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Abstract 

Students’ difficulties with vectors in Mechanics, at AS and A level, have been 

considered in a number of studies to date. Some of the research considers how 

students’ intuitions arise from working in different contexts and how it affects their 

problem-solving capabilities, others think that pre-Newtonian views affect students’ 

thinking. There are considerations that the idea of vector has different meanings in 

different contexts and therefore it is not easily transferable from one context to 

another. There are suggestions in the literature that a qualitative approach to teaching 

would help students to learn. None of the research studied considers the important 

idea of focusing on the vector concepts that are common to the various contexts, 

instead they are more concerned with the problems caused by the differences between 

them. Nor do they focus on the compression of a vector as an action into the more 

flexible idea of a free vector as a single mental object that can be represented by any 

arrow of given magnitude and direction. 

In this thesis an approach is developed to base the students’ experience on 

manipulating physical objects, to focus on the effect of a translation rather than on the 

action itself. The essential idea is to notice that every point on the object translated 

(and on the hand doing the translation) moves in the same direction and travels the 

same distance. The effect of the translation is therefore represented by any arrow of 

this magnitude and direction, leading to the notion of free vector. From the same 

viewpoint, the sum of two vectors is simply the single translation having the same 

effect as the combination of one translation followed by the other. 

The main hypothesis is that:  

Teachers can help students develop the notion of a translation as 
a free vector through focusing on the effects of physical actions, 
linking graphic and symbolic representations, so that the concept 
of free vector is constructed as a cognitive unit that may be used 
in a versatile way in a range of different contexts. 

This was tested by a comparative study of two classes using both quantitative and 

qualitative methods. The control group carried on with the normal programme of 

study while the experimental group was exposed to lessons focusing on of the notion 
of a free vector as the effect of a transformation. The students’ own constructions 
were supported by activities and discussions in reflective plenary sessions. The results 

of the study revealed that there were significant changes in the students following the 

experimental programme, in which they were more likely to conceive of the symbols 

for vectors as cognitive units operating in a flexible and versatile manner. The 

quantitative improvement was sustained and increased over a longer period. 

Interviews with the teachers revealed differences between the mathematics and 
physics teachers’ perceptions of the students’ expected difficulties. Interviews with 
the students revealed the more successful interviewees referring to the concept of 
vector as a single cognitive unit across contexts, while the less successful tended to 
consider the concept of vector operating in different ways as journeys and as forces. 

Both quantitative and qualitative data show significant conceptual changes in 
students following the experimental approach; these changes were more marked over 
the longer period of time between pre-test and delayed post-test.  
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 Chapter 1 

Thesis Overview 

‘I hear, and I forget; I see, and I remember; I do, and I understand.’ 

 saying of Confucius, quoted in Nuffield (1967a) 

‘I do and I understand how, I reflect and I understand why.’  

 extended by Anna Poynter (2003) 

Prologue 

As a teacher of mathematics for many years I became concerned how students seemed 

to be able to learn to do techniques to score highly on examinations, yet seemed not to 

be able to apply their knowledge in slightly different situations, or to retain their skills 

for ready use in subsequent courses. For example, in mechanics my students were 

highly successful at resolving vectors horizontally and vertically to solve mechanics 

problems, yet when faced with a rectangular block on a rough inclined plane, most 

were unable to resolve the force due to gravity down the plane. 

Up to this time, I had taught vectors according to the text-books, including 

physical experiments with objects on a slope, practising all possible calculations and 

variations. I made sure to warn students about any pitfalls and drilled into them the 

techniques of answering questions. They seemed to be able to answer every question 

in the book, until they met something slightly different on the test. 

After talking with some of the students and teachers, who seem to have the same 

problem, I decided to take the matter seriously. I thought to myself: “If only students 

could concentrate on the simplicity of the mathematical idea instead of the many 

complications connected to different contexts, then they should be in a better position 

to solve problems in novel situations.” However, although the mathematics seems to 

be simple for an expert, there seem to be untold pitfalls for the learner. 

My quest in this thesis is therefore to understand better why students have such 

difficulties and how they may be encouraged to reflect on their knowledge to focus on 

the essential ideas in a way that could be used flexibly in new contexts. 
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1.1 Introduction 

This study is concerned with how students make sense of mathematical ideas and how 

they symbolise their physical conceptions in meaningful ways. Although it focuses on 

the notion of vectors, the theory constructed is intended to have a much wider 

applicability, linking cognitive theory with practical application in the classroom. 

Mathematics is usually considered as a highly logical activity but it is created 

and learnt by human beings who interact with the world and develop higher-order 

thinking capacities by reflecting on their actions. In practical terms this suggests two 

distinct stages: encouraging students in ‘hands on’ specific activities, and then to 

reflect on the essential elements of these activities to build theories. In theoretical 

terms the work relates to the cognitive science literature of embodiment and the 

mathematics education literature which focuses on how processes that we perform can 

be symbolized so that the symbols can become meaningful ideas that we can 

manipulate and think about. 

The notion of embodiment has rich and varied meanings in the literature of 

cognitive science, which will be discussed in greater detail in chapter 2. The intention 

of this thesis is to develop a practical theory to enhance learning by reflecting on 

physical experience to build sophisticated mathematical concepts. 

The concept of the vector is an important and useful notion in science and 

mathematics. We encounter it as both a geometrical and a symbolic idea. The notion 

of vector in the English curriculum initially appears mainly in the science syllabus. 

The first contact with vectors that English students have is in Physics, based on real 

world experience and observation. Physical experiences, however, occur dynamically 

in time, while the problems set in Physics and Mathematics are often considered at a 

specific instant of time. Everyday experience may tell a person what happens 

eventually but not what happens at an instant, resulting in what I shall call a ‘false 

intuition’ that can potentially impair an individual’s capacity to think logically and 

mathematically. 
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Real experiences with vectors are many and varied (displacement, velocity, 

acceleration, forces, etc.) and the differences can cause complications, whereas the 

mathematics of vectors, once it is understood, has a simpler structure that applies to 

all embodiments and therefore potentially has more power. The view I have held for 

many years, in the case of vectors, is that there are two fundamentally different 

worlds: the embodied world with its various different environments (contexts) that 

involve sensory experience and visualisations, and the symbolic world of mathematics 

with its use of symbols to represent vectors with their components being written in a 

column matrix or as i and j components. There are parallels between these worlds in 

the way they compress action into process and into concept which we shall discuss in 

greater detail in chapters 2 and 3. However, in the school environment, the emphasis 

is on preparing students for assessment and there is always a dilemma of how to 

approach the teaching of the topic in a crowded curriculum. There often does not 

seem to be time to show students how these two parallel words work together and 

enable them to construct the concepts in a meaningful way. It is easy in a crowded 

syllabus to make wrong assumptions about students’ embodied awareness of the topic 

and enter some of them into the symbolic world too quickly. 

In the development of the research in the thesis, a preliminary study helped to build 

the theoretical hypothesis. I decided to involve the group of students I was teaching, 

in activities and reflective plenaries in which I focused on how the mathematical 

notion of vector might be built from the physical experience. 

Our specific practical activities involved conceiving transformations as physical 

movements of a shape on a flat surface and focusing on the idea that different actions 

can give the same result. For instance, when looking at the hand translating a shape, 

the end of each finger moves in the same direction by the same amount, thus the 

arrows from the starting point to the finishing point all have the same magnitude and 

direction and effectively represent the same translation. By focusing on the effect of 

the translation rather than the physical movement of a particular point gives the 

student an opportunity to give embodied meaning to the mathematical notion of a free 
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vector (with specific magnitude and direction but not starting at any specific point in 

space). 

This approach has the potential of being extended to the mathematical notion of 

addition of vectors in that the effect of two successive shifts is the same as that of the 

single shift from the initial position to the final position. This in turns leads the 

concept of the commutativity of vector addition, which only makes sense when we 

think of free vectors detached from any context. (If A, B, C are fixed points, then the 

journey BCAB+ makes sense as a journey from A to B to C, but ABBC +  suggests 

first travelling from B to C, and then seems to require a jump from C to A to perform 

the second journey from A to B.) By using a combination of practical activity, 

reflection and plenary discussion, it becomes possible to create an environment in 

which students can potentially construct links between different ways of looking at 

the same concept in different contexts. The time devoted to the topic of vectors was 

the same as in other classes, but the intention was to produce more long-term stability 

of concepts. 

Concepts of vectors are usually formulated in specific contexts, such as 

displacement and forces in the physical world, where vectors either follow each other 

(displacement) or come out from one point (forces acting on an object). Free vectors 

in the mathematical world, on the other hand, are often drawn as separate vectors in 

space which do not overlap each other. Each context therefore has its own type of 

general format which will be called a generic case in that context. In the context of a 

journey, a combination of journeys is given by following the first journey by the 

second, and in the generic case, the first journey ends where the second begins. In the 

context of several forces acting on a point, a combination of forces is added together 

symbolically by working out the horizontal and vertical components of each vector 

and adding them together to present the final answer as a column vector. Graphically, 

students would be expected to add free vectors ‘nose to tail’ by shifting the start of 

one vector to the end of the other. However, if they are given example of vectors that 

cross, or vectors whose ‘noses’ meet at a point, such questions might cause confusion. 
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These examples are called singular cases. In simple terms, a singular case is an 

example that has incidental properties which are not typical of the general case in the 

given context. It is my belief that students’ ability to handle singular cases will be 

highly indicative as to whether they have a rich flexible concept rather than a more 

limited procedural view. 

Examinations usually involve generic types of problems and, through extensive 

practice with past questions, students can be very well prepared to answer such 

problems. They learn the procedures for the specific situation; however, even students 

who obtain a top mark in this way in the exam might not be able to answer unfamiliar 

singular cases. From my experience, when seemingly very capable students come out 

from an exam and say that a particular question was impossible, by looking at the 

question afterwards I was often able to classify it as a singular case. 

To encourage students’ construction of rich connections between different 

physical and mathematical contexts, I built reflective plenaries into lessons. The 

intention was to help each student to build a concept of vector as a cognitive unit 

which encapsulates all the aspects of free vector into a simple single mathematical 

idea. The goal was to build a long-term conceptual stability of concepts to give 

students the insight and confidence to tackle singular cases and solve them using 

understanding at a higher cognitive level. 

1.2 The background to the research 

I initiated my investigation by looking carefully at the Mathematics and Physics 

syllabuses and talking to the teachers of both subjects. This seemed appropriate since 

both subjects use vectors in various topics.  

Through discussions with the teachers I found that other teachers shared similar 

strategies to those that I used, with a positive attitude in trying their best to help 

students to perform well in exams. Like myself they show awareness of students’ 

difficulties and, in their teaching, do their best to give students the right procedures to 

answer questions and ways of overcoming the obstacles. They have no time to find 
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the reasons for problems students might encounter but know instinctively which 

questions they should find easy and which they may find difficult, and what type of 

mistakes they might make. 

My goal was to attempt to find the nature of the students’ difficulties, to 

formulate general ways of teaching that would improve the student’s fundamental 

insight into mathematics and to express this in a language that could be shared both 

with other teachers and with the students themselves. 

In attempting to make headway in such an ambitious task, I sensed that it would 

be necessary to take account of positive aspects (marked below with a ‘smiley’ ) 

and negative aspects (marked with a frown ) 

These aspects were as follows: 

 In their quest for improving the students’ understanding and to give them 

additional meaning to the ideas they wish the students to learn, teachers often try 

to give the students a physical experience of the idea by either involving them in 

doing their own experiments or by teacher demonstration of a physical 

experiment. 

 In the case of vectors, experience reveals that this can cause additional problems 

instead of solving them. When talking to the Physics teachers, it appears that 

different contexts are treated differently in that subject. For example, vectors as 

displacements are considered as journeys following each other and, when adding 

two displacements, the triangular rule of addition would be considered (figure 

1.1). On the other hand, vectors as forces are usually presented as acting on an 

object (presented as particle), and for addition of two forces the parallelogram rule 

would be considered (figure 1.2). 

 

 

Fig. 1.1 The Triangle Law Fig. 1.2. The Parallelogram Law 
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Alternatively students’ would be taught to resolve the vector quantities into 

horizontal and vertical components, which would be added together. The 

mathematics teachers involved in this research have the intuitive notion that some 

questions might be difficult because of the physical representation (singular cases) 

but generally for them the vector is a cognitive unit which can be applied to 

different contexts. They do not seem to consider that different contexts have 

clashing meanings. 

 In attempting to help the students to build a more flexible conception of the notion 

of vector that includes the whole structure of embodiment and process-object 

encapsulation, I was struck by the interpretation formulated by one particular 

student whom we will call Joshua. He explained that different actions can have the 

same ‘effect’. For example, he saw the combination of one translation followed by 

another as having the same effect as the single translation corresponding to the 

sum of the two vectors. He also observed that solving problems with velocities or 

accelerations is mathematically the same: “the only difference is that one is metres 

per second and another metres per second squared.” He was able to operate with 

the vector as a cognitive unit which can be applied to different contexts.  

 This idea of ‘effect’ seemed a possible way of introducing vectors in a 

mathematical way that focused on the mathematical ideas rather than the different 

physical contexts that lead to ‘false intuitions’. The transformations of objects can 

be seen as actions on physical objects, but then, by focussing on the effect of the 

transformation, it may be possible to give a meaning of the transformation of the 

object as a mental concept. Such a concept is already available: it is the physical 

arrow that represents the magnitude and direction of a translation. In this way, the 

transformation as an action can be related to a vector as a mental object. To focus 

positively on these ideas, I decided to involve the students in physical activities 

which were then used as the basis for reflection and discussion in reflective 

plenary sessions, with the teacher helping students to build theoretical ideas based 

on their own experience. 
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1.3 The structure of the thesis 

The relevant literature is reviewed in chapter 2. As a major focus of the thesis is the 

transition from physical experience to mathematical symbolism, it is important to look 

at the literature as to how intuition can affect understanding and how the experience 

from the physical world can be used to support conceptual development instead of 

having a negative effect. The chapter also surveys different theories of knowledge and 

learning, focusing not only the ways in which knowledge is constructed and 

understood, but also how it is compressed and encapsulated as thinkable symbols in 

the transition from embodiment to symbolism.  

Chapter 3 begins with a study of the curriculum in Mathematics and Physics 

that is encountered by the students in their earlier studies, focusing on the 

development of the concept of vector in the text-books that have been used. In the 

same chapter, I also look at some examples of research conducted in Mechanics and 

into vector concepts that are relevant to this research.  

Chapter 4 reports results from a preliminary investigation which took place before the 

main research. This enabled me to formulate the central theoretical hypothesis to be 

tested in the body of the thesis and to design a theory of teaching vectors to use and 

study in the experimental work with students. The fundamental framework is 

illustrated in figure 1.3, beginning from (physical) embodiment with actions on 

objects, to focus on the effects of those actions to form mental concepts. 

 

action 

(doing) 

 

 

effect 

(seeing, reflecting 

and focusing) 

 

 

mental concept 

(symbolising) 

Fig. 1.3 compression from action to concept by focusing on the effect 

The details of this preliminary investigation and how it led me to the idea of effect are 

discussed in detail in chapter 4. Having focused on the important elements to be 

considered in the research study, chapter 5 turns to a consideration of the 
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methodology of the research and the specific methods to be used. These are trialled in 

a Pilot Study described in chapter 6. 

The Pilot study focused on carrying out the teaching experiment and designing 

and testing a questionnaire to assess the comparative effects of the experimental 

method used in an experimental class, compared with a traditional approach in a 

parallel control class. 

The questionnaire consisted of questions designed to test: 

• if students compressed the notion of free vector and the effect of actions 

to see the equivalence of vectors having the same magnitude and 

direction which could be freely represented anywhere in the plane 

whether touching the object being shifted or not; 

• if students develop a mental concept of vector capable of solving not just 

generic but also singular cases; 

• if students have the flexibility to use a vector as a mathematical mental 

concept to solve problems independent of the context; 

• if they can apply the concept of the commutative law of addition: 

u+v=v+u, which can only be understood by students treating u and v as 

‘free vectors’. 

The pilot study also included trial interviews to test some of the interview techniques 

intended to seek greater insight into: 

o use and flexibility of language when discussing problems connected 

with vector addition; 

o the focus of attention at any given time (whether it is on actions, or 

procedures or on the effects of those actions and procedures); 

o the way in which different contexts affect their thinking; 

o their flexibility in dealing with different modes of operation 

(graphical/symbolic). 
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The details of questions to be used in the main study, which were tested in the Pilot 

study, and the outcome of the Pilot Study are presented in chapter 6. 

Chapter 7 presents and analyses the quantitative data collected from the use of 

the questionnaire in three tests: pre-test, post-test and delayed post test. Chapter 8 

presents the qualitative data from interviews with the teachers. Chapter 9 presents the 

qualitative data from the interviews with selected students. The data collected gives 

both quantitative and qualitative evidence that is consistent with the main hypothesis 

that the rich embodied experience in the experimental approach, focusing the students 

on the notion of effect, helps them to internalise processes into manipulable mental 

concepts that remain stable through to the delayed post-test. 

The final conclusions, including detailed summaries of the research and analysis 

of results, are presented in chapter 10, together with reflections on the limitations and 

generalizability of the results, leading to avenues for future research and development. 
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Chapter 2 

Literature Review 

2.1 Introduction  

This chapter presents the review of the literature that theoretically underpins the 

thesis. It includes general theories of learning and understanding, but focuses 

particularly on embodiment on the one hand and symbolism on the other. The 

relationship between embodiment and symbolism will play a fundamental role in the 

approach to the teaching of mathematics in general and vectors in particular. It will be 

used to build a theoretical framework in which meaning for symbolism is constructed 

from reflection on embodied activities, and to lay out a schema of development to 

enable the cognitive development to be described and tested in the main study. 

2.2 Theories of knowledge and understanding 

In working with students, I found that their responses did not seem to fit within a 

single theoretical position and therefore found it necessary to review a number of 

different theories to build a theoretical framework to categorise answers that arose in 

my research. The framework developed is a blend and extension of other theories. In 

what follows I describe the literature and the theories I have considered, and my 

reasons for building the theoretical framework used in this thesis. 

2.2.1 Intuition 

From my experience, different physical encounters of vectors gained in Physics or 

every-day life can cause complications for students. They answer questions from a 

‘false physical intuition’ point of view. For example, when I asked students in the 

preliminary study to add two vectors a and b as shown in fig 2.1, nearly 50% gave a 

wrong answer c, marked with a dotted line. 
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Fig. 2.1 Example of the ‘intuitive’ addition of two vectors 

Although this might seem like a misapplication of the triangle law, from interviews, it 

appears that several students used a physical experience of two people pulling them in 

directions of vectors a and b. There is a stronger pull in the b direction and therefore 

that’s where they are going to end up moving. Students in this case seem to forget 

about the mathematical rules of adding vectors and base their answer on ‘physical 

intuition’ which, regrettably, leads them astray. As I have decided to classify such 

answers as physically intuitive responses I have become interested at the ways that 

‘intuition’ has been formulated in the past. 

The early philosophers were interested in intuition as a basic human faculty. In 

his ‘Essay Concerning Human Understanding’ (1690), the English Philosopher, John 

Locke specifies three degrees of knowledge, which are “intuitive”, “demonstrative” 

and “sensory”. In discussing Locke’s ideas, Sierpinska (1990) refers to intuitive 

knowledge as “irresistible and certain”. Intuitive knowledge seeks “identity or 

diversity” because “it is the first act of the mind to perceive its ideas and to perceive 

their difference and that one is not the other” (Sierpinska, 1990, pp. 28–29). 

In his Critique of Pure Reason (1781), the philosopher Kant summarizes 

cognition in the following terms: 

[…] all human cognition begins with intuitions, proceeds from thence 
to conceptions, and ends with ideas. (Kant, 1751, p.404) 

Skemp (1971) specifies two modes of functioning of intelligence: intuitive and 

reflective. He specifies the intuitive mode as being ‘aware through our receptors 

(particularly vision and hearing) of data from the external environment, this data 

being automatically classified and related to other data by the conceptual structures,’ 

(Skemp, 1971, p.51). 
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Royce et al. (1978), in a review of psychological epistemology, includes 

intuition as a “distinct cognitive phenomenon, together with perception, thinking and 

symbolisation.” 

Fischbein, Tirosh and Melamed (1981) write: 

Accepting intuitively a certain solution or a certain interpretation 
means to accept it directly without (or prior to) resorting explicitly to a 
detailed justification. [...] The problem of identifying the natural 
intuitive biases of the learner is important because they affect – 
sometimes in a very strong and stable manner – his concepts, his 
interpretations, his capacity to understand, to solve and memorize in 
certain area. We are naturally inclined to retain interpretations which 
suit these natural, intuitive biases, and to forget or to distort those 
which do not fit them.  
 (Fischbein et al., 1981, p 491) 

They end their article by concluding that: 

Didactical strategies must be devised for shaping improved intuitive 
interpretations and for overcoming conflicting intuitive biases 
 (Fischbein et al., 1981, p. 512) 

Fischbein (1994) specifies intuition as one of the three components of mathematics as 

a human activity. The other two components are formal and algorithmic. 

Theoretically, intuitions may play a facilitating role in the instructional process, but 

very often, contradictions may appear:  

Intuitions may become obstacles – epistemological obstacles [...] – in 
the learning, solving, or invention processes. 
 (Fischbein, 1994, p. 232–234) 

Sierpinska (1990) summarises a model of understanding mathematical concepts 

developed by Herscovics and Bergeron (1989) in which they also look at intuition. 

She quotes them: 

Intuition [...] arises from a type of thinking based essentially on visual 
perception and results in an ability to make rough non-numerical 
approximations. (Sierpinska, 1990, p. 28) 

According to Dewey (1988), and then Piaget, the first stage of concepts are formed 

from experience of a single object and by building a general category of objects with 
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similar or the same characteristics. The second stage comes from discriminating 

between properties of characteristic and non-characteristic objects. The third stage 

consists of “application to explaining new cases with the help of a discovery made in 

one case,” (op. cit., p. 164-165). In my own research, being aware of the possible 

‘false intuitions’ in the second stage, the question arises whether the third stage—if 

implemented carefully and reflectively—can help to straighten the misconception 

gained in the second stage. 

2.2.2 Instrumental-relational understanding 

As I was intending to reintroduce the concept of vector addition to the experimental 

group of students in a specific context, I decided to look at the theory of the 

instrumental and relational understanding of Skemp (1976), which was expanded by 

other researchers, and also at the related theory of procedural-conceptual knowledge 

introduced by Hiebert & Lefevre (1986). 

Skemp (1971, p. 15) describes two types of learning. One he calls habit 

learning, or rote-memorizing, which is instrumental. The other learning involves 

understanding, which he calls intelligent learning. Piaget pioneered studying the 

second type of learning (cognitive processes in children and adults). Skemp indicates 

that reflective activity “involves becoming aware of one’s own concepts and schemas, 

perceiving their relationships and structures, then manipulating these in various 

ways,” (Skemp, 1971, p 77). He also suggests that “low-order concepts can be 

formed, and used, without the use of language,” (p. 26) however “making an idea 

conscious seems to be closely connected with associating it with a symbol,” (p. 78) 

and “it is largely by the use of symbols that we achieve voluntary control over our 

thoughts,” (p.78). According to Skemp, symbols help us to “reduce the cognitive 

strain of keeping the whole of the relevant information accessible,” which is very 

important since “one of the aims of reflection is to become aware of how one’s ideas 

are related, and to integrate them further. 
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My analysis of observing students for many years, as a mathematics teacher, is 

that the lack of the requirement for analysis and symbolic accuracy in graphical 

representations causes many problems when students have to apply their knowledge 

to questions involving applications of vector quantities in two and three dimensions. 

The lack of accuracy seems to often stop, observed by me students, relating ideas and 

integrating them further. Krutetskii (1976) suggested that gifted children have “a 

tendency to interpret environmental phenomena on the level of logical and 

mathematical categories, to perceive many phenomena through the prism of logical 

and mathematical relationships, and distinguish a mathematical aspect when 

perceiving many phenomena in an activity” (1976, p. 302). 

Van Hiele (2002) writes, ‘The theoretical level to which the axioms belong can 

only be reached by starting from the descriptive level’ (object recognition level) 

otherwise they have to learn ‘parts of geometry by heart and that means only 

instrumental understanding’. He also states that ‘Many teachers were very content 

with such a course of events [...] and there were always pupils who liked mathematics 

from the very beginning and found their own way to the higher levels. But a great part 

of the pupils developed a dislike of geometry and after their study was finished forgot 

practically all of it.’ (van Hiele, 2002, p 34-35). He also warns that, ‘Reflection fails 

because the pupil only disposes of concepts of the visual level and those concepts do 

not lead to a result on the descriptive level,’ (van Hiele, 2002, p. 35). The visual level 

means that shapes are recognised by seeing and not by their properties. He gives as 

the instrumental example drawing a picture using coordinates or vectors on the 

squared paper.  

2.2.3 Procedural-conceptual knowledge 

According to Hiebert and Lefevre (1986), procedural knowledge “is made of two 

distinct parts. One part is composed of the formal language, or symbolic 

representation system, of mathematics. The other part consists of the algorithms, or 

rules, for completing mathematical task.” (p 6). The second one of these seems like 
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Skemp’s instrumental understanding, which indicate step-by-step instructions that 

prescribe how to complete tasks. Hiebert and Lefevre say, “in general, knowledge of 

the symbols and syntax of mathematics implies only an awareness of surface features, 

not a knowledge of meaning,” (p. 6). What the authors underline is that conceptual 

and procedural knowledge have to be linked, otherwise “students may have a good 

intuitive feel for mathematics but not solve the problems, or they may generate 

answers but not understand what they are doing,” (p. 9). Expanding on their ideas of 

symbols, they say, that symbols represent ideas that can be met in real-world 

experiences. These ideas can be represented as conceptual knowledge, which provides 

the referents for symbols. 

This would fit with the way I reintroduced the experimental group to the idea of 

the vector (described in methodology chapter, later on). 

If the procedures are related to the underlying rationale on which they 
are based, the procedures begin to look reasonable. It is possible to 
understand how and why the procedures work. [...] procedures that are 
meaningful, that are understood by their users, are more likely to be 
recalled.  (Hiebert and Lefevre, 1986, p. 10-11) 

Therefore, if my technique of reintroducing the experimental group to vectors is 

correct, the retention should be better and students should be able to perform better 

than the control group after a break (six months in case of my research).  

