Elementary Algorithms

\
1/

Xinyu LIU ¢

March 29, 2023

'Xinyu LIU
oo
1 1 1 1
Version: e = — =14+ -4+ —
crsion: € nzzon! 1t ie 1
Email: liuxinyu95@gmail.com

+ .. =2.718283

Preface

Programmers learn elementary algorithms at school. Except for programming contest or
code interview, they seldom use algorithms in commercial software development. When
talking about algorithms in AI and machine learning, people actually mean scientific
modeling, but not about data structure or elementary algorithm. Even when programmers
need them, they have already been provided in libraries. It seems quite enough to know
about how to use the library as a tool but not ‘re-invent the wheel’. Elementary algorithms
are fundamental things, Let’s start with two problems.

The smallest free number

Richard Bird gives an interesting problem to find the minimum number that not appears
in a given list (Chapter 1,[” I). People often use number to index entities. A number is
either occupied or free. When acquires, we want to always allocate the smallest available
one. Suppose numbers are non-negative integers and those being occupied are recorded
in a list, for example:

[i8, 4, 8, 9, 16, 1, 14, 7, 19, 3, 0, 5, 2, 11, 6]

How can we find the smallest free number, 10 from the list? It seems quite easy with
exhaustive search:

1: function MIN-FREE(A)

2: <+ 0

3 loop

4 if x ¢ A then
5: return z
6 else

7 r+—x+1

Where the ¢ is realized like below.
: function ‘¢’(z, X)
for i < 1 to | X| do
if x = X[i] then
return False
return True

Where | X]| is the length of X. Some environments have built-in implementation to
test existence of an element. When there are millions of numbers, this solution performs
poor. The time spent is quadratic to the length of the list. In a computer with 2 cores of
2.10 GHz CPU, and 2G RAM, the C implementation takes 5.4s to search the minimum
free number among 100,000 numbers, and takes more than 8 minutes to handle a million
numbers.

i Preface

Improvement

For n numbers x1, xs, ..., T,, if there exists free number, some x; must be out of the range
[0,n); otherwise the list is exactly some permutation of 0,1,...,n — 1 hence n should be
returned as the minimum free number.

minfree(x1,Ta, ..., Tn) <N (1)

We use an array F of n + 1 flags to mark whether a number is free in [0, n].
1: function MIN-FREE(A)

2 F <+ [False, False, ..., False] >n+1
3 for z in A do

4 if x < n then

5: F[z] < True

6 for : < 0 to n do

7 if F[i] = False then

8 return i

Initializes F' with all False values. For every number z in A, mark the flag F[z] true if
z < n. Finally, scan F' to find the first false flag. This program takes time proportion to
n. It uses n + 1 flags to cover the special case that sort(4) =[0,1,2,...,n — 1]. It needs
O(n) space to store the flags F', then release it when finish. To avoid repeated allocation
and release, we can allocate a sufficient big one in advance for reusing, and change to bit-
wise flags instead of array. The C implementation handles 1 million numbers in 0.023s in
the same computer.

Divide and Conquer

The divide and conquer strategy breaks the problem into smaller ones, then solve them
separately. Collect the numbers z; < [n/2] into a sub-list A’ and the rest into another
sub-list A”. According to (1), if the length of A" equals to |n/2], it means A’ is ‘full’.
The minimum free number must be in A”, otherwise in A’. Both cases lead to a smaller
problem. When search in A”, the boundaries change. We do not start from 0, but from
[n/2] +1. We define the algorithm as search(A,l,u), where [is the lower bound and w is
the upper bound. When start [= 0, u = |A]| — 1, i.e., minfree(A) = search(A4,0,|A|—1)

search(@,l,u) = 1

{|A’| =m—1+1: search(A”,m+1,u)

h A7 l7
search(4, 1, u) otherwise : search(A’,1,m)

where:

m:LlJ;uJ

A=[zeAxz<m|A"=[ze€Azx>m

This algorithm doesn’t need additional space'. Each recursive call performs O(]A|)

comparisons to partition A" and A”, hence halves the problem as T'(n) = T'(n/2) + O(n).
We can reduce it to O(n) according to the master theorem. Alternatively, the first call
takes O(n) time to partition A" and A”, the second call takes O(n/2) time, the third call
takes O(n/4) time ... The total time is O(n +n/2 +n/4+ ...) = O(2n) = O(n). Below
example Haskell program implements this algorithm.

LThe recursion takes O(lgn) stack spaces, but it can be eliminated through tail recursion optimization

Elementary Algorithms iii

minFree xs = bsearch xs 0 (length xs - 1)

bsearch xs L u | xs =[] =1
| length as = m - 1 + 1 = bsearch bs (m1) u
| otherwise = bsearch as 1 m
where
m= (L + u) ‘div’ 2
(as, bs) = partition (<m) xs

There are O(lgn) recursive calls. We can eliminate the recursion with loops:

1: function MIN-FREE(A)
2: 1+ 0,u+ |A]
3: while v — [> 0 do
4: m <+ [+ UT
5: left <1
6: for right <l tou —1 do
7: if A[right] <m then
8: Exchange Alleft] <» Alright]
9: left < left+1
10: if left <m + 1 then
11: u < left
12: else
13: I« left

As shown in figure 1, this program re-arranges the array such that all elements before
left are less than or equal to m; while those between left and right are greater than m.

left right

b

Ali]<=m Ali]>m L2

Figure 1: All A[i] < m where 0 <4 < left; while A[i] > m where left < i < right. The
rest elements are yet to be scanned.

Regular number

The second problem is to find the 1,500-th number, which only contains factor 2, 3 or 5.

Such numbers are called the regular number, also known as 5-smooth in number theory,

and Hamming numbers named after Richard Hamming. 2, 3, and 5 are definitely regular

numbers. 60 = 223'5! is the 25-th regular number. 21 = 2°3'7! is not because it has a

factor of 7. Define 1 = 2°35° as the O-th regular number. The first 10 numbers are:
1,2,3,4,5,6,8,9, 10, 12, ...

The brute-force solution

We can check numbers one by one from 1, extract all factors of 2, 3 and 5 to see if the
remaining is 1:
1: function REGULAR-NUMBER(n)

iv

8:

9:
10:
11:
12:
13:
14:

15:

<+ 1
while n > 0 do
rz—x+1
if VALID?(z) then
n+<n—1
return z

function VALID?(z)

while x mod 2 =0 do
z < xz/2

while £ mod 3 =0 do
x <+ x/3

while x mod 5 =0 do
x <+ x/5

return xr =17

Preface

This ‘brute-force’ algorithm performs poor when n increases. The C implementation
takes 40.39s in above computer to find the 1500-th number (860934420).

Improvement

Modular and divide are expensivel” operations. Instead of checking every number, we
can generate regular numbers with 2, 3, 5 in ascending order from 1. We can use the
queue data structure to solve this problem. A queue allows to add element to one end
(enqueue), and delete from the other end (dequeue). The element enqueued first will
be dequeued first (First In First Out). Initialize the queue with the Oth regular number
1, we repeatedly dequeue a number, multiply it by 2, 3, 5 to generate 3 numbers; then
add them to the queue in ascending order. If the generated number already exists in the
queue, we drop it to avoid duplication, as shown in figure 2.

1:
2
3
4:
5
6

1%2=2 1%#3=3 1%#5=5 2%2=4 2%3=6 2%5=10

(a) Start from 1 (b) Add 2, 3, 5

4*2=8 4*3=12 4*%5=20
(d) Add 9, 15, drop 6

Figure 2: First 4 steps

We can design the algorithm based on this idea:
function REGULAR-NUMBER(n)

Q+ [

while n > 0 do
x < DEQUEUE(Q)
UNIQUE-ENQUEUE(Q, 2x)
UNIQUE-ENQUEUE(Q, 3x)

3J4sls[10]

3%2=6 3%3=9 3%5=15

(c) Add 4, 6, 10

Elementary Algorithms v

7 UNIQUE-ENQUEUE(Q, 5z)
8: n+<n-—1
9: return x

10: function UNIQUE-ENQUEUE(Q, x)

11: i<+ 0,m + |Q|

12: while i < m and Q[i] < x do
13: i—i+1

14: if i > m or z # Q[i] then

15: INSERT(Q, %,)

The UNIQUE-ENQUEUE function takes O(m) time to insert an unique element in as-
cending order, where m = |@Q| is the length of the queue. m increases proportion to n
(Each time, we dequeue an element, and enqueue 3 new at most. The increase ratio <
2), the total time is O(1 + 2 + 3 + ... + n) = O(n?). Figure3 shows the number of queue
access against n. It is a quadratic curve, which reflects the O(n?) performance.

Queue access time - N

800000

700000
600000

500000

400000

== Queue accesstime

300000
200000

100000

i} T T T 1
0 500 1000 1500 2000

Figure 3: Queue access count - n.

The corresponding C implementation takes 0.016s to output 860934420, about 2500
times faster than the brute-force solution. Let xs be the infinite list of all regular numbers
[x1,22,23,...]. Multiply every number by 2, the result is again infinite many regular
numbers: [2z1,2x9,2x3,...]. So as multiple by 3 and 5. If we merge the three infinite
series together, filter out the duplicated numbers, and prepend 1 as the first, then we get
s again:

zs =1: [2z|x < xs] U [Bz|z + xs] U [bz|z + zs] (2)

Where symbol z:xs links a before list xs. It is called ‘cons’ in Lisp. 1 is linked as the
head of the Oth regular number. U implements the infinite lists merge:

a<b: a:asU(b:bs)
(a:as) U (b:bs)=Ca=b: a:asUbs
a>b: b:(atas)Ubs

Below is the example program in Haskell:

xs =1 : (map (*2) xs) "merge’ (map (*3) xs) ‘merge’ (map (%5) xs)

merge (a:as) (b:bs) | a<b=a : merge as (b:bs)
| a= b =a : merge as bs
| otherwise = b : merge (a:as) bs

vi Preface

The 1500th number 860934420 is given by ns !! 1500. It takes 0.03s to output
the answer in the same computer.

Queues

The above solution generates and filters out duplicated numbers. It need scan the queue
to keep the ascending order. We category all regular numbers into 3 disjoint buckets:
Q2 = {2%)i > 0}, Qo3 = {237]i > 0,7 > 0}, and Qq35 = {2°375%|i,j > 0,k > 0}. The
constraints that j # 0 in Qa3, and k # 0 in Q235 ensure there is no overlap. Realize the
buckets as 3 queues starting from Q2 = {2}, Q23 = {3}, and Q235 = {5}. Each time
extract the smallest number x from the three queues, then do the following:

e If x comes from @2, enqueue 2z to @2, 3z to (23, and Hx to Qa3s;

e If comes from (23, enqueue 3z to 23, and 5z to Q235. We do not add 2z to @,
because Q2 does not hold any numbers divisible by 3.

e If x comes from @235, enqueue 5z to Q235. We do not add 2z to @2, or 3z to Qo3
because they don’t hold numbers divisible by 5.

We reach to the answer after dequeue n smallest numbers from the three queues.
Figure 4 gives the first 4 steps.

2*min=4 3*min=6 5*min=10 3*min=9 5*min=15

2] 3] Bl 4]

min=2 min=3
(a) Enqueue 4, 6, 10; (b) Enqueue 9, 15;
2*min=8 3*min=12 5*min=20 5*min=25

4] Lol s[] [elo[i2f | [s]ro]is]20]]
min=4 min=5
(c) Enqueue 8, 12, 20; (d) Enqueue 25.

Figure 4: First 4 steps with Q2, Q23, Q235.

function REGULAR-NUMBER(n)
z+1
Q2 + {2}, Qa3 < {3}, Qo35 « {5}
while n > 0 do
T < ’ITLZ-’I’L(HEAD(C?Q)7 HEAD(C)Qg)7 HEAD(Q235))
if z = HEAD(Q2) then
DEQUEUE(Q2)
ENQUEUE(Q2, 2x)
ENQUEUE(Q23, 37)

Elementary Algorithms vii

10: ENQUEUE(Qa235, 5)

11: else if x = HEAD((Q)23) then
12: DEQUEUE(Q23)

13: ENQUEUE(Q23, 3x)

14: ENQUEUE(Q235, 5)

15: else

16: DEQUEUE(Q235)

17: ENQUEUE(Q235, 57)

18: n<n-—1

19: return

This algorithm loops n times. Each time extracts the minimum number from three
queues in constant time. Then adds at most 3 numbers to the queues in constant time.
The overall performance is O(n).

Summary

Although the brute-force solution solve both puzzles, they can’t scale up. This book aims
to provide both functional and imperative elementary algorithms and data structures.
We referenced many results from Okasaki’s work [’ and classic text books!'). We try to
avoid relying on any specific programming language, because the reader may or may not
be familiar with it, and programming languages keep changing. Instead, we use pseudo
code or mathematics notation to make the algorithm definition generic. When give code
examples, the functional ones look more like Haskell, and the imperative ones look like a
mix of several languages.

I wrote the first edition from 2009 to 2017, then rewrote the second edition from 2020
to 2023. The pdf version is available in github.

Exercise 1

1. For the free number puzzle, since all numbers are not negative, we can leverage the
sign as a flag to indicate a number exists. We can scan the number list, for every
number || < n (where n is the length), negate the number at position |z|. Then
we run another round of scan to find out the first positive number. It’s position is
the answer. Write a program to realize this method.

2. There are n numbers 1, 2, ..., n. After some processing, they are shuffled, and a
number z is altered to y. Suppose 1 < y < n, design a solution to find z and y in
linear time with constant space.

3. Below example program is a solution for the regular number puzzle. Is it equivalent
to the queue based solution?

Int regularNum(Int m) {
[Int] nums(m + 1)
Intn=0, i=0, j=0, k=20
nums[0] = 1

Int x2 = 2 % nums[i]

Int x3 = 3 * nums[j]

Int x5 = 5 % nums[k]

while n < m {
n=n-4+1
nums[n] = min(x2, x3, x5)
if x2 = nums[n] {

i=d+1

X2 = 2 * nums[i]

if x3 = nums[n] {
j=3+1
x3 = 3 % nums[j]

}
if x5 = nums[n] {
k=k+1
x5 = 5 x nums[k]
3

}

return nums[m]

Contents

Preface i
1 List 1
1.1 Introduction 1
1.2 Definition L 1
1.2.1 Access e 2

1.3 Basic operations L L 2
1.3.1 index 2

1.3.2 Last 3

1.3.3 Rightindex 3

1.3.4 Mutate 5

nsert e e e e 5

delete e 7

concatenate L L. 8

1.3.5 sum and product L 8

1.3.6 maximum and minimum 10

1.4 Transform 11
1.4.1 mapandfor-each 11
Foreach e 13

1.4.2 TEVEISe e e 15

1.5 Sub-list 16
1.5.1 break and groupo o 16

1.6 Fold s 19
1.7 Search and filter 22
1.8 zipandunzip L 24

2 Binary Search Tree 27
2.1 Definition 27
2.2 Insert 29
2.3 Traverse e 30
24 QUETY . . .o e 32
2.5 Delete e e 34

CONTENTS ix

2.6 Appendix: Example programso 37

3 Insertion sort 41
3.1 Imtroduction L 41
3.2 Imsertion L 42
3.3 Binarysearch 43
3.4 List ... e 43
3.5 Binary search tree o 44

4 Red-black tree 47
4.1 Balance e 47
4.2 Definition 50
4.3 Inserto 52
4.4 Delete o 53
4.5 TImperative red-black treex oo 57
4.6 Appendix: Example programso 58

5 AVL tree 61
5.1 Definitiono 61
5.2 Imserto e 63
521 Balance 64

5.2.2 Verification L L 65

5.3 Imperative algorithm s oo L oo 66
5.4 Appendix: Example programs 68

6 Radix tree 71
6.1 Integer trie L 71
6.1.1 Definition e 72

6.1.2 Insert 72

6.1.3 Lookup 74

6.2 Integer prefix tree. Lo 74
6.2.1 Definition o 75

6.2.2 Inmsert 75

6.2.3 Lookup 79

6.3 Trie e 80
6.3.1 Imsert 80

6.3.2 Lookup 82

6.4 Prefixtree L 82
6.4.1 Insert e 83

6.4.2 Lookup 86

6.5 Applications of trie and prefix tree 86
6.5.1 Dictionary and input completion 86

6.5.2 Predictive text inputo 89

6.6 Appendix: Example programs 91

7 B-Tree 97
7.1 Imtroduction 97
7.2 Insert ... e 99
7.2.1 Imsert thensplit oL 99

7.2.2 Split before insert L 102

723 Pairedlists 104

7.3 Lookup e 106
7.4 Delete e 108

CONTENTS

741 Deleteand fix L L 108

7.4.2 Merge before delete o oo 111

75 Summary e 114
7.6 Appendix: Example programs 115
Binary Heaps 119
8.1 Definition e 119
8.2 Binary heap by array oo L 119
8.2.1 Heapify 120
8.2.2 Build 121
8.2.3 Heap operations e 122

Pop . . 122

Top-k . . . o 122

Increase priority 124

Insertion 124

8.24 Heapsort e 124

8.3 Leftist heap and skew heap, 125
83.1 Leftistheap 126
Mergeo 127

Topand pop L 127

Insert 128

Heapsort 128

8.3.2 Skewheap. 128
Merge L 129

8.4 Splay heap 129
84.1 Splay e 130
8.4.2 Pop . .. e 133
843 Merge 134

8.5 Summary 134
8.6 Appendix - example programs Lo 134
Selection sort 139
9.1 Introduction e 139
9.2 Find the minimum L Lo 140
9.2.1 Performance 141

9.3 Improvement 141
9.3.1 Cock-tail sort e 142

9.4 Further improvement Lo L L 144
9.4.1 Tournament knockout 144
9.4.2 Heapsort 147

9.5 Appendix - example programs 148
10 Binomial heap, Fibonacci heap, and pairing heap 151
10.1 Introductiono 151
10.2 Binomial Heaps 151
Binomial treeo 152

10.2.1 Linko 154
Insert 155

10.2.2 Mergeo 156

Pop . . . o 157

10.3 Fibonacci heap 158

10.3.1 Imsert 159

CONTENTS xi

Merge oL e 159

Pop . . o 160

10.3.2 Increase priority L o 164
10.3.3 The name of Fibonacci heap 165

10.4 Pairing Heaps e 166
10.4.1 Definition 167
10.4.2 Merge, insert, and top oo 167
10.4.3 Increase priority 167
10.4.4 Popo 168
Delete e 169

10.5 Summaryo e 170
10.6 Appendix - example programs 170
11 Queue 175
11.1 Introduction e 175
11.2 Linked-list queue Lo 175
11.3 Circular buffer 176
11.4 Paired-list queue 178
11.5 Balance Queue 179
11.6 Real-time queue 179
11.7 Lazy real-time queue e 182
11.8 Appendix - example programso 183
12 Sequence 185
12.1 Introduction e 185
12.2 Binary random access list oo oL 185
12.3 Numeric representation Lo Lo 188
12.4 paired-array sequenceo ..o e e 191
12.5 Concatenate-able list 192
12.6 Finger tree oL L e 193
12.6.1 Insert e 194
12.6.2 Extract 195
12.6.3 Append and remove 197
12.6.4 concatenate L L L 197
12.6.5 Random accesso 198

12.7 Appendix - example programs 200
13 Quick sort and merge sort 205
13.1 Introduction 205
13.2 Quick sort 205
13.2.1 Partitiono 206
13.2.2 In-place sort o 207
13.2.3 Performance 209
Average casedko oo e 209

13.2.4 Improvement Lo 211
Worst caseso 215

13.2.5 quick sort and tree sort L. 218

13.3 Merge sort o . oL e 218
13.3.1 Merge oL 219
13.3.2 Performance 220
Improvement L o 221

13.3.3 In-place merge sorto oL 222

xii CONTENTS

13.3.4 Nature merge sort oL 225

13.3.5 Bottom-up merge sort L oL 228

13.4 Parallelism oL L e 229

13.5 Summaryo e e e 229

13.6 Appendix: Example programs 230

14 Solution search 233

14.1 k selection problem L L 233

14.2 Binary search oL 234

14.2.1 2D search Lo 235

14.3 The majority number. L Lo 243

14.4 Maximum sum of sub-vector 0oL 244

14.5 String matchingo 246

14.6 Solution search 248

14.6.1 DFSand BFS. 248

Maze o 248

Eight queens puzzle o 250

Pegpuzzle 252

The wolf, goat, and cabbage puzzle. 256

Water jugs puzzle L o o 259

Kloski oo 263

14.6.2 Greedy algorithm o oo 267

Huffman coding o 267

Change making problem L. 271

14.6.3 Dynamic programming 272

Longest common sub-sequence 274

Subset sum 276

14.7 Appendix - example programs 279
Appendices

Imperative delete for red-black tree 289

AVL tree - proofs and the delete algorithm 297

I Height increment L oL o 297

IT Balance adjustment after insert 298

IIT Delete algorithm o o 300

* Functional delete, 301

T Imperative delete oo 302

IV Example program 304

Answers 307

GNU Free Documentation License 341

1. APPLICABILITY AND DEFINITIONS 341

2. VERBATIM COPYING e 342

3. COPYING IN QUANTITY e 343

4. MODIFICATIONS s e s e 343

5. COMBINING DOCUMENTS e 345

6. COLLECTIONS OF DOCUMENTS 345

7. AGGREGATION WITH INDEPENDENT WORKS 345

8. TRANSLATION o e e 346

9. TERMINATION o e e e 346

CONTENTS

10. FUTURE REVISIONS OF THIS LICENSE
11. RELICENSING

ADDENDUM: How to use this License for your documents

xiv CONTENTS

Chapter 1

List

1.1 Introduction

List and array are build blocks for other complex data structure. Both hold multiple
elements as a container. Array is a range of consecutive cells indexed by a number
(address). It is typically bounded with fixed size. While list increases on-demand. One
can traverse a list one by one from head to tail. Particularly in functional settings, list
plays critical role to control the computation and logic flow!. Readers already be familiar
with map, filter, fold are safe to skip this chapter, and directly start from chapter 2.

1.2 Definition

List, or singly linked-list is a data structure recursively defined as: A [ist is either empty,
denoted as [| or NIL; or contains an element and liked with a list. Figure 1.1 shows a
list of nodes. FEach contains two parts, an element (key), and a reference to the sub-list
(next). The next to the last node is empty (NIL).

Figure 1.1: A list of nodes

Every node links to the next or NIL. We often define list with the compound structure?,
for example:

data List<A> {
A key
List<A> next

Many traditional environments support the NIL concept. There are two ways to
represent the empty list: one is to use NIL (or null, or @) directly; the other is to create
a list, but put nothing as []. From implementation perspective, NIL need not allocate
any memories, while [| does.

n low level, lambda calculus plays the most critical role as one of the computation model equivalent
to Turing machine (9], [99]

2In most cases, the data stored in list have the same type. However, there is also heterogeneous list,
like the list in Lisp for example.

2 CHAPTER 1. LIST

1.2.1 Access

Given a none empty list X, define two functions® to access the first element, and the rest
sub-list. They are often called as first X and rest X, or head X and tail X*. Conversely,
we can construct a list from an element x and another list s (can be empty), as x:zs. It
is called the cons operation. We have the following equations:

{head (x:zs) == (1.1)

tail (z:xs) =uas

For a none empty list X, we also denote the first element as x1, and the rest sub-list
as X'. For example, when X = [z, x9,x3,...], then X’ = [x9, x3, ...].

Exercise 1.2

1. For list of type A, suppose we can test if any two elements z,y € A are equal,
define the algorithm to test if two lists are equal.

1.3 Basic operations

From the definition, we can count the length recursively. the length of the empty list is
0, or it is 1 plus the length of the sub-list.

length [] = 0

length (x:xs) = 1+ length xzs (1.2)

We traverse the list to count the length, the performance is bound to O(n), where n
is the number of elements. We use | X| as the length of X when the context is clear. To
avoid repeatedly counting, we can persist the length in a variable, and update it when
mutate (add or delete). Below is the iterative length counting:

1: function LENGTH(X)
2 n<+0

3 while X # NIL do
4: n<—n+1

5 X «+ NEXT(X)
6 return n

1.3.1 index

Array supports random access at position ¢ in constant time, while we need traverse the
list ¢ steps to access the target element.

1=0: =z
tAt i (x: = 1.3
getAL i (w:es) {z #0: getAt (i—1) xzs (1.3)

We leave the empty list not handled. The behavior when [] is undefined. As such, the
out of bound case also leads to the undefined behavior. If i > |X|, we end up the edge
case to access the (i — | X]|) position of the empty list. On the other hand, if ¢ < 0, after
minus it by one, it’s even farther away from 0, and finally ends up with some negative
position of the empty list. getAt is bound to O(i) time as it advances the list i steps.
Below is the imperative implementation:

3We often write function f(z) as f =, and f(z,y,...,2) as f z y ... 2.
4They are named as car and cdr in Lisp due to the design of machine registers[1.

1.3. BASIC OPERATIONS 3

1: function GET-AT(7, X)

2 while i # 0 do

3: X + NExT(X) > error when X = NIL
4 ti—1

5 return FIRST(X)

Exercise 1.3

1. For the iterative GET-AT(7, X), what is the behavior when X is empty? what if ¢
is out of bound?

1.3.2 Last

There is a pair of symmetric operations to ‘first/rest’, namely ‘last/init’ For a none empty
list X = [x1, 22, ..., x,], function last returns the tail element x,, while init returns the
sub-list of [z1, 22, ...,2,—1]. Although they are symmetric pairs left to right, ‘last/init’
need traverse the list, hence are linear time.

last [x] x init [z [] (1.4)
last (z:xs) = last xs init (x:xs) = x:init xs '

Both do not handle the empty list. The behavior is undefined with []. Below are the
iterative implementation:

1: function LAST(X)

2: z + NIL

3 while X # NIL do
4: x + FIRST(X)
5 X + REsST(X)
6 return z

7. function INIT(X)
8: X' + NIL

9: while REST(X) # NIL do > Error when X is NIL
10: X' < Cons(FIRST(X), X')

11: X <+ REsT(X)

12: return REVERSE(X')

INIT accumulates the result through CoNs. However, the order is reversed. We need
reverse (section 1.4.2) it back.

1.3.3 Right index

last is a special case of right index. The generic case is to find the last i-th element (from
right). The naive implementation traverses two rounds: count the length n first, then
access the (n — i — 1)-th element from left:

lastAt i X = getAt (| X|—i—1) L

The better solution uses two pointers pq, ps with the distance if 4, i.e., rest®(p2) = p1,
where 7est!(ps) means repeatedly apply rest for i times. When advance py by i steps, it
meets py. po starts from the head. Advance both pointers in parallel till p; arrives at tail.
At this time point, py exactly points to the i-th element from right. as shown in figure
1.2. p; and ps form a sliding window of width 1.

4 CHAPTER 1. LIST

MR I e I e Sl

(a) p2 starts from the head, behind p; in i steps.

p2 pl

|x[1]||—>|x[2]||—> —>—> —>

(b) When p; reaches the tail, p2 points to the i-th element from right.

Figure 1.2: Sliding window

1: function LAST-AT(7, X)

2 p+— X

3 while ¢ > 0 do

4 X < REsST(X) > Error if out of bound
5: 14—1—1

6 while REST(X) # NIL do

7 X + REsST(X)

8 p < REST(p)

9

return FIRST(p)
We can’t alter the pointers in purely functional settings. Instead, we advance two

lists X = [x1, 29, ..., z,] and Y = [z, 2411, ..., T,] simultaneously, where Y is the sub-list
without the first ¢ — 1 elements.

lastAt i X = slide X (drop i X) (1.5)
Where:
slide (x:xzs) [y] = = (1.6)
slide (x:xs) (y:ys) = slide xs ys ’

Function drop m X discards the first m elements.

drop 0 xs = xs
dropm|[] = [] (1.7)
drop m (z:xs) = drop (m—1) zs

Exercise 1.4

1. In the INIT algorithm, can we use APPEND(X’, FIRST(X)) instead of CONS?
2. How to handle empty list or out of bound error in LAST-AT?

1.3. BASIC OPERATIONS 5)

1.3.4 DMutate

Mutate includes append, insert, update, and delete. The functional environment actually
implements mutate by creating a new list for the changed part, while keeps (persists) the
original one for reuse, or release at sometime (chapter 2 inl’).

Append is the symmetric operation of cons, it appends element to the tail, while cons
add from head. It is also known as ‘snoc’ (reverse of ‘cons’). As it need traverse the list
to the tail, the performance is O(n), where n is the length. To avoid repeatedly traverse,
we can persist the tail reference, and update it for changes.

append [|z = [a]

append (y:ys) x = 1y :append ys x (1.8)

Below is the corresponding iterative implementation®:
1: function APPEND(X, z)
2 if X = NIL then
3 return Cons(z, NIL)
4: H+ X > Copy of the head
5: while REST(X) # NIL do
6: X + REsT(X)
7 REST(X) + Cons(z, NIL)
8: return H
To update the REST, it is typically implemented by updating the next reference, for
example:

List<A> append(List<A> xs, A x) {
if xs =— null then return cons(x, null)
var head = xs
while xs.next # null {
XS = XS.next
}
xs.next = cons(x, null)
return head

}

Similar to get At, we need advance to the target position and change the element.
setAt 0 x (y:ys) = xz:ys (1.9)
setAt i x (y:ys) = y:setAt (i—1) xys '

The setAt is bound to O(i) time, where 4 is the position for update.

Exercise 1.5

1. Add the ‘tail’ reference, optimize the append to constant time.

2. When need update the tail reference? How does it affect the performance?

3. Handle the empty list and out of bound error for setAt.

insert

There are two different cases about insertion: (1) insert an element at a given position:
insert i x X, similar to setAt; (2) insert an element to a sorted list, and maintain the
ordering.

insert 0 x ys = x:ys

insert i x (y:ys) = wy:insert (i—1) z ys (1.10)

5The parameter orders are also symmetric: cons z s and append s

6 CHAPTER 1. LIST

When ¢ exceeds the length, treat it as append (the exercise of this section). Below is
the iterative implementation:
1: function INSERT(i,z, X)
2: if i = 0 then
return Cons(z, X)
H+ X
p+— X
while ¢ > 0 and X # NIL do
p+— X
X + REsT(X)
t+—1—1
10: REsST(p) CoNs(z, X)
11: return H
Let the list L = [x1, 2, ...,x,] be sorted, i.e., for any position 1 < i < j < n, then
xz; < 5. Where < is abstract ordering. It can be >, subset between sets, and etc. We
define insert to maintain the ordering.

insert x [] = |[x]
xr<uy: T:y:ys (1.11)

insert x (y:ys) =
(y:ys) otherwise : 1y :insert x ys

Since it need compare elements one by one, the performance is bound to O(n) time,
where n is the length. Below is the iterative implementation:
1: function INSERT(x, X)
2: if X = NIL or < FIRST(X) then
return Cons(z, X)
H<— X
while REST(X) # NIL and FIRST(REST(X)) < = do
X < REsST(X)
REST(X) + Cons(z, REST(X))
return H

With insert, we can further define the insertion sort: repeatedly insert elements to
the empty list. Since each insert takes liner time, the overall time is bound to O(n?).

sort [= []

sort (z:xs) = insert x (sort xs) (1.12)

We can eliminate the recursion to implement the iterative implementation. Scan the
list, and insert elements one by one:

1: function SORT(X)

2: S < NIL

3 while X # NIL do

4: S < INSERT(FIRST(X), S)
5 X + REsT(X)

6 return S

At any time during loop, the S is sorted. The recursive implementation processes the
list from right, while the iterative one is from left. We’ll use ‘tail-recursion’ in section
1.3.5 to eliminate this difference. Chapter 3 is about insertion sort in detail, including
performance analysis and optimization.

Exercise 1.6

1.3. BASIC OPERATIONS 7

1. Handle the out-of-bound case when insert, treat it as append.

2. Implement insert for array. When insert at position i, all elements after ¢ need
shift to the end.

delete

Symmetric to insert, there are two cases for deletion: (1). delete the element at a position
del At i X; (2) look up then delete the element of a given value delete x X. To delete the
element at position i, we advance 7 steps to the target position, then by pass the element,
and link the rest sub-list.

delAti[] = []
delAt 0 (z:xs) = xs (1.13)
delAt i (x:xs) = x:delAt (i—1) zs

It is bound to O(7) time as we need advance i steps to delete. Below is the iterative
implementation.
1: function DEL-AT(i, X)
2: S+ Cons(L, X) > Sentinel node
p+ S
while i > 0 and X # NIL do
t41—1
p+— X
X + REST(X)
if X # NIL then
REST(p) + REST(X)

10: return REST(S)

To simplify the implementation, we introduce a sentinel node S, it contains a special
value 1, and points to X. With S, we are save to cut-off any node in X even for the
head. Finally, we return the list after S as the result, and discard S. For ‘find and delete’,
there are two sub-cases: (1) find and delete the first occurrence of a value; (2) remove all
the occurrences. The later is more generic (see the exercise).

delete x [] = []
delete z (y:ys) = {x =Yooy (1.14)

rF#y: y:delete x ys

Because we scan the list to find the target element, the time is bound to O(n), where
n is the length. We use a sentinel node to simplify the iterative implementation too:
1: function DELETE(z, X)
2 S« Cons(L, X)
3 p+— X
4: while X # NIL and FirsT(X) # z do
5: p+— X
6 X <+ REST(X)
7 if X # NIL then
8 REST(p) + REST(X)
9

return REST(S)

Exercise 1.7

1. Implement the algorithm to find and delete all occurrences of a given value.

8 CHAPTER 1. LIST

2. Design the delete algorithm for array, all elements after the delete position need
shift to front.

concatenate

Append is a special case for concatenation. It adds only one element, while concatenation
adds multiple. However, the performance would be quadratic if repeatedly append. Let
|zs| = m, |ys| = m be the lengths, we need advance to the tail of zs for m times, the
performance is O(n + (n+1) + ... + (n +m)) = O(nm + m?).

zsH[] = zs
xsH# (y:ys) = append xsy 4 ys

While the ‘cons’ is fast (constant time), we can traverse to the tail of zs only once,
then link to ys.

[J4ys = ys
xsH[] = zs (1.15)
(z:zs) Hys = x:(xsHys)

This improvement has the performance of O(n). In imperative settings, we can im-
plement concatenation in constant time with the tail reference variable (see exercise).

1: function CONCAT(X,Y)
2: if X = NIL then
return Y
if Y = NIL then
return X
H+ X
while REST(X) # NIL do
X + REsT(X)
REST(X) «+ Y
10: return H

1.3.5 sum and product

We often need to calculate the sum or product of a list. They have the same structure.
We will introduce how to abstract them to higher order computation in section 1.6. For
empty list, define the sum as 0, the product as 1.

sum|[] = 0 product [] = 1

sum (z:xs) = x+sum s product(z:xs) = x-product xs (1.16)

Both need traverse the list, hence the performance is O(n), where n is the length.
They compute from right to left. We can change to accumulate the result from left. For
sum, accumulate from 0; while for product, accumulate from 1.

sum’ a[] = a prod a[] = a
sum' a (z:xs) = sum (x+a)xzs prod a (x:xzs) = prod (z-a) xs
(1.17)
Given a list, we call sum’ with 0, and prod’ with 1 as the accumulators:
sum xs = sum’ 0 zs product xs = prod' 1 s (1.18)

Or in Curried form:

1.3. BASIC OPERATIONS 9

sum = sum’ 0 product = prod’ 1

Curried form was introduced by Schénfinkel (1889 - 1942) in 1924, then widely used by
Haskell Curry from 1958. It is known as Curryingl™’]. For a function taking 2 parameters
f(x,y), when fix x with a value, it becomes a function of y: g(y) = f(z,y) or g = f x.
For multiple variables of f(z,y,...,2), we convert it to a series of Curried functions:
fof x, f x y,.., each takes one parameter: f(x,y,...,2z) = f(x)(y)...(z) =fzy ... 2.

The accumulated implementation computes from left to right, needn’t book keeping
any context, state, or intermediate result for recursion. All states are either passed
as argument (for example a), or dropped (for example the previous element). We can
further optimize such recursive calls to loops. Because the recursion happens at the tail
of the function, we call them tail recursion (or ‘tail call’), and the process to eliminate
recursion as ‘tail recursion optimization’[°'l. It greatly improves the performance and
avoid stack overflow due to deep recursions. In section about insertion sort, the recursive
implementation sorts elements form right. We also optimize it to tail call:

sort' a[] = a
sort’ a (x:xs) = sort’ (insert x a) xs (1.19)
We pass [] to start sorting (Curried form): sort = sort’ []. As a typical tail call

example, consider how to compute b" effectively? (problem 1.16 inl].) A direct imple-
mentation repeatedly multiplies b for n times from 1, which is bound to O(n) time:

1: function Pow(b,n)

2 <1
3: loop n times
4 xéx-b
5 return =

When compute b®, after the first 2 loops, we get x = b2. At this stage, we needn’t

multiply = with b to get b3, but directly compute z2, which gives b*. If do this again, we
get (b%)2 = b®. We only need loop 3 times, but not 8 times. If n = 2™ for some none
negative integer m, we can compute b" fast as below:

bt = b
o= (b%)?
We next extend this divide and conquer method to any none negative integer n: if

n =0, define b = 1; if n is even, we halve n, to compute b3 . Then square it; if n is odd,
since n — 1 is even, we recursively compute 5"~ !, then multiply b atop it.

o= 1
o= {2ln: (b%)? (1.20)

~)otherwise: b-b7"1

However, the 2nd clause blocks us from turning it to tail recursive. Alternatively, we
square the base number, and halve the exponent.

o= 1

o 2/n (b?)2 (1.21)
otherwise : b-b""!

With this change, we get a tail recursive function to compute b = pow(b,n, 1).

pow(b,0,a) = a
n
{2|n : pow (b, §,a) (1.22)

otherwise : pow(b,n — 1, ab)

pow(b,n,a)

10 CHAPTER 1. LIST

This implementation is bound to O(lgn) time. We can improve it further. Represent
n in binary format n = (@;,Gm—1...0100)2. We need compute »2' if a; = 1, similar to
the Binomial heap (section 10.2, chapter 10) algorithm. Finally, we multiplying them
together. For example, when compute b'', as 11 = (1011)y = 23 + 2 + 1, gives b!! =
b2° x b2 x b. We follow these steps:

1. compute b', which is b;

2. Square to b?%;

3. Square to b22;

4. Square to b2

Finally, multiply the result of step 1, 2, and 4 to get b'!.
pow(b,0,a) = a

n
2n : pow(b®, -, a) (1.23)
pow(b,n,a) = 2

otherwise : pow(b?, LEJ,ab)

This algorithm essentially shifts n to right 1 bit a time (divide n by 2). If the LSB
(the least significant bit) is 0, n is even, squares the base and keeps the accumulator a
unchanged. If the LSB is 1, n is odd, squares the base and accumulates it to a. When
n is zero, we exhaust all bits, a is the final result. At any time, the updated base V', the
shifted exponent n’, and the accumulator a satisfy the invariant ™ = a(b’)"/ .The previous
implementation minus one for odd n, the improvement halves n every time. It exactly
runs m rounds, where m is the number of bits. We leave the imperative implementation
as exercise.

Back to the sum and product, the iterative implementation applies plus and multiply
while traversing:

1: function Sum(X)

2: s+ 0

3 while X # NIL do
4: s < s+ FIRST(X)
5 X < REsST(X)

6 return s

7. function ProDUCT(X)

8: p+1

9: while X # NIL do
10: p < p - FIRST(X)
11: X + REsT(X)
12: return p

With product, we can define factorial of n as: n! = product [1..n].

1.3.6 maximum and minimum

For a list of comparable elements (we can define order for any two elements), there is the
maximum and minimum. max/min share the same structure:

max [z] =

min [z] = = x
{m<minajs: T {aj>maxacs: T

min (z:xs) max (z:xs) =

otherwise : max Is

(1.24)

otherwise : min xs

1.4. TRANSFORM 11

Both process the list from right. We can change them to tail recursive. It also makes
the computation ‘on-line’, that at any time, the accumulator is the min/max so far. Use
min for example:

min’ a[] = a
. r<a: min’ = xs 1.2
min’ a (z:zs) = { (1.25)

otherwise : min’ a zs

Different from sum’/prod’, we can’t pass a fixed starting value to min’/maxz’, unless
+oo (Curried form):

min = min’ co max = max’ —oo
We can pass the first element given min/max only takes none empty list:
min (z:xs) = min’ = zs max (z:xs) = max’ = xs (1.26)

We can optimize the tail recursive implementation with loops. Use the MIN for ex-

ample.

1: function MIN(X)
m <+ FIRST(X)
3 X < REST(X)
4 while X # NIL do
5 if FIrRST(X) < m then
6: m <+ FIRST(X)
7
8

N

X < REsST(X)
return m

Alternatively, we can re-use the first element as the accumulator. Every time, we
compare the first two elements, and drop one. Below is the example for min. max is
symmetric.

min [z] = =z

min (z1:x9:x8) = {

21 <xy: min (z1:28) (1.27)
otherwise : min (z3:25)

Exercise 1.8

1. Change length to tail recursive.

2. Compute b" through the binary format of n.

1.4 Transform

In algebra, there are two types of transformation: one keeps the list structure, but only
transforms the elements; the other alter the list structure, hence the result is not isomor-
phic. Particularly, we call the former map.

1.4.1 map and for-each

The first example converts a list of numbers to strings. Transform [3, 1, 2, 4, 5] to [“three”,
“One”’ “tWO77’ HfOur”, “ﬁve77]

toStr [] = []

toStr (z:xs) = (str x):toStr xs (1.28)

12 CHAPTER 1. LIST

For the second example, given a dictionary, which is a list of words grouped by their
initials:

[[a, an, another, ...],
[bat, bath, bool, bus, ...],

ey
[zero, zoo, ...]]

Next process a text (Hamlet for example), augment each word with the number of
occurrence, like:

[[(a, 1041), (an, 432), (another, 802), ...],
[(bat, 5), (bath, 34), (bool, 11), (bus, 0), ...],
.[é:aro 12), (zoo, 0), ...]1]

Now for every initial letter, which word does occur most? The answer is a list of words,
that every one has the most occurrences in the group, like [a, but, can, ...]. We
need a program that transforms a list of groups of word-number pairs into a list
of words. First, define a function, which takes a list of word-number pairs, finds the
word paired with the biggest number. Sort is overkill. We need a special max function
maxBy cmp xs, where ecmp is the generic compare function.

maxBy cmp [x] =
cmp x1 To 1 maxBy emp (r2:x8) (1.29)

maxBy ecmp (x1:29:x8) =
y cmp (z1:22:25) {otherwise : maxBy cmp (v1:28)

For a pair p = (a,b) we define two functions:

rmen= o

Then define a special compare function for word-count pairs:
less p1 p2 = snd p1 < snd py (1.31)

Then pass less to maz By (in Curried form): max” = max By less. Finally, call max”
to process the list:

solve [] =]

solve (z:xs) = (fst (max” x)): solve xs (1.32)

solve and toStr share the same structure for different problems. We abstract this
common structure as map:

map f[] = []
map f (x:xs) = (f «):map f s (1.33)

map takes a function f, applies it to every element to form a new list. A function that
computes with other functions is called high-order function. Let the type of f is A — B.
It sends an element of A to the result of B, the type of map is:

map = (A — B) — [A] — [B] (1.34)

Read as: map takes a function of A — B, converts a list [A] to another list [B]. We
can define the above two examples with map as below (in Curried form):

1.4. TRANSFORM 13

toStr = map str solve = map (fst o max”)

Where fog is function composition, i.e. first apply g then apply f. (fog) x = f(g(x)),
read as f after g. From the set theory point of view. Function y = f(x) defines the map
from z in set X to y in set Y:

Y ={f(z)|z € X} (1.35)

This type of set definition is called Zermelo-Frankel set abstraction (known as ZF
expression)[I, The difference is that the mapping is from a list (but not set) to an-
other: Y = [f(z)|z < Y]. There can be duplicated elements. For list, such ZF style
expression is called list comprehension. It is a powerful tool. let us see how to realize the

permutation algorithm for example. Extend from full-permutations!” "] we define a

generic perm X 7, that permutes r out of the total n elements in list X. There are total
n!

Pl = =7 permutations.

(n—r)!

