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Abstract The quantitative assessment of uncertainty and sampling quality is essential in molecu-
lar simulation. Many systems of interest are highly complex, often at the edge of current computa-
tional capabilities. Modelers must therefore analyze and communicate statistical uncertainties so
that “consumers” of simulated data understand its significance and limitations. This article covers
key analyses appropriate for trajectory data generated by conventional simulation methods such as
molecular dynamics and (single Markov chain) Monte Carlo. It also provides guidance for analyzing
some ‘enhanced’ sampling approaches. We do not discuss systematic errors arising, e.g., from
inaccuracy in the chosen model or force field.
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1 Introduction: Scope and definitions
1.1 Scope
Simulating molecular systems that are interesting by today’s
standards, whether for biomolecular research, materials sci-
ence, or a related field, is a challenging task. However, com-
putational scientists are often dazzled by the system-specific
issues that emerge from such problems and fail to recognize

that even “simple” simulations (e.g., alkanes) require signifi-
cant care [? ]. In particular, questions often arise regarding
the best way to adequately sample the desired phase-space
or estimate uncertainties. And while such questions are not
unique to molecular modeling, their importance cannot be
overstated: the usefulness of a simulated result ultimately
hinges on being able to confidently and accurately report
uncertainties along with any given prediction. In the context
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of techniques such as molecular dynamics (MD) and Monte
Carlo (MC), these considerations are especially important,
given that even large-scale modern computing resources do
not guarantee adequate sampling.
This article therefore aims to provide best-practices for

reporting simulated observables, assessing confidence in
simulations, and deriving uncertainty estimates (more col-
loquially, “error bars”) based on a variety of statistical tech-
niques applicable to physics-based sampling methods and
their associated “enhanced” counterparts. As a general rule,
we advocate a tiered approach to computational modeling. In
particular, workflows should begin with back-of-the-envelope
calculations to determine the feasibility of a given computa-
tion, followed by the actual simulation(s). Semi-quantitative
checks can then be used to check for adequate sampling
and assess the quality of data. Only once these steps have
been performed should one actually construct estimates of
observables and uncertainties. In this way, modelers avoid
unnecessary waste by continuously gauging the likelihood
that subsequent steps will be successful. Moreover, this ap-
proach can help to identify seemingly reasonable data that
may have little value for prediction and/or be the result of a
poorly run simulation.

It is worth emphasizing that in the last few years, many
works have developed and advocated for uncertainty quantifi-
cation (UQ) methods not traditionally used in the MD and MC
communities. In some cases, these methods buck trends that
have become longstanding conventions, e.g., the practice of
only using uncorrelated data to construct statistical estimates.
One goal of this manuscript is therefore to advocate newer
UQ methods when these are demonstrably better. Along
these lines, we wish to remind the reader that better results
are not only obtained from faster computers, but also by us-
ing data more thoughtfully. It is also important to appreciate
that debate continues even among professional statisticians
on what analyses to perform and report [? ].
The reader should be aware that there is not a “one-size-

fits-all” approach to UQ. Ultimately, we take the perspective
that uncertainty quantification in its broadest sense aims to
provide actionable information for making decisions, e.g., in
an industrial research and development setting or in planning
future academic studies. A simulation protocol and subse-
quent analysis of its results should therefore take into account
the intended audience and/or decisions to be made on the
basis of the computation. In some cases, quick-and-dirty
workflows can indeed be useful if the goal is to only provide
order-of-magnitude estimates of some quantity. We also note
that uncertainties can often be estimated through a variety
of techniques, and there may not be consensus as to which,
if any, are best. Thus, a critical component of any UQ analysis
is communication, e.g., of the assumptions being made, the UQ

tools used, and the way that results are interpreted. Educated
decisions can only be made through an understanding of
both the process of estimating uncertainty and its numerical
results.
While UQ is a central topic of this manuscript, our scope

is limited to issues associated with sampling and related un-
certainty estimates. We do not address systematic errors
arising from inaccuracy of force-fields, the underlying model,
or parametric choices such as the choice of a thermostat
time-constant. See, for example, Refs. [? ? ? ? ] for methods
that address such problems. Moreover, we do not consider
model-form error and related issues that arise when compar-
ing simulated predictions with experiment. Rather, we take
the raw trajectory data at face value, assuming that it is a
valid description of the system of interest.1
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1In more technical UQ language, we restrict our scope to verification of
simulation results, as opposed to validation.
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