Basically conceptual knowledge and relational understanding indicate that 

somebody learnt something with meaning, while procedural knowledge and 

instrumental understanding indicate that somebody learnt how to solve a problem but 

not necessarily with meaning. 

While the first ideas of Skemp’s instrumental and relational understanding 

placed these two types of understanding into separate classifications, Hiebert and 

Lefevre (1986) say that 

Not all knowledge can be usefully described as either conceptual or 
procedural. Some knowledge seems to be a little of both, and some 
knowledge seems to be neither. (Hiebert and Lefevre, 1986, p. 3) 

They write that 
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[...] conceptual knowledge is characterized most clearly as knowledge 
that is rich in relationships (Hiebert and Lefevre, 1986, p. 3) 

They also say that 

In fact, a unit of conceptual knowledge cannot be an isolated piece of 
information; by definition it is a part of conceptual knowledge only if 
the holder recognizes its relationship to other pieces of information.  
  (Hiebert and Lefevre, 1986, p. 4) 

They quote Skemp (1971) when describing “understanding” as “the state of 

knowledge when new mathematical information is connected to existing knowledge.” 

(p. 4). The other way they see development of conceptual knowledge is by “the 

construction of relationships between pieces of information that already have been 

stored in memory”. They quote Bruner (1961), Ginsburg (1977) and Lawler (1981) as 

the predecessors of such a theory. They use the term ‘abstract’ as the degree to which 

a unit of knowledge is tied to a specific context. According to them: “Abstractness 

increases as knowledge becomes freed from specific contexts,” (p. 5). 

This is very relevant to my investigation of students’ responses. I have found 

from the preliminary investigation that students who performed best in the 

questionnaire, used in the main study, were those who either connected to a very 

specific context of a journey or those who saw the vector as a mathematical object. 

And therefore it seems that they used abstractness to different degrees. 

Hiebert and Lefevre write (1986, p. 5) that “some relationships are constructed 

at a higher, more abstract level than the pieces of information they connect”, which 

they call a reflective level. They note that it is not always easy to assess where 

procedural knowledge ends and conceptual starts. I have tried to assess this difference 

not only through the responses to my questionnaires but also through the interviews. 

The assessment of the students’ responses is graded in stages of their conceptual 

development. These stages were developed with the help of the text-book that 

students study in Year 11. The book introduces vectors in stages from the embodied 

action of transformation of an object to the idea of the column vector, and arrows 

having a specific direction and magnitude, through to the idea of vector addition and 
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equivalent vectors to the idea of the free vector. The interviews looked at the 

development of students’ language to express their actions when adding vectors, 

trying to assess if they express their conceptual or procedural knowledge.  

To obtain a deeper insight into the nature of human understanding, it has proved 

useful to look more closely at the link between intuitions produced by embodiment 

and the symbolism that is used to represent the processes and concepts. 

2.3 Different modes of operation in mathematics 

At school students are introduced to vectors in two ways. In Physics, vectors are 

introduced as journeys or forces, added according to the triangle law or parallelogram 

law, with different meanings and then represented as two one-dimensional 

components which are added by adding components. The sixteen-year-old students 

studying Mechanics in my school, who are taught in this way seemed to cope well 

with resolving horizontally and vertically and solving problems formulated in this 

context. However, according to my preliminary study (to be discussed in detail in 

chapter 4), many of these students have subtle problems with geometric 

interpretations, particularly with free vectors. The evidence arose in the way they 

answered certain ‘singular’ (unusual) questions (shown in figure 1.4b) which do not 

conform to the general prototypes that are suggested by their earlier experiences. In 

chapter 1, I theorised that if students are given embodied experiences focusing on the 

effect of transformations rather than the specific actions involved, then they have the 

potential to construct an embodied conceptualisation of the notion of free vector, and 

then cope more easily, not only with generic cases, but also with singular cases. 

This requires a consideration of the literature that relates how physical 

experience with the outside world (embodiment) plays its part in the learning process. 

A major source for these ideas is the work of Lakoff and his colleagues who consider 

how human embodiment underpins abstract thinking. 

I will also be looking at the importance of symbolic representations in the 

ability to model problems abstracted from the outside world in mathematical terms, 
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and how reflection on mental and physical actions affects the building of coherent 

conceptual schemas. This involves considering not only how operations are carried 

out by sequences of step-by-step actions, but also how the effect of these actions can 

be symbolized and considered as mental entities to think about. A major source for 

these ideas is the theory of encapsulation of processes as mental objects as formulated 

by Dubinsky (1991) and Sfard (1991), and in the theory of procepts (where a symbol 

dually evokes either process or concept) formulated by Gray and Tall (1994). 

2.3.1 Successive stages of cognitive development 

Piaget (1985) describes cognitive development of the child in several stages: sensori-

motor, pre-conceptual, concrete-operational and formal-operational. To underpin this 

development, he formulated a three-part theory of abstraction. In the first two stages 

(sensori-motor and pre-conceptual) a child goes through the process of empirical 

abstraction, when (s)he focuses on physical objects and their properties, noting 

similarities and differences that are abstracted empirically. In the third, concrete-

operational stage, the child focuses on actions on objects and the properties of these 

actions result in what he calls pseudo-empirical abstraction. The formal-operational 

stage is described in his theory in terms of reflective abstraction in which ‘actions and 

operations become thematized objects of thought or assimilation’ (Piaget, 1985, page 

49). He suggests that these stages of development apply to children from birth to 

about age of 12. 

Piaget’s ideas of conceptual growth were adapted by many researchers who 

developed them to apply to any age to formulate how conceptual growth takes place. 

Bruner (1966), for example, introduced three modes of representation: enactive, 

iconic and symbolic. He wrote: 

What does it mean to translate experience into a model of the world? 
Let me suggest there are probably three ways in which human beings 
accomplish this feat. The first is through action. [...] There is a second 
system of representation that depends upon visual or sensory 
organisation and upon the use of summarizing images. [...] we have 
come to talk about the first form of representation as enactive, the 
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second is iconic. [...] Finally, there is a representation in words or 
language. Its hallmark is that it is symbolic in nature.  
 (Bruner, 1966, p. 10–11) 

Bruner’s enactive mode of operation is based on action and begins in Piaget’s sensori-

motor stage, to be followed by the ikonic and symbolic modes in the pre-conceptual 

and concrete-operational stages. In older individuals, all three modes may be available 

and used as appropriate in different contexts. 

Lakoff and Johnson (1980) formulate their idea of conceptual embodiment as 

follows: 

Our experiences with physical objects (especially our own bodies) 
provide the basis for an extraordinarily wide variety of ontological 
metaphors, that is, ways of viewing events, activities, emotions, ideas, 
etc., as entities and substances. (Lakoff and Johnson, 1980, p. 25) 

Lakoff & Núñez (2000) propose that all human ideas are grounded in sensori-motor 

experience. This involves the use of formulatable cognitive mechanisms by which the 

abstract is comprehended in terms of the concrete by using a conceptual metaphor. 

They claim that most mathematical thought makes use of conceptual metaphors. 

(2000, page 5). According to Lakoff & Núñez, human reason crucially depends both 

on human experience and imagination and therefore categorisation depends partly on 

human perception and motor activity, and partly on mental imagery. 

2.3.2 Construction of meaning 

Constructivists see students as active learners, who make sense of the world on the 

basis of the links between past experience and new information. In doing so, students 

may need to reconstruct their earlier conceptions to make sense of new information 

(Driver and Oldham, 1986). This process can occur only when students are 

dissatisfied with their current conception and feel the need for a new one. According 

to Posner et al. (1984) they should also consider the new concept as intelligible, 

plausible, and useful in solving problems. 
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However, a stumbling block for such a development and reconstruction can be 

what Lakoff describes as a ‘prototype effect’. He (1987) quotes from studies of Rosch 

that questions the belief that “categories are defined only by properties that all 

members share,” for if that were true, then  

[...] categories should be independent of the peculiarities of any being 
doing the categorizing; that is, should not involve such matters as 
human neurophysiology, human body movement, and specific human 
capacities to perceive, to form mental images, to learn and remember, 
to organize the things learned, and to communicate efficiently.   
 (Rosch,  quoted in Lakoff, 1987, p 7) 

On the contrary, the research conducted by Rosch and others demonstrated that  

[...] categories, in general, have best examples (called “prototypes”) 
and that all of the specifically human capacities just mentioned do play 
a role in categorization. (ibid. p.7) 

Early stages of mathematics in English primary school, are taught through physical 

activities using the senses and it is hoped that children will build on this experience to 

comprehend the nature of mathematical ideas, integrating them with their previous 

knowledge, and building a new category or concept or, where necessary, rebuilding 

the previous one. However, there is always the danger that pupils will accept a 

prototype (an example as representation of the whole category) as the concept. It is 

therefore important how we introduce our students to a new conceptual idea and to be 

aware of which context we are going to use for our explanations and discussion. 

According to Jaworski (1994)  

The pupil might fit the teacher’s words into her own experience to get 
a meaning different from what the teacher tried to convey. Because 
people interpret words and gestures differently, any attempt to convey 
knowledge in an absolute sense must be seen as quite likely to fail. A 
teacher therefore has to find ways of knowing what sense pupils make 
of the mathematical tasks which they are set, in order to evaluate 
activities and plan further lessons.  
 (Jaworski, 1994, p. 220) 

She describes the situation in her article in which  
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[...] the activities in which the learners participated and encouraged 
them to be mathematical, that is to act as mathematicians by 
mathematising particular situations created by their teacher [...] 
learners shared perceptions with each other and with the teacher, and 
their ideas became modified or reinforced as common meanings 
developed. This enabled learners to become clearer and more confident 
about what they knew and understood. (Jaworski, 1994, p. 229) 

In the case of vectors, the pupils’ first introduction in typical English schools occurs 

in Science lessons, mainly through thinking about forces, which is a highly particular 

context with implicit properties that act as possible obstacles to the general notion of 

vector. Many pupils have thinking that is flexible enough to cope with the transition 

to the general notion of vector, despite the specific peculiarities of this particular 

embodiment. However, from the initial investigations into the topic of vectors, which 

will be described in greater detail in chapter 4, it seems that there are many more 

students for whom the concept of force becomes a prototypical concept of a vector 

and these pupils have a problem when the construction of the general concept of 

vector becomes necessary. 

2.3.3 An example: the case of fractions 

The subtleties required in construction of mathematical concepts can be illustrated by 

the case of fractions. Many mathematics text-books introduce the idea of the fractions 

as part of circles (pizzas, pies, cakes). This type of representation is very restrictive, 

and is only good for the imagination of simple fractions like 1/2, 1/4, 2/3, 5/6, etc. 

Kerslake’s research (1986) shows that  

[...] the only model of a fraction that was widely accepted was that of a 
geometric ‘part of a whole’ Not only was it the only universally 
accepted model of 3/4, but children referred to parts of circles or parts 
of cakes when trying to explain other problems during the course of 
the interviews, such as addition of fractions, or whether 2/3 is bigger or 
smaller than 3/4. (Kerslake, 1986, p. 71) 

Because of this representation  
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[...] most children found it difficult to think of fractions as numbers, 
particularly when asked to place them on the number line.  
 (Kerslake, 1986, p. 71) 

After teaching an experimental group with a number line only, she concluded that  

[...] while the geometric ‘part of a whole’ model may well be useful 
one in establishing some of the basic ideas about fractions, serious 
consideration is necessary as to its limitations and to the need for 
presenting the idea of a fraction in a wider context. 
 (Kerslake, 1986, p. 96) 

A particular conclusion drawn from this research was that “the distinction needs to be 

drawn between the embodiment and the idea,” (p 96). 

This experience with fractions shows that a single embodiment of a general 

concept can inhibit the formation of a more general version of the same concept that 

has a wider range of application. The same problem seems to be happening in the case 

of vector. Experiencing a vector in a particular embodiment may lead to the student 

being able to operate in a limited range of cases that are similar to the students’ 

experiences, but which are too narrow to cope with even slightly unfamiliar examples. 

These limitations may be revealed by presenting the student with ‘singular cases’, for 

instance the case where the resultant is required for two arrows whose heads are at the 

same point.  

2.3.4 Embodiment of mathematical concepts in the physical world 

Skemp used the word embodiment before it became fashionable in more recent 

theories of embodied cognition, to describe the way in which a mathematical concept 

is given a physical meaning that represents the underlying mathematical ideas in a 

clear and explicit manner. Skemp (1971, p. 176-177) gives an example of 

embodiment of equivalent fractions arising through the double operation of 

combining and sharing, which, in mathematical terms, are commutative. Sharing 

followed by combining gives the same result as combining followed by sharing, in the 
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following sense. He gives example of a fraction 3/8 which we can first share the 

standard object (a rectangle) into eight parts (figure 2.1) 

 

Fig. 2.2 The first representation of 3/8 

then combine three of these parts (shaded); or alternatively combine three of the 

standard objects and then share the resulting combination into 8 parts (figure 2.2). 

 

Fig. 2.3 The second representation of 3/8 

In both cases we will end up with the three eighths of the standard object. 

This is the closest example I have found in literature to what I call ‘the same 

effect’ of two different actions. It leads Skemp to the idea of representing sets of 

equivalent fractions as shown below (figure 2.3): 

 

Fig. 2.4 representation of equivalent fractions 

This suggests an alternative approach to the learning of fractions. Instead of speaking 

of the mathematical idea of ‘equivalent fractions’, it may be cognitively more 

appropriate to look at equivalent fractions as operations that ‘have the same effect’. 

In the case of vectors, we saw in chapter 1, figure 1.1 that it is possible to add 

vectors in different ways, and these ways have the same result. By embodying a 

vector through the action of translating an object on a flat table, we may focus 

attention on the fact that all the points on the object (or on the hand that moves the 

object) move in the same direction by the same amount. The shift of any such point 
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can be represented as an arrow from its start point to its end point and any of these 

arrows is sufficient to represent the translation. As representations, they have the 

same effect. In this way we can give an embodied underpinning for the notion of free 

vector by focusing on the effect of a translation. 

Lakoff writes: 

“Thought is embodied, that is, the structures used to put together our 
conceptual ideas grow out of bodily experience and make sense in 
terms of it; moreover, the core of our conceptual systems is directly 
grounded in perception, body movement, and experience of a physical 
and social character.” (Lakoff, 1987, p. xiv) 

With respect to symbols, however, Lakoff & Nunez (2000) say, “symbols are, just 

symbols, not ideas,” and that the intellectual content of mathematics lies in its ideas 

for which symbols do the job of characterising their nature and structure. According 

to this viewpoint, abstract ideas make use of formulatable cognitive mechanisms, such 

as conceptual metaphors that import modes of reasoning from sensori-motor 

experiences. 

My research is consistent with this statement as students often seem to ‘know’ 

the graphical symbol of an arrow representing a vector, without having a fully 

coherent understanding of ideas that give rise to its intellectual content. Students I 

have interviewed have had to be helped to attach a mathematical concept to the 

symbol of an arrow before they can manipulate it successfully in a full range of 

contexts, particularly in singular instances. 

Lakoff & Nunez (2000) quote from cognitive science research, that most of our 

thought is unconscious and much of mathematical cognition happens at too low a 

level in the mind to be accessible. We draw conclusions from the world around us 

without being aware of it. We also have unconscious memory, which gives us implicit 

rather than explicit understanding. Schacter (1996) writes that the experiences we 

don’t recall often have a detectable and measurable effect on how we behave. The 

theory of Lakoff & Nunez focuses on these unconscious mechanisms to suggest that 

understanding of mathematics uses the same cognitive mechanisms that are used for 
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ordinary ideas: basic spatial relations, groupings, small quantities, motion, 

distributions of things in space, changes, bodily orientation, basic manipulation of 

objects, iterated actions, and so on (pp. 27, 28). 

On this basis it may be possible to reintroduce a concept, that causes a problem 

in developing understanding, so that, if we use the right experiences in the appropriate 

context, we may be able to set up the unconscious cognition in a more flexible 

manner, which will help the students in developing their knowledge. But how do we 

know when we introduce this idea to students that they build a proper concept and not 

just rote-learn and forget after a short time? The theory of embodiment suggests that 

we need to give appropriate experiences to underpin the concepts with bodily activity 

that integrates and supports the abstract ideas. 

Socio-cultural theorists like Lave and Wenger (1991) view gaining knowledge 

as integration into a community of practice in which social actions are defined. For 

instance, students might be expected to learn the proper techniques of drawing using 

set-square, ruler and compasses. However, how does a community of practice pass on 

its more subtle conceptions that are carried out privately within our minds? Students 

may learn to perform mathematical manipulation of abstract symbols in accordance 

with the observed conventions, but there is still the question of the deeper conceptual 

meanings of the use of symbols to focus on the essential mathematical ideas free (as 

far as possible) from the coercive effects of specific embodiments. 

2.3.5 The transition from embodiment to symbolism 

The necessary shift from embodiment to symbolism has been detailed by Skemp 

(1971): 

First, we learn to manipulate concepts instead of real objects; then, 
having labelled the concepts, we manipulate the labels instead. Finally, 
perhaps, we reverse the process by re-attaching the concepts to the 
symbols and then re-embodying the concept in the real action with real 
objects from which they were first abstracted. (Skemp, 1971, p 83) 
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According to him we cannot use mathematics effortlessly unless we detach the 

symbols from their concepts and we have to be able to manipulate them without 

attention to their meaning. However he emphasises that this manipulation should be 

‘automatic’ and not ‘mechanical’. In automatic manipulation we can easily go back 

and reattach symbols to their meaning, while in mechanical manipulation the symbols 

stay meaningless. Skemp also says that:  

In mathematics, what we store is a combination of conceptual 
structures with associated symbols, and the former would therefore 
seem to be important for the retention of the whole.   
  (Skemp, 1971, p. 85) 

According to Hiebert and Lefevre (1986), symbols are viewed as cognitive aids, they 

“help to organize and operate on conceptual knowledge,” (p. 15). They even go so far 

as to say that “The symbols can also produce conceptual knowledge,”  (p. 15). They 

further write that: “Being competent in mathematics involves knowing concepts, 

knowing symbols and procedures, and knowing how they are related,”(p.16). 

Hiebert and Carpenter (1992) emphasise the importance of the symbolism to 

development of understanding and say that knowledge is represented internally, but 

communicating mathematics requires external representation:  

[...] when the relationships between internal representations of ideas 
are constructed, they produce networks of knowledge.  
  (Hiebert and Carpenter, 1992, pp. 66-67) 

They also say that students often make inappropriate connections or “represent 

information as isolated pieces,” (p. 76) which cause difficulties in making sense of 

mathematical situations. Students build on prior knowledge and this may be 

procedural rather than conceptual, resulting at least in part from years of procedural 

and instrumental instruction. 

Skemp (1979) describes a dynamic process of developing understanding: “to 

understand a concept, group of concepts, or symbols is to connect with an appropriate 

schema” (page 148), which puts the above theories into one sentence. However, this 
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still begs the question of how the students connect all these bits of information into an 

appropriate schema. 

To be able to conceive of ideas in a coherent form and to link them together 

requires a way of making this knowledge appropriate for comprehension and making 

connections. In particular, how do we put together embodied knowledge in a way 

which allows us to shift from embodiment to symbolism in a way that allows the 

symbolism to be used flexibly and meaningfully in a range of contexts? 

2.4 Concept Images and Compression of Knowledge 

Mathematical concepts are highly sophisticated mental constructions. Tall and Vinner 

(1981) define the concept image to be the total cognitive structure associated with a 

mathematical concept in an individual’s mind. The ideas related to the given concept 

are continually constructed as the individual matures and are changing with new 

stimuli and experiences. Given such a range of cognitive structure, it is important to 

understand how the wider aspects of the concept image can be channelled into a 

thinkable entity that can be manipulated mentally in the mind. 

Thurston (1990) described the way in which mathematical ideas start as a 

collection of disparate ideas which, through use and reflection, are compressed into 

easily recalled knowledge: 

Mathematics is amazingly compressible: you may struggle a long time, 
step by step, to work through some process or idea from several 
approaches. But once you really understand it and have the mental 
perspective to see it as a whole, there is often a tremendous mental 
compression. You can file it away, recall it quickly and completely 
when you need it, and use it as just one step in some other mental 
process. The insight that goes with this compression is one of the real 
joys of mathematics. (Thurston, 1990, p. 847) 

On the same note, Crick (1994) states that the brain can make conscious decisions 

only by suppressing data and focusing on a limited quantity at a time. 

Krutetskii (1976) writes: 
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Retaining information in generalized and abbreviated form … does not 
load the brain with surplus information and thus permits it to be 
retained longer and used more easily. (Krutetskii, 1976, p. 300) 

2.4.1 Cognitive Units 

Barnard and Tall (1997) introduced the term cognitive unit for part of the concept 

image that can be held consciously in the focus of attention. A cognitive unit can be a 

symbol or representation or any other aspect related to the particular concept. For 

example in case of vectors it can be an arrow or a triangle of three vectors showing 

one side to be the sum of the vectors represented by the other twos. They hypothesise 

that powerful thinking arises through compressing information into rich cognitive 

units that can be manipulated in the mind. 

A powerful aspect of reflective thinking is the ability to compress a 
collection of cognitive units – which may be processes, sentences, 
objects, properties, sequences of logical deduction etc – into single 
entity that can be both manipulated as a concept and unpacked as a 
cognitive schema. (Barnard and Tall, 1997, p. 2) 

This is particularly relevant to my own research as I seek ways of helping students to 

move from a range of experiences with the notion of vector to a central notion of free 

vector as a cognitive unit in its own right that has coherent meanings across a range of 

contexts. 

2.4.2 Process-object encapsulation 

A major theory that builds on the idea of internalising knowledge into thinkable 

entities is the APOS theory of Dubinsky and his colleagues, which is based on 

Piaget’s epistemology of mathematics (Beth & Piaget, 1966). The acronym APOS 

stands for Action-Process-Object-Schema:  

An action is any physical or mental transformation of objects to obtain 
other objects. It occurs as a reaction to stimuli which the individual 
perceives as external. It may be a single step response, such as a 
physical reflex, or an act of recalling some fact from memory. It may 
also be a multi-step response, by then it has the characteristic that at 
each step, the next step is triggered by what has come before, rather 
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than by the individual’s conscious control of the transformation. … 
When the individual reflects upon an action, he or she may begin to 
establish conscious control over it. We would then say that the action 
is interiorized, and it becomes a process …. [Then] actions, processes 
and objects ... are organized into structures, which we refer to as 
schemas. 
 (Cottrill, et al., 1996, p. 171) 

This theory is, in part, a theory of compression, from step-by-step actions to processes 

conceived as a whole that are then conceived as mental objects. In our approach to 

free vectors, this theory would suggest that individual actions (such as a shift of a 

triangle on a table) may be considered as a process (the transformation as a whole) 

and then conceived as an object (a free vector). 

Sfard (1991, 1992) describes a similar sequence of compression:  

First there must be a process performed on already familiar objects, 
then the idea of turning this process into a more compact, self-
contained whole should emerge, and finally an ability to view this new 
entity as a permanent object in its own right must be acquired. These 
three components of concept development will be called 
interiorization, condensation, and reification, respectively.(Sfard, 1992, 
pp. 64–65) 

Though ideally the compression from action to process to object is highly desirable, 

Dubinsky and his colleagues found that college students often were able to move from 

action to process, but the next stage of producing a mental object was more difficult. 

(eg. Breidenbach, et al, 1992). They also reviewed their theory to explain that ‘the 

construction of these various conceptions of a particular mathematical idea is more 

dialectic than a linear sequence’ (Dubinsky and McDonald, 2001). 

The serious question is therefore how a student can begin to think of a process 

as a mental object. A process occurs in time, an object is an entity that occurs in space 

(either real or imagined). Gray and Tall (1994) suggested that the mechanism by 

which this is done is through the use of a symbol to operate dually as process or 

concept. Thus the symbol 3+2 is both the process of addition and the concept of sum. 

They called a symbol that dually represents either process or concept a procept. 



 Literature Review Chapter 2 

 31

This highlighted the need for a symbol to function in a dual role, such as an 

arrow for a vector to represent both the process (as a movement from tail to nose) and 

the object (the arrow itself). However, the fact that an arrow has two distinct 

interpretations does not mean that students have a genuinely flexible view of vector. It 

seems that students can learn to operate with vectors as arrows in a limited way 

without constructing a flexible concept of a free vector. More insight is clearly 

required. 

A clue is found in the description of Sfard: “First there must be a process 

performed on already familiar objects”. The process-object encapsulation proposed 

by both Sfard and Dubinsky starts with actions on objects that already have meaning 

for the student. Tall and Gray (2001) suggest: 

[...] the theorised encapsulation (or reification) of a process as a mental 
object is often linked to a corresponding embodied configuration of the 
objects acted upon (which we henceforth refer to as base objects).  
 (Gray & Tall, 2001, p. 266) 

This idea links closely to Joshua’s notion of effect. The compression of knowledge 

formulated in APOS theory does not begin with the A of ‘Action’ but with the B of 

‘Base object’. This gives a ‘BAPOS’ theory (proposed by Chae, 2002) in which Base 

objects are operated on by Actions, interiorized as Processes, encapsulated as Objects, 

within a wider Schema. By focusing on the effect of the Actions on the Base Objects, 

it now becomes possible to see the idea that represents the Process as a whole and can 

be symbolised as an Object. In the case of a translation, the base object is a figure (say 

a triangle) on a table and the effect is the shift from the initial to the final position of 

the base object without focusing on what happens in between. The effect can be 

represented by any arrow that has the same magnitude and direction as the shift, and 

any of these arrows represents the free vector that is the total shift from initial to final 

position. 

This brings us closer to a possible theory of compression of the notion of 

translation into the concept of free vector. But we still need to seek a way in which 
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this can be encouraged in our students. This takes us back to the fundamental idea of 

reflective thinking. 

2.4.3 Reflection 

Driver (1989) says that teaching involves the organisation of the classroom situation 

in a way which promotes learning outcomes. 

Piaget (1985) suggests that one of the strategies to foster conceptual change is, 

to confront students with discrepant events and invoke a conceptual conflict which 

forces students to reflect on their conceptions as they try to resolve the conflict. 

However this can cause problems. Dreyfus, Jungwirth, and Elivitch (1990) found that 

their more able students react enthusiastically to conceptual conflict, but less 

successful students try to avoid the conflict or simply do not even recognise it.  

As suggested by Barnard and Tall, if a student never builds a cognitive unit out 

of all the information he manages to assimilate then it would be very difficult for him 

to manipulate ideas and use them in solving problems presented to him. 