I X|<rorr=0: [[]]
otherwise : [x:ys | © < X, ys < perm (delete x X) (r — 1)]
(1.36)
If pick zero element, or there are too few (less than r), the result is a list of empty][[
|]; otherwise, for every x in X, we recursively pick » — 1 out of the rest n — 1 elements;
then prepend x for each.
We use a sentinel node in the iterative MAP implementation.
1: function Map(f, X)
2 X'+ Cons(L, NIL) > the sentinel
3 p+ X'
4: while X # NIL do
5: x <+ FIRST(X)
6
7
8
9

perer:{

X + REsT(X)
REST(p) + CoNs(f(z), NIL)
p < REST(p)

return REST(X") > discard the sentinel

For each

Sometimes we only need process the elements one by one without building the new list,
for example, print every element:

1: function PRINT(X)

2: while X # NIL do

3: print FIRST(X)

4: X < REST(X)

More generally, we pass a procedure P, then apply P to each element.
1: function FOR-EACH(P, X)
2 while X # NIL do
3: P(FIRsT(X))
4: X + REsST(X)

For example, let us solve the “n-lights puzzle” ") with map. There are n lights in a
room, all are off. We execute the following n rounds:

1. Switch all lights on;

14 CHAPTER 1. LIST

2. Switch lights of number 2, 4, 6, ... , that every other light is switched;
3. Switch every third lights, number 3, 6, 9, ... ;

4. ..

At the last round, only the n-th light is switched. How many lights are on in the end?
We start with a brute-force solution. Represent the n lights as a list of 0/1 numbers (0:
off, 1: on). Start from all zeros: [0, 0, ..., 0]. Label the light from 1 to n, then map them
to (i, on/off) pairs:

lights = map (i — (i,0)) [1,2,...,n]

It binds each number to zero, i.e., a list of pairs: L = [(1, 0), (2, 0), ..., (n, 0)]. We
operate this list of pairs n rounds. In the i-th round, for every pair (j,), if ¢|j (meaning
jmod ¢ = 0), then switch it on/off. As1 —0=1and 1 —1=0, we switch z to 1 — z.

jmodi=0: (j,1—
switch i (j,z)) = 47 0" U1 =) (1.37)
otherwise : (J, x)
Realize the i-th round of operation as map (switch i) L (we use the Curried form of
switch). Next, define a function op(), which performs mapping on L over and over for n
rounds: op [1,2,...,n] L.

op|[]L = L
op (i:is) L = op is (map (switch i) L) (1.38)
Finally, sum the second value of each pair to get the answer.
solve n = sum (map snd (op [1,2,...,n] L)) (1.39)

Below is the example Haskell implementation:

solve = sumo (map snd) o proc where
lights = map (Ai — (i, 0)) [1..n]
proc n = operate [1..n] lights
operate [] xs = xs
operate (i:is) xs = operate is (map (switch i) xs)
switch i (j, x) = if j 'mod” i =— 0 then (j, 1 - x) else (j, x)

Run this program from 1 to 100 lights, below are the answers (added line breaks):

—

OCoOo~NoOuUubhwWNRE
PN WN R
VN WN R
Voo rwN

v e v v v v w .

OCoo~NOOUhWN

b
,9,9,10]

They form a pattern: the first 3 answers are 1; the 4-th to the 8-th answers are 2; the
9-th to the 15-th answers are 3; ... It seems that the i%-th to the ((i +1)? — 1)-th answers
are i. Let’s prove it:

1.4. TRANSFORM 15

Proof. Given n lights labeled from 1 to n, all light are off when start. The lights which
are switched odd times are on finally. For every light i, we switch it at round j if j divides
i (j|7). Only the lights which have odd number of factors are on in the end. The key
point to solve this puzzle, is to find all the numbers that have odd number of factors. For
any natural number n, let S be the set of all factors of n. Initialize S as @. If p is a factor
of n, there must exist a natural number ¢ such that n = pg. It means ¢ is also a factor
of n. We add 2 different factors to set S if and only if p # ¢, which keeps |S| even all the
time unless p = ¢. In such case, n is a square number. We can only add 1 factor to set
S, which leads to odd number of factors. O

We have a fast solution by counting the square numbers under n.

solve(n) = |v/n] (1.40)

Below Haskell example program outputs the answer for 1, 2, ..., 100 lights:

map (floor o sqrt) [1..100]

Map is abstract, does not limit to list, but applies to many complex algebraic struc-
tures. The next chapter explains how to map trees. We can apply mapping as long as we
can traverse the structure, and the empty is defined.

1.4.2 reverse

It’s a good exercise to reverse a singly linked-list with constant space. One must carefully
manipulate the node reference, while there exists an easy method: (1) Write a purely
recursive solution; (2) Change it to tail recursive; (3) Convert to imperative implementa-
tion. The purely recursive solution is direct:

reverse[] = |[]
reverse(x:xs) = append (reverse xs) x

Next convert it to tail recursive. Use an accumulator to store the reversed part, start
from an empty list: reverse = reverse’ |]

reverse’ a[|] = a
, , (1.41)
reverse’ a (x:xs) = reverse (z:a) xs
Different from appending, cons (:) takes constant time. We repeatedly extract the
head element, and prepend to the accumulator. It likes to store the elements in a stack,
then pop them out. The overall performance is O(n), where n is the length. Since tail
call need not keep the context, we next convert it to iterative loops:

1: function REVERSE(X)

2: A «+ NIL

3 while X # NIL do

4: A < Cons(FIrsT(X), A)
5 X <+ REsST(X)

6 return A

However, this implementation creates a new reversed list, but not reverses in-place.
We change it further:

List<T> reverse(List<T> xs) {
List<T> p, ys = null
while xs # null {

p = Xs
XS = Xs.next

16 CHAPTER 1. LIST

p.next = ys
ys =p

}

return ys

Exercise 1.9

1. Find the maximum v in a list of pairs [(k, v)] in tail recursive way.

1.5 Sub-list

One can slice an array fast, but need linear time to traverse and extract sub-list. take
extracts the first n elements, it is equivalent get a sub-list from 1 to n: sublist 1 n X.
drop discards the first n elements. It is equivalent to get a sub-list from right: sublist (n+
1) |X| X, which is symmetric to take®:

take 0 zs = [] drop 0 xzs = s
taken|] = [] dropn[] = []
take n (x:xs) = x:take (n—1) xs dropn (z:xs) = drop (n—1) xs

(1.42)
When n > | X| or n < 0, it ends up with the empty list case. We leave the imperative
implementation as exercise. We can extract the sub-list at any position for a given length:

sublist from cnt X = take cnt (drop (from —1) X) (1.43)
Or slice the list with left and right boundaries:
slice from to X =drop (from — 1) (take to X) (1.44)
The range [from,to] includes both ends. We can split the list at a position:
splitAt i X = (take i X,drop i X) (1.45)
We can extend take/drop to keep taking or dropping as far as some condition is
satisfied, Define take While/drop While, that scan every element with a predicate p, stop

when any element doesn’t satisfy. They ignore the rest even if some elements satisfy p.
We'll see this difference in the section of filtering.

take While p [] [] drop While p | | [

dropWhile p (z:25) = {(p x): dropWhile p xs

take While p (z:25) — {(p x): x : takeWhile p s

otherwise : [] otherwise : x:xs

(1.46)

1.5.1 break and group

Break and group re-arrange a list into multiple sub-lists. They typically collect the sub-
lists while traversing to achieve linear performance. We can consider break/span generic
splitting. Not at a given position, break/span scans the list, extracts the longest prefix

6Some programming languages provide built-in implementation, for example in Python: xs[:m] and
xs[m:] correspond to take and drop.

1.5. SUB-LIST 17

with a prediction p. There are two cases for p: pick the elements satisfied; or pick those
not satisfied. The former is span, the later is break.

spanp [] = ([L[])
span v (z:1s) — (px): (x:as,bs) where : (as,bs) = span p xs (1.47)
pan p (v:xs) otherwise : ([], z:xs)

We define break by negating the predication: break p = span (—p). span and break
find the longest prefiz. They stop immediately when the condition is broken and ignore
the rest. Below is the iterative implementation of span:

1: function SPAN(p, X)
2: A+ X
tail < NIL
while X # NIL and p(F1rRsT(X)) do
tail < X
X < REST(X)

if tail = NIL then

return (NIL, X)
REST(tail) < NIL
10: return (A4, X)

span and break cut the list into two parts, group divides list into multiple sub-lists. For
example, group a long string into small units, each contains consecutive same character:

RRAEERASD S R4 N4
)

group “Mississippi” = [“M”, “1”, “ss”, “i”] “ss

Ll [19 bl W
i”, “pp”, “i"]

For another example, given a list of numbers: X = [15, 9, 0, 12, 11, 7, 10, 5, 6, 13, 1,
4, 8, 3, 14, 2], divide it into small descending sub-lists:

group X = [[15,9,0],[12,11, 7], [10, 5], [6], [13, 1], [4], [8, 3], [14, 2]]

Both are useful. We can build a Radix tree from string groups, support fast text
search (chapter 6). We can implement the nature merge sort algorithm from number
groups (chapter 13). Abstract the group condition as a relation ~. It tests whether two
consecutive elements z, y are ‘equivalent’: x ~ y. We scan the list, compare two elements
each time. If they are equivalent, then we add both to a group; otherwise put them to
two different ones.

group ~ [] = [[]]

group ~ [z] = [[z]]
roup ~ (zu-xs) = d°7YC (z:ys):yss, where : (ys:yss) = group ~ (y:ws)
group (z:y:2s) {otherwise: [z]:ys:yss

(1.48)
It is bound to O(n) time, where n is the length. For the iterative implementation, if
the list X isn’t empty, initialize the result groups as [[z1]]. Scan from the second element,
append it to the last group if the two consecutive elements are ‘equivalent’; otherwise we
start a new group.
1: function GROUP(~, X)
2: if X = NIL then
3 return [[]]
4: x < FIRST(X)
5 X < REsT(X)
6 g« [z]

18 CHAPTER 1. LIST

G« 4]

: while X # NIL do
9: y + FIRsT(X)
10: if z ~ y then
11: g < APPEND(g,y)
12: else
13: g < [y]
14: G + APPEND(G, g)
15: Ty
16: X + NEXT(X)
17: return G

However, the performance will downgrade to quadratic without the tail reference opti-
mization for APPEND. We can change to CONS if don’t care the order. We can define the
above 2 examples with group as group (=) “Mississippi” and group (>) X. Alternatively,
we can realize grouping with span. Given a predication p, span cuts the list into two
parts: the longest sub-list satisfies p and the rest. We can repeatedly apply span to the
rest till it becomes empty. However, span takes an unary function as the predication,
while the group predication is a binary function. We solve it with Currying: pass and fix
the first argument of the binary predication.

group ~ [] = [[]]
group ~ (x:xs) = (x:as):group ~ bs,where: (as,bs) = span (y+— x ~y) xs

(1.49)
Although the new function groups string correctly, it can’t group numbers descending
lists: group (>) X = [[15,9,0,12,11,7,10,5,6,13,1,4,8,3,14,2]]. When put the first number
15 as the left hand of >, it is the maximum , hence span ends with putting all numbers
to as and leaves bs empty. It is not a defect, but the correct behavior. Because group
is defined to put equivalent elements together. The equivalent relation (~) must satisfy

three axioms: reflexive, transitive, and symmetric.

1. Reflexive. z ~ z;
2. Transitive. x ~y,y ~ 2z =z ~ z;
3. Symmetric. z ~y <y~ x.

When group “Mississippi”, the equal (=) operator satisfies the three axioms, and
generates the correct result. However, the Curried (>) as an equivalent relationship,
violets both reflexive and symmetric axioms, hence generates unexpected result. The
second implementation via span, limits its use case to strict equivalence; while the first
one does not. It only tests the predication for every two elements matches, which is
weaker than equivalence.

Exercise 1.10

1. Change the take/drop implementation. When n is negative, returns | | for take,
and the entire list for drop.

2. Implement the in-place imperative take/drop.
3. Define sublist and slice in Curried Form without X as parameter.

4. Consider the below span implementation:

spanp [] = ([][])
_ Jpa): (z : as,bs), where : (as, bs) = span(p, xs)
span p (izs) = otherwise : (as,z : bs)

1.6. FOLD 19

What is the difference here?

1.6 Fold

Almost all list algorithms share the common structure. It is not by chance. The common-
ality is rooted from the recursive nature of list. We can abstract the list algorithm to a
high level concept, fold”, which is essentially the initial algebra of all list computations[’"].
Observe sum, product, and sort for the common structure: the result for empty list is
0 for sum, 1 for product, and [] for sort; the binary operation that applies to the head
and the recursive result. It’s plus for sum, multiply for product, and ordered insertion for
sort. We abstract the result for empty list as the initial value z (generic zero), the binary
operation as ®. define:

hez[] = =z

h & z(xas) = x28(h & zas) (1.50)

Feed a list X = [z1, 22, ..., 2,] and expand:

h & z [xlax%"'axn]
= 21®(h & 2 [v2,23,...,%0])
= 21®(@2®(h & z[r3,...,2,]))

@@ (et @ 2[]).)
= 21D (22® (..(x) ® 2)...))

The parentheses are necessary, because the computation starts from the right-most
(zn, ® 2), repeatedly folds left towards ;. This is quite similar to a fold-fan in figure 1.3.
Fold-fan is made of bamboo and paper. Multiple frames stack together with an axis at
one end. The arc shape paper is fully expanded by these frames; We can close the fan by
folding the paper. It ends up as a stick.

Figure 1.3: Fold fan

Consider the fold-fan as a list of bamboo frames. The binary operation is to fold a
frame to the top of the stack (initialized empty). To fold the fan, start from one end,
repeatedly apply the binary operation, till all the frames are stacked. The sum and
product algorithms do the same thing essentially.

sum [1,2,3,4,5] =1+ (2+(3+(4+5))) product [1,2,3,4,5]
=14+(2+(349)

1x(2x(3x(4x5)))
1x(2x(3x20))

=14+(2+12) =1x(2x60)
=1+14 =1x120
=15 =120

Talso known as reduce

20

CHAPTER 1. LIST

We name this kind of processes fold. Particularly, since the computation is from right,

we denote it as foldr:

z

foldr f z []

Define sum and product with foldr as below:

Z?:l Ty

H?:l Ti

foldr f z (z:xs) = fx (foldr f z xs) (1.51)
=21 + (22 + (23 + oo + (Tp—1 + 20))-)
= flOldf‘ (—21-) 0 [zl,xg,...,xn] 1 (1.52)
=21 X (w2 X (3 X oo + (T_1 X T))...) (153)

= foldr (x) 1 [z1, g, ..., Ty]

Or in Curried form: sum = foldr (4) 0, product = foldr (x) 1, for insertion-sort, it

is: sort = foldr insert [].

Convert foldr to tail recursive. It generates the result from left. denote it as foldl:

foldl f z (x:xs) = foldl f (f zx) xs

foldl fz[] = =z (1.54)

Use sum for example, we can see how the computation is expanded from left to right:

foldl (+) 0 [1 2,3,4,5]

foldl (+) (0+1) [2,3,4,5]
foldl (+) (0+1+2) [3,4,5]
foldl (+) (0+1+2+3) [5]
foldl (+) (0+1+2+3+4) [5]

foldl (+) (0+1+24+3+4+5)[]
O+14+2+43+4+5

The evaluation of f(z,z) is delayed in every step (the lazy evaluation). Otherwise,
they will be evaluated in sequence of [1, 3,6, 10, 15] in each call. Generally, we can expand

foldl as (infix notation):

foldl (&

) 2 [X1,%2, .0y Tp]| = 2D T1 D T2 B ... D1y, (1.55)

foldl is tail recursive. We can convert it to loops, called REDUCE.
: function REDUCE(f, z, X)

while X # NIL do

X < REST(X)

1
2
3: z + f(z, FIRST(X))
4.
5

return z

Both foldr and foldl have their own suitable use cases. They are not necessarily
exchangeable. For example, some container only allows to add element to one end (like
stack). We can define a function fromList to build such a container from a list (in Curried

form):

fromList = foldr add @

Where @ is the empty container. The singly linked-list is such a container. It performs
well (constant time) when add element to the head, but need linear time when append
to tail. foldr is a natural choice when duplicate a list while keeping the order. But foldl
will generate a reversed list. As a workaround, we first reverse the list, then reduce it:

1.6. FOLD 21

1: function REDUCE-RIGHT(f, z, X)
2: return REDUCE(f, z, REVERSE(X))

One may prefer foldl as it is tail recursive, fits for both functional and imperative
settings as an online algorithm. However, foldr plays a critical role when handling infinite
list (modeled as stream) with lazy evaluation. For example, below program wraps every
natural number to a singleton list, and returns the first 10:

take 10 (foldr (x xs — [x]:xzs) [][1,2,...])
= [[11, 2], 31, [4], [], [6], [7], 8], [9], [10]]

It does not work with foldl or the evaluation never ends. We use a unified notation
fold when both fold left and right work. We also use fold; and fold, to indicate direction
doesn’t matter. Although this chapter is about list, the fold concept is generic, can apply
to other algebraic structures. We can fold a tree (2.6 inl }), a queue, and many other
things as long as the following 2 things are defined: (1) empty (for example the empty
tree); (2) decomposed recursive structure (like to decompose tree into sub-trees and key).
People abstract them further with concepts like foldable, monoid, and traversable.

For example, we implement the n-lights puzzle with fold and map. In the brute-force
solution, we create a list of pairs. Each pair (¢, s) has a light number i, and on/off state
s. Every round j, we switch the i-th light when the j|i. Define this process with fold:

foldr step [(1,0),(2,0), ..., (n,0)] [1,2,...,n]

All lights are off at the beginning. We fold the list of rounds 1 to n. Function step takes
two parameters: the round number 4, and the list of pairs: step i L = map (switch i) L.
The result of foldr is the pairs of light number and final on/off state, we next extract the
state out through map, and count the number with sum:

sum (map snd (foldr step [(1,0),(2,0),...,(n,0)] [1,2,...,n])) (1.56)

What if we fold a list of lists with “4” (section)7 It concatenates them to a list, just
like sum to numbers.

concat = fold, (4) [] (1.57)

For example: concat [[1],]2,3,4],[5,6,7,8,9]] = [1,2,3,4,5,6,7,8,9].

Exercise 1.11

1. To define insertion-sort with foldr, we design the insert function as insert x X,
and sort as sort = foldr insert []. The type for foldr is:

foldr :(A—-B—B)—-B—[A —- B

Where its first parameter f has the type of A — B — B, the initial value z has
the type B. It folds a list of A, and builds the result of B. How to define the
insertion-sort with foldl? What is the type of foldl?

2. What’s the performance of concat? Design a linear time concat algorithm.

3. Define map in foldr.

22 CHAPTER 1. LIST

1.7 Search and filter

Search and filter are generic concepts for a wide range of things. For list, it often takes
linear time to scan and find the result. First consider how to test if x is in list X? We
compare every element with x, until either they are equal, or reach to the end:

a€]] = False
b=a: True 1.60
a€(b:bs) = {b;«éa' acbs (1.60)

The existence check is also called elem. The performance is O(n) where n is the
length. We can not improve it to O(lgn) with binary search directly even for ordered list.
This is because list does not support constant time random access (chapter 3).

Let’s extend elem. In the n-lights puzzle, we use a list of pairs [(k,v)]. Every pair
contains a key and a value. Such list is called ‘associate list’ (abbrev. assoc list). We can
lookup the value with a key.

lookup x [] = Nothing
lookup = ((k,v):kvs) = %= @i Just (kv) (1.61)
k#x: lookup x kvus

Different from elem, we want to find the corresponding value besides the existence of
key x. However, it is not guaranteed the value always exists. We use the algebraic type
class ‘Maybe’. A type of Maybe A has two kinds of value. It may be some a in A or
nothing. Denoted as Just a and Nothing respectively. This is a way to deal with null
reference® (4.2.2 inl""1).

We can make lookup generic, to find the element that satisfies a given predicate:

findp[] = Nothing
find p (v:25) = (px): Just x (1.62)
’ otherwise : find p xs

Although there can be multiple elements satisfy p, the find function picks the first.
We can expand it to find all elements. It is called filter as shown in figure 1.4. Define
(ZF expression): filter p X = x|z + X,p x].

Input

» filter p ——— Output

Figure 1.4: Input: [z1, 22, ..., Z,], Output: [z}, 2%, ...,2),]. and Vz| = p(f).

Different from find, filter returns empty list instead of Nothing when no element
satisfies the predicate.

filter p [=[]
: s falt)
filter p (x:zs) = (p z) . :c’ filter p xs (1.63)
otherwise : filter p xs
This definition builds the result from right. For iterative implementation, the perfor-
mance will drop to O(n?) if build the result with APPEND. If change to CONS, then the
order is reversed. We can further reverse it back in linear time (see the exercise).

8Similar to Optional<A> in some environments.

1.7. SEARCH AND FILTER 23

1: function FILTER(p, X)

2 X'+ NIL

3 while X # NIL do

4: if p(FIRST(X)) then

5: X’ < APPEND(X', FIRST(X)) > Linear time
6 L + REST(X)

The nature to build result from right reminds us foldr. Define f to test an element
against the predicate, and prepend it to the result: f p x as = if p x then x:as else as.
Use its Curried form to define filter:

filter p= foldr (x as— f pz as) [] (1.64)
We can further simplify it (called 7-conversion!™]) as:

filter p= foldr (f p) [] (1.65)

Filter is a generic concept not only limit to list. We can apply a predicate to any
traversable structure to extract things.

Match is to find a pattern from some structure. Even if limit to list and string, there
are still too many things to cover (chapter 14). The very basic problem is to test whether
list as exits in bs. There are two special cases: to test if as is prefix or suffix of bs. The
span function actually finds the longest prefix under a given predicate. Similarly, we can
compare each element between as and bs. Define as C bs if as is prefix of bs:

[[Cbs = True
(a:as) C[] = False

a#b: False

(1.66)
(a:as) C (b:bs) = {a =b: asCbs

Prefix testing takes linear time to scan the two lists. However, we can not do suffix
testing in this way because it is expensive to align the right ends and scan backwards.
This is different from array. Alternatively, we can reverse both lists in linear time, convert
the problem to prefix testing:

A D B =reverse(A) C reverse(B) (1.67)

With C, we can test if a list is the sub-list of another one (infix testing). Define empty
is infix of any list, we repeatedly apply prefix testing while traverse B:

infix? (a:as) [] = False
ACB: T
infit? AB = -) rue (1.68)
otherwise : infiz? A B’

Below is the iterative implementation:
1: function Is-INFIX(A4, B)

2 if A = NIL then

3 return TRUE

4 n <+ |A]

5: while B # NIL and n < |B| do

6 if A C B then

7 return TRUE

8 B + REsST(B)

24 CHAPTER 1. LIST

9: return FALSE

Because prefix testing runs in linear time, and is called in every loop. This implemen-
tation is bound to O(nm) time, where m,n are the length of the two lists. Symmetrically,
we can enumerate all suffixes of B, and test if A is prefix of any:

infir? A B =385 € suffizes B,AC S (1.69)

Below example Haskell program implement infix testing with list comprehension:

’isInf'ixOf ab=(notonull) [s | s « tails b, a 'isPrefix0f s] ‘

Where isPrefix0f does the prefixing testing, tails generates all suffixes of a given
list (exercise of this section).

Exercise 1.12

1. Implement the linear time filter algorithm through reverse.

2. Enumerate all suffixes of a list.

1.8 zip and unzip

The assoc list is a light weighted dictionary (map) for small data. It is easier than tree
or heap based dictionary with the overhead of linear time lookup performance. In the
‘n-lights’ puzzle, we build the assoc list as: map (i — (i,0)) [1,2,...,n]. We define a zip
function:

zipas|[] = []
zip[]bs = [] (1.70)
zip (a:as) (b:bs) (a,b) : zip as bs

This implementation works when the two lists have different lengths. The result has
the same length as the shorter one. We can even zip infinite lists (under lazy evaluation),
for example”: zip [0,0,...] [1,2,...,n]. For a list of words, we can index it as: zip [1, 2,
...] [a, an, another, ...]. zip builds the result from right. We can define it with foldr. It
is bound to O(m) time, where m is the length of the shorter list. When implement the
iterative zip, the performance will drop to quadratic if using APPEND, we can use CONS
then reverse the result. However, this method can’t handle two infinite lists. In imperative
settings, we can reuse A to hold the zip result (treat as transform every element to a pair).

1: function Z1pr(A, B)

2: C + NIL

3 while A # NIL and B # NIL do

4: C < AprPEND(C, (FIRST(A), FIRST(B))) > Linear time

5: A < REST(A)

6 B + REsT(B)

7 return C

We can extend to zip multiple lists. Some programming environments provide, z1ip,

zip3, zip4, ... Sometimes, we want to apply a binary function to combine elements,
but not just form a pair. For example, given a list of unit prices [1.00,0.80,10.05, ...] for
fruits: apple, orange, banana, ... and a list of quantities, like [3, 1,0, ...], meaning, buy 3

apples, 1 orange, 0 banana, ... Below program generates the payment list:

90r zip (repeat 0) [1..n], where repeat © = x : repeat .

1.8. ZIP AND UNZIP 25

pays us || []
pays []qs = []
pays (u:us) (q:qs) = wuq:pays us qs

It has the same structure as zip except using multiply but not ‘cons’ We can abstract
the binary function as f:

zipWith f as [] []
zipWith f []bs = [] (1.71)
zipWith f (a:as) (b:bs) = (f ab): zipWith f as bs

For example, we can define the inner-product (or dot-product) "l as: A-B = sum (zipWith (-) A B)
or define the infinite Fibonacci sequence with lazy evaluation:

F=0:1:zipWith (+) F F' (1.72)

Let F be the infinite Fibonacci numbers, starts from 0 and 1. F” drops the head. From
the third number, every Fibonacci number is the sum of the corresponding numbers from
F and F’ at the same position. Below example program takes the first 15 Fibonacci
numbers:

fib =0 : 1 : zipWith (+) fib (tail fib)

take 15 fib
[e,1,1,2,3,5,8,13,21,34,55,89,144,233,377]

unzip is the inverse of zip. It converts a list of pairs to two separated lists. Define it
with foldr in Curried form:

unzip = foldr ((a,b) (as,bs) — (a:as,b:bs)) ([],[]) (1.73)

For the fruits example, given the unit price as an assoc list: U = [(apple, 1.00),
(orange, 0.80), (banana, 10.05), ...], the purchased quantity is also an assoc list: Q =
[(apple, 3), (orange, 1), (banana, 0), ...]. We extract the unit prices and the quantities,
then compute their inner-product:

pay = sum (zipWith (-) snd(unzip U) snd(unzip Q)) (1.74)

zip and unzip are generic. We can expand to zip two trees, where the nodes contain
paired elements from both. When traverse a collection of elements, we can also use the
generic zip and unzip to track the path. This is a method to mimic the ‘parent’ reference
in imperative implementation (last chapter of['"]).

List is fundamental to build more complex data structures and algorithms particularly
in functional settings. We introduced elementary algorithms to construct, access, update,
and transform list; how to search, filter data, and compute with list. Although most pro-
gramming environments provide pre-defined tools and libraries to support list, we should
not simply treat them as black-boxes. Rabhi and Lapalme introduce many functional al-
gorithms about list["”]. Haskell library provides detailed documentation about basic list
algorithms. Bird gives good examples of folding!'!, and introduces about the fold fusion
law.

Exercise 1.13

1. Design the iota (the Greek letter I) operator for list, below are the use cases:
e iota(...,n) =[1,2,3,...,n];

e iota(m,n) = [m,m+1,m+2,...,n], where m < n;

26

gr LN

Binary search tree

e iota(m,m+a,...,n) = [m,m+a,m+2a, ...,m+ kal, where k is the maximum
integer satisfying m + ka < n;
e iota(m,m,...) = repeat(m) = [m,m,m,...J;

o jota(m,..) =[m,m+1,m+2,..].

Implement the linear time imperative zip.
Define zip with fold (hint: define fold for two lists foldr2 f z zs ys).
Implement last At with zip.

Write a program to remove the duplicated elements in a list while maintain the
original order. For imperative implementation, the elements should be removed in-
place. What is the complexity? How to simplify it with additional data structure?

List can represent decimal non-negative integer. For example 1024 as list is 4 —
2 - 0 — 1. Generally, n = d,,...da2d; can be represented as d;y — do — ... = dpy.
Given two numbers a, b in list form. Realize arithmetic operations such as add
and subtraction.

In imperative settings, a circular linked-list is corrupted, that some node points
back to previous one, as shown in figure 1.6. When traverse, it falls into infinite
loops. Design an algorithm to detect if a list is circular. On top of that, improve
it to find the node where loop starts (the node being pointed by two precedents).

Figure 1.5: A circular linked-list

Chapter 2

Binary Search Tree

Array and list are typically considered the basic data structures. However, we’ll see they
are not necessarily easy to implement in chapter 12. Upon imperative settings, array is
the most elementary data structures. It is possible to implement linked-list using arrays
(Equation 3.4, chapter 3). While in functional settings, linked-list acts as the building
blocks to create array and other data structures. The binary search trees is another basic
data structure. Jon Bentley gives a problem in Programming Pearls!”: how to count the
number of word occurrences in a text. Here is a solution:

void wordCount(Input in) {
Map<String, Int> map
while String w = read(in) {

map[w] = if map[w] = null then 1 else map[w] + 1
}
for var (w, c) 1in map {

print(w, ":", c)
}

2.1 Definition

The map is a binary search tree. Here we use the word as the key, and its occurrence
number as the value. This program is a typical application of binary search tree. Let
us firstly define the binary tree. A binary tree is either empty (@)!; or contains 3 parts:
an element k, and two sub-trees called left(l) and right(r) children, denoted as (I, k, 7).
A none empty binary tree consists of multiple nodes, each is either empty or stores the
element of type K. We define the type of the binary tree as Tree K. We say a node is a
leaf if both sub-trees are empty, or it’s a branch node.

A binary search tree is a special binary tree that its elements are comparable?, and
satisfies: for any non empty node (I, k,r), all the keys in the left sub-tree < k; k < any key
in the right sub-tree. Figure 2.2 shows an example of binary search tree. Comparing with
figure 2.1, we can see the differences in ordering. For this reason, we call the comparable
element as key, and the augmented data as value. The type is Tree (K, V).

Figure 2.3 shows the data layout. A node contains a key, a value (optional), left,
right sub-tree references, and a parent reference for easy backtracking. When the context

1The great mathematician André Weil invented this symbol for null set. It comes from the Norwegian
alphabet.

21t is abstract ordering, not limit to magnitude, but like precedence, subset of etc. the ‘less than’ (<)
is abstract.

27

28

CHAPTER 2. BINARY SEARCH TREE

(a) Binary tree structure

(b) A binary tree

Figure 2.1: Binary tree

Figure 2.2: A binary search tree

2.2. INSERT 29

is clear, we skip the value (augmented data). The appendix of this chapter includes an
example definition. We needn’t reference for backtracking in functional settings, but use
top-down recursive computation. Below is the example functional definition:

key + satellite data
left

right

parent
A

key + satellite data

key + satellite data

left

left

right

right

parent

parent

Figure 2.3: Node layout with parent reference.

’data Tree a = Empty | Node (Tree a) a (Tree a)

2.2 Insert

When insert a key k (with the value) to the binary search tree T, we need maintain the
ordering. If the tree is empty, create a leaf of k. Otherwise, let the tree be (I, z,7). If
k < z, insert it to the left sub-tree [; otherwise, insert to the right r. If kK = z, it already
exists in the tree. We overwrite the value (update). Alternatively, we cab append the
data or do nothing. We skip this case. Below is the recursive definition and example
program:

nsert k @ = (2,k,9)
k<uxz: (insert k l,x,r) (2.1)

otherwise : (I, z,insert k)

insert k (I, z,r)

insert k Empty = Node Empty k Empty
insert k (Node 1 x r) | k < x = Node (insert k 1) x r
| otherwise = Node 1 x (insert k r)

This implementation uses the pattern matching feature. We give another example
without pattern matching in the appendix. We can eliminate the recursion with iterative
loops:

1: function INSERT(T), k)

2 root < T

3 x + CREATE-LEAF(k)
4 parent < NIL

5: while T' # NIL do

6: parent < T

7 if k¥ < KeY(T) then
8 T < LerT(T)

30 CHAPTER 2. BINARY SEARCH TREE

9: else

10: T < RicHT(T)

11: PARENT(z) < parent

12: if parent = NIL then > T in empty
13: return x

14: else if £ < KEy(parent) then

15: LEFT(parent) < x

16: else

17: RIGHT(parent) < x

18: return root

19: function CREATE-LEAF(k)
20: x < EMPTY-NODE

21: KeY(z) «+ k

22: LEFT(z) «+ NIL

23: R1GHT(z) < NIL

24: PARENT(z) + NIL

25: return =

Where KEY(T) accesses the key of the node:

key @ = Nothing (2.2)
key (I,k,7) = Justk '
We can repeat insert every element from a list, convert the list to a binary search tree:

fromList [] %]
fromList (x:xs) = insert x (fromList xs)

Or define it with fold (chapter 1) in Curried form: fromList = foldr insert &. We
arrange the input arguments in symmetric order: insert k t and INSERT(T, k) for func-
tional and imperative implementations. Such that to use foldr for the former, and foldl
(or for-loop) for the latter:

1: function FROM-LIST(X)

2: T <+ NIL

3 for each z in X do
4: T « INSERT(T, x)
5 return 7'

2.3 Traverse

Traverse is to visit every element in the binary search tree. There are 3 ways: pre-order,
in-order, and post-order tree walk. They are named to highlight the order of visiting key
between/before/after sub-trees.

o pre-order: key - left - right;
e in-order: left - key - right;
e post-order: left - right - key.

The ‘visit’ is recursive. For the tree in figure 2.2, the corresponding visiting orders are
as below:

2.3. TRAVERSE 31

e pre-order: 4, 3, 1, 2, 8, 7, 16, 10, 9, 14
e in-order: 1, 2, 3,4, 7,8,9, 10, 14, 16
e post-order: 2, 1, 3,7, 9, 14, 10, 16, 8, 4

It is not by accident that the in-order traverse gives an ascending list, but is guaranteed
by the definition of the binary search tree (see exercise). Define map that in-order
traverses and applies function f to every element of the tree. It transforms a tree to
another tree of the same structure (isomorphic).

map [@ (]
map f (I, k,7) (map f 1, f k,map fr)

If we only need manipulate keys but not transform the tree, we can implement in-order
traverse as below:
1: function TRAVERSE(T, f)
2: if T' # NIL then
TRAVERSE(LEFT(T), f)
FKEY(T))
TRAVERSE(RIGHT(T, f))

(2.3)

We can change the map function, convert a binary search tree to a sorted list.

toList @ = []

toList (I,k,r) = toList !4 [k] 4 toList r (2:4)

We can develop a sort algorithm: convert a list to a binary search tree, then convert
the tree back to ordered list, namely ‘tree sort’: sort X = toList (fromList X), or write
as function composition [:

sort = toList o fromList (2.5)
We define the generic fold for binary trees (see chapter 1 for fold):

foldt f gz @
foldt f g z (I,k,r)

z

g (foldt f g=z1) (fk)(foldt fgzr)

Where f: A — B, sends the key k of type A in the tree to m = f(k) of type B. It
recursively folds the left and right sub-trees (from z) to get x and y respectively, then
combines the three things together as g x m y. We can define map with foldt:

(2.6)

map f = foldt f (xmy — (x,m,y)) & (2.7)

foldt preserves the tree structure with the ternary function g. If don’t care about the
tree structure, we can use a binary function f : A x B — B to simplify, fold a tree of type
Tree A to a value of type B:

fold f zo = =z
fold f z (Lk,r) = fold f (f k (fold f zr))1
For example: sum = fold (+) 0 sums all elements of the tree; length = fold (z n —

n + 1) 0 counts the number of elements in the tree. However, fold can not define map,
as the binary function f loss the tree structure.

(2.8)

Exercise 2.1

32 CHAPTER 2. BINARY SEARCH TREE

1. Given the in-order and pre-order traverse results, rebuild the tree, and output the
post-order traverse result. For example:

e Pre-order: 1, 2, 4, 3, 5, 6;
e In-order: 4, 2, 1, 5, 3, 6;
e Post-order: ?

2. Write a program to rebuild the binary tree from the pre-order and in-order traverse
lists.

For binary search tree, prove that the in-order traverse always gives ordered list.
What is its complexity of tree sort for n elements?

Define toList with fold.

Define depth t with folding, to calculate the height of a binary tree.

A

2.4 Query

Because the binary search tree organises element ordered recursively, it supports varies
of query efficiently. This is reason we name it ‘search’ tree. There are three types of
query: (1) lookup a key; (2) find the minimum or maximum element; (3) given a node,
find its predecessor or successor. Consider lookup the value of some key x in a tree of
type Tree (K,V):

o If the tree is empty, x does not exist;
o For tree (I, (k,v),r), if k = x, returns v;

o If z < k, then recursively lookup [, otherwise, lookup r.

lookup x @ = Nothing
k=x: Justwv
(2.9)
lookup x (I, (k,v),r),x) = x<k: lookupxl
w0 lookup x v

We use the Maybe type® to handle the ‘not found’ case. If the tree is balanced (see
chapter 4), the performance is O(lgn), where n is the number of elements. It decreases
to O(n) time in the worse case for extremely unbalanced tree. Let the height of the tree
be h, the performance of lookup is O(h). Below implementation eliminates the recursion
with loops:

1: function LookUP(T), x)
2: while 7' # NIL and KEY(T) # = do
3 if + < KEY(T) then
4 T + LerT(T)
5: else
6 T < RicHT(T)
7 return VALUE(T) > returns @ if 7' =NIL

In binary search tree, the less keys are on the left, while the greater keys are on the
right. To locate the minimum element, we keep going to the left till the left sub-tree is

3 Also known as Optional<T> type, see chapter 1.

2.4. QUERY 33

empty. Symmetrically, we keep going to the right to find the maximum. Both min / max
are bound to O(h) time, where h is the height of the tree.

min (&, k,r) = k max (I,k,@) = k

min (I,k,7) = min [max (I,k,r) = max r (2.10)

We sometimes need traverse a binary search tree as a container. Start from the
minimum element, keep moving forward step by step towards the maximum, or go back
and forth. Below example program prints elements in sorted order.

void printTree (Node<T> t) {
for var it = Iterator(t), it.hasNext(), it = it.next() {
print(it.get(), ", ")
}

Such use case need to find the successor or predecessor of a node. Define the successor
of x as the minimum y that x < y. If = has none empty right sub-tree r, the minimum
element of r is the successor. As shown in figure 2.4, to find the successor of 8, we search
the minimum in its right, which is 9. If the right sub-tree of z is empty, we need back-
track along the parent till the closest ancestor whose left sub-tree is also an ancestor of
z. In figure 2.4, since node 2 does not have right sub-tree, we go up to its parent of node
1. However, node 1 does not have left sub-tree, we need go up again, hence reach to node
3. As the left sub-tree of node 3 is also an ancestor of node 2, node 3 is the successor of

node 2.
(4

Figure 2.4: The successor of 8 is 9, the minimum of its right; for the successor of 2, we
go up to its parent 1, then 3.

If we finally reach to the root along the parent path, but still can not find an ancestor
on the right, then the node does not have the successor (the last element). Below algorithm
finds the successor of z:

1: function Succ(z)

2: if RIGHT(x) # NIL then
3: return MIN(RIGHT(z))

4: else

5 p < PARENT(z)

6 while p # NIL and z = RicHT(p) do

34 CHAPTER 2. BINARY SEARCH TREE

T < p
p + PARENT(p)

9: return p

This algorithm returns NIL when z hasn’t the successor. The predecessor algorithm
is symmetric:
1: function PRED(z)
2 if LEFT(x) # NIL then
3 return MAX(LEFT(z))
4 else
5: p < PARENT(z)
6 while p # NIL and z = LEFT(p) do
7 T 4D
8 p + PARENT(p)
9 return p

The purely functional settings don’t use parent reference*. Some implementation

records the visited paths for back-track or tree rebuilding, called zipper!” |. The original
purpose for SucC and PRED is ‘to traverse all the elements’ in the tree as a container.
However, in functional settings, we typically in-order traverse the tree through map. It
only meaningful to find the successor and predecessor in imperative settings.

Exercise 2.2

1. How to test whether an element k of type K exists in the tree t of type Tree K7

2. Use PRED and SUCC to write an iterator to traverse the binary search tree as a
generic container. What’s the time complexity to traverse a tree of n elements?

3. One can traverse elements inside a range [a, b] for example:
for_each (m.lower_bound(12), m.upper_bound(26), f);
Write an equivalent functional program for binary search tree.

2.5 Delete

We need maintain the ordering while delete: for any node (I, k,r), all left are still less
than k, all right are still greater than k. Blindly deleting a node may break it. To delete
zl; (1) if = is a leaf or only has a none empty sub-tree, cut z off; (2) if has two
none empty sub-trees, use the minimum y of its right sub-tree to replace z, then cut the
original y off. We use the fact that, the minimum of the right sub-tree can not have two
none empty children. Hence we convert case 2 to 1, directly cut the minimum node off,
as shown in figure 2.5, 2.6, and 2.7.

delete x @ = @
x < k: (delete xl,k,r) 511
delete x (I,k,r) = <xz>k: (I,k, delete zr) (2.11)
x=k: dellr
Where:
del@r = r
dell @ = 1 (2.12)
dellr = (l,y,delete y r),y = min r

4There is ref in ML and OCaml, we limit to the purely functional settings.

2.5. DELETE 35

Tree

NIL NIL

Figure 2.5: Cut the leaf x off.

Tree
Tree
L
L NIL
(a) Before delete z. (b) After delete x, cut z off, replace it
with the left sub-tree.
Tree
Tree
R
NIL R
(c) Before delete z. (d) After delete x, cut z off, replace it

with the right sub-tree.

Figure 2.6: Delete a node with only a none empty sub-tree.

36

1:
2:

11:
12:
13:
14:
15:
16:

17:
18:

19:
20:
21:
22:

23:
24:
25:
26:
27:

CHAPTER 2. BINARY SEARCH TREE

Tree

L R

Tree

delete(R, min(R))

(a) Before delete z. (b) After delete z, replace x with
the minimum from its right sub-

tree.

Figure 2.7: Delete a node with two none empty sub-trees.

The performance of delete is O(h), where h is the height of the tree. The imperative
implementation needs set the parent reference in addition.

function DELETE(T), z)
r«T
'~z
p < PARENT(z)
if LEFT(x) = NIL then
x < RIGHT(z)
else if RIGHT(z) = NIL then
z < LEFT(x)
else
y < MIN(RIGHT(x))
KeY(2) + KEY(y)
VALUE(z) < VALUE(y)
if PARENT(y) # x then
LEFT(PARENT(y)) < RIGHT(y)
else
RIGHT(x) < RIGHT(y)
if RIGHT(y) # NIL then
PARENT(RIGHT(y)) <— PARENT(y)
Remove y
return r
if z # NIL then
PARENT(z) < p
if p = NIL then
r<T
else
if LEFT(p) = 2’ then
LEFT(p) <

> save T

> neither sub-tree is empty

> y does not have left sub-tree

> y is the root of the right sub-tree

> remove the root

2.6. APPENDIX: EXAMPLE PROGRAMS 37

28: else

29: RIGHT(p) + x
30: Remove 2’

31: return r

Assume z is not empty, first record the root, copy reference to x and its parent.
If either sub-tree is empty, then cut x off. If neither sub-tree is empty, we locate the
minimum node y of the right sub-tree, replace the content of = with y, then cut y off.
We also need handle the special case, that y is the root of the right sub-tree. Finally, we
need reset the stored parent if x has only one none empty sub-tree. If the copied parent
is empty, we are deleting the root. We return the new root in this case. After setting the
parent, we can safely remove x. The deletion algorithm is bound to O(h) time, where h
is the height of the tree.

The performance of the binary search tree algorithms depends on the height h of the
tree. When unbalanced, O(h) is close to O(n), while for well balanced tree, O(h) is close
to O(lgn). Chapter 4 and 5 introduce self-balanced solution, there is another simple
method to balance the tree: shuffle the elements, then build the treel’). It decreases the
possibility of poorly balanced tree.

We can use binary search tree to realize the map data structure (also known as as-
sociative data structure or dictionary). A finite map is a collection of key-value pairs.
Each key is unique, and is mapped to some value. For keys of type K, values of type
V', the type of the map is Map K V or Map<K, V>. For none empty map, it contains
n mappings of {k; — v,k — va,....k, — v,}. When use the binary search tree to
implement map, we constrain K to be ordered set. Every node stores a pair of key and
value. The type of the tree is Tree (K,V). We use the tree insert/update operation to
associate a key with a value. Given a key k, we use lookup to find the mapped value v, or
returns nothing or @ when k does not exist. The red-black tree and AVL tree in chapter
4 and 5 can also implement map.

Exercise 2.3

1. There is a symmetric deletion algorithm. When neither sub-tree is empty, we
replace with the maximum of the left sub-tree, then cut the maximum off. Write
a program to implement this solution.

2. Write a randomly building algorithm for binary search tree.
3. How to find the two nodes with the greatest distance in a binary tree?

