
return t

} else if abs(d1) == 1 and abs(d2) == 2 {
if d2 == 2 {

if r.delta == 1 { // right-right
p.delta = 0
r.delta = 0
parent = r
t = leftRotate(t, p)

} else if r.delta == -1 { // right-left
dy = r.left.delta
p.delta = if dy == 1 then -1 else 0
r.left.delta = 0
r.delta = if dy == -1 then 1 else 0
parent = r.left
t = rightRotate(t, r)
t = leftRotate(t, p)

} else { // delete specific right-right
p.delta = 1
r.delta = r.delta - 1
t = leftRotate(t, p)
break // no further height change

}
} else if d2 == -2 {

if (l.delta == -1) { // left-left
p.delta = 0
l.delta = 0
parent = l
t = rightRotate(t, p)

} else if l.delta == 1 { // left-right
dy = l.right.delta
l.delta = if dy == 1 then -1 else 0
l.right.delta = 0
p.delta = if dy == -1 then 1 else 0
parent = l.right;

304 AVL TREE - PROOFS AND THE DELETE ALGORITHM

t = leftRotate(t, l)
t = rightRotate(t, p)

} else { // delete specific left-left
p.delta = -1
l.delta = l.delta + 1
t = rightRotate(t, p)
break // no further height change

}
}
// height decreases, go on bottom-up update
x = parent
parent = x.parent

}
}
if parent == null then return x // delete the root
return t

}

Answers

Answer of exercise 2.1
1. Given the in-order and pre-order traverse results, rebuild the tree, and output the

post-order traverse result. For example:
• Pre-order: 1, 2, 4, 3, 5, 6;
• In-order: 4, 2, 1, 5, 3, 6;
• Post-order: ?

[4, 2, 5, 6, 3, 1]
2. Write a program to rebuild the binary tree from the pre-order and in-order traverse

lists.

Let P be the pre-order traverse result, I be the in-order result. IfP = I = [],
then the binary tree is empty ∅. Otherwise, the pre-order is recursive ‘key - left
- right’, hence the first element m in P is the key of the root. The in-order is
recursive ‘left - key - right’, we can find m in I, which splits I into three parts:
[a1, a2, ..., ai−1,m, ai+1, aa+2, ..., an]. Let Il = I[1, i), Ir = I[i + 1, n], where [l, r)
includes l, but excludes r. Either can be empty []. In these three parts Il,m, Ir,
Il is the in-order traverse result of the left sub-tree, Ir is the in-order result of the
right sub-tree. Let k = |Il| be the size of the left sub-tree, we can split P [2, n] at
k to two parts: Pl, Pr, where Pl contains the first k elements. We next recursively
rebuild the left sub-tree from (Pl, Il), rebuild the right sub-tree from (Pr, Ir):

rebuild [] [] = ∅
rebuild (m:ps) I = (rebuild Pl Il,m, rebuild Pr Ir)

Where: {
(Il, Ir) = splitWith m I

(Pl, Pr) = splitAt |Il| ps

Below is the example program:
rebuild [] _ = Empty
rebuild [c] _ = Node Empty c Empty
rebuild (x:xs) ins = Node (rebuild prl inl) x (rebuild prr inr) where

(inl, _:inr) = (takeWhile (̸= x) ins, dropWhile (̸= x) ins)
(prl, prr) = splitAt (length inl) xs

We can also update the left and right boundary to implement:
Node<T> rebuild([T] pre, [T] ins, Int l = 0, Int r = length(ins)) {

if l ≥ r then return null
T c = popFront(pre)

305

306 ANSWERS

Int m = find(c, ins)
var left = rebuild(pre, ins, l, m)
var right = rebuild(pre, ins, m + 1, r)
return Node(left, c, right)

}

3. For binary search tree, prove that the in-order traverse always gives ordered list.

Proof. Use proof with absurdity. Suppose there exits (finite sized) binary search
tree, the in-order result is not ordered. Among all such trees, select the smallest
T . First T can’t be ∅, as the in-order result is [], which is ordered. Second, T
can’t be singleton (∅, k,∅), as the in-order result is [k], which is ordered. Hence T
must be a branch node of (l, k, r). The in-order result is toList l++ [x] ++ toList r.
Because T is the smallest tree that the in-order result is not ordered, while l and
r are smaller than T , hence both toList l and toList r are ordered. According to
the binary search tree definition, for every x ∈ l, x < k, and every y ∈ r, y > k.
Hence the in-order result toList l++ [x] ++ toList r is ordered, which conflicts with
the assumption, that the in-order result of T is not ordered.
Therefore, for any binary search tree, the in-order result is ordered.

4. What is its complexity of tree sort for n elements?
5. Define toList with fold.

toList = foldt id (as b bs 7→ as++ b : bs) []
= fold (:) []

6. Define depth t with fold, to calculate the height of a binary tree.

depth = foldt (x 7→ 1) (x d y 7→ d+max x y) 0

Answer of exercise 2.2
1. How to test whether an element k of type K exists in the tree t of type Tree K?

member x (Node l k r) | x == k = True
| x < k = member x l
| otherwise = member x r

2. Use Pred and Succ to write an iterator to traverse the binary search tree as a
generic container. What’s the time complexity to traverse a tree of n elements?

3. One can traverse elements inside a range [a, b] for example:
for_each (m.lower_bound(12), m.upper_bound(26), f);
Write an equivalent functional program for binary search tree.
mapR f a b t = map' t where

map' Empty = Empty
map' (Node l k r) | k < a = map' r

| a ≤ k && k ≤ b = Node (map' l) (f k) (map' r)
| k > b = map' l

Answer of exercise 8.1
1. No, it is not correct. The sub-array [a2, a3, ..., an] can’t map back to binary heap.

It’s insufficient to only apply Heapify from a2, we need run Build-Heap to
rebuild the heap.

307

2. For the same reason, it does not work.

Answer of exercise 8.2

1. Realize leftist heap, skew heap, and splay heap in imperative approach.
2. Define fold for heap.

fold f z ∅ = z
fold f z H = fold f (f (top H) z) (pop H)

Answer of exercise 9.1

1. We should use link but not append. Appending is linear to the length of the list,
while linking is constant time.

2. Implement the selection sort for both in-placed and not. TO-DO

Answer of exercise 10.1

1. Write a program to generate Pascal’s triangle.
pascal = gen [1] where

gen cs (x:y:xs) = gen ((x + y) : cs) (y:xs)
gen cs _ = 1 : cs

2. Prove that the i-th row in tree Bn has
(
n
i

)
nodes.

Proof. Use induction. There is only a root node for B0. Assume every row in Bn

is binomial number. Tree Bn+1 is composed from two Bn trees. The 0-th row
contains root: 1 =

(
n+1
0

)
. The i-th row has two parts: one from the (i− 1)-th row

of the left most sub-tree Bn, the other from the i-th row of the other Bn tree. In
total: (

n
i−1

)
+
(
n
i

)
=

n!

(i− 1)!(n− i+ 1)!
+

n!

i!(n− i)!

=
n!

(i− 1)!(n− i)!
(
1

i
− 1

n− i+ 1
)

=
n!

(i− 1)!(n− i)!

n+ 1

i(n− i+ 1)

=
(n+ 1)!

i!(n− i+ 1)!
=

(
n+1
i

)

3. Prove there are 2n elements in Bn tree.

Proof. From previous exercise, sum all rows of Bn tree:(
n
0

)
+
(
n
1

)
+ ...+

(
n
n

)
Sum rows

= (1 + 1)n Let a = b = 1 in (a+ b)n

= 2n

308 ANSWERS

4. Use a container to store sub-trees, how to implement link? How to secure the
operation is in constant time? If store all sub-trees in an array, we need linear
time to insert a new tree ahead of all sub-trees:

1: function Link’(T1, T2)
2: if Key(T2) < Key(T1) then
3: Exchange T1 ↔ T2

4: Parent(T2) ← T1

5: Insert(Sub-Trees(T1), 1, T2)
6: Rank(T1) ← Rank(T2) + 1
7: return T1

We can store the sub-trees in reversed order, it’s need constant time to append the
new tree on tail.