Palmer & Flanagan (1995) found out that children develop their own ideas 

based on their own experiences. These ideas are often quite different from the 

accepted scientific viewpoints. Gilbert & Watts (1983) call them the “alternative 

conceptions” and Pines & West (1986) recognise that they significantly interfere with 

learning. One such concept is the Aristotelian idea that an action of continuous force 

keeps an object in motion. Sadanand & Kess (1990) found that 82% of senior high 

school students indicated that a force is required to maintain motion. Clement (1982) 

found that 75% of a group of university students indicated that there should be a force 

in the direction of the motion even after one semester of instructions in mechanics. 

Kilpatrick (2002) suggests that students might have problems with 

understanding certain areas because they might not have encountered situations 

meaningful to them in which mathematics was important to know. Kilpatrick (2002) 

quotes the USA National Council of Teachers of Mathematics (1991), which specifies 

that the teacher’s role is to orchestrate the discourse so that the students in this class 
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will function as an intellectual community. The teacher should set up a situation and 

then respond to what the students are saying by building on their observation, seeking 

clarification, and challenging them to explain and justify. This suggests that reflection 

is a process which would address these needs. The literature devoted to theories of 

how learners learn and how teachers teach (for example: Piaget, Skemp, Kilpatrick) 

have highlighted reflection as a central mechanism in thinking. This links closely with 

our earlier discussion of the constructivist approach to promoting learning advocated 

by Jaworski. 

2.5 Bringing theories together 

We are now moving to a position where the range of theories are bringing forward a 

general trend moving from initial intuitions from embodiment (which may include 

‘false intuitions’) to a focus on the effects of actions to lead to symbolism. As we saw 

earlier, this is part of a cognitive development is described by Piaget in his stage 

theory of sensori-motor, pre-conceptual, concrete-operational and formal operational 

and by Bruner in his enactive, iconic and symbolic modes. 

These were brought together by Biggs and Collis (1982) in their SOLO 

taxonomy to categorise the Structure of Observed Learning Outcomes. Biggs and 

Collis proposed five modes of cognitive development: sensori-motor, ikonic, 

concrete-symbolic, formal and post formal. They also note that, as each mode 

becomes available, it remains available alongside the new modes. Thus the 

introduction of the ikonic mode also includes the sensori-motor mode, which gives a 

combined embodied mode that encompasses both enactive and iconic (in the sense of 

Bruner). The concrete-symbolic mode includes the development of arithmetic and 

algebra and of the symbolic aspects of vectors. The formal modes include the notion 

of definition and deduction will not concern us here, but were suggested by Biggs and 

Collis (1982) to take the theory of Piaget beyond secondary education into graduate 

and postgraduate work. 
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These modes were consolidated into three by Gray and Tall (2001) in terms of 

embodiment (enactive and iconic), symbolic, and formal-axiomatic. In considering 

different types of mathematical concept they wrote: 

For several years [...] we have been homing in on three [...] distinct 
types of concept in mathematics. One is embodied object, as in 
geometry and graphs that begin with physical foundation and steadily 
develop more abstract mental picture through the subtle hierarchical 
use of language. Another is the symbolic procept which acts 
seamlessly to switch from a “mental concept to manipulate” to an often 
unconscious “process to carry out” using an appropriate cognitive 
algorithm. The third is an axiomatic object in advanced mathematical 
thinking where verbal/symbolical axioms are used as a basis for a 
logically constructed theory. (Gray & Tall, 2001, p.70) 

The three levels of object-construction described by Gray & Tall occur in the 

development of vectors, for instance, an arrow is an embodied object, the notion of 

the vector as a shift in space or as column vector has the structure of a procept and the 

axiomatic notion of vector space is an axiomatic object. 

The research in this thesis inhabits the first two modes discussed here, the 

embodied mode which leads to graphical representations of vectors and the symbolic 

mode. To trace the development through the two modes, I again turned to the SOLO 

taxonomy where Biggs and Collis suggest that each mode has a common sequence of 

stages which can be used to test the quality of outcomes observed in tests designed for 

assessment. The stages are: pre-structural where no structure is used; unistructural, 

when student focuses only on a single aspect; multi-structural, when student focuses 

on several separate aspects; relational when the student relates different aspects 

together in a coherent way, and extended abstract where the student can see the 

concept from an overall viewpoint. 

Bringing together a range of viewpoints, Pegg and Tall (2003) suggested that 

the SOLO theory encompasses a ‘fundamental cycle’ of conceptual development 

common to a range of distinct theories (figure 2.3).  
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  Davis APOS Gray & Tall Fundamental Cycle 

 Base Object(s) Base Object(s)  

Unistructural 

 
Isolated Actions 
Procedure 

Multistructural 

 

VMS† 

Procedure 

 

Action 

 

Procedure 
 

[Multi-Procedure] Multi-Procedure 

Relational Process Process Process Process 

Unistructural 
(Extended 
Abstract) 

Entity Object 

Schema 

Procept Entity 

Schema 

 
† VMS stands for Visually Moderated Sequence 

Table 2.1 The fundamental cycle of conceptual construction 

In each theory the first stage involves some kind of action on one or more base 

objects in which the focus of attention can be either on the object, or on the actions. 

Attention focused on the actions themselves can be consolidated into procedures (or 

multi-procedures) where there may be different ways (procedures) to carry out the 

same overall process. With support of symbols, students may at this stage construct a 

mental object as a cognitive unit which (according to the article) is both a schema 

within itself and also an entity that is manipulable within a wider schema of activities.  

2.5.1 Combining modes 

The previous section looked at the fundamental cycle of concept development that 

happens in a given mode. In our development we wish to see students construct the 

notion of free vector that relates across different modes. In the SOLO taxonomy, at 

the concrete symbolic stage, the student will also have available the embodied mode 

which may be viewed as a combination of enactive and iconic. As we shall see in the 

later study, some students may prefer to use the symbolic mode, others the embodied 

graphic mode and some will use a flexible combination of both. 
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2.5.2 Versatile thinking 

Krutetskii (1976) identifies three basic types of mathematical cast of mind: the 

analytic type (who tends to think in verbal-logical terms), the geometric type (who 

tends to think in visual-pictorial terms), and the harmonic type (who combines 

characteristics of the other two).” (1976. p.xiv). He studied ‘capable pupils’ and 

discovered that a significant majority of them belonged to the third category. He 

suggests that such pupils are “quite ingenious in their visual interpretation of abstract 

relationships, but their visual images and schemes are subordinated to a verbal-logical 

analysis [...]. They are successful at implementing both an analytic and a pictorial-

geometric approach to solving many problems,” (Krutetskii, 1976, p. 326). 

The distinction between different styles of thinking has long been a focus of 

attention in the literature. Brumby (1982), for example, noted two different strategies 

for solving a problem: 

 (i) Immediately breaking a problem or task into its component parts, 
and studying them step by step, as discrete entities, in isolation from 
each other and their surroundings. 

 (ii) An overall view, or seeing the topic/task as a whole, integrating and 
relating its various subcomponents, and seeing them in the context of 
their surroundings. (Brumby, 1982, p.244) 

Her research suggested three distinct groups of students: those who consistently used 

only serialist/analytic strategies, those who used only global/holistic strategies, and 

those who used a combination of both, whom she described as versatile learners. 

Overall 42% of her sample maintained a serialist/analytic style, 8% were 

global/holistic and 50% were versatile. 

In his thesis, following Brumby, Thomas (1988) used the term versatile to 

describe the complementary combination of global-holistic thinking and serial-

sequential thinking. Subsequently it has been used to describe students who are able 

to use a variety of techniques in different contexts involving both linear procedural 

activities and also more flexible conceptual thinking (Blackett, 1990). 
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In this thesis we will describe students to be versatile if they are able to use their 

knowledge of free vector in a versatile way in solving problems in both the embodied 

and numeric modes. 

2.6 Summary 

In this chapter a range of theories of cognitive development have been considered 

from intuitive beginnings through instrumental and relational understand of 

procedural and conceptual knowledge. Although philosophers may regard intuition as 

a basis of all knowledge, it also depends on our human characteristics which can 

involve false physical intuitions at variance with subsequent theories. 

Reviewing the theories of cognitive development proposed by Piaget and 

Bruner, I used the embodied theory of Lakoff to see the foundation of human 

development in embodiment (with links to Bruner’s enactive and iconic modes) and 

focus on the transition to the symbolic mode, looking to constructivist theories to help 

students construct the shift from embodiment to symbolism, in flexible ways, in a 

variety of contexts. This involves the compression of knowledge from separate pieces 

of information into thinkable mental cognitive units. 

Reviewing theories of Dubinsky, Sfard and Gray & Tall concerning the notion 

of ‘process-object encapsulation’, starting from step-by-step actions, interiorised to 

global processes and encapsulated as objects, we note the perceived difficulty of 

reconceptualising process as object. 

At this point we introduce the notion of ‘effect’ that arose in discussion with the 

student Joshua in the Preliminary Study to use an extended BAPOS theory, in which 

Base Objects have Actions upon them, interiorising to Processes, then Objects, where 

the encapsulated object is now represented in terms of the ‘effect’ of the action on the 

base objects. 

Introducing SOLO taxonomy not only incorporates the theories of Piaget and 

Bruner, but also has a cycle of concept construction that relates to theories of process-

object encapsulation, to give a broader theory that can be used not only to describe the 
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development of embodied and symbolic modes of operation, but also to relate them 

together in a versatile way. 
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Chapter 3 

Towards the Theoretical Framework 

3.1 Introduction 

This chapter develops the theoretical framework for the empirical research which 

follows. It begins by describing the nature of the curriculum in the UK and focuses on 

the experiences that the students in the study will have encountered previously in 

mathematics and physics. 

Early ideas that lead to the notion of vector relate to physical experiences of 

forces in a single dimension, involving the combination of forces in different 

directions. In physics this leads to the study of forces resolved in horizontal and 

vertical components and combining forces by adding their components in each 

direction. The introduction of vectors in mathematics passes through a sequence in 

which transformations are re-conceptualised as vectors, which follows a sequence 

similar to process-object encapsulation. This in turn leads to the possibility of a 

theoretical framework, which studies how the students cope with successive stages of 

process-object encapsulation, both graphically as arrows with magnitude and 

direction and numerically as separate horizontal and vertical components. 

However, before embarking on the development of such a framework, we 

consider relevant research in science education with respect to students’ 

understanding of vectors in Physics and Mechanics. This will lay the groundwork for 

a preliminary study described in chapter 4 in which the theoretical framework will be 

further refined before the design of the main studies that follow. 

3.2 The school based situation 

In the English system, children begin at school in the year when they will become five 

years old. Compulsory school education is from Year 1 to Year 11, which is the year 

in which they have their 16
th

 birthday. They spend the Years 1 to 6 in Primary School 
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and then move for five years from Year 7 to 11, in Secondary School (corresponding 

to the years K-10 in the USA). All children take exams at the end of Year 11, which is 

called the GCSE examination (General Certificate of Secondary Education). During 

Years 1 to 11, Mathematics, English and Science are compulsory subjects. Dependent 

on their results they can then enter Year 12 and 13 (equivalent to the American High 

School system) where they study ‘AS’ (Advanced Supplementary) in Year 12 and 

‘A2’ (Advanced) levels in Year 13. 

The main educational experience of vectors that students gain at school before 

studying ‘AS’ and ‘A’ levels occur during Physics and Mathematics lessons. It is 

therefore appropriate to look first at school text-books in the period of compulsory 

education to see what emphases are made in them and how these may possibly 

influence the teaching and learning that is taking place. Since students first meet 

vectors in Physics, initially at age 11, but mainly between the ages of 13 and 16, I 

therefore looked first at the Physics text books, and then at the Mathematics text 

books where they meet vectors for the first time in year 11 at age 16. 

3.3 Text books analyses 

This section looks at the text studied by pupils learning about vectors and aspirations 

of the authors who wrote the text. It shows how vectors are introduced in Physics and 

Mathematics. 

3.3.1 How and when are vectors introduced in Physics?  

In Secondary School (age 11-16) pupils meet the idea of a vector in Physics in the 

first year (age 11). The approach is very pragmatic and all the vector quantities lie in a 

line, which is either horizontal or vertical. 

For example the first approach is something which, hopefully, most pupils will 

experience, shown in figure 3.1, taken from Heslop et al. (2000). 
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Fig. 3.1 Forces in a horizontal direction 

Then pupils are introduced to the idea of the balanced forces acting in a horizontal 

direction, giving the resultant zero.  

Vertical vector quantities are introduced, again as forces. The example, taken 

from the year 7 book (Heslop et al, 2000), is shown in figure 3.2. 

 

Fig. 3.2 Forces in a vertical direction 

When pupils reach the age of 14, they are also introduced in Physics to other vector 

quantities such as displacement, velocity, acceleration, momentum and pressure. It 

must be emphasised that all pupils are introduced to the above ideas but 

differentiation occurs at age of 14 according to the students’ level of ability. 

In years 10 and 11 (ages 14-16), in an earlier version of the curriculum, students 

used to be introduced to the vector quantities involving angles, as in figure 3.3, and 

were then asked to draw a similar diagram for each example, which shows magnitude 

(size) and direction of the single resultant (overall) force. However this type of 

question has been removed from the GCSE syllabus (year 11), and is now introduced 

at AS level (year 12). 
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Fig. 3.3 Forces in several directions 

Pupils are encouraged to make a very precise drawing of each force, measure its 

vertical and horizontal component, add them together and draw the resultant force 

based on these calculations. All these examples give pupils different physical 

embodiments that are intended to relate to their everyday experience. 

In Physics, vectors representing especially forces are resolved as shown in 

figure 3.4. This uses a perspective for a vector quantity based on polar co-ordinates 

and suggests a vector starting from a specific point (usually a particle in Physics, or a 

centre of gravity of a specific object like a car a bicycle or a person), which means 

that a vector is ‘fixed’ to a specific point. Physics teachers do not use either column 

vectors or unit vectors and usually the vertical and horizontal components are written 

separately. 

The vertical component when used with forces is usually drawn from the same 

position as the original force as indicated in figure 3.4. 

Fsinθ

θ
Fcosθ

F

 

Fig. 3.4 Resolving a force into horizontal and vertical directions 



 Towards the Theoretical Framework Chapter 3 

 42

This is implemented due to the belief that a force acts on the particle and therefore 

both components of the force should also be shown to act on that particle. 

Alternatively students are encouraged to draw each vector quantity separately, 

measure the vertical and horizontal component and then add all the vertical 

components separately and all the horizontal components separately and then draw 

the final solution separately and measure the angle their vector quantity makes with 

the horizontal direction. 

The teaching of vectors has been almost completely removed from the GCSE 

Mathematics syllabus (General Certificate of Secondary Education), which English 

students follow until they are 15/16. The only students who learn the idea of a vector 

in mathematics are Higher Course students, who are expected to obtain grades A or B 

in GCSE and will possibly carry on to study Mathematics at AS and A2 level in Years 

12 and 13. Some of them will study Pure Mathematics with Statistics, others Pure 

Mathematics with Mechanics, and maybe Pure Mathematics with Discrete 

Mathematics. All of them will meet the idea of a vector in their Pure Mathematics in 

the second year of the A level study and those studying Mechanics will study them in 

greater detail. 

3.3.2 How and when are vectors introduced in Mathematics? 

When pupils are 15/16, those who are capable of achieving a higher grade in 

mathematics (grade A and B) are introduced to the idea of a vector in their 

mathematics lessons. Due to the pressure of the syllabus and time, some of them will 

only have one or two lessons to cover this topic. As it does not appear in the GCSE 

examination very often, teachers will not consider it as a priority. It may be supposed 

that people who design the Mathematics syllabus assume that most of the concept of 

vector will be assimilated by pupils from their Physics lessons. 

The Mathematics Higher Course text-book, which students in this research were 

using in their Mathematics lessons (Pledger, 1996) gives four stages, described below, 

in developing the idea of vector: 
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1. the translation which is described as a column vector 
6

1
 as shown in figure 3.5. 

 

Fig. 3.5 A translation as a column vector 

This is the only physical embodiment, that pupils can relate to which is presented in 

the Mathematical Syllabus. 

2. an alternative notion is introduced to described the translation, which is AB , where 

A is the starting point and B is the finishing point (figure 3.6) 

 

Fig. 3.6 A translation as an arrow from one point to another 

3. the third way is to describe a translation by using bold type single letters such as a, 

b (underlined when handwritten). In this case translations are simply referred to as 

vectors. The lines with arrows are called directed segments and show a unique 

length and direction for each of the vectors a and b (figure 3.7) 

a b

 

Fig. 3.7 Translations as arrows with magnitude and direction 

4. The book then introduces the idea that the column vector 
x

y
 denotes the 

translation and introduces the idea of the equivalent vectors (figure 3.8). 
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Fig. 3.8 Equivalent vectors and the special concept of position vector 

The vector which translates O to P, OP , is a special vector, the position vector of P. 

In the first two stages pupils are introduced to a geometric vector with the idea 

that the movement and location are closely linked. In the first stage (fig. 3.5) the 

triangle is translated from its original position to a new position and in the second 

stage (fig. 3.6) , if two points A and B represent two locations, then the line segment 

AB represents a movement by the shortest path from A to B. The arrow shows the 

direction and the length of the segment represents the distance of the movement. 

The fourth stage (figure 3.8) shows that the direction of the vector is represented 

by each or any of the parallel arrowed lines, which means that the geometrical image 

of a direction is not just a single line, but an equivalence class of parallel arrowed 

lines, which we call a free vector. However by introducing OP  as a position vector or 

a localized vector, the book does not make it clear that if we have the situation as in 

figure 3.9, we would regard each of the directed line segments CCBBAA ,,  as 

equivalent vectors (equal magnitude and direction). (Skemp, 1971.) 
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Fig. 3.9 Equivalent vectors representing the same translation 

It is very important at this stage that pupils understand this concept very clearly i.e. if 

we are regarding all movements of the same distance and direction as being the same 

movement (the same free vector), regardless of their differences of starting point we 

are talking about free vector (as an equivalence class). All the other concepts pupils 

need to develop to be able to deal with vectors depend on their understanding of this 

single concept, because free vectors lend themselves to combining operations, 

following one free vector by another to give the concept of sum. We can always turn a 

free vector into a position vector, starting at origin (fig.3.8). Generally when we talk 

about ‘vector’ in mathematics we talk about a free vector. 

This is emphasised in stage 3 of the development in the book. 

The book introduces pupils to addition of the vectors by moving vectors parallel 

to their original position until they are all joined ‘nose to tail’ (beginning of the next 

vector joined to the end of the previous one, figure 3.10) as well as to the 

parallelogram method shown in figure 3.11. 

 

 

 

 

Fig. 3.10 The triangle method of 
addition 

Fig. 3.11 The parallelogram method of 
addition 
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The book deals with multiplication by scalars, finding magnitudes of vectors and 

proving geometrical results with the use of vectors. The emphasis is on the use of free 

vectors and the algebraic form of column vector 
a

b
 to aid the calculations. 

At this stage, pupils are also exposed in their Maths lessons to examples like the one 

below (figure 3.12) in which they have to relate vectors in the question to given 

position vectors. 

 

Fig. 3.12 Position vectors in geometry 

They are also given examples as shown in figures 3.13 and 3.14 and asked to relate 

one vector as sum of others. 

 

Fig. 3.13 Vector representations of geometrical positions 

 

Fig. 3.14 Position vectors in geometrical figures 



 Towards the Theoretical Framework Chapter 3 

 47

In the second year of A level Pure Mathematics (Year 13), which is referred to as 

‘A2’, students are introduced to vectors in two and three dimensions. They are 

encouraged to change from the column vector representation to i and j representation, 

where i = 
1

0
 and j = 

0

1
. Therefore 

3

4
 can be represented as 3i + 4j as shown in 

figure 3.15. 

 

Fig. 3.15 Position vectors in terms of i and j 

3.3.3 Linking the text-book sequence to process-object theory 

In Physics, in the first four years of the Secondary Education the students meet vector 

sporadically and only in one dimension. They get to know the graphical symbol of an 

arrow and learn how to add vector quantities (graphically and numerically) in one 

dimension. After that, between the ages of 12 and 14 they are introduced to vectors in 

two dimensions. However, the method of operation on these vectors, for mathematical 

simplicity, is introduced as only in terms of the components (figures 3.4, 3.5). At this 

stage, they calculate the x-direction component and y-direction component for each 

quantity and deal with two directions separately until the final result, which they 

represent by drawing first the two shorter sides of the right angled triangle, and then 

the vector quantity as hypotenuse. This format therefore does not require the students 

to operate in a full two-dimensional context. The situation is simplified to what may 

be termed ‘‘two times one dimension’ rather than a fully-fledged two dimensional 

concept. 
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In Mathematics in year 11, as the first stage of dealing with two-dimensional 

vectors, teachers often follow the Physics method of solving problems with vectors in 

two dimensions. However in problems shown in figures 3.12, 3.13 and 3.14, students 

are required to have some concept of a free vector, which they tend to find, according 

to the interviews with their teachers, very difficult. Such problems seem to imply a 

huge conceptual jump. 

This suggests an analysis in which the ‘two-times-one-dimensional’ stage is 

presented as a preliminary stage to the beginning of the two-dimensional work. 

Experience suggests that there are certain difficulties in moving from a preliminary 

stage and passing through successive stages of construction to attain the concept of 

free vector. 

From our analysis, the mathematics text-book is written in a succession of 

stages that are strongly related to the process-object-encapsulation cycle (Dubinsky, 

1991). At this first stage, the student is operating on a shape that is being translated in 

the plane. This shape can be considered as a ‘base object’ on which the transformation 

acts. This action can be represented by any one of a set of arrows AB  of given 

magnitude and direction starting at some point A and ending at another point B. 

At the next stage, the arrow is seen as a single entity, denoted by a single letter, 

say u. Although the move from the symbol AB  to the single letter u seems small, it is 

a significant change of perspective. At this process stage, what matters is not the 

specific vector AB , but just its magnitude and direction. All vectors of a given 

magnitude and direction represent the same free vector. This idea can be conceived as 

a mental object. Such mental objects can be added by placing them ‘nose to tail’. 

At this free vector stage, the addition of two vectors u+v gives the same result 

as v+u. By contrast, at the specific action stage, a displacement AB  moves from A to 

B and can be followed by another displacement B to C, so that the combined 

displacement BCAB +  can be achieved by moving from A via B to C.  However, the 

symbol ABBC +  has no meaning as a combination of journeys in this sense, for after 

moving from B to C, a jump would be required to A to continue the second move 
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from A to B. The move from the original idea of a translation as an action moving 

from one point to another is therefore quite different from the refined idea of adding 

free vectors. The construction of free vectors makes the mathematics subtly simpler. 

At this object stage of the APOS cycle, the student is ready to build a flexible schema 

of relationships, including such simple ideas as the commutativity of addition. At this 

stage the students should be able to solve not only problems like in figures 3.14 and 

3.15 but also adapt their knowledge to other situations with which they may not be 

familiar. 

3.4 Relevant examples of research into Mechanics 

The research in Mechanics reveals other subtle phenomena that cause problems for 

students when dealing with vectors in Mechanics. This section considers the results 

from three specific projects that may have a bearing on the research we are about to 

undertake. Although the research considered moved in a different direction from our 

own investigations, it is important to consider the possible conceptions that can arise 

when students work on vector concepts. The three investigations to be considered are: 

‘Students’ Conceptions about the vector characteristics of three physics concepts’ by 

Aguirre and Erickson (1984); ‘A Report on a Questionnaire Designed to Test 

Students’ Understanding of Mechanics’ by Jagger (1988); and ‘A hierarchical model 

of development of student understanding of force’ by Graham and Berry (1997). A 

brief description of each of these projects is described in sections 3.2.1 – 3.2.3. 

3.4.1 Three vector concepts 

This study by Aguirre and Erickson (1984) looks at the “extent to which difficulties 

encountered by students in the area of vectors may be attributed to their failure to 

comprehend some of the implicit vector characteristics and/or their alternative 

conceptions of these characteristics (alternate to that presupposed by the curriculum 

materials)” (p. 441). The main aim was to identify “the major constituent elements of 

the three vector concepts: position; displacement; and velocity; and the relationships 
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among these elements” (p. 441). The analysis resulted in the identification of 10 

implicit vector characteristics which are given as: reference point for stationary 

bodies, frame of reference, displacement or change of location, addition of 

displacement, subtraction of vector position, reference bodies of objects in motion, 

analysis of component velocities, composition of simultaneous velocities, 

independence of magnitudes of interacting velocities, simultaneity of component 

velocities. The two tasks, through which the individual students’ ideas were 

investigated, were set in the context of familiar situations. The clinical interviews 

were used on a sample of 20 Grade 10 students (equivalent to English Year 11 

students) to test their conceptions of vector characteristics. The results suggest that for 

most of the characteristics  

The largest percentage of students used inferred rules, which might be 
best called a partial description of the phenomena as viewed from a 
physicist’s perspective. [...] when they were asked to predict the 
resultant magnitude of the velocity and direction of the perceived 
motion of the boat as it crossed the river, virtually all of the students 
were aware that the direction of movement of the boat would be in a 
direction in between those of the two contributing components. [...] 
But their estimates of this resultant magnitude ranged widely from 
values in between that of the larger velocity and the arithmetic addition 
of the two velocities to value in between the two velocities. [...] Other 
subjects tended to portray this interaction as a type of “fight” between 
the two components with the component having the greatest magnitude 
being declared the “winner.  
 (Aguirre and Erickson, 1984, p. 452) 

Another area of problem arising from the investigation of the boat question responses 

suggested that, “80% of the students think that the magnitude of the velocity 

component contributed by the boat’s motor is changed in some way as a result of the 

interaction with the current,” (p. 452). 

The investigation suggested “that students possess a number of intuitions about 

various characteristics associated with the rather abstract and difficult topic of 

vectors. [...] A more detailed analysis of these inferred rules, over a variety of 

contexts, is required before we will be able to say much about the way in which these 
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intuitions can assist or inhibit instructional procedures in the area of vector 

quantities,” (p. 453). 

As the authors suggested in their conclusion, their methodology of investigating 

can provide a “framework for further probing of student conceptions in the area of 

vector quantities,” (p. 453). 