2.6 Appendix: Example programs

Definition of binary search tree node with parent reference.

data Node<T> {
T key
Node<T> left
Node<T> right
Node<T> parent

Node(T k) = Node(null, k, null)

Node (Node<T> 1, T k, Node<T> r) {
left = 1, key = k, right =r
if (left # null) then left.parent = this
if (right # null) then right.parent = this

38 CHAPTER 2. BINARY SEARCH TREE

Recursive insert without using pattern matching.

Node<T> insert (Node<T> t, T x) {
if (t = null) {
return Node(null, x, null)
} else if (t.key < x) {
return Node(insert(t.left, x), t.key, t.right)
} else {
return Node(t.left, t.key, dinsert(t.right, x))
}

Map and fold:

mapt _ Empty = Empty
mapt f (Node 1 x r)= Node (mapt f 1) (f x) (mapt f r)

foldt _ _ z Empty = z
foldt f g z (Node 1 k r) = g (foldt f g z 1) (f k) (foldt f g z r)

maptr :: (a — b) — Tree a — Tree b
maptr f = foldt f Node Empty

fold _ z Empty = z
fold f z (Node 1 k r) = fold f (k "f° (fold f z r)) 1

Iterative lookup without recursion:

Optional<Node<T>> lookup (Node<T> t, T x) {
while (t # null and t.key # x) {
if (x < t.key) {

t = t.left
} else {
t = t.right

}
}
return Optional.of(t);

Example iterative program to find the minimum of a tree.

Optional<Node<T>> min (Node<T> t) {
while (t # null and t.left # null) {
t = t.left

}
return Optional.of(t);

Iterative find the successor.

Optional<Node<T>> succ (Node<T> x) {
if (x = null) {
return Optional.Nothing
} else if (x.right # null) {
return min(x.right)
1} else {
p = Xx.parent
while (p # null and x — p.right) {
X =p
p = p.parent
}
return Optional.of(p);

delete:

Elementary Algorithms

39

delete _ Empty = Empty
delete x (Node 1 k r) | x < k = Node (delete x 1) k r
| x > k = Node 1 k (delete x r)
| otherwise = del 1 r
where
del Empty r = r
del 1 Empty = 1
del 1 r = let k' = min r 1in Node 1 k' (delete k'

r)

40

Insertion sort

Chapter 3

Insertion sort

3.1 Introduction

Insertion sort is a straightforward sort algorithm!. We give its preliminary definition
for list in chapter 1. For a collection of comparable elements, we repeatedly pick one,
insert them to a list and maintain the ordering. As every insertion takes linear time, its
performance is bound to O(n?) where n is the number of elements. This performance is
not as good as the divide and conqueror sort algorithms, like quick sort and merge sort.
However, we can still find its application today. For example, a well tuned quick sort
implementation falls back to insertion sort for small data set. The idea of insertion sort is
similar to sort a deck of a poker cards([] pp.15). The cards are shuffled. A player takes
card one by one. At any time, all cards on hand are sorted. When draws a new card, the
player inserts it in proper position according to the order of points as shown in figure 3.1.

Figure 3.1: Insert card 8 to a deck.

Based on this idea, we can implement insertion sort as below:

1: function SORT(A)
2 S+]
3: for each a € A do
4 INSERT(a, S)
5 return S
We store the sorted result in a new array, alternatively, we can change it to in-place:

1: function SORT(A)

1We skip the ‘Bubble sort’ method

41

42 CHAPTER 3. INSERTION SORT

2: for i + 2 to |A| do
3: ordered insert A[i] to A[l...(i — 1)]

Where the index 7 ranges from 1 to n = |A|. We start from 2, because the singleton
sub-array [A[1]] is ordered. When process the i-th element, all elements before i are
sorted. We continuously insert elements till consuming all the unsorted ones, as shown in
figure 3.2.

insert

... sorted elements ... X ... unsorted elements ...

Figure 3.2: Continuously insert elements to the sorted part.

3.2 Insertion

In chapter 1, we give the ordered insertion algorithm for list. For array, we also scan it
to locate the insert position either from left or right. Below algorithm is from right:

1: function SORT(A)

2: for i + 2 to |A| do > Insert Afi] to A[l...(i — 1)]
x + Alf] > Save A[i] to x
j—i1—1
while j > 0 and z < A[j] do

Alj+1] < Alj]
Jei—1
Aj+1 + =z

It’s expensive to insert at arbitrary position, as array stores elements continuously.
When insert = at position ¢, we need shift all elements after ¢ (i.e. A[i + 1], Ali +2],...)
one cell to right. After free up the cell at ¢, we put x in, as shown in figure 3.3.

X

%

(C G >
A[l] | A[2] | ... | Al-1] | ALL] | Ali+1] | A[i+2] | ... | A[n-1] | A[n] | empty

Figure 3.3: Insert x to A at 7.

For the array of length n, suppose after comparing x to the first 7 elements, we located
the position to insert. Then we shift the rest n — ¢ + 1 elements, and put x in the i-th
cell. Overall, we need traverse the whole array if scan from left. On the other hand, if
scan from right to left, we examine n — i + 1 elements, and perform the same amount of
shifts. We can also define a separated INSERT() function, and call it inside the loop. The
insertion takes linear time no matter scans from left or right, hence the sort algorithm is
bound to O(n?), where n is the number of elements.

3.3. BINARY SEARCH 43

Exercise 3.1

1. Implement the insert to scan from left to right.

2. Define the insert function, and call it from the sort algorithm.

3.3 Binary search

When insert a poker card, human does not scan, but takes a quick glance at the deck to
locate the position. We can do this because the deck is sorted. Binary search is such a
method that applies to ordered sequence.

1: function SORT(A)

2 for i + 2 to |A| do

3 x + Alf]

4: p < BINARY-SEARCH(z, A[1...(s — 1)])

5 for j <— ¢ down to p do

6 Alj) — Alj — 1]

7 Alp] +

Binary search utilize the fact that the slice A[l...(¢ — 1)] is ordered. Suppose it is
ascending without loss of generality (as we can define < abstract). To find the position
J that satisfies A[j — 1] < z < A[j], we compare z to the middle element A[m], where

m = L%j If x < A[m], we then recursively apply binary search to the first half; otherwise,

we search the second half. As every time, we halve the elements, binary search takes
O(lgi) time to locate the insert position.
function BINARY-SEARCH(z, A)
I+ 1u+1+|A

while [< u do
+u

1:
2
3
4 m < |]

5: if Ajm] =z then

6: return m > Duplicated element
7 else if A[m] < z then

8 l<~m+1

9 else

10: u<—m

11: return [

The improved sort algorithm is still bound to O(n?). The one with scan takes O(n?)
comparisons and O(n?) shifts; with binary search, it overall takes O(nlgn) comparisons
and O(n?) shifts.

Exercise 3.2

1. Implement the recursive binary search.

3.4 List

With binary search, the search time improved to O(nlgn). However, as we need shift
array cells when insert, the overall time is still bound to O(n?). On the other hand, when
use list, the insert operation is constant time at a given node reference. In chapter 1, we

44 CHAPTER 3. INSERTION SORT

define the insertion sort algorithm for list as below:

sort [] = []

sort (z:xs) = insert x (sort xs) (3.1)
Or define with foldr in Curried form:
sort = foldr insert [] (3.2)

However, the list insert algorithm still takes linear time, because we need scan to
locate the insert position:
insert x [] =[]
r<y: TiYrys (3.3)
otherwise : y :insert x ys

insert x (y:ys)

Instead of using node reference, we can also realize list through an additional index
array. For every element A[i], Next[i] stores the index to the next element follows Ali],
i.e. A[Next[i]] is the next element of A[i]. There are two special indexes: for the tail node
Alm], we define Next[m] = —1, indicating it points to NIL; we also define Next[0] to
index the head element. With the index array, we can implement the insertion algorithm
as below:

1: function INSERT(A, Next, 1)

2: j+0 > Next[0] for head
3 while Next[j] # —1 and A[Next[j]] < A[i] do

4: Jj < Next[j]

5 Next[i] + Next[j]

6 Next[j] + i

7. function SORT(A)

8: n < |A|

9: Next =[1,2,...,n, —1] > n + 1 indexes
10: for i < 1ton do

11: INSERT(A, Next, 1)

12: return Next

With list, although the insert operation changes to constant time, we need traverse
the list to locate the position. It is still bound to O(n?) times comparison. Unlike array,
list does not support random access, hence we can not use binary search to speed up.

Exercise 3.3

1. For the index array based list, we return the re-arranged index as result. Design
an algorithm to re-order the original array A from the index Next.

3.5 Binary search tree

We drive into a corner. We want to improve both comparison and insertion at the same
time, or will end up with O(n?) performance. For comparison, we need binary search
to achieve O(lgn) time; on the other hand, we need change the data structure, because
array can not support constant time insertion at a position. We introduce a powerful
data structure in chapter 2, the binary search tree. It supports binary search from its
definition by nature. At the same time, we can insert a new node in binary search tree
fast at the given location.

Elementary Algorithms 45

1: function SORT(A)

2 T+ o

3: for each x € A do

4 T < INSERT-TREE(T, z)
5

return To-List(7T)

Where INSERT-TREE() and T0-LisT() are defined in chapter 2. In average case, the
performance of tree sort is bound to O(nlgn), where n is the number of elements. This
is the lower limit of comparison based sort(* | pp.180-193). However, in the worst case,
if the tree is poor balanced the performance drops to O(n?).

Insertion sort is often used as the first example of sorting. It is straightforward and
easy to implement. However its performance is quadratic. Insertion sort does not only
appear in textbooks, it has practical use case in the quick sort implementation. It is an
engineering practice to fallback to insertion sort when the number of elements is small.

46

Red-black tree

Chapter 4

Red-black tree

As the example in chapter 2, we use the binary search tree as a dictionary to count the
word occurrence. One may want to feed a address book to a binary search tree, and use
it to lookup the contact as below example program:

void addrBook(Input in) {
Map<String, String> dict
while (String name, String addr) = read(in) {
dict[name] = addr

}
loop {
string name = read(Console)
var addr = dict[name]
if (addr = null) {
print("not found")
} else {
print("address: ", addr)
}
}

Unlike the word counter program, this one performs poorly, especially when search
names like Zara, Zed, Zulu, etc. This is because the address entries are typically in
lexicographic order. If insert numbers 1, 2, 3, ..., n to a binary search tree, it ends up
like in figure 4.1. It is an extremely unbalanced binary search tree. The lookup is bound
to O(h) time for a tree of height h. When the tree is well balanced, the performance is
O(lgn), where n is the number of elements. But in this extreme case, the performance
downgrades to O(n), same as list scan.

Exercise 4.1

1. For a big address entry list in lexicographic order, one may want to speed up
building the address book with two concurrent tasks: one reads from the head; the
other from the tail, till they meet at some middle point. What does the binary
search tree look like? What if split the list into multiple sections to scale the
concurrency?

2. Find more cases to exploit a binary search tree, for example in figure 4.2.

4.1 Balance

To avoid extremely unbalanced case, we can shuffle the input(?? in chapter 2), however,
when user enter input interactively, we can not randomize it. Most tree balancing solutions

47

48

CHAPTER 4. RED-BLACK TREE

Figure 4.1: unbalanced tree

rely on the rotation operation. Rotation changes the tree structure while maintain the
elements ordering. This chapter introduces the red-black tree, a popular self-balancing
binary search tree. Next chapter is about AVL tree, another self-balanced tree. Chapter
8 introduces the splay tree. It adjusts the tree in steps. There are multiple binary search
trees have the same in-order traverse result. Figure 4.3 shows the tree rotation. We can

define them with pattern matching:

rotate; (a,x, (b,y,c))
rotate; T

and

rotate, ((a,x,b),y,c)
rotate, T

((a,2,0),y,¢))

(« (4.1)
g?,x, (byyac)> (42)

Each second clause keeps the tree unchanged if the pattern does not match (for exam-
ple, both sub-trees are empty). We can also implement tree rotation imperatively. We
need re-assign sub-trees and parent reference. When rotate, we pass both the root 7', and

the node x as parameters:

1: function LEFT-ROTATE(T, x)
2: p < PARENT(z)

y < RIGHT(z)

a + LEFT(z)

b < LEFT(y)

¢ < RicHT(y)
REPLACE(z, y)
SET-SUBTREES(z, a, b)
SET-SUBTREES(y, x, ¢)
10: if p = NIL then

11: T+ vy

12: return T’

> assume y # NIL

> replace node x with y

> Set a, b as the sub-trees of x
> Set x, ¢ as the sub-trees of y
> x was the root

The RIGHT-ROTATE is symmetric, we leave it as exercise. The REPLACE(z, y) uses

node y to replace x:

1: function REPLACE(z,y)
2: p < PARENT(2)

4.1. BALANCE 49

Figure 4.2: Unbalanced trees

Figure 4.3: ‘left rotate’ and ‘right rotate’.

50

CHAPTER 4. RED-BLACK TREE

if p = NIL then > x is the root
if y # NIL then PARENT(y) < NIL

else if LEFT(p) = = then
SET-LEFT(p, y)

else
SET-RIGHT(p, y)

PARENT(x) « NIL

Procedure SET-SUBTREES(z, L, R) assigns L as the left, and R as the right sub-trees

of x:

1: function SET-SUBTREES(z, L, R)

2:
3:

SET-LEFT(z, L)
SET-RIGHT(z, R)

It further calls SET-LEFT and SET-RIGHT to set the two sub-trees:
1: function SET-LEFT(z,y)

LEFT(2) ¥
if y # NIL then PARENT(y) < «

4: function SET-RIGHT(z,y)

RIGHT(z) ¥
if y # NIL then PARENT(y) + z

We can see how pattern matching simplifies the tree rotation. Based on this idea,
Okasaki developed the purely functional algorithm for red-black tree in 1995071

Exercise 4.2

1. Implement the RIGHT-ROTATE.

4.2 Definition

A red-black tree is a self-balancing binary search tree!''l. Tt is equivalent to 2-3-4 tree'.
By coloring the node red or black, and performing rotation, red-black tree provides an
efficient way to keep the tree balanced. On top of the binary search tree definition, we
label the node with a color. We say it is a red-black tree if the coloring satisfies the
following 5 rules(!' pp273):

1.
2.

Every node is either red or black.

The root is black.

Every NIL node is black.

If a node is red, then both sub-trees are black.

For every node, all paths from it to descendant leaves contain the same number of
black nodes.

Why do they keep the red-black tree balanced? The key point is that, the longest
path from the root to leaf can not exceed 2 times of the shortest path. Consider rule 4,
there can not be any two adjacent red nodes. Hence the shortest path only contains black
nodes. Any longer path must have red ones. In addition, rule 5 ensures all paths have

LChapter 7, B-tree. For any 2-3-4 tree, there is at least one red-black tree has the same ordered data.

4.2. DEFINITION 51

the same number of black nodes. So as to the root. It eventually ensures any path can’t
exceed 2 times of the others!'!). Figure 4.4 gives an example of red-black tree.

Figure 4.4: A red-black tree

As all NIL nodes are black, we can hide them as shown in figure 4.5. All operations
including lookup, min / max, are same as the binary search tree. However, the insert and
delete are special, as we need maintain the coloring rules. Below example program adds
the color variable atop binary search tree definition. Denote the empty tree as @, the
none empty tree as (¢, [, k,,r), where ¢ is the color (red/black), k is the element, [and r
are left and right sub-trees.

Figure 4.5: Hide the NIL nodes

data Color =R | B
data RBTree a = Empty | Node Color (RBTree a) a (RBTree a)

Exercise 4.3

1. Prove the height h of a red-black tree of n nodes is at most 21g(n + 1)

52 CHAPTER 4. RED-BLACK TREE

4.3 Insert

The insert operation takes two steps. The first step is as same as the binary search tree.
The second step if to resume the coloring if it becomes unbalanced. We always color the
new element red unless it is the root. Hence don’t break any coloring rules except the
4-th. Because it may bring two adjacent red nodes. There are 4 cases violate rule 4. They
share the same structure after fixing!'’l as shown in figure 4.6.

4 a
b
c \ /

a b ¢ d

/ a b c d \

d a
a d
b c b c

Figure 4.6: Fix 4 cases to the same structure.

All 4 transformations move the redness one level up. When fix recursively bottom-up,
it may color the root red, hence violate rule 2. We need revert the root black finally.
With pattern matching, define a balance function to fix the coloring. Denote the color as
C with values black B, and red R.

balance B (R, (R,a,z,b),y,¢) zd = (R,(B,a,z,b),y,(B,c,2,d))
balance B, (R, a,z, (R,b,y,¢)) zd = (R,(B,a,z,b),y,(B,c,z,d))
balance B a x (R,b,y,(R,c,z,d)) = (R,(B,a,z,b),y, (B,c,z,d)) (4.3)
balance B a x (R,(R,b,y,¢),z,d) = (R,(B,a,z,b),y,(B,c,z,d))
balance T = T

If none of the 4 patterns matches, we leave the tree unchanged. Define the red-black
tree insert as: insert x T = makeBlack (ins x T'), or in Curried form:

insertx = makeBlack o ins x (4.4)
Where:
insc@ = (R,9,z,9)
ins (C.L k1) = x < k: balance C (ins x kr (4.5)
x>k: balance C 1k (ins x)

If the tree is empty, we create a red leaf of x; otherwise, compare x and k, recursively
insert x to a sub-tree. After that, call balance to fix the coloring, finally force the root to
be black.

makeBlack (C,l, k,r) = (B,l,k,r) (4.6)

Below is the example program:

4.4. DELETE 53

insert x = makeBlack o (ins x) where
ins x Empty = Node R Empty x Empty
ins x (Node color 1 k r)
| x < k = balance color (ins x 1) k r
| otherwise = balance color 1 k (ins x r)
makeBlack (Node _ 1 k r) = Node B 1 k r

balance B (Node R (Node R a x b) y ¢) z d = Node R (Node B a x b) y (Node B c z d
balance B (Node R a x (Node R by c)) z d = Node R (Node B a x b) y (Node B c z d
balance B a x (Node R by (Node R c z d)) = Node R (Node B a x b) y (Node B c z d
balance B a x (Node R (Node R by c) z d) = Node R (Node B a x b) y (Node B c z d

balance color 1 k r Node color 1 k r

We skip to handle the duplicated keys. If the key already exists, we can overwrite,
drop, or store the values in a list ([}, pp269). Figure 4.7 shows two red-black trees built
from sequence 11, 2, 14, 1, 7, 15, 5, 8, 4 and 1, 2, ..., 8. The second example is well
balanced even for ordered input.

Figure 4.7: Red-black tree examples

The insert performs top-down recursive fixing. It is bound to O(h) time, where h is
the height. As the red-black tree coloring rules are maintained, h is logarithm to n, the
number of elements. The overall performance is O(lgn).

Exercise 4.4

1. Implement the insert without pattern matching, handle the 4 cases separately.

4.4 Delete

Delete is more complex than insert. We can simplify the recursive implementation with
pattern matching?. There are alternative implementation to mimic delete. Build a read-
only tree for frequently looking up!”). When delete a node, mark it with a flag, and
trigger tree rebuilding if such nodes exceeds 50%. Delete may also violate the red-black
tree coloring rules, hence need fixing. The violation only happens when delete a black
node according to rule 5. The black nodes along the path decreases by one, causing not
all paths contain the same number of black nodes. To resume the blackness, we introduce
a special ‘doubly-black’ node([I pp290). Such a node is counted as 2 black nodes. When
delete a black node z, move the blackness up to parent or down to a sub-tree. Let
node y accept the blackness. If y was red, turn it black; if y was already black, turn it
‘doubly-black’ as B2. Below example program adds the ‘doubly-black’ color.

2 Actually, we reuse the unchanged part to rebuild the tree in purely functional settings, known as the
‘persist’ feature

54 CHAPTER 4. RED-BLACK TREE

data Color =R | B | BB
data RBTree a = Empty | BBEmpty | Node Color (RBTree a) a (RBTree a)

Because ever NIL is black, when push the blackness down to NIL, it becomes ‘doubly-
black’ empty (BBEmpty, or bold &). The first step is normal binary search tree delete;
then as the second step, if cut a black node off, shift the blackness, and fix the coloring.

delete x = makeBlack o del x (4.7)

This is Curried definition. When delete a singleton tree, it becomes empty. To cover
this case, we modify makeBlack as below:

makeBlack & = © (4.8)
makeBlack (C,l,k,r) = (B, k,r) '
Where del accepts x and the tree:
delx @ = @
x<k: fizB*(C,(del x1),k,7)
x>k: fizB*(C, 1k, (del x 1))
del z (C,l,k,r) = l=0: if C = B then shiftB r else r
r=k: r=o: if C = B then shiftB [else |
otherwise : fixB2(C,1,m, (del m 1)), where : m = min(r)
(4.9)

When the tree is empty, the result is @; otherwise, we compare x and k. If x < k, we
recursively delete from left; otherwise delete from right. Because the recursive result may
contain doubly-black node, we apply fizB? to fix. When = = k, we locate the node to
cut. If either sub-tree is empty, we replace the node with the none empty sub-tree, then
shift the blackness if the node is black. If neither sub-tree is empty, we cut the minimum
m = min 7 off, and use m to replace k. To reserve the blackness, shiftB makes a black
node doubly-black, and forces it black for other cases. It flips doubly-black to normal
black when applied twice.

shiftB (B,Lk,r) = (B%L k1)

shiftB (C.Lk,1) — (B, k)

shiftBo = @ (4.10)
(%)

shiftB @

Below is the example program (except the doubly-black fixing part).

delete x = makeBlack o (del x) where
del x Empty = Empty
del x (Node color 1 k r)
| x < k = fixDB color (del x 1) k r
| x > k = fixDB color 1 k (del x r)
| isEmpty 1 = if color — B then shiftBlack r else r
| isEmpty r = if color — B then shiftBlack 1 else 1

| otherwise fixDB color 1 m (del m r) where m = min r
makeBlack (Node _ 1 k r) = Node B 1 k r
makeBlack _ = Empty
isEmpty Empty = True
isEmpty _ = False
shiftBlack (Node B 1 k r) = Node BB 1 k r
shiftBlack (Node _ 1 k r) = Node B 1 k r

shiftBlack Empty = BBEmpty
shiftBlack BBEmpty = Empty

4.4. DELETE 55

The fixzB? function eliminates the doubly-black by rotation and re-coloring. The
doubly-black node can be branch node or empty @. There are three cases:

Case 1. The sibling of the doubly-black node is black, and it has a red sub-tree. We
can fix this case with a rotation. There are 4 sub-cases, all can transform to the same
pattern, as shown in figure 37.

0/?\ ‘/o/@%\
’ﬁ“b%‘&

Figure 4.8: Transform 4 sub-cases to the same pattern

fixB? C ag> = (B, (R,b,y,c),2,d) = (C,(B,shiftB(a),z,b),y, (B,c, z,d))
fizB% C ag> x (B,b,y,(R,c,2,d)) = (C,(B,shiftB(a),z,b),y,(B,c,zd))
fizB? C (B,a,z,(R,b,y,c)) zdg= = (C,(B,a,z,b),y,(B,c,z, shzftB()
fizB? C (B,(R,a,z,b),y,¢) zdg= = (C,(B,a,z,b),y, (B,c,z,shiftB(d)))

11

(4.11)

Where ag2 means node a is doubly-black.
Case 2. The sibling of the doubly-black is red. We can rotate the tree to turn it into
case 1 or 3, as shown in figure 38. We add this fixing as additional 2 rows in equation

en
0

Figure 4.9: The sibling of the doubly-black is red.

56 CHAPTER 4. RED-BLACK TREE

fizB? Bag: v (R,b,y,c) = fizB?>B (fixB>Raxb)yc (4.12)
fizB? B (R,a,2,b) y cgz = fixB?>Bax (fixB>Rbyc)

Case 3. The sibling of the doubly-black node, and its two sub-trees are all black. In
this case, we change the sibling to red, flip the doubly-black node to black, and propagate
the doubly-blackness a level up to parent as shown in figure 39. There are two symmetric
sub-cases. For the upper case, = was either red or black. x changes to black if it was red,
otherwise changes to doubly-black; Same coloring changes to y in the lower case. We add
this fixing to equation (4.12):

AT
$0 4¢

Figure 4.10: move the blackness up.

fizxB? C ag> © (B,b,y,c) = shiftB (C,(shiftB a),z,(R,b,y,c)) (4.13)
fizB% C (B,a,x,b) y cg2 = shiftB (C,(R,a,x,b),y, (shiftB c)) ’
fizB>Clkr = (Cl,k,r)

If none of the patterns match, the last row keeps the node unchanged. The doubly-
black fixing is recursive. It terminates in two ways: One is Case 1, the doubly-black
node is eliminated. Otherwise the blackness may move up till the root. Finally the we
force the root be black. Below example program puts all three cases together:

fixDB color a@(Node BB _ _ _) x (Node B (Node R by c) z d)

= Node color (Node B (shiftBlack a) x b) y (Node B c z d)
fixDB color BBEmpty x (Node B (Node R b y c) z d)

= Node color (Node B Empty x b) y (Node B ¢ z d)
fixDB color a@(Node BB _ _ _) x (Node B by (Node R c z d))

= Node color (Node B (shiftBlack a) x b) y (Node B c z d)
fixDB color BBEmpty x (Node B b y (Node R c z d))

= Node color (Node B Empty x b) y (Node B ¢ z d)
fixDB color (Node B a x (Node R by c)) z d@(Node BB _ _ _)

= Node color (Node B a x b) y (Node B c z (shiftBlack d))
fixDB color (Node B a x (Node R by c)) z BBEmpty

= Node color (Node B a x b) y (Node B c z Empty)
fixDB color (Node B (Node R a x b) y c) z d@(Node BB _ _ _)

= Node color (Node B a x b) y (Node B c z (shiftBlack d))
fixDB color (Node B (Node R a x b) y c) z BBEmpty

= Node color (Node B a x b) y (Node B c z Empty)
fixDB B a@(Node BB _ _ _) x (Node R by c)

= fixDB B (fixDB R a x b) y ¢
fixDB B a@BBEmpty x (Node R b y c)

4.5. IMPERATIVE RED-BLACK TREFEx o7

= fixDB B (fixDB R a x b) y ¢

fixDB B (Node R a x b) y c@(Node BB _ _ _)
= fixDB B a x (fixDB R b y c)

fixDB B (Node R a x b) y c@BBEmpty

fixDB B a x (fixDB R b y c)
fixDB color a@(Node BB _ _ _) x (Node B b y c)

= shiftBlack (Node color (shiftBlack a) x (Node R by c))
fixDB color BBEmpty x (Node B b y c)

= shiftBlack (Node color Empty x (Node R by c))
fixDB color (Node B a x b) y c@(Node BB _ _ _)

= shiftBlack (Node color (Node R a x b) y (shiftBlack c))
fixDB color (Node B a x b) y BBEmpty

= shiftBlack (Node color (Node R a x b) y Empty)
fixDB color 1 k r = Node color 1 k r

The delete algorithm is bound to O(h) time, where h is the height of the tree. As
red-black tree maintains the balance, h = O(lgn) for n nodes.

Exercise 4.5

1. Implement the ‘mark-rebuild’ delete algorithm: mark the node as deleted without
actually removing it. When the marked nodes exceed 50%, rebuild the tree.

4.5 Imperative red-black treex

We simplify the red-black tree implementation with pattern matching. In this section, we
give the imperative algorithm for completeness. When insert, the first step is as same as
the binary search tree, then as the second step, we fix the balance through tree rotations.
1: function INSERT(T), k)
2: root <— T

3: 2 <— CREATE-LEAF(k)

4: CoLoRr(z) + RED

5 p+ NIL

6: while T' # NIL do

7 p«T

8: if k¥ < KeY(T) then

9: T < Ler1(T)

10: else

11: T + RicHT(T)

12: PARENT(x) < p

13: if p = NIL then > tree T is empty
14: return =

15: else if k¥ < KEY(p) then
16: LErFT(p) <

17: else

18: RIGHT(p) <z

19: return INSERT-FIX(root, x)

We make the new node red, and then perform fixing before return. There are 3 basic
cases, each one has a symmetric case, hence there are total 6 cases. Among them, we can
merge two cases, because both have a red ‘uncle’ node. We change the parent and uncle
to black, and set grand parent to red:

1: function INSERT-FIX(T, z)
2: while PARENT(z) # NIL and COLOR(PARENT(z)) = RED do

58 CHAPTER 4. RED-BLACK TREE

3: if COLOR(UNCLE(z)) = RED then > Case 1, 2’s uncle is red
4: COLOR(PARENT(2)) + BLACK
5: COLOR(GRAND-PARENT(z)) + RED
6: COLOR(UNCLE(z)) < BLACK
7: x <~ GRAND-PARENT(z)
8: else > 2’s uncle is black
9: if PARENT(2) = LEFT(GRAND-PARENT(z)) then
10: if = RIGHT(PARENT(z)) then > Case 2, z is on the right
11: 2 < PARENT(x)
12: T < LEFT-ROTATE(T,)

> Case 3, x is on the left
13: COLOR(PARENT(z)) + BLACK
14: COLOR(GRAND-PARENT(z)) + RED
15: T < RIGHT-ROTATE(T, GRAND-PARENT(z))
16: else
17: if « = LEFT(PARENT(x)) then > Case 2, Symmetric
18: x + PARENT(z)
19: T < RIGHT-ROTATE(T, z)

> Case 3, Symmetric

20: COLOR(PARENT(z)) - BLACK
21: COLOR(GRAND-PARENT(z)) <~ RED
22: T <+ LEFT-ROTATE(T, GRAND-PARENT(z))
23: CoLor(T') + BLACK
24: return T’

This algorithm takes O(lgn) time to insert a key, where n is the number of nodes.
Compare to the balance function defined previously, they have different logic. Even input
the same sequence of keys, they build different red-black trees. Figure 4.11 shows the
result when input the same sequence of keys to the imperative algorithm. We can see the
difference from figure 4.7. There is a bit performance overhead in the pattern matching
algorithm. Okasaki discussed the difference in detail inl'*.

We provide the imperative delete algorithm in Appendix A of the book. Red-black
tree is a popular self-balancing binary search tree. We introduce another one, AVL tree
in the next chapter. Red-black tree is a good start for more complex data structures. If
extend from 2 to k sub-trees and maintain the balance, we obtain B-tree; If store the data
along with the edge but not in node, we obtain the Radix tree. To maintain the balance,
we need handle multiple cases. Okasaki’s developed a method that makes the red-black
tree easy to implement. There are many implementations based on this idea!'?l. We also
implement AVL tree and Splay tree based on pattern matching in this book.

4.6 Appendix: Example programs

Definition of red-black tree node with parent reference. Set the color red by default.

data Node<T> {
T key
Color color
Node<T> left
Node<T> right
Node<T> parent

Node(T x) = Node(null, x, null, Color.RED)

Node (Node<T> 1, T k, Node<T> r, Color c) {
left = 1, key = k, right = r, color = c¢

4.6. APPENDIX: EXAMPLE PROGRAMS

Figure 4.11: Red-black trees created by imperative algorithm.

if left # null then left.parent = this
if right # null then right.parent = this
}

Self setLeft(l) {

left =1

if 1 # null then l.parent = this
}
Self setRight(r) {

right = r

if r # null then r.parent = this
}

Node<T> sibling() = if parent.left = this then parent.right
else parent.left

Node<T> uncle() = parent.sibling()

Node<T> grandparent() = parent.parent

59

Insert a key to red-black tree:

Node<T> insert(Node<T> t, T key) {
root = t
x = Node (key)
parent = null
while (t # null) {
parent = t
t = 1if (key < t.key) then t.left else t.right
}
if (parent — null) { //tree is empty

60 AVL tree

root = x

} else 1if (key < parent.key) {
parent.setlLeft(x)

1} else {
parent.setRight(x)

}

return insertFix(root, x)

Fix the balance:

// Fix the red—red violation
Node<T> insertFix(Node<T> t, Node<T> x) {
while (x.parent # null and x.parent.color — Color.RED) {
if (x.uncle().color = Color.RED) {
// case 1: ((a:R x:R b) y:B c:R) == ((a:R x:B b) y:R c:B)
x.parent.color = Color.BLACK
x.grandparent().color = Color.RED
x.uncle().color = Color.BLACK
X = Xx.grandparent()
} else {
if (x.parent =— x.grandparent().left) {
if (x = x.parent.right) {
// case 2: ((a x:R b:R) y:B c) == case 3
X = Xx.parent
t = leftRotate(t, x)
}
// case 3: ((a:R x:R b) y:B c) == (a:R x:B (b y:R ¢))
x.parent.color = Color.BLACK
x.grandparent().color = Color.RED
t = rightRotate(t, x.grandparent())
} else {
if (x = x.parent.left) {
// case 2': (a x:B (b:R y:R c)) == case 3'
X = X.parent
t rightRotate(t, x)

}

// case 3': (a x:B (b y:R c:R)) == ((a x:R b) y:B c:R)
x.parent.color = Color.BLACK

x.grandparent().color = Color.RED

t = leftRotate(t, x.grandparent())

}
}
t.color = Color.BLACK
return t

Chapter 5

AVL tree

The idea of red-black tree is to limit the number nodes along a path within a range. AVL
tree takes a direct approach: quantify the difference between branches. For a node T,
define:

8(T) = |r| =11l (5.1)

Where |T| is the height of tree T, [and r are the left and right sub-trees. Define
d() = 0 for the empty tree. If §(T") = 0 for every node T, the tree is definitely balanced.
For example, a complete binary tree has n = 2" — 1 nodes for height h. There are not
any empty branches unless the leaves. The less absolute value of §(T"), the more balanced
between the sub-trees. We call 6(T) the balance factor of a binary tree.

5.1 Definition

Figure 5.1: an AVL tree
A binary search tree is an AVL tree if every sub-tree T satisfies:
(1) <1 (5.2)

There are three valid values for §(T"): £1, and 0. Figure 5.1 shows an AVL tree. This
definition ensures the tree height h = O(lgn), where n is the number of nodes in the tree.

61

62 CHAPTER 5. AVL TREE

Let’s prove it. For an AVL tree of height h, the number of nodes varies. There are at
most 2" — 1 nodes for a complete binary tree case. We are interesting in how many nodes
at least. Let the minimum number be N(h). We have the following result:

o Empty tree @: h =0, N(0) =0;
 Singleton tree: h =1, N(1) = 1;

Figure 5.2 shows an AVL tree T of height h. It contains three parts, the key k, and
two sub-trees [, . We have the following equation:

()
PN

Figure 5.2: An AVL tree of height h. The height of one sub-tree is h — 1, the other is no
less than h — 2.

h = max(||,|r]) + 1 (5.3)

There must be a sub-tree of height h — 1. From the definition. we have ||I| — |r|| < 1
holds. Hence the height of the other tree can not be lower than h — 2. The total number
of the nodes in T is the sum of both sub-trees plus 1 (for the root):

N(h)=N(h—1)+N(h—-2)+1 (5.4)

This recursive equation is similar to Fibonacci numbers. Actually we can transform
it to Fibonacci numbers through N’(h) = N(h) + 1. Equation (5.4) then changes to:

N'(h) = N'(h — 1) + N'(h — 2) (5.5)

Lemma 5.1.1. Let N(h) be the minimum number of nodes for an AVL tree of height h,
and N'(h) = N(h) + 1, then
N'(h) > ¢" (5.6)

Where ¢ =

\/5;_ 1 is the golden ratio.
Proof. When h =0 or 1, we have:

e h=0:N'(0)=1>¢"=1

e h=1: N'(1) =2 > ¢! = 1.618...

For the induction case, assume N’(h) > ¢".

N'(h+1) =N'(h)+ N'(h—1) {Fibonacci}

> ¢ + P! {induction hypothesis}
RS I PR R L

— ¢h+1

5.2. INSERT 63

From Lemma 5.1.1, we immediately obtain:
h <logg(n+1) =logs2-lg(n+1) =~ 1.441g(n+1) (5.7)

The height of AVL tree is proportion to O(lgn), indicating AVL tree is balanced.
When insert or delete, the balance factor may exceed the valid value range, we need fix to
resume || < 1. Traditionally, the fixing is through tree rotations. We give the simplified
implementation based on pattern matching. The idea is similar to the functional red-
black treel'”!. Because of this ‘modify-fix’ approach, AVL tree is also self-balancing
binary search tree. We can re-use the binary search tree definition. Although the balance
factor § can be computed recursively, we record it inside each node as T' = (I, k,r,), and
update it when mutate the tree!. Below example program adds § as an Int:

data AVLTree a = Empty | Br (AVLTree a) a (AVLTree a) Int ‘

For AVL tree, lookup, max, min are as same as the binary search tree. We focus on
insert and delete algorithms.

5.2 Insert

When insert a new element, |§(7")| may exceed 1. We can use pattern matching similar to
red-black tree to develop a simplified solution. After insert element z, for those sub-trees
which are the ancestors of x, the height may increase at most by 1. We need recursively
update the balance factor along the path of insertion. Define the insert result as a pair
(T',AH), where T" is the updated tree and AH is the increment of height. We modify
the binary search tree insert function as below:

insert x = fstoins x (5.8)

Where fst (a,b) = a returns the first element in a pair. ins x T inserts element x into
tree T":
insc @ = ((&,z,0,0),1)
x < k:tree (ins x 1) k (r,0) 0 (5.9)

] lak7 75 =
ins x (I,k,r,0) x>k tree (1,0) k (ins x 7) &

If the tree is empty &, the result is a leaf of x with balance factor 0. The height
increases to 1. Otherwise let T = (I,k,r,0). We compare x with k. If z < k, we
recursively insert x to [, otherwise insert to r. As the recursive insert result is a pair
of (I';Al) or (r', Ar), we need adjust the balance factor and update tree height through
function tree, it takes 4 parameters: (I', Al), k', (', Ar), and §. The result is (T, AH),
where T” is the new tree, and AH is defined as:

AH = |T'| —|T| (5.10)
We can further break it down into 4 cases:
AH = [T |T]
= 14 max(|r'|, [I']) — (1 + max(|r], [I]))

— max([p'],|1']) — max((r, 1)

) Z 07(51 Z 0: Ar (511)

0<0,0/>0: 6+Ar

0>0,<0: Al—96

otherwise : Al

! Alternatively, we can record the height instead of & [20].

64 CHAPTER 5. AVL TREE

Where ¢’ = §(T") = || — |I'|, is the updated balance factor. Appendix B provides the
proof for it. We need determine ¢’ before balance adjustment.

&' '] = ||

Ir| + Ar — (1] + Al)
|| — || + Ar — Al
= d+Ar— Al

(5.12)

With the changes in height and balance factor, we can define the tree function in
(5.9):

tree (I',Al) k (r', Ar) § = balance (I' k,r',8') AH (5.13)

Below example programs implements what we deduced so far:

insert x = fsto ins x where
ins x Empty = (Br Empty x Empty 0, 1)

ins x (Br 1 k r d)
| x < k =tree (ins x 1) k (r, 0) d
| x > k = tree (1, 0) k (ins x r) d

tree (1, dl) k (r, dr) d = balance (Br 1 k r d') deltaH where
d' =d + dr - dl

deltaH | d >0 && d' >0 = dr
| d <0 && d' >0 = ddr
=dl - d

| d >0 && d' <0
| otherwise = dl

5.2.1 Balance

There are 4 cases need fix as shown in figure 5.3. The balance factor is +2, exceeds the
range of [—1,1]. We adjust them to a uniformed structure in the center, with the §(y) = 0.

8(2) = —2 f(x)=2

) =0

a b c
() =1 ~

Figure 5.3: Fix 4 cases to the same structure

We call the 4 cases: left-left, right-right, right-left, and left-right. Denote the balance
factors before fixing as d(x),d(y), and §(z); after fixing, they change to ¢'(z),d'(y) = 0,
and ¢'(z) respectively. The values of ¢'(z) and ¢’(z) can be given as below. Appendix B
gives the proof.

5.2. INSERT 65

Left-left Right-right
§(x) =d(x) (x) =0
§(y) =0 §'(y) =0 (5.14)
§d(z) =0 8 (z) =46(z)

Right-left and Left-right are same:

-1
(z)
{otherwzse 0
"(y)=0 (5.15)
1
Z pry
otherwzse . 0

Based on this, we can implement the pattern matching fix as below:

balance (((a,z,b,0(x)),y,c,—1),2,d,—-2) AH = ((a,z,b,0(z)),y,(c,2,d,0),0,AH —1)
balance (a, z, (b, y, (c z, d 4(2)),1),2) AH = ((a,x,b,0),y,(c,2,d,0(2)),0,AH — 1)
balance ((a,x, (b,y,c,&(y))71),z,d,—2) AH = ((a,z,b,d'(2)),y,(c,2,d,8(2)),0, AH— 1)
balance (a,z,((b,y,¢,0(y)), z,d, =1),2) AH = ((a,,b,8'(2)),y, (¢, 2,d,8'(2)),0,AH — 1)
balance T AH = (T,AH)
(5.16)

Where ¢'(x) and ¢’(z) are defined in (83). If none of the pattern matches, keep the
tree unchanged. Below is the example program implements balance:

balance (Br (Br (Br a x b dx) y ¢ (-1)) z d (-2)) dH =
(Br (Br a x b dx) y (Br c z d 0) 0, dH-1)
balance (Br a x (Br by (Br ¢ z d dz) 1) 2) dH =
(Br (Br a x b ®) y (Br c z d dz) 0, dH-1)
balance (Br (Br a x (Br b y c dy) 1) z d (-2)) dH =
(Br (Br a x bdx') y (Br c z d dz') 0, dH-1) where
dx' = if dy =— 1 then -1 else 0
dz' = if dy = -1 then 1 else 0
balance (Br a x (Br (Br by c dy) z d (-1)) 2) dH =
(Br (Br a x b dx') y (Br c z d dz') 0, dH-1) where
dx' = if dy =— 1 then -1 else 0
dz' = if dy =— -1 then 1 else 0
balance t d = (t, d)

The performance of insert is proportion to the height of the tree. From (5.7), it is
bound to is O(lgn) where n is the number of elements in the tree.

5.2.2 Verification

To validate an AVL tree, we need verify two things: (1) It is a binary search tree; (2) For
every sub-tree T, equation (5.2): 6(T) < 1 holds. Below function examines the height
difference between the two sub-trees recursively:

avl? @ = True (5.17)
avl? T = avl?l and avl? r and ||r| —|I|| < 1 :

Where [, r are the left and right sub-trees. The height is calculated recursively:

@] = 0

7| = 1+ max(lr], 1] (5.18)

Below example program implements AVL tree height verification:

66 CHAPTER 5. AVL TREE

isAVL Empty = True
isAVL (Br 1 _ r _) = isAVL 1 && isAVL r && abs (height r - height 1) < 1

height Empty = 0
height (Br 1 _ r _) = 1 4+ max (height 1) (height r)

Exercise 5.1

1. We only give the algorithm to test AVL height. Complete the program to test if a
binary tree is AVL tree.

5.3 Imperative algorithm

This section gives the imperative algorithm for completeness. Similar to the red-black
tree algorithm, we first re-use the binary search tree insert, then fix the balance through
tree rotations.

1: function INSERT(T, k)

2 root <= T

3: 2 < CREATE-LEAF(k)

4: 5(x) ~0

5: parent < NIL

6: while T' # NIL do

7 parent < T

8: if k¥ < KEY(T) then

9: T < LerT(T)

10: else

11: T < RicaT(T)

12: PARENT(z) < parent

13: if parent = NIL then > tree T is empty
14: return v

15: else if & < KEY(parent) then
16: LEFT(parent) < x

17: else

18: RIGHT(parent) + x

19: return AVL-INSERT-FIX(root,)

After insert, the balance factor § may change because of the tree growth. Insert to the
right may increase § by 1, while insert to the left may decrease it. We perform bottom-up
fixing from z to root. Denote the new balance factor as ¢’, there are 3 cases:

e |6] =1, |¢'| = 0. The new node makes the tree well balanced. The height of the
parent keeps unchanged.

o 0] =0, |§'| = 1. Either the left or the right sub-tree increases its height. We need
go on checking the upper level.

e |§] =1, |6'] = 2. We need rotate the tree to fix the balance factor.