Answer of exercise 11.2
1. Why need balance check and adjustment after push?

Consider the case, first push a ([], []), then pop.
2. Prove the amortized performance of paired-list queue is constant time.
3. Implement the paired-array queue.

1: function Push(Q, x)
2: Append(Front(Q), x)

3: function Pop(Q)
4: if Rear(Q) = [] then
5: Rear(Q) ← Reverse(Front(Q))
6: Front(Q) ← []

7: n← Length(Rear(Q))
8: x← Rear(Q)[n]
9: Length(Rear(Q)) ← n− 1

10: return x

Answer of exercise 12.5
1. Eliminate recursion, implement insert with loop.

Let Mid(T) = t access the middle part of tree T = (f, t, r).
1: function Insert(x, T)
2: n = (x)
3: ⊥← p← ([], T, [])
4: while |Front(T)| ≥ 3 do
5: f ← Front(T)
6: n← (f [2], f [3], ...)
7: Front(T)← [n, f [1]]
8: p← T
9: T ← Mid(T)

10: if T = NIL then
11: T ← ([n],NIL, [])
12: else if |Front(T)| = 1 and Rear(T) = [] then
13: Rear(T) ← Front(T)
14: Front(T) ← [n]
15: else
16: Insert(Front(T), n)

309

17: Mid(p) ← T
18: T ← Mid(⊥), Mid(⊥) ← NIL
19: return T

We wrap x in a leaf (x). If there are more than 3 elements in f , we go top-down
along the middle part. We extract the elements except the first one in f out, wrap
them in a node n (depth + 1), then insert n to the middle. We form n and the
remaining in f as the new f finger. At the end of traverse, we either reach an
empty tree, or a tree can hold more elements in f . For empty tree case, we create
a new leaf node; otherwise, we insert n to the head of f . We return the root T .
To simplify implementation, we create a special ⊥ node as the parent of the root.

Answer of exercise 12.6

1. Eliminate recursion, implement extract in loops.

We borrow node from the middle when f is empty. However, the tree may not
well formed, e.g., both f and the middle are empty. It is caused by splitting.

1

[] 2 r[1][1] r[1][2] ...

[] 3 r[2][1] r[2][2] ...

...

i

n[i][1] n[i][2] ... r[i][1] r[i][2] ...

...

Figure 12.10: The f isn’t empty at level i.

To extract the first element, we need a top-bottom pass, locate a sub-tree, either f
isn’t empty, or both f and the middle are empty as shown in figure 12.10. For the
former, we extract the first node from f ; for the latter, we swap f and r, convert
it to the former case. If the node extracted from f isn’t a leaf, we need go on
extracting. We back track along the parent, till extract a leaf and reach to the
root, as shown in figure 12.11.

310 ANSWERS

1

[] 2 r[1][1] r[1][2] ...

[] 3 r[2][1] r[2][2] ...

...

i-1

n[i-1][1] n[i-1][2] ... r[i-1][1] r[i-1][2] ...children of n[i][1]=

i

n[i][2] ... r[i][1] r[i][2] ...

...

Extract the first n[i][1], move its sub-tree to f in upper level.
x[1] is extracted 1

x[2] x[3] ... 2 r[1][1] r[1][2] ...

n[2][2] n[2][3] ... 3 r[2][1] r[2][2] ...

...

i-1

n[i-1][2] n[i-1][3] ... r[i-1][1] r[i-1][2] ...

i

n[i][2] ... r[i][1] r[i][2] ...

...

Repeat i times, extract x[1].

Figure 12.11: Bottom up back track to extract a leaf.
Assume the tree isn’t empty, we implement extract as below:

1: function Extract(T)
2: ⊥← ([], T, [])
3: while Front(T) = [] and Mid(T) 6= NIL do
4: T ← Mid(T)

311

5: if Front(T) = [] and Rear(T) 6= [] then
6: Exchange Front(T) ↔ Rear(T)
7: f ← Front(T), r ← Rear(T)
8: n← (f [1], f [2], ...) ▷ n is 2-3 tree
9: repeat

10: Front(T) ← [n2, n3, ..]
11: n← n1

12: T ← Parent(T)
13: if Mid(T) becomes empty then
14: Mid(T) ← NIL
15: until n is leaf
16: return (Elem(n), Mid(⊥))
Where function Elem(n) access the element in sub-tree n. We need change the
way to access the first/last element of finger tree. If the finger is empty, and the
middle isn’t empty, we need search along the middle.

1: function First-Leaf(T)
2: while Front(T) = [] and Mid(T) 6= NIL do
3: T ← Mid(T)
4: if Front(T) = [] and Rear(T) 6= [] then
5: n← Rear(T)[1]
6: else
7: n← Front(T)[1]
8: while n is NOT leaf do
9: n← n1

10: return n

11: function First(T)
12: return Elem(First-Leaf(T))
In the second loop, if the node is not a leaf, we need traverse along the first sub-tree.
The method to access the last element is symmetric.

Answer of exercise 12.7

1. For random access, how to handle empty tree ∅ and out of bound cases?
We check boundaries during random access, for example:

∅[i] = Nothing

T [i] =

{
i < 0 or i ≥ size T : Nothing
otherwise : ...

2. Implement cut i S, split sequence S at position i.
We give an implementation based on the tree definition in appendix. We first do
boundary check, if 0 ≤ i < size s, we next call catTree i S to split the tree:
cut :: Int → Seq a → (Seq a, Maybe a, Seq a)
cut i (Seq xs) | i < 0 = (Seq Empty, Nothing, Seq xs)

| i < size xs = case cutTree i xs of
(a, Just (Place _ (Elem x)), b) → (Seq a, Just x, Seq b)
(a, Nothing, b) → (Seq a, Nothing, Seq b)
| otherwise = (Seq xs, Nothing, Seq Empty)

312 ANSWERS

cutTree splits the tree in three parts: left, middle, and right. We wrap the middle
in Maybe type to handle the not found case; when found, the result is a pair of
position i′ and node a, wrapped in the type of Place. if i points to finger f or
r, we call cutList to further split, then build the result; if i points to middle, we
recursively cut the middle to obtain a place Place i′ a, then cut the 2-3 tree a at
position i′:
cutTree :: (Sized a) ⇒ Int → Tree a → (Tree a, Maybe (Place a), Tree a)
cutTree _ Empty = (Empty, Nothing, Empty)
cutTree i (Lf a) | i < size a = (Empty, Just (Place i a), Empty)

| otherwise = (Lf a, Nothing, Empty)
cutTree i (Br s f m r)
| i < sf = case cutList i f of

(xs, x, ys) → (Empty <<< xs, x, tree ys m r)
| i < sm = case cutTree (i - sf) m of

(t1, Just (Place i' a), t2) → let (xs, x, ys) = cutNode i' a
in (tree f t1 xs, x, tree ys t2 r)

| i < s = case cutList (i - sm) r of
(xs, x, ys) → (tree f m xs, x, ys >>> Empty)

where
sf = sum $ map size f
sm = sf + size m

Where tree f m r builds a finger tree, and simplify the result:
tree as Empty [] = as >>> Empty
tree [] Empty bs = Empty <<< bs
tree [] m r = Br (size m + sum (map size r)) (nodesOf f) m' r

where (f, m') = uncons m
tree f m [] = Br (size m + sum (map size f)) f m' (nodesOf r)

where (m', r) = unsnoc m
tree f m r = Br (size m + sum (map size f) + sum (map size r)) f m r