3.4.2 Understanding of Mechanics 

This investigation was conducted by Jagger (1988) with 13 first year honours 

mathematics undergraduates. Many of them studied mechanics as part of their A-level 

mathematics and had completed a term’s course on vectors in mechanics at the 

university. ”The principal aim was to isolate the particular difficulties in 

understanding rate of change of velocity,” (p 35), and the questions involve vector 

subtraction in a “pure mathematical” form. Some questions tested the students’ notion 

of force. 

In the summary, after analysing questions involving velocity and acceleration, 

Jagger concludes: “The problem is in moving from one-dimensional motion to motion 

in two or more dimensions,” (p. 38). After analysis of topics related to force and 

motion she writes, “the pre-Newtonian view that motion implies the existence of a 

force in the same direction is firmly believed by quite a substantial proportion of these 

students,” (p. 38). 

3.4.3 Understanding of force 

The students who study mechanics in my school use text-books written by Graham 

(for example: Mechanics 1, 2000), therefore research done by him is of particular 

interest to me. I concentrated on one of them: Graham and Berry (1997). It is a 

continuation of other investigations, carried out by the Centre for Teaching 

Mathematics at Plymouth University, into the development of students’ understanding 

of mechanics concepts: 
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The aim of the investigation was to form a set of levels, each of which 
would contain questions that demanded a similar level of 
understanding. [...] A set of criteria was selected which the questions 
forming the model of the development of understanding should satisfy. 
 (Graham and Berry,1997, p. 840) 

Some of the conclusions to their investigation were that: 

[...] their understanding of key concepts like gravity are confused, [...] 
students reverted to considering a constant force to be necessary to 
maintain the motion. [...] They also have great difficulty identifying 
forces and expect them to act in the direction of the motion or to be 
zero if the body under consideration is instantaneously at rest.  
  (Graham and Berry, 1997, p.844) 

Graham and Berry divided their questions into 3 levels and discovered that students 

passing only level one questions have sound ideas about the motion in one dimension 

but, for force in two dimensions, students revert to the misconception that there is a 

force acting in the direction of the motion. They also found that students passing their 

level 2 have overcome some aspects of their original misconceptions but reverted to 

using it in some situations. Their level three students are those who have accepted 

completely the Newtonian outlook on motion. 

They write, that level 1, students’  

[...] difficulties arise because they are unable to identify the forces that 
are acting in a situation. 
 (Graham and Berry, 1997, p. 847) 

They suggest that:  

In order to improve students’ individual understanding and promote 
their progression through the levels of the hierarchy they need to 
overcome this misconception at an early stage. It must be challenged 
by highlighting the weaknesses of the students’ own intuitive ideas. 
Rectification can then take place by providing alternative explanations 
that the students can see overcome the weaknesses of their original 
ideas, explaining satisfactorily the situations used to challenge the 
students’ intuitive ideas.  
  (Graham and Berry, 1997, p. 847) 

In their analysis only 23% of students have reached level 3. They suggest in their 

conclusion that a qualitative approach to teaching would help students to identify the 
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forces and they would be able therefore to proceed to dynamic situations with greater 

confidence. 

3.5 Summary of Evidence and Formulation of a Research 

Framework 

The Physics text-books and worksheets show vector quantities always operating on a 

specific object. Until the end of year 11 they always act and therefore are added in 

one dimension. Afterwards (in years 12 and 13) when they operate in two dimensions 

they are resolved, for the sake of simplicity in calculations, into horizontal and 

vertical components and therefore operated on in what may be described as ‘two 

times one-dimension’, rather than as single entities in two dimensions. The question 

arises how one can shift students’ attention from working in ‘two times one-

dimension’ to a concept of vector in two or more dimensions (Jagger, 1988). 

The Mathematics text-book goes through a sequence of activities which seems 

to move in the direction a process-object-encapsulation cycle. However this cycle is 

not explicit, nor is it explicit in the empirical research described in the previous 

section which focuses instead on the difference between displacement, free and 

position vectors. 

The research studies quoted also reveal how students’ ‘intuitions’ arise from 

working in different contexts and how it effects their problem-solving capabilities. 

For example, Aguirre and Erickson (1984) talk about “ten implicit vector 

characteristics” involved in “three vector concepts: position; displacement; and 

velocity” and suggest that students gain “a number of intuitions about various 

characteristics” which need to be overcome. On the other hand Jagger (1988) says 

that, “The problem is in moving from one-dimensional motion to motion in two or 

more dimensions”. Finally Graham and Berry (1997) talk about students’ “need to 

overcome this misconception at an early stage,” (p 847). 

None of these researches consider the important idea of focussing on the vector 

concepts that are common to the various contexts, instead they are more concerned 
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with the problems caused by the differences between them. Nor do they focus on the 

compression of a vector as an action into the more flexible idea of a free vector as a 

single mental object that can be represented by any arrow of given magnitude and 

direction. 

As we shall see in the data of the preliminary study to be discussed in the next 

chapter (already published in Watson, 2002), when students meet the separate notions 

of displacement and force in distinct contexts, they are more likely to use the triangle 

law for displacement and, although encouraged in Physics lessons to use the 

parallelogram law for forces, they rarely do so. Indeed we find that many students use 

the triangle law with forces in an inappropriate way (see figure 4.16 in chapter 4) that 

leads to serious misconceptions. By building a coherent notion of free vector using 

translations, it may be hoped that the students will see the triangle law and 

parallelogram law not as separate rules in different contexts, but as two different ways 

of representing the same underlying idea. This will be investigated in greater detail in 

the delayed post-test analysis and the interviews in the Main Study. 

From the analysis of the text-books and discussion with teachers, it was 

concluded that students meet the notion of vector in different contexts with subtle 

differences in embodiments. For instance vectors may be encountered as 

displacements sensed as physical journeys from one place to another, or as forces 

acting at particular points. In the addition of displacements, one journey followed by 

another is naturally interpreted using the triangle law, but the addition of forces 

operating at a point is more naturally represented by the parallelogram rule. In the 

mathematical curriculum, according the reviewed text-books, the notion of vector is 

first introduced as a translation in the plane and dealt with as a column matrix in 

mathematics, or as the separate horizontal and vertical components in physics. Both 

versions are linked to a picture of the vector as the hypotenuse of a right-angled 

triangle with components as horizontal and vertical sides. In turn this links more 

easily to the triangle law than to the parallelogram law. 
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Looking at the literature in comparison with the experience of the teachers and 

the text-books, it became apparent that students might be confused by trying to gain a 

concept of vector from many different contexts, each having different incidental 

properties. Aguirre and Erickson (1984) found that students fail to comprehend some 

of the implicit vector characteristics when learning from so many examples. In terms 

of process-object encapsulation, it does not seem that many students can move from 

operating on base objects (physical bodies, mathematical shapes) to building a 

cognitive unit from these implicit vector characteristics in the form of free vector, 

which in turn they could use to operate in any chosen context. A number of issues had 

to be determined: 

o in what ways students turn the implicit properties of vectors in 
various contexts into misconceptions which trigger false intuitive 
thinking; 

o what made some students able to think logically and use symbols 
appropriately; 

o how can we may change students approach of concentrating on 
actions to concentrating on the effects of these actions; 

o how we may help students build their vector concept into a 
cognitive unit which can be used easily in any context (translation, 
velocity, acceleration, forces, etc.); 

o how can we help students use a vector as a mathematical symbol 
which conforms to mathematical laws of equivalence, 
commutativity, etc. 

3.5.1 Theoretical framework perspective 

According to Skemp (1971), the way to higher order thinking is through focusing on 

the essential properties in a given context and to filter out the “noise” (the data which 

is irrelevant to the required abstraction). The parts of the problem which are relevant 

to the solution of the problem are to be abstracted from the ‘outside world’ and 

manipulated in the ‘mathematical world’. Later, the reverse process happens “of re-

embodying the result in the physical realm to give the answer to the original problem” 

(1971, p. 223). This cycle, according to Skemp “reduces noise” ... “and by abstracting 
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only mathematical features it allows us to use a model which we are well practised in 

working,” (1971, p. 223). He also says that: “The greater the noise, the harder it is to 

form the concept,” (1971, p. 28).  

Physics teachers try to reduce the noise by teaching students to work in two 

times one dimensional way, which is well-practised (described in chapter 4.4.4). In 

the case of vectors, composition of vectors by different ways of adding them and also 

decomposition of vectors in order to be able to apply symbolic ways of calculation is 

very important, just as in fractions it is very important to be able to apply the rule of 

equivalence to mixed numbers and improper fractions in order to be able to multiply 

and divide them. In vectors, to start with, the meaning is related to physical objects in 

the ‘outside world’ (translation, velocity, acceleration, forces, etc.), but then pupils are 

expected to develop a concept, translated into symbols, which they could operate on 

in a mathematical context. Eventually they should have a facility to operate, not just 

on those concepts, but with anything that resonates with them. The ability to work 

with the mathematical ideas, without the need to evoke the physical object gives the 

student power in solving more subtle problems. The problem is how to encourage this 

abstraction to occur in practice. 

3.5.2 The idea of ‘effect’ 

A major contribution to my theoretical framework occurred in a classroom discussion 

with a student I will call Joshua, who solved all the questions given to him in the 

preliminary study. During the interview Joshua explained that different actions can 

have the same ‘effect’. For example, he saw the combination of one translation 

followed by another as having the same effect as the single translation, He said “this 

is the same and it corresponds to the sum of the two vectors.” He therefore interpreted 

the physical situation as mathematical, seeing the addition of two vectors having the 

same effect (mathematically) as the resultant vector arising from that addition. 

He showed that by focusing on the effect rather than the specific actions 

involved, it was possible to get to the heart of several highly sophisticated concepts.  
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This concept seemed very powerful as it could be visualised as useful in other 

areas of mathematics. For instance, in algebra, 2(x + 4) and 2x + 8 involve a different 

sequence of actions that have the same effect, leading to the notion of equivalent 

expressions.  

In the case of vectors this idea could be presented graphically as in figure 3.16. 

 

Fig. 3.16 Focusing on effect 

The effect of a physical action is not an abstract concept. It can be seen and felt in an 

embodied sense. My idea was that, if students had such an embodied sense of the 

effect of a translation, then they could begin to think of representing it in terms of an 

arrow with given magnitude and direction. For instance, if the student’s hand was 

moving a triangle on the table, then the arrow could be taken to show the movement 

of the tip of a particular finger, or thumb. The particular choice of arrow did not 

matter. What does matter to give the required effect is the magnitude and direction of 

the arrow. My idea was to use the students’ physical experience as a foundation for 

the building of the concept of free vector and to give an underlying embodied 

foundation to the symbolism used for vectors building a coherent schema of meaning. 

For example, the addition of vectors is a simple extension of the idea that the sum of 
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two free vectors is the free vector that has ‘the same effect’ as the combination of one 

vector followed by another. This would give embodied meaning to the technique of 

placing vectors ‘nose to tail’ to add them and would provide a foundation that showed 

that the triangle law and parallelogram law are just two different ways of seeing the 

same underlying concept, leading on to simple ideas, such as the idea that the addition 

of vectors is commutative. 

The goal is to create conceptual knowledge with a relational understanding of 

the concepts rather than procedural knowledge with an instrumental understanding of 

separate techniques. By founding the ideas on coherent physical actions and by 

focusing on the notion of ‘effect’, the strategy is to encourage students to reflect on 

their knowledge and build the notion of free vector as a coherent cognitive unit in a 

rich schema of relationships.  

This approach is also a natural extension of the foundational ideas of Piaget. It 

took researchers some time to realise that the important Piagetian idea of activity does 

not necessarily mean a physical one. As Piaget puts it: “The most authentic research 

activity may take place in the spheres of reflection, of the most advanced abstraction, 

and the verbal manipulations…,” (Piaget, 1970, p. 68). 

Following the literature reviewed in chapter 2, I decided to frame my work in a 

broad context of research including embodied cognition of Lakoff & Nunez (2000) — 

which situates the foundations of learning in real world activity, as does the 

embodiment of Skemp (1971) — and the encapsulation of a mathematical process 

into a mathematical concept through reflective abstraction, found in the work of 

Dubinsky (1991), Sfard (1991) and Gray & Tall (1994). 

The different stages noticed in the study, which is also related to the way the 

text book is written, are shown below in figures 3.17 and 3.18. 
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Fig. 3.17 Cognitive development of vector 
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Fig. 3.18 Cognitive development of vector addition 

Both of the figures show the concept-building ladder passing through stages of 

encapsulation. At the bottom of the ladder is the first stage, when students can deal 

with vectors only in one dimension and the next three levels of development in two 

dimensions indicate an increasing growth of encapsulation from procedure to 

encapsulated concept. Stage 0 is reserved for students who use their physical instinct 

instead of the knowledge of the vectors to answer the questions. 
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A further level of classification will be used that correlates the separate 

measures of student performance between the symbolic and graphical modes to give 

an overall picture of the student’s development. This will use a framework that relates 

to the literature considered in chapter two. It has its origins in the work of Bruner, 

who expanded Piaget’s ideas and applied them to a person’s cognitive growth at any 

stage of life. He distinguished between three modes of mental representation: 

enactive, iconic and symbolic.  He considered that these representations grow in 

sequence. His enactive representation begins in Piaget’s sensori-motor stage and the 

iconic mode emerges in the pre-conceptual stage with the symbolic mode arising 

through language and the symbolism of mathematics. However, Bruner saw that, as 

each mode becomes available, all three modes are available to the individual at any 

age. 

My interest is in teenagers who have all three modes available and, for 

convenience, the enactive and iconic mode of physical action and visual perception 

are seen to relate to physical translation and graphic representation, as opposed to the 

symbolic representation of vectors as column matrices and single letter symbols 

satisfying familiar mathematical rules, such as u + v = v + u . 

In chapter 2, I noted how the SOLO taxonomy of Biggs and Collis (1982) 

incorporates both Piaget’s and Bruner’s idea to provide a Structure of Observed 

Learning Outcomes in assessing students’ progress. There are five SOLO taxonomy 

modes of cognitive development: sensori-motor; ikonic; concrete-symbolic; formal; 

and post-formal. In particular, according to Biggs and Collis, each of these modes 

builds on the previous ones, so the ikonic mode incorporates the earlier sensori-motor 

mode, and the concrete-symbolic mode builds on these two. This fits closely with the 

development I am proposing in which the embodied activities refer to a combination 

of sensori-motor and ikonic leading to graphic representations, and the symbolic 

developments build on these activities. 

In each mode, Biggs and Collis see the cognitive development through a 

sequence that they term pre-structural, uni-structural, multi-structural, relational, 
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and extended abstract. The theoretical framework used here takes note of the analysis 

of Pegg and Tall (table 2.1) which suggests that the learning of any mathematical 

concept follows a fundamental cycle of compression related to this sequence of 

development in SOLO taxonomy, the APOS theory of Dubinsky, and the procedure-

process-object theory of Gray and Tall (1994). In the current research study, the cycle 

of construction of the concept of  free vector passes from pre-conceptions, via step-

by-step actions (unistructural), different actions (multistructural) having the same 

effect (relational) to free vectors as entities (extended abstract) in both graphic and 

symbolic problems. These stages are as given in figures 3.17 and 3.18. 

The general cycle of development underlying these stages (table 2.1) was then 

considered to develop a description of the stages appropriate for this study. Having 

simplified the SOLO taxonomy to focus essentially on embodied foundations that are 

represented by two modes of representation—graphic and numeric—I sought to 

develop an overall classification that united the developments in the two modes 

together. 

This began with stage 0, in which students responded essentially in terms of 

physical intuition without any clear evidence of mathematical activity. Such a 

response in both graphic and numeric modes was classified as physical intuitive. The 

next identifiable level occurs in a way that focuses on mainly symbolic or mainly 

graphical representations at lower stages of cognitive development. I took the 

decision to assign performances that attained level 1 in one of the modes but failed to 

reach level 2 in the other as being uni-modal. This was subdivided into lower uni-

modal if the activities in the higher scoring mode were at stage 1 or 2 and higher uni-

modal if at stage 3 or 4. If both modes reached level 2, then the performance was 

categorized as multi-skilled. Performances reaching at least level 3 in both modes are 

classified as versatile and those who attain level 4 in both modes are termed fully 

integrated.  

The following summary of this classification shows the broad correspondence 

with SOLO cycles (in brackets); 



 Towards the Theoretical Framework Chapter 3 

 63

o Physical Intuitive (pre-structural) applies to students who do not 
abstract enough information from their physical experience to 
build a proper mathematical model from it and who stop using 
learnt procedures in unfamiliar situations. 

o Uni-modal and Higher uni-modal focused (unistructural) applies 
to students can work in one mode only.  

o Multi-skilled focused (multi-structural) applies to students who 
can switch between the modes dependent on the question they are 
asked. 

o Versatile (relational) applies to students who use a variety of 
modes to answer the same question and in different physical 
contexts.. 

o Fully integrated (extended abstract) describes students who show 
a compressed concept of vector addition and show that they 
concentrate on an outcome rather than procedures leading to it 
(have the idea of the same effect). 

The assignment of these categories is a pragmatic activity based on a careful analysis 

of the responses based on the theorized stages of development. Table 3.1 below shows 

the assignment of categories for the concept of vector in relation to the combination 

of symbolic development (laid out horizontally) and graphical development 

(vertically). 
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Table 3.1 Development of the vector concept, combining graphic and symbolic 

Table 3.2 shows the corresponding assignment of categories for the concept of vector 

addition. This again relates to the combination of symbolic development (laid out 

horizontally) and graphical development (vertically). 
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Table 3.2 Development of vector addition, combining graphic and symbolic 

The lowest categories in each table show students operating on basic objects. The 

highest categories of each of the tables show that students are able to compress their 

knowledge to operate with vectors as cognitive units in any situation. 

Students might be able to operate in one mode (symbolic or graphical) only and 

achieve a high stage at that level (higher uni-modal) or they can operate in both 

modes using them to reinforce their answer to a particular question or use a flexible 

choice of different modes in different questions (versatile). Students who can use both 
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modes comfortably to any type of situation will recognise the commutative law of 

addition of free vectors. This is the highest stage of cognitive development for the 

purpose of this research, which does not include developments into formal 

mathematics based on axiomatic definitions and formal proof. 



 

Chapter 4 

Preliminary Investigations 

4.1 Introduction 

In this chapter I discuss preliminary investigations into students’ difficulties in my 

classroom and in consultation with other teachers and interviews with students. 

Topics of importance include: 

o my investigation of the way vectors are presented in Physics and 
Mathematics classes at the secondary level; 

o my observations, as a teacher, of the problems students have in 
dealing with vectors in Mechanics (from mathematical and 
physical points of view) and Pure Mathematics, together with 
discussions with other teachers to check if they have different 
experiences from mine; 

o the three researches described in section 3.2 (Aguirre and 
Erickson, 1984; Jagger, 1988; and Graham and Berry, 1997); 

o the theoretical framework gained from cognitive science literature 
of embodiment, and the mathematics education literature focused 
on the use of symbols representing both process and concept; 

o the development of a method of assessment of cognitive 
development stages to formulate a framework to interpret students’ 
responses. 

As it was not obvious at which stage a problem was occurring, and because the claims 

from other researches needed to be tested, the preliminary investigation began by 

investigating a question from the Mechanics text-book which, from experience, 

students found difficult to solve. Students were given the question and then, after 

analysing the range of responses, some students were interviewed to investigate how 

they went about solving the problem. Due to the claims of the researches described in 

chapter 3, students were also questioned on Newton’s three laws, to check if this had 

any bearing on their responses. This investigation is described in detail in Watson 

(2002). Some of the results presented in that paper are shown below. 
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4.2 Preliminary empirical investigation 

The research has been conducted in a Comprehensive School with good average 

results with the Sixth Form Centre fifth in the national tables comparing schools in 

terms of the Value Added (the increase of the level which students achieve in the 

centrally controlled National Curriculum). 

Given a problem solvable by using horizontal and vertical components such as 

figure 4.1 (a), 25 out of 26 students were able to solve it. However, given a more 

complex physical problem such as that in figure 4.1 (b), asking the student to mark 

the forces involved with an object on a rough sloping plane, only 4 out of 26 students 

were successful. In interviews, it transpired that several students, who used the 

triangle law to draw a picture as in figure 4.1 (c), used the triangle of forces to mark 

the components; because the force parallel to the plane is drawn well below the 

object, it did not seem to be acting on it and was ignored. 

 

 

 

  

(a): find F1, F2 (b): describe & mark forces (c): forces as marked 

Fig. 4.1 Two questions on forces (a slope) 

`Five students—who gave varied responses, from one not answering the question at 

all to the one giving a correct answer—were interviewed. These interviews indicated 

that even students who did not answer the question knew that the object will slide if 

there is a resultant force, acting on it. The problem was that, according to their 

analysis of their own drawings, the resultant force was acting in the in a wrong way 

— up the slope. 

Most students, as in drawing 4.1c, resolved the weight in parallel and 

perpendicular directions (two components of a vector), drawing the parallel 
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component as part of triangle with the relevant component well away from the 

surface. The two components were calculated correctly by the majority of students, 

showing that they are trigonometrically competent. It seemed that they could not 

proceed any further because although, they knew from their correct intuition that the 

body will either stay where it is (if the forces are in equilibrium) or will slide down (if 

there is a resultant force), they could not find a force which performs the expected 

action. 

The procedure of drawing the components of weight were well-learnt but not 

understood. The lack of arrows (correct use of symbols) on the weight and its 

components could be to blame but a more likely source of difficulty was the fact that 

the parallel component did not seem to operate directly on the object. The students 

were able to explain in the interview that the perpendicular component balanced the 

reaction force R and therefore “the object will not sink into the surface or fly off it”. 

However, it seemed that the only evident force parallel to the plane was the frictional 

force F. 

To investigate further the reasons underlying the original problem in figure 4.1 

(c), a question was given to students showing a body on an inclined plane, as in figure 

4.2(a). Figures 4.2(b) and 4.2(c) were said to represent the ways in which two students 

James and Chris split the weight W into components W1 and W2.  

 
  

(a): a body on an inclined plane (b): James’s picture (c): Chris’s picture 

Fig. 4.2 Preliminary study questions 

The students were asked: “Are either or both of James and Chris right?” The 

question was given in this specific way to take the pressure off the students so that, 

rather than giving their own answer, they were asked to comment on somebody else’s 

responses. 
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The 23 students beginning the course in year 11 gave a variety of responses, 11 

said both were right, 4 chose fig 4.2 (b), 1 chose fig 4.2 (c) and 6 said neither. These 

results indicated that although half of the students seemed familiar with the 

equivalence of the triangle and parallelogram laws by saying that (b) and (c) were 

both right, the other half responded differently. Since 25 out of 26 students could 

solve a problem presented in figure 4.1 (a), they seemed to be familiar with vertical 

and horizontal components.  It might have been possible that the context in which the 

question was asked caused the problem, which may have occurred with the 5 students 

who had chosen only one of (b) or (c) in figure 4.2. 

To test the student’s ability to deal with vectors graphically, without any 

physical context being involved, they were given the question shown in figure 4.3 

which was of a type they encountered in Year 10. Part (i) is a natural triangle problem 

with the vector AB followed by BC. Part (ii) could be solved either with the 

parallelogram or the triangle law, however students had to draw the additional lines, 

which they had not been expected to do in their text book exercises. Part (iii) is more 

subtle. If they were aware of the commutative law of addition of vectors they could 

add them as ABCA + , however if they saw the addition as ‘journeys’ this would not 

make sense to them. On the other hand they could have treated the vector as free and 

move them ‘nose to tail’. A third option was to answer numerically.  

Fig. 4.3 Testing the visual sum of two vectors 

In the test, all the students were easily able to cope with the first sum AB + BC . 

However, parts (ii) and (iii) were more problematic and only 3 students out of 23 

managed to answer at least one of these questions; all of these who responded 

Show clearly a vector 
equivalent to: 

(i) AB + BC

(ii) AB + AD

(iii) AB + CA
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correctly solved the problem numerically. This suggested that the students did not 

grasp the idea of a free vector as a cognitive unit that can be operated on in any 

context; they were only able to cope with either a simple mathematical problem, as in 

figure 4.3 (i) or simple physical problem, as in figure 4.1(a). 

The research literature discussed in chapter 2 suggests that students should be 

able to construct a meaning from the experience from the physical world (Piaget, 

1985; Bruner, 1966; Lakoff and Johnson, 1999; Lakoff & Nunez, 2000). However 

concern is also expressed about the “prototype effect,” (Rosch, in Lakoff, 1987) and 

“interpreting words and gestures differently,” (Jaworski, 1994). 

With all these factors in mind I decided, as suggested by Jaworski (1994) to 

perform “the activities in which learners participated and encourage them to be 

mathematical, that is to act as mathematicians by mathematising particular situations 

created by their teacher” and by including group work and reflective plenaries to 

encourage learners to “share perceptions with each other and with the teacher”, and 

therefore to make sure that ”their ideas became modified or reinforced as common 

meaning developed.” 

Two groups were chosen in Year 12, specified as experimental and control, 

where the experimental group was taught using physical activities and reflective 

plenaries, which the control group were taught by following the text-book. The 

students in both groups were tested again and assessed according to the same method 

as before. A selection of students from each group was also interviewed.  

In dealing with the specific vector problems, the students in the experimental 

group were encouraged to participate actively by shifting a hand placed on the paper 

and draw the vectors which could represent the translation as shown in figure 4.4(a); 

then a second translation represented from a different finger as shown in figure 4.4(b). 

Then the students were encouraged in plenaries to discuss different vector 

representations of the translation and the way the resultant movement can be 

represented using vectors in their drawings.  
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(a) (b) 

Fig. 4.4 Embodied action 

After two weeks the students were again given the questions presented in figures 4.2 

and 4.3. When we considered those students who were able to solve all three 

problems, we obtained the data in tables 4.1 

 
Year 12 Embodied 

(N=7) 
Standard 
(N=16) 

All 3 correct 5 1 

Other 2 15 

Table 4.1 Effect of embodied approach in 
reflective plenaries 

Those following an embodied approach had more success answering the questions. 

Interviews with six selected students, three from each group, confirmed that 

students following a standard course had problems adding two vectors that did not 

follow on one after the other, especially in cases where they were joined head to head. 

In the latter case, two out of three students thought that two vectors pointing to the 

same point would have resultant zero, because they would cancel out. 

4.3 Summary to preliminary empirical investigations 

The study so far has revealed the complexity of the meaning of vectors as forces and 

as displacements and the subtle meanings that are inferred in differing contexts. 