1: function AVL-INSERT-FIX(T, z)
2: while PARENT(z) # NIL do
3: P < PARENT(x)

4: L + LEFT(2)

5.3. IMPERATIVE ALGORITHM %

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

22:
23:
24:
25:
26:
27:

28:
29:
30:
31:
32:

33:
34:

35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:

46:
47:
48:
49:
50:

51:
52:
53:
54:

R < RIGHT(z)

d+ 6(P)

if z = LEFT(P) then
0 —0—-1

else
d—o+1

O0(P) « ¢

if |6 =1 and |§'| =0 then
return T

else if [0] =0 and |§'| =1 then
x4+ P

else if [0] =1 and |¢'| = 2 then
if 9’ = 2 then
if (R) =1 then
5(P)« 0
5(R)+ 0

T < LEFT-ROTATE(T, P)

if (R) = —1 then

d, < O(LEFT(R))
if 6, =1 then

0(P) + —1
else

O6(P)«0
O0(LEFT(R)) < 0
if), = —1 then

0(R) « 1
else

0(R)+ 0

T < RIGHT-ROTATE(T, R)
T < LEFT-ROTATE(T, P)

if / = —2 then
if 6(L) = —1 then
d(P) <« 0
(L)« 0
RIGHT-ROTATE(T, P)
else
d, < 6(RicHT(L))
if 6, =1 then
o0(L) + —1
else
0(L)+ 0
S(RIGHT(L)) + 0
if 0, = —1 then
0(P)+1
else
0(P) <« 0
LerT-ROTATE(T, L)
RicHT-ROTATE(T, P)

break

return 7'

67

> Height unchanged

> Go on bottom-up update

> Right-right
> By (72)

> Right-left
> By (83)

> Left-left

> Left-Right

68 CHAPTER 5. AVL TREE

Besides rotation, we also need update § for the impacted nodes. The right-right and
left-left cases need one rotation, while the right-left and left-right case need two rotations.
We skip the AVL tree delete algorithm in this chapter. Appendix B provides the delete
implementation.

AVL tree was developed in 1962 by Adelson-Velskii and Landis['*],['”). Tt is named
after the two authors. AVL tree was developed earlier than the red-black tree. Both are
self-balance binary search trees. Most tree operations are bound O(lgn) time. From (5.7),
AVL tree is more rigidly balanced, and performs faster than red-black tree in looking up
intensive applications!'”l. However, red-black tree performs better in frequently insertion
and removal cases. Many popular self-balance binary search tree libraries are implemented
on top of red-black tree. AVL tree also provides the intuitive and effective solution to the
balance problem.

5.4 Appendix: Example programs

Definition of AVL tree node.

data Node<T> {
int delta
T key
Node<T> left
Node<T> right
Node<T> parent

Fix the balance:

Node<T> insertFix(Node<T> t, Node<T> x) {
while (x.parent # null) {
var (p, 1, r) = (x.parent, x.parent.left, x.parent.right)
var dl1 = p.delta
var d2 = if x — parent.left then d1 - 1 else dl1 + 1
p.delta = d2

if abs(dl) = 1 and abs(d2) = 0 {

return t
} else if abs(dl) — 0 and abs(d2) — 1 {
X =p
} else 1if abs(dl) =— 1 and abs(d2) =— 2 {
if d2 = 2 {
if r.delta = 1 { //Right-right
p.delta = 0
r.delta = 0
t = rotateLeft(t, p)
} else if r.delta = -1 { //Right-Left

var dy = r.left.delta

p.delta = if dy =— 1 then -1 else 0
r.left.delta = 0

r.delta = if dy =— -1 then 1 else 0
t = rotateRight(t, r)

t = rotateLeft(t, p)

}
} else if d2 — -2 {
if l.delta = -1 { //Left-left
p.delta = 0
l.delta =0

t = rotateRight(t, p)

} else if l.delta = 1 { //Left-right
var dy = l.right.delta
l.delta = if dy =— 1 then -1 else 0
l.right.delta = 0

Elementary algorithms

}
}

return t

break

+ T

.delta = if dy — -1 then 1 else 0

= rotateLeft(t, 1)
= rotateRight(t, p)

69

70

Radix tree

Chapter 6

Radix tree

Binary search tree stores data in nodes. Can we use the edges to carry information? Radix
trees, including trie, prefix tree, and suffix tree are the data structures developed based
on this idea in 1960s. They are widely used in compiler design!’', and bio-information
processing, like DNA pattern matching”".

Figure 6.1: Radix tree.

Figure 6.1 shows a Radix tree. It contains bits 1011, 10, 011, 100 and 0. When lookup
a key k = (bob...byp)2, we take the first bit by (MSB from left), check whether it is 0 or 1.
For 0, turn left, else turn right. Then take the second bit and repeat looking up till either
reach a leaf node or consume all the n bits. We needn’t store keys in Radix tree node.
The information is represented by edges. The nodes labelled with key in figure 6.1 are
for illustration purpose. If the keys are integers, we can represent them in binary format,
and implement lookup with bit-wise manipulations.

6.1 Integer trie

We call the data structure in figure 6.1 binary trie. Trie was developed by Edward
Fredkin in 1960. It comes from “retrieval”, pronounce as /’tri:/ by Freddkin, while
others pronounce it as /’trai/ “try”[*1. Although it’s also called prefix tree in some
context, we treat trie and prefix tree different in this chapter. A binary trie is a special

71

72 CHAPTER 6. RADIX TREE

binary tree in which the placement of each key is controlled by its bits, each 0 means ‘go
left’ and each 1 means ‘go right’(”!]. Consider the binary trie in figure 6.2. The three
keys are different bit strings of “117, “011”, and “0011” although they are all equal to 3.

Figure 6.2: A big-endian trie.

It is inefficient to treat the prefix zeros as valid bits. For 32 bits integers, we need
a tree of 32 levels to insert number 1. Okasaki suggested to use little-endian integers
instead "'l 1 is represented as bits (1)a, 2 as (01)z, and 3 is (11)a, ...

6.1.1 Definition

We can re-use binary tree structure to define the little-endian binary trie. A node is either
empty, or a branch containing the left, right sub-trees, and an optional value. The left
sub-tree is encoded as 0 and the right sub-tree is encoded as 1.

data IntTrie a = Empty | Branch (IntTrie a) (Maybe a) (IntTrie a)

Given a node in the binary trie, the integer key bound to it is uniquely determined
through its position. That is the reason we need not save the key, but only the value in
the node. The type of the key is always integer, we call the tree IntTrie A if the value is
of type A.

6.1.2 Insert

When insert an integer key k and a value x, we convert k into binary form. If k is even,
the lowest bit is 0, we recursively insert to the left sub-tree; otherwise if k is odd, the
lowest bit is 1, we recursively insert to the right. We next divide k by 2 to remove the
lowest bit. For none empty trie T' = (I,v,r), where [,r are the left and right sub-trees,
and v is the optional value, function insert can be defined as below:

insert k x @ = insert k x (&, Nothing, &)
insert 0z (Lv,r) = (I, Just x,r)
k
even(k) : (insert 52 Lv,r) (6.1)

insert k x (l,v,r) = k
odd(k): (l,v,insert L§J xT)

If kK = 0, we put « in the node. When T = &, it becomes (&, Just z,). As far
as k # 0, we goes down along the tree based on the parity of k. We create empty leaf

6.1. INTEGER TRIE 73

(&, Nothing, @) whenever meet & node. This algorithm overrides the value if k already
exists. Alternatively, we can store a list, and append x to it. Figure 6.3 shows an example
trie, generated by inserting the key-value pairs of {1 — a,4 — b,5 — ¢,9 — d}. Below is
the example program implements insert:

Figure 6.3: A little-endian integer binary trie of {1 — a,4 — b,5 — ¢,9 — d}.

insert k x Empty = insert k x (Branch Empty Nothing Empty)

insert 0 x (Branch 1 v r) = Branch 1 (Just x) r

insert k x (Branch 1 v r) | even k = Branch (insert (k “div’ 2) x 1) v r
| otherwise = Branch 1 v (insert (k ‘div’ 2) x r)

We can define the even/odd testing by modular 2, and check if the remainder is 0
or not: even(k) = (kmod 2 = 0). Or use bit-wise operation in some environment, like
(k & 0x1) == 0. We can eliminate the recursion through loops to realize an iterative
implementation as below:

1: function INSERT(T), k, x)
2: if T = NIL then

3: T + EMPTY-NODE > (NIL, Nothing, NIL)
4: p+T

5: while k£ # 0 do

6: if EVEN?(k) then

7: if LEFT(p) = NIL then

8: LEFT(p) < EMPTY-NODE
9: p < LEFT(p)

10: else

11: if RicHT(p) = NIL then

12: RiGHT(p) <~ EMPTY-NODE
13: p < RIGHT(p)

14: k<« |k/2]

15: VALUE(p) « x

16: return T

INSERT takes, a trie T, a key k, and a value x. For integer k with m bits in binary, it
goes into m levels of the trie. The performance is bound to O(m). We design insert k « T

74 CHAPTER 6. RADIX TREE

and INSERT(T, k, x) symmetric, apply foldr to the former, and foldl (or for-loops) to the
latter to convert a list of key-value pairs to tree. For example:

fromList = foldr (uncurry insert) & (6.2)

The usage is fromList [(1, a), (4, b), (5, ¢), (9, d)], where uncurry is the revert of
Currying, it unpack a pair and feed to insert:

uncurry f (a,b)=f ab (6.3)

6.1.3 Lookup

When look up key k in a none empty integer trie, if & = 0, then the root node is the
target. Otherwise, we check the lowest bit, then recursively look up the left or right
sub-tree accordingly.

lookup k @ = Nothing
lookup 0 (I,v,7) v

even(k) : lookup g l (6.4)

lookup k (Lv,r) = i
odd(k) : lookup Lij T

We can eliminate the recursion to implement the iterative lookup as the following;:

1: function LookUP(T), k)

2 while k£ # 0 and T #NIL do
3 if EVEN?(k) then
4 T « LerT(T)

5: else

6 T + RicuT(T)
7 k<« |k/2]

8 if T # NIL then

9 return VALUE(T)
10: else

11: return NIL

The lookup function is bound to O(m) time, where m is the number of bits of k.

Exercise 6.1

1. Can we change the definition from Branch (IntTrie a) (Maybe a) (Int-
Trie a) to Branch (IntTrie a) a (IntTrie a), and return Nothing if
the value does not exist, and Just v otherwise?

6.2 Integer prefix tree

Trie is not space efficient. As shown in figure 6.3, there are only 4 nodes with value,
while the rest 5 are empty. The space usage is less than 50%. To improve the efficiency,
we can consolidate the chained nodes to one. Integer prefix tree is such a data struc-
ture developed by Donald R. Morrison in 1968. He named it as ‘Patricia’, standing for
Practical Algorithm To Retrieve Information Coded In Alphanumeric!””]. When the
keys are integer, we call it integer prefix tree or simply integer tree when the context
is clear. Okasaki provided the implementation inl”'l. Consolidate the chained nodes in
figure 6.3, we obtained an integer tree as shown in figure 6.4. The key to the branch

6.2. INTEGER PREFIX TREE 75

node is the longest common prefix for its descendant trees. In other words, the sibling
sub-trees branch out at the bit where ends at their longest prefix. As the result, integer
tree eliminates the redundant spaces in trie.

Figure 6.4: Little endian integer tree for the map {1 — a,4 — b,5 — ¢,9 — d}.

6.2.1 Definition

Integer prefix tree is a special binary tree. It is either empty &, or a leaf node of as (k,v),
that contains an integer key k and a value v; or a branch with the left and right sub-trees,
that share the longest common prefix bits for their keys. For the left sub-tree, the
next bit is 0, for the right, it is 1. Denoted as (p,m,, 7). Below example program defines
the integer prefix tree. The branch node contains 4 components: The longest prefix p,
a mask integer m indicating from which bit the sub-trees branch out, the left and right
sub-trees [and r. The mask is m = 2™ for some integer n > 0. All bits that are lower
than n do not belong to the common prefix.

data IntTree a = Empty
| Leaf Int a
| Branch Int Int (IntTree a) (IntTree a)

6.2.2 Insert

When insert integer y to tree T, if T' is empty, we create a leaf of y; If T' is a singleton
leaf of z, besides the new leaf of y, we need create a branch node, set x and y as the
two sub-trees. To determine whether y is on the left or right, we need find the longest
common prefix p of and y. For example if = 12 = (1100)q, y = 15 = (1111)9, then
p = (1100)3, where o denotes the bits we don’t care. We can use another integer m to
mask those bits. In this example, m = 4 = (100)5. The next bit after p presents 2. Tt is
0 in x, 1 in y. Hence, we set x as the left sub-tree and y as the right, as shown in figure
6.5.

If T is neither empty nor a leaf, we firstly check if y matches the longest common
prefix p in the root, then recursively insert it to the sub-tree according to the next bit
after p. For example, when insert y = 14 = (1110)s to the tree shown in figure 6.5, since
p = (1100)2 and the next bit (the bit of 2!) is 1, we recursively insert y to the right
sub-tree. If y does not match p in the root, we need branch a new leaf as shown in figure
6.6.

76 CHAPTER 6. RADIX TREE

prefix=1100
mask=100

Figure 6.5: Left: T is a leaf of 12; Right: After insert 15.

prefix=1100
mask=100

prefix=1100
mask=100

prefix=1110
mask=10

(a) Insert 14 = (1110)2, which matches
p = (1100)2. It is inserted to the right.

prefix=1100
mask=100

prefix=1110

mask=10

(b) Insert 5 = (101)2, which does not match
p = (1100)2. Branch out a new leaf.

Figure 6.6: The tree is a branch node.

6.2. INTEGER PREFIX TREE 7

For integer key k and value v, let (k,v) be the leaf. For branch node, denote it as
(p,m,l,r), where p is the longest common prefix, m is the mask, [and r are the left and
right sub-trees. Below insert function defines the above 3 cases:

insert kv o = (k)
insert kv (k,v") = (k,v)
insert kv (K',v") = joink (k,v) k' (K,v)
zero(k,m) : (p,m,insert k v l,r)
insert kv (p,m,l,r) = match(k, p,m): {otherwise o (p,mylinsert kv r)

otherwise : join k (k,v) p (p,m,l,r)
(6.5)
We create a leaf of (k,v) when T' = &, override the value for the same key. Function
match(k,p,m) tests if integer k and prefix p have the same bits after masked with m
through: mask(k,m) = p, where mask(k,m) = m — 1&k. It applies bit-wise not to
m — 1, then does bit-wise and with k. zero(k,m) tests the next bit in k masked with m
is 0 or not. We shift m one bit to right, then do bit-wise and with k:

zero(k,m) = x&(m > 1) (6.6)

Function join(py,T1,pe, To) takes two different prefixes and trees. It extracts the
longest common prefix of p; and py as (p,m) = LCP(p1,p2), creates a new branch node,
then set T3 and 75 as the two sub-trees:

ZeTO(phm) : (p7m7TlaT2)

jOin(p17T17p27T2) = { (67)

otherwise : (p,m,T»,T1)

To calculate the longest common prefix, we can firstly compute bit-wise exclusive-or
for pl1 and p2, then count the highest bit highest(xor(p1,p2)) as:

highest(0) = 0
highest(n) = 1+ highest(n >> 1)

Then generate a mask m = 2highest(zor(p1,p2)) The longest common prefix p can be
given by masking the bits with m for either p; or pa, like p = mask(p1, m). The following
example program implements the insert function:

insert k x t
= case t of
Empty — Leaf k x
Leaf k' x' — 1if k = k' then Leaf k x
else join k (Leaf k x) k' t
Branch pm 1 r
| match k p m — if zero k m
then Branch p m (insert k x 1) r
else Branch p m 1 (insert k x r)
| otherwise — join k (Leaf k x) p t

join pl tl p2 t2 = if zero pl m then Branch p m tl1 t2
else Branch p m t2 tl1
where

(p, m) = lcp pl p2
lcp pl p2 = (p, m) where
m = bit (highestBit (pl “xor’ p2))
p = mask pl m

highestBit x = if x =— 0 then 0 else 1 + highestBit (shiftR x 1)

78 CHAPTER 6. RADIX TREE

mask x m = x .&. complement (m - 1)
zero x m = x .&. (shiftRm 1) — 0

match k p m = (mask k m) = p

We can also implement insert imperatively:
1: function INSERT(T, k,v)

2: if T'= NIL then

3: return CREATE-LEAF(k,v)

4: y <« T

5: p < NIL

6: while y is not leaf, and MATCH(k, PREFIX(y), MASK(y)) do
7
8:
9:

Py
if ZErRO?(k, MASK(y)) then
y < LEFT(y)
10: else
11: y < RIGHT(y)
12: if y is leaf, and k = KEY(y) then
13: VALUE(y) v
14: else
15: z < BRANCH(y, CREATE-LEAF(k,v))
16: if p = NIL then
17: T+ 2z
18: else
19: if LEFT(p) = y then
20: LEFT(p) + 2
21: else
22: RIGHT(p) < 2
23: return T

Where BRANCH(T}, T5) creates a new branch node, extracts the longest common pre-
fix, then sets 77 and T» as the two sub-trees.
1: function BRANCH(T},T%)
2: T < EMPTY-NODE
(PREFIX(T'), MASK(T)) < LCP(PREFIX(T}), PREFIX(T2))
if ZERO?(PREFIX(T}), MaASK(T)) then
Lerr(T) < T
RIGHT(T) + T3
else
LEFT(T) + T4
RIGHT(T) < Ty

10: return 7'

11: function ZERO?(x,m)
12: return (x&L%J) =0

Function LCP find the longest bit prefix from two integers:
1: function LCP(a,b)
2: d < zor(a,b)
3: m <1
4: while d # 0 do

6.2. INTEGER PREFIX TREE 79

d
5: d <+ LEJ
6: m < 2m
7: return (MAsSkBIT(a,m), m)
8: function MASKBIT(x,m)

©

return z&m — 1

Figure 6.7 gives an example integer tree created from the insert algorithm. Although
integer prefix tree consolidates the chained nodes, the operation to extract the longest
common prefix need linear scan the bits. For integer of m bits, the insert is bound to

O(m).

prefix=100

Figure 6.7: Insert {1 — 2,4 — y,5 — z} to the big-endian integer tree.

6.2.3 Lookup

When lookup key k, if the integer tree T = & or it is a leaf of T' = (K, v) with different
key, then k does not exist; if k = k', then v is the result; if T = (p,m,l,r) is a branch
node, we need check if the common prefix p matches k under the mask m, then recursively
lookup the sub-tree [or upon next bit. If fails to match the common prefix p, then &
does not exist.

lookup k @ = Nothing
k=k: Just
lookup k (K',v) = _ v U
otherwise : Nothing

6.8
zero(k,m) : lookup k1 (6:8)

lookup k (p,m,1,r) otherwise : lookup k r

match(k,p,m) : {
otherwise : Nothing

We can also eliminate the recursion to implement the iterative lookup algorithm.
1: function LoOK-Up(T, k)
2 if T = NIL then
3: return NIL
4: while T is not leaf, and MATCH(k, PREFIX(T'), MASK(T')) do
5 if ZErRO?(k, MASK(T)) then
6 T < LerT(T)

80 CHAPTER 6. RADIX TREE

7: else

8: T < RicHT(T)

9: if T is leaf, and KEY(T) = k then
10: return VALUE(T)

11: else

12: return NIL

The lookup algorithm is bound to O(m), where m is the number of bits in the key.

Exercise 6.2

1. Write a program to implement the lookup function.

2. Implement the pre-order traverse for both integer trie and integer tree. Only
output the keys when the nodes store values. What pattern does the result follow?

6.3 Trie

From integer trie and tree, we can extend the key to a list of elements. Particularly the
trie and tree with key in alphabetic string are powerful tools for text manipulation. When
extend the key type from 0/1 bits to generic list, the tree structure changes from binary
tree to multiple sub-trees. Taking English characters for example, there are up to 26
sub-trees when ignore the case as shown in figure 6.8.

Not all the 26 sub-trees contain data. In figure 6.8, there are only three none empty
sub-trees bound to ‘a’, ‘b’, and ‘z’. Other sub-trees, such as for ‘c’, are empty. We can
hide them in the figure. When it is case sensitive, or extent the key from alphabetic string
to generic list, we can adopt collection types, like map to define trie.

A trie of type Trie K V is either empty @ or a node of 2 kinds:

1. A leaf of value v without any sub-trees as (v, @), where the type of v is V;

2. A branch, containing a value v and multiple sub-trees. Each sub-tree is bound to an
element & of type K. Denoted as (v,ts), where ts = {k1 — T1,ka — T, ..o, by —
Tn}, contains the mapping from k; to sub-tree T;. It’s type is Map K (Trie K V).
The mapping can be assoc list or self-balancing trees (see chapter 4, 5).

Let the empty content be (Nothing, @), Below example program defines trie.

data Trie k v = Trie { value :: Maybe v
, subTrees :: Map k (Trie k v)}

6.3.1 Insert

When insert a pair of key and value to the trie, where the key is a list of elements. Let
the trie be T = (v, ts), ts[k] looks up k in map ts, it returns empty tree when k doesn’t
exist; ts[k] < t insert a mapping from k to tree ¢, and returns the updated map.

insert [v (v',ts) = (Justv,ts)

insert (k:ks) v (v',ts) = (v/,ts[k] « insert ks v ts[k]) (6.9)

Below is the example program:

insert [] x (Trie _ ts) = Trie (Just x) ts
insert (k:ks) x (Trie v ts) = Trie v (Map.insert k (insert ks x t) ts) where
t = case Map.lookup k ts of
Nothing — Trie Nothing Map.empty
(Just t) — t

6.3. TRIE 81

Figure 6.8: A trie of 26 branches, containing key ‘a’; ‘an’, ‘another’, ‘bool’; ‘boy’, and

‘z00’.

82 CHAPTER 6. RADIX TREE

We can also eliminate the recursion with loops:
1: function INSERT(T), k,v)
2 if T = NIL then
3 T + EmMPTY-NODE
4 p«T
5: for each c in k do
6 if SUB-TREES(p)[c] = NIL then
7 SUB-TREES(p)[c] < EMPTY-NODE
8 p < SUB-TREES(p)|[c]

9

VALUE(p) < v
10: return T’

For the key type [K] (list of K), if K is finite set of m elements, and the length of
the key is n, then the insert algorithm is bound to O(nlgm). When the key is lower
case English strings, then m = 26, the insert operation is proportion to the length of key
string.

6.3.2 Lookup

When look up a none empty key (k:ks) from trie T = (v,ts), starting from the first
element k, if there exists sub-tree 7" mapped to k, we then recursively lookup ks in T".
When the key is empty, then return the value as result:

lookup [] (v,ts) = v
ts[k] = Nothing: Nothing (6.10)
tsk] = Just t : lookup ks t

lookup (k:ks) (v,ts)

Below is the corresponding iterative implementation:

function Look-UP(T, key)
if T'= NIL then
return Nothing

1:
2
3
4 for each ¢ in key do

5: if SUB-TREES(T')[c] = NIL then
6 return Nothing

7 T < SuB-TREES(T)[(]

8

return VALUE(T)

The lookup algorithm is bound to O(nlgm), where n is the length of the key, and m
is the size of the element set.

6.4 Prefix tree

Trie is not space efficient. We can consolidate the chained nodes to obtain the prefix
tree. A prefix tree node ¢ contains two parts: an optional value v; zero or multiple sub
prefix trees, each t; is bound to a list s;. The sub-trees and their mappings are denoted
as [s; — t;]. These lists share the longest common prefix s bound to the node t. i.e. s is
the longest common prefix of s # 51, s # s2, ... For any ¢ # j, list s; and s; don’t have
none empty common prefix. Consolidate the chained nodes in figure 6.8, we obtain the
corresponding prefix tree in figure 6.9.
Below example program defines the prefix tree:

data PrefixTree k v = PrefixTree { value :: Maybe v
, subTrees :: [([k], PrefixTree k v)]}

6.4. PREFIX TREE 83

¢

Figure 6.9: A prefix tree with keys: ‘a’, ‘an’, ‘another’; ‘bool’; ‘boy’; ‘zo0’.

We denote prefix tree t = (v,ts). Particularly, (Nothing, []) is the empty node, and
(Just v,[]) is a leaf node of value v.

6.4.1 Insert

When insert key s, if the prefix tree is empty, we create a leaf node of s as figure 6.10
(a); otherwise, if there exits common prefix between s and s;, where s; is bound to some
sub-tree t;, we branch out a new leaf ¢;, extract the common prefix, and map it to a new
internal branch node ¢, then put ¢; and ¢; as two sub-trees of ¢’. Figure 6.10 (b) shows
this case. There are two special cases: s is the prefix of s; as shown in figure 6.10 (c) —
(e); or s; is the prefix of s as shown in figure 6.10 (d) — (e).

another
: an bo
boy bo bool boy
()
other ol y
y
boy ol
an bo another bool boy
bool boy
an ol y
(a) (b) ()
bool boy

(d

Figure 6.10: (a) insert ‘boy’ to empty tree; (b) insert ‘bool’, branch a new node out; (c)
insert ‘another’ to (b); (d) insert ‘an’ to (b); (e) insert ‘an’ to (c), same result as insert
‘another’ to (d)

84 CHAPTER 6. RADIX TREE

Below function inserts key s and value v to the prefix tree t = (v/, ¢s):

insert [v (v/,ts) = (Justv,ts)
insert s v (V' ts) = (v ins ts)

(6.11)

If the key s is empty, we overwrite the value to v; otherwise, we call ins to examine
the sub-trees and their prefixes.

ins|[] = [s— (Justv,[])]
match s s’ : (branch s v s’ t) : ts')
ins ((8' = t):ts’) = . (, . /) (6.12)
otherwise : (s’ +—t) :ins ts

If there is no sub-tree in the node, then we create a leaf of v as the single sub-tree, and
map s to it; otherwise, for each sub-tree mapping s’ — t, we compare s’ with s. If they
have common prefix (tested by the match function), then we branch out new sub-tree.
We define two lists matching if they have common prefix:

match [| B = True
match A[] = True (6.13)
match (a:as) (b:bs) = a=b

To extract the longest common prefix of two lists A and B, we define a function
(C,A",B") =lcp A B, where C # A’ = A and C # B’ = B hold. If either A or B is
empty, or their first elements are different, then the common prefix C' = [|; otherwise, we
recursively extract the longest common prefix from the rest lists, and preprend the head
element:

lep[1B = ([.[],B)
lep AT] = ([J, AL

a : a:as,b:bs (6.14)
lep (azas) (b:bs) = { 7#b: ([],a:as,b:bs)

otherwise : (a:cs, as’,bs’)

where (cs,as’,bs’) = lcp as bs in the recursive case. Function branch A v B t takes
two keys A, B, a value v, and a tree t. It extracts the longest common prefix C' from A
and B, maps it to a new branch node, and assign sub-trees:

branch Av Bt =
(@ 11B): (C,(Justv, [B"—1]))
lep AB=<¢(C,A[]): (C,insert A’ v t)
(C,A",B"): (C,(Nothing, [A" — (Justv,[]), B’ — t]))

(6.15)

If A is the prefix of B, then A is mapped to the node of v, and the remaining list is
re-mapped to ¢, which is the single sub-tree in the branch; if B is the prefix of A, then we
recursively insert the remaining list and the value to ¢; otherwise, we create a leaf node
of v put it together with ¢ as the two sub-trees of the branch. The following example
program implements the insert algorithm:

insert [] v (PrefixTree _ ts) = PrefixTree (Just v) ts
insert k v (PrefixTree v' ts) = PrefixTree v' (ins ts) where
ins []1 = [(k, leaf v)]
ins ((k', t) : ts) | match k k' = (branch k v k' t) : ts
| otherwise = (k', t) : ins ts

leaf v = PrefixTree (Just v) []

6.4. PREFIX TREE 85

match [] _ True
match _ [] True
match (a:_) (b:_) =a=—>b

branch a v b t = case 1lcp a b of

(cy, [1, b'") — (c, PrefixTree (Just v) [(b', t)])

(c, a', [1) — (c, insert a' v t)

(c, a', b') = (c, PrefixTree Nothing [(a', leaf v), (b', t)])
lep [1 bs = ([1, [1, bs)
lcp as [1 = (L1, as, [1)

lcp (a:as) (b:bs) | a # b = ([1, atas, b:bs)
| otherwise = (a:cs, as', bs') where
(cs, as', bs') = lcp as bs

We can eliminate the recursion to implement the insert algorithm in loops.

1: function INSERT(T, k, v)

2 if T'= NIL then

3 T <+ EMPTY-NODE

4 p+<T

5: loop

6: match < FALSE

7 for each s; — T; in SUB-TREES(p) do

8 if k = s; then

9: VALUE(T;) v > Overwrite
10: return T
11: ¢« LCP(k,s;)
12: ki k—c ko+s;—c
13: if ¢ # NIL then

14: match < TRUE

15: if k5 = NIL then > s; is prefix of k
16: p+<T; k+ ky

17: break

18: else > Branch out a new leaf
19: ADD(SUB-TREES(p), ¢ — BRANCH(k;1, LEAF(v), ko, T;))
20: DELETE(SUB-TREES(p), s; — T;)
21: return T’
22: if not match then > Add a new leaf
23: ADD(SUB-TREES(p), k +— LEAF(v))
24: break
25: return T’

Function LCP extracts the longest common prefix from two lists.
1: function LCP(A, B)
2 141
3: while ¢ < |A| and ¢ < |B]| and A[i] = BJi] do
4: 1+ 1+1
5 return A[l...i — 1]

There is a special case in BRANCH(s1,T1, s2,T2). If s1 is empty, the key to be insert
is some prefix. We set T5 as the sub-tree of T7. Otherwise, we create a new branch node
and set 17 and 715 as the two sub-trees.

1: function BRANCH(s1,T1, s2,T3)

2: if s; = NIL then

3: ADD(SUB-TREES(11), s2 — T»)
4: return 7T}

86 CHAPTER 6. RADIX TREE

5: T < EMPTY-NODE
6: SUB-TREES(T) « {s1 — T1,s2 — Th}
7: return 7'

Although the prefix tree improves the space efficiency of trie, it is still bound to O(mn),
where n is the length of the key, and m is the size of the element set.

6.4.2 Lookup

When look up a key k, we start from the root. If & =[] is empty, then return the root
value as the result; otherwise, we examine the sub-tree mappings, locate the one s; — ¢,
such that s; is some prefix of k, then recursively look up k — s; in sub-tree ¢;. If there
does not exist s; as the prefix of k, then there is no such key in the prefix tree.

lookup [] (v,ts) = v

lookup k (v,ts) = find ((s,t) —sCk)ts =
Nothing : Nothing
Just (s,t) 1 lookup (k—s)t

(6.16)

Where A C B means list A is prefix of B. Function find is defined in chapter 1, which
searches element in a list with a given predication. Below example program implements
the look up algorithm.

lookup [] (PrefixTree v _) = v
lookup ks (PrefixTree v ts) =
case find (\(s, t) — s “1isPrefix0f' ks) ts of
Nothing — Nothing
Just (s, t) — lookup (drop (length s) ks) t

The prefix testing is linear to the length of the list, the lookup algorithm is bound to
O(mn) time, where m is the size of the element set, and n is the length of the key. We
skip the imperative implementation, and leave it as the exercise.

Exercise 6.3

1. Eliminate the recursion to implement the prefix tree lookup purely with loops

6.5 Applications of trie and prefix tree

We can use trie and prefix tree to solve many interesting problems, like implement a
dictionary, populate candidate inputs, and realize the textonym input method. Different
from the industry implementation, we give the examples to illustrate the ideas of trie and
prefix tree.

6.5.1 Dictionary and input completion

As shown in figure 6.11, when user enters some characters, the dictionary application
searches the library, populates a list of candidate words or phrases that start from what
input.

A dictionary can contain hundreds of thousands words. It’s expensive to perform a
complete search. Commercial dictionaries adopt varies engineering approach, like caching,
indexing to speed up search. Similarly, figure 6.12 shows a smart text input component.
When type some characters, it populates a candidate lists, with all items starting with
the input string.

6.5. APPLICATIONS OF TRIE AND PREFIX TREE 87

AlA

Q intro|

Al IEFE English Thesaurus Simplified Chinese

intro

intro-
introduce
introduced
introducer
introducers
introduces
introducing
intreduction
introductions
introductory

introgression

intro | 'mtrau |

noun (pl. intros) informal

an introduction.

ORIGIN

early 19th cent.: abbreviation.

intro- | 'mntrau |
prefix

into; inwards: introgression | introvert.

Figure 6.11: A dictionary application

pref

prefix
prefrontal cortex
prefab homes

prefab homes oregon

Figure 6.12: A smart text input component

88 CHAPTER 6. RADIX TREE

Both examples give the ‘auto-completion’ functionality. We can implement it with
prefix tree. For illustration purpose, we limit to English characters, and set a upper
bound n for the number of candidates. A dictionary stores key-value pairs, where the
key is English word or phrase, the value is the corresponding meaning and explanation.
When user input string s, we look up the prefix tree for all keys start with s. If s is empty
we expand all sub-trees till reach to n candidates; otherwise, we locate the sub-tree from
the mapped key, and look up recursively. In the environment supports lazy evaluation,
we can expand all candidates, and take the first n on demand: take n (startsWith s t),
where t is the prefix tree.

startsWith [| (Nothing,ts) = enum ts
startsWith [| (Just z,ts) = ([],z) : enum ts
startsWith s (v,ts) = find ((k,t) = sCkor kCs)ts= (6.17)
Nothing : []
{Just (k,t): [(k 4 a,b)|(a,b) € startsWith (s — k) t]

Given a prefix s, function startsWith searches all candidates in the prefix tree starts
with s. If s is empty, it enumerates all sub-trees, and prepand ([],«) for none empty
value z in the root. Function enum ts is defined as:

enum = concatMap (k,t) — [(k # a,b)|(a,b) € startsWith [] t] (6.18)

Where concatMap (also known as flatMap) is an important concept for list compu-
tation. Literally, it results like firstly map on each element, then concatenate the result
together. It’s typically realized with ’build-foldr’ fusion law to eliminate the intermediate
list overhead. (see chapter 5 in my book Isomorphism — mathematics of programming)
If the input prefix s is not empty, we examine the sub-tree mappings, for each list and
sub-tree pair (k,t), if either s is prefix of k or vice versa, we recursively expand ¢ and
prepand k to each result key; otherwise, s does not match any sub-trees, hence the result
is empty. Below example program implements this algorithm.

startsWith [] (PrefixTree Nothing ts) = enum ts
startsWith [] (PrefixTree (Just v) ts) = ([], v) : enum ts
startsWith k (PrefixTree _ ts) =
case find (A(s, t) — s “isPrefix0f k || k “disPrefix0f s) ts of
Nothing — []
Just (s, t) — [(s # a, b) |
(a, b) « startsWith (drop (length s) k) t]

enum = concatMap (A(k, t) — [(k # a, b) | (a, b) « startsWith [] t])

We can also realize the algorithm STARTS-WITH(T), k, n) imperatively. From the root,
we loop on every sub-tree mapping k; — T;. If k is the prefix for any sub-tree T;, we
expand all things in it up to n items; if k; is the prefix of k, we then drop that prefix,
update the key to k — k;, then search T; for this new key.

1: function STARTS-WITH(T, k, n)
2: if T'= NIL then

return NIL
s < NIL
repeat

match < FALSE

for k; — T; in SUB-TREES(T) do

if k is prefix of k; then
return EXPAND(s # k;, T;, n)

10: if k; is prefix of k£ then

6.5. APPLICATIONS OF TRIE AND PREFIX TREE 89

11:
12:
13:
14:
15:
16:
17:

match <+ TRUE
k<« k—Fk; > drop the prefix
T+ T;
s+ s+ k;
break
until not match
return NIL

Where function EXPAND(s,T,n) populates n results from T and prepand s to each

key. We implement it with ‘breadth first search’ method (see section 14.3):

1:
2:

function EXpPAND(s, T, n)
R <+ NIL
Q « [(s,T)]
while |R| < n and @ # NIL do
(k,T) < Por(Q)
v < VALUE(T)
if v # NIL then
INSERT(R, (k,v))
for k; — T; in SUB-TREES(T") do
PusH(Q, (k 4 ki, T;))

6.5.2 Predictive text input

Before 2010, most mobile phones had a small keypad as shown in 6.13, called ITU-T
keypad. It maps a digit to 3 - 4 characters. For example, when input word ‘home’; one
can press keys in below sequence:

1 |[ABC |(DEF
2 3
GHI |[JKL
4 5
PQRs|(Tuv |(wxyz
7 8 9
@

Figure 6.13: The mobile phone ITU-T keypad.

090

1. Press key ‘4’ twice to enter ‘h’;

2. Press key ‘6’ three times to enter ‘o’;

3. Press key ‘6’ to enter ‘m’;

4. Press key ‘3’ twice to enter ‘e’;

A smarter input method allows to press less keys:

1. Press key sequence ‘4’ ‘6’, ‘6’, ‘3’, the word ‘home’ appears as a candidate;
2. Press key ‘¥’ to change to next candidate, word ‘good’ appears;

3. Press key '*’ again for another candidate, word ‘gone’ appears;

90 CHAPTER 6. RADIX TREE

4. ..

This is called predictive input, or abbreviated as ‘T9’[*"] 'Yl We can realize it by
storing the word dictionary in a prefix tree. The commercial implementations uses multi-
ple layers of caches/index in both memory and file system. We simplify it as an example
of prefix tree application. First, we need define the digit key mappings:

Mpg={ 2+~ "abc",3+— "def" 4~ "ghi",
5= "jk1",6 — "mno",7— "pqrs", (6.19)

8+ "tuv",9 — "wxyz" }

Mrg[i] gives the corresponding characters for digit i. We can also define the reversed
mapping from a character back to digit.

Myg = concatMap ((d, s) — [(c,d)|c € s]) Mg (6.20)
Given a string, we can convert it to a sequence of digits by looking up MT_gl.
digits(s) = [Mpq [c]|c € 5] (6.21)

For any character does not belong [a. . z], we map it to a special key '#' as fallback.
Below example program defines the above two mappings.

mapT9 = Map.fromList [('2', ”abc”), ('3', "def”), ('4', ”ghi”),
(Isl’ ”jkl”), (IG', ”Il’lIlO” s (l7|’ 77pqrsw),
(|8| , 77tuv77)’ (I9l , ”WXyZ”)]

rmapT9 = Map.fromList $ concatMap (A(d, s) — [(c, d) | ¢ « s]) $
Map.toList mapT9

digits = map (Ac — Map.findwithDefault '#' c rmapT9)

Suppose we already build the prefix tree (v,ts) from all words in a dictionary. We
need change the above auto completion algorithm to process digit string ds. For every
sub-tree mappings (s — t) € ts, we convert the prefix s to digits(s), check if it matches
to ds (either one is the prefix of the other). There can be multiple sub-trees match ds as:

pfr=[(s,t)|(s = t) € ts,digits(s) C ds ords C digits(s)]

findro t [= [[]]
Jindrg (v,Ttgs) ds = concatMap find pfx (6.22)

For each mapping (s,t) in pfr, function find recursively lookup the remaining digits
ds' in t, where ds’ = drop |s| ds, then prepend s to every candidate. However, the length
may exceeds the number of digits, we need cut and only take n = |ds| characters:

find (s,t) = [take n (s 4 s;)|s; € findrg t ds'] (6.23)

The following example program implements the predictive input look up algorithm:

findTo _ [] = [[]]
findT9 (PrefixTree _ ts) k = concatMap find pfx where
find (s, t) = map (take (length k) o (s#)) $ findT9 t (drop (length s) k)
pfx = [(s, t) | (s, t) + ts, let ds = digits s 1in
ds “isPrefix0f’ k || k ‘isPrefix0f ds]

6.6. APPENDIX: EXAMPLE PROGRAMS 91

To realize the predictive text input imperatively, we can perform breadth first search
with a queue @ of tuples (prefiz, D,t). Every tuple records the possible prefiz searched so
far; the remaining digits D to be searched; and the sub-tree ¢ we are going to search. @ is
initialized with the empty prefix, the whole digits sequence, and the root. We repeatedly
pop the tuple from the queue, and examine the sub-tree mappings. for every mapping
(s — T"), we convert s to digits(s). If D is prefix of it, then we find a candidate. We
append s to prefiz, and record it in the result. If digits(s) is prefix of D, we need further
search the sub-tree 77. We create a new tuple of (prefix 4 s, D', T’), where D’ is the
remaining digits to be searched. Then push this new tuple back to the queue.

1: function Look-Up-TY(T, D)

2: R + NIL

3: if T = NIL or D = NIL then

4: return R

5: n < |D|

6: Q + {(NIL,D,T)}

7 while @ # NIL do

8: (prefiz, D,T) < Popr(Q)

9: for (s — T") € SUB-TREES(T) do

10: D’ + DicITs(s)

11: if D’ C D then > D’ is prefix of D
12: APPEND(R, (prefiz 4 s)[1..n]) > limit the length to n
13: else if D C D’ then

14: PusH(Q, (prefiz # s, D — D', T"))

15: return R

We start from integer trie and prefix tree. By turning the integer key to binary format,
we re-used binary tree to realize the integer based map data structure. Then extend the
key from integer to generic list, and limit the list element to finite set. Particularly for
alphabetic strings, the generic trie and prefix tree can be used as tools to manipulate the
text information. We give example applications about auto-completion and predictive
text input. as another instance of radix tree, the suffix tree is closely related to trie and
prefix tree used in text, and DNA processing.

Exercise 6.4

1. Implement the auto-completion and predictive text input with trie.

2. How to ensure the candidates in lexicographic order in the auto-completion and
predictive text input program? What’s the performance change accordingly?

3. In the environment without lazy evaluation support, how to return the first n
candidates on-demand?

6.6 Appendix: Example programs

Definition of integer binary trie:

data IntTrie<T> {
IntTrie<T> left = null
IntTrie<T> right = null
Optional<T> value = Optional.Nothing

The following example insert program uses bit-wise operation to test even/odd, and
shift the bit to right:

92 CHAPTER 6. RADIX TREE

IntTrie<T> insert(IntTrie<T> t, Int key,
Optional<T> value = Optional.Nothing) {
if t = null then t = IntTrie<T>()
p=t
while key # 0 {
if key & 1 = 0 {
p = if p.left — null then IntTrie<T>() else p.left
} else {
p = if p.right — null then IntTrie<T>() else p.right

}

key = key > 1
}
p.value = Optional.of(value)
return t

Definition of integer prefix tree:

data IntTree<T> {
Int key
T value
Int prefix
Int mask =1
IntTree<T> left = null
IntTree<T> right = null

IntTree(Int k, T v) {
key = k, value = v, prefix = k
}
bool isLeaf = (left = null and right = null)

Self replace(IntTree<T> x, IntTree<T> y) {
if left — x then left = y else right =y
}

bool match(Int k) = maskbit(k, mask) = prefix
}

Int maskbit(Int x, Int mask) = x & (~(mask - 1))

Insert key-value to integer prefix tree.

IntTree<T> insert(IntTree<T> t, Int key, T value) {
if t — null then return IntTree(key, value)
node = t
Node<T> parent = null
while (not node.isLeaf()) and node.match(key) {

parent = node
node = if zero(key, node.mask) then node.left else node.right
}
if node.isleaf() and key — node.key {
node.value = value
1} else {
p = branch(node, IntTree(key, value))
if parent — null then return p
parent.replace(node, p)
}

return t

}

IntTree<T> branch(IntTree<T> tl, IntTree<T> t2) {
var t = IntTree<T>()
(t.prefix, t.mask) = lcp(tl.prefix, t2.prefix)
(t.left, t.right) = if zero(tl.prefix, t.mask) then (t1, t2)

6.6. APPENDIX: EXAMPLE PROGRAMS

else (t2, tl1)
return t

}
bool zero(int x, int mask) = (x & (mask >> 1) — 0)

Int lcp(Int pl, Int p2) {
Int diff = pl » p2
Int mask = 1
while diff # 0 {
diff = diff > 1
mask = mask << 1
}

return (maskbit(pl, mask), mask)

93

Definition of trie and the insert program:

data Trie<K, V> {
Optional<V> value = Optional.Nothing
Map<K, Trie<K, V>> subTrees = Map.empty()
}

Trie<K, V> insert(Trie<K, V> t, [K] key, V value) {
if t = null then t = Trie<K, V>()

var p =t

for c in key {
if p.subTrees[c] =— null then p.subTrees[c] = Trie<K, V>()
p = p.subTrees[c]

}

p.value = Optional.of(value)

return t

Definition of Prefix Tree and insert program:

data PrefixTree<K, V> {
Optional<V> value = Optional.Nothing
Map<[K], PrefixTree<K, V>> subTrees = Map.empty()

Self PrefixTree(V v) {
value = Optional.of(v)
}
}

PrefixTree<K, V> dinsert(PrefixTree<K, V> t, [K] key, V value) {
if t = null then t = PrefixTree()
var node = t
loop {
bool match = false
for var (k, tr) 1in node.subtrees {
if key =— k {
tr.value = value
return t
}
prefix, k1, k2 = lcp(key, k)
if prefix # []1 {
match = true
if k2 = [] {

node = tr
key = k1
break
} else {
node.subtrees[prefix] = branch(kl, PrefixTree(value),

k2, tr)
node.subtrees.delete (k)

94 CHAPTER 6. RADIX TREE

return t
}
}
}
if !match {
node.subtrees[key] = PrefixTree(value)
break
}
}
return t

The longest common prefix Lcp and branch example programs.