We implement the finger cut and 2-3 tree cut as below:
cutList :: (Sized a) ⇒ Int → [a] → ([a], Maybe (Place a), [a])
cutList _ [] = ([], Nothing, [])
cutList i (x:xs) | i < sx = ([], Just (Place i x), xs)

| otherwise = let (xs', y, ys) = cutList (i - sx) xs
in (x:xs', y, ys)

where sx = size x

cutNode :: (Sized a) ⇒ Int → Node a → ([a], Maybe (Place a), [a])
cutNode i (Tr2 _ a b) | i < sa = ([], Just (Place i a), [b])

| otherwise = ([a], Just (Place (i - sa) b), [])
where sa = size a

cutNode i (Tr3 _ a b c) | i < sa = ([], Just (Place i a), [b, c])
| i < sab = ([a], Just (Place (i - sa) b), [c])
| otherwise = ([a, b], Just (Place (i - sab) c), [])

where sa = size a
sab = sa + size b

With cut defined, we can update or delete any element at given position, move to
front (MTF), they all bound to O(lgn) time.
setAt s i x = case cut i s of

(_, Nothing, _) → s
(xs, Just y, ys) → xs +++ (x <| ys)

extractAt s i = case cut i s of (xs, Just y, ys) → (y, xs +++ ys)

moveToFront i s = if i < 0 | | i ≥ size s then s
else let (a, s') = extractAt s i in a <| s'

313

Answer of exercise 14.1

1. Prove the performance of k-selection problem is O(n) in average (refer to the quick
sort performance analysis).

2. To find the top k element inA, we can search x = max (take k A), y = min (drop k A).
If x < y, then the first k elements in A is the answer; otherwise, we partition the
first k elements with x, partition the rest with y, then recursively find in sub-
sequence [a|a ← A, x < a < y] for the top k′ elements, where k′ = k − |[a|a ←
A, a ≤ x]|. Implement this solution, and evaluate its performance.

1: procedure Tops(k,A)
2: l← 1
3: u← |A|
4: loop
5: i← Max-At(A[l..k])
6: j ← Min-At(A[k + 1..u])
7: if A[i] < A[j] then
8: break
9: Exchange A[l]↔ A[j]

10: Exchange A[k + 1]↔ A[i]
11: l← Partition(A, l, k)
12: u← Partition(A, k + 1, u)
The performance is O(n) in average. Every loop, it takes linear time to locate
the min i, max j. Then partition two rounds in linear time. If the partition is
balanced, we discard half elements in average, hence the total time is bound to:
O(n+ n/2 + n/4...) = O(n).

3. Find the median of two sorted arrays A and B in O(lg(m+ n)) time, where m =
|A|, n = |B|. The median x is defined as ||{a ≤ x : a ∈ A}| + |{b ≤ x : b ∈
B}| − |{a > x : a ∈ A}| − |{b > x : b ∈ B}|| ≤ 1.

4. For the saddle back search, eliminate recursion, implement it in loops to update
the boundary.

1: function Solve(f, z)
2: p← 0, q ← z
3: S ← ϕ
4: while p ≤ z 且 q ≥ 0 do
5: z′ ← f(p, q)
6: if z′ < z then
7: p← p+ 1
8: else if z′ > z then
9: q ← q − 1

10: else
11: S ← S ∪ {(p, q)}
12: p← p+ 1, q ← q − 1

13: return S

5. For 2D search, let the bottom-left be the minimum, the top-right be the maximum.
if z is less than the minimum or greater than the maximum, then no solution;
otherwise cut the rectangle into 4 parts with a horizontal line and a vertical line
crossed at the center. then recursive search in these 4 small rectangles. Implement
this solution and evaluate its performance.

1: procedure Search(f, z, a, b, c, d) ▷ (a, b): bottom-left (c, d): top-right
2: if z ≤ f(a, b) or f(c, d) ≥ z then

314 ANSWERS

3: if z = f(a, b) then
4: record (a, b) as a solution
5: if z = f(c, d) then
6: record (c, d) as a solution
7: return
8: p← ba+c

2 c
9: q ← b b+d

2 c
10: Search(f, z, a, q, p, d)
11: Search(f, z, p, q, c, d)
12: Search(f, z, a, b, p, q)
13: Search(f, z, p, b, c, q)
Performance:

Answer of exercise 14.2
1. Extend to find k majorities that occurs over bn/kc in collection A, where n = |A|.

We use a dictionary of Map : T 7→ Int, where T is the element type if A. It
records the net-wins for candidate a. Start the dictionary from empty ∅. We scan
A while update the dictionary: foldr maj ∅ A, where maj is defined as:

maj a m =

a ∈ m : m[a]← m[a] + 1

|m| < k : m[a]← 1

otherwise : filter (b 7→ m[b] 6= 0) {b 7→ m[b]− 1|b ∈ m}
(14.21)

For every a in A, if a /∈ m (new to the dictionary), and the candidates in m is less
than k, we add a to m with one net-win vote: m[a] ← 1; if a ∈ m, add the vote
by 1: m[a]← m[a] + 1; otherwise, if there are already k candidates, we reduce the
vote by 1 for every one, and remove the candidate when the vote becomes 0.
We need verify the remaining candidates at last, whether the votes > n/k, let
m′ = {(a, 0)|a ∈ m}. Scan A again: foldr cnt m′ A, where cnt is defined as:

cnt a m′ = if a ∈ m′ then m′[a]← m′[a] + 1 else m′ (14.22)

After scan, m′ records the votes for each candidate, we filter the true winners in:
keys (filter (> n/k) m′).
majorities k xs = verify $ foldr maj Map.empty xs where

maj :: (Eq a, Ord a) ⇒ a → Map.Map a Int → Map.Map a Int
maj x m | x `Map.member` m = Map.adjust (1+) x m

| Map.size m < k = Map.insert x 1 m
| otherwise = Map.filter (̸= 0) $ Map.map (-1+) m

verify m = Map.keys $ Map.filter (> th) $ foldr cnt m' xs where
m' = Map.map (const 0) m
cnt :: (Eq a, Ord a) ⇒ a → Map.Map a Int → Map.Map a Int
cnt x m = if x `Map.member` m then Map.adjust (1+) x m else m
th = (length xs) `div` k

Below is the corresponding iterative implementation:
1: function Maj(k,A)
2: m← {}
3: for each a in A do
4: if a ∈ m then
5: m[a]← m[a] + 1
6: else if |m| < k then

315

7: m[a]← 1
8: else
9: for each c in m do

10: m[c]← m[c]− 1
11: if m[c] = 0 then
12: Remove(c,m)
13: for each c in m do
14: m[c]← 0

15: for each a in A do ▷ verify
16: if a ∈ m then
17: m[a]← m[a] + 1

18: r = [], n← |A|
19: for each c in m do
20: if m[c] >

n

k
then

21: Add(c, r)
22: return r

Answer of exercise 14.3
1. Modify the solution that finds the max sum of sub-vector, returns the sub-vector

of the maximum sum.
If want to return the sub-list together with the maximum sum, we can maintain
two pairs Pm and P during folding, each pair contains the sum and the sub-list
(S,L).

maxs = 1st ◦ foldr f ((0, []), (0, []))
where : f x (Pm, (S,L)) = (P ′

m = max(Pm, P ′), P ′ = max((0, []), (x+ S, x:L)))

2. Bentley gives a divide and conquer algorithm to find the max sum in O(n lgn)
time [2]. Split the vector at middle, recursively find the max sum in two halves,
and the max sum that crosses the middle. Then pick the greatest. Implement this
solution.