Studies in science education have attempted to build a classification of 

misconceptions without clearly identifying the underlying problems. Our approach is 

to develop a pragmatic method that will work in the classroom. One aspect is the use 
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of conceptual plenaries, which are already becoming part of the formally defined 

curriculum in England. The other is to continue to develop a theory that links physical 

embodiments to mathematical concepts via a strategy that focuses on the effects of 

actions. Our experience shows that such an approach can be beneficial in the short-

term and we are continuing our practical and theoretical developments over the longer 

term. 

As a next stage of preliminary investigation I gave selected students modified 

questions, based on the above research. However after analysing the results and 

interviews, I decided to look more at students understanding of an idea of a vector in 

its different contexts, rather than only the Newtonian problems students are faced with 

in mechanics.  

Some of the questions in that stage of investigation were set on the squared 

paper as in figure 4.3. After looking at the results of the test and the interviews this 

idea was dismissed as students simply counted squares to add the components of the 

vectors and did not show any conceptual thinking. 

The preliminary study also seemed to show some evidence for the work of 

Dubinsky (1991) and Sfard (1991) of process-object encapsulation and the theory of 

Gray & Tall (1994) that students use such symbols both as processes to do 

mathematics and as concepts to think about. However there was evidence that many 

students do not seem be able to use the concept of equivalent vector or free vector in 

every context. It is as if, for some students, the complication that occurs in a specific 

context triggers ‘false intuitive’ reasoning and removes the ability of 

logical/mathematical thinking. However, when a given problem is presented in an 

easier way or they are reminded during the interview about the theory (for example of 

addition) their power using procedures is often correctly recalled. The problem seems 

to be complicated by the fact that the students are more concerned with remembering 

to carry out a given procedure rather than reflecting on its total effect. In terms of 

Dubinsky’s theory, the students seem to be focusing more on the action stage (of 
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externally taught sequences of steps) than the process stage (where the process is 

interiorised as a whole). 

In the teaching experiment I decided to focus students’ attention on the 

underlying mathematical concepts that I believe to be theoretically simpler even 

though students often find them challenging. My approach was based on the 

embodiment of the ideas initially as physical actions and then to focus on thinking of 

the actions as processes that are symbolised and considered as thinkable objects as 

expressed in APOS theory. However, although this theory starts with actions, the 

starting actions must act on already known objects. In the case of vector as a 

transformation in the plane, the action operates on figures in the plane that are 

translated. My research therefore begins with the ‘base objects’ that the initial actions 

act upon, with the initial learning strategy based on how the actions transform the 

objects. In the case of vectors as translations, a base object might be a triangle on a 

flat table and the actions may be the translations that shift the triangle from one 

position to another. The essential problem, which has proved problematic in many 

settings in the literature (eg Cottrill et al, 1996, p.187), is how to achieve the full 

development from the initial focus on the actions to the final encapsulation of the 

ideas as mental objects. 

4.4 Relating empirical evidence to theoretical framework 

By comparing the students’ responses to the questions posed in the preliminary 

investigation it may be concluded that students reach different stages presented in the 

mathematics text-book and, dependent on the stage achieved, they can solve questions 

of varied difficulty. They also often seem to have a preferable mode of operation 

(graphical or symbolic). They might be at a different stage of development in 

understanding the vector concept than in understanding the idea of vector addition. 

The examples of the way these levels should be understood in terms of students’ 

responses and the way they were awarded will be considered in detail in the data 

analysis in chapter 7. Many researchers indicate that is it easier to show what students 
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cannot do rather than what they think and imagine (see, for example, Sfard, 1991). To 

complement the quantitative data obtained from the questionnaires, the assignment of 

stages will be triangulated with qualitative methods arising from interviews with staff 

and students. 

The preliminary study shows that there is a difference to students’ development when 

they are exposed to the experimental lessons in which the emphasis was directed to 

compressing the embodied actions into process by focusing on the notion of effect (if 

two actions have the same effect then they are considered as giving the same process). 

It was therefore decided that for the Pilot and the Main studies one group of students, 

which we will call the experimental group will be involved in lessons in which they 

will move a hand across the paper as well as push objects across the paper with a hand 

and focus on the effects of these actions. In the follow-up plenaries, the students will 

discuss the idea that two physical actions of movement, from point A to B and then 

from B to C (one following the other), are mathematically equivalent to the physical 

action of single movement from A to C.  

The students will be encouraged in plenaries following the embodied exercises to 

reflect: 

• that the physical action in the embodied world can be modelled 
mathematically as a symbolic procedure, and on the effect of that 
procedure;  

• that the same mathematical meaning underlies different physical 
contexts (particularly journeys and forces); 

• and appreciate that the mathematical process conducted through 
different modes of operation (symbolic/graphical) gives the same 
effect even though the representations may be different. 

The researcher hypothesises that the notion of ‘effect’ is an important stepping-stone 

in a cognitive development that links the concepts in the embodied, symbolic, (and 

later the formal) worlds of mathematics. It was conjectured that this will correspond 

to the cognitive compression of mental processes into thinkable objects in which 
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processes become concepts, and in which the symbols will allow the students to use 

their knowledge equally successfully in different contexts. (For instance, the notion 

should later lead to the notion of equivalence relation in the formal world.) 

The teaching experiment will be aimed at students giving meaning to concepts 

in the embodied world, and then sharing their experiences with their teacher (as 

mentor) who will guide them to express their ideas to each other in ways that enable 

the embodied concept to be converted in meaningful and flexible ways into symbolic 

and formal ideas. 

In the experimental stage, the rigorous pattern of the Numeracy Strategy will 

been used which specifies that each lesson should have three stages: starter, core, and 

plenary. During the starter activity, the teacher sets the scene with the whole class for 

the main part of the lesson. During the core part, the students work in groups or on 

individual tasks, and the final plenary reflects on the ideas met in the lesson and 

makes connections between them. In years 12 and 13 this pattern is usually followed 

only to a limited extent. 

The hypothesis of the researcher that this approach should help students move 

to a higher levels of cognitive development and retain the conceptual awareness, will 

be tested through the three tests, staged at intervals: one before the experimental 

lessons, another soon after and the third after half a year. The experimental group’s 

responses will be compared with responses of students in another group which will 

not participate in the experimental lessons and which we will call the control group. 

The interviews conducted after the first and second test are intended to clear any 

uncertainties about students’ test responses and show if students in the experimental 

group will use more mathematically based language compared with the control group 

students, independent of the context they will work in. 
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Chapter 5 

Methods and Methodology 

5.1 Introduction 

5.1.1 Method  

According to Cohen, Manion and Morrison (2000) method means “the range of 

approaches used in educational research to gather data which are to be used as a basis 

for inference and interpretation, for explanation and prediction” (p. 44). They also say 

that “the aim of methodology is to help us to understand, in the broadest possible 

terms, not the products of scientific inquiry but the process itself” (p. 45).  

This inquiry started with the teachers’ discussion on problems students were 

encountering while dealing with vectors in Pure Mathematics, mathematical and 

physical Mechanics. The area of Mechanics has been chosen and exploratory research 

was conducted. The results of this research helped in developing the preliminary 

research. This in turn helped in development of the pilot study and then the main 

study. Cohen, Manion and Morrison (2000) quote Merton and Kendall who, as long 

ago as 1946, argue that one should try to find a balance between the quantitative and 

qualitative data and concern oneself “with the combination of both which makes use 

of the most valuable features of each” (p. 45). 

In order to strike the balance this research method draws upon qualitative and 

quantitative data. The quantitative data, which includes: pre-test, post-test and delayed 

post test gives an indication to problems which were then scrutinized more thoroughly 

by collecting the qualitative data gathered during lesson observation and interviews. 

The focus of the tests (further described in chapter 6.5.1) has been on finding 

students’ ability: 

o of using vectors to solve problems in different mathematical 
(graphical, coordinates) and physical contexts (displacement, 
forces);  
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o to describe their understanding of vectors and vector quantities; 

o to think flexibly (using different mode to add vectors: numerical, 
graphical); 

o to think logically instead of depending on their instincts, in 
particular, solving singular cases; 

o to understand that different procedures can produce equivalent 
outcomes (the same effect). 

5.1.2 Methodology 

The methodology is partly influenced by the Piagetian view that a consistently made 

error to a given problem reflects the child’s cognitive structure. The errors therefore, 

recorded from the tests, have been used to give the direction for the interview 

questioning. The analysis is based upon the students’ perspective and their way of 

functioning with respect to the task rather than upon the logic of the task, which 

should provide insight into the student’s cognition. 

Piaget developed the clinical interviewing procedure which later has been 

developed and used to achieve the analysis by Ginsburg 1981, Swanson et al. 1981. 

However, this research uses a semi-clinical interviewing technique in which every 

interview had a common starting point (their responses to the tests). Thereafter the 

questions followed what they said or what needed to be clarified. The questions have 

been based only on the topic of vectors as this is the topic through which the research 

has been done. 

The research has been done with two groups (control and experimental), 

consisting of a total of 34 students (17 in each group). The research was conducted 

during year 12. All of the students, from the same school, were studying Pure 

Mathematics with Mechanics. Both groups were using the same text books but had 

different teachers. The experimental approach has been introduced to the group we 

will call group A, who were taught by the researcher. The experimental approach was 

introduced after the pre-test for a period of three lessons. Its aim has been to: 
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o help students in reappraisal of the roles of physical action and 
symbolic manipulation which relates actions having the same 
effect to mathematically equivalent concepts; 

o encourage students to share ideas and to help them reassess and 
refine their knowledge; 

o relate different aspects of mathematical theory to different aspects 
of mathematical applications in Physics. 

The experimental approach has been conducted to test researcher’s hypothesis that 

introducing students to the specific embodied experience followed by purposeful 

plenaries will help these students:  

o to build a better conceptual base to the topic of vectors; 

o sustain the knowledge for a longer period of time; 

Graham (the author of the Mechanics books) and Berry, theorized that: 

 “Rectification can then take place by providing alternative 
explanations that the students can see overcome the weaknesses of 
their original ideas, explaining satisfactorily the situations used to 
challenge the students’ intuitive ideas.” (1997, p. 847) 

I have adapted this way of challenging students’ ideas during plenary discussions and 

on an individual basis.  

As in the Kerslake (1977) experiment, I have based the experimental teaching 

phase on good teaching practice and ‘cognitive instruction’ defined by Belmont and 

Butterfield (1977). “In this model the child’s thought processes and the use made of 

the instruction are monitored as the treatment progresses. The experimenter must 

observe as directly as possible how the child is thinking while performing a criterion 

task, having identified the nature of successful reasoning on that task. The important 

feature of this model is that the researcher’s task is to help the child to build up a 

particular cognitive framework,” (Kerslake, 1977, p. 6).  

The experimental lessons have been video-recorded in order to observe as much 

as possible students’ reasoning while performing the tasks and to establish if the 
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experimental procedures and plenaries with the whole class help students to establish 

a particular cognitive framework. 

The ethics of research arose from the fact that the students were under 18 years 

of age and the informed consent has been obtained from the parents of the students 

who were to be interviewed. As the teacher was conducting the research it was 

considered important to study Mason’s (1994) considerations at the ways of 

validating such semi-action research. 

Mason (1994) distinguishes between three research perspectives: intraspection 

(observing oneself), “extraspection (looking from outside), and interspection (sharing 

and negotiating observations with others)” (p. 13). He argues that: “research from the 

inside can be every bit as systematic and disciplined as traditional (extraspective) 

research; researching from the inside provides a much-needed balance to traditional 

research,” (p. 2). He also emphasises that methodology of the research done from 

inside has to be “supported by a consistent epistemology, and that norms for 

justification and validation of conjectures and assertions are maintained and 

developed,” (p.11) and suggests that “inner research depends on constantly re-

validating distinctions and frameworks with colleagues,” (p. 11). He writes that: 

“Distinctions and frameworks which arise from inner research have a domain of 

validity consisting of the perceiver-researcher, and the situations in which the 

distinction comes to mind and is found to be informative,” (p. 12). According to him, 

“Inner research recognises that classifications are evidence of sensitivities which are 

in flux and may alter and develop over time,” (p. 14). From my observation some 

things do change but others such as students’ difficulties stay the same. Students who 

come to study Pure Mathematics with Mechanics come already with their ‘conceptual 

baggage’ gained in the previous years. The inner researcher by doing research during 

more than one year can seek classifications that are robust and transferable from year 

to year. Inner researchers can also validate their investigations by studying work done 

by others and look for confirmation of classifications which are being used. 
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As it has been impossible to run an extraspective research in the full meaning of 

that word, the research had to be semi-extraspective. During the four years of research 

it was inevitable that the researcher and other teachers at the school would be affected 

by the findings at each stage. This was even more probable as the first stage of 

findings were published during the course of the research (Watson, 2002). The 

research has therefore become semi-action research. 

The intraspection perspective plays a very important role when validating data 

or looking at preliminary studies in comparison with the main study. Mason writes 

“the educator has noticed, thereby bringing awareness into consciousness and 

enabling it to inform future practice,” (p. 14) which means that conducting research is 

bound to have an influence on the researcher and therefore on the educator if it is the 

same person (intraspection). However, the researcher/educator has to discuss the 

findings with his/her colleagues to be able to conduct the research and therefore they 

are also influenced by the initial assumptions. The tests conducted in the control 

groups also had some influence on the possible importance of specific ideas on 

interchanged with other teachers (interspection). So to some extent the balance was 

sustained between the teaching approaches of the experimental group and the control 

group.  

According to Mason, “Outer research seeks classifications that are robust and 

transferable from researcher to researcher. Taking into consideration Mason’s advice 

on methodology, frequent interviews with colleagues were conducted throughout the 

research. They served to understand the way students were introduced to vectors in 

Physics and Mathematics, problems they encountered during studying the topic and 

teachers’ predictions on the outcomes of the tests. The tests were moderated due to 

comments made by other teachers in order to rationalise the language used, and to 

establish the questions which would provide valuable data. Talking to the teachers 

showed the need for asking questions in many different ways and in different 

contexts. This has given them a better opportunity to show their understanding of a 

vector and vector addition. The literature involved in the research into vectors and 
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fractions which show many similarities in problems they cause to learners has been 

studied. The results of this have been presented in chapters 2 and 3. 

The influence of teaching through visual methods and a reflective style, 

specifically concentrated on the equivalence relationships, has been examined to 

identify possible changes in students’ conceptual development. 

5.2 Research Design  

5.2.1 Sample 

The quantitative study involved 17 students in the experimental group A and 17 

students in the control group B both from the same school and the same year but 

taught by different teachers. The group of students who were investigated can be 

called a non-probability sample as it “derives from the researchers targeting a 

particular group, in the full knowledge” that it might not “represent the wider 

population,” (Cohen, Manion and Morrison, 2000, p. 102). 

Purposive sampling has been conducted to choose the students for the 

interviews. “In purposive sampling, researchers handpick the cases to be included in 

the sample on the basis of their judgement of their typicality. In this way, they build 

up a sample that is satisfactory to their specific needs,” (Cohen, Manion and 

Morrison, 2000, p. 103). In this research the sample for the interviews has been 

chosen on the basis of the error that has been recurring and needed to be investigated 

further or the students who have answered in a specific way needed to be questioned 

about their knowledge of different methods. 

5.2.2 Triangulation 

According to Cohen, Manion and Morrison, “triangular techniques in the social 

sciences attempt to map out, or explain more fully, the richness and complexity of 

human behaviour by studying it from more than one standpoint and, in so doing, by 

making use of both quantitative and qualitative data,” (2000, p. 112). This implies a 
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multi-method approach to a problem, which attempts to ensure the validation of the 

research. Denzin (1970) talks also about other types of ‘methodological 

triangulation’: time triangulation, space triangulation, combined levels of 

triangulation, investigator triangulation and methodological triangulation. 

Time triangulation has been achieved by longitudinal studies which were based 

on collecting data from the same group of students at different points in the time 

sequence. The same test three times was given before the course, straight after and the 

last one, half a year after the course. The time spans throughout the whole year to 

make sure students do not remember the test too clearly from one time to another. 

From the experience it seemed that the time span in students’ busy life has been 

enough to make them view the test as new each time. 

Theoretical triangulation has been achieved by drawing on alternative theories. 

The data was analysed and interpreted within the theoretical framework described in 

the previous chapters. Results of the pre- and post-course questionnaires, together 

with school-set tests were used to select students for the follow-up interviews.  

The students’ responses were triangulated with the intentions of the authors of 

the school text books and the interviews with the teachers on their preferences. 

The methodological triangulation was attempted by collecting data through 

research questionnaires, school tests, exam results, interviews. To support the data 

triangulation, the results were collected from students of all the abilities and taught by 

different teachers. There were also efforts made to integrate the quantitative and 

qualitative techniques to validate the results. 

5.2.3 Variables 

The term variable is going to be used in an educational context and it will describe the 

aspects which might vary. For example variables can include methods of answering 

questions, concept images or levels of performance. 

Inner research as Mason (1994) suggests “depends on constantly re-validating 

distinctions and frameworks with colleagues” (p. 11). Therefore one should seek to 
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obtain results “which are invariant over specific domain of potential variation, and to 

develop means for validating that invariance” (p. 11). The conclusions should be 

‘robust over time’. 

The research has developed during 4 years of the researcher building 

knowledge. The researcher published any new knowledge so that it did not affect just 

the teaching done by the researcher but the teacher of the control group as well. The 

researcher made an effort not to change the overall way of teaching apart from the 

ways agreed by the department. Apart from the time of the introduction of the 

experimental lessons, teachers of both groups adopted a similar style of teaching. All 

students taking part in the research were from the same Sixth Form Centre. The 

teaching in the centre is based on the philosophy that students should be actively 

engaged in doing mathematics and physics rather than just be ‘taught’ by the teacher. 

The students follow a curriculum which is set by the exam board. They are all taught 

topics in a specific sequence guided by the text books used in the centre. 

After establishing an effort made to keep invariance there is a need to establish 

variables and establish those that might have the significant effect on how students 

think and those which might hopefully not have affected the research too much. 

The variables which are going to be considered are: 

o prior variables which consist of factors dependent of the students’ 
background like they competencies, concept images already 
developed through previous experiences, their attitudes and 
cognitive preferences; 

o intervening variables which involve dynamic relationship in the 
classroom, social influences, students’ attitude to the tests and the 
interviews, students’ dedication to the course and teachers 
attitudes and teaching styles; 

o dependent variables are how students’ can think flexibly, 
recognise the role of context and ability of assessing their own 
cognitive progress; 

o consequent variables which are students’ success with the course 
and long-term changes in flexibility of thinking and conceptual 
understanding. 
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There will be other consequent variables which involve change in the researcher’s 

style of teaching, the questioning techniques and even understanding of the topic but 

there are beyond the scope of this study. 

5.2.3.1 Prior variables 

The preliminary study and the pre-test helped to establish prior variables (students’ 

existing concept images before undertaking the main study). The students had 

different teachers of Mathematics and Physics in the previous years and therefore 

different experiences, often dependent on the teachers’ strengths. According to 

discussions with different teachers some of them made an effort to stretch students 

beyond the requirements of the syllabus, others took teaching vectors more seriously 

than others. Students were in the ‘slowest’ or ‘fastest’ groups which made the 

difference to the time the teacher could spend on the topic of vectors. All these 

variations have affected the way students learnt or assimilated their knowledge from 

the previous years teaching. This prior experience of students formed their cognitive 

units, concept images and schemas. 

5.2.3.2 Intervening variables 

In recent years the number of subjects students have had to study in year 12 has 

increased from 3 to 4 and they can drop one of these subjects in year 13. Some of 

them undertake mathematics only for one year to help them get to their chosen 

university. Students are now allowed to retake the exams as many times as they want, 

so they can enter year 12 with varied commitments to their study of mathematics, 

independent learning and abilities to reflect.  

It is impossible to fully investigate if there are differences between teaching 

experiences two groups of students get in their classrooms. The control and the 

experimental group are also in three different physics groups but not split up in the 

same way as the maths groups due to other subject options they have decided to study 

in year 12. As the year 12 physics involves substantial teaching about vector 
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quantities, students would have had varied experiences coming from that direction. 

There is also a small number of students who did not study physics (usually about 

20%). 

5.2.3.3 Dependent variables 

This variable is tested through the post-test and the delayed post-test. It is hoped that 

it would depend on the students’ experiences during the first two months of study. 

The students’ from both groups were expected to make a substantial progress in their 

understanding of the concept of vector and of vector addition, especially through 

graphical representation as this is part of the Mechanics course during that period of 

time. Both groups post-test results were expected to be similar, however, due to the 

‘special treatment’ of the experimental group, those students were expected to sustain 

the knowledge for a longer period of time. The students from the experimental group 

were given a facility to build a better conceptual base for the topic of vectors and so 

their results were expected to be better in the delayed post-test. 

5.2.3.4 Consequent variables 

This variable indicates students’ future success when dealing with the vector 

problems, long-term changes in mathematical ability to think flexibly and be able to 

solve singular problems. This is tested by the delayed questionnaire, which shows the 

students’ long-term ability to solve problems in vectors. 

5.2.4 Qualitative and quantitative data collection instruments 

The data collection instruments used in the main study include: pre- , post- and 

delayed tests; follow up interviews conducted after administrating pre- and post-

questionnaires.; lesson observations; and interviews with the teachers. 
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5.2.4.1 Questionnaire 

The questionnaire has been designed to give quantitative data. It was initially tested in 

the pilot study with the previous year of students. According to the students’ 

responses, each answer was given the stage of the cognitive development separately 

in the graphical mode and in the symbolic mode, as described in figures 4.5 and 4.6 in 

chapter 4. Allocation of the stages was tested with other teachers. 

5.2.4.2 Interviews 

This qualitative data has been gathered with the help of the interviews with the staff 

before the course, interviews with the sample of the students conducted during the 

year, and lesson observation conducted during the time of the teaching experiment. 

According to Cohen, Manion and Morrison (2000) in the interviews the greatest 

sources of bias are “the characteristics of the interviewer, the characteristics of the 

respondent, and the substantive content of the questions,” (p. 121). During four years 

of this research, the interviewer kept practicing the interview techniques with many 

students. These interviews have been video-recorded and discussed with other 

researchers to enhance the reliability. The coding of responses has also been discussed 

with other researchers as well as with my research supervisors. Oppenheim (1992: 96-

7) suggests several causes of bias in interviewing such as biased sampling, poor 

rapport, wording of the questions, poor prompting and biased probing, poor use and 

management of supporting materials, alterations to the sequence of questions, 

inconsistent coding of responses, selective or interpreted recording of data/transcripts 

and poor handling of difficult interviews. These were all considered when trying to 

improve the interviewing techniques.  

The sampling has been limited by the students who refused to be interviewed 

(when letters were sent to parents to agree for their son or daughter to be interviewed, 

some refused for that to happen). 
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Poor prompting and biased probing has undergone improvement stages. The 

wording of the questions has been reviewed to limit the misunderstanding on the part 

of the respondent of what is being asked. There did not seem to be any problems with 

the rapport between interviewer and the interviewees. 

This pre-course data collection (interviews with the teachers) served to check 

students’ background. Different teachers have varied styles of teaching and use 

different resources. The interviews helped to establish teachers’ expectations of 

students’ knowledge of vectors. This prior variable has been considered in designing 

questionnaires and interview techniques. During the interviews the teachers were also 

consulted on the suitability of different questions in the tests and of the problems their 

students have encountered in Physics and Mathematics lessons where vectors were 

concerned. 

5.2.4.3 Lesson observation  

The students in the experimental group have been observed during the time of the 

teaching experiment. They were encouraged to comment while performing the 

embodied exercises in vector addition and when doing vector translations. The 

students who worked at the board were filmed as well as the group work and the 

plenary discussions. The control group was filmed during two of the lessons at the 

same time, to see if the students had any embodied experiences during their lessons. 

5.3 Teaching experiment and plenaries 

The objectives of the teaching experiment and the plenaries were to: 

o help students in reappraisal of the roles of physical action and 
symbolic manipulation which relates actions having the same 
effect to mathematically equivalent concepts; 

o encourage students to share ideas and to help them reassess and 
refine their knowledge; 

o relate different aspects of mathematical theory to different aspects 
of mathematical applications in Physics. 
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The idea which was hoped to lead students from the action (embodied world) 
to the symbols with which they could operate (proceptual world) in their 
conceptual understanding of the free vector is presented in figure 5.1. 

The experimental lessons were only conducted with the experimental group 
(group A). 

 

 

Fig. 5.1 Cognitive compression of the vector concept 

First a volunteer student was asked to come to the white board, to put his hand on the 

board and draw around it. The student was then asked to move the hand across the 

board and draw around it again (movement from X position to A position, fig 5.2). 
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All students in group A were to discuss the way the translation could be presented. 

Some of the answers are shown in figure 5.2 (arrows 1, 2 and 3). 

 

Fig. 5.2 Action of translation—experimental lesson 

Another student came to the board put the hand in position A and translated it 

into position B (fig. 5.3). 

 

Fig. 5.3 Action with two translations—experimental lesson 

The students were asked to discuss the way of representing the second translation on 

the drawing. The students agreed on the answer shown as the arrow 4 (fig. 5.3). 

They were then asked to show the overall translation and agreed on the answer 

5 shown in figure 5.4. 
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Fig. 5.4 Overall translation—experimental lesson. 

The students were then invited to discuss how the answer can be shown 

mathematically. The preferred method to start was to calculate the horizontal and 

vertical movements (the way they are encouraged to do it in Physics) and add them 

together showing equal values for the vector 5. However being asked for more 

methods, some students came up with the idea of writing vectors in a symbolic form 

of a column vector and adding them together (fig 5.5), showing equivalence to vector 

5. Eventually two students came with the idea of adding vectors graphically. They 

were encouraged first to work on the idea in small groups and then as the class 

discussion. Although students all knew the rule of moving vectors ‘nose to tail’ in 

order to add them, this was not easily remembered in the above situation. 

 

Fig. 5.5 Action of addition of two translations—experimental lesson. 
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The students were asked during the next lesson to repeat the exercise but with a 

triangular shape which they pushed with their hand, during which they had another 

type of embodied experience. 

 

Fig. 5.6 Moving object—experimental lesson. 

The students were asked first to draw a shape and cut it out, one of the students 

was asked to put his shape on the board and translate it (movement without rotation, 

fig. 5.6). Then the exercise followed the same steps as in the previous experimental 

lesson, but with the triangle. Not all the students were able to recall experiences 

gained from the previous lesson and there was still a lot of discussion in plenaries of 

the geometrical way of vector addition. 