(IK1, [KI, [K]) lep([K] si, [K] s2) {

j=0

while j < length(sl) and j < length(s2) and s1[j] = s2[j] {
i=3+1

}

return (sl1[0..j-1], s1[j..], s2[j..])
}

PrefixTree<K, V> branch([K] keyl, PrefixTree<K, V> treel,
[K] key2, PrefixTree<K, V> tree2) {

if keyl — []:

treel.subtrees[key2] = tree2

return treel
t = PrefixTree()
t.subtrees[keyl]
t.subtrees[key2]
return t

treel
tree2

Populate multiple candidates, they share the common prefix

[([K], V)] startsWith(PrefixTree<K, V> t, [K] key, Int n) {
if t = null then return []
[Tl s =11
repeat {
bool match = false
for var (k, tr) 1in t.subtrees {
if key.isPrefix0f(k) {
return expand(s ++ k, tr, n)
} else 1if k.isPrefixOf(key) {
match = true
key = key[length(k)..]

t = tr
s =s ++ k
break
}
}
} until not match
return []

}

[([K], V)] expand([K] s, PrefixTree<K, V> t, Int n) {
[([Kl, V1 r =11
var q = Queue([(s, t)]1)
while length(r) < n and !q.isEmpty() {
var (s, t) = q.pop()
v = t.value
if v.isPresent() then r.append((s, v.get()))
for k, tr in t.subtrees {
g.push((s ++ k, tr))
}

Elementary Algorithms 95
return r
}
Predictive text input lookup
var TOMAP={'2':"abc", '3':"def", '4':"ghi", '5':"jkl", X

'6':"mn0", '7':"pqr5", '8':"tUV", '9':"WXyZ"}

var T9RMAP = { ¢ : d for var (d, cs) in T9MAP for var c in cs }

string digits(string w) = ''.join([T9RMAP[c] for c 1in w])
[string] lookupT9(PrefixTree<char, V> t, string key) {
if t — null or key — "" then return []
res = []

n = length(key)
g = Queue(("", key, t))
while not q.isEmpty() {
(prefix, key, t) = q.pop()
for var (k, tr) 1in t.subtrees {
ds = digits(k)
if key.isPrefix0f(ds) {
res.append((prefix ++ k) [:n])
} else 1if ds.isPrefixOf(key) {
g.append((prefix ++ k, key[length(k)..], tr))
}
}
}

return res

96

B-Tree

Chapter 7

B-Tree

7.1 Introduction

The integer prefix tree in previous chapter gives a way to encode the information in the
edge of the binary tree. Another way to extend the binary search tree is to increase
the sub-trees from 2 to k. B-tree is such a data structure, that can be considered as a
generic form of k-ary search tree. It is also developed to be self-balanced '), B-tree is
widely used in computer file system (some are based on B+ tree, an extension of B-tree)
and database system. Figure 7.1 gives an example B-tree, we can find the difference and
similarity between B-tree and binary search tree.

Figure 7.1: A B-Tree

A binary search tree is either empty or contains a key k and two sub-trees [and r.
Every key in [is less than k, while £ is less than every key in r:

Veelyer=ax<k<y (7.1)

Extend to multiple keys and sub-trees, we obtain the B-tree. A B-tree is either empty
or contains n keys and n + 1 sub-trees, each sub-tree is also a B-Tree. We denote these
keys and sub-trees as ki, ko, ..., k, and t1,ta, ..., ty, tyr1, as shown in figure 7.2.

C[1] | K[1] | C[2] | K[2] | ... | CIn] | K[n] | C[n+1]

Figure 7.2: A B-Tree node

For every node, the keys and sub-trees satisfy the following rules:

e Keys are in ascending order: k1 < kg < ... < ky;

e For every key k;, all keys in sub-tree t; are less than it, while k; is less than every
key in sub-tree ¢;41:

97

98 CHAPTER 7. B-TREE

Va, €t;,i=0,1,....n =21 <ky <o <ky<..<xp <kp<xpy (7.2)
Leaf node has no sub-tree. There can be optional values bound to the keys in B-tree
node. We skip the values for simplicity. Let the type of keys be K, the type of the

B-tree is BTree K, or denoted as BTree<K>. On top of it, we also need define a set of
self-balance rules:

1. All leaves have the same depth;
2. Let d be the minimum degree number of a B-tree, such that each node:

¢ has at most 2d — 1 keys;
e has at least d — 1 keys, except for the root;

In summary:
d—1< |keys(t)] <2d -1 (7.3)

We next prove that a B-tree satisfying these rules is always balanced.

Proof. Consider a B-tree of n keys. The minimum degree d > 2. Let the height be h. All
the nodes have at least d — 1 keys except for the root. The root contains at least 1 key.
There are at least 2 nodes at depth 1, at least 2d nodes at depth 2, at least 2d? nodes at
depth 3, ..., at least 2d"~! nodes at depth h. Multiply all nodes with d — 1 except for the
root, the total number of keys satisfies the following:

n >1+(d—1)(2+2d+2d%+...+2d" 1)
h—1

=142d-1)) d"
=0 (7.4)

—1+2(d—1)dh_1

B d—1

=2d" -1
It limits the tree height with logarithm of the number of keys.
1

h < log, - (7.5)
O

Hence B-tree is balanced. The simplest B-tree is called 2-3-4 tree, where d = 2. Every
node except for the root contains 2, 3, or 4 sub-trees. Essentially, a red-black tree can be
mapped to a 2-3-4 tree. For a none empty B-tree of degree d, we denote it as (d, (ks, ts)),
where ks are the keys, ts are the sub-trees. Below example program defines the B-tree.

data BTree a = BTree [a] [BTree a]j

The empty node is in the form of (&, @) or BTree [] []. Instead of storing d in
every node, we pass it together with B-tree ¢ as a pair (d, t).

7.2. INSERT 99

Figure 7.3: Insert 22 to a 2-3-4 tree. 22 > 20, go to the right sub-tree; next as 22 < 26,
go to the first sub-tree; finally, 21 < 22 < 25, and the leaf is not full.

7.2 Insert

The idea is similar to the binary search tree. While we need deal with multiple keys and
sub-trees. When insert key = to B-tree ¢, starting from the root, we examine the keys in
the node to locate a position! where all keys on the left are less than z, while the rest keys
on the right are greater than x. If the node is a leaf, and it is not full (|keys(t)| < 2d—1),
we insert z at this position. Otherwise, this position points to a sub-tree ¢’, we recursively
insert x to t'.

As an example, consider the 2-3-4 tree in figure 7.3. when insert x = 22, because
20 < 22, we next examine the sub-tree on the right, which contains 26, 38, 45. Since
22 < 26, we next go to the first sub-tree containing 21 and 25. This is a leaf, and it is
not full. Hence we insert 22 to this node.

However, if there are 2d — 1 keys in the leaf, we will break the B-tree rules after insert
x, as the node will be too ’full. For the same B-tree in figure 7.3, we’ll meet this issue
when insert 18. There are two solutions: insert then split, and split before insert.

7.2.1 Insert then split

We can adopt the similar ‘insert then fix’ method for the red-black tree. First, we insert
the key to the proper ordering position without considering the B-tree balance rules. As
the next step, if the new tree violates the balance rules, we perform a recursive bottom-up
fixing by splitting the overly full node. We need define the function to test whether a
given node satisfies the minimum degree constraint or not.

{full d (ks,ts) = |ks|>2d—1 (7.6)

low d (ks,ts) =l|ks|<d—1

When the node contains too many keys and sub-trees, we define split function to
break it into 3 parts at a given position m as shown in figure 7.4:

split m (ks,ts) = ((ksi, ts)), k, (ksy,tsy)) (7.7)

We reuse the list split At function defined in chapter 1 (Equation 1.45) to realize it.

n fact, it is sufficient to only support less-than and equality. See exercise 1.

100 CHAPTER 7. B-TREE

/ ky oo | wa | e N ky \

L1 I) tyi1

/ ky | oo | ko \ /km+1 N \
-

L

Tt Ins1

Figure 7.4: Split the node into 3 parts at m

(ksi, (k< ksy)) = splitAt (m —1) ks
(tsi,ts,) = splitAt m ts

We can define the reversed operation unsplit to combine the 3 parts back into a B-tree
node.

unsplit (ks ts;) k (ksy,tsy) = (ks; [k] # ksy, ts; # tsy) (7.8)

Below function first inserts x to the tree ¢, then calls fiz to resume the B-tree balance
rules with the given degree d.

insert x (d,t) = fix (d,ins t) (7.9)

After ins, if the root contains too many keys, function fix calls split to break it and
build a new root.

fulldt: (d, ([k],[l,7])), where (I, k,r) = split d t

7.10
otherwise : (d,t) (7.10)

fix (d,t) = {
ins need handle two cases: for leaf node, we can reuse the list ordered insert function

defined in chapter 1 (Equation 1.11); otherwise, we need find the position to recursively
insert to sub-tree. To do that, we define a partition function as:

partition z (ks,ts) = (I,t',r) (7.11)

Where | = (ks;,ts;) and r = (ks,,ts,). It further uses the list partition function span
defined in chapter 1 (Equation 1.47):

(ksi, ksy) = span (< x) ks
(tsi, (t' : tsy)) = splitAt |ks| ts

As such, we separate all the keys and sub-trees less than x on the left as [, and those
greater than x on the right as r. The last sub-tree that less than z is extracted as t’. We
then recursively insert = to t’, as shown in figure 7.5.

ins (ks,@) = (inserty x ks, D) list insert for leaf

ins (ks,ts) = balance d 1 (inst') r where (I,t',7) = partition x t (7.12)

7.2. INSERT 101

ki <x<k;
insert
kl ki-l kl kn
L 2 Lot
ky v A kg k; . k,
ki <x<k
/ l insert \
tl ti-l ti tiH tn+[
1 t r

Figure 7.5: partition a node with =

After insert x to t’, it may contains too many keys that violates B-tree rules. We
define function balance to recursively recover B-tree rules by splitting sub-tree.

full dt: fixy

. (7.13)
otherwise : (ks; + ks, ts; # [t] # ts;)

balance d (ksi,ts;) t (ks ts,) = {

where fizy splits sub-tree t with degree d as (t1, k, t2) = split d ¢, then combine them
to a new B-tree node:

fixy = (ksg H [k] 4 ks, ts; 4 [t1, ta] + ts,) (7.14)

The following example program implements insert for B-tree.

partition x (BTree ks ts) = (1, t, r) where
1 = (ksl, tsl)
r = (ks2, ts2)
(ksl, ks2) = span (< x) ks
(tsl, (t:ts2)) = splitAt (length ksl) ts

split d (BTree ks ts) = (BTree ksl tsl, k, BTree ks2 ts2) where
(ksl, k:ks2) = splitAt (d - 1) ks
(tsl, ts2) = splitAt d ts

insert x (d, t) = fixRoot (d, ins t) where
ins (BTree ks []) = BTree (List.insert x ks) []
ins t = balance d 1 (ins t') r where (1, t', r) = partition x t

fixRoot (d, t) | full d t = let (t1, k, t2) = split d t 1in
(d, BTree [k] [t1l, t2])
| otherwise = (d, t)

balance d (ksl, tsl) t (ks2, ts2)
| full d t = fixFull
| otherwise = BTree (ksl # ks2) (tsl # [t] +H ts2)
where
fixFull = let (t1, k, t2) = split d t in
BTree (ksl 4 [k] # ks2) (tsl # [tl, t2] # ts2)

102 CHAPTER 7. B-TREE

Figure 7.6 shows the example B-trees built by repeatedly insert elements from list
“GMPXACDEJKNORSTUVYZ”.

piouy P ooy

Q |
N e

A C D K | M o P R U X Y z
A C D G J K | M| N P R N T V| X Y V4

Figure 7.6: Repeatedly insert elements from “GMPXACDEJKNORSTUVYZ”. above:
d = 2 (2-3-4 tree), below: d =3

7.2.2 Split before insert

The second method is to split a node before insertion to prevent it becoming overly
full. We often see this method in imperative implementations. When perform top-down
recursive insert, if we reach to a node with 2d — 1 keys, we divide it into 3 parts as shown
in figure 7.4, such that each new node has d — 1 keys. They will be valid B-tree node after
insertion. For node z, let K(z) be the keys, T'(z) be the sub-trees. Denote the i-th key
of x as k;(x), the j-th sub-tree as t;(z). Below algorithm splits the i-th sub-tree of node
z:

1: procedure SPLIT(z,1)

2 d < DEG(z)

3 x + t;(2)

4: y < CREATE-NODE

50 K(y) < [ka1(2), kata (@), ..., k2a—1(2)]

6: K(x) < [k1(2), k2(2), ... ka—1(2)]

7 if z is not leaf then
8 T(?J) — [td+1(x)a td+2(x)7) t2d(m)]
9 T(x) + [t1(x),t2(x), ..., ta(x)]
10: INSERT-AT(K (2),4, kq(x))
11: INSERT-AT(T'(2),i 4+ 1,9)

When split the node = = t;(2), we push the d-th key k4(z) up to the parent node z.
If z is already full, the pushing will break B-tree rules. To solve this problem, we need
do the top-down check from the root along the path when insert. Split any node with
2d — 1 keys. Since all parent nodes are processed to be not full, they can accept the
additional key pushed up. This method needs one single pass down the tree without any
back-tracking. If the root is full, we create a new node, and put the root as it singleton
sub-tree. Below is the insert algorithm:

1: function INSERT(t, k)
2: rt

7.2. INSERT 103

if r is full then > root is full
s + CREATE-NODE
T(s) < [r]
SPLIT(s, 1)
r< S
return INSERT-NONFULL(r, k)

Where INSERT-NONFULL assumes the node r passed in is not full. If r is a leaf, we
insert k to the keys based on order (Exercise 3 asks to realize the ordered insert with
binary search); otherwise, we locate the position, where k;(r) < k < k;1(r). Split the
sub-tree t;(r) if it is full, and go on insert to this sub-tree.

1: function INSERT-NONFULL(r, k)

2: n <+ |K(r)]
3: if r is leaf then
4: 141
5: while i <n and k > k;(r) do
6: 14—1+1
7: INSERT-AT(K (1), 1, k)
8: else
9: 141
10: while ¢ > 1 and &k < k;(r) do
11: ti—1
12: if ¢;(r) is full then
13: SPLIT(7, 1)
14: if k> k;(r) then
15: i—i+1
16: INSERT-NONFULL(,(r), k)
17: return r

This algorithm is recursive. Exercise 2 asks to eliminate the recursion with pure loops.
Figure 7.7 gives the result with the same input of “GMPXACDEJKNORSTUVYZ".

N
N

Figure 7.7: Insert from “GMPXACDEJKNORSTUVYZ”. up: d = 2, 2-3-4 tree; bottom:
d=3.

104 CHAPTER 7. B-TREE

7.2.3 Paired lists

When use list to store ordered keys, we always start from the first key, and scan the list
to find the insert position. If the keys are stored in array, we can improve it with binary
search. Can we start somewhere in the node, go left or right depending on the order of
keys? One idea is to separate the B-tree node into three parts: left I, a sub-tree ¢, and
right r. Where left and right are lists of pairs, each pair contains a key and a sub-tree:
(k;, t;). However, [is reversed. In other words, | and r are head-to-head connected by ¢’
as a U-shape shown in figure 7.8. We can move forward and backward both in constant

time.
/k1 oo | Ky k| oo |k, \

4 i t; lin)
I v -
e " (ki i) (ks ty)
v !
t head tail
T i t) | e | s)

Figure 7.8: Define the B-tree node with a sub-tree and paired lists

Below example program defines B-tree node. It’s either empty, or contains 3 parts:
the left (key, sub-tree) list in reversed order, a sub-tree, and the right (key, sub-tree) list.
We denoted the none empty node as (I,¢', 7).

data BTree a = Empty
| BTree [(a, BTree a)] (BTree a) [(a, BTree a)l]

When move to right by a step, we take the first pair (k,¢) from r, then form another
pair (k,t') in front of I, and replace ¢’ with t. When move to left a step, it is symmetric.
Both operations take constant time.

stepy ((k,t): L,t',r) = (I,t,(k,t'):r)
b 4 (7.15)

l
step. (I, ¢, (k,t):r) = ((k,t'):1,t,r)

With the left /right moves, we can implement a generic partition function partition p t,
that separates the tree ¢ with a given predicate p into 3 parts: left, middle, right: (I, m,r),
such that all sub-trees in [and m satisfy p, while the sub-trees in 7 do not. Let the function

7.2. INSERT 105

hd = fst o head, which picks the first pair (a,b) from a list, then extracts a out.

hd : tite t t
partition p (&, m,r) = p((T)) partition p (step, t)
otherwise : (&, m,r)

(not o p)(hd(l)) : partition p (step; t)

partition p (I,m,)

otherwise : (I,m, @)
p(hd(l)) and (not o p)(hd(r)) : (I,m,r)

partition p (I,m,r) = ¢ p(hd(r)): partition p (step, t)
(not o p)(hd(l)) : partition p (step; t)

(7.16)
For example, partition (< k) t moves all keys and sub-trees in ¢ less than k out of the
right part. Below example program implements the partition function:

partition p t@(BTree [] m r)
| p (hd r) = partition p (stepR t)
| otherwise = ([], m, r)
partition p t@(BTree 1 m [])
| (notop) (hd 1) = partition p (stepL t)
| otherwise = (1, m, [])
partition p t@(BTree 1 m r)
| p (hd 1) & (notop) (hd r) = (1, m, r)
| p (hd r) = partition p (stepR t)
| (notop) (hd 1) = partition p (stepL t)

We can also use step;/step, to split a B-tree at position d when it becomes overly
full. Let n = |I| be the number of keys/sub-trees of the left part. f™(z) means repeatedly
apply function f to z for n times.

n<d: sp(stepd="(t))
splitdt=<n>d: sp(stepn=4(t)) (7.17)

otherwise : sp(t)
Where sp does the separation work as below:
sp (It (k1) : 1) = ((1,t, @), k, (2,1, 7)) (7.18)

With partition and split defined, we can define B-tree insert algorithm for the paired
lists implementation. Firstly, we need modify the low/full testing to count both left and
right parts:

full d @ = False

Full d (1Ltr) = ||+ |r| > 2d 1 (7.19)
and

lowd 2 = False (7.20)

lowd (I,t,r) =|l|+]r]<d-1
When insert key x to B-tree t of degree d, we do the recursive insertion, then fix the
root if it gets overly full:
insert x (d,t) = fix (d,ins t) (7.21)
Where fix splits the root at d if needed:

fulldt: (d, (2,11, [(k,t2)] where (t1,k,t2) = split d t

7.22
otherwise : (d,t) (7.22)

fix (d,t) = {

106 CHAPTER 7. B-TREE

Function ins need handle both ¢t = @, and t # @ cases. For empty case, we create
a singleton leaf; otherwise, we call (I,t',r) = partition (< x) t to locate the position for
recursive insert:

ins @ (2,9,[(z,2)])
t'=2: balance dl @ ((z,2): 1) (7.23)

inst
t'£@: balance dl (inst') r

Function balance examines if the sub-tree ¢ contains too many keys, and splits it.

fulldt: fixFull

7.24
otherwise : (l,t,r) (7.24)

balance d 1t r = {

Where fizFull = (I,t1, ((k,t2) : 1), and (¢1, k, t2) = split d t. Below example program
implements the insert algorithm:

insert x (d, t) = fixRoot (d, ins t) where
ins Empty = BTree [] Empty [(x, Empty)]
ins t = let (1, t', r) = partition (< x) t 1in
case t' of
Empty — balance d 1 Empty ((x, Empty):r)
_ — balance d 1 (ins t') r
fixRoot (d, t) | full d t = let (tl1l, k, t2) = split d t in
(d, BTree [] t1 [(k, t2)])
| otherwise = (d, t)

balance d 1 t r | full d t = fixFull
| otherwise = BTree 1 t r
where
fixFull = let (tl1, k, t2) = split d t in BTree 1 t1 ((k, t2):r)

split d t@(BTree 1 _ _) | n<d = sp $ iterate stepR t !! (d - n)
| n>d=sp $ iterate stepL t !! (n - d)
| otherwise = sp t
where
n = length 1
sp (BTree 1 t ((k, t'):r)) = (BTree 1 t [], k, BTree [] t' r)

Exercise 7.1

1. Can we use < to support duplicated keys in B-Tree?
2. For the ‘split then insert’ algorithm, eliminate the recursion with loops.

3. We use linear search among keys to find the proper insert position. Improve the im-
perative implementation with binary search. Is the big-O performance improved?

7.3 Look up

For look up, we can extend from the binary search tree to multiple branches, and obtain
the generic B-tree look up solution. There are only two directions when look up the
binary search tree: left and right, while, there are multiple ways in B-tree. Consider look
up k in B-tree t = (ks, ts), if ¢ is a leaf (ts is empty), then the problem becomes list look
up; otherwise, we partition the ¢ with k into three parts: I = (ks;, ts;),t',r = (ks,,ts,),
where all keys in [and sub-tree t' are less then k, and the remaining (> k) is in r. If

7.3. LOOK UP 107

the first key in ks, equals k, then we find the answer; otherwise, we recursive look up in
sub-tree t'.

keks: Just (ks, D)
otherwise : Nothing
Just k = safeHd ks, : Just (ks,ts)

otherwise : lookup k t'

lookup k (ks, &) =
(7.25)
lookup k (ks,ts) =

Where ((ks;,ts),t, (ks,,ts,)) = partition k ¢, and

safeHd [] = Nothing
safeHd (x : xs) = Justzx

Below example program? implements lookup.

lookup k t@(BTree ks []) = if k “elem’ ks then Just t else Nothing
lookup k t = if (Just k) — safeHd ks then Just t
else lookup k t' where
(_, t', (ks, _)) = partition k t

For the paired list implementation, the idea is similar. If the tree is not empty, we
partition it with the predicate ‘< k’. Then check if the first key in the right part equals
to k, or recursively look up the partitioned sub-tree:

lookup k @ = Nothing
lookup k1 — Just k : safeFst (safeHd r) . Just (I, t',r) (7.26)
otherwise : lookup k t/

Where (I,t',7) = partition (< k) t for the none empty tree case. safeFst applies fst
function to a ‘Maybe’ value. Below example program utilizes fmap to do this:

lookup x Empty = Nothing

lookup x t = let (1, t', r) = partition (< x) t 1in
if (Just x) — fmap fst (safeHd r) then Just (BTree 1 t' r)
else lookup x t'

For the imperative implementation, we start from the root r, find a position ¢ among
the keys, such that k;(r) < k < k;x1(r). If k;(r) = k then return the node r and 7 as a
pair; otherwise, move to sub-tree ¢;(r) to go on looking up. If r is a leaf and k is not in
the keys, then return nothing. It means k does not exist in the tree.

1: function LOOK-UP(r, k)
2: loop
i+ 1,n«+ |K(r)
while ¢ < n and k > k;(r) do

1+ 1+1
if i <n and k = k;(r) then

return (r,17)
if r is leaf then

return Nothing > k does not exist
10: else
11: r < t;(r) > go to the i-th sub-tree

© X T DT ®

Exercise 7.2

1. Improve the imperative look up with binary search among keys.

2safeHd is provided as 1istToMaybe in some library.

108 CHAPTER 7. B-TREE

7.4 Delete

After delete a key, the number of keys may be too few to be a valid B-tree node. Except
the root, the number of keys should not be less than d — 1, where d is the minimum
degree. There are two methods symmetric to insert: we can either delete then fix, or
merge before delete.

7.4.1 Delete and fix

We first extend the delete algorithm for binary search tree to multiple branches, then fix
the B-tree balance rules. The main delete program is defined with these two steps:

delete x (d,t) = fiz(d,del x t) (7.27)

Where function del is the one we extend to support multiple branches. If ¢ is a leaf,
we merely delete x from the keys; otherwise, we partition the tree with = into 3 parts:
(I,t',r). Where all the keys in [and sub-tree ¢’ are less than z, and the rest in r are
great than or equal (>) to . When r isn’t empty, we pick the first key k; from it. If
the key equals to x, (k; = x), we next replace it with the maximum key &’ of sub-tree ¢’
(k' = max(t')), and recursively delete &’ from ¢’ as shown in figure 7.9. Otherwise (either
r is empty, or k; # x), we recursively delete x from sub-tree t'.

delete x

\

ky | oo | ki NkEX e | Ky
/ replaée k; with\x

deletek’

21 o1

k’=max(t;)

Figure 7.9: Replace k; with k' = max(t'), then recursively delete k' from ¢'.

del x (ks,@) = (delete; x ks, D)
del o t Just x = safeHd ks’ : balance d | (del k' t') (k' : (tail ks'),ts’)
el x =
otherwise : balance d | (del x t') (ks',ts’)

(7.28)
Where (I, ¢, (ks',ts')) = partition x t, are the 3 parts partitioned by x. On top of it,
we extract the maximum key &k’ from ¢’. The max function is defined as:

maz (ks, o) = last ks
maz (ks,ts) = maz (last ts) (7.29)

Function last returns the last element from a list (Equation 1.4 in chapter 1). delete;
is the list delete algorithm (Equation 1.14 in chapter 1). tail drops the first element from
a list and returns the rest (Equation 1.1). We need modify the balance function, which

7.4. DELETE 109

we defined for insert before, with the additional logic to merge the node if it contains too
less keys.

full dt: fixy
balance d (ks;,ts;) t (ksy,ts,) =< low d t: fix; (7.30)
otherwise : (ks; # ks, ts; H [t] # ts,)
If t is overly low (< d — 1 keys), we call fiz; to merge it with the left part (ks;,ts;)
or right part (ks,,ts,) depends on which side of keys is not empty. Use the left part for
example: we extract the last element from ks; and ts; respectively, say k,, and t,,. Then

call unsplit (defined in Equation 7.8) to merge them with ¢ as unsplit t,, k,, t. It forms
a new sub-tree with more keys. Finally we call balance again to build the result B-tree.

ks #+ & balance d (init ks, init ts;) (unsplit t,, ky, t) (ksy,ts,)
fiz; = ks, # O : balance d (ksy,ts;) (unsplit t ky t1) (tail ks, tail ts,) (7.31)
otherwise : t
The last case (otherwise) means ks; = ks, = &, both sides are empty. The tree is
a singleton leaf hence need not fixing. k; and t; are the first element in ks, and ts,

respectively. Finally, we need modify the fix function defined for insert, add new logic
for delete:

fiz (d,(2,[t]))
fiz (d,t) =

(d,t)
fulldt: (d, ([k],[1,7])), where (I,k,r) = split d t (7.32)
otherwise : (d,t)

What we add is the first case. After delete, if the root contains nothing but a sub-tree,

we can shrink the height, pull the single sub-tree as the new root. The following example
program implements the delete algorithm.

delete x (d, t) = fixRoot (d, del x t) where
del x (BTree ks []) = BTree (List.delete x ks) []

del x t = if (Just x) — safeHd ks' then

let k' = max t' 1in
balance d 1 (del k' t') (k':(tail ks'), ts')
else balance d 1 (del x t') r
where
(1, t', r@(ks', ts')) = partition x t

fixRoot (d, BTree [] [t]) = (d, t)
fixRoot (d, t) | full d t = let (tl, k, t2) = split d t in
(d, BTree [k] [tl, t2])
| otherwise = (d, t)

balance d (ksl, tsl) t (ks2, ts2)

| full d t = fixFull

| low d t = fixLow

| otherwise = BTree (ksl # ks2) (tsl # [t] + ts2)
where

fixFull = let (t1, k, t2) = split d t in
BTree (ksl 4# [k] # ks2) (tsl # [tl, t2] # ts2)
fixLow | not $ null ksl = balance d (init ksl, init tsl)
(unsplit (last tsl) (last ksl) t)
(ks2, ts2)
| not $ null ks2 = balance d (ksl, tsl)
(unsplit t (head ks2) (head ts2))
(tail ks2, tail ts2)
| otherwise =t

We leave the delete function for the 'paired list’ implementation as an exercise. Figure
7.10, 7.11, and 7.12 give examples of delete.

110 CHAPTER 7. B-TREE

Figure 7.11: Delete ‘C’, then delete ‘J’

G N Vv
M
D S vV

Figure 7.12: Delete ‘K’, then delete ‘N’

7.4. DELETE 111

7.4.2 Merge before delete

The other way is to merge the nodes before delete if there are too few keys. Consider
delete key x from the tree ¢, let us start from the easy case.

Case 1. If x exists in node ¢, and ¢ is a leaf, we can directly remove x from ¢. If ¢ is
the singleton node in the tree (root), we needn’t worry about too few keys.

Case 2. If = exists in node ¢, but t is not a leaf. There are three sub-cases:

Case 2a. As shown in figure 7.9, let the predecessor of k; = = be k’, where k' =
max(t;). If ¢; has sufficient keys (> d), we replace k; with &/, then recursively delete &’
from t;.

Case 2b. If ¢; does not have enough keys, but the sub-tree ¢;1 does (> d). Symmet-
rically, we replace k; with its successor k", where k” = min(t;11), then recursively delete
k" from t;11, as shown in figure 7.13.

delete x
k, v | kg k,-=)’c,- k,
,." delete k”
t replace k; withk” | tin
"=min(t;1)

Figure 7.13: Replace k; with k" = min(t;11), then delete k" from ;1.

Case 2c. If neither ¢; nor ¢,41 contains sufficient keys (|t;| = |ti+1| = d—1), we merge
t;, z,t;11 to a new node. This new node has 2d — 1 keys, we can safely perform delete on
it as shown in figure 7.14.

x=k,-

P

Ky, o Ky ", o K K, o Ky k| kM, kT,

Figure 7.14: Merge before delete

Merge pushes a key k; to the sub-tree. After that, if node ¢ becomes empty, it means
k; is the only key in ¢, and ¢;,%;41 are the only two sub-trees. We need shrink the tree
height as shown in figure 7.15.

Case 3. If node t does not contain z, we need recursively delete x from a sub-tree t;.
There are two sub-cases if there are too few keys in ¢;:

Case 3a. Among the two siblings ¢;_1,¢;41, if either one has enough keys (> d),
we move a key from ¢ to ¢;, then move a key from the sibling up to ¢, and move the
corresponding sub-tree from the sibling to ¢;. As shown in figure 7.16, ¢; received one
more key. We next recursively delete z from ¢;.

112 CHAPTER 7. B-TREE

____________)
Ky ooy K k| K,k Ky oo K k| Kk
Figure 7.15: Shrink
k;
A
/ i li+1
k' kK :___-_'_“ T k' k" k"

/ 15 -5 K d-1 \ / 1> s s Koy \
t') t'y 1" "1
v
klll

/ k'l, ey k’d_l ki \ / k' s s kwm \

tvl t'd trll trrz ”m+1

Figure 7.16: Borrow from the right sibling.

7.4. DELETE 113

Case 3b. If neither sibling has sufficient keys (|t;—1| = |t;+1] = d — 1), we merge ¢;, a
key from t, and either sibling into a new node, as shown in figure 7.17. Then recursively
delete = from it.

/ li+1
/ k’la ey k’d-l \ / k”l’ s k"m \

’

41 t'q " "+l

t/
/ Ky, oo kg k; K", Ky \
t

'

d " "m+1

Figure 7.17: Merge t;, k, t;4+1

Below DELETE algorithm implements the ‘merge then delete’ method:

1: function DELETE(t, k)

2 if ¢ is empty then

3 return ¢

4: 14+ 1, n+ |K(t)]

5: while ¢ <n and k > k;(t) do
6

7

8

9

1+ i+1
if k = k;(t) then
if t is leaf then > case 1
REMOVE(K (t), k)

10: else > case 2
11: if |K(:(t))] > d then > case 2a
12: ki(t) < Max(t;(t))
13: DELETE(t;(t), ki(t))
14: else if |K(t;11(t))] > d then > case 2b
15: i (t) <= MIN(t;41(1))
16: DELETE(t;41(t), ki(t))
17: else > case 2c
18: MERGE-AT(t, 1)
19: DELETE(¢;(t), k)
20: if K(T) is empty then
21: t <+ t;(t) > Shrinks height

22: return t

114

23:
24:
25:
26:
27:
28:
29:
30:
31:

32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:

CHAPTER 7. B-TREE

if ¢ is not leaf then
if k> k,(t) then

i—i+1
if |[K(¢;(t))] < d then > case 3
if i > 1 and |K(t;—1(t))| > d then > case 3a: left

INSERT(K (t;(t)), ki—1(t))
ki_l(t) — POP—LAST(K(tZ‘_l(t)))
if ¢;(t) is not leaf then
INSERT(T'(t;(t)), Por-BACK(T(t;—-1(t))))
else if i <n and |K(t;+1(¢))] > d then > case 3a: right
APPEND (K (t;(t)), ki(t))
ki(t) < POP-FIRST(K (t;41(t)))
if ¢;(t) is not leaf then
APPEND(T(t;(t)), POP-FIRST(T (t;+1(1))))
else > case 3b
if i =n+1 then
14 1—1
MERGE-AT(¢,17)
DELETE(¢;(t), k)
if K(t) is empty then > Shrinks height
11 (t)

return ¢

Where MERGE-AT(t,¢) merges sub-tree t;(¢), key k;(t), and t;11(¢) into one sub-tree.

1.

: procedure MERGE-AT(t, 1)

T < ti(t)

Yy tiy1(t)

K(2) « K(x) 4 k()] + K (y)
T(x) < T(x) # T(y)
REMOVE-AT(K (t),1)
REMOVE-AT(T'(¢t),i+ 1)

Exercise 7.3

When delete a key k from the branch node, we use the maximum key from the
predecessor sub-tree k' = max(t’) to replace k, then recursively delete k' from
t’. There is a symmetric method, to replace k& with the minimum key from the
successor sub-tree. Implement this solution.

2. Define the delete function for the ‘paired list’ implementation.

7.5 Summary

We extend the binary search tree to multiple branches, then constrain the branches within
a range to develop the B-tree. B-tree is used as a tool to control the magnetic disk access
(chapter 18,1 }). Because all B-tree nodes store keys in a range, not too few or too
many. B-tree is balanced. Most of the tree operations are proportion to the height. The
performance is bound to O(lgn) time, where n is the number of keys in B-tree.

7.6. APPENDIX: EXAMPLE PROGRAMS 115

7.6 Appendix: Example programs

Definition of B-tree:

data BTree<K, Int deg> {
[K] keys
[BTree<K>] subStrees;

Split node

void split(BTree<K, deg> z, Int i) {
var d = deg
var x = z.subTrees[1i]
var y = BTree<K, deg>()
y.keys = x.keys[d ...]
x.keys = x.keys[... d - 1]
if not dsLeaf(x) {
y.subTrees = x.subTrees[d ...]
X.subTrees = x.subTrees[... d]
}
z.keys.insert(i, x.keys[d - 1])
z.subTrees.insert(i + 1, y)

}

Bool isLeaf(BTree<K, deg> t) = t.subTrees = []

Insert a key to B-tree:

BTree<K, deg> insert(BTree<K, deg> tr, K key) {
var root = tr
if isFull(root) {
var s = BTree<K, deg>()
s.subTrees.insert(0, root)
split(s, 0)
root = s
}

return insertNonfull(root, key)

Insert a key to a non-full node.

BTree<K, deg> insertNonfull(BTree<K, deg> tr, K key) {
if disLeaf(tr) {
orderedInsert(tr.keys, key)

1} else {
Int i = length(tr.keys)
while i > 0 and key < tr.keys[i - 1] {

i i-1
if isFull(tr.subTrees[i]) {
split(tr, 1)
if key > tr.keys[i] then i =i + 1

}

insertNonfull(tr.subTree[i], key)
}
return tr

Where orderedInsert inserts an element to an ordered list.

void orderedInsert([K] lst, K x) {
Int i = length(lst)
1st.append(x)
while i > 0 and lst[i] < lst[i-1] {

116 CHAPTER 7. B-TREE
(Lst[i-1], lst[i]) = (lst[i], lst[i-1])
i=4-1

}

Bool isFull(BTree<K, deg> x) = length(x.keys) > 2 x deg - 1
Bool isLow(BTree<K, deg> x) = length(x.keys) < deg - 1

Iterative look up:

Optional<(BTree<K, deg>, Int)> lookup(BTree<K, deg> tr, K key) {

loop {
Int i = 0, n = length(tr.keys)
while i < n and key > tr.keys[i] {
i=1+1
}

if i < n and key = tr.keys[i] then return Optional.of((tr, 1))
if dsLeaf(tr) {

return Optional.Nothing
} else {

tr = tr.subTrees[i]

}

Imperative merge before delete:

BTree<K, deg> delete(BTree<K, deg> t, K x) {
if empty(t.keys) then return t
Int i = 0, n = length(t.keys)
while i < n and x > t.keys[i] { i=1+ 1}
if x = t.keys[i] {

if dslLeaf(t) { // case 1
removeAt (t.keys, 1)
} else {

var tl = t.subtrees[i]
var tr = t.subtrees[i + 1]
if not low(tl) { // case 2a
t.keys[i] = max(tl)
delete(tl, t.keys[i])
} else if not low(tr) { // case 2b
t.keys[i] = min(tr)
delete(tr, t.keys[i])
} else { // case 2c
mergeSubtrees(t, 1)
delete(d, tl, x)
if empty(t.keys) then t = t1 // shrink height
}
return t
}
if not dislLeaf(t) {
if x > t.keys[n - 1] then i =1 + 1
if low(t.subtrees[i]) {
var tl = if i =— 0 then null else t.subtrees[i - 1]
var tr = if i = n then null else t.subtrees[i + 1]
if t1 # null and (not low(tl)) { // case 3a, left
insert(t.subtrees[i].keys, 0, t.keys[i - 1])
t.keys[i - 1] = poplLast(tl.keys)
if not isLeaf(tl) {
insert(t.subtrees[i].subtrees, 0, popLast(tl.subtrees))

}
} else if tr # null and (not low(tr)) { // case 3a, right
append(t.subtrees[i].keys, t.keys[i])
t.keys[i] = popFirst(tr.keys)
if not isLeaf(tr) {
append(t.subtrees[i].subtrees, popFirst(tr.subtrees))

Elementary Algorithms 117

}

} else { // case 3b
mergeSubtrees(t, if i < n then i else (i - 1))
if i = n then i =4 - 1

}
delete(t.subtrees[i], x)
if empty(t.keys) then t = t.subtrees[0] // shrink height
}
}

return t

merge sub-trees, find the min/max key from a B-tree.

void mergeSubtrees(BTree<K, deg>, Int i) {
t.subtrees[i].keys += [t.keys[i]] + t.subtrees[i + 1].keys
t.subtrees[i].subtrees 4= t.subtrees[i + 1].subtrees
removeAt(t.keys, 1)
removeAt (t.subtrees, i + 1)

}

K max(BTree<K, deg> t) {
while not empty(t.subtrees) {
t = last(t.subtrees)
}
return last(t.keys)
}

K min(BTree<K, deg> t) {
while not empty(t.subtrees) {
t = t.subtrees[0]
}
return t.keys[0]

118 Binary Heaps

Chapter 8

Binary Heaps

8.1 Definition

Heaps are widely used for sorting, priority scheduling and graph algorithms, and etc. '],
The most popular implementation models the heap as a complete binary tree in array!['.
The most efficient heap sort algorithm developed by R.W. Floyd is also based on this
method ") For the generic heap definition, we can implement with varies data struc-
tures but not limit to array. In this chapter, we focus on the heaps implemented with
binary trees, including leftist heap, skew heap, and splay heap!’]. A heap is either empty,
or stores comparable elements that satisfies a property and three operations:

1. The heap property: the top element is always the minimum;

2. Pop: removes the top element from the heap and maintain the heap property: the
new top is still the minimum in the rest;

3. Insert: add a new element to the heap and maintain the heap property;
4. Other: operations like merge also maintain the heap property.

Because elements are comparable, we can also define the heap always keeps the max-
imum on top. We call the heap with the minimum on top as min-heap, the maximum
on top as maz-heap. When implement heap with a tree, we can put the minimum (or
the maximum) in the root. After pop, we remove the root, and rebuild the tree from the
sub-trees. We call the heap implemented with binary tree as binary heap. This chapter
gives three types of binary heap.

8.2 Binary heap by array

The first implementation is to represent the a complete binary tree with an array. The
complete binary tree is ‘almost’ full. The full binary tree of depth k contains 2¥ —1 nodes.
We can number every node top-down, from left to right as 1, 2, ..., 2¥ — 1. The node
number ¢ in the complete binary tree is located at the same position in the full binary
tree. The leaves only appear in the bottom layer, or the second last layer. Figure 8.1
shows a complete binary tree and the array. As the complete binary tree, the i-th cell in
array corresponds to a node, its parent node maps to the |[i/2]-th cell; the left sub-tree
maps to the 2i-th cell, and the right sub-tree maps to the 2i + 1-th cell. If any sub-tree
maps to an index out of the array bound, then the sub-tree does not exist (i.e. leaf node).
We can define the map as below (index starts from 1):

119

120 CHAPTER 8. BINARY HEAPS

6 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

1

Figure 8.1: Map between a complete binary tree and an array.

parent(i) = |=]

2
left(i) — =2 (8.1)
right(t) =2i+1

8.2.1 Heapify

Heapify is the process maintain heap property, keep the minimum element on the top.
For binary heap, we can obtain a stronger property as the binary tree is recursive: every
sub-tree stores its minimum element in the root. In other words, every sub-tree is also
a binary heap. Consider the min-heap represented with array, for any cell index i, we
examine if all the elements in sub-trees are greater then or equal to it (>). Exchange
when not satisfies. Repeat this for all sub-trees rooted at 7.

1: function HEAPIFY(A, i)

2: n < |A|

3 loop

4 § 41 > s is the smallest
5: l < LEFT(3), r < RIGHT(7)

6: if [<n and A[l] < A[i] then
7 s+1

8 if r <n and A[r] < A[s] then
9: S«

10: if s # i then

11: EXCHANGE Ali] <> Als]

12: 145

13: else

14: return

8.2. BINARY HEAP BY ARRAY 121

For index 7 in array A, any sub-tree node should not be less than A[i]. Otherwise, we
exchange A[i] with the smallest one, and recursively check the sub-trees. As the process
time is proportion to the height of the tree, HEAPIFY is bound to O(lgn), where n is the
length of the array. Figure 8.2 gives the steps when apply HEAPIFY from 2 to array [1,
13,7, 3, 10, 12, 14, 15, 9, 16]. The result is [1, 3, 7, 9, 10, 12, 14, 15, 13, 16].

Figure 8.2: Heapify. Step 1: the minimum of 13, 3, 10 is 3, exchange 3 <> 13; Step 2: the
minimum of 13, 15, 9 is 9, exchange 13 <> 9; Step 3: 13 is leaf, terminate.

8.2.2 Build

We can build heap from arbitrary array with HEAPIFY. List how many nodes in each
level of a complete binary tree: 1,2,4,8,.... They are all power of 2 except for the last
level. Because the tree is not necessarily full, there are at most 2P~! nodes, where p is
the smallest integer satisfying 2P — 1 > n, and n is the length of the array. Skip all leaves
because HEAPIFY takes no effect on them, we start applying HEAPIFY to the last branch
node (which index < |n/2]) bottom-up. The build function is defined as below:

1: function BUiLD-HEAP(A)

2: n <« |A|
3: for i < |n/2] down to 1 do
4: HEAPIFY(A, 1)

Although HEAPIFY is bound O(lgn) time, BUILD-HEAP is bound to O(n), but not
O(nlgn). We skip all leaves, check and move down a level at most for 1/4 nodes; check
and move down two levels at most for 1/8 nodes; check and move down three levels at

122 CHAPTER 8. BINARY HEAPS

most for 1/16 nodes... the total comparison and move times is up to:

1 1 1
=n(-+2-+3—+.. 2
S n(4+ T3t) (8.2)
Multiply by 2 for both sides:
1 1 1
Subtract (8.2) from (8.3):
1 1 1 1 1 .
25 -5 = [? + (2 i 1) + (3§ - 2§) +...] shift by one and subtract
1 1 . .
S = [5 + 1 + 3 + .. geometric series

= N

Figure 8.3 shows the steps to build a min-heap from array [4,1,3,2,16,9,10,14,8,7].
The black node is where HEAPIFY is applied. The grey nodes are swapped to maintain
the heap property.

8.2.3 Heap operations

Heap operations include access the top, pop, look up the top k£ elements, decrease an
element in min-heap (or increase an element in max-heap), and insert a new element.
For binary heap, the root stores the minimum element, corresponding to the first cell in
array:

1: function ToP(A)

2: return A[l]

Pop

After pop, the remaining elements in array shift ahead by one. However, after removed
the root of the binary tree, the rest is not a binary tree any more. To avoid such situation,
we swap the first and the last element in array, then reduce the array length by one. It
equivalent to remove a leaf but not the root. We then apply HEAPIFY to recover the heap
property:

1: function Por(A4)

2: x + All],n + |4|

3 EXCHANGE A[l] + A[n]

4: REMOVE(A4, n)

5: if A is not empty then

6 HEAPIFY(A, 1)

7 return z

It takes constant time to remove the last element from array, hence pop is also bound
to O(Ign) time as same as HEAPIFY.