1: function Max-Sum(A)
2: if A = ϕ then
3: return 0
4: else if |A| = 1 then
5: return Max(0, A[1])
6: else
7: m← b |A|

2 c
8: a← Max-From(Reverse(A[1...m]))
9: b← Max-From(A[m+ 1...|A|])

10: c← Max-Sum(A[1...m])
11: d← Max-Sum(A[m+ 1...|A|)
12: return Max(a+ b, c, d)

13: function Max-From(A)
14: sum← 0,m← 0
15: for i← 1 to |A| do
16: sum← sum+A[i]
17: m← Max(m, sum)
18: return m

316 ANSWERS

Consider the recursive equation: T (n) = 2T (n/2)+O(n), from the master theorem,
the performance is O(n).

Answer of exercise 14.10
1. Use heap to build the Huffman tree: take two trees from the top, merge then add

back to the heap.

Huffman H =

H = ∅ : ∅
|H| = 1 : pop H

otherwise : Huffman (push (merge ta tb) H
′′)

Where: (ta,H ′) = pop H, (tb,H
′′) = pop H ′

1: function Huffman(H)
2: while |H| > 1 do
3: ta ← Pop(H)
4: tb ← Pop(H)
5: Push(H, Merge(ta, tb))
6: return Pop(H)

2. If we sort the symbols by their weight as A, there is a linear time algorithm to
build the Huffman tree: use a tree Q to store the merge result, repeat take the
minimal weighted tree from Q and the head of A, merge then add to the queue.
After process all trees in A, there is a single tree in the Q, which is the Huffman
tree. Implement this algorithm.
Huffman (t:ts) = build (t, (ts,∅)), where:

build (t, ([],∅)) = t
build (t, h) = build (extract (ts, push (merge t t′) q))

其中：(t′, (ts, q)) = extract h

extract (t:ts,∅)) = (t, (ts,∅))
extract ([], q) = (t, ([], q′),where : (t, q′) = pop q

extract (t:ts, q) =

{
t′ < t : (t′, (t:ts, q′)),where : (t′, q′) = pop q

t < t′ : (t, (ts, q))

3. Given a Huffman tree T , implement the decode algorithm with fold left.
decode = snd ◦ (foldl lookup (T, [])), where:

lookup ((w, c), cs) b = (T, c:cs)
lookup ((w, l, r), cs) b = if b = 0 then (l, cs) else (r, cs)

Answer of exercise 14.11
1. For the longest common sub-sequence, build the optimal solution table with fold.

import Data.Sequence (Seq, singleton, fromList, index, (|>))

lcs xs ys = construct $ foldl f (singleton $ fromList $ replicate (n+1) 0)
(zip [1..] xs) where

(m, n) = (length xs, length ys)
f tab (i, x) = tab |> (foldl longer (singleton 0) (zip [1..] ys)) where
longer r (j, y) = r |> if x == y

317

then 1 + (tab `index` (i-1) `index` (j-1))
else max (tab `index` (i-1) `index` j) (r `index` (j-1))

construct tab = get (reverse xs, m) (reverse ys, n) where
get ([], 0) ([], 0) = []
get ((x:xs), i) ((y:ys), j)
| x == y = get (xs, i-1) (ys, j-1) ++ [x]
| (tab `index` (i-1) `index` j) > (tab `index` i `index` (j-1)) =

get (xs, i-1) ((y:ys), j)
| otherwise = get ((x:xs), i) (ys, j-1)

318 ANSWERS

Bibliography

[1] Richard Bird. “Pearls of functional algorithm design”. Cambridge University Press;
1 edition (November 1, 2010). ISBN-10: 0521513383. pp1 - pp6.

[2] Jon Bentley. “Programming Pearls(2nd Edition)”. Addison-Wesley Professional; 2
edition (October 7, 1999). ISBN-13: 978-0201657883.

[3] Chris Okasaki. “Purely Functional Data Structures”. Cambridge university press,
(July 1, 1999), ISBN-13: 978-0521663502

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein. “In-
troduction to Algorithms, Second Edition”. The MIT Press, 2001. ISBN: 0262032937.

[5] Chris Okasaki. “Ten Years of Purely Functional Data Structures”. http://okasaki.
blogspot.com/2008/02/ten-years-of-purely-functional-data.html

[6] SGI. “Standard Template Library Programmer’s Guide”. http://www.sgi.com/tech/
stl/

[7] Wikipedia. “Fold(high-order function)”. https://en.wikipedia.org/wiki/Fold_
(higher-order_function)

[8] Wikipedia. “Function Composition”. https://en.wikipedia.org/wiki/Function_
composition

[9] Wikipedia. “Partial application”. https://en.wikipedia.org/wiki/Partial_application

[10] Miran Lipovaca. “Learn You a Haskell for Great Good! A Beginner’s Guide”. No
Starch Press; 1 edition April 2011, 400 pp. ISBN: 978-1-59327-283-8

[11] Wikipedia. “Bubble sort”. https://en.wikipedia.org/wiki/Bubble_sort

[12] Donald E. Knuth. “The Art of Computer Programming, Volume 3: Sorting and
Searching (2nd Edition)”. Addison-Wesley Professional; 2 edition (May 4, 1998)
ISBN-10: 0201896850 ISBN-13: 978-0201896855

[13] Chris Okasaki. “FUNCTIONAL PEARLS Red-Black Trees in a Functional Setting”.
J. Functional Programming. 1998

[14] Wikipedia. “Red-black tree”. https://en.wikipedia.org/wiki/Red-black_tree

[15] Lyn Turbak. “Red-Black Trees”. http://cs.wellesley.edu/~cs231/fall01/red-black.pdf
Nov. 2, 2001.

[16] Rosetta Code. “Pattern matching”. http://rosettacode.org/wiki/Pattern_matching

[17] Hackage. “Data.Tree.AVL”. http://hackage.haskell.org/packages/archive/AvlTree/
4.2/doc/html/Data-Tree-AVL.html

319

http://okasaki.blogspot.com/2008/02/ten-years-of-purely-functional-data.html
http://okasaki.blogspot.com/2008/02/ten-years-of-purely-functional-data.html
http://www.sgi.com/tech/stl/
http://www.sgi.com/tech/stl/
https://en.wikipedia.org/wiki/Fold_(higher-order_function)
https://en.wikipedia.org/wiki/Fold_(higher-order_function)
https://en.wikipedia.org/wiki/Function_composition
https://en.wikipedia.org/wiki/Function_composition
https://en.wikipedia.org/wiki/Partial_application
https://en.wikipedia.org/wiki/Bubble_sort
https://en.wikipedia.org/wiki/Red-black_tree
http://cs.wellesley.edu/~cs231/fall01/red-black.pdf
http://rosettacode.org/wiki/Pattern_matching
http://hackage.haskell.org/packages/archive/AvlTree/4.2/doc/html/Data-Tree-AVL.html
http://hackage.haskell.org/packages/archive/AvlTree/4.2/doc/html/Data-Tree-AVL.html

320 BIBLIOGRAPHY

[18] Wikipedia. “AVL tree”. https://en.wikipedia.org/wiki/AVL_tree

[19] Guy Cousinear, Michel Mauny. “The Functional Approach to Programming”. Cam-
bridge University Press; English Ed edition (October 29, 1998). ISBN-13: 978-
0521576819

[20] Pavel Grafov. “Implementation of an AVL tree in Python”. http://github.com/
pgrafov/python-avl-tree

[21] Chris Okasaki and Andrew Gill. “Fast Mergeable Integer Maps”. Workshop on ML,
September 1998, pages 77-86.

[22] D.R. Morrison, “PATRICIA – Practical Algorithm To Retrieve Information Coded
In Alphanumeric”, Journal of the ACM, 15(4), October 1968, pages 514-534.