During the third lesson the students were asked to add forces acting on the 

objects, showing the addition on the paper with the precision enhanced by using a 

ruler and a set square to give them an embodied sense of the operation. They had to 

move the set square along the ruler with their hands to draw precise parallel lines and 

then measure the magnitude and repeat it with the precision on the translated vector. 

5.4 Summary 

The research methodology and the rationale for various ways of collecting data 

and for the way the teaching experiment has been conducted were described in this 

chapter. The data collection consisted of three major components: questionnaires, 

interviews and observation of students during the teaching experiment. Additional 

data has been conducted through research of the textbooks the students use, 

interviews with teachers and collecting students’ results from external exams and 
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internal tests. These additional components also provided means of triangulation and 

in establishing the prior variables. Changes to those variables were documented using 

pre-test, post-test, delayed post-test and interviews. The quantitative and qualitative 

components of the main study were designed to address the three main research 

interests: 

1. discover what makes some students link the real world activities with 

mathematical symbolism in a meaningful way; 

2. discover what prevents some students in making these links; 

3. to increase students understanding of these links through specific 

teaching techniques of which the main part are the plenary sessions and 

make them more flexible in their thinking. 

Pre-, post- and delayed post- tests were designed to examine the above points 

and to provide data showing if the teaching experiment had any effect on students 

learning and their flexibility of thought. The class observation and interviews were 

conducted in order to add a qualitative component to the first two points of interest 

and provide the insight into reasons for students’ difficulties and strengths. 
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Chapter 6 

Pilot Study 

6.1 Introduction 

The pilot study tested: 

• the design of questions to be used in the main study;  

• the method of collecting and analysing both quantitative and qualitative data; 

• whether the experimental lessons given to students have the anticipated 

impact on their results from the test. 

However in the pilot study the test was only conducted twice, before the experimental 

lessons and after. In the main study the test was conducted three times and the focus 

was mainly on the difference between the pre-test and the delayed post-test because 

the long-term retention of knowledge was important in this analysis. 

6.2 Design of the questions 

The first two parts of the chapter show test questions and their intentions the next part 

shows how the stages of the cognitive development were awarded to students’ 

responses; the last part shows the results of the pilot pre-test and post-test. 

6.2.1 Cognitive development of vector 

Figure 6.1 shows the diagram for the first question in the test. 

1) In the picture the triangle has been 
translated from position A to position B 
as shown below: 

 

 
(a) How can you represent the translation of the 

triangle? 
(b) Can you draw a vector starting at the origin 

(0,0) which will represent the translation of the 
triangle from A to B? If so, show it on the 
drawing. 

(c) Can you draw a vector not starting at the origin 
and not touching either of the triangles which 
will represent the translation from A to B? If so 
show it on the drawing. 

 

Fig. 6.1 Test question 1 
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This question tested students’ cognitive stage of vector awareness. The first part of 

question (a) expected students to represent a vector representing the movement of an 

object, either in a symbolic way, by representing vertical and horizontal components, 

or graphically as an arrow from one point on the object in position A to a 

corresponding point on the object at position B. 

Students learn in their course that among all the equivalent vectors there is one 

which starts at the origin which is called the ‘position vector’. Therefore, to test if 

they have developed so far in their cognitive understanding, the second part (b) 

expected a student to draw an equivalent vector to the one in part (a) but starting at 

the origin. The students who has continued on the cognitive development ladder to 

construct the idea of a free vector, are expected to understand that an equivalent 

vector can be represented anywhere on the page. To test this, part (c) of the question 

asked them to draw a third vector representing the translation but not touching the 

triangles or the origin. 

The first part gave students an opportunity to answer graphically or 

symbolically (“represent”) but the second and third part asked them for the graphical 

representation (“draw”). Therefore symbolically this question may not encourage the 

higher stages of the cognitive development but the real purpose of this question is to 

see if students have a concept of a free vector, specifically if they can draw an arrow 

which is not on the triangle. For instance, students who conceive of the vector as a 

physical ‘push’ on the triangle might sense that for a vector to cause movement, it 

must actually touch the object being moved. They may believe this quite separately 

from the possibility that they are able to reproduce the learned response to draw a 

position vector at the origin. This question, despite the expectation of testing mainly 

the graphical mode was very important as it tests students’ development from acting 

on the base object to the process of drawing equivalent vectors, to the concept of free 

vector. 
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6.2.2 Cognitive development of vector addition 

The cognitive development of vector was further analysed in questions asking 

for vector addition. 

The question presented in figure 6.2 asked students to add two vectors in the 

three situations shown below (a, b and c): 

 
Question 2: In each case below add the two vectors: 

 
  

(a) (b) (c) 

Fig. 6.2 Test question 2: adding vectors as arrows 

This question includes three examples that have certain specific properties that are in 

some sense unusual. Part (a) is a prototypical example in mathematics when 

discussing addition of free vectors that are to be placed ‘nose to tail’; the vectors are 

not touching or overlapping, so that either one can be shifted until its tail coincides 

with the nose of the other. However, from a physics viewpoint, this is not typical in 

the context of forces where the students are used to having the forces all acting on a 

single point. Part (b) is typical of two forces acting on a point, and from this 

viewpoint, it might evoke the use of the parallelogram law. However, as we have seen 

in the literature and in figure 2.1, it might evoke other meanings, such as two 

competing forces tugging at a point, or two sides of a triangle, leading to a misuse of 

the triangle law. Part (c) is considered to be a singular example that has not been 

discussed in Physics or Mathematics lessons. The manner in which the two vectors 

meet nose to nose may lead to misconceptions, such as the idea of two forces pressing 

on each other and perhaps cancelling each other out. 

Question 3 (figure 6.3) is designed to test students’ versatility by asking them 

for another way of adding vectors in question 2. They may respond by performing the 

sum in the same mode (perhaps nose to tail in figure (a) with the vectors in a different 



 Pilot Study Chapter 6 

 97

order) or in different modes (responding geometrically on one occasion and 

numerically on the other). 

Question 3: If there is any other way you could have done any of 
the additions of the two vectors in Q2 show it here: 

 

 
  

(a) (b) (c) 

Fig. 6.3 Test question 3: adding vectors in another way 

The next question is designed to test the students’ understanding of free vectors in a 

more general case.  

Question 4: Add the three vectors shown below: 

 

Fig. 6.4 Test question 4: Add three vectors 

If they can add vectors in question 2 (a) or 3 (a), and also can add three vectors in 

question 4. (figure 6.4), then they are more likely to have some understanding of 

vector addition, even if they did not answer parts (b) and (c) in figures 6.2 and 6.3. 

Students who learnt procedurally and not conceptually might only understand 

that adding two vectors will graphically be in a form of a triangle and not have a 

concept that whenever you add any number of vectors by shifting them ‘nose to tail’ 

you will get the resultant, which has the same effect as adding them all together (as 

shown later in figure 6.24(a)). 

On the other hand they might realise the procedure of shifting vectors ‘nose to 

tail’ but not getting a triangle, they may not know what to do next (as shown later in 

figure 6.24(b)). 
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The next two questions are set up in two different physical contexts and are 

opened-ended: 

 
Question 5: Draw a representation of three forces and add them 

together. 

Question 6: Draw a representation of two displacements and add them 
together. 

 

Students have an option, for example, to draw forces acting all in one direction or 

only in two, or all three forces acting from one point and then add them as ‘free 

vectors’. However if students are attached to the physical situation they might draw 

the forces, but unless they act in one dimension or maximum two (where they can use 

numerical methods) they may find them difficult to add.  

In the case of displacements they might draw two vectors following each other 

and add them, however if they are confident with a concept of free vectors they might 

draw them separately and add them together. 

The two questions above test how students operate when faced with vector 

addition in different physical contexts, and is included to see if it makes a difference 

to the stage at which they respond to vector addition. 

The next question (figure 6.5) tests if the students can recognise answers in the 

midst of the drawn lines. 

 

 

Fig. 6.5 Test question 7: adding vectors in a drawing 
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Questions like these are familiar to students from their Mathematics course in the 

previous year (Year 11). Part (b) can be answered in two ways, either using the 

commutativity law that DAEDEDDA +=+  which, in turn equals EA , or by seeing 

that AB  is parallel to ED  and has the same magnitude, and using the idea of 

equivalent free vectors to give the answer DB . Because of the involvement of the 

commutative law of addition part (b) of the question has been categorised as a 

‘singular’ case. 

The last set of questions (figure 6.6) has been assigned as a ‘singular’ case. The 

students were not familiar with the answers not being part of the diagram and it was 

considered that in order to answer them, they had to be familiar and confident with 

the idea of free vector. 

 

 

Fig. 6.6 Test question 8: more sophisticated addition in a drawing 

Part (a) of question 8 is singular for two reasons: one because the answer is not part of 

the diagram (which was always the case in the students’ earlier experience); but also 

because two vectors meet at one point (as in questions 2c and 3c). Part (c) of question 

8 is also singular for two reasons, first that the result is not part of the diagram and the 

second that two vector cross each other. Students who can answer all questions in 

figure 6.6 are therefore considered to be at the top of the ladder indicating their 

cognitive development in at least one of the two modes (graphical or symbolic). 
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The pilot study tests the final design of questions and the way the responses 

were going to be evaluated in the main study. In the following two sections it can be 

seen how the responses to the questions will be analysed.  

6.3 Method of collecting quantitative data 

In the main study the test was given to students 3 times, before the course, straight 

after the course (which included the experimental lessons in case of experimental 

group) and the delayed post-test given to students half a year after the course. 

However in the pilot study the test was given only twice, before the course and 

straight after the course which also involved two experimental lessons for one group 

out of two taking part. 

The quantitative data analysis focused on the stages attained by students in the 

graphical and symbolic modes of operation, as formulated in chapter 4, figure 4.6. In 

practice, the students often responded in ways that required careful analysis to place 

them in appropriate stages. This was done with help of another teacher from the same 

school who taught Pure Mathematics with Mechanics for many years but was not 

involved at any stage with the students under investigation. The researcher and the 

teacher independently allocated stages to a sample of nine varied responses from 

students to the test. These allocations were discussed and final versions established. 

Thereafter the rest of the responses were allocated stages of cognitive development 

according to the agreed format. 

The principle was to give the highest stage for each question, consistent with the 

response, if there was no graphical or symbolic response at all, then stage 0 was 

awarded, even though the stage 0 is also for the intuitive responses. In both cases it 

meant that student did not reach the first stage of the cognitive development ladder. 

The more precise interpretation of such results had to be tested through the 

interviews. 

It has been also decided that in the symbolic mode the answers given in letters or 

numbers will be treated the same. It might be debated if those two responses show 
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different cognitive level of development, but it will not be part of this study. The 

student had to satisfy a certain stage at least twice (in two different questions or parts 

of the question) before being awarded the stage in the general case (taking into 

consideration all the test questions) but only once in specific questions analyses 

(‘singular’ cases, different contexts cases). 

As could be seen from the questions described in part 1 of this chapter, some 

were more suitable for graphical mode responses than others and question 1 (b) and 

(c) specifically asked for the graphical responses, which could have influenced some 

students that this was expected mode for the rest of the test. However the overall 

expectation was that students may answer in the mode they are more familiar with in 

most of the questions and perhaps show the other ability either when their favoured 

mode is not possible, or if they are asked to do it differently. A sample of students 

answering in only one mode throughout the test was interviewed to check if in fact 

only one mode was familiar to them.  

For the reasons stated in the previous paragraph, when making a judgement for 

overall stages of development, the final analysis was performed in two ways. The first 

way used all the responses given by the student to prescribe an overall stage of 

development. There were 17 questions in total and the student had to achieve their 

highest stage twice to be given it. If student answered, for example, once at stage 4 

and once or more at stage 3 then stage 3 was given. In the case where a student 

answered once at stage 4 and once or more at stage 2 then stage 3 was given. In 

general the rule is to take the two highest stages awarded, calculate the average, and 

round it down to the nearest whole number. 

The second way involved focusing on all the questions which contributed to a 

specific aspect of study. There were two cases considered: the ‘singular’ cases (four 

questions) and the questions testing different physical contexts (displacements and 

forces) of which there were two. Because of the smaller number of such questions, 

students had to gain the stage only once to be prescribed that overall stage in the 

aspect under consideration. 
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The pilot study only looks at the overall stages gained by students, however the 

main study also will analyse the specific type of questions as the changes occurring in 

the students’ responses show the more precise insight into their development. 

The stages gained by each student in both graphical and symbolic modes were 

then plotted on a scatter graph. The scatter graph was divided into 25 regions and 

these regions were given categories, developed in chapter 4, as shown in table 6.1. 

This begins with stage 0, in which students responded essentially only in terms 

of physical intuition without any clear evidence of mathematical activity. Such a 

response in both graphic and numeric modes was classified as physical intuitive. The 

next identifiable level occurs in a way that focuses on mainly symbolic or mainly 

graphical representations at lower stages of cognitive development. I took the 

decision to assign performances that attained level 1 in one of the modes but failed to 

reach level 2 in the other as being uni-modal. This was subdivided into lower uni-

modal if the activities in the higher scoring mode was at stage 1 or 2 and higher uni-

modal if at stage 3 or 4. If both modes reached level 2, then the performance was 

categorized as multi-skilled. Performances reaching at least level 3 in both modes are 

classified as versatile and those who attain level 4 in both modes are termed fully 

integrated.  

 

stage 4 
higher 

uni-modal 

higher 

uni-modal 

multi-

skilled 
versatile 

fully 

integrated 

stage 3 
higher 

uni-modal 

higher 

uni-modal 

multi-
skilled 

versatile versatile 

stage 2 uni-modal uni-modal 
multi-
skilled 

multi-
skilled 

multi-skilled 

stage 1 uni-modal uni-modal 
uni-

modal 

higher 

uni-modal 

higher 

uni-modal 

stage 0 intuitive uni-modal 
uni-

modal 

higher 

uni-modal 

higher 

uni-modal 

graphical 
mode 

 

 stage 0 stage 1 stage 2 stage 3 stage 4 

 symbolic mode 

Table 6.1 Table of the second stage of the categorisation 

The data in the main study is going to be presented in the form of the table above but 

instead of names of the categories there will be indication of how many students in 
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each group responded in those categories. The sign ‘A’ will indicate a student from 

group A and the sign ‘B’ will indicate a student from group B. The 2
 test will show if 

there is a significant difference between the control and the experimental group by 

comparing the number of students in two regions marked in a thicker line: one 

including intuitive and uni-modal categories; another including higher uni-modal, 

multi-skilled, versatile, and fully integrated. 

6.3.1 Quantitative Data Analysis of Understanding the Symbol of a Vector 

Figures 6.7 and 6.8 (taken from figure 4.6) show how the stages will be allocated to 

students’ test responses as far as their cognitive development in understanding the 

concept of vector is concerned graphically and symbolically. 

 

 
 

 
 

(a) 
graphical stage 1 

(b) 
graphical stage 2 

(c) 
graphical stage 3 

(d) 
graphical stage 4 

Fig. 6.7 Four stages of cognitive development of vector in the graphical mode 

 

 
  

(a) 
symbolic stage 1 

(b) 
symbolic stage 2 

(c) 
symbolic stage 3 

(d) 
symbolic stage 4 

Fig. 6.8 Four stages of cognitive development of vector in the symbolic mode 

In addition, the relationship between the stages of development in the symbolic and 

graphic responses will be categorised using the corresponding cycles shown in figure 

4.8, which were formulated in chapter 4 in the following terms: 
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physical-intuitive: signifies the performance of those students who do 
not have any specific understanding of the graphical or symbolic 
representation of a vector; 

uni-modal: applies to the students who can operate in basically only at 
stages 1 and 2 in both modes (symbolic or graphical); 

higher uni-modal applies to the students who can operate in basically 
only one mode (symbolic or graphical) at stages 3 or 4 but only at 
stage 0 or one at the other mode; 

multi-skilled: students who show that they can use both modes of 
vector representation but do not use them flexibly (the context affects 
the level of their responses); 

versatile: students who use both modes of operation flexibly whatever 
the context. 

fully integrated: relates to the students who recognise the concept of 
free vector and see it as a mathematical manipulable symbol whatever 
the context and using the appropriate mode of representation 
(graphical/symbolic: numerical and algebraic). 

The first question is repeated in figure 6.9, so that it can be compared with the 

responses in figure 6.10. The preliminary study indicated that students often 

understand the position vector (vector starting at the origin) as a movement of an 

object. Similarly students often showed a translation as an arrow from a specific point 

on an object to the corresponding point on its translated image.  

 
1) In the picture the triangle has 
been translated from position A to 
position B as shown below: 

 

 
(a) How can you represent the translation of the triangle? 
(b) Can you draw a vector starting at the origin (0,0) which will  
represent the translation of the triangle from A to B? If so, 
show it on the drawing. 
(c)Can you draw a vector not starting at the origin and not 
touching either of the triangles which will represent the 
translation from A to B? If so show it on the drawing. 

 

Fig. 6.9 Test question 1 

The questionnaire reveals only the responses written at the time and do not 

necessarily reveal whether the students have possibly broader levels of flexibility 

available to them beyond the written answers. This possibility will be considered in 

the qualitative analysis. 
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Figure 6.10 show six examples of students’ responses. 

 
 

(i) (ii) (iii) 

 
 

(iv) (v) (f) 

Fig. 6.10 Examples of students’ responses to test question 1 

The categorisation of students’ responses, at different stages of the cognitive 

development of a vector concept, according to the examples shown in figure 6.4, is 

discussed below. 

The student who responded as shown in figure 6.10 (i) was categorised to be at 

the stage 0 of the graphical representation but at stage 2 of the symbolic 

representation of vector. (S)he presented the translation symbolically as horizontal 

and vertical components but graphically only translated an object without showing the 

action as an arrow from one point to another. This student is also at the stage of action 

on an object and does not use the symbol of a vector (an arrow) to indicate the 

translation. (S)he does not realise the equivalence of vectors but only the equivalence 

of movements. 

The student who responded as shown in figure 6.10 (ii) was categorised to be at 

stage 0 for the graphical representation as there are no arrows on the drawing or even 

an indication of moving lines parallel to each other. However the student was given 

stage 3 for the symbolic representation as (s)he not only showed the translation as the 

horizontal and vertical movement but also as a column vector, as a relative shift. This 
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student’s written response shows no awareness of the notion of vector in a graphical 

form as even the x and y components have no arrows on them. 

The student who responded as shown in figure 6.10 (iii) responded at stage 3 for 

the graphical representation as the two arrows represent a ‘journey’ of the object from 

a specific point to another specific point and a shift with the same magnitude and 

direction. However the student did not respond symbolically and from the principles 

established earlier was given stage 0 in that mode. 

The student who responded as shown in figure 6.10 (iv) was categorised to be at 

stage 3 of the graphical representation and at stage 3 for the symbolic representation. 

Although the translation is only represented as a line (stage 1) the student shows the 

concept of ‘the same magnitude’ and to some extent ‘the same direction’ by placing x 

and y in the same order and revealing some indication of the direction. 

The student who responded as shown in figure 6.10 (v) responded at stage 4 for 

the graphical representation as (s)he drew the notion of free vector, not attached to the 

object or any specific point, however, (s)he did not respond symbolically and was 

given stage 0. 

The student who responded as shown in figure 6.10 (vi) was categorised to be at 

stage 4 for the graphical representation as the notion of free vector is indicated 

graphically and stage 3 for the symbolic representation as (s)he showed a column 

vector as a relative shift. 

Some students did not give any symbolic response to question in figure 6.9 and 

the data about their cognitive development in the symbolic mode had to be collected 

from other questions. From the preliminary study it seems that the changes in the 

symbolic mode are not statistically significant after the experimental lessons, mainly 

due to the fact that the underlying data is not clear. The interviews tend to reveal more 

information; it is here that more insight appears, though not for all students. 

The second example of the questions given to students is shown in figure 6.11. 
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2 (b) add the two vectors together 

3 (b) If there is any other way you could have done 

any of the additions of the two vectors in Q2 show it. 
 

Fig. 6.11 Questions 2(b) and 3(b). 

Figure 6.12 shows the examples of the responses of four selected students. The top 

picture shows the response to question 2(b) and the bottom picture response of the 

same student to 3(b). 

 

 
  

 

 
 

 
 

 

   

(i) (ii) (iii) (iv) 

Fig. 6.12 Examples of four students’ responses to questions 2(b), 3(b) 

The response in part (i) of figure 6.12 indicates that in a graphical  mode a student 

might interpret vectors as a journey along the line as vectors follow each other in the 

top answer, described as stage 1. On the other hand, on the basis of the preliminary 

and pilot studies, some students might be treating a and b as the position vectors of 

some point A and another point B and draw a displacement vector from A to B, which 

would indicate stage 2. On this occasion the student wrote first the expression -b+a 

below which he crossed and changed to a-b. This would imply that the student was 

considering a journey, (along b in the reverse direction, then along a)and therefore the 

first interpretation was assumed to be the more likely, and the graphical response was 

categorised at stage 1. The symbolic response was categorised as stage 1 because 

student only assigned letters to the vectors and did not try to manipulate symbols in 

any meaningful way. 



 Pilot Study Chapter 6 

 108

In part (ii) the student shows that (s)he can shift vectors with the same 

magnitude and direction but does not show the resultant. The student therefore does 

not recognise the full idea of the same effect. The student was allocated stage 3 for 

this graphical response. The symbolic response which the student gave to 3(b) 

question was awarded stage 3, as this indicated the column vector as a representation 

of the relative shift.  

The student in part (iii) of figure 6.12 was awarded stage 4 for the graphical 

response. This student shows not only an understanding of the concept of free vector 

but also the concept of the commutative law of addition. 

Part (iv) of figure 6.12 shows a student who was allocated stage 4 for the 

graphical response. This student not only can shift vectors with the same magnitude 

and direction but also can add them showing concept of effect. This student has been 

also awarded stage 4 for the symbolic representation as (s)he uses a column vector as 

a manipulable symbol. 

The questions discussed above use the concept of vectors formulated in general 

situations but for someone who can only think about the vectors as symbols related to 

the physical world, they could be interpreted, for example, as a displacement in case 

of question 1 (figure 6.9) and forces in case of question 2 and 3 (figure 6.11). These 

types of question we call generic cases (chapter 1, p. 4). However the students are 

given examples of vectors whose ‘noses’ meet at a point or where vectors cross we 

call them singular cases (questions which might cause confusion from the 

physical/intuition point of view). It therefore seemed important to show how 

responses to such questions were awarded with stages. 

The example of questions which were categorised as ‘singular’ cases are shown 

in figures 6.13 and 6.15 and are discussed next. 
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Add the two vectors 

 

 

Fig. 6.13 Singular question  

Figure 6.13 shows two vectors which meet at one point. According to the teachers and 

the preliminary tests this example goes against many students’ intuition. 

The example of the way different stages were awarded to students’ responses is 

shown in figure 6.14. Parts (i)-(iii) show graphical responses and parts (iv)-(vi) show 

symbolic responses. 

  

 
(i) (ii) (iii) 

 

  

(iv) (v) (vi) 

Fig. 6.14 Allocation of stages to the responses to the singular case in 2(c), 3(c) 

Part (i) shows what seems to be an intuitive response. The student seems to be aware 

in which more or less direction the resultant should be, however neither the 

magnitude nor direction of the resultant are correct and therefore stage 0 was given. 

In part (ii) It is not clear if students shows some sort of intuitive response or (s)he is 

trying to ‘close a triangle’ from the beginning of one vector to another. As different 

interpretations give the highest stage 2 for the graphical response then according to 
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the general principle adopted for the ambiguous cases, stage 2 was given to the 

response. 

Stage 4 was given for the response in part (iii) as student shifted one vector with the 

same magnitude and direction and showed the resultant. 

Part (iv-vi) responses were given stage 0 for the graphical response.  

Part (iv) was given stage 1 for the symbolic response as the student simply put a 

signed letter to the arrow. 

Parts (v) and (vi) are similar in the final response although it can be debated if using 

letters or numbers shows a difference in the stage of development. However as 

decided at the beginning of this section of the chapter, it is not part of the analysis. 

There is however slight difference in the way two responses are presented in part (v) 

student shows column vector as a relative shift with horizontal and vertical 

components being added, however in part (vi) it is evident that two vectors were 

added to show the answer and therefore higher stage was given to part (vi) – stage 4, 

than to part (v) – stage 3. 

Another ‘singular’ case set of questions is shown in figure 6.14. 

 

 

Fig. 6.15 Singular question 

The question shown in figure 6.15 is set up differently from the questions students 

met in the previous year in their text-book. The questions they were dealing before 



 Pilot Study Chapter 6 

 111

had all answers as part of the diagram. In this case none of the answers fit that pattern. 

Part (a) of this question has also two vectors meeting at one point and part (c) has two 

vectors crossing each other. 

Figure 6.16 shows a selection of students’ responses to the above and allocation 

of stages to these responses. 

 

 

(i) (ii) 

 
 

(iii) (iv) 

Fig. 6.16 Examples of students’ responses to singular questions. 

In figure 6.16 part (i), the student responded similarly to the response in figure 6.14 

part (ii) and therefore stage 2 in graphical mode was awarded. The student gave a 

vector response (with an arrow above the letters) to the answers and therefore stage 1 

was given for the symbolic response. 

In figure 6.16 part (ii) the student drew the arrows along the lines AC and DB and 

therefore stage 2 (describing an arrow as a journey from one point to another) was 

awarded. As in part (i), the student gave a vector response to the arrows and therefore 

stage 1 was given in the symbolic mode. 
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In figure 6.16 (iii) the graphical responses were given stage 4 as the student shows the 

correct resultants as free vectors. As there is no evidence of symbolic addition, stage 0 

was assigned to the symbolic mode. 

In figure 6.16 (iv), in the graphical mode the student shifted vectors with the same 

magnitude and direction and also manipulated them to perform the correct addition, 

therefore stage 4 was given despite the lack of arrows on equivalent vectors. However 

there is no indication of any symbolic use of vectors and therefore stage 0 was given 

for that mode.  

6.3.2 Quantitative Data Analysis of Understanding Vector Addition. 

The figures 6.17 and 6.18 show the theory developed in chapter 4, how the stages 

were going to be allocated to students’ test responses as far as their cognitive 

development in understanding vector addition is concerned, 

 
 

  

graphical stage 1 graphical stage 2 graphical stage 3 graphical stage 4 

Fig. 6.17 Stages of cognitive development of vector addition in the graphical mode 

 

 
  

 

symbolic stage 
1 

symbolic stage 2 
symbolic stage 

3 
symbolic stage 4 

Fig. 6.18 Stages of cognitive development of vector addition in the symbolic mode 

These stages as in case of concept of vector can be plotted on the scatter graph as 

shown in table 6.1.  