Top-k

We can obtain top k elements by repeatedly applying pop.
1: function ToOP-K(A, k)
2: R+ [}
3: BuiLD-HEAP(A)

8.2. BINARY HEAP BY ARRAY 123

1 3 2 16 9 10

14 8 7

‘ .

) (6)

4
(6)

Figure 8.3: Build heap. (1) 16 > 7; (2) exchange 16 <> 7; (3) 2 < 14 and 2 < 8; (4) 3 < 9
and 3 < 10; (5) 1 <2and 1 < 7; (6) 1 <4 and 1 < 3; (7) exchange 4 <> 1; (8) exchange
4 < 2, end.

124 CHAPTER 8. BINARY HEAPS

4: loop MIN(k, |A]) times > cut off when & out of array bound
5: APPEND(R, Popr(A4))
6: return R

Increase priority

We can implement a priority queue with heap, to schedule tasks with priorities. Every
time, we peek the high priority task to execute. To make an urgent task run earlier, we
can increase its priority. It corresponds to decrease an element in a min-heap, as shown

in 8.4.
() ()
OO ONO
ORNORONO. ORNORONO

(1))

) (4)

Figure 8.4: Decrease 13 to 2. Exchange 2 and 9, then exchange with 3.

The heap property may not be satisfied when decrease some element in a min-heap.
Let the decreased element indexed at ¢ in the array, below function resumes the heap
property bottom-up. It is bound to O(lgn) time.

1: function HEAP-FIX(A, 1)
2: while i > 1 and A[i] < A[PARENT(i) | do

3: EXCHANGE A[i] ++ A[PARENT(4)]
4: i < PARENT(i)
Insertion

We can realize push with HEAP-F1x['l. Use min-heap for example, we append the new
element k to the tail of the array, then apply HEAP-FIX to recover the heap property:

1: function PUsH(A4, k)

2: APPEND(A, k)

3: HeaP-FIx(A4, |A])

8.2.4 Heap sort

We can sort elements with heap. Build a min-heap from a collection of n elements, the
repeatedly pop the top element to obtain the ascending result. It takes O(n) time to

8.3. LEFTIST HEAP AND SKEW HEAP 125

build the heap. The pop is bound to O(lgn) time, and runs for n times. Therefore, the
total time is bound to O(nlgn). The space is bound to O(n) as we need another list to
hold the result.

1: function HEAP-SORT(A)

2: R[]

3 BuiLD-HEAP(A)

4: while A # [] do

5: APPEND(R, Por(A))
6

return R

Robert. W. Floyd gave a fast implementation with max-heap. The top stores the
maximum one. Every time, swap the head and the tail elements in the array. After
that the maximum is stored to the expected position, and the previous tail becomes the
new top. We next decrease the heap size by one, and apply HEAPIFY to maintain the
heap property. Repeat this till the heap size decrease to one. This algorithm needn’t the
additional space to store the result.

1: function HEAP-SORT(A)
2: BuiLD-MAX-HEAP(A)
n + |A]
while n > 1 do

EXCHANGE A[l] +» Aln]

n<—n-—1

HEAPIFY(A[L...n], 1)

Exercise 8.1

1. Consider another idea about in-place heap sort: Build a min-heap from the array
A, the first element a; is in the right position. Treat the rest [ag,as, ..., ay] as the
new heap, and apply HEAPIFY from as. Repeat this till the last element. Is this
method correct?

1: function HEAP-SORT(A)
2: BuiLD-HEAP(A)

3: fori=1ton—1do
4: HEAPIFY(A[i...n], 1)

2. Similarly, can we apply HEAPIFY k times from left to right to get the top-k ele-
ments?
1: function Topr-K(A, k)
2 BuiLD-HEAP(A)
3: n < |A‘
4 for i < 1 to min(k,n) do
5 HEAPIFY(A[i...n], 1)

8.3 Leftist heap and skew heap

When implement the heap with a explicit binary tree, after pop the rot, there remain two
sub-trees. Both are heaps as shown in figure 8.5. How can we merge them to a new heap?
To maintain the heap property, the new root must be the minimum for the remaining.
We can give the first edge cases easily:

126 CHAPTER 8. BINARY HEAPS

R Merge BREN
L R /L\ /!\

Figure 8.5: Merge left and right sub-trees after pop.

merge(J,R) = R
merge(L,&) = L
merge(L,R) = 7

Both left and right sub-trees are heaps. When they are not empty, each root stores the
minimum respectively. We can compare the two roots, and peek the smaller as the new
root. Let L = (A,z,B), R=(A",y,B’), where A, A’, B, B’ are sub-trees. If x < y, then
x is the new root. We keep A, and merge B and R recursively; alternatively, we can keep
B, and merge A and R. The new heap can be (merge(A, R), x, B) or (A, x, merge(B, R)).
Both are right. To simplify, we always merge the right sub-tree. This method generates
leftist heap.

8.3.1 Leftist heap

The leftist heap is implemented with leftist tree. C. A. Crane in 19721*"l developed leftist
tree. He defined a rank for every node (also known as S-value) as the distance to the
nearest NIL. The rank of NIL is 0. As shown in 8.6, The nearest leaf node to 4 is 8, the
rank of 4 is 2; Both 4 and 8 are leaves, their ranks are 1. Although the left sub-tree of 5 is
not empty, its right sub-tree is NIL, hence the rank is 1. We can define the merge method
with rank as below. Let the ranks for left and right sub-trees be r;, 7, respectively:

Figure 8.6: rank(4) = 2, rank(6) = rank(8) = rank(5) = 1.

1. Always merge the right sub-tree;

8.3. LEFTIST HEAP AND SKEW HEAP 127

2. When r; < r., exchange the left and right sub-trees.

We call above merge rules ‘leftist property’. Basically, a leftist tree always has the
shortest path to some NIL on the right. It tends to be unbalanced, while maintain a
critical constraint:

Theorem 8.3.1. For a leftist tree T' of n nodes, the path from root to the rightmost NIL
has at most |log(n + 1)| nodes.

We skip the proof"1[°']. With this theorem, algorithms process along this path are
ensured bound to O(lgn) time. We can define the leftist tree by reusing binary tree plus
an additional rank. Let the none empty leftist tree be (r, L, k, R):

data LHeap a = E — Empty
| Node Int (LHeap a) a (LHeap a)

Function rank returns the rank value:

rank @ = 0
rank (r,L,k,R) = r (84)

Merge

To merge two leftist heaps, we define a make function. It compares the ranks of the
sub-trees and swap them if necessary.

rank(A) < rank(B): (rank(A)+1, Bk, A)

8.5
- (rank(B) + 1, A, k, B) (8:5)

make(A, k, B) = {

It takes two sub-trees A and B. If rank of A is smaller, we let B be the left sub-tree,

and A be the right. The rank of the new node is rank(A) + 1; otherwise if rank of B

is smaller, we let A be the left sub-tree, and B be the right. The rank of the new node

is rank(B) + 1. Given two leftist heaps H; and Ha, if they are not empty, let them be
(r1,L1, K1, Ry) and (r9, Lo, ko, Rs) respectively. Below function defines merge:

merge & Hy = Hy
merge Hy & = H,
merge Hy Hy = ki < ky: make(Ly, k1, merge Ry Ho) (8.6)
ge 11y i1z = A make(La, ko, merge Hy Ry)

We always apply merge to the right sub-tree recursively, hence the leftist property
is maintained, and it is bound to O(lgn) time.The binary heap implemented by array
performs well in most cases, and it suitable for the modern cache technology. However,
it takes O(n) time for merge. We need concatenate two arrays, and rebuild the heap!"].

1: function MERGE-HEAP(A, B)
2: C < CONCAT(A, B)
3: BuiLp-HeEAP(C)

We can define most heap operations with merge.

Top and pop
We can access the top element in O(1) time, assume the heap is not empty:
top (r,L,k,R) =k (8.7)

After pop the root, we merge the left and right sub-trees as a new heap. Same as
merge, pop is also bound to O(lgn) time.

pop (r,L,k,R) = merge L R (8.8)

128 CHAPTER 8. BINARY HEAPS

Insert
To insert a new element k, we build a singleton leaf of k, then merge it with the heap:
insert k H=merge (1,2,k, @) H (8.9)

Or write it in Curried form as build = fold, insert @.

Figure 8.7: Build the leftist heap from [9,4, 16,7, 10, 2,14, 3,8, 1].

Heap sort

Given a list, we build a leftist heap from it, then repeatedly pop the minimum element
from top to obtain the sorted result.

sort = heapSort o build (8.10)
Where

heapSort |] [] (8.11)
heapSort H = (top H) : (heapSort (pop H)) '

We call pop n times, each takes O(lgn) time. The total time is bound to O(nlgn).

8.3.2 Skew heap

Leftist heap may lead to unbalanced tree in some cases as shown in figure 8.8. Skew heap
is a self-adjusting heap. It simplifies the leftist heap and improves balance['"J[*"]. When
build the leftist heap, we swap the left and right sub-trees when the rank on left is smaller
than the right. However, this method can’t handle the case when either sub-tree has a
NIL node. The rank is always 1 no matter how big the sub-tree is. Skew heap simplified
the merge, it always swap the left and right sub-trees.

Skew heap is implemented with skew tree. Skew tree is a binary tree. The root stores
the minimum element, every sub-tree is also a skew tree. Skew tree needn’t the rank. We
can directly re-use the binary tree definition. Let the none empty tree be (L, k, R).

data SHeap a = E — Emtpy
| Node (SHeap a) a (SHeap a)

8.4. SPLAY HEAP 129

Figure 8.8: Leftist heap built from [16, 14,10, 8,7,9,3,2,4, 1].

Merge

When merge two none empty skew trees, we choose the smaller root as the new root.
Then merge the greater tree with a sub-tree, and swap the left and right sub-trees. Let
the two trees be Hy = (L1, k1, R1) and Hy = (La, ko, Ra). If k1 < ko, then choose k; as
the new root. We can either merge Hs with L;, or merge Ho, with R;. We choose Ry,
and swap the left and right sub-trees. The result is (merge(Ry, Ha), k1, L1).

merge @ Hy = Hs
merge Hy @ = H;
. (8.12)
ki <kg: (merge(Ry, Hz), k1, L1)
merge Hy Hy =)
otherwise : (merge(Hy, Ra), k2, L2)

Similar with leftist tree, the other operations, including insert, top, and pop are im-
plemented with merge. Skew heap outputs a balanced tree even for ordered list as shown
in figure 8.9.

8.4 Splay heap

The leftist heap and skew heap are implemented with binary tree. If change to binary
search tree, then the minimum element will not be in root. We need O(lgn) time to locate
the minimum. The performance will downgrade if the tree is not balanced. Although we
can use the red-black tree to secure balancing, the splay tree provides a light weight
implementation. It dynamically make the tree balanced. Splay tree takes cache-like
approach. It rotates the node currently being accessed to the root, reduces the access

130 CHAPTER 8. BINARY HEAPS

Figure 8.9: Skew tree built from [1,2, ..., 10].

time for next visit. We define such operation as ’splay’. The tree tends to be more
balanced after several splay operations. Most splay tree operations perform in amortized
O(lgn) time. Daniel Dominic Sleator and Robert Endre Tarjan developed splay tree in
1985 1149,

8.4.1 Splay

We introduce two methods to implement splay. The first is pattern matching, it need
match multiple cases; the second has the uniformed form, but the implementation is
complex. Let the node to be accessed be x, the parent node be p. If it has grand parent
node, then denote it as g. There are 3 cases, each has two symmetric sub-cases. We
explain one of them as shown in 8.10:

1. Zig-zig: Both x and p are on the left; or on the right. We rotate twice to make x as
root.

2. Zig-zag: x is on the left, while p is on the right; or = is on the right, while P is on
the left. After rotation, x becomes the root, p and g are siblings.

3. Zig: p is the root, we rotate to make = as root.

There are total 6 cases. Let the none empty tree be T' = (L, k, R), define splay as

8.4. SPLAY HEAP 131

zig-zig

“ ° r:> a b c d

zig-zag

e = : 0.

a b zig b c

Figure 8.10: zig-zig: x and p are both on left or right, becomes new root. zig-zag: =z
and p are on different sides, x becomes new root, p and g are siblings. zig: p is root,
rotate to make x as root.

132 CHAPTER 8. BINARY HEAPS
below when access element y:

rT=y: (a,
otherwise: T
r=y: (((a,g,b),p,c),z,d)

splay Yy (0/7 g, (bap7 (Ca z, d))) = . Zig-Zig Symmetric
otherwise: T
(

=9 d
splay y (a,p, (b,x,c),g,d) = <" U7 (a.p,9),2,(c.9.d)) zig-zag
otherwise: T
((a

splay y (((a,x,b),p,¢),9,d) = = (0,7, (¢ 9,d))) zig-zig

x=1y: c,p,d . .
splay y (a,g,((b,z,c),p,d)) = otherwise : ZE 9:0):,() zig-zag symmetric
r=y: (a,z, (b, p,c)) .
splay y ((a,z,b).p¢) = otherwise: T 28
splay y (a,p, (b,r,c)) = =y :. ((a,p,b),,¢) zig symmetric
otherwise: T
splayyT = T others

(8.13)

The first two are ’zig-zig’ cases; then two ’zig-zag’ cases; then two zig cases. The tree

keeps changed for all other cases. Every time when insert a new element, we trigger splay

to adjust the balance. IF the tree is empty, the result is a singleton leaf; otherwise, we

compare the new element and the root, then recursively insert to left (less than) or right
(greater than) sub-tree and apply splay.

inserty @ = (9,y,9)
y<x: splay y ((insert y L), z, R) (8.14)

inserty (L,x,R) =
v) otherwise : splay y (L,x, (insert y R))

Figure 8.11: Splay tree built from [1,2,...,10].

Figure 8.11 gives the splay tree built from [1,2,...,10]. It generates a well balanced
tree. Okasaki found a simple rule for splaying!”!. Whenever we follow two left branches,
or two right branches continuously, we rotate the two nodes. When access node of x, if
move to left or right twice, then partition 7" as L and R, where L contains all the elements
less than z, while R contains the remaining. Then we create a new tree with x as the
root, and L, R as the left and right sub-trees. The partition process is recursively applied

8.4. SPLAY HEAP 133

to sub-trees.

partition y @ = (2,9)
partition y (L,x, R) =
R=0o (T, o)
<y ((L,z,L"),z', A), B)
r<y R— (.« R | where: (A, B) = partition y R’
otherwise ((L,z,A),(B,z',R))
where: (A, B) = partition y L’
L=go (2,7)
y<az (A, (L, 2", (R ,z,R)))
otherwise L (Lo R . where: (A, B) = partition y L’
otherwise ((L',2',A),(B,x, R))
where: (A, B) = partition y R’

(8.15)

Function partition takes a pivot y, and a tree T'. For empty tree, the result is a pair of
empty trees; otherwise let the tree be (L, x, R). We compare the pivot y and the root x.
If < y, there are two sub-cases: (1) R is empty. All elements in the binary search tree
are less then y, hence the result is (T, @); (2) Let R = (L', 2’, R'), if 2’ < y, we recursively
partition R’ with the pivot y. Put all the elements less than y in A, and the rest in B.
The result is a pair of trees: ((L,z,L"),2’, A) and B. If 2’ > y, then recursively partition
L' with y to obtain (A, B). The result is also a pair of (L,z, A) and (B,z’, R'). When
y < z, the result is symmetric.

Alternatively, we can define insert with partition. When insert a new element k to
splay heap T, we first partition the heap to two sub-trees of L and R. Where L contains
all elements smaller than k, while R contains the rest. Then construct a new tree with &
as the root, and L, R as the sub-trees.

insert k T = (L, k, R), where : (L, R) = partition k T (8.16)

8.4.2 Pop

Since splay tree is essentially a binary search tree, the minimum is at the left most. We
need keep traversing the left sub-tree to access the heap ‘top’. Let the none empty tree
be T'= (L, k, R), we define the top function as below:

top (0,k,R) = k
e (8.17)

o
top (L,k,R) = top L

This is equivalent to min for the binary search tree. When pop, we need remove the
minimum. We apply splay when move left twice.

pop (&,k,R) = R
pop ((9,K',R'),k,R) = (R k,R) (8.18)
pop (L', k', R'),k,R) = (pop L',K',(R', k, R))

The third row performs splaying without calling partition. It uses the binary search
tree property. Top and pop are bound to O(lgn) time when the splay tree is balanced.

134 CHAPTER 8. BINARY HEAPS

8.4.3 Merge

We can implement merge with partition to obtain the O(lgn) time bound. When merge
two none-empty splay trees, we choose a root as the pivot to partition the other tree,
then recursively merge the sub-trees:

merge T = T

merge (L,z,R) T = ((merge L L') x (merge R R')) (8.19)

where
(L', R') = partition x T

If a heap is empty, then the result is the other heap; otherwise, let a heap be (L, z, R).
We use z to partition T to (L', R'), where L contains all elements less than x in T, while
R’ contains the rest. Then we recursively merge L and L’ to the left sub-tree, and merge
R and R’ to the right sub-tree.

8.5 Summary

We give the generic definition of binary heap in this chapter. There are several imple-
mentations. The array based representation is suitable for imperative implementation.
It maps a complete binary tree to array, supports random access any element. We also
directly use the binary tree to implement the heap in functional way. Most operations are
bound to O(Ign) time, some are O(1) amortized time. Okasaki gave detailed analysis!’l.
When extend from binary tree to k-ary tree, we obtain binomial heap, Fibonacci heap,
and pairing heap. We introduce these heaps in chapter 10.

Exercise 8.2

1. Realize leftist heap, skew heap, and splay heap in imperative approach.
2. Define fold for heap.

8.6 Appendix - example programs

For the complete binary tree represented by array, access parent, and sub-trees with
bit-wise operation (index from 0):

Int parent(Int i) = ((i + 1) > 1) - 1
Int left(Int i) = (i < 1) + 1

Int right(Int i) = (i + 1) < 1

Heapify, parameterized the comparison:

void heapify([K] a, Int i, Less<K> 1t) {

Intl, r, m
Int n = length(a)
loop {

m =7

1 = left(d)

r = right(i)

if 1 < n and 1t(a[l], a[i]) then m
if r < n and l1t(a[r], a[m]) then m
ifm # i {

8.6. APPENDIX - EXAMPLE PROGRAMS 135

swap(a, i, m);
i=m

} else {
break

}

Build the binary heap from array:

void buildHeap([K] a, Less<K> 1t) {
Int n = length(a)
for Int i = (n-1) / 2 downto 0 {
heapify(a, i, 1t)
}

Pop:

K pop([K] a, Less<k> 1t) {
var n = length(a)
t = a[n]
swap(a, 0, n - 1)
remove(a, n - 1)
if a # [] then heapify(a, 0, 1t)
return t

Obtain the top-k elements:

[K] topk([K] a, Int k, Less<k> 1t) {
buildHeap(a, 1t)
[K]l r =[]
loop min(k, length(a)) {
append(r, pop(a, 1t))
}

return r

Decrease the key in min-heap:

void decreaseKey([K] a, Int i, K k, Less<K> 1t) {
if 1t(k, a[i]) {
a[i] = k
heapFix(a, i, 1t)

}

void heapFix([K] a, Int i, Less<K> 1t) {
while i > 0 and lt(a[i], a[parent(i)]) {
swap(a, i, parent(i))
i = parent(i)

Push new element:

void push([K] a, K k, less<k> 1t) {
append(a, k)
heapFix(a, length(a) - 1, 1t)

Heap sort:

void heapSort([K] a, less<K> 1t) {
buildHeap(a, not o 1t)

136 CHAPTER 8. BINARY HEAPS

n = length(a)
while n > 1 {
swap(a, 0, n - 1)
n=n-1
heapify(a[0 .. (n - 1)], 0, noto lt)

Merge two leftist heaps:

merge E h = h

merge h E = h

merge hl@(Node _ x 1 r) h2@(Node _ y 1' r') =
if x < y then makeNode x 1 (merge r h2)
else makeNode y 1' (merge hl r')

makeNode x a b = if rank a < rank b then Node (rank a + 1) x b a
else Node (rank b + 1) x a b

Merge two skew heaps:

merge E h = h

merge h E = h

merge hl@(Node x 1 r) h2@(Node y 1' r') =
if x < y then Node x (merge r h2) 1
else Node y (merge hl r') 1'

Splay operation:

— zig-zig
splay t@(Node (Node (Node a x b) pc) gd) y=

if x =— y then Node a x (Node b p (Node c g d)) else t
splay t@(Node a g (Node b p (Node c x d))) y =

if x = y then Node (Node (Node a g b) p c) x d else t
— zig-zag

splay t@(Node (Node a p (Node b x c)) gd) y =

if x =— y then Node (Node a p b) x (Node c g d) else t
splay t@(Node a g (Node (Node b x c) p d)) y =

if x — y then Node (Node a g b) x (Node c p d) else t

— zig

splay t@(Node (Node a x b) p c) vy =14f x = y then Node a x (Node b p c) else t
splay t@(Node a p (Node b x c)) y = if x = y then Node (Node a p b) x c else t
— others

splay t _ =t

Insert new element to the splay heap:

insert E y = Node E y E

insert (Node 1 x r) y
| x >y = splay (Node (insert 1 y) x r) vy
| otherwise = splay (Node 1 x (insert r y)) y

Partition the splay tree:

partition E _ = (E, E)
partition t@(Node 1 x r) y
| x <y =
case r of
E - (t, E)

Node 1' x' r' —
if x' <y then
let (small, big) = partition r' y 1in
(Node (Node 1 x 1') x' small, big)
else
let (small, big) = partition 1' y 1in
(Node 1 x small, Node big x' r')

Elementary Algorithms

| otherwise =
case 1 of
E > (E, t)
Node 1' x' r' —
if y < x' then
let (small, big) = partition 1' y 1in
(small, Node 1' x' (Node r' x r))
else
let (small, big) = partition r' y 1in
(Node 1' x' small, Node big x r)

137

Merge two splay trees:

merge E t =t
merge (Node 1 x r) t = Node (merge 1 1') x (merge r r')
where (l', r') = partition t x

138 Selection sort

Chapter 9

Selection sort

9.1 Introduction

Selection sort is a straightforward sorting algorithm. It repeatedly selects the minimum
(or maximum) from a collection of elements. It performs below the divide and conqueror
sort algorithms, like quick sort and merge sort. We'll give different ways to improve it,
and finally evolve it to heap sort, achieving O(nlgn), the upper limit of comparison based
sort algorithm time bound. When facing a bunch of grapes, there are two types of kids.
One pick the biggest grape to eat every time, the other always eat the smallest one. The
first type eats the grape in ascending order of size, the other eats in descending order. In
either case, the kid essentially applies selection sort method. It can be defined as:

1. If the collection is empty, the sorted result is empty;

2. Otherwise, select the minimum element, and append it to the sorted result.

It sorts elements in ascending order. We can obtain descending order by selecting the
maximum. The compare operation can be abstract.

SOTtH = H (9.1)
sort A = m:sort (A—[m]) where m =min A '
Where A—[m] is the remaining elements in A except m. The corresponding imperative
implementation is as below:
1: function SORT(A)
2: X+ []
3 while A # [] do
4: x + MIN(A)
5: DEL(A, x)
6 APPEND(X,)
7 return X
Figure 9.1 shows the process of selection sort. We can improve it to in-place sort. The
idea is to reuse A. Place the minimum element in A[1], the second smallest one in A[2],
...When find the i-th smallest element, swap it with A[i].

1: function SORT(A)

2: for i + 1 to |A| do
3: m <— MIN-AT(A, 1)
4: EXCHANGE A[i] <+ A[m)]

139

140 CHAPTER 9. SELECTION SORT
min

append

sorted unsorted

X1 < X <..<Xxg ap ay ... ay

Figure 9.1: The left is sorted, repeatedly select the minimum of the rest and append.

Let A = [a1,as9,...,a,], when select the i-th smallest element, [a1,as,...,a;_1] are
sorted. We find the minimum of [a;, a;t1, ..., a,], and swap it with a;. Repeat this to
process all elements as shown in figure 9.2.

swap

. sorted ... x -+ | min

Figure 9.2: The left is sorted, repeatedly find the minimum and swap to the right position.

9.2 Find the minimum

We can use the ‘compare and swap’ method to find the minimum element. Label the
elements with 1,2, ...,n. Compare the elements of number 1 and 2, pick the smaller and

compare it with number 3, ... repeat till the last element of number n.
1: function MIN-AT(A, 1)
2: m <+ 1
3 for i < m+1 to |A| do
4: if A[i] < A[m] then
5: m<—1
6 return m

The MIN-AT find the minimum m from slice Afi...]. Let m start pointing to A[¢], then
scan Afi + 1], A[i + 2],

We can also find the minimum from list of elements L recursively. When L is a
singleton, the only element is the minimum; otherwise pick an element x from L, then
recursively find the minimum y from the remaining, the smaller one between x and y is
the minimum of L.

min [z] = (z,[])
min (z : zs) T<Y: (x,xs), where (y,ys) = min xs (9.2)
. otherwise : (y, x :ys)

We can further improve it tail recursively. Divide the elements with two groups A
and B. A is initialized empty ([]), B contains all elements. We pick two elements
from B, compare and put the greater one to A, leave the smaller one as m. Then
repeatedly pick element from B, compare with m till B becomes empty. Finally, m is
the minimum element. At any time, we have the invariant: L = A 4 [m] # B, where
a<m<ba€eAbe B.

min (z: xs) =min’ || z xs (9.3)

9.3. IMPROVEMENT 141

Where:

min’ asm[] = (m,A)
b<m: min’ (m : as) b bs (9.4)

min’ as m (b:bs) =) ,
otherwise : min’ (b:as) m bs

Function min return a pair: the minimum and the remaining elements. We can define
selection sort as below:

sort [] = []

sort xts = m: (sort xs’), where (m,xs’) = min xs (9:5)

9.2.1 Performance

Selection sort need scan the unsorted elements to find the minimum for 1n times. It
n(n

compares n+ (n—1) + (n —2) 4+ ... + 1 times. The time bound is O(%) = 0(n?).

Compare to the insertion sort, selection sort performs same in the best, worst, and average

cases. While insertion sort performs best at O(n) (the linked-list is in reversed ordered),

and worst at O(n?).

Exercise 9.1
1. What is the problem with below implementation of min?

min’ asm [] = (m,A)
b<m: min (as+ [m]) b bs

in’ b:b =
min’ as m (b : bs) HW e man’ (as - [b]) m bs

2. Implement the selection sort for both in-placed and not.

9.3 Improvement

To sort in ascending, descending, and varies of ordering, we abstract the comparison as
<.

sortBy < [] = [] (9.6)
sortBy <1 xs = m: sortBy < wxs’, where (m,zs’) = minBy < xs '
We also use < to find the 'minimum”:
minBy < [z] = (z,[])
r<y: (z,xs), where (y,ys) = minBy xs (9.7)

minBy < (z:zs) =
y <) otherwise : (y, z:ys)

For example, we pass the < to sort a collection of numbers in ascending order:
sortBy (<) [3,1,4,...]. As the constraint, we need the comparison < satisfy the strict
weak order!

o Irreflexivity: for all z, x < x is false;
e Asymmetry: for all x and y, if x < y, then y < x is false;

o Transitivity, for all z, y, and z, if x < y, and y < z, then z < z.

142 CHAPTER 9. SELECTION SORT

The in-place selection sort traverses all elements, we can find the minimum as an inner

loop to make the implementation compact:

1: procedure SORT(A)

2 for i+ 1to|A| do

3: m <1
4: for j <+ i+ 1to |A| do
5 if Ali] < A[m] then
6 m <1
7 EXCHANGE A[i] <+ A[m)]

After sort the first n — 1 elements, the last one must be the maximum. We can save
the last loop. Besides, we needn’t swap if the i-th smallest is exactly A[i].

1: procedure SORT(A)
2: for i+ 1to|A|—1do

3: m<—1

4: for j <+ i+ 1to |A| do
5: if Ali] < A[m] then
6: m 4 i

7: if m # ¢ then

8:

EXCHANGE A[i] ++ A[m]

9.3.1 Cock-tail sort

Knuth gives another selection sort implementation[”']. Select the maximum, but not the
minimum, and move it to the tail, as shown in figure ??7. At any time, the right most
part is sorted. We scan the unsorted part, find the maximum and swap to the right.
1: procedure SORT’(A)

for i+ |A| down-to 2 do

m <1

for j« 1toi—1do

if A[m] < A[i] then
m<—1
EXCHANGE A[i] <> A[m]

N

swap

max| - | = ... sorted ...

Figure 9.3: Select the maximum and swap to tail

We obtain the ascending order as well. Further, we can pick both the minimum and
maximum in one pass, swap the minimum to the head, and the maximum to the tail. We
can halve the inner loop times. The method is called ‘cock-tail sort’.

1: procedure SORT(A)

2 for i < 1 to L%J do

3 min <1

4 max + |Al+1—1

5: if Ajmax] < A[min| then

6 EXCHANGE A[min] <> A[maz]
7 for j < i+1to|A|—ido

8 if A[j] < A[min] then

9.3. IMPROVEMENT 143

9: min < j
10: if A[maz] < A[j] then
11: max < j
12: EXCHANGE Ali] > A[min]
13: EXCHANGE A[|A| + 1 — i] <> Almax]
swap
.. sorted smaller ... z | -+ |max| - |min| -+ | Y . sorted greater ..|

swap

Figure 9.4: Find the minimum and maximum, swap both to the right positions.

It’s necessary to swap if the right most element less than the right most one before the
inner loop. This is because the scan excludes them. We can also implement the cock-tail
sort recursively:

1. If the list is empty or singleton, it’s sorted;

2. Otherwise, we select the minimum and the maximum, move them to the head and
tail, then recursively sort the rest elements.

sort [| =]
sort [x] =[] (9.8)
sort xs = a: (sort xs’) 4 [b], where (a, b, xs") = minMaz xs

Where function minMaz extracts the minimum and maximum from a list:
minMaz (x : y : xs) = foldr sel(min z y,max z y,[]) xs (9.9)
We initialize the minimum as the first element xg, and the maximum as the second
element z1, and process the list with foldr. Function sel is defined as:
T <X (x, 21,20 : 8)
sel © (xg,x1,28) = 21 < T : (xo,x, 21 : 8)
otherwsie : (zg, 1,2 : xs)

Although minMaz is bound to O(n) time, +[b] is expensive. As shown in figure 9.4,
let the left sorted part be A, the right sorted part be B. We can turn the cock-tail sort
to tail recursive with A and B as the accumulators.

sortt AB[] = A+#B
sort! AB[z] = A+ (z:DB) (9.10)
sort! AB (z:xs) = sort' (A4 [xg]) zs' (z1: B)
Where (zg,x1,28") = minMaz xs. We pass empty A and B to initialize sorting:
sort = sort’ [] []. The append only happens to A 4 [xo], while z; is linked before

B. Every recursion £erforms an append operation. To eliminate it, we can maintain A
in reversed order: A, hence z(is linked ahead but appended. We have the following
equations:

A = A+ [z]
reverse (x : reverse A)

reverse (z : Z) (9-11)
<—

— 2:4

144 CHAPTER 9. SELECTION SORT

—
Finally, we reverse A’ back to A’. We can improve the algorithm as below:

sort' AB[] = (reverse A)# B
sort' A B [zx] = (reversex:A)+ B (9.12)
sort' A B (z:xs) = sort’ (zg:A) xzs’ (x1:B)

9.4 Further improvement

Although cock-tail sort halves the loops, it’s still bound to O(n?) time. To sort by
comparison, we need the outer loop to examine all the elements for ordering. Do we need
scan all the elements to select the minimum every time? After find the first smallest one,
we’ve traversed the whole collection, obtain some information, like which are greater,
which are smaller. However, we discard such information for further selection, but restart
a fresh scan. The idea is information reusing. Let’s see one inspired from football match.

9.4.1 Tournament knock out

The football world cup is held every four years. There are 32 teams from different conti-
nent play the final games. Before 1982, there were 16 teams in the finals. Let’s go back to
1978 and imagine a special way to determine the champion: In the first round, the teams
are grouped into 8 pairs to play. There will be 8 winners, and 8 teams will be out. Then
in the second round, 8 teams are grouped into 4 pairs. There will be 4 winners. Then
the top 4 teams are grouped into 2 pairs, there will be two teams left for the final. The
champion is determined after 4 rounds of games. There are total 8+4+2+1 = 15 games.
Besides the champion, we also want to know which is the silver medal team. In the real
world cup, the team lost the final is the runner-up. However, it isn’t fair in some sense.
We often hear about the ‘group of death’. Suppose Brazil is grouped with Germam in
round one. Although both teams are strong, one team is knocked out. It’s quite possible
that team would beat other teams except for the champion, as shown in figure 9.5.

Figure 9.5: The element 15 is knocked out in the first round.

Assign every team a number to measure its strength. Suppose the team with greater
number always beats the smaller one (this is obviously not true in real world). The
champion number is 16. the runner-up is not 14, but 15, which is out in the first round.
We need figure out a way to quickly identify the second greater number in the tournament
tree. The apply it to select the 3rd, the 4th, ... to sort. We can mutate the champion
to a very small number, i.e. —00, hence it won’t be selected next time, and the previous
runner-up will become the new champion. For 2™ teams, where m is some natural number,
it takes 2™ "1 42m~2 4+ | 4+ 241 = 2™ — 1 comparisons to determine the new champion.
This is same as before. Actually, we needn’t perform bottom-up comparisons because
the tournament tree stores sufficient ordering information. The champion must beat the
runner-up at sometime. We can locate the runner-up along the path from the root to

9.4. FURTHER IMPROVEMENT 145
the leaf of the champion. We grey the path in figure 9.5 of [14,13,7,15]. This method is
defined as below:

1. Build a tournament tree with the maximum (the champion) at the root;

2. Take the root, replace it with —oo along the path to leaf;

3. Perform a bottom-up back-track along the path, find the new champion and store
it in the root;

4. Repeat step 2 to process all elements.

Take 14, replace with —oo, 13 becomes the new root.

Figure 9.6: The first 3 steps of tournament tree sort.

To sort a collection of elements, we build a tournament tree from them, repeatedly
select the champion from it. Figure 9.6 gives the first 3 steps. We can re-use the binary
tree definition. To make back-track easy, we need the parent field in each node. When
n is not 2™ form some natural number m, there is remaining element without “player”,
and directly enters the next round of games. To build the tournament tree, we build n
singleton trees from every element. Then pick every two t1, t2 to create a bigger binary
tree t. Where the root of ¢ is max(key(t1), key(ta)), the left and right sub-trees are t1,

146 CHAPTER 9. SELECTION SORT

to. Repeat to obtain a collection of new trees, each height increases by one. If there
n
is remaining, then enters the next round. After this round, trees halve to LEJ Repeat

this to obtain the final tournament tree. The process is bound to O(n + g + g +..)=
0O(2n) = O(n) time.

1: function BUILD-TREE(A)

2 T+« []

3 for each x € A do

4: APPEND(T, NODE(NIL, z, NIL))
5: while |T| > 1 do

6 T+ []

7 for every t1,t2 € T do

8 k< MaAX(KEY(t1), KEY(t2))
9: APPEND(T, NODE(t1, k, t2))
10: if |T| is odd then

11: APPEND(T”, LAsT(T))
12: T+ T
13: return 77[1]

We replace the root with —oo top-down, then back-track through the parent field to
find the new maximum.

1: function Popr(T)

2: m + Key(T)

3: KeY(T) + —o0

4: while T is not leaf do > top-down replace m with —oo.
5: if KEY(LEFT(T)) = m then

6: T « LerT(T)

7: else

8: T < RicuT(T)

9: KeY(T) + —o0

10: while PARENT(T') # NIL do > bottom-up to find the new maximum.
11: T < PARENT(T)

12: KeY(T) < MAX(KEY(LEFT(T)), KEY(RIGHT(T)))

13: return (m,T) > the maximum and the new tree.

PoP process the tree in two passes, top-down, then bottom-up along the path of the
champion. Because the tournament tree is balanced, the length of this path, i.e. height
of the tree, is bound to O(lgn), where n is the number of the elements. Below is the
tournament tree sort. We first build the tree in O(n) time, then pop the maximum for n
times, each pop takes O(lgn) time. The total time is bound to O(nlgn).

procedure SORT(A)
T < BuiLD-TREE(A)
for i + |A| down to 1 do
Ali] + EXTRACT-MAX(T)

We can also implement tournament tree sort recursively. Reuse the binary search tree
definition, let an none empty tree be (I, k,r), where k is the element, [, r are the left and
right sub-trees. Define wrap ¢ = (&, z, @) to create a leaf node. We can convert the n
elements to a list of n single trees: ts = map wrap xs. For every pair of trees t1, to, we
merge them to a bigger tree, pick the greater element as the new root, and t¢1, t3 become
the left and right sub-trees.

merge t1 to = (t1, max ky ko, ta) (9.13)

9.4. FURTHER IMPROVEMENT 147

Where k1 = key t1, ko = key to are the elements at root respectively. Define a function
build ts to repeatedly merge two trees, and build the final tournament tree.

build[] = o
build [t] = ¢ (9.14)
build ts = build (pairs ts)
Where:
pairs (ty : tQ'I ts) = (merge ty t3): pairsts (9.15)
pairsts = s

When pop the champion, we examine the sub-trees to see which one holds the same
element as the root. Then recursively pop the champion from the sub-tree till the leaf
node. Then replace it with —oo.

bop (Qakag) = (@,—oo,@)
k=keyl: (I'max (keyl!) (keyr),r),wherel’ = pop I
pop (Lk,r) = ((! ,) ,) /
k=keyr: (I,max (keyl) (key r'),r"), wherer’ = pop r
(9.16)
Then repeatedly pop from the tournament tree to sort (in descending order):
sort @ =[]
sort (I, —oo,7) = [] (9.17)
sortt = (keyt): sort (popt)

Exercise 9.2

1. Implement the recursive tournament tree sort in ascending order.
2. When there are duplicated elements, how to sort it with tournament tree?

3. Compare the tournament tree sort and binary search tree sort in terms of space
and time performance.

4. Compare heap sort and tournament tree sort in terms of space and time perfor-
mance.

9.4.2 Heap sort

We improve the selection based sort to O(nlgn) time through tournament tree. It is
the upper limit of the comparison based sort!”'). However, there are still rooms for
improvement. After sort, The binary holds all —co, occupying 2n nodes for n elements.
It’s there a way to release node after pop? Can we halve 2n nodes to n? Treat the tree
as empty when the root element is —oo, and rename key to top, we can write (9.17) in a
generic way:

sort @ =]
sortt = (topt): sort (pop t) (9-18)

This is exactly as same as the definition of heap sort. Heap always stores the minimum
(or the maximum) on the top, and provides fast pop operation. The array implementation
encodes the binary tree structure as indices, uses exactly n cells to represent the heap.
The functional heaps, like the leftist heap and splay heap use n nodes as well. We'll give
more well performed heaps in next chapter.

148 CHAPTER 9. SELECTION SORT

9.5 Appendix - example programs

Tail recursive selection sort:

sort [] = []
sort xs = x : sort xs'
where

(x, xs') = extractMin xs

extractMin (x:xs) = min' [] x xs
where
min' ys m [] = (m, ys)
min' ys m (x:xs) = if m < x then min' (x:ys) m xs
else min' (m:ys) x xs

Cock-tail sort:

[A] cocktailSort([A] xs) {
Int n = length(xs)
for Int i =0 ton / 2 {
var (mi, ma) = (i, n - 1 -1)
if xs[ma] < xs[mi] then swap(xs[mi], xs[ma])
for Int j =19 +1ton-1-1{
if xs[j] < xs[mi] then mi = j
if xs[ma] < xs[j] then ma = j
}
swap(xs[i], xs[mi])
swap(xs[n - 1 - 1], xs[ma])
}

return xs

Tail recursive cock-tail sort:

csort xs = cocktail [] [] xs
where
cocktail as bs []
cocktail as bs [x]
cocktail as bs xs

reverse as +H bs

reverse (x:as) H bs

let (mi, ma, xs') = minMax xs
in cocktail (mi:as) (ma:bs) xs'

minMax (x:y:xs) = foldr sel (min x y, max x y, []) xs
where
sel x (mi, ma, ys) | x <mi = (x, ma, mi:ys)
| ma < x = (mi, x, ma:ys)
| otherwise = (mi, ma, x:ys)

Build the tournament tree (reuse the binary tree structure):

Node<T> build([T] xs) {
[T] ts =[]
for x 1in xs {
append(ts, Node(null, x, null))

}
while length(ts) > 1 {
[Tl ts' =[]
for 1, r in ts {
append(ts', Node(l, max(l.key, r.key), r))

}
if odd(length(ts)) then append(ts', last(ts))
ts = ts'

}

return ts[0];

Pop from the tournament tree:

Elementary Algorithms 149

T pop(Node<T> t) {
T m= t.key
t.key = -INF
while not islLeaf(t) {
t =1if t.left.key = m then t—left else t—right
t.key = -INF
}
while (t.parent # null) {
t = t.parent
t.key = max(t.left.key, t.right.key)
}

return (m, t);

Tournament tree sort:

void sort([A] xs) {
Node<T> t = build(xs)
for Int n = length(xs) - 1 downto 0 {
(xs[n], t) = pop(t)
}

Recursive tournament tree sort (descending order):

data Tr a = Empty | Br (Tr a) a (Tr a)

data Infinite a = NegInf | Only a | Inf deriving (Eq, Ord)
key (Br _ k _) =k

wrap x = Br Empty (Only x) Empty

merge t1@(Br _ k1 _) t2@(Br _ k2 _) = Br tl (max k1l k2) t2

fromList = build o (map wrap) where
build [] = Empty
build [t] =t
build ts = build (pairs ts)
pairs (tl:t2:ts) = (merge tl1 t2) : pair ts
pairs ts = ts

pop (Br Empty _ Empty) = Br Empty NegInf Empty
pop (Br Tkr) | k= key 1L =1let 1' = pop 1 in Br 1' (max (key 1') (key r)) r
| k= key r =1let r' = pop r in Br 1 (max (key 1) (key r')) r'

toList Empty = []
tolList (Br _ Inf _

) =1L
toList t@(Br Only k

]
_) = k : tolList (pop t)

sort — tolList o fromList

150 Binomial heap, Fibonacci heap, and pairing heap

Chapter 10

Binomial heap, Fibonacci heap,
and pairing heap

10.1 Introduction

Binary heap stores elements in a binary tree, we can extend it to k-ary treel”'] (k> 2
multi-ways tree), or multiple trees. This chapter introduces binomial heap, which consists
of forest of k-ary trees. When delay some operations to a Binomial heap, we obtained
Fibonacci heap. It improves the heap merge performance from O(lgn) time bound to
amortized constant time. This is critical for graph algorithm design. We give pairing
heap as a simplified heap implementation with good overall performance.

10.2 Binomial Heaps
Binomial heap is named after Newton’s binomial theorem. It consists of a set of k-ary

trees (also called a forest). Every tree has the size equal to a binomial coefficient. Newton
proved that (a + b)™ expands to:

(a+b)" =a"+ (?) a" o4+ <n T_L 1) ab™ ' 4b (10.1)

When n is a natural number, the coefficients is some row in Pascal’s triangle! [”.

The first row is 1, all the first and last numbers are 1 for every row. Any other number
is the sum of the top-left and top-right numbers in the previous row. There are many
methods to generate pascal triangles, like recursion.

LAlso know as the Jia Xian's triangle named after ancient Chinese mathematician Jia Xian (1010-
1070). Newton generalized n to rational numbers, later Euler expand it to real exponents.

151

152 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

Binomial tree

A binomial tree is a multi-ways tree with an integer rank. Denoted as By if the rank is
0, and B,, for rank n.

1. By has only one node;

2. B, is formed by two B,,_; trees, the one with the greater root element is the left
most sub-tree of the other, as shown in figure 10.1.

Figure 10.1: Binomial tree

Figure 10.2 gives examples of By to Bj.

We can find the number of nodes in every row in B, is a binomial coefficient. For
example in By, there is a node (root) in level 0, 4 nodes in level 1, 6 nodes in level 2, 4
nodes in level 3, and a node in level 4. They are exactly same as the 4th row (start from
0) of Pascal’s triangle: 1, 4, 6, 4, 1. This is the reason why we name it binomial tree. We
can further know there are 2™ elements in a B,, tree.