[23] Wikipedia. “Suffix Tree”. https://en.wikipedia.org/wiki/Suffix_tree

[24] Wikipedia. “Trie”. https://en.wikipedia.org/wiki/Trie

[25] Wikipedia. “T9 (predictive text)”. https://en.wikipedia.org/wiki/T9_(predictive_
text)

[26] Wikipedia. “Predictive text”. https://en.wikipedia.org/wiki/Predictive_text

[27] Esko Ukkonen. “On-line construction of suffix trees”. Algorithmica 14 (3): 249–260.
doi:10.1007/BF01206331. http://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.
pdf

[28] Weiner, P. “Linear pattern matching algorithms”, 14th Annual IEEE Symposium on
Switching and Automata Theory, pp. 1-11, doi:10.1109/SWAT.1973.13

[29] Esko Ukkonen. “Suffix tree and suffix array techniques for pattern analysis in strings”.
http://www.cs.helsinki.fi/u/ukkonen/Erice2005.ppt

[30] Suffix Tree (Java). http://en.literateprograms.org/Suffix_tree_(Java)

[31] Robert Giegerich and Stefan Kurtz. “From Ukkonen to McCreight and Weiner: A
Unifying View of Linear-Time Suffix Tree Construction”. Science of Computer Pro-
gramming 25(2-3):187-218, 1995. http://citeseer.ist.psu.edu/giegerich95comparison.
html

[32] Robert Giegerich and Stefan Kurtz. “A Comparison of Imperative and
Purely Functional Suffix Tree Constructions”. Algorithmica 19 (3): 331–353.
doi:10.1007/PL00009177. http://www.zbh.uni-hamburg.de/pubs/pdf/GieKur1997.
pdf

[33] Bryan O’Sullivan. “suffixtree: Efficient, lazy suffix tree implementation”. http://
hackage.haskell.org/package/suffixtree

[34] Danny. http://hkn.eecs.berkeley.edu/~dyoo/plt/suffixtree/

[35] Dan Gusfield. “Algorithms on Strings, Trees and Sequences Computer Science and
Computational Biology”. Cambridge University Press; 1 edition (May 28, 1997)
ISBN: 9780521585194

[36] Lloyd Allison. “Suffix Trees”. http://www.allisons.org/ll/AlgDS/Tree/Suffix/

[37] Esko Ukkonen. “Suffix tree and suffix array techniques for pattern analysis in strings”.
http://www.cs.helsinki.fi/u/ukkonen/Erice2005.ppt

https://en.wikipedia.org/wiki/AVL_tree
http://github.com/pgrafov/python-avl-tree
http://github.com/pgrafov/python-avl-tree
https://en.wikipedia.org/wiki/Suffix_tree
https://en.wikipedia.org/wiki/Trie
https://en.wikipedia.org/wiki/T9_(predictive_text)
https://en.wikipedia.org/wiki/T9_(predictive_text)
https://en.wikipedia.org/wiki/Predictive_text
http://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
http://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
http://www.cs.helsinki.fi/u/ukkonen/Erice2005.ppt
http://en.literateprograms.org/Suffix_tree_(Java)
http://citeseer.ist.psu.edu/giegerich95comparison.html
http://citeseer.ist.psu.edu/giegerich95comparison.html
http://www.zbh.uni-hamburg.de/pubs/pdf/GieKur1997.pdf
http://www.zbh.uni-hamburg.de/pubs/pdf/GieKur1997.pdf
http://hackage.haskell.org/package/suffixtree
http://hackage.haskell.org/package/suffixtree
http://hkn.eecs.berkeley.edu/~dyoo/plt/suffixtree/
http://www.allisons.org/ll/AlgDS/Tree/Suffix/
http://www.cs.helsinki.fi/u/ukkonen/Erice2005.ppt

BIBLIOGRAPHY 321

[38] Esko Ukkonen “Approximate string-matching over suffix trees”. Proc. CPM 93. Lec-
ture Notes in Computer Science 684, pp. 228-242, Springer 1993. http://www.cs.
helsinki.fi/u/ukkonen/cpm931.ps

[39] Wikipeida. “B-tree”. https://en.wikipedia.org/wiki/B-tree

[40] Wikipedia. “Heap (data structure)”. https://en.wikipedia.org/wiki/Heap_(data_
structure)

[41] Wikipedia. “Heapsort”. https://en.wikipedia.org/wiki/Heapsort

[42] Rosetta Code. “Sorting algorithms/Heapsort”. http://rosettacode.org/wiki/Sorting_
algorithms/Heapsort

[43] Wikipedia. “Leftist Tree”. https://en.wikipedia.org/wiki/Leftist_tree

[44] Bruno R. Preiss. Data Structures and Algorithms with Object-Oriented Design Pat-
terns in Java. http://www.brpreiss.com/books/opus5/index.html

[45] Donald E. Knuth. “The Art of Computer Programming. Volume 3: Sorting and
Searching.”. Addison-Wesley Professional; 2nd Edition (October 15, 1998). ISBN-13:
978-0201485417. Section 5.2.3 and 6.2.3

[46] Wikipedia. “Skew heap”. https://en.wikipedia.org/wiki/Skew_heap

[47] Sleator, Daniel Dominic; Jarjan, Robert Endre. “Self-adjusting heaps” SIAM Journal
on Computing 15(1):52-69. doi:10.1137/0215004 ISSN 00975397 (1986)

[48] Wikipedia. “Splay tree”. https://en.wikipedia.org/wiki/Splay_tree

[49] Sleator, Daniel D.; Tarjan, Robert E. (1985), “Self-Adjusting Binary Search Trees”,
Journal of the ACM 32(3):652 - 686, doi: 10.1145/3828.3835

[50] NIST, “binary heap”. http://xw2k.nist.gov/dads//HTML/binaryheap.html

[51] Donald E. Knuth. “The Art of Computer Programming, Volume 3: Sorting and
Searching (2nd Edition)”. Addison-Wesley Professional; 2 edition (May 4, 1998)
ISBN-10: 0201896850 ISBN-13: 978-0201896855

[52] Wikipedia. “Strict weak order”. https://en.wikipedia.org/wiki/Strict_weak_order

[53] Wikipedia. “FIFA world cup”. https://en.wikipedia.org/wiki/FIFA_World_Cup

[54] Wikipedia. “K-ary tree”. https://en.wikipedia.org/wiki/K-ary_tree

[55] Wikipedia, “Pascal’s triangle”. https://en.wikipedia.org/wiki/Pascal’s_triangle

[56] Hackage. “An alternate implementation of a priority queue based on a Fibonacci
heap.”, http://hackage.haskell.org/packages/archive/pqueue-mtl/1.0.7/doc/html/
src/Data-Queue-FibQueue.html

[57] Chris Okasaki. “Fibonacci Heaps.” http://darcs.haskell.org/nofib/gc/fibheaps/orig

[58] Michael L. Fredman, Robert Sedgewick, Daniel D. Sleator, and Robert E. Tarjan.
“The Pairing Heap: A New Form of Self-Adjusting Heap” Algorithmica (1986) 1:
111-129.