The second level of categories come from the scatter graph presented in the 

table 6.1 depends on the stages students were awarded initially in the tests. The 

description of the categories give some idea of the student that fits into them. 
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physical-intuitive: signifies the performance of those students who do 
not have any specific understanding of vector addition in a graphical 
mode and at the same time do not present addition symbolically; 

uni-modal: applies to the students who can operate in only at stage 1 
or 2 in either mode (symbolic or graphical; 

higher uni-modal applies to the students who can operate in basically 
only one mode (symbolic or graphical) at stages 3 or 4 but only at 
stage 0 or 1 at the other mode; 

multi-skilled: students who show that they can use both modes in 
vector addition but do not use them flexibly (the context affects the 
level of their responses); 

versatile: students who use both modes of operation flexibly whatever 
the context. 

fully integrated: relates to the students who recognise the concept of 
free vector in vector addition whatever the context and using the 
appropriate mode of representation (graphical/symbolic: numerical and 
algebraic). 

The students’ responses to 7 different sets of questions on addition of vectors were 

considered in this part of the analysis. The first two questions (repeated from figures 

6.2 and 6.3) are shown in figures 6.19 and 6.20 and the analysis of a sample of 

students’ responses follows. 

 
Question 2: In each case below add the two vectors: 
 

 

  
(a) (b) (c) 

Fig. 6.19 Test question 2 
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Question 3: If there is any other way you could have done any of the 
additions of the two vectors in Q2 show it here: 

 

  
(a) (b) (c) 

Fig. 6.20 Test question 3 

The examples of the graphical responses, to questions 2 (a) and 3 (a) are presented in 

figure 6.21. 

  

 

 

 

 

(i) (ii) (iii) 

Fig. 6.21 Example of graphical responses to questions 2 (a) and 3 (a) 

The response in part (i) of figure 6.21 shows no graphical rules of addition applied at 

all, and therefore the student was given stage 0 (however in the symbolic mode the 

student was given stage 1 as the letters representing vectors were added). 

In part (ii) the student added an additional vector from the nose of the first 

vector to the tail of the second, but then seemed to go on to add all these three vectors 

together to complete the polygon. He could  be only given stage 0, as he created his 

own continuity of journey by inserting the extra arrow. 

Part (iii) of figure 6.21 show responses from the same student to questions 2 (a) 

and 3 (a) respectively. The student seems to have knowledge of the commutative law 

of addition and therefore is assumed to realise the concept of free vector and is given 

stage 4. 
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Figure 6.22 shows two examples of typical symbolic responses to questions 2 

(a) and 3 (a) (shown in figures 6.19a and 6.20a). 

 
 

(i) (ii) 

Fig. 6.22 Examples of graphical responses to questions 2(a) and 3 (a) 

The examples shown in figure 6.22 (i) was given stage 3 in the graphical mode as the 

student added arrows as a journey, and stage 3 in the symbolic mode as the student 

shows the resultant in the form of vertical and horizontal components only. The 

response in figure 6.22 (ii) was given stage 3 as student added vectors by adding 

components. 

The examples of the graphical responses, to questions 2 (b) and 3 (b) are 

presented in figure 6.23. 

  
 

 

 
(i) (ii) (iii) 

Fig. 6.23 Example of graphical responses to questions 2 (b) and 3 (b) 

The response in figure 6.23 (i) was given stage 0 because student put the symbol a+b 

on the arrow drawn as the answer. If (s)he had not done this, it may be considered that 

the student assumes that the arrow is the resultant of addition of the other two vectors. 

However by writing a+b, the student seems to indicate that this is a resultant. From 

the experience in the preliminary study this happens when a student thinks that the 

resultant will go in the direction of the longer arrow (force), which is an intuitive 

response.  

The response in figure 6.23 (ii) seems as if the student used the parallelogram 

rule but only approximately, however, according to the principle of giving the highest 

mark, stage 4 was given. The responses in figure 6.23 (iii) come from the same 
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student and were given stage 4. This student seems to have the concept of free vector 

and uses the commutative law of addition in the graphical mode. 

Figure 6.24 shows two examples of typical symbolic responses to questions 2 

(b) and 3 (b) (shown in figures 6.19a and 6.20a). 

 

  
(i) (ii) 

Fig. 6.24 Examples of symbolic responses to questions 2(b) and 3 (b) 

Both responses shown in figure 6.24 were given stage 3 in the symbolic mode. 

Additionally response shown in figure 6.24 part (ii) was also given stage 3 in the 

graphical mode, as student seem to be using the triangle addition of the components. 

The examples of the graphical responses, to questions 2 (c) and 3 (c) are 

presented in figure 6.25. 

  
  

(i) (ii) (iii) (iv) 

Fig. 6.25 Example of graphical responses to questions 2 (c) and 3 (c) 

The responses in figure 6.25 refer to the singular case presented in figures 6.19 (c) 

and 6.20 (c). In part (i) the arrow is too short for the parallelogram law to have been 

used and the direction is only approximate, that is why the intuitive response has been 

given in the form of stage 0. The response in part (ii) was also given stage 0. In figure 

6.25 part (iii) the student joins the vectors ‘nose to tail’ but does not add them which 

is considered to be stage 2 (adding arrows as a journey). The response in part (iv) was 

given stage 3 as a single answer, however, if the same student were to show an 

understanding of the commutative law in question 2 (c) and 3 (c), then stage 4 would 

be given. 
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Figure 6.26 shows two examples of typical symbolic responses to questions 2 

(c) and 3 (c) (shown in figures 6.19a and 6.20a). 

 
 

(i) (ii) 

Fig. 6.26 Examples of graphical responses to questions 2(c) and 3 (c) 

The first response (figure 6.26 (i)) was given stage 0 as student as the student created 

the continuity by changing the sign of one of the vectors and therefore thinks of a 

journey. This seems to be a symbolic equivalence to the graphical answer shown in 

figure 6.25 (ii). 

The second response in figure 6.26 (ii), was given stage 3 as the resultant is 

shown in a vector form obtained by adding the components. 

The preliminary study gave some indication that students might be graphically 

adding two vectors procedurally in a way that the triangle has to be obtained and 

might have tried to apply this procedure to addition of three vectors trying to make a 

triangle, or being unable to draw the resultant if the three vectors did not make a 

triangle. Question 4 shown in figure 6.27 was given to students for that reason. 

Question 4: Add the three vectors shown below: 

 

Fig. 6.27 Test question 4: Add three vectors 

 

The examples of the responses to question 4 are shown in figure 6.28. 
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(i) (ii) 

 
 

 
(iii) (iv) 

Fig. 6.28 Response to question 4: Add three vectors 

Part (i) of figure 6.28 shows a response described earlier in which the student might 

recall the idea of two vectors being added using the triangular law and attempt to 

force the three vectors displayed to make it look like a triangle. The student stretched 

and shrank some of the arrows and distorted angles so that the three sketched vectors 

make a triangle. This response was given stage 0 in the graphical mode; it was also 

given stage 0 in the symbolic mode as no symbols were used. 

Part (ii) was given stage 2 in the graphical mode as the student placed arrows together 

‘nose to tail’ like a journey but did not add them. Again stage 0 was given for the 

symbolic response or rather lack of it. 

Part (iii) response was given stage 3 for the graphical response as the student shifted 

the vectors ‘nose to tail’, and stage 3 in the symbolic mode as the student shows the 

resultant in the form of the horizontal and vertical components. 

Part (iv) was awarded stage 4 in the graphical mode and stage 0 in the symbolic 

mode. 

The student not only added 3 vectors but also shows the resultant again as a free 

vector. 

The different physical contexts questions are also going to be analysed 

separately in the main study. 
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Question 5: Draw a representation of three forces and add them 
together. 

Question 6: Draw a representation of two displacements and add them 
together. 

The examples of the responses to question 5 questions are shown in figure 6.29. 

  
  

(i) (ii) (iii) (iv)) (v) 

Fig. 6.29 Examples of responses to question set in the context of forces. 

The response in part (i) was given stage 0 in the graphical mode and stage 2 in the 

symbolic mode. The student drew a very simple example and added components. 

The response in part (ii) was given stage 2 in the graphical mode. The correct 

resultant is drawn separately without any indication of how it was obtained. Stage 0 

was given for the symbolic mode (although student probably used the numerical 

addition to be able to draw the correct resultant, there is no indication of that in the 

test). Only the follow-up interview showed that the student added vectors 

numerically, by measuring the vertical and horizontal components, adding them 

together and drawing the answer graphically. This is a case, therefore, where what the 

student actually wrote in the test did not fully indicate his or her capacity. It is for this 

reason that the overall responses look for performance at the highest level shown by a 

student in all the questions, rather than average performances where individual cases 

may be given stage 0, merely because the student did not to use that mode explicitly. 

Part (iii) was given stage 3 in the graphical mode and stage 0 in the symbolic 

mode. As the student drew his/her own vectors, with a very approximate drawing, it 

was possible that the resultant was 0. The follow up interview revealed that the 

student had the misconception that the three vectors should make a triangle. 

Parts (iv) and (v) were both given stage 4 in the graphical mode. However part 

(iv) was given stage 0 in the symbolic mode, while part (v) was given stage 1 in that 

mode as the student added written letters. It was interesting to see that the student in 
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figure 6.29 (v) worked in such a way that the response became ‘singular’ (with all 

three vectors directed into a single point). 

The examples of responses to question 6 are shown in figure 6.30. 

  
 

 
(i) (ii) (iii) (iv) 

Fig. 6.30 Examples of responses to question set in the context of displacements. 

The response in part (i) was given stage 0 in the graphical mode and stage 1 in the 

numerical mode as the student wrote the symbol a–b. 

The response in part (ii) was given stage 1 in the graphical mode as the student 

added arrows in one dimension, and stage 0 for the symbolic mode. 

The response in part (iii) was given 1 in the graphical response and stage 1 in 

the graphical mode as it seems that student just added signed numbers in one 

dimension. 

The response (iv) was given stage 4 in the graphical mode and stage 1 in the 

symbolic mode. 

6.4 Method of collecting qualitative data 

Mason (1996) suggests that the sampling on the basis of chosen categories relevant to 

the research questions and one’s theoretical position is called a theoretical sampling. 

My theory looked at students flexibility of thinking and the initial investigation 

suggests that students who present their work visually are often more flexible at this 

stage of their study and therefore I decided to choose students for the interviews on 

this basis.  

During the interviews I considered different categories of questions described 

by Ainley (1988). It seems that the category described as testing questions (to find out 
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if the subject knows the answer) and directing questions (provoking the subject to 

think further about a problem) are the most appropriate for this research. 

The students were first asked how they attempted different questions and if they 

know any other way they could have answered (to find out if the subject knows the 

answer) and then some directing questions asking them where and how they used 

vectors in the past, if they know any rules for vector addition and what symbols they 

are familiar with (provoking the subject to think further about a problem). 

As an additional qualitative data sample, the Mathematics and Physics teachers 

were interviewed about how they think student learn vectors and how vectors are 

taught in their subjects. This enabled further triangulation between what the students 

did and what their teachers expected them to do. The main study will also include 

interviews with teachers on how they think that the students will respond to give more 

information for triangulation purposes. 

In addition, in the main study, the experimental lessons will be recorded to 

observe the students’ development more closely. 

6.5 Quantitative Analysis of the results 

The students’ results of the qualitative and quantitative analysis show a shift of the 

experimental class to being more ‘graphical’ than before and towards being more 

flexible. The vital delayed post-test missing from the pilot study was included in the 

main study. It was conducted half a year after the course to investigate long-term 

retention of ideas. 

The analysis of the pilot study (published in part in Watson, Spyrou & Tall, 

2002) indicates that a small number of students arrive in Year 12 to begin their A-

level studies with an already-developed concept of free vector, and ability to apply it 

in all the above cases. However, the experimental lessons involving action on moving 

objects and reflective plenaries discussing free vectors moved many other students 

faster through the stages of the cognitive development of vector addition than the 

students who were not given this opportunity. 
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It is important to emphasise that the general principle of allocation of stages to 

students’ responses had some effect on the analysis. Some cases are straightforward 

and the stages could be allocated straight from the theory designed in chapter 4. 

However, in ambiguous cases the students are given the highest category consistent 

with the response. As an example, some students, especially in the control group, 

lacked precision in their drawings to the extent that it was not obvious if they have the 

concept of addition or not. However they were given the benefit of the doubt and the 

highest stage consistent with the precise answer was awarded. The effect of this 

principle is that any bias in the recorded changes tends to benefit the control group 

rather than the experimental group, thus not falsely enhancing the effects of the 

experimental treatment. 

The students’ responses were divided into graphical responses and numerical 

responses as shown in chapter 4 in figures 4.6 and 4.7. Each response was given a 

level of development. The students’ graphical and symbolic responses in the pre-test 

were plotted on the scatter graph as shown in figure 6.31. 

The scatter-graph below (figure 6.31) shows the distribution of the stages given 

to students in both: experimental group A and control group B in the pre-test. 
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Fig. 6.31 Results of pilot pre-test. 

The experimental group A is marked with rhombuses and the control group B is 

marked with squares. If we look at the ‘squares’ of group B, it can be noted that most 
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of them are close to the vertical axis representing graphical responses. On the other 

hand more of the ‘rhombuses’ of group A seem to be closer to the horizontal axis, 

indicating numerical/symbolic responses. This difference was confirmed by statistical 

analysis. By comparison of the means and standard deviations, group B is more 

graphically biased than group A in the pre-test. The means and standard deviations of 

the two groups’ graphical scores are A=0.7, sA=0.6 and µB=1.5, sB=1.1. Using the t-

distribution, there is statistical evidence (t=2.84, p<0.05) to suggest that group B is 

more graphically biased. 

It was hypothesised that, through providing students in group A with the 

embodied experience translated into symbolism, we could move more of them into 

right top corner of the scatter graph. Both experimental and control treatments 

involved a substantial experience of graphical representations and addition of forces 

as vector quantities, so both groups would be expected to change in this direction. A t-

test conducted on the improvement of responses in the graphic mode shows that the 

changes were as follows: 

Group A: t=5.9 significant at p<0.0005; 

Group B: t=2.4 significant at p<0.025. 

Both groups therefore made statistically significant improvements, but the changes in 

group A were greater than those in group B. In part, this may be attributed to the 

better final results of group A, but there is also a contribution to the difference which 

occurs because group B was already more graphically orientated in the pre-test. 

When looking at the stages 3 and 4 of the cognitive development, both groups started 

with about 65% of students in the pre-test responding at those stages in one or both 

modes of operation. However in the post test 95% of student in the experimental 

group responded at stage 3 or 4 in either mode and at the same time 72% of students 

responded at stage 3 or 4. This gives 2
 =3.16, which is significant at p 0.1.We can 

see in the scatter-graph in figure 6.32 that only one student in group A responded at 

the stage lower than 3 in the graphical mode while 5 students in group B answered at 

the stage below 3 in the graphical mode. 
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The changes in symbolic responses are not significant. However, there was a 

greater difficulty in assigning stages as what the students write does not always 

represent what they are capable of doing. There is a great need therefore for in-dept 

interviews to study this aspect. This will play a major role in the main study. 
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Fig. 6.32 Results of pilot post-test 

The scatter graph in figure 6.32 shows that in group A, most students moved up to the 

third or fourth stage of the cognitive development in the graphical mode and more 

students moved to the top-right corner. Meanwhile, the results of group B split into 

two main groups, one of which occupies the top right corner, with others who 

continue to cling to the vertical graphic axis with zero numeric score. 

From the initial interviews there was an indication that students who are more 

‘graphical’ are also more flexible and think more conceptually. For instance, they use 

graphical methods in a more efficient way in the questions given in the test, while 

students who are more ‘numeric’ or symbolic, tend to use the symbolic method 

procedurally and without flexibility. This would suggest that before the experiment 

starts, the Experimental Group A are more numeric and probably less flexible than the 

Control Group B.  
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6.6 Conclusions 

The tests proved adequate information about students’ development and is going to be 

used in the main study. It also showed that the change in the experimental group was 

significantly different to the change in the control group. This difference shows 

straight after the course has been completed. The main study hopes to prove long-

term concept stability in the experimental group and therefore the difference should 

become greater in the delayed post-test. 

The method of collecting data showed that all of the responses could be 

classified although the classification of stage 0 is not always completely clear. 

However it was felt that five stages including the zero stage gave a fair overall 

indication of the student development. What matters in this study is the movement 

through the cognitive stages to the higher levels, and this is the main focus of 

attention rather than a deeper study of the pre-conceptual development. 

It was difficult at times to give students a higher stage based on the response 

from the test, knowing that the preliminary interviews show the possibility of a lower 

stage. The moderation of the stages caused also some difficulty as it was a tendency 

to assume what student might have wanted to say instead of keeping strictly to the 

work shown. When the consensus could not be achieved between two teachers giving 

stages the higher stage was adopted. In order to maintain a consistency in assigning 

stages, the same method will be used in the main study. 

It was also decided that although the post-test questionnaire is going to be 

applied in the classes following the experiment, the main focus of attention will be on 

the delayed post-test which will be given to students after their holidays and 11 

months after the experimental lessons (at the beginning of year 13). This should test if 

the changes caused by the experimental lessons can be sustained for a longer period 

of time. 



Chapter 7 

Main Study: Quantitative Data Analysis 
 

7.1 Introduction 

The emphasis of the experimental lessons was directed to compressing the embodied 

actions into process by focusing on the notion of effect (if two actions have the same 

effect then they are considered as giving the same process). 

Reflective plenaries were introduced for the Experimental Group in the 

Teaching Experiment to concentrate on the effect of different procedures. 

The intention was to test the following hypothesis: 

Main Hypothesis: Teachers can help students develop the notion of a 

translation as a free vector through focusing on the effects of physical 

actions, linking graphic and symbolic representations, so that the 

concept of free vector is constructed as a cognitive unit that may be 

used in a versatile way in a range of different contexts. 

The intention of the teaching was to help the students appreciate the equivalence 

of ‘free vectors’ with the same magnitude and direction and the flexible use of 

equivalent vectors for vector addition. The testing of this hypothesis was performed 

by designing a questionnaire as a tool to test the changes in the stages of cognitive 

development (as shown in chapter 3, figures 3.16 and 3.17) and discussed in detail in 

chapter 6. The main hypothesis infers: 

Hypothesis 1: Students, who were involved in experimental lessons, 

are expected to rise through the cognitive stages further than students 

who are not exposed to the experimental lessons. 

Hypothesis 2: Students who were helped in building a concept of a 

free vector are expected to be more able to: 

(a) add vectors in singular cases, not just generic ones; 

(b) use free vectors independent of the context; 



(c) realise that the commutative law applies to vector addition. 

Hypothesis 3: Students who can concentrate on the effect of actions 

rather than actions themselves are more likely to build the concept of 

free vector as a cognitive unit, which can be used by students after a 

longer period of time and not only just after the experiment. 

For this reason, the main comparison of the data will be done between the pre-test and 

the delayed post-test. 

This chapter tests the main hypothesis through the outcome of the analysis 

conducted at three different stages of the research according to the Methods and 

Methodology developed through chapters 4, 5 and 6. This chapter will present the 

quantitative analysis of the data from the questionnaire, which will then triangulated 

with the qualitative data from both teachers and students (chapters 8, 9). 

Hypothesis 1 will be tested using the data related to the students overall 

performance on the questionnaire with respect to the concept of vector and vector 

addition. Hypothesis 2 will be tested using questions specifically focused on (a) 

singular questions, (b) questions in different contexts (c) questions that may be solved 

using the commutative law. Hypothesis 3 will be tested quantitatively by focusing on 

the same data over the period from pre-test to immediate post-test through to delayed 

post-test. It will later be tested qualitatively by analysing the responses of students in 

the interviews reported in chapter 9. 

7.2 Quantitative Data Analysis of Understanding the Concept of 

Vector and Vector Addition 

The quantitative analysis arises from the data collected in 3 tests conducted 

before the course (pre-test, T1), straight after the course (post-test, T2) and half a year 

after the course (delayed post-test, T3) with two groups of students: Group A 

(experimental) and Group B (control). Both groups had 17 students each. 

The tests, given at different times of the year, are considered to be indicators of 

the students’ cognitive development stage. Therefore the change of that stage from 



one test to the next is considered as an indication of the students’ cognitive 

development. 

The general/overall distribution of students between different stages of 

cognitive development in understanding of vector and vector addition can be viewed 

in parts 7.1.1 and 7.1.2 of this chapter. This analysis considers students’ 

understanding of vector and vector addition at three stages of their development into 

studying Mechanics, without looking at how they can apply their knowledge in 

questions involving singular cases or different contexts cases. The later parts of the 

chapter show the distinctions between students’ responses to singular questions 

(section 7.1.3), to questions set in two different physical contexts (displacement and 

forces) (section 7.1.4), and to questions that may use commutative law of vector 

addition in the solution process. The data was built from the students’ responses using 

the methods discussed in detail in chapter 6. 

7.2.1. The General Case: Understanding the Symbol of Vector 

Tables 7.1 and 7.2 show the number of students at different stages of the cognitive 

development ladder captured in the three tests. Table 7.1 shows the categorisation of 

graphical responses and 7.2 the categorisation of symbolic responses. There were 17 

questions and sub-questions in total and the student had to achieve their highest stage 

twice to be given it (as described in detail in chapter 6.2). 

 

Group A Group B Graphical 
cognitive 
stage T1 T2 T3 T1 T2 T3 

4 3 17 17 6 10 13 

3 9 0 0 6 4 3 

2 5 0 0 1 3 1 

1 0 0 0 1 0 0 

0 0 0 0 3 0 0 

TOTAL 17 17 17 17 17 17 

Table 7.1 Graphical responses to test questions 



From the table 7.1 it would appear that there were more students responding at stage 4 

in group B than in group A at the beginning of the year 12 (T1), however, there were 

also 3 students in group B responding only at stage 0. At the same time, all students in 

group A reached stage 4 in the post test (T2) and retained their knowledge until the 

delayed post-test (T3).  Meanwhile, in Group B, only 10 out of 17 students reached 

stage 4 in the post-test (T2) and that number increased to 13 in the delayed post-test 

(T3). 

The two-tail t-test performed for each group on students’ changes in the stage of 

the graphical cognitive development between test 1 and test 3 shows: 

t=5.37 which is highly significant (p<0.01) for group A and 

t=3.83 which is significant (p<0.01) for group B. 

This indicates that both groups have improved their responses of the graphical 

representation of the vector. 

The next table (table 7.2) shows the results on the basis of the symbolic 

representation responses. 

 

Group A Group B Symbolic 
cognitive 
stage T1 T2 T3 T1 T2 T3 

4 6 7 6 4 4 4 

3 1 3 1 2 5 1 

2 4 0 2 5 2 7 

1 5 5 4 5 4 2 

0 1 2 4 1 3 3 

TOTAL 17 17 17 17 17 17 

Table 7.2 Symbolic responses to test questions. 

From table 7.2 we can observe that the changes between the pre-test and delayed post-

tests are not substantial and the t-test performed on student’s changes in the stage of 

symbolic cognitive development proved not significant. 

If we look at the scatter graphs in figures 7.1-7.3, we can confirm that there are 

no significant differences between the experimental group A and the control group B 



at the three stages and that both groups developed their understanding of the symbol 

of vector between the pre-test and the delayed post-test. 
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Fig. 7.1 Scatter graph of responses to all pre-test questions (vector) 

 

stage 4 
A 

BB 

AAAAA 

B 

AA 

BBBBB 
 

AAAAAAAA 

BBBB 

stage 3  B B A  

stage 2 BB B    

stage 1      

stage 0      

graphical 
mode 

 

 stage 0 stage 1 stage 2 stage 3 stage 4 

 symbolic mode 

Fig. 7.2 Scatter graph of responses to all post-test questions (vector) 
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Fig. 7.3 Scatter graph of responses to all delayed post-test questions (vector) 



Using the classification given in table 6.1 (chapter 6), figure 7.1 shows that in the pre-

test T1 there were 2 students from group A categorised as uni-modal and 4 classified 

as graphically-orientated higher uni-modal; 5 students were classified as multi-

skilled; 5 students were already in the versatile or fully-integrated categories. At the 

same time, in group B, one student was in the intuitive category; 3 in the uni-modal 

category; 3 in the graphically orientated higher uni-modal; 5 students were in the 

multi-skilled category and 5 were already versatile or fully-integrated. Both groups 

were therefore similar in their cognitive development of vector and flexibility in using 

the graphical or symbolic modes of operation. 

The 
2
-test could not be used as the expected numbers are too low. However, it can be 

seen that their general development of understanding the symbolic and graphical 

representation of vector remained similar even at the time of the delayed post-test, 

with the graphical categories all high and the numerical categories spread out over the 

full range. 

7.2.2. The General Case: Understanding Vector Addition 

Both sets of students had considerable experience with the concept of vector in 

Mechanics in dealing with forces. It is therefore not surprising that they have 

improved in both groups in understanding of the symbol of vector. However, how 

well they understand the symbol in order to be able to manipulate it was tested 

through the questions asking them to add vectors. The analysis of addition of vectors 

is considered in this section. 

Tables 7.3 and 7.4 below show the numbers of students responding at different 

stages of the cognitive development of the concept of vector addition in a graphical 

and symbolic mode of representation. 

 



Group A Group B Graphical 
cognitive 
stage T1 T2 T3 T1 T2 T3 

4 0 3 16 2 4 9 

3 2 13 1 9 9 4 

2 10 1 0 1 1 4 

1 0 0 0 2 3 0 

0 5 0 0 3 0 0 

TOTAL 17 17 17 17 17 17 

Table 7.3 Graphical responses to the test questions 

 

Group A Group B Symbolic 
cognitive 
stage T1 T2 T3 T1 T2 T3 

4 0 3 4 0 0 1 

3 6 3 1 6 2 1 

2 2 2 0 3 5 4 

1 6 5 5 7 3 6 

0 3 4 7 1 7 5 

TOTAL 17 17 17 17 17 17 

Table 7.4 Symbolic responses to the test questions 

The data from the pre-test T1 shows that, in the graphical mode, only 2 out of 17 

students in group A responded in the two highest stages (3 and 4), compared to 11 out 

of 17 students in group B. However, in the symbolic mode, the two groups had very 

similar distributions, each with 6 students at stage 3 and none at stage 4.  