A binomial heap is a set of binomial trees (a forest) that satisfies the following two
rules:

1. Every tree satisfies the heap property, i.e. for min heap, the element in every node
is not less than (>) its parent;

2. Every tree has unique rank. i.e. any two trees have different ranks.

From the 2nd rule, for a binomial heap of n elements, convert n to its binary format
(am...a1,a0)2, where aq is the least significant bit (LSB) and a,, is the most significant
bit (MSB). If if a; = 0, there is no tree of rank 4; if a; = 1, there is a tree of rank i.
For example, consider a binomial heap of 5 elements. As 5 is 101 in binary, there are
2 binomial trees, one is By, the other is B;. The binomial heap in figure 10.3 has 19
elements, 19 is (10011)2. There is a By, a By, and a Bjy.

We define the binomial tree as (r, k,ts), where r is the rank, k is the element in the
root, and ts is the list of sub-trees ordered by rank.

data BiTree a = Node Int a [BiTree a]

type BiHeap a = [BiTree a]

10.2. BINOMIAL HEAPS 153

()
(2) ()OO
O ONONNO
(a) Bo (b) By (c) B2

(d) Bs
(+)

(e) Ba

Figure 10.2: Binomial trees of rank 0, 1, 2, 3, 4, ...

Figure 10.3: A binomial heap with 19 elements

154 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

There is a method called ‘left-child, right-sibling’['l, that can reuse the binary tree
data structure to define multi-ways tree. Every node has the left and right part. the
left references to the first sub-tree; the right references to its sibling. All siblings form a
list as shown in figure 10.4. Alternatively, we can use an array or a list to represent the

sub-trees.

ORORE®

Figure 10.4: R is the root, 11,75, ...,T,, are sub-trees of R. The left of R is 77, the right
is NIL. T11,...,Thp are sub-trees of 7. The left of T} is 771, the right is its sibling T5.
The left of T3 is Tby, the left is sibling.

10.2.1 Link

To link two B,, trees to a B,, 11 tree, we compare the two root elements, choose the smaller
one as the root, and put the other tree ahead of other sub-trees as shown in figure 10.5.

r<y: (r+1,z,(rtts) : ts)

10.2
otherwise : (r+ 1,y, (r,z,ts) : ts') (102)

link (r,z,ts) (r,y,ts') = {

Figure 10.5: If z < y, link y as the first sub-tree of z.

We can implement link with ‘left child, right sibling’ method as below. Link operation

is bound to constant time.

1: function LINK(z,y)

2 if KEy(y) < KeEY(2) then

3 Exchange = <> y

4: SIBLING(y) < SUB-TREES(T7})

5 SUB-TREES(z) <y

6 PARENT(y) <«

10.2. BINOMIAL HEAPS 155

RANK(z) < RANK(y) + 1
return z

Exercise 10.1

Write a program to generate Pascal’s triangle.
Prove that the i-th row in tree B,, has (7;) nodes.

Prove there are 2" elements in B,, tree.

= W=

Use a container to store sub-trees, how to implement link? How to secure the
operation is in constant time?

Insert

When insert a new tree, we keep the trees in binomial heap ordered by rank (ascending):

mst[] = [t
rank t <rankt' : t:t :ts
; ’ ’ ’ (10.3)
inst (t':ts) = Qqrankt <rankt: t :instts
otherwise : ins (link t t') ts
Where rank (r,k,ts) = r gives the rank of a tree. For empty heap [|, it becomes a

single list of the new tree ¢; otherwise, we compare the rank of ¢ with the first tree ¢, if ¢
has less rank, then it becomes the new first one; if ¢’ has less rank, we recursively insert
t to the rest trees; if they have the same rank, then link ¢ and #' to a bigger tree, and
recursively insert to the rest. For n elements, there are at most O(lgn) binomial trees in
the heap. ins links O(lgn) time at most, as linking is bound to constant time, the overall
performance is bound to O(Ign)?. We can define insert for binomial heap with ins. First
wrap the new element z in a singleton tree, then insert the tree to the heap:

insert x =ins (0,z,[]) (10.4)

This is a Curried definition, we can further insert a list of elements to the heap by
using fold:

fromList = foldr insert [| (10.5)

Below is the implementation with ’left child, right sibling’ method:
1: function INSERT-TREE(T, H)

2 1+ p « NopEg(0, NIL, NIL)

3 while H # NIL H RANk(H) < RANK(T) do
4: T+ H

5: H + SIBLING(H)

6 if RANK(T') = RANK(T}) then

7 T + LINk(T,TY)

8 else

9: SIBLING(p) < Ty

10: p+ T

11: SIBLING(p) < T

12: SIBLING(T') < H

13: return REMOVE-FIRST(.L)

2It’s similar to adding two binary numbers. A more generic topic is numeric representation[1.

156 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

14: function REMOVE-FIRST(H)

15: n < SIBLING(H)
16: SIBLING(H) + NIL
17: return n

10.2.2 Merge

When merge two binomial heaps, we actually merge two lists of binomial trees. Every
tree has unique rank in merged result, and the ranks are in ascending order. The tree
merge process is similar to merge sort. Every time, we pick the first tree from each heap,
compare their ranks, put the smaller one to the result. If the two trees have the same
rank, we link them to a bigger one, and recursively insert to the merge result.

merge tsy [] = ts1
merge [] tsa = tso
rank ty < rank ty: 1 : (merge tsy (ta : ts2))
merge (t1 :ts1) (t2 1 ts3) = rank ty < rank t1: to: (merge (t1 :ts1) tsa)
otherwise : ins (link tq ta2) (merge tsy tsa)
(10.6)

Alternatively, when t; and t5 have the same rank, we can insert the linked tree back
to either heap, and recursively merge:

merge (ins (link t1 t2) tsy) tso

We can also eliminate recursion, and implement iterative merge:
1: function MERGE(H, Hs)
2 H + p + Nobg(0, NIL, NIL)
3 while H; # NIL and H, # NIL do
4: if RANK(H;) < RANK(Hz) then
5: SIBLING(p) < H;
6 p < SIBLING(p)
7 H; < SIBLING(H;)
8 else if RANK(H;) < RANK(H7) then
9 SIBLING(p) < Hs

10: p < SIBLING(p)

11: Hs + SIBLING(H>)

12: else > same rank
13: Th < H1, T2 < Ho

14: H, <+ SIBLING(H,), Hy < SIBLING(H3)
15: Hy + INSERT-TREE(LINK(T1,T%), Hy)
16: if H; # NIL then

17: SIBLING(p) < H;

18: if Hy # NIL then

19: SIBLING(p) < Hs

20: return REMOVE-FIRST(H)

If there are my trees in Hi, mo trees in Hy. There are at most my + mso trees
after merge. The merge is bound to O(my + ms2) time if all trees have different ranks.
If there exist trees of the same rank, we call ins up to O(m; + ms) times. Consider
my =14 |lgng] and mo = 1+ |lgns |, where nq, ny are the numbers of elements in each
heap, and |lgni | + |lgna| < 2|lgn], where n = n; + no. The final performance of merge
is O(lgn).

10.2. BINOMIAL HEAPS 157

Pop

Although every tree has the minimal element in its root, we don’t know which tree holds
the overall minimum in the heap. We need locate it from all trees. As there are O(lgn)
trees, it takes O(lgn) time to find the top element. For pop, we need further remove the
top element and maintain heap property. Let the trees be B;, By, ..., By, ..., B;, in the
heap, and the minimum is in the root of B,. After remove the top, there leave p sub
binomial trees with ranks of p—1,p—2,...,0. We can reverse them to form a new binomial
heap Hp. The other trees without B, also form a binomial heap H' = H — [B,]. We
merge Hy, and H’ to get the final result as shown in figure 10.6. Below is the definition
to access the minimal element in the heap.

Figure 10.6: Binomial heap pop.

top (t:ts) = foldr f (key t) ts (10.7)
frixts) y=minz y

It’s means to traverse all trees and find the which root has the minimum.

1: function Tor(H)

2 m <— o0

3 while H # NIL do

4: m < MIN(m, KEY(H))
5 H + SIBLING(H)

6 return m

To support pop, we need extract the tree containing the minimum out:

min’ [t] = (£,[])
min' (t: ts) = key t < keyt' : (t,ts), B : (', ts") = min' ts (10.8)
= (t',t:ts')

Where key (r,k,ts) = k accesses the root element, the result of min’ is a pair: the
tree containing the minimum and the remaining trees. We next define pop with it:

pop H = (k,merge (reverse ts) H'), Horp : ((r, k,ts), H') = min’ H (10.9)

The iterative implementation is as below:

158 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

1: function Por(H)

2 (Thn, H) + EXTRACT-MIN(H)

3: H <+ MERGE(H, REVERSE(SUB-TREES(T},)))
4 SUB-TREES(T),)

5 return (Kev(7,,), H)

Where the list reverse is defined in chapter 1, EXTRACT-MIN is implemented as below:

1: function EXTRACT-MIN(H)

2 H' <+ H,p <« NIL

3 Ty, < T, < NIL

4: while H # NIL do

5: if T,,, = NIL or KEY(H) < KEY(T},) then
6: T, H

7 Ty, < p

8 p— H

9: H + SIBLING(H)

10: if T}, # NIL then

11: SIBLING(T},) < SIBLING(T};,)
12: else

13: H' + S1BLING(T},)

14: SIBLING(T};,) < NIL

15: return (T, H')

We can implement heap sort with pop. First build a binomial heap from a list of
elements, then repeatedly pop the smallest element.

sort = heapSort o fromList (10.10)

Where heapSort is defined as:

heapSort |] [] (10.11)
heapSort H = k: (heapSort H'),where : (k, H') = pop H ’

Binomial heap insert and merge are bound to O(lgn) time in worst case, their amor-
tized performance are constant time, we skip the proof.

10.3 Fibonacci heap

Binomial heap is named from binomial theorem, Fibonacci heap is named after Fibonacci
numbers®. Fibonacci heap is essentially a ‘lazy’ binomial heap. It delays some operation.
However, it does not mean the binomial heap turns to be Fibonacci heap automatically in
lazy evaluation environment. Such environment only makes the implementation easy "]
All operations except for pop are bound to amortized constant time!”".

When insert new element x to a binomial heap, we wrap x to a single tree, then
insert to the forest. We keep the rank ordering, if two ranks are same, we link them, and
recursively insert. The performance is bound to O(lgn) time. Taking lazy strategy, we
delay the ordered (by rank) insert and link later. Put the single tree of x directly to the
forest. To access the top element in constant time, we need record which tree has the
minimum in its root. A Fibonacci heap is either empty @, or a forest of trees denoted as
(n,tm,ts). Where t,, is the tree holds the minimal element, n is the number of elements

3Michael L. Fredman and Robert E. Tarjan, used Fibonacci numbers to prove the performance time
bound, they decided to use Fibonacci to name this data structure. [']

10.3. FIBONACCI HEAP 159

operation | Binomial heap Fibonacci heap
insertion O(lgn) 0(1)
merge O(lgn) 0(1)
top O(lgn) 0(1)
pop O(lgn) amortized O(lgn)

Table 10.1: Performance of Fibonacci heap and binomial heap

in the heap, and ts is the rest trees. Below example program defines Fibonacci heap
(reused the definition of binomial tree).

data FibHeap a = E | FH { size :: Int
, minTree :: BiTree a
, trees :: [BiTree a]l}

We can access the top element in constant time: top H = key minTree H.

10.3.1 Insert

We define insert as a special case of merge: one heap contains a singleton tree:
insert x H = merge (singleton) H
Or simplified in Curried form:
insert = merge o singleton (10.12)
singleton z = (1,(1,,[]),[])

We can also implement insert as add a tree to the forest, then update the reference to
the tree holds the minimum.
1: function INSERT(k, H)
2: x < SINGLETON(k) > wrap k to a tree
ADD(z, TREES(H))
T, <+ MIN-TREE(H)
if T,,, = NIL or k < KEY(T,,) then
MIN-TREE(H) + x
S1ZE(H) + S1ZzE(H) + 1

Where TREES(H) access the list of trees in H, MIN-TREE(H) returns the tree that
holds the minimal element.

Merge

Different from binomial heap, we delay the link operation, but only put the trees from
two heaps together, and pick the new top element.

merge h @ = h
merge S h = h
key tm < keyt. : (n4+n' ty,t, :ts—4ts)
merge (n,tm,ts) (n',t,,,ts") = {otherwise' " (n+n,¢ tm Cts 4 ts)
. ybmortm -

(10.13)

When neither tree is empty, the H takes time that is proportion to the number of

trees in one heap. We can improve it to constant time with doubly linked-list to store
trees as shown in below example program.

160 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

data Node<K> {
K key
Int rank
Node<k> next, prev, parent, subTrees

}

data FibHeap<K> {
Int size
Node<K> minTree, trees

1: function MERGE(H, Hs)

2 H < FiB-HEAP

3: TREES(H) < CONCAT(TREES(H;), TREES(H?2))

4: if KEY(MIN-TREE(H;)) < KEY(MIN-TREE(H3)) then
5: MIN-TREE(H) < MIN-TREE(H;)

6 else

7 MIN-TREE(H) < MIN-TREE(H?)

S1zZE(H) = S1zE(H,) + S1ZE(H3)

8: return H

9: function CONCAT(s1, s2)

10: e1 < PREV(sq)
11: es + PREV(s2)
12: NEXT(el) < S9
13: PREV(sy) + €1
14: NEXT(e2) « s1
15: PREV(s1) + e9
16: return s;
Pop

As the link operation is delayed to future during merge, we need ‘compensate’ it during
pop. We define it as tree consolidation. Consider another problem: given a list of numbers
of 2™ (m is natural numbers), for e.g., L = [2,1,1,4,8,1,1,2, 4], we repeatedly sum the
two equal numbers until all numbers are unique. The result is [8,16]. This process is
shown in table 10.2. The first column gives the number we are ‘scanning’; the second
is the middle step, i.e. compare current number and the first number in result list, add
them when equal; the last column is the merge result, which inputs to the next step. The
consolidation process can be defined with fold:

number | compare, add | result
2|2 2
111,2 1,2
1] (141), 2 4
4| (444) 8
8 | (8+8) 16
111,16 1, 16
1] (141), 16 2,16
2| (2+42), 16 4,16
4 | (4+4), 16 8, 16

Table 10.2: Consolidation steps.

10.3. FIBONACCI HEAP 161

consolidate = foldr melt [] (10.14)

Where melt is defined as below:

meltz [] = =z
x=x": melt 2z xs
melt x (x' :xs) = <z : x:2' :ws (10.15)
x>a': x':melt x xs
Let n = sum L, the sum of all numbers. consolidate actually represent n in binary
format. If the i-th bit is 1, then the result contains 2¢ (i starts from 0). For e.g.,
sum(2,1,1,4,8,1,1,2,4] = 24. Tt’s 11000 in binary, the 3rd and 4th bit are 1, hence the
result contains 23 = 8,2% = 16. We can consolidate trees in similar way: compare the
rank, and link the trees:
meltt [] = [t
rank t =rank t' : melt (link t t') ts
meltt (' :ts) = J(rankt<rankt : t:t :ts
rank t > rank t': t' :melt t ts

(10.16)

Figure 10.7 gives the consolidation steps. It is similar to number consolidation when
compare with table 10.2. We can use an auxiliary array A to do the consolidation. A[i]
stores the tree of rank i. We traverse the trees in the heap. If meet another tree of rank
i, we link them together to obtain a bigger tree of rank i + 1, clean A[i], and next check
whether A[i + 1] is empty or not. If there is a tree of rank ¢ + 1, then link them together
again. Array A stores the final consolidation result after traverse.

1: function CONSOLIDATE(H)
2: R <+ MAX-RANK(SIZE(H))

3: A« [NIL, NIL, ..., NIL] > total R cells
4: for each T in TREES(H) do

5: r < RANK(T)

6: while A[r] # NIL do

7 T + Alr]

8: T + LINk(T,T")

9: A[r] + NIL

10: r<r+1

11: Alr)« T

12: T,, < NIL
13: TREES(H) «+ NIL
14: for each T in A do

15: if T # NIL then

16: append T' to TREES(H)

17: if T, = NIL or KEY(T) < KEY(T},,) then
18: T, < T

19: MIN-TREE(H) < T},

It becomes a binomial heap after consolidation. There are O(lgn) trees. MAX-
RANK(n) returns the upper limit of rank R in a heap of n elements. From the binomial
tree result, the biggest tree Br has 2% elements. We have 2% < n < 27F! we estimate
the rough upper limit is R < log, n. We’ll give more accurate estimation of R in later
section. We need additionally scan all trees, find the minimal root element. We can reuse
min’ defined in (10.8) to extract the min-tree.

o (10,2 (1) = (2]
pfplzn,(r,m,tsm),ts) = (z,(n—1,ty,ts')) (10.17)

162 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

© © ©
® © © O ©
® © ®
Step 1, 2 Step 3, link d and ¢, then Step 4
link a.

Step 5 Step 6

Step 7, 8, link r and ¢, then link s and q.

Figure 10.7: Consolidation

10.3. FIBONACCI HEAP 163

Where (tm,ts") = min’ consolidate (ts,, 4 ts). It takes O(|tsy,|) time for 4 to
concatenate trees. The corresponding iterative implementation is as below:

1: function Por(H)

2: T, < MIN-TREE(H)

3 for cach T in SUB-TREES(T},) do
4 append T to TREES(H)

5 PARENT(T) < NIL

6: remove T, from TREES(H)

7 S1ZE(H) < S1ZE(H) - 1

8 CONSOLIDATE(H)

9 return (KeY(T},), H)

We use the ‘potential’ method to evaluate the amortized performance. The gravity
potential energy in physics is defined as:

E =mgh

As shown in figure 10.8, consider some process, that moves an object of mass m up
and down, and finally stops at height h’. Let the friction resistance be Wy, the process
works the following power:

W =mg(h' — h) + W;

hl

Figure 10.8: Gravity potential energy.

Consider heap pop. To evaluate the cost, let the potential be ®(H) before pop. It
is the result accumulated by a series of insert and merge operations. The heap becomes
H' after tree consolidation. The new potential is ®(H’). The difference between ®(H’)
and ®(H), plus the cost of tree consolidation give the amortized performance. Define the
potential as:

O(H) = t(H) (10.18)

Where t(H) is the number of trees in the heap. Let the upper bound of rank for all
trees as R(n), where n is the number of elements in the heap. After tree consolidation,
there are at most t(H') = R(n)+1 trees. Before consolidation, there is another operation
contributes to running time. we removed the root of min-tree, then add all sub-trees to
the heap. We consolidate at most R(n)+t(H) — 1 trees. Let the pop performance bound
to T', the consolidation bound to T, the amortized time is given as below:

T T. + ®(H') — ®(H)

= O(R(n)+t(H)—1)+ (R(n)+1) —t(H) (10.19)
= O(R(n))

164 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

Insert, merge, and pop ensure all trees are binomial trees, therefore, the upper bound
of R(n) is O(lgn).

10.3.2 Increase priority

We can use heap to manage tasks with priority. When need prioritize a task, we decrease
the corresponding element, making it close to the heap top. Some graph algorithms, like
the minimum spanning tree and Dijkstra’s algorithm rely on this heap operation[") meet
amortized constant time. Let x be a node in the heap H, we need decrease its value to
k. As shown in figure 10.9, if the element in x is less than the one in its parent y, we
cut x off y, the add it the heap (forest). Although it ensures the parent still holds the
minimum in the tree, it is not binomial tree any more. The performance drops when loss
too many sub-trees. We add another rule to address this problem: If a node losses its
second sub-tree, it is immediately cut from parent, and added to the heap (forest).

Figure 10.9: If key x < key y, cut z off and add to the heap.

1: function DECREASE(H, z, k)

2 KeY(z) «+ k

3 p < PARENT(2)

4 if p # NIL and k& < KEY(p) then
5: Cut(H, z)

6: CAscADE-CUT(H, p)

7 if £ < Tor(H) then

8 MIN-TREE(H) < x

Where function CASCADE-CUT uses a mark to record whether a node lost sub-tree
before. The mark is cleared later in CuT function.

1: function CUT(H,x)

2: p < PARENT(z)

remove z from p
RANK(p) < RANK(p) - 1
add x to TREES(H)
PARENT(z) < NIL

10.3. FIBONACCI HEAP 165

7: MARK(z) < False

During cascade cut, if node x is marked, it has lost some sub-tree before. We need
recursively cut along the parent till root.

1: function CASCADE-CUT(H, x)
2: p < PARENT(z)

3 if p # NIL then

4 if MARK(x) = False then
5 MARK(z) - True

6: else

7 CuT(H,x)

8 CAscADE-CUT(H, p)

Exercise 10.2

Prove DECREASE is bound to amortized O(1) time.

10.3.3 The name of Fibonacci heap

We are yet to implement MAX-RANK(n). It defines the upper bound of tree rank for a
Fibonacci heap of n elements.

Lemma 10.3.1. For any tree x in a Fibonacci Heap, let k = rank(zx), and |x| = size(x),
then

|| = Fioqo (10.20)

Where F}, is the k-th Fibonacci number:

Fb = 0
F =1
Fp, = Fo1+Fpo

Proof. For tree z, let its k sub-trees be y1,yo, ..., yx, ordered by the time when they are
linked to . Where y; is the first, and yy is the latest. Obviously, |y;| > 0. When link y;
to x, there have already been sub-trees of 1,2, ..., y;_1. Because we only link nodes of
the same rank, by that time we have:

rank(y;) = rank(x) =i —1

After that, y; can lost additional sub-tree at most, (through the DECREASE). Once
loss the second sub-tree, it will be cut off then add to the forest. For any i = 2,3, ..., k,
we have:

rank(y;) >i—2

Let s be the minimum possible size of tree x, where k = rank(z). It starts from
sp =1, s1 = 2. i.e. there is at least a node in tree of rank 0, at least two nodes in tree of
rank 1, at least k nodes in tree of rank k.

Ed Sk
2+ Srank(yz) + Srank(ys) + ...+ Srank(y)
24850+ s1+ ... +5p2

(AVAN AV

166 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

The last row holds because rank(y;) > i — 2, and s, is monotonic, hence s,qni(y,) >
Si—2. We next show that s; > Fyio. Apply induction. For edge case, s =1 > Fy = 1,
and s; = 2 > F3 = 2; For induction case k > 2.

lz| > sk
Z 2+SQ+81+...+Sk,2
> 24 F+F3+ ...+ Fy induction hypothesis

1+F0+F1+F2++Fk fromF0:O7F1:1

Next, we prove:

k

Frpo =1+ ZF (10.21)
1=0

Use induction again:
o Edge case, Fo =1+ Fy =2
e Induction case, suppose it’s true for k + 1.

Fopo = Frp +F
k—1
= (1+ Z F;) 4+ Fy, induction hypothesis
=0

k
= 1+) F
1=0

Wrap up to the final result:

n > |x| > Fiio (10.22)
O
1 5
For Fibonacci sequence, Fj, > ¢F, where ¢ = +2\[is the golden ratio. We prove

that pop is amortized O(lgn) algorithm. We can define max Rank as:
MaxRank(n) =1+ [log,n| (10.23)

We can also implement MAX-DEGREE from Fibonacci numbers:

1: function Max-RANK(n)
2 Fo+ 0, <1

3 k2

4: repeat

5: Fj Fk1 + Fk2

6 k+—k+1

7 until F, <n

8 return k£ — 2

10.4 Pairing Heaps

It’s complex to implement Fibonacci heap. Pairing heap provides another option. It’s
easy to implement, and the performance is good. Most operations, like insert, top, merge
are bound to constant time. the pop is conjectured to be amortized O(lgn) time "1 17,

10.4. PAIRING HEAPS 167

10.4.1 Definition

A pairing heap is a multi-way tree. The root holds the minimum. A pairing heap is either
empty &, or a k-ary tree, consists of a root and multiple sub-trees, denoted as (z,ts). We
can also use ‘left child, right sibling’ way to define the tree.

data PHeap a = E | Node a [PHeap a]

10.4.2 Merge, insert, and top

There are two cases when merge two heaps:

1. Either heap is @, the result is the other heap;

2. Otherwise, compare the two roots, turn the greater one as the new sub-tree of the

other.
merge @ ha = hy
merge hy @ = hy
Ty (2, (y, ts2) : tsy) (10.24)
merge (x7t81) (y,tsz) = .
otherwise : (y, (z,tsl) : tsg)

merge is bound to constant time. With the ‘left-child, right sibling’ method, we link
the heap with greater root as the first sub-tree of the other.
1: function MERGE(H1, Hs)
2: if H; = NIL then
return Ho
if H, = NIL then
return H;
if KEY(Hy) < KEY(H;) then
EXCHANGE(H; < H»)
SUB-TREES(H;) < LINK(H2, SUB-TREES(H1))
PARENT(H3) < H;
10: return H,

Similar to Fibonacci heap, we implement insert with merge as (10.12). We access the
top element from the root: top (x,ts) = x. Both operations are bound to constant time.

10.4.3 Increase priority

When decrease the value in a node, we cut the sub-tree rooted with this node, then merge
it back to the heap. If the node is the root, we can directly decrease its value.
1: function DECREASE(H, z, k)
2 KeY(z) «+ k
3 p < PARENT(z)
4 if p # NIL then
5: Remove z from SUB-TREES(p)
6 PARENT(z) < NIL
7 return MERGE(H, x)
8

return H

168 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

10.4.4 Pop

After pop the root, we consolidate the remaining sub-trees to a tree:
pop (x,ts) = consolidate ts (10.25)

We firstly merge every two sub-trees from left to right, then merge these paired results
from right to left to a tree. This explains the why we name it ‘paring heap’. Figure 10.10
and 10.11 show the paired merge.

) Before pop.

§®@®®®

Pop 2 there are 9 sub-trees.

%I

) Merge with pairs, leave the last
tree

Figure 10.10: Pop the root, merge sub-trees in pairs.

consolidate [| = O
consolidate [t] = t (10.26)
consolidate (t1 : ta : ts) = merge (merge t1 ta) (consolidate ts)

The corresponding ‘left child, right sibling’ implementation is as below:

1: function Por(H)

2 L + NIL

3 for every T,, T, in SUB-TREES(H) do
4: T < MERGE(T, Ty)

5 L + LiNk(T, L)

6 H «+ NIL
7 for T'in L do

10.4. PAIRING HEAPS 169

(a) Merge 9 and 6.

(c) Merge 3. (d) Merge 4.

Figure 10.11: Merge from right to left.

8: H <+ MERGE(H,T)
9: return H
We iterate to merge 1%, Ty to T, and link ahead of L. When loop on L the second

time, we actually traversed from right to left. When there are odd number of sub-trees,
T, = NIL at last, hence T' = T, in this case.

Delete

To delete a node x, we can first decrease the value in z to —oo, then followed with a pop.
There is an alternative method. If x is the root, we pop it; otherwise, we cut x off H,
then apply pop to z, and merge x back to H:

1: function DELETE(H, x)

2: if H = x then

3: Por(H)

4: else

5: H + Cur(H,z)
6: x + Pop(z)

7: MERGE(H, z)

As delete is implemented with pop, the performance is conjectured to be amortized
O(lgn) time.

Exercise 10.3

Implement delete for paring heap.

170 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

10.5 Summary
In this chapter, we extend the heap from binary tree based implementation to more data
structures. Binomial heap and Fibonacci heap use forest of multi-way trees, pairing heap

use a single multi-way tree.It’s a common practice to post pone some expensive operation,
and obtain better amortized performance.

10.6 Appendix - example programs

Definition of multi-way tree (left child, right sibling):

data Node<K> {
Int rank
K key
Node<K> parent, subTrees, sibling,
Bool mark

Node (K x) {
key = x
rank = 0
parent = subTrees = sibling = null
mark = false

Link binomial trees:

Node<K> link(Node<K> tl1, Node<K> t2) {
if t2.key < tl.key then (t1, t2) = (t2, t1)
t2.sibling = tl.subTrees
tl.subTrees = t2
t2.parent = t1
tl.rank = tl.rank + 1
return tl1

Binomial heap insert:

Node<K> insert(K x, Node<K> h) = 1insertTree(Node(x), h)

Node<K> insertTree(Node<K> t, Node<K> h) {
var hl = Node()
var prev = hl
while h # null and h.rank < t.rank {
var t1l = h
h = h.sibling
if t.rank = tl.rank {
t = link(t, t1)

} else {
prev.sibling = t1
prev = tl

}

}

prev.sibling = t
t.sibling = h

return removeFirst(hl)

}

Node<K> removeFirst(Node<k> h) {
var next = h.sibling
h.sibling = null
return next

10.6. APPENDIX - EXAMPLE PROGRAMS 171

Binomial heap recursive insert:

data BiTree a = Node { rank :: Int
, key :: a
, subTrees :: [BiTree a]}

type BiHeap a = [BiTree a]

link tl@(Node r x cl) t2@(Node _ y c2) =
if x <y then Node (r + 1) x (t2:cl)
else Node (r + 1) y (tl:c2)

insertTree t [] = [t]

insertTree t ts@(t':ts') | rank t < rank t' = t:ts
| rank t > rank t' = t' : dnsertTree t ts'
| otherwise = insertTree (link t t') ts'

insert x = insertTree (Node 0 x [])

Binomial heap merge:

Node<K> merge(hl, h2) {
var h = Node()
var prev = h
while hl # null and h2 # null {
if hl.rank < h2.rank {
prev.sibling = hl
prev = prev.sibling
hl = hl.sibling
} else if h2.rank < hl.rank {
prev.sibling = h2
prev = prev.sibling
h2 = h2.sibling
} else {
var (tl1, t2) = (hl, h2)
(h1, h2) = (hl.sibling, h2.sibling)
hl = insertTree(link(tl, t2), hl)
}
if hl # null then prev.sibling = hl
if h2 # null then prev.sibling = h2
return removeFirst(h)

Binomial heap recursive merge:

merge tsl [] = tsl
merge [] ts2 = ts2
merge tsl@(tl:tsl') ts2@(t2:ts2')
| rank tl < rank t2 = tl:(merge tsl' ts2)
| rank tl1 > rank t2 = t2:(merge tsl ts2')
| otherwise = insertTree (link tl t2) (merge tsl' ts2')

Binomial tree pop:

Node<K> reverse(Node<K> h) {
Node<K> prev = null
while h # null {
var x = h
h = h.sibling
x.sibling = prev
prev = X

}

return prev

}

(Node<K>, Node<K>) extractMin(Node<K> h) {

172 CHAPTER 10. BINOMIAL HEAP, FIBONACCI HEAP, AND PAIRING HEAP

var head = h
Node<K> tp = null
Node<K> tm = null
Node<K> prev = null
while h # null {
if tm — null or h.key < tm.key {
tm = h
tp = prev
}
prev = h
h = h.sibling
}
if tp # null {
tp.sibling = tm.sibling
1} else {
head = tm.sibling
}
tm.sibling = null
return (tm, head)

(K, Node<K>) pop(Node<K> h) {
var (tm, h) = extractMin(h)
h = merge(h, reverse(tm.subtrees))
tm.subtrees = null
return (tm.key, h)

Binomial heap recursive pop:

pop h = merge (reverse $ subTrees t) ts where
(t, ts) = extractMin h

extractMin [t] = (t, [])
extractMin (t:ts) = if key t < key t' then (t, ts)
else (t', t:ts') where
(t', ts') = extractMin ts

Merge Fibonacci heaps with bidirectional linked list:

FibHeap<K> merge(FibHeap<K> hl, FibHeap<k> h2) {
if isEmpty(hl) then return h2
if isEmpty(h2) then return hl
FibHeap<K> h = FibHeap<K>()
h.trees = concat(hl.trees, h2.trees)
h.minTree = if hl.minTree.key < h2.minTree.key
then hl.minTree else h2.minTree
h.size = hl.size + h2.size
return h

}
bool isEmpty(FibHeap<K> h) = (h =— null or h.trees — null)

Node<K> concat(Node<K> firstl, Node<K> first2) {

var lastl = firstl.prev

var last2 = first2.prev

lastl.next = first2

first2.prev = lastl

last2.next = firstl

firstl.prev = last2

return firstl

Consolidate trees in Fibonacci heap:

’consolidate = foldr melt [] where

10.6. APPENDIX - EXAMPLE PROGRAMS 173

melt t [] = [t]

meld t (t':ts) | rank t = rank t' = meld (link t t') ts
| rank t < rank t' =t : t' : ts
| otherwise = t' : meld t ts

Consolidate trees with auxiliary array:

void consolidate(FibHeap<K> h) {
Int R = maxRank(h.size) + 1
Node<K>[R] a = [null, ...]
while h.trees # null {
var x = h.trees
h.trees = remove(h.trees, x)
Int r = x.rank
while a[r] # null {
var y = al[r]
x = link(x, y)
alr] = null
r=r +1
}
alr] = x
}
h.minTr = null
h.trees = null
for var t in a if t # null {
h.trees = append(h.trees, t)
if h.minTr = null or t.key < h.minTr.key then h.minTr = t

Fibonacci heap pop:

pop (FH _ (Node _ x [1) [1) = (x, E)
pop (FH sz (Node _ x tsm) ts) = (x, FH (sz - 1) tm ts') where
(tm, ts') = extractMin $ consolidate (tsm 4 ts)

Decrease value in Fibonacci heap:

void decrease(FibHeap<K> h, Node<K> x, K k) {
var p = x.parent

x.key = k
if p # null and k < p.key {
cut(h, x)

cascadeCut(h, p)

if k < h.minTr.key then h.minTr = x
}

void cut(FibHeap<K> h, Node<K> x) {
var p = x.parent

.subTrees = remove(p.subTrees, x)

.rank = p.rank - 1

.trees = append(h.trees, x)

.parent = null

.mark = false

X X TT O

}

void cascadeCut(FibHeap<K> h, Node<K> x) {
var p = x.parent

if p — null then return
if x.mark {
cut(h, x)
cascadeCut(h, p)
1} else {

x.mark = true

}

174 Queue

}

Chapter 11

Queue

11.1 Introduction

Queue supports first-in, first-out (FIFO). There are many ways to implement queue,
e.g., through linked list, doubly liked list, circular buffer, etc. Okasaki gave 16 different
implementations inl”). A queue satisfies the following two requirements:

1. Add a new element to the tail in constant time;

2. Access or remove an element from head in constant time.

It’s easy to realize queue with doubly linked list. We skip this implementation, and
focus on using other basic data structures, like (singly) linked list or array.

11.2 Linked-list queue

We can insert or remove element from the head of a linked list. However, to support
FIFO, we have to do one operation in head, and the other in tail. We need O(n) time
traverse to reach the tail, where n is the length. To achieve the constant time performance
goal, we use an extra variable to record the tail position, and apply a sentinel node S to
simplify the empty queue case handling, as shown in figure 11.1.

data Node<K> {
Key key
Node next

}

data Queue {
Node head, tail
}

head tail

Figure 11.1: Both head and tail point to S for empty queue.

175

176 CHAPTER 11. QUEUE

The two important queue operations are ‘enqueue’ (also called push, snoc, append, or
push back) and ‘dequeue’ (also called pop, or pop front). When implement queue with
list, we push on head, and pop from tail.

1: function ENQUEUE(Q,)
2: p < NODE(z)

3 NEXT(p) < NIL

4: NEXT(TAIL(Q)) < p
5 TAIL(Q) < p

As there is at least a S node even for empty queue, we need not check if the tail is
NIL.

1: function DEQUEUE(Q)

2: x < HEAD(Q)

3 NEXT(HEAD(Q)) < NEXT(x)

4: if £ = TAIL(Q) then > @ is empty
5 TAIL(Q) + HEAD(Q)

6 return Ky (z)

As the S node is ahead of all other nodes, HEAD actually returns the next node to S, as
shown in figure 11.2. It’s easy to expand this implementation to concurrent environment
with two locks on the head and tail respectively. S node helps to prevent dead-lock when
the queue is empty "9V,

S > X1 » X —>» .. —> x, ——> NIL

head tail

Figure 11.2: List with S node.

11.3 Circular buffer

Symmetrically, we can append element to the tail of array, but it takes linear time O(n)
to remove element from head. This is because we need shift all elements one cell ahead.
The idea of circular buffer is to reuse the free cells before the first valid element after we
remove elements from head, as shown figure 11.4, and 11.3. We can use the head index,
the length count, and the size of the array to define a queue. It’s empty when the count is
0, it’s full when count = size, we can also simplify the enqueue/dequeue implementation
with modular operation.

1: function ENQUEUE(Q, x)

2: if not FuLL(Q) then

CoUNT(Q) + CounT(Q) + 1

tail < (HEAD(Q) + CoUNT(Q)) mod SIZE(Q)
Bur(Q)tail] « =

: function DEQUEUE(Q)
z + NIL
if not EMPTY(Q) then
h < HEAD(Q)
x + BUF(Q)[h]
HEAD(Q) < (h + 1) mod S1ZE(Q)

11.3. CIRCULAR BUFFER

Tail

177

Head

Figure 11.3: Circular buffer.

head tail boundary
A
a[0] [a[1] ali]

(a) Enqueue some elements.

head tail boundary
all |~ | al] /

(¢) Enqueue more elements to the

head tail boundary
N
alj] afi]

(b) Free cells after dequeue.

tail head boundary
a[0] afj]

(d) Enqueue the next element to

boundary

boundary the first cell.
tail head
S
al0] |a[1]] - alj-1] a[j]

(e) All cells are occupied, full.

Figure 11.4: Circ

ular buffer queue

178 CHAPTER 11. QUEUE

7: CoUuNT(Q) + COUNT(Q) - 1

8: return z

Exercise 11.1

The circular buffer is allocated with a predefined size. We can use two references head
and tail instead of count. How to determine if a circular buffer queue is full or empty?
(the head can be either ahead of tail or behind it.)

11.4 Paired-list queue

We can access list head in constant time, but need linear time to access the tail. We can
connect two lists ‘tail to tail’ to implement queue, as shown in figure 11.5. We define such
queue as (f,r), where f is the front list, and r is the rear list. The empty list is ([],[])-
We push new element to the head of r, and pop from the tail of f. Both are constant
time.

pop <=1 X —> X2 —> .. —> X, —> NIL <.

front

push ----- >y > » > .. —{ yuw —> NIL <

rear

Figure 11.5: paired-list queue.

push « (f,r) = (f.2:7) "
pop (z:f,r) = (f,7)
f may become empty after a series of pops, while r still contains elements. To continue

pop, we reverse r to replace f, i.e., ([],r) — (reverse r,[]). We need check and adjust
balance after every push/pop:

balance []r = (reverser,|[])

balance f r = (f,r) (11.2)

Although the time is bound to linear time when reverse r, the amortised performance
is constant time. We adjust the push/pop as below:

{push x (f,r) = balance f (x:r)

pop (x:f,r) = balance f r (11.3)

There is a symmetric implementation with a pair of arrays. Table 11.1 shows the
symmetric between list and array. We connect two arrays head to head to form a queue,
as shown in figure 11.6. When array R becomes empty, we reverse array F' to replace R.

Exercise 11.2

1. Why need balance check and adjustment after push?
2. Prove the amortized performance of paired-list queue is constant time.

3. Implement the paired-array queue.

11.5. BALANCE QUEUE 179

operation array list
insert to head O(n) | O(1)
append to tail O(1) | O(n)
remove from head | O(n) | O(1)
remove from tail O(1) | O(n)

Table 11.1: array and list

TS » X X X, [<--- push

front

N Y2 Ym [----» pop

rear

Figure 11.6: paired-array queue.

11.5 Balance Queue

Although paired-list queue performs in amortized constant time, it is linear time in worse
case. For e.g., there is an element in f, then repeat pushing n elements. Now it takes
O(n) time to pop. The lengths of f and r are unbalance in this case. To solve it, we add
another rule: keep the length of r is not greater than f, otherwise we reverse.

r| < [f] (11.4)

We check the lengths in every push/pop, however, it takes linear time to compute
length. We can record the length in a variable, and update it during push/pop. Denote
the paired-list queue as (f,n,r,m), where n = |f|, m = |r|. From the balance rule (11.4),
we can check the length of f to test if a queue is empty:

Q=0¢ < n=0 (11.5)

The definition of push/pop change to:

push z (f,n,r,m) = balance (f,n,z:r,m+ 1) (11.6)
pop (x:f,m,r,m) = balance (f,n —1,r,m) .
Where balance is defined as:
<n:
balance (f,n,r,m) = m= n' (f,n,r,m) (11.7)
otherwise : (f 4 reverse r,m +n,[],0)

11.6 Real-time queue

It still takes linear time to reverse, concatenate lists in balanced queue. A real-time queue
need guarantee constant time in every push/pop operation. The performance bottleneck
happens in f + reverse r. At this time, m >, breaks the balance rule. Since m,n are
integers, we know m = n+1. 4 takes O(n) time, and reverse takes O(m) time. The total
time is bound to O(n + m), which is proportion to the number of elements. Our solution

180 CHAPTER 11. QUEUE

is to distribute this computation to multiple push and pop operations. Let’s revisit the
tail recursive "1 %] reverse:

reverse = reverse’ |] (11.8)
This is in Curried form, where:

rev/erse’ al] = a / (11.9)
reverse’ a (x:xs) = reverse (x:a) xs

We can turn the tail recursive implementation to stepped computation. We model it
as a series of state transformation. Define a state machine with two states: reverse state
Sy, and complete state Sy. We slow-down the reverse computation as below:

step S a] = (vaa)

step Sy a (v:xs) = (Sy,(z:a),zs) (11.10)
Each step, we check and transform the state. S, means the reverse is on going. If

there is no remaining element to reverse, we change the state to Sy (done); otherwise, we

pick the head element z, link it ahead of a. This step terminates, but not continues to

recursion. The new state with the intermediate reverse result will be input to the next

step. For example:

step S, “hello” [] = (S, “ello”, “h”)
Step S7- “e11077 Uh” — (‘577.7 4411077’ “eh”)
step S, “o” “lleh” = (Sy,[], “olleh”)
step Sy [] “olleh” = (Sf,“olleh”)

We can next distribute the reverse steps to push/pop operations. However, it only
solves half problem. We next need slow-down # computation, which is more complex.
We use state machine too. To concatenate xs 4 ys, we first reverse s to fs, then pick
elements form ¥s one by one, and link each head of ys. The idea is similar to reverse':

xzsHys = (reverse reverse xs)H ys
= (reverse’ [] (reverse xzs)) 4 ys
= reverse ys geverse xs)
= reverse' ys

(11.11)

(_
We need add another state. After reverse r, we step by step concatenate from f. The
three states are: S, of reverse, S. of concatenate, Sy of completion. The two phases are:

%
1. Reverse f and r in parallel to: f and ' step by step;

2. Stepped taking elements from 7, and link each ahead of ¥

next (Sy, f'x:f,r, % r) = (Sp,x:f', fyy:r',r) reverse f,r
next (Sp, f',[1,7, ly]) = mnext (Se, f/,y:r") reverse done, start concatenation
next (Sc,a [) = (S¢,a) done
next (Se,a,x:f") = (S, z:a, f) concatenation

(11.12)

We need arrange these steps to each push/pop next. From the balance rule, when

m = n + 1, we kick off f 4+ reverse r. it takes n + 1 steps to reverse r, within these
steps, we reverse f in parallel. After that, we use another n 4+ 1 steps to concatenate.

11.6. REAL-TIME QUEUE 181

2n + 2 steps in total. The critical question is: Before we complete the 2n + 2 steps, will
the queue become unbalanced due to a series of push/pop operations?

Luckily, repeat pushing won’t break the balance rule again before we complete f 4
reverse r in 2n + 2 steps. We will obtain a new front list f' = f 4 reverse r after 2n + 2
steps, while the time to break the balance rule again is:

Il = |f+1
lfl+|r]+1 (11.13)
2n + 2

Thanks to the balance rule. It means even repeat pushing as many elements as
possible, from the previous to the next time when the queue is unbalanced, the 2n + 2
steps are guaranteed to be completed, hence the new f is ready. We can next safely start
to compute f’ 4 reverse r’.

However, pop may happen before the completion of 2n + 2 steps. We are facing the
situation that needs extract element from f, while the new front list f' = f + reverse r
hasn’t been ready yet. To solve this issue, we duplicate a copy of f when doing reverse f.
We are save even repeat pop for n times. Table 11.2 shows the queue during phase 1
(reverse f and 7 in parallel)!.

f copy | on-going part | new r
{fiafi+17"'7fn} (Srvfy"v”:?"') {}

first ¢ — 1 elements out | intermediate f, e newly pushed

Table 11.2: Before completion of the first n steps.