[59] Maged M. Michael and Michael L. Scott. “Simple, Fast, and Practical Non-
Blocking and Blocking Concurrent Queue Algorithms”. http://www.cs.rochester.
edu/research/synchronization/pseudocode/queues.html

http://www.cs.helsinki.fi/u/ukkonen/cpm931.ps
http://www.cs.helsinki.fi/u/ukkonen/cpm931.ps
https://en.wikipedia.org/wiki/B-tree
https://en.wikipedia.org/wiki/Heap_(data_structure)
https://en.wikipedia.org/wiki/Heap_(data_structure)
https://en.wikipedia.org/wiki/Heapsort
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
http://rosettacode.org/wiki/Sorting_algorithms/Heapsort
https://en.wikipedia.org/wiki/Leftist_tree
http://www.brpreiss.com/books/opus5/index.html
https://en.wikipedia.org/wiki/Skew_heap
https://en.wikipedia.org/wiki/Splay_tree
http://xw2k.nist.gov/dads//HTML/binaryheap.html
https://en.wikipedia.org/wiki/Strict_weak_order
https://en.wikipedia.org/wiki/FIFA_World_Cup
https://en.wikipedia.org/wiki/K-ary_tree
https://en.wikipedia.org/wiki/Pascal's_triangle
http://hackage.haskell.org/packages/archive/pqueue-mtl/1.0.7/doc/html/src/Data-Queue-FibQueue.html
http://hackage.haskell.org/packages/archive/pqueue-mtl/1.0.7/doc/html/src/Data-Queue-FibQueue.html
http://darcs.haskell.org/nofib/gc/fibheaps/orig
http://www.cs.rochester.edu/research/synchronization/pseudocode/queues.html
http://www.cs.rochester.edu/research/synchronization/pseudocode/queues.html

322 BIBLIOGRAPHY

[60] Herb Sutter. “Writing a Generalized Concurrent Queue”. Dr. Dobb’s Oct 29, 2008.
http://drdobbs.com/cpp/211601363?pgno=1

[61] Wikipedia. “Tail-call”. https://en.wikipedia.org/wiki/Tail_call

[62] Wikipedia. “Recursion (computer science)”. https://en.wikipedia.org/wiki/
Recursion_(computer_science)#Tail-recursive_functions

[63] Harold Abelson, Gerald Jay Sussman, Julie Sussman. “Structure and Interpretation
of Computer Programs, 2nd Edition”. MIT Press, 1996, ISBN 0-262-51087-1.

[64] Chris Okasaki. “Purely Functional Random-Access Lists”. Functional Programming
Languages and Computer Architecture, June 1995, pages 86-95.

[65] Ralf Hinze and Ross Paterson. “Finger Trees: A Simple General-purpose Data
Structure,” in Journal of Functional Programming 16:2 (2006), pages 197-217.
http://www.soi.city.ac.uk/~ross/papers/FingerTree.html

[66] Guibas, L. J., McCreight, E. M., Plass, M. F., Roberts, J. R. (1977), ”A new repre-
sentation for linear lists”. Conference Record of the Ninth Annual ACM Symposium
on Theory of Computing, pp. 49-60.

[67] Generic finger-tree structure. http://hackage.haskell.org/packages/archive/
fingertree/0.0/doc/html/Data-FingerTree.html

[68] Wikipedia. “Move-to-front transform”. https://en.wikipedia.org/wiki/Move-to-
front_transform

[69] Robert Sedgewick. “Implementing quick sort programs”. Communication of ACM.
Volume 21, Number 10. 1978. pp.847 - 857.

[70] Jon Bentley, Douglas McIlroy. “Engineering a sort function”. Software Practice and
experience VOL. 23(11), 1249-1265 1993.

[71] Robert Sedgewick, Jon Bentley. “Quicksort is optimal”. http://www.cs.princeton.
edu/~rs/talks/QuicksortIsOptimal.pdf

[72] Fethi Rabhi, Guy Lapalme. “Algorithms: a functional programming approach”. Sec-
ond edition. Addison-Wesley, 1999. ISBN: 0201-59604-0

[73] Simon Peyton Jones. “The Implementation of functional programming languages”.
Prentice-Hall International, 1987. ISBN: 0-13-453333-X

[74] Jyrki Katajainen, Tomi Pasanen, Jukka Teuhola. “Practical in-place mergesort”.
Nordic Journal of Computing, 1996.

[75] Josè Bacelar Almeida and Jorge Sousa Pinto. “Deriving Sorting Algorithms”. Tech-
nical report, Data structures and Algorithms. 2008.

[76] Cole, Richard (August 1988). “Parallel merge sort”. SIAM J. Comput. 17 (4): 770-
785. doi:10.1137/0217049. (August 1988)

[77] Powers, David M. W. “Parallelized Quicksort and Radixsort with Optimal Speedup”,
Proceedings of International Conference on Parallel Computing Technologies. Novosi-
birsk. 1991.

[78] Wikipedia. “Quicksort”. https://en.wikipedia.org/wiki/Quicksort

[79] Wikipedia. “Total order”. http://en.wokipedia.org/wiki/Total_order

http://drdobbs.com/cpp/211601363?pgno=1
https://en.wikipedia.org/wiki/Tail_call
https://en.wikipedia.org/wiki/Recursion_(computer_science)#Tail-recursive_functions
https://en.wikipedia.org/wiki/Recursion_(computer_science)#Tail-recursive_functions
http://www.soi.city.ac.uk/~ross/papers/FingerTree.html
http://hackage.haskell.org/packages/archive/fingertree/0.0/doc/html/Data-FingerTree.html
http://hackage.haskell.org/packages/archive/fingertree/0.0/doc/html/Data-FingerTree.html
https://en.wikipedia.org/wiki/Move-to-front_transform
https://en.wikipedia.org/wiki/Move-to-front_transform
http://www.cs.princeton.edu/~rs/talks/QuicksortIsOptimal.pdf
http://www.cs.princeton.edu/~rs/talks/QuicksortIsOptimal.pdf
https://en.wikipedia.org/wiki/Quicksort
http://en.wokipedia.org/wiki/Total_order

BIBLIOGRAPHY 323

[80] Wikipedia. “Harmonic series (mathematics)”. https://en.wikipedia.org/wiki/
Harmonic_series_(mathematics)

[81] M. Blum, R.W. Floyd, V. Pratt, R. Rivest and R. Tarjan, ”Time bounds for selec-
tion,” J. Comput. System Sci. 7 (1973) 448-461.

[82] Edsger W. Dijkstra. “The saddleback search”. EWD-934. 1985. http://www.cs.
utexas.edu/users/EWD/index09xx.html.

[83] Robert Boyer, and Strother Moore. “MJRTY - A Fast Majority Vote Algorithm”.
Automated Reasoning: Essays in Honor of Woody Bledsoe, Automated Reasoning
Series, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991, pp. 105-117.

[84] Cormode, Graham; S. Muthukrishnan (2004). “An Improved Data Stream Summary:
The Count-Min Sketch and its Applications”. J. Algorithms 55: 29-38.

[85] Knuth Donald, Morris James H., jr, Pratt Vaughan. “Fast pattern matching in
strings”. SIAM Journal on Computing 6 (2): 323-350. 1977.

[86] Robert Boyer, Strother Moore. “A Fast String Searching Algorithm”. Comm. ACM
(New York, NY, USA: Association for Computing Machinery) 20 (10): 762-772. 1977

[87] R. N. Horspool. “Practical fast searching in strings”. Software - Practice & Experience
10 (6): 501-506. 1980.

[88] Wikipedia. “Boyer-Moore string search algorithm”. https://en.wikipedia.org/wiki/
Boyer-Moore_string_search_algorithm

[89] Wikipedia. “Eight queens puzzle”. https://en.wikipedia.org/wiki/Eight_queens_
puzzle

[90] George Pólya. “How to solve it: A new aspect of mathematical method”. Princeton
University Press(April 25, 2004). ISBN-13: 978-0691119663

[91] Wikipedia. “David A. Huffman”. https://en.wikipedia.org/wiki/David_A._Huffman

[92] Andrei Alexandrescu. “Modern C++ design: Generic Programming and Design Pat-
terns Applied”. Addison Wesley February 01, 2001, ISBN 0-201-70431-5

[93] Benjamin C. Pierce. “Types and Programming Languages”. The MIT Press, 2002.
ISBN:0262162091

[94] Joe Armstrong. “Programming Erlang: Software for a Concurrent World”. Pragmatic
Bookshelf; 1 edition (July 18, 2007). ISBN-13: 978-1934356005

[95] SGI. “transform”. http://www.sgi.com/tech/stl/transform.html

[96] ACM/ICPC. “The drunk jailer.” Peking University judge online for ACM/ICPC.
http://poj.org/problem?id=1218.