In the delayed post-test T3, in the graphical mode, the number of students in 

group A responding at stages 3 and 4 increased from 2 to 17, while in group B the 

numbers of students stayed nearly the same (a small increase from 11 to 13).  

The significance of the changes can be determined using the two-tail t-test. The 

t-test taken for the graphical changes between the test T1 and T3 shows: 

t=3.83 which is significant (p<0.01) for group A and 

t=0.348 which is not significant for group B. 



The two-tail t-test conducted on the symbolic responses show that the changes 

between pre-test and delayed post-test in not significant for either group. 

Between the time of the pre-test and the post-test, both groups did a lot of work 

in their Mechanics lessons on addition of forces presented in a graphical way and it 

should be noted that at the stage of the post-test, both groups seem to be at a similar 

stage of their cognitive development of vector addition. However it is very noticeable 

that students in group A achieved long-term concept stability: 16 out of 17 students 

responded at stage 4 in the graphical mode in test T3. Group B also improved, and 9 

out of 17 reached stage 4. 

The scatter graphs in figures 7.4-7.6 show the students’ development through 

the second stage of categorisation: from intuitive and uni-modal to higher uni-modal, 

multi-skilled, versatile and fully-integrated. 
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Fig. 7.4 Scatter graph of responses to all pre-test questions on addition 
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Fig. 7.5 Scatter graph of responses to all post-test questions on addition 
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Fig. 7.6 Scatter graph of responses to all delayed post-test questions on addition 

In the pre-test T1, in group B, four students began in the higher uni-modal (graphical 

mode) category, four in multi-skilled (graphical mode) and 3 in the versatile category, 

while, at the same time, in group A only two students were in any of those categories. 

However by the time of the delayed post-test T3, the picture has changed 

substantially as far as group A is concern. In group B there are still four students in 

the uni-modal category while in group A, 16 out of 17 students responded at stage 4 

(mainly graphically) and 4 of those are in the fully-integrated category. 

These results are the evidence for hypotheses 1 and 3. The students who were 

involved in the experimental lessons rose through the cognitive stages further than 

students who were not exposed to the experimental lesson and their conceptual 

understanding worked after a longer period of time and not just after the experiment. 

7.2.3. Singular Cases: Understanding Vector Addition 

Hypothesis 2(a) states that the difference should show when looking at students’ 

flexibility tackling singular questions. As we already know from section 7.1.1, there 

may be little difference in the overall spectrum of understanding of the concept of 

vector in the two groups, so we only analyse whether the singular questions cause a 

difference to the ways in which students carry out vector addition. 

Tables 7.5 and 7.6 give a summary of students’ responses to the singular cases. 

 



Group A Group B Graphical 
cognitive 
stage T1 T2 T3 T1 T2 T3 

4 0 1 12 2 0 7 

3 1 9 4 1 10 3 

2 4 6 1 1 3 2 

1 4 1 0 4 1 0 

0 8 0 0 9 3 5 

TOTAL 17 17 17 17 17 17 

Table 7.5 Graphical responses to the singular questions 

The t-tests performed on students’ changes in the stage of the graphical cognitive 

development between the pre-test and the delayed post-test show: 

t=3.13 which is significant (p<0.01) for group A and 

t=1.3 which is not significant for group B. 

This supports hypothesis 2(a) that there is a statistically significant 

improvement in group A but not in group B. 

 

Group A Group B Symbolic 
cognitive 
stage T1 T2 T3 T1 T2 T3 

4 0 0 4 0 0 1 

3 0 4 1 2 2 1 

2 2 4 0 2 2 2 

1 5 3 4 4 3 7 

0 10 6 8 9 10 6 

TOTAL 17 17 17 17 17 17 

Table 7.6 Symbolic responses to the singular questions. 

The t-tests performed on students’ changes in their stage of symbolic cognitive 

development between pre-test and delayed post-test shows that the changes are not 

significant for either group. 

The data in these tables reveals that prior to the experimental study, in the pre-

test T1, only one student in group A was able to respond to singular questions at 

stages 3 or 4 in the graphical mode and no student replied in these stages in the 



symbolic mode. At the same time, in group B, three students were able to respond in 

graphical mode and two in symbolic mode at stages 3 and 4. 

This changed substantially in the graphical mode by the time of the delayed 

post-test. In group A, 16 out of 17 students responded at stages 3 and 4 (of whom 12 

were at stage 4), while in group B, 10 students were able to respond at those stages 

(with  7 at stage 4). 

It must be emphasized that the post-test was carried out straight after the 

mechanics and physics courses dealt with forces in vector forms and after the students 

in group A had their experimental lessons, while the delayed post-test was carried out 

half a year after that time. The immediate post-test does not show any significant 

differences between the groups, however significant changes occur later, in the 

delayed post-test, which indicates a long-term stability of conceptual growth in group 

A. 

The scatter graphs in figures 7.7-7.9 show the students’ development through 

the second stage of categorisation: from intuitive and uni-modal to higher uni-modal, 

multi-skilled, versatile and fully-integrated. 
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Fig. 7.7 Scatter graphs of responses to singular pre-test questions 
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Fig. 7.8 Scatter graphs of responses to singular post-test questions 
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Fig. 7.9 Scatter graphs of responses to singular pre-test questions 

The testing of the difference between the proportions of the students in the intuitive/ 

uni-skilled area shows significant difference in favour of group A (
2 

= 2.97 

significant at p<0.01). In the pre-test 12 students out of 17 from group A but only 5 

out of 17 student from group B were in the intuitive/uni-skilled area. However in the 

delayed post-test only 1 student in group A was in this area compared with 6 students 

in group B. This supports hypotheses 2(a) and 3, in that group A students’ conceptual 

knowledge of vector addition was more firm by the time of the delayed post-test and 

they could apply it more flexibly, even in the singular cases. On the other hand, in 

comparison with group A, a greater number of students in group B had a limited 

procedural view of vector addition as they could only answer generic questions and 

had problems with singular examples. 



7.2.4. Different contexts: Understanding Vector Addition 

This section considers the students’ responses to the questions set in two different 

contexts. The intention is to check whether there is a significant difference between 

the improvement in marks of the experimental and control groups in their solution of 

problems in different contexts. 

Hypothesis 2(b) states that the difference should show when looking at students’ 

flexibility in tackling different contexts. The analyses in this part of the chapter show 

what happens in the case of responses to questions set in two different contexts 

(forces and displacements). Tables 7.7 and 7.8 present students’ responses to the 

questions in the test set in two different contexts. 

Group A Group B Graphical 
cognitive 
stage T1 T2 T3 T1 T2 T3 

4 0 0 8 0 0 2 

3 0 9 3 2 3 5 

2 1 2 2 0 3 3 

1 1 5 4 0 2 3 

0 15 1 0 15 9 4 

TOTAL 17 17 17 17 17 17 

Table 7.7 Graphical responses to questions set in different contexts 

The t-tests performed on students’ changes in the stage of the graphical cognitive 

development between the pre-test and the delayed post-test show: 

t=8.71, which is highly significant (p<0.01) for group A and 

t=2.17, which is significant (p<0.05) for group B. 

This supports hypothesis 2(b) that Group A made a more significant overall 

improvement in their stages of cognitive development than Group B. 



Group A Group B Symbolic 
cognitive 
stage T1 T2 T3 T1 T2 T3 

4 0 0 0 0 0 0 

3 0 1 1 2 1 0 

2 2 1 0 6 4 4 

1 2 1 1 2 4 8 

0 13 14 15 7 8 5 

TOTAL 17 17 17 17 17 17 

Table 7.8 Symbolic responses to questions set in different contexts 

The t-test performed on students’ changes in the stage of the symbolic cognitive 

development between the pre-test and the delayed post-test was insignificant for both 

groups. 

From the data in Table 7.7 it can be seen that in the delayed post-test, 11 out of 

17 students in group A answered the questions at stage 3 or 4 of the graphical mode. 

Taking the two stages together, the number of students has not changed. However, if 

we just look at the stage 4, the numbers changes from 0 in the pre-test to 8 in the 

delayed post-test. At the same time in the delayed post-test, 7 students out of 17 in 

group B managed to answer the questions at the stage 3 or 4, but only two students 

responded at stage 4. 

Table 7.8 shows that group A students were less inclined to respond 

symbolically in all three tests than group B. In addition,  the scatter graphs below 

(figures 7.10-7.12) show that, in pre-test T1, the students in both groups did not show 

any signs of flexibility. In the delayed post-test T3, the students’ answers are at higher 

cognitive stages than in the previous tests and their answers are mainly in the 

graphical higher uni-modal category. A t-test showed no significance in either of 

mode of operation. To make a more subtle analysis, it was decided in the second type 

of categorisation to look at the two different contexts separately. 

Both groups worked on the topic of forces for the same number of lessons and 

covered the same questions from the textbook and therefore the results should be 

similar at all stages if the experimental lessons had no consequence on group A 



students’ cognitive development. The three figures below (figure 7.10 – 7.12) show 

the results of students responses to the question set in the context of forces. 
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Fig. 7.10 Scatter graph of responses in the context of forces, pre-test 
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Fig. 7.11 Scatter graph of responses in the context of forces, post-test 
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Fig. 7.12 Scatter graph of responses in the context of forces, delayed post-test 



The students operating at the combined lower stages (0-2) of the cognitive 

development in the graphical and symbolic modes fall into the intuitive/uni-modal 

area of the chart. The students operating at higher stages of the cognitive development 

(3-4), in either of the modes, and those operating at stage 2 in both modes, fall into the 

higher uni-modal, multi-skilled, versatile and fully integrated area of the chart. The 

2
-test compared the differences between both groups in each area: 

pre-test results (
2 

= 5.25 significant at p<0.05) showed a significant 

difference between the two groups in favour of group B being in the higher 
area of the graph; 

post-test results (
2 

= 2.95 not significant at p<0.05) shows that there was no 

significant difference between the groups; 

delayed post-test results (
2 

= 4.84 significant at p<0.05) shows an even 

greater difference between the two groups in favour of group A being in the 
higher area of the graph. 

These results indicate that group A, in comparison with group B, gained conceptually 

from the experimental lessons in the context of vector as force, and sustained their 

knowledge between the post-test and the delayed post-test. The difference between 

the groups changed from Group B being significantly higher in the pre-test to Group 

A being significantly higher in the delayed post-test. It is relevant that there was no 

significant difference between the groups in the immediate post-test. The gain is long 

term rather than short-term. 

The first meeting of the concept of vector in the Mathematics Syllabus happens 

in the context of translation — displacement in physical terms. The students in both 

groups should have therefore had a similar competence at the beginning of year 12. 

The experimental lessons (which focused on translations) should have a positive 

effect on group A students in their cognitive development of vector addition and 

therefore the difference between the groups should be significant in the post-test and 

the delayed post-test. 

The three figures below (figures 7.13-7.15) show the results of students 

responses to the question set in the context of displacement. 
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Fig. 7.13 Scatter graph of responses in the context of displacements, pre-test 

 

stage 4 
AAAAAA 

B 

A 

B 
  

A 

B 

stage 3      

stage 2 B     

stage 1 
A 

B 

AA 

BB 
B  A 

stage 0 
AAA 

BBBBB 

AA 

B 
BB  B 

graphical 
mode 

 

 stage 0 stage 1 stage 2 stage 3 stage 4 

 symbolic mode 

Fig. 7.14 Scatter graph of responses in the context of displacements, post-test 
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Fig. 7.15 Scatter graphs of response in the context of displacements, delayed 
post-test 

It can be seen from the scatter graphs above that in the post-test there was a tendency 

for both groups to respond symbolically to the question on displacement. Most of the 

responses are clustered around the symbolic axis but at the low stages. In the post-test 



this changed and the students moved more towards graphical responses. By the 

delayed post-test the tendency to give only graphical responses increased even further 

and most students are clustered around the graphical axis. Only one student (from 

group A) answered in the fully integrated category and only one responded at the 

highest symbolic level, with a low graphic score. 

The 
2
-test on the difference between students in two groups gave the following 

results: 

pre-test results (
2 

= 0.53, not significant), no significant difference between 

the two groups; 

post-test results (
2 

= 1.99 not significant), no significant difference between 

the two groups; 

delayed post-test (
2 

= 5.78, significant at p<0.05) shows a significant 

difference between the two groups in favour of group A. 

These results support Hypothesis 2(b), showing a significant improvement long-term 

in favour of group A, with 13 out of 17 students benefiting from the experimental 

lessons so that they could use a vector as a mathematical mental concept to solve 

problems in different contexts. The results also show a long-term improvement which 

supports hypothesis 3. 

7.2.5 The commutative law in vector addition 

Hypothesis 3 also states that the students who were helped in building a concept of a 

free vector can realise that the commutative law applies to the vector addition. 

The students had the opportunity to use commutative law of vector addition in 

four questions in the test. The numbers of students in both groups using this 

opportunity in three tests can be seen in table 7.9 below: 

 

 Group A Group B 

Pre-test 0 4 

Post-test 7 6 

Delayed Post-test 12 5 

Table 7.9 Responses using the commutative law of addition 



There is little change in the results of group B. However, in the pre-test, group A 

students did not use the commutative law at all, but by the time of the delayed test, 12 

out of 17 students used it, which is 70% of students in comparison with 29% in group 

B. As the understanding of the commutative law is related to the use of vectors as free 

vectors, this is consistent with the interpretation that 70% of students in group A have 

a concept of free vectors, compared to only 29% of students in group B. 

The 
2
-test run on the difference between students in two groups gave the 

following results: 

pre-test results (
2 

= 4.53, significant at p<0.05) shows a significant difference 

between the two groups in favour of group B; 

post-test results (
2 

= 0.5, not significant) shows no significant difference 

between the two groups 

delayed post-test (
2 

= 5.76, highly significant at p<0.05) shows a significant 

difference between the two groups in favour of group A. 

Hypothesis 2(c) is therefore also confirmed. 

Therefore hypotheses 2(a), 2(b) and 2(c) are all supported, with significant 

improvements by group A over group B in handling singular cases, questions in 

different contexts, and the use of the commutative law. This analysis also gives 

quantitative support for Hypothesis 3, in that all three cases showed a significant long-

term improvement in the performance of group A on the delayed post-test. It would 

seem that the embodied experiences may have given deep cognitive support that 

allowed the concept to continue maturing over a long period of time. 

7.3 Summary of the results 

The results so far show a significant improvement in the performances of group A in 

the graphical mode, but little significant improvement in the numerical performance. 

In this section we review the data from each test in turn to see if the evidence reveals 

any further evidence of differences between the two groups. 



The results of the study, revealing differences between the experimental and 

control groups can be represented by the graphs in figures 7.16 and 7.17. The two 

graphs in figure 9.7 show the students’ cognitive development through 4 stages in 

vector addition at three successive points in the year (T1, T2 and T3), with Group A 

on the left and Group B on the right. T1g, T2g and T3g represent the graphical results 

in the three tests, and T1s, T2s and T3s represent the symbolic results. 

 

  
(a) (b) 

Fig. 7.16 Comparative General Developments of Groups A and B 

The stages in each column are represented vertically in successive shades from stage 

0 (black) at the bottom to stage 4 (white) at the top.  The lines joining successive 

columns show the changing levels of the point between the two higher stages (3 and 

4) and the three lower stages (0, 1, 2).  

The percentages scoring in the two higher stages of performance (stage 3 and 4) 

in the graphical development of Group A increase from around 12% in the first test to 

94% in the third test. The corresponding graphical results in Group B increased from 

around 65% up to 76%. Thus, in graphical development, Group A started below 

Group B, yet ended up above them.  

In the numerical development, group A started with about 35% of students in 

the higher stages and finish at about 29%. At the same time group B also started at 

about 35% of students at the higher stages of development and finish with about 12%.  

In this case the changes are not statistically different, but there is a tendency for high-

level numeric responses to decrease during the teaching. 



Figure 7.17 combines the graphic and numeric information based on the 

categories developed in figure 3.1 of chapter 3 to show the percentages of students 

belonging to each category (I: intuitive, U: uni-modal, H: higher uni-modal, M: multi-

skilled, V: versatile and F: fully integrated). In the figure the intuitive and uni-modal 

categories are integrated  into a single category, as are the versatile and fully 

integrated categories. 

  

(a) Experimental group A (b) Control Group B 

Fig. 7.17 Development of students through combined categories 

In the pre-test (T1), group A appeared to be more intuitive/uni-modal (~70%) in 

comparison with group B (~23%), and therefore at a lower stage of cognitive 

development. However, by the time of the delayed post-test (T3), no students in group 

A remained intuitive/uni-modal. At the same time in group B, at the time of the pre-

test, a lower percentage of students were intuitive/uni-modal (~23%), however, this 

number did not change throughout the year. 

These results confirm the hypotheses stated at the opening of the chapter. The 

main hypothesis that the experimental treatment focusing on ‘effect’ would be more 

likely to lead to the notion of a free vector used in a versatile manner is supported by 

statistical data that Group A rise further through the cognitive stages (hypothesis 1) 

and that these gains are retained over the longer term (hypothesis 3). 

The differences between both groups in case of the singular questions can be 

seen in figures 7.18 and 7.19. 
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(a) (b) 

Fig.7.18 Comparative development of Groups A and B (singular cases) 

The percentages scoring in the two higher stages of performance (stage 3 and 4) in the 

graphical development of Group A increased from about 6% in the first test to about 

94% in the third test. The corresponding graphical results in Group B increased from 

about 18% to about 59%. Thus, in graphical development, Group A again started 

below Group B, yet ended above them. 

In the symbolic representation, Group A increased their performance (at stages 

3 and 4) from about 6% to about 30%, while at the same time Group B stayed 

consistently at about 12%. 

The differences between the two groups can also be highlighted when the 

responses are combined into another set of categories, presented in figure 7.19. 

 

  

(a) (b) 

Fig. 7.19 Development of students through combined categories (singular cases) 

In the pre-test (T1) Group A appeared to be more intuitive/uni-modal (~70%) in 

comparison with group B (~30%), and therefore Group A was at a lower stage of 
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cognitive development. However at the time of the delayed post-test (T3), in Group 

A, only small number (~6%) of students, remained intuitive/uni-modal. At the same 

time in Group B the number of the intuitive/uni-modal students increased slightly 

(~35%). 

These results confirm further the hypotheses stated at the opening of the 

chapter. The main hypothesis that the experimental treatment focusing on ‘effect’ 

would be more likely to lead to the notion of a free vector used in a versatile manner, 

not just in generic cases but also in singular cases is supported by statistical data that 

Group A rise further through the cognitive stages (hypothesis 1, and hypothesis 2(c)) 

and that these gains are retained over the longer term (hypothesis 3). 

There are also differences in case of the questions set in different contexts, 

which can be observed in figures 7.20 and 7.21. 

 

  
(a) (b) 

Fig.7.20 Comparative developments of Groups A and B (different contexts) 

The percentages scoring in the two higher stages of performance (stage 3 and 4) in the 

graphical development of Group A increased from about 0% in the first test to about 

65% in the third test. The corresponding graphical results in Group B increased from 

about 12% to about 41%. Thus, in graphical development, Group A started below 

Group B, and again ended up above them. 

In the symbolic representations, there very insignificant changes in both groups 

(figure 7.20 (b)). 

The differences between the two groups can also be noted when the responses 

were combined into another set of categories, presented in figure 7.21. The changes 
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are only shown in case of context of forces as both groups did an equal amount of 

work in that context. 

 

  

(a) (b) 

Fig. 7.21 Development of students through combined categories (context of 
forces) 

In the pre-test (T1) Group A appeared to be more intuitive/uni-modal (~88%) in 

comparison with group B (~47%), and therefore Group A was at a lower stage of 

cognitive development. However at the time of the delayed post-test (T3), in Group 

A, only small number (~11%) of students, remained intuitive/uni-modal while in 

Group B the number of the intuitive/uni-modal students increased slightly (~53%). 

7.4 Summary 

The quantitative data analysis reveals statistical support for the hypotheses stated in 

the opening of the chapter. The improvements occurred mainly in the graphical mode, 

with no statistically significant changes in the numerical mode. In particular, the 

students in group A showed little evidence of moving to the fully integrated area and 

responded mainly in the graphical mode. The reason for this may be that, since the 

questions were easier to answer in the graphical mode, and experimental students 

gained confidence in operating in this mode, they chose this means of response. This 

reason cannot be confirmed by the written evidence alone, but it will be tested in 

interviews with a sample of students (discussed later in chapter 9). 
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The difference between the two groups is apparent in the responses to the 

questions involving singular examples (hypothesis 2(a)) and problems set in different 

contexts (hypothesis 2(b)). The evidence of the performance of the group as a whole 

is consistent with the hypothesis that the experimental group students are more 

flexible in adapting their knowledge to different circumstances even after a longer 

period of time. The evidence is also consistent with the hypothesis that students in 

group A will construct the notion of free vector to a greater extent than group B, as 

they show greater ability in applying the concept of the commutative law to vector 

addition.  

In my experience there seems to be a common belief between teachers that 

students forget quickly (from one year to the next) and they have to be ‘taught again’. 

The analysis shows that this did not happen to so great an extent with the 

experimental students, and most of students who were taught to concentrate on the 

effect of actions gained the concept and retained it into the next school year. 

Not all students in the experimental group reached the higher stages of. Some 

may possibly benefit from more experience of concentrating on the effect of actions 

before they gain the benefit of such an exercise. 

It is notable that, despite the distinction made in chapter between  the triangle 

law and the parallelogram law, where the first was seen as more natural for combining 

journeys and the latter for combining forces at a point, in all three tests, only one 

student used the parallelogram law of addition. The use of triangles dominated the 

graphical mode and the symbolic mode deals with components individually in a way 

that also does not involve the parallelogram law. Therefore, apart from noting that the 

parallelogram law was rarely used, no comparison between the use of the two laws 

was possible from the written responses. 

It was also evident from the post-test and the delayed post-test that the students 

from group A sketched with more understanding of equivalent vectors having the 

same direction and magnitude and were less likely to have the misconception that the 

addition of three given vectors required the vectors to be in the form a triangle. In the 
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post-test and the delayed post-test, the main difference between the sketches of groups 

A and B is that many students in group A, especially in questions with different 

physical contexts,  moved vectors around as ‘free vectors’, meaning that they treat the 

questions from a mathematical point of view, while that type of response was rare in 

group B. 

Further triangulation is required in the form of comments of the teachers to gain 

insight into their views of how the students may perform, and, more particularly, into 

how students talk about their work. This triangulation will be performed in the next 

two chapters. In particular, the interviews with the students will be framed to give 

insight into how the students talk about the concepts and whether the more successful 

do have a different way of thinking of the concept of vector as a cognitive unit—a 

single entity with different uses in different contexts—or as a number of different 

concepts (force, journey,  etc) which have very different properties. 

The evidence of the use of vectors in different contexts already shows that the 

experimental students are likely to have a more coherent overall view of the notion of 

vector  that can be applied in different contexts. The evidence of the handling of 

singular examples shows a greater degree of flexibility in using the notion of free 

vector. The greater use of the commutative law (which works for free vectors, but not 

for journeys) also shows that they are more likely to be operating fluently with free 

vectors. 

In almost all respects (particularly in the use of the graphical mode), the 

quantitative evidence supports the three hypotheses, 1, 2 and 3, which together give 

quantitative support for the main hypothesis stated at the beginning of the chapter 

that: 

Teachers can help students develop a notion of a translation as free vector 

through building on physical experiences, leading to graphic and symbolic 

representations, with the notion of free vector being constructed as a 

cognitive unit that may be used in a versatile way in a range of different 

contexts. 
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Chapter 8 

Main Study: Qualitative Data Analysis 

Interviews with the teachers 

8.1 Introduction 

This chapter focuses on the qualitative issues through individual interviews with 

teachers. 

The interviews with one Physics teacher and two Mathematics teachers served 

the purpose of finding differences in the teaching and expectations of teachers in 

Physics and Mathematics. They were conducted during the period of the Main Study 

and were based on the test questions. 

The three teachers were shown the questions and asked what they thought the 

students’ responses would be. The Physics teacher was coded as P and the 

Mathematics teachers as M1 and M2. All three teachers are females. 

8.2 Interview with the teachers 

The selection of the test questions are shown in figures 8.1 to 8.5 and a sample 

of the typical teachers’ responses are quoted below each figure. 

 

1)In the picture the triangle has been translated  

from position A to position B as shown below: 

 

 

 

 

Fig. 8.1 Test question 1: Represent translation 
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P: “They will choose a specific point for (a). [...] in (b) they should be 

alright, but they will be confused in (c). [...] Sometimes they ignore the 

direction and don’t place an arrow on the line.” 

M1: “I would expect them to go across and along. To go from a point on 

shape A to a corresponding point on B is another building block. [...] I 

am not sure if at the beginning they connect both together.” 

M2: “Many will be happy with representation of the translation. Only a few 

will think of the horizontal and vertical.” 

Summary: 

The Physics teacher seems to think that the students would have no problem with an 

equivalent vector starting at the origin, but would have a problem with a vector 

starting elsewhere off the triangle. She did not mention horizontal and vertical 

components, in contrast to both Mathematics teachers. Teacher M1 comments that 

from using the horizontal and vertical components to considering a vector from point 

on A to a point on B is “another building block”, whereas teacher M2 thought they 

will be “happy” with the translation and only “a few” would use horizontal and 

vertical components. 

Comment:  

At first, the Physics teacher’s response seemed unusual to me, however, if one views 

the instruction as asking students to move a triangle in a physical way, this cannot be 

done unless one places one’s hand on the triangle itself. Hence the physics teacher’s 

response in part (c) may be based on real world activity, whereas in part (b) it is based 

on the familiar task of drawing a position vector from the origin in a manner the 

students will have met in class. In this rather subtle way, ‘real world’ experiences 

might therefore interfere with the mathematical notion free vector. She also expects 

some students to “ignore direction” and therefore not realise what the vector 

represents. She implies that they do not realise the meaning of the graphical symbol of 
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vector. From the preliminary interviews with the physics teachers it seems that they 

use the numerical methods to calculate resultant vectors and yet the idea of 

representing the translation with the horizontal and vertical components came from 

the teachers of mathematics. One of the Mathematics teachers showed awareness that 

using an arrow instead of just horizontal and vertical components is another stage in 

the cognitive development: “To go from a point on shape A to a corresponding point 

on B is another building block”. So the teachers expressed there might be problem 

with the symbol of an arrow, flexibility of using that symbol flexibly as a mental 

concept and although they expressed that even if students know the equivalence of