The copy of f is exhausted after repeated n pops. We are about to stepped concate-

nation. What if pop happens at this time? Since f is exhausted, it becomes []. We
needn’t concatenate anymore. This is because f T = []+ =% In fact, we

only need to concatenate the elements in f that haven’t been popped. Because we pop
elements from the head of f, we use a counter to record the remaining elements in f. It’s
initialized as 0. We apply +1 every time when reverse an element in f. It means we need
concatenate this element in the future; Whenever pop happens, we apply -1, means we
needn’t concatenate this one any more. We also decrease it during concatenation process,
and cancel the process when it is 0. Below is the updated state transformation:

next (Sp,n, fox:for' y:r) = (Se,n+ Lax:f, fiy:r',r) reverse f,r
next (Sp,m, f/,[1,7, [y]) = mnext (Se,n, f',y:r") reverse done, start concatenation
next (S¢,0,a,f) = (Sf,a) done
next (Se,nya,x:f") = (Se,n—1,z:a,f") concatenation
next Sg = Sy idle

(11.14)

We define addition idle state Sy to simplify the transition logic. The queue contains 3

parts: the front list f with its length n, the state S of on going f 4 reverse r, and the rear

list » with its length m. Denoted as (f,n,S,r,m). The empty queue is ([],0, Sp,[],0).

We can tell a queue is empty when n = 0 according to the balance rule. The push/pop
are updated as:

push x (f,n,S,r,m) =balance f n S (x:r) (m+1) (11.15)

pop (x:f,n,S;r,m) = balance f (n—1) (abort S) r m '

L Although it takes linear time to duplicate a list, however, the one time copying won’t happen at all.
We actually duplicate the reference to the front list, and delay the element level copying to each step

182 CHAPTER 11. QUEUE

Where abort decrease the counter in pop to cancel an element for concatenation. We'll
define it later. balance triggers stepped f 4 reverse r if the queue is unbalanced, else
runs a step:

m<n: step fnSrm
otherwise : step f (n+m) (next (S;,0,[1], f,[],7)) []0
(11.16)
Where step transforms the state machine to next state. It ends with the idle state Sy
when completes.

balancefnSrm:{

step f n S rm = queue (next S) (11.17)
Where:
queuve (Sy, f') = (f',n,So,r,m) replace f with f’ (11.18)
queue 8" = (f,n,S",r,m) ’

We define abort to cancel an element:

abort (S¢,0, (z:a), f') = (Sy,a)
abort (Se,n,a, f') = (Se,n—1,a,f) (11.19)
abort (Sp,m, f for'r) = (Sp,n—1,f", f,r',r) ‘
abort S = S

Exercise 11.3

1. Why need rollback an element (we cancelled the previous ‘cons’, removed z and
return a as the result) when n = 0 in abort?

11.7 Lazy real-time queue

The key to realize real-time queue is to break down the expensive f 4 reverse r. We can
simplify it with lazy evaluation. Assume function rotate compute f 4 reverse r in steps,
i.e., below two functions are equivalent with an accumulator a.

rotate xs ys a = xs 4 (reverse ys) 4 a (11.20)

We initialize s as the front list f, ys as the rear list r, the accumulator a empty |].
We implement rotate from the edge case:

rotate [| [y] a = y:a (11.21)

The recursive case is:

rotate (z:xs) (y:ys) a
= (z:xs)# (reverse (y:ys)) #a from (11.20)

= x:(xs+Hreverse (y:ys)) # a) concatenation is associative (11.22)
= x: (zs+ reverse ys (y:a)) reverse property, and associative
= 1 :rotate xs ys (y:a) reverse of (11.20)

Summarize them together:

rotate || [y]

a = y:a
rotate (z:xs) (y:ys) a (11.23)

= 1 :rotate xs ys (y:a)

11.8. APPENDIX - EXAMPLE PROGRAMS 183

In lazy evaluation settings, (:) is delayed to push/pop, hence the rotate is broken
down. We change the paired-list queue definition to (f,r,rot), where rot is the on going
f 4 reverse r computation. It is initialized empty [].

{push (f,r,rot) = balance f (x:r) rot (11.24)

pop (x:f,r,rot) = balance f r rot

Every time, balance advances the rotation one step, and starts another round when
completes.

balance f r [] (f L) M ff =rotate fr[] (11.25)
balance f r (x:rot) = (f,r,rot) HEPEREE '

Exercise 11.4

Implement bidirectional queue, support add/remove elements on both head and tail
in constant time.

11.8 Appendix - example programs

List implemented queue:

Queue<K> enQ(Queue<K> g, K x) {
var p = Node(x)
p.next = null
g.tail.next = p
g.tail =p
return q

}

K deQ(Queue<K> q) {
var p = gq.head.next //the next of S
g.head.next = p.next
if g.tail = p then g.tail = g.head //empty
return p.key

Circular buffer queue:

data Queue<K> {
[K] buf
int head, cnt, size

Queue(int max) {
buf = Array<kK>(max)
size = max
head = cnt = 0

Enqueue, dequeue implementation for circular buffer queue:

N offset(N i, N size) = if i < size then i else i - size

void enQ(Queue<k> g, K x) {
if g.cnt < g.size {
g.buf[offset(q.head + g.cnt, g.size)] = x;
g.cnt = g.cnt + 1

184 Sequence

K head(Queue<K> q) = if g.cnt — 0 then null else q.buf[q.head]

K deQ(Queue<k> q) {

K x = null
if g.cnt > 0 {
x = head(q)

g.head = offset(gq—head + 1, g—size);
g.cnt = gq.cnt -1
}

return x

Real-time queue:

data State a = Empty

| Reverse Int [a] [a] [a] [a] —mn,accf, f,accr, r
| Concat Int [a] [a] — n, acc, reversed f
| Done [a] — " =1{++ reverser

— f, n = length f, state, r, m = length r
data RealtimeQueue a = RTQ [a] Int (State a) [a] Int

push x (RTQ f n s r m) = balance f n' s (x:r) (m+ 1)
pop (RTQ (_:f) n s r m) = balance f (n - 1) (abort s) r m

top (RTQ (x:_) _ _ _ _)

X

balance f n s rm
| m < n= stepfnsrm
| otherwise = step f (m + n) (next (Reverse 0 [] f []1 r)) []1 ©

step f n' s r m = queue (next s) where
queue (Done f') = RTQ f' n Empty r m
queue s' = RTQ f n s' rm

next (Reverse n f' (x:f) r' (y:r)) = Reverse (n + 1) (x:f') f (y:r') r
next (Reverse n f' [] r' [y]) = next $ Concat n (y:r') f'

next (Concat 0 acc _) = Done acc

next (Concat n acc (x:f')) = Concat (n-1) (x:acc) f'

next s = s

abort (Concat 0 (_:acc) _) = Done acc — rollback 1 elem
abort (Concat n acc f') = Concat (n - 1) acc f'

abort (Reverse n f' f r' r) = Reverse (n - 1) f' fr' r
abort s =s

Lazy real-time queue:

data LazyRTQueue a = LQ [a] [a] [a] — front, rear, f +4 reverse r
empty = LQ [1 []1 []

push (LQ f r rot) x = balance f (x:r) rot

pop (LQ (_:f) r rot) = balance f r rot

top (LQ (x:_) _) =x

balance f r [] = let f' = rotate f r [] in LQ f' [] f'
balance f r (_:rot) = LQ f r rot

rotate [] [y] acc = y:acc
rotate (x:xs) (y:ys) acc = x : rotate xs ys (y:acc)

Chapter 12

Sequence

12.1 Introduction

Sequence is a combination of array and list. We set the following goals for the ideal
sequence:

1. Add, remove element on head and tail in constant time;
2. Fast (no slower than linear time) concatenate two sequences;
3. Fast access, update element at any position;

4. Fast split at any position;

Array and list only satisfy these goals partially as shown in below table. Where n
is the length for the sequence. If there are two sequences, then we use ni, ng for their
lengths respectively.

operation array list
add/remove on head O(n) 0O(1)
add/remove on tail o(1) O(n)
concatenate O(n2) | O(n1)
random access at ¢ o(1) O(i)
remove at i O(n —1) O(1)

We give three implementations: binary random access list, concatenate-able list, and
finger tree.

12.2 Binary random access list

The binary random access list is a set of full binary trees (forest). The elements are stored
in leaves. For any integer n > 0, we know how many trees need to hold n elements from its
binary format. Every bit of 1 represents a binary tree, the tree size is determined by the
magnitude of the bit. For any index 1 < 4 < n, we can locate the binary tree that stores the
i-th element. As shown in figure 12.1, tree ¢1,ts represent sequence [x1, za, 23, T4, Ts5, T¢).

185

186 CHAPTER 12. SEQUENCE

Figure 12.1: A sequence of 6 elements.

Denote the full binary tree of depth i + 1 as t;. to only has a leaf node. There are 2
leaves in t;. For sequence of n elements, represent n in binary as n = (e;,€m—1...€1€0)2,
where e; is either 1 or 0.

n =2+ 2% + ... + 2™e,, (12.1)

If e; # 0, there is a full binary tree t; of size 2!. For example in figure 12.1, the length
of the sequence is 6 = (110)2. The lowest bit is 0, there’s no tree of size 1; the 2nd bit is
1, there is t; of size 2; the highest bit is 1, there is to of size 4. In this way, we represent
sequence [z, s, ..., T,] as a list of trees. Each tree has unique size, in ascending order.
We call it binary random access list!’l. We can customize the binary tree definition: (1)
only store the element in leaf node as (z); (2) augment the size in each branch node as
(s,1,7), where s is the size of the tree, I, r are left and right tree respectively. We get the
size information as below:

size () =

size (s,l,r) (12.2)

To add a new element y before sequence S, we create a singleton ¢y tree ¢’ = (y), then
insert it to the forest. insert y S = inserty (y) S, or define it in Curried form:

insert y = insertr (y) (12.3)

We compare ¢’ with the first tree ¢; in the forest, if ¢; is bigger, then put ¢ ahead of
the forest (in constant time); if they have the same size, then link them to a bigger tree
(in constant time): ¢, = (2s,t;,t"), then recursively insert ¢;,, to the forest, as shown
in figure 12.2.

insertr t [] = [t]
sizet < sizety: t:tp:ts .
inserty t (t1:ts)) ! i !) (124)
otherwise : inserty (link t t1) ts
Where link links two trees of the same size: link t1 to = (size t; + size ta,t1,t2).
For n elements, there are m = O(Ign) trees in the forest. The performance is bound
to O(Ign) time. We'll prove the amortized performance is constant time.
Symmetrically, we can reverse the insert process to define remove. If the first tree is
to (singleton leaf), we remove to; otherwise, we repeat splitting the first tree to obtain a
to and remove it, as shown in figure 12.3.

extract ((z):ts) = (x,ts)

extract ((SatlatQ):tS) = extract (tlthZtS) (125)

12.2. BINARY RANDOM ACCESS LIST 187

(a) Insert x1

(b) Insert x2, link to [t1].

o

(c) Insert x3, result [to, t1]. Insert x4, link
tw1ce generate [to].

°;°;°

) Insert xs, result [to, t2].) Insert xg, result [t1,t2].

Figure 12.2: Insert x1, 22, ..., Tg-

i

) Sequence x1,T2,...,T5 as) Remove z5. Re-
[to, ta]. move to directly.

0
OO0

(c) Remove z4. Split twice to get [to, to,t1], then re-
move the head to get [to, t1].

Figure 12.3: Remove

188 CHAPTER 12. SEQUENCE
We call extract to remove element from head:

(12.6)

head = fsto extract
tail = sndo extract

Where fst (a,b) = a, snd (a,b) = b access the component in a pair.
The trees divides elements into chunks. For a given index 1 < i < n, we first locate
the corresponding tree, then lookup the tree to access the element.

1. For the first tree ¢ in the forest, if i < size(t), then the element is in ¢, we next
lookup ¢ for the target element;

2. Otherwise, let ¢/ =i — size(t), then recursively lookup the i'-th element in the rest
trees.
1 < sizet: lookupr vt
(t:ts)fi] = =7 ner (12.7)
otherwise : ts[i — size

Where lookupr applies binary search. If ¢ = 1, returns the root, else divides the tree
and recursively lookup:

lookupr 1 (z) = =
7 < ij : lookupT i tq 12.8
lookupr i (s,t1,t2) = — 2 s (128)
otherwise : lookupr (i — L§J) to

Figure 12.4 gives the steps to lookup the 4-th element in a sequence of length 6. The
size of the first tree is 2 < 4, move to the next tree and update the index to i’ = 4—2. The
size of the second tree is 4 > i’ = 2, we need lookup it. Because the index 2 is less than
the half size 4/2 = 2, we lookup the left, then the right, and finally locate the element.
Similarly, we can alter an element at a given position.

There are O(lgn) full binary trees to hold n elements. For index i, we need at most
O(lgn) time to locate the tree, the next lookup time is proportion to the height, which
is O(lgn) at most. The overall random access time is bound to O(lgn).

Exercise 12.1

How to handle the out of bound exception?

12.3 Numeric representation

The binary form of n = 2% +2'e; + ... +2™e,, maps to the forest. The e; is the i-th bit.
If e; = 1, there is a full binary tree of size 2°. Adding an element corresponds to +1 to
a binary number; while deleting corresponds to -1. We call such correspondence numeric
representation!’]. To explicitly express this correspondence, we define two states: Zero
means none existence of the binary tree, while One t means there exits tree t. As such,
we represent the forest as a list of binary states, and implement insert as binary add.

addt|[] = [Onet]
add t (Zero:ds) = (Onet):ds (12.9)
add t (One t':ds) = Zero:add (link tt') ds

When add tree t, if the forest is empty, we create a state of One t, it’s the only
bit, corresponding to 0 + 1 = 1. If the forest isn’t empty, and the first bit is Zero, we

12.3. NUMERIC REPRESENTATION

(a) S[4],4 > size(t1) =2

(b) S'[4 — 2] = lookupr 2 t2

%(Q)J = lookupr 2 left(t2)

(c)2<|

(d) lookupr 1 right(left(t2)), return x3

Figure 12.4: Steps to access S[4]

189

190 CHAPTER 12. SEQUENCE

use the state One t to replace Zero, corresponding to binary add (...digits...0)s + 1 =
(...digits...1)3. Fore.g. 641 = (110)2+1 = (111)9 = 7. If the first bit is One t’, we assume
t and ¢’ have the same size because we always start to insert from a singleton leaf ¢y = (z).
The tree size increase as a sequence of 1,2,4,...,2°,.... We link ¢ and #/, recursively insert
to the rest bits. The original One ¢’ is replaced by Zero. It corresponds to binary add
(...digits..1)a + 1 = (...digits"...0)2. For e.g. 7T+ 1= (111)2 + 1 = (1000), = 8.

Symmetrically, we can implement remove as binary subtraction. If the sequence is a
singleton bit One t, it becomes empty after remove, corresponding to 1 — 1 = 0. If there
are multiple bits and the first one is One t, we replace it by Zero. This corresponds to
(...digits...1)o — 1 = (...digits...0)s. For e.g., 7—1 = (111)s — 1 = (110)3 = 6. If the
first bit is Zero, we need borrow. We cursively extract tree from the rest bits, split into
two t1,ta, replace Zero to One ta, and remove t1. It corresponds to (...digits...0)s — 1 =
(...digits’...1)3. For e.g., 4 —1 =(100)2 — 1 = (11)2 = 3.

minus [One t] = (t,]])
minus ((One t):ts) = (t,Zero:ts) (12.10)
minus (Zero:ts) = (t1,(One tg):ts"), where : (s,t1,t3) = minus ts

Numeric representation doesn’t change the performance. We next evaluate the amor-
tized time by aggregation. The steps to insert n = 2™ elements to empty is given as table
12.1:

i binary (MSB ... LSB)
0 0,0,..,0,0
1 0,0,..,0,1
2 0,0,..,1,0
3 0,0,..,1,1
om 1 L1, .., 1,1
2m 1,0,0,..0,0
bits changed 1,1,2,..2m° L om

Table 12.1: Insert 2™ elements.

The LSB changes every time when insert, total 2™ times. The second bit changes
every other time (link trees), total 2™~! times. The second highest bit only changes 1
time, links all trees to a final one. The highest bit changes to 1 after insert the last
element. Sum all times: 7= 1+1+42+4+...4+2m"1 4+ 2™ = 2m*1 Hence the amortized
performance is:

2m+1
2m

Proved the amortized constant time performance.

O(T/n) = O(=——) = O(1) (12.11)

Exercise 12.2

1. Implement the random access for numeric representation S[i],1 < i < n, where n
is the length of the sequence.

2. Prove the amortized performance of delete is constant time. (hint: use aggregation
method).

3. We can represent the full binary tree with array of length 2", where m is none
negative integer. Implement the binary tree forest, insert, and random access.
What are the performance?

12.4. PAIRED-ARRAY SEQUENCE 191

12.4 paired-array sequence

We give paired-array queue in chapter 11. We can expand it to paired-array sequence
as array supports random access. As shown in figure 12.5, we link two arrays head to
head. When add an element from left, we append to the tail of f; when add from right,
we append to the tail of 7. We denote the sequence as a pair S = (f,r), FRONT(S) = f,
REAR(S) = r access them respectively. We implement insert/append as below:

insert Xy, X X] e » » Ym append

front rear

Figure 12.5: Paired-array sequence.

1: function INSERT(z, S)

2 APPEND(z, FRONT(S))
3: function APPEND(z, S)

4 APPEND(z, REAR(S))

When access the i-th element, we first determine 7 index to f or r, then locate the
position. If ¢ < |f|, the element is in f. Because f and r are connected head to head, we
need index from right of f at position |f| —i+ 1; if i > |f|, the element is in r. We index
from left at position i — | f|.

1: function GET(4, S)
2: fyr <= FRONT(S), REAR(S)

3: n < SIZE(f)

4: if i <n then

5: return fn —i+ 1] > reversed
6: else

7: return r[i — n

Removing can makes f or r empty ([|), while the other is not. To re-balance, we
halve the none empty one, and reverse either half to form a new pair. As f and r are
symmetric, we can swap them, call BALANCE, then swap back.

1: function BALANCE(S)
f < FRONT(S), r < REAR(S)
3 n « S1ZE(f), m < S1zE(r)
4 if F =[] then
5 k « L%J
6: return (REVERSE(r[1...k]), r[(k + 1)..m])
7
8
9

if R =[] then
ke 5]
return (f[(k+ 1)...n], REVERSE(f[1...k]))
10: return (f,r)

Every time when delete, we check f, r and balance them:
1: function REMOVE-HEAD(S)
2 BALANCE(S)
3: fyr < FRrRONT(S), REAR(S)
4 if f=1] then >S5 =([],[z])
5 r+]

192 CHAPTER 12. SEQUENCE

else
7: REMOVE-LAST(f)

I

8: function REMOVE-TAIL(S)
9: BALANCE(S)
10: fyr < FRONT(S), REAR(S)

11: if r =[] then > S = ([z],[])
12: f<1]

13: else

14: REMOVE-LAST(r)

Due to reverse, the performance is O(n) in the worst case, where n is the number of
elements, while it is amortized constant time.

Exercise 12.3

1. For paired-array delete, prove the amortized performance is constant time.

12.5 Concatenate-able list

We achieve O(Ilgn) time insert, delete, random index with binary tree forest. However,
it’s not easy to concatenate two sequences. We can’t merely merge trees, but need link
trees with the same size. Figure 12.6 shows an implementation of concatenate-able list.
The first element x; is in root, the rest is organized with smaller sequences, each one is
a sub-tree. These sub-trees are put in a real-time queue (see chapter 11). We denote
the sequence as (x1,Q,) = [r1,%2,...,2,]. When concatenate with another sequence
of (y1,Qy) = [Y1,Y2, -, Ym|, we append it to Q.. The real-time queue guarantees the
en-queue in constant time, hence the concatenate performance is in constant time.

c[1] | c[2] | ... | c[n]

'

x[i+1]...x[j] x[k]...x[n]

x[2]...x[i]

(a) (wva:c) = [331,332,...,a;‘n]

c[n] | c[n+1]

c[1] | c[2] ‘

x[i+1]...x[j] x[K]...x[n]

(b) Concatenate with (y1,Qy) = [y1, Y2, ..., Ym], addcnt1 to Qu

x[2]...x[i]

Figure 12.6: Concatenate-able list

12.6. FINGER TREE 193

sHIJ = s
DHs = s (12.12)
(@.Q #s = (v pushsQ)

When insert new element z, we create a singleton of (z, &), then concatenate it to the
sequence:

(12.13)

insert x s = (x,9)H#s
append © s = s (z,9)

When delete 1 from head, we lose the root. The rest sub-trees are all concatenate-able
lists. We concatenate them all to a new sequence.

concat & = O
concat @ = (top Q) + concat (pop Q)

The real-time queue hold sub-trees, we pop the first ¢;, and recursively concatenate
the rest to s, then concatenate ¢; and s. We define delete from head with concat.

tail (z,Q) = concat Q (12.15)

(12.14)

Function concat traverses the queue, and reduces to a result, it essentially folds on
QU
fold f zo = =z
fold f2@Q = f (top Q) (fold f z (pop Q))

Where f is a binary function, z is zero unit. Here are examples of folding on queue

Q=1[2,..,5:

(12.16)

fold(+)0Q = 142+ B+ A+ (5+0))) =15
fold (x)1Q = 1x(2x@Bx(4x(5x1))) =120
fold (x)0Q = 1x(2xBx(4x(5x0)))=0

We can define concat with fold (Curried form):
concat = fold (#) @ (12.17)

The performance is bound to linear time in worst case: delete after repeatedly add n
elements. All n — 1 sub-trees are singleton. concat takes O(n) time to consolidate. The
amortized performance is constant time if add, append, delete randomly happen.

Exercise 12.4

1. Prove the amortized performance for delete is constant time

12.6 Finger tree

Binary random access list supports to insert, remove from head in amortized constant
time, and index in logarithm time. But we can’t easily append element to tail, or fast
concatenate. With concatenate-able list, we can concatenate, insert, and append in amor-
tized constant time, but can’t easily index element. From these two examples, we need:
1, access head, tail fast to insert or delete; 2, the recursive structure, e.g., tree, realizes
random access as divide and conquer search. Finger treel"! implements sequence with
these two ideas!?’]. It’s critical to maintain the tree balanced to guarantee search perfor-
mance. Finger tree leverages 2-3 tree (a type of B-tree). A 2-3 tree is consist of 2 or 3
sub-trees, as (t1,t2) or (t1,ta,t3).

194 CHAPTER 12. SEQUENCE

data Node a =Br2 a a | Br3 a a a

We define a finger tree as one of below three:
1. empty O;
2. a singleton leaf (z);

3. a tree with three parts: a sub-tree, left and right finger, denoted as (f,¢,r). Each
finger is a list up to 3 elements?.

data Tree a = Empty
| Lf a
| Tr [a] (Tree (Node a)) [a]

12.6.1 Insert

(c) ([b], 2, [a])

Figure 12.7: Finger tree, example 1

e[a]c[o] .

(a) Insert 3 elements (b) Re-balance.
to f, not a valid, bal- there are two
anced 2-3 tree. elements in f;

the middle is a
singleton of a 2-3
tree.

Figure 12.8: Finger tree, example 2

Lf: front, r: rear

12.6. FINGER TREE 195

As shown in figure 12.7 and 12.8. Example 1 (a) is &, (b) is a singleton, (c) has two
element in f and r for each. When add more, f will exceeds 2-3 tree, as in example 2
(a). We need re-balance as in (b). There are two elements in f, the middle is singleton
of a 2-3 tree. These examples are list as below:

Empty
a) Lf a

(
(0], 2, [a]) Tr [b] Empty [a]
([e,d, c,b],2,]a]) Tr [e, d, c, b] Empty [a]
(If €], (d c b)7 [a]) Tr [f, e] Lf (Br3 d c b) [a]

In example 2 (b), the middle component is a singleton leaf. Finger tree is recursive,
apart from f and r, the middle is a deeper finger tree of type Tree (Node a). One more
wrap, one level deeper. Summarize above examples, we define insert a to tree T' as below:

1. If T = &, the result is a singleton (a);
2. If T = (b) is a leaf, the result is ([a], &, [b]);

3. For T' = (f,t,r), if there are < 3 elements in f, we insert a to f, otherwise (> 3),
extract the last 3 elements from f to a 2-3 tree t/, recursively insert ¢ to ¢, then
insert a to f.

msert a &

insert a (b)

insert a ([b,c,d,e],t,r) =
insert a (f,t,r)

x)
[a], @, [b])
a,b],insert (c,d,e) t,r) (12.18)
a:f,t,r)

(
(
(
(

The insert performance is constant time except for the recursive case. The recursion
time is proportion to the height of the tree h. Because of 2-3 trees, it’s balanced, hence
h = O(lgn), where n is the number of elements. When distribute the recursion to other
cases, the amortized performance is constant time!’) "], We can repeatedly insert a list
of elements by folding:

xs >t = foldr insert t xs (12.19)

Exercise 12.5

1. Eliminate recursion, implement insert with loop.

12.6.2 Extract

We implement extract as the reverse of insert.

extract (a) = (a,o)
extract ([a], @, [b]) = (a7())
extract ([a], @,b:bs) = (a,([b],2,bs)) (12.20)
extract ([a] r) = (a, (toLzst fit'), where : (f,t') = extract ¢
extract (a:as,t,r) = (a,(as,t,r))

Where toList flatten a 2-3 tree to list:

toList (a,b) = [a,b]

toList (a,b,c) = la,b,(] (12.21)

196 CHAPTER 12. SEQUENCE

We skip error handling (e.g., extract from empty tree). If the tree is a singleton leaf,
the result is empty; if there are two elements, the result is a singleton; if f is a singleton
list, the middle is empty, while r isn’t empty, we extract the only one in f, then borrow
one from r to f; if the middle isn’t empty, we recursively extract a node from the middle,
flatten that node to list to replace f (the original one is extracted). If f has more than
one element, we extract the first. Figure 12.9 gives examples that extract 2 elements.

(b) Extract one, f becomes a sin-
gleton list.

(c) Extract another, borrow an element from the middle,
flatten the 2-3 tree to a list as the new f.

Figure 12.9: Extract

We can define head, tail with extract.

{head = fstoextract (12.22)

tasl = snd o extract

12.6. FINGER TREE 197

Exercise 12.6

1. Eliminate recursion, implement extract in loops.

12.6.3 Append and remove

We implement append, remove on right symmetrically.

end (5 = (i)

append (a =

append (f,t,[a,b,c,d]) e = (f, append t (a,b,¢),[d,e]) (12.23)
append (f,t,r) a = (f,t,r 4 [a])

If there are no more 4 elements in , we append the new element to tail of . Otherwise,
we extract the first 3 from r, form a new 2-3 tree, and recursively append it to the middle.
We can repeatedly append a list of elements by folding from left:

t < xs = foldl append t xs (12.24)

The remove is reversed operation of append:

a)

).b)
initf, 2, [lastf]), a) (12.25)

(a
(
(f,t',toList r),a), Hd - (¢',7r) = remove ¢
(f,t,init r),last)

remove (a) = (&,
remove ([a], &, [b]) (
remove (f,@,[a]) = (
remove (f,t,[a]) (
remove (f,t,r) = (

Where last accesses the last element of a list, inét returns the rest (see chapter 1).

12.6.4 concatenate

When concatenate two none empty finger trees T1 = (f1,t1,71), Ta = (f2,t2,72), we use
f1 as the result front f, ro as the result rear r. Then merge t1,71, fo,t2 as the middle
tree. Because both r; and fy are list of nodes, it equivalent to the below problem:

merge ty (11 4 f2) to =

Both t; and t, are finger trees deeper than 77 and T5 a level. If the type of element
in 77 is a, then the type of element in t; Node a. We recursively merge, keep the front
of t1 and rear of ¢y, then further merge the middle of 1, t5, and the rear of t;, the front
of tQ .

merge D tsty = ts> 1o
merge t; ts ¥ = t; < ts
merge (a) ts ta merge @ (a:ts) ta
merge t; ts (a) merge t1 (ts 4 [a]) @
merge (fi,t1,71) ts (fa,t2,m2) = (f1,merge t1 (nodes (r1 4 ts 4 fa)) t2,72)
(12.26)
Where nodes collects elements to a list of 2-3 trees. This is because type of the element
in the middle is deeper than the finger.

ies twnd = [lone)
nodes [a,b:c:d] = E(’7) (12.27)

nodes (a:b:c:ts) =

198 CHAPTER 12. SEQUENCE

We then define finger tree concatenation with merge:

(fi,ti,r1) 4 (fo,t2,m2) = (f1,merge t1 (r1 + f2) t2,72) (12.28)

Compare with (12.26), concatenation is essentially merge, we can define them in a
unified way:

T, # T =merge Ty [| Tz (12.29)

The performance is proportion to the number of recursions, which is the smaller height
of the two trees. The 2-3 trees are balanced, the height is O(lgn), where n is the number
of elements. In edge cases, merge performs as same as insert (call insert at most 8 times)
in amortized constant time; In worst case, the performance is O(m), where m is the height
difference between the two trees. The overall performance is bound O(lgn), where n is
the total elements of the two trees.

12.6.5 Random access

The idea is to turn random access into tree search. To avoid repeatedly compute tree
size, we augment a size variable s to each branch node as (s, f,t,7).

data Tree a = Empty
| Lf a
| Tr Int [a] (Tree (Node a)) [a]

size d = 0
size (x) = sizex (12.30)
size (s, f,t,71) = s

Here size (x) is not necessarily 1. = can be a deeper node, like Node a. It is only 1
at level one. For termination, we wrap x as an element cell (z)., and define size (z), =1
(see the example in appendix).

x <At =insert (). t (12.31)
t>x = append t (x),
and:
xs K t = foldr (<) t xs (12.32)
t> xs= foldl (>) t xs
We also need calculate the size of a 2-3 tree:
size (t1,t2) = size t1 + size to . (12.33)
size (t1,ta,t3) = size t1 + size to + size t3

Given a list of nodes (e.g., finger at deeper level), we calculate size from sum o
(map size). We need update the size when insert or delete element. With size aug-
mented, we can lookup the tree for any position . The finger tree (s, f,t,r) has recursive
structure. Let the size of these components be s¢, s, s, and s = 55 + s¢ + 5. If i < s,
the location is in f, we further lookup f; if sy < ¢ < sy + s, then the location is in ¢,
we need recursively lookup t; otherwise, we lookup r. We also need handle leaf case of

12.6. FINGER TREE 199

(z). We use a pair (¢,t) to define the position ¢ at data structure ¢, and define lookupr
as below:

lookupr i (x) = (i,x)
1< 8¢ lookups 1
. ! pet) (12.34)
lookupr i (s, f,t,r) = sp<i<syg+s: lookupn (lookupr (i —sy) t)
otherwise : lookups (i — sy —s¢) 7

Where sy = sum (map size f),s, = size t, are the sizes of the first two components.
When lookup location 4, if the tree is a leaf (z), the result is (i,z); otherwise we need
figure out which component among (s, f,t,r) that ¢ points to. If it either in f or r, then
we lookup the figure:

i<sizex: (i,z)

lookups i (x:xs) = { (12.35)

otherwise : lookups (i — size x) xs

If ¢ is in some element z (i < size x), we return (i,); otherwise, we continue looking
up the rest elements. If ¢ points to the middle ¢, we recursively lookup to obtain a place
(#',m), where m is a 2-3 tree. We next lookup m:

{i < sizety: (i,t1)

lookupy i (t1,t2) =

otherwise : (i — size t1,12)
i< sizety: (i,t1)
lookupy i (t1,ta,t3) = size t1 <1< size t1 + size ta 1 (i — size t1,t2)
otherwise : (i — size t1 — size ta,t3)
(12.36)
Because we previously wrapped z inside ()., we need extract x out finally:

(i = if lookquT 1T = (7, (x)e) : Justa.: (12.37)

otherwise : Nothing

We return the result of type Maybe a = Nothing| Just a, means either found, or lookup
failed?. The random access looks up the finger tree recursively, proportion to the tree
depth. Because finger tree is balanced, the performs is bound to O(Ign), where n is the
number of elements.

We achieved balanced performance with finger tree implementation. The operations
at head and tail are bound to amortized constant time, concatenation, split, and random
access are in logarithm time[°”]. By the end of this chapter, we’ve seen many elementary
data structures. They are useful to solve some classic problems. For example, we can use
sequence to implement MTF (move-to-front®) encoding algorithm[**). MTF move any
element at position 4 to the front of the sequence:

mtfiS=u1z<8 where(z,S') = extractAti S

In the next chapters, we’ll go through the classic divide and conquer sorting algo-
rithms, including quick sort, merge sort and their variants; then give the string matching
algorithms and elementary search algorithms.

Exercise 12.7

1. For random access, how to handle empty tree @ and out of bound cases?

2. Implement cut ¢ S, split sequence S at position 1.

2Many programming environments provide equivalent tool, like the Optional<T> in Java/C++.
3Used in Burrows-Wheeler transform (BWT) data compression algorithm.

200 CHAPTER 12.

12.7 Appendix - example programs

Binary random access list (forest):

SEQUENCE

data Tree a = Leaf a
| Node Int (Tree a) (Tree a)

type BRAList a = [Tree a]

size (Leaf _) =1
size (Node sz _ _) = sz

link tl1 t2 = Node (size tl + size t2) t1 t2

insert x = insertTree (Leaf x) where
insertTree t [] = [t]
insertTree t (t':ts) = if size t < size t' then t:t':ts
else insertTree (link t t') ts

extract ((Leaf x):ts) = (x, ts)
extract ((Node _ tl1 t2):ts) = extract (tl:t2:ts)
head' = fst o extract
tail' snd o extract

getAt i (t:ts) | i < size t = lookupTree i t
| otherwise = getAt (i - size t) ts
where
lookupTree 0 (Leaf x) = x
lookupTree i (Node sz t1 t2)
| i < sz “div’ 2 = lookupTree i t1
| otherwise = lookupTree (i - sz ‘div’ 2) t2

Numeric representation of binary random access list:

data Digit a = Zero | One (Tree a)
type RAList a = [Digit a]

insert x = add (Leaf x) where
add t [] = [One t]
add t (Zero:ts) = One t : ts
add t (One t' :ts) = Zero : add (link t t') ts

minus [One t] = (t, [])

minus (One t:ts) = (t, Zero:ts)

minus (Zero:ts) = (tl, One t2:ts') where
(Node _ t1 t2, ts') = minus ts

head' ts = x where (Leaf x, _) = minus ts
tail' = snd o minus

Paired-array sequence:

Data Seg<K> {
[K] front = [], rear = []
}
Int length(S<K> s) = length(s.front) + length(s.rear)

void insert(K x, Seq<K> s)

append(x, s.front)
void append(K x, Seq<K> s) = append(x, s.rear)

K get(Int i, Seg<K> s) {

12.7. APPENDIX - EXAMPLE PROGRAMS 201

Int n = length(s.front)
return if i < n then s.front[n - i - 1] else s.rear[i - n]

Concatenate-able list:

data CList a = Empty | CList a (Queue (CList a))
wrap x = CList x emptyQ

X H# Empty = x

Empty # y =y

(CList x q) #+ y = CList x (push q vy)

fold f z q | isEmpty q = z
| otherwise = (top q) "f° fold f z (pop q)

concat = fold (4) Empty

insert x xs = (wrap x) H# xs
append xs x = Xs 4 wrap x

head (CList x _) = x
tail (CList _ q) = concat g

Finger tree:

— 2-3 tree
data Node a = Tr2 Int a a
| Tr3 Int a a a

— finger tree
data Tree a = Empty
| Lf a
| Br Int [a] (Tree (Node a)) [a] — size, front, mid, rear
newtype Elem a = Elem { getElem :: a } — wrap element
newtype Seq a = Seq (Tree (Elem a)) — sequence
class Sized a where — support size measurement
size :: a — Int

instance Sized (Elem a) where
size _ =1 — 1 for any element

instance Sized (Node a) where
size (Tr2 s _) =s
size (Tr3 s _ _ _) =s

instance Sized a = Sized (Tree a) where
size Empty = 0
size (Lf a) = size a
size (Br s _ _ _) = s

instance Sized (Seq a) where
size (Seq xs) = size xs

tr2 a b

= Tr2 (size a + size b) a b
tr3 abc=

Tr3 (size a + size b + size c) a b ¢

nodesOf (Tr2 _ a b) = [a, b]
nodesOf (Tr3 _ a b c¢) = [a, b, c]

— left
x <| Seq xs = Seq (Elem x “cons’ xs)

202 CHAPTER 12. SEQUENCE

cons :: (Sized a) = a — Tree a — Tree a

cons a Empty = Lf a

cons a (Lf b) = Br (size a + size b) [a] Empty [b]

cons a (Br s [b, ¢, d, €] mr) = Br (s + size a) [a, b] ((tr3 c d e) ‘cons’ m) r
cons a (Br s fmr) =Br (s + size a) (a:f) mr

head' (Seq xs) = getElem $ fst $ uncons xs
tail' (Seq xs) = Seq $ snd $ uncons xs

uncons :: (Sized a) = Tree a — (a, Tree a)

uncons (Lf a) = (a, Empty)

uncons (Br _ [a] Empty [b]) = (a, Lf b)

uncons (Br s [a] Empty (r:rs)) = (a, Br (s - size a) [r] Empty rs)

uncons (Br s [a] m r) = (a, Br (s - size a) (nodesOf f) m' r)
where (f, m') = uncons m

uncons (Br s (a:f) mr) = (a, Br (s - size a) fmr)

— right

Seq xs |> x = Seq (xs ‘snoc’ Elem x)

snoc :: (Sized a) = Tree a — a — Tree a

snoc Empty a = Lf a

snoc (Lf a) b = Br (size a + size b) [a] Empty [b]

snoc (Br s fm [a, b, ¢, d]) e =Br (s + size e) f (m “snoc” (tr3 a b c)) [d, e]
snoc (Br s fmr) a=Br (s + size a) fm (r #+ [a])

last' (Seq xs) = getElem $ snd $ unsnoc xs
init' (Seq xs) = Seq $ fst $ unsnoc xs

unsnoc :: (Sized a) = Tree a — (Tree a, a)
unsnoc (Lf a) = (Empty, a)
unsnoc (Br _ [a] Empty [b]) = (Lf a, b)

unsnoc (Br s f@(_:_:_) Empty [a]) = (Br (s - size a) (init f) Empty [last f], a)
unsnoc (Br s f m [a]) = (Br (s - size a) f m' (nodesOf r), a)
where (m', r) = unsnoc m
unsnoc (Br s fmr) = (Br (s - size a) f m (init r), a) where a = last r
— concatenate

Seq xs 4+ Seq ys = Seq (xs >< ys)
Xs >< ys = merge xs [] ys

t <<< xs = foldl snoc t xs
xs >>> t = foldr cons t xs

merge (Sized a) = Tree a — [a] — Tree a — Tree a
merge Empty es t2 = es >>> t2
merge tl es Empty = tl << es
merge (Lf a) es t2 = merge Empty (a:es) t2
merge tl es (Lf a) = merge tl (es#[a]) Empty
merge (Br sl fl1 ml rl) es (Br s2 f2 m2 r2) =
Br (sl + s2 + (sum $ map size es)) fl (merge ml (trees (rl 4 es 4 f2)) m2) 2

trees [a, b] = [tr2 a b]

trees [a, b, c] = [tr3 a b c]

trees [a, b, ¢, d] = [tr2 a b, tr2 c d]
trees (a:b:c:es) = (tr3 a b c):trees es

— index
data Place a = Place Int a

getAt :: Seq a — Int — Maybe a
getAt (Seq xs) i | 1 < size xs = case lookupTree i xs of
Place _ (Elem x) — 3Just x

Elementary Algorithms 203

| otherwise = Nothing

lookupTree :: (Sized a) = Int — Tree a — Place a
lookupTree n (Lf a) = Place n a
lookupTree n (Br s f mr) | n < sf = lookups n f
| n < sm = case lookupTree (n - sf) m of
Place n' xs — TlookupNode n' xs

| n < s = lookups (n - sm) r
where sf = sum $ map size f
sm = sf + sizem
lookupNode :: (Sized a) = Int — Node a — Place a

lookupNode n (Tr2 _ a b) | n < sa = Place n a
| otherwise = Place (n - sa) b
where sa = size a
lookupNode n (Tr3 _ a b c) | n < sa = Place n a
| n < sab =Place (n - sa) b
| otherwise = Place (n - sab) c
where sa = size a
sab = sa + size b

lookups :: (Sized a) = Int — [a] — Place a
lookups n (x:xs) = if n < sx then Place n x
else lookups (n - sx) xs
where sx = size x

204 Quick sort and merge sort

Chapter 13

Quick sort and merge sort

13.1 Introduction

People proved the performance upper limit be O(nlgn) for comparison based sort![”'].
This chapter gives two divide and conquer sort algorithms: quick sort and merge sort,
both achieve O(nlgn) time bound. We also give their variants, like natural merge sort,
in-place merge sort, and etc.

13.2 Quick sort

Consider arrange kids in a line ordered by height.
1. The first kid raises hand, all shorter one move to left, and the others move to right;
2. All kids on the left and right repeat.

For example, the heights (in cm) are [102, 100, 98,95, 96,99, 101, 97]. Table 13.1 gives
the steps. (1) The kid of 102 cm raises hand as the pivot (underlined in the first row). It
happens the tallest, hence all others move to the left as shown in the second row in the
table. (2) The kid of 100 cm is the pivot. Kids of height 98, 95, 96, and 99 cm move to
the left, and the kid of 101 cm move to the right, as shown in the third row. (3) The kid

205

206 CHAPTER 13. QUICK SORT AND MERGE SORT

of 98 cm is the left pivot, while 101 cm is the right pivot. Because there is only one kid
on the right, it’s sorted. Repeat this to sort all kids.

102 100 98 95 96 99 101 97
100 98 95 96 99 101 97 ‘102
98 9 9 99 97 ‘1000 101 ‘102’
95 96 97 98 99 ‘1000 ‘101" ‘102
95" 96 97 ‘98 99’ ‘100" ‘101 ‘102’
‘95 ‘96" 97 ‘98 99’ ‘100" ‘101 ‘102’
‘957 ‘967 977 ‘98 99’ ‘100" ‘101’ ‘102’

Table 13.1: Sort steps

We can summarize the quick sort definition, when sort list L:
o If L is empty]], the result is [];

¢ Otherwise, select an element as the pivot p, recursively sort elements < p to the
left; and sort other elements > p to the right.

We say and, but not ‘then’, indicate we can parallel sort left and right. C. A. R.
Hoare developed quick sort in 19601°1 7], There are varies of ways to pick the pivot, for
example, always choose the first element.

sort [] = []

sort (v:ws) = sort [yly € xs,y < a] 4 [z] 4 sort [yly € xs,x <y] (13.1)

We use the Zermelo Frankel expression (ZF expression)'. {ala € S,pi(a),p2(a),...}
selects elements in set S, that satisfy every the predication p1, pa, ... (see chapter 1). Below
is example code:

sort [] = []
sort (x:xs) =sort [y | y<xs, v < x] # [x] 4 sort [y | y+xs, x <yl

We assume to sort in ascending order. We can abstract the comparison to sort different
things like numbers, strings, and etc. (see chapter 3) We needn’t total ordering, but at
least need strict weak orderingl” "’ (see chapter 9). We use < as the abstract comparison.

13.2.1 Partition

We traverse elements in two passes: first filter all elements < z ; next filter all > x. We
can combine them into one pass:

partp [] = ([],[])
p(z) : (2:as,bs), where : (as,bs) = part p xs (13.2)

art p (x:xs) =
part p () otherwise : (as, z:bs)

And change the quick sort definition to:

sort [= [] (13.3)
sort (z:xs) = sort as+ [z] # sort bs, where : (as,bs) = part (< x) xs '
We can also define partition with fold:
part p = foldr f ([],[]) (13.4)

IName after two mathematicians found the modern set theory.

13.2. QUICK SORT 207

Where f is defined as:

f (as,bs) z = {p(x) : (w:as, bs) (13.5)

otherwise : (as,z:bs)

It’s essentially to accumulate to (as,bs). If p(z) holds, then add z to as, otherwise to
bs. We can implement a tail recursive partition:

partp []as bs = (as,bs)
part p (z:xs) as bs = p(z): part p zs (z:as) bs (13.6)
' otherwise : part p xs as (x:bs)

To partition z:xs, we call:
(as,bs) = part (< z) zs []|[]
We change concatenation sort as 4 [x] 4 sort bs with accumulator as:

sort s[] = s

sort s (xz:xs) = sort (x:sort s bs) as (13.7)

Where s is the accumulator, we initialize sort with an empty list: gsort = sort [].
After partition, we need recursively sort as, bs. We can first sort bs, prepend x, then pass
it as the new accumulator to sort as:

sort = sort' []

sort' acc [] = acc
sort' acc (x:xs) = sort' (x : sort' acc bs) as where
(as, bs) = part xs [] []
part [] as bs = (as, bs)
part (y:ys) as bs | y < x = part ys (y:as) bs
| otherwise = part ys as (y:bs)

13.2.2 In-place sort

Figure 13.1 gives a way to partition in-placel”/l'). We scan from left to right. At any
time, the array is consist of three parts as shown in figure 13.1 (a):

o The pivot is the left element p = z[l]. It moves to the final position