[97] Haskell wiki. “Haskell programming tips”. 4.4 Choose the appropriate fold. http:
//www.haskell.org/haskellwiki/Haskell_programming_tips

[98] Wikipedia. “Dot product”. https://en.wikipedia.org/wiki/Dot_product

[99] Xinyu LIU. “Isomorphism - mathematics of programming”. https://github.com/
liuxinyu95/unplugged

https://en.wikipedia.org/wiki/Harmonic_series_(mathematics)
https://en.wikipedia.org/wiki/Harmonic_series_(mathematics)
http://www.cs.utexas.edu/users/EWD/index09xx.html
http://www.cs.utexas.edu/users/EWD/index09xx.html
https://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm
https://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm
https://en.wikipedia.org/wiki/Eight_queens_puzzle
https://en.wikipedia.org/wiki/Eight_queens_puzzle
https://en.wikipedia.org/wiki/David_A._Huffman
http://www.sgi.com/tech/stl/transform.html
http://poj.org/problem?id=1218
http://www.haskell.org/haskellwiki/Haskell_programming_tips
http://www.haskell.org/haskellwiki/Haskell_programming_tips
https://en.wikipedia.org/wiki/Dot_product
https://github.com/liuxinyu95/unplugged
https://github.com/liuxinyu95/unplugged

324 BIBLIOGRAPHY

GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble
The purpose of this License is to make a manual, textbook, or other functional and

useful document “free” in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or noncom-
mercially. Secondarily, this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for modifications made by
others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, be-
cause free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a

notice placed by the copyright holder saying it can be distributed under the terms of this
License. Such a notice grants a world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein. The “Document”, below, refers
to any such manual or work. Any member of the public is a licensee, and is addressed
as “you”. You accept the license if you copy, modify or distribute the work in a way
requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document
or a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Doc-
ument that deals exclusively with the relationship of the publishers or authors of the
Document to the Document’s overall subject (or to related matters) and contains nothing
that could fall directly within that overall subject. (Thus, if the Document is in part a

325

http://fsf.org/

326 BIBLIOGRAPHY

textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for re-
vising the document straightforwardly with generic text editors or (for images composed
of pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup, or absence of markup, has been arranged to thwart or dis-
courage subsequent modification by readers is not Transparent. An image format is not
Transparent if used for any substantial amount of text. A copy that is not “Transparent”
is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title
either is precisely XYZ or contains XYZ in parentheses following text that translates
XYZ in another language. (Here XYZ stands for a specific section name mentioned below,
such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To
“Preserve the Title” of such a section when you modify the Document means that it
remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any
other implication that these Warranty Disclaimers may have is void and has no effect on
the meaning of this License.

2. VERBATIM COPYING

BIBLIOGRAPHY 327

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers)

of the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of
these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you use
the latter option, you must take reasonably prudent steps, when you begin distribution of
Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible
at the stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions

of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

328 BIBLIOGRAPHY

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section Entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These titles
must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

BIBLIOGRAPHY 329

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace
the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,

under the terms defined in section 4 above for modified versions, provided that you in-
clude in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the various
original documents, forming one section Entitled “History”; likewise combine any sections
Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete
all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released

under this License, and replace the individual copies of this License in the various docu-
ments with a single copy that is included in the collection, provided that you follow the
rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individ-
ually under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT
WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Docu-
ment, then if the Document is less than one half of the entire aggregate, the Document’s

330 BIBLIOGRAPHY

Cover Texts may be placed on covers that bracket the Document within the aggregate, or
the electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of

the Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers.
In case of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly

provided under this License. Any attempt otherwise to copy, modify, sublicense, or dis-
tribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to 60 days after the
cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free

Documentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If
the Document specifies that a proxy can decide which future versions of this License can

http://www.gnu.org/copyleft/

BIBLIOGRAPHY 331

be used, that proxy’s public statement of acceptance of a version permanently authorizes
you to choose that version for the Document.

11. RELICENSING
“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide

Web server that publishes copyrightable works and also provides prominent facilities for
anybody to edit those works. A public wiki that anybody can edit is an example of such a
server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the site means
any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all
works that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or
invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in
the document and put the following copyright and license notices just after the title page:

Copyright © YEAR YOUR NAME. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documenta-
tion License, Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is included in the section entitled “GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with … Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover
Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend re-
leasing these examples in parallel under your choice of free software license, such as the
GNU General Public License, to permit their use in free software.

Index

8 queens puzzle, 248

Auto completion, 84
AVL tree, 59

balance, 62
definition, 59
imperative insert, 64
insert, 61
verification, 63

B-tree, 95
delete, 106
insert, 97
look up, 104

BFS, 264
Binary heap, 117

build, 119
decrease key, 122
Heapify, 118
insertion, 122
pop, 120
push, 122
top, 120
top-k, 120

binary heap by array, 117
Binary Random Access List

insert, 184
random access, 186
remove, 184

Binary search, 232
binary search tree, 27

data layout, 27
delete, 34
insert, 29
looking up, 32
min/max, 32
random build, 37
succ/pred, 32
traverse, 30

binary tree, 27
Binomial Heap

Link, 152
Binomial heap, 149

definition, 150
insert, 153
pop, 155
push, 153

Binomial tree, 150
merge, 154

Boyer-Moor majority number, 241
Breadth-first search, 264

Change making problem, 269
Cock-tail sort, 140
complete binary tree, 117
Curried Form, 9
Currying, 9

Deep-first search, 246
DFS, 246
Dynamic programming, 270

equivalent, 18

Fibonacci Heap
decrease key, 162
delete min, 158
insert, 157
merge, 157
pop, 158

Fibonacci heap, 156
Finger tree

Append to right, 195
Concatenate, 195
insert to left, 193
Random access, 196
Remove from left, 193
Remove from right, 195

fold, 19

Greedy algorithm, 265

Heap sort, 122
Huffman coding, 265

in-order traverse, 30
Insertion sort

332

INDEX 333

binary search, 41
binary search tree, 42
linked-list setting, 41

insertion sort, 39
insertion, 40

Integer Patricia, 72
Integer prefix tree, 72
Integer tree

insert, 73
lookup, 77

Integer trie, 69
insert, 70
lookup, 72

Kloski puzzle, 261
KMP, 244
Knuth-Morris-Pratt algorithm, 244

LCS, 272
left child, right sibling, 152
Leftist heap, 124

heap sort, 126
insert, 126
merge, 125
pop, 125
rank, 124
S-value, 124
top, 125

List
append, 5
break, 17
concat, 8
concats, 21
cons, 2
Construction, 2
definition, 1
delete, 7
delete at, 7
drop, 16
drop while, 16
elem, 22
empty, 1
empty testing, 1
existence testing, 22
Extract sub-list, 16
filter, 22
find, 22
fold from left, 20
fold from right, 19
foldl, 20
foldr, 19
for each, 13

get at, 2
group, 17
head, 2
index, 2
infix, 23
init, 3
insert, 5
insert at, 5
last, 3
length, 2
list comprehension, 13
lookup, 22
map, 12
matching, 23
maximum, 10
minimum, 10
mutate, 5
prefix, 23
product, 8
reverse, 15
Right index, 3
rindex, 3
set at, 5
span, 17
split at, 16
suffix, 23
sum, 8
tail, 2
take, 16
take while, 16
Transform, 11
unzip, 24
ZF expression, 13
zip, 24

Longest common sub-sequence, 272

Maximum sum problem, 242
Maze problem, 246
Merge Sort, 216

Bottom-up merge sort, 226
In-place merge sort, 220
Merge, 217
Nature merge sort, 223
Performance, 218
Work area, 219, 220

minimum free number, i
MTF, 197

Paired-array sequence
random access, 189
remove and balance, 189

Pairing heap, 164

334 INDEX

decrease key, 165
definition, 165
delete, 167
insert, 165
pop, 166
top, 165

Parallel merge sort, 227
Parallel quick sort, 227
Patricia, 80
Peg puzzle, 250
post-order traverse, 30
pre-order traverse, 30
Prefix tree, 80

insert, 81
look up, 84

Queue
Balance Queue, 177
Circular buffer, 174
Lazy real-time queue, 180
linked-list, 173
Paired-array queue, 176
Paired-list queue, 176
Real-time queue, 177

Quick Sort
2-way partition, 210
3-way partition, 211
Average case, 207

Quick sort, 203
Improvement, 209
partition, 204
Performance, 207
Ternary partition, 209

Radix tree, 69
range traverse, 34, 306
Red-black tree

Imperative delete, 287
red-black tree, 48

delete, 51
imperative insertion, 55
insert, 50
red-black properties, 48

reduce, 20

Saddle back search, 234
Selection algorithm, 231
selection sort, 137

min, 138
tail-recursive min, 138

Sequence
Binary random access list, 183
Concatenate-able list, 190

finger tree, 191
numeric representation, 186
Paired-array sequence, 189

Skew heap, 126
insertion, 127
merge, 127
pop, 127
top, 127

Splay heap, 127
insert, 131
merge, 132
pop, 131
splay, 128
top, 131

strict weak order, 139
Subset sum, 274

T9, 87
Tail call, 8
Tail recursion, 8
Tail recursive call, 8
The wolf, goat, and cabbage puzzle, 254
Tournament knock out, 142
tree reconstruction, 32
tree rotation, 45
Trie, 78

insert, 78
lookup, 80

Water jugs puzzle, 257
word counter, 27

	Preface
	1 List
	1.1 Introduction
	1.2 Definition
	1.2.1 Access

	1.3 Basic operations
	1.3.1 index
	1.3.2 Last
	1.3.3 Right index
	1.3.4 Mutate
	insert
	delete
	concatenate

	1.3.5 sum and product
	1.3.6 maximum and minimum

	1.4 Transform
	1.4.1 map and for-each
	For each

	1.4.2 reverse

	1.5 Sub-list
	1.5.1 break and group

	1.6 Fold
	1.7 Search and filter
	1.8 zip and unzip

	2 Binary Search Tree
	2.1 Definition
	2.2 Insert
	2.3 Traverse
	2.4 Query
	2.5 Delete
	2.6 Random build
	2.7 Map
	2.8 Appendix: Example programs

	3 Insertion sort
	3.1 Introduction
	3.2 Insertion
	3.3 Binary search
	3.4 List
	3.5 Binary search tree

	4 Red-black tree
	4.1 Balance
	4.2 Definition
	4.3 Insert
	4.4 Delete
	4.5 Imperative red-black tree
	4.6 Appendix: Example programs

	5 AVL tree
	5.1 Definition
	5.2 Insert
	5.2.1 Balance
	5.2.2 Verification

	5.3 Imperative algorithm
	5.4 Appendix: Example programs

	6 Radix tree
	6.1 Integer trie
	6.1.1 Definition
	6.1.2 Insert
	6.1.3 Lookup

	6.2 Integer prefix tree
	6.2.1 Definition
	6.2.2 Insert
	6.2.3 Lookup

	6.3 Trie
	6.3.1 Insert
	6.3.2 Lookup

	6.4 Prefix tree
	6.4.1 Insert
	6.4.2 Lookup

	6.5 Applications of trie and prefix tree
	6.5.1 Dictionary and input completion
	6.5.2 Predictive text input

	6.6 Appendix: Example programs

	7 B-Tree
	7.1 Introduction
	7.2 Insert
	7.2.1 Insert then split
	7.2.2 Split before insert
	7.2.3 Paired lists

	7.3 Look up
	7.4 Delete
	7.4.1 Delete and fix
	7.4.2 Merge before delete

	7.5 Summary
	7.6 Appendix: Example programs

	8 Binary Heaps
	8.1 Definition
	8.2 Binary heap by array
	8.2.1 Heapify
	8.2.2 Build
	8.2.3 Heap operations
	Pop
	Top-k
	Increase priority
	Insertion

	8.2.4 Heap sort

	8.3 Leftist heap and skew heap
	8.3.1 Leftist heap
	Merge
	Top and pop
	Insert
	Heap sort

	8.3.2 Skew heap
	Merge

	8.4 Splay heap
	8.4.1 Splay
	8.4.2 Pop
	8.4.3 Merge

	8.5 Summary
	8.6 Appendix - example programs

	9 Selection sort
	9.1 Introduction
	9.2 Find the minimum
	9.2.1 Performance

	9.3 Improvement
	9.3.1 Cock-tail sort

	9.4 Further improvement
	9.4.1 Tournament knock out
	9.4.2 Heap sort

	9.5 Appendix - example programs

	10 Binomial heap, Fibonacci heap, and pairing heap
	10.1 Introduction
	10.2 Binomial Heaps
	Binomial tree
	10.2.1 Link
	Insert

	10.2.2 Merge
	Pop

	10.3 Fibonacci heap
	10.3.1 Insert
	Merge
	Pop

	10.3.2 Increase priority
	10.3.3 The name of Fibonacci heap

	10.4 Pairing Heaps
	10.4.1 Definition
	10.4.2 Merge, insert, and top
	10.4.3 Increase priority
	10.4.4 Pop
	Delete

	10.5 Summary
	10.6 Appendix - example programs

	11 Queue
	11.1 Introduction
	11.2 Linked-list queue
	11.3 Circular buffer
	11.4 Paired-list queue
	11.5 Balance Queue
	11.6 Real-time queue
	11.7 Lazy real-time queue
	11.8 Appendix - example programs

	12 Sequence
	12.1 Introduction
	12.2 Binary random access list
	12.3 Numeric representation
	12.4 paired-array sequence
	12.5 Concatenate-able list
	12.6 Finger tree
	12.6.1 Insert
	12.6.2 Extract
	12.6.3 Append and remove
	12.6.4 concatenate
	12.6.5 Random access

	12.7 Appendix - example programs

	13 Quick sort and merge sort
	13.1 Introduction
	13.2 Quick sort
	13.2.1 Partition
	13.2.2 In-place sort
	13.2.3 Performance
	Average case★

	13.2.4 Improvement
	Worst cases

	13.2.5 quick sort and tree sort

	13.3 Merge sort
	13.3.1 Merge
	13.3.2 Performance
	Improvement

	13.3.3 In-place merge sort
	13.3.4 Nature merge sort
	13.3.5 Bottom-up merge sort

	13.4 Parallelism
	13.5 Summary
	13.6 Appendix: Example programs

	14 Solution search
	14.1 k selection problem
	14.2 Binary search
	14.2.1 2D search

	14.3 The majority number
	14.4 Maximum sum of sub-vector
	14.5 String matching
	14.6 Solution search
	14.6.1 DFS and BFS
	Maze
	Eight queens puzzle
	Peg puzzle
	The wolf, goat, and cabbage puzzle
	Water jugs puzzle
	Kloski

	14.6.2 Greedy algorithm
	Huffman coding
	Change making problem

	14.6.3 Dynamic programming
	Longest common sub-sequence
	Subset sum

	14.7 Appendix - example programs

	Imperative delete for red-black tree
	AVL tree - proofs and the delete algorithm
	I Height increment
	II Balance adjustment after insert
	III Delete algorithm
	** Functional delete
	† Imperative delete

	IV Example program

	Answers
	GNU Free Documentation License
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	11. RELICENSING
	ADDENDUM: How to use this License for your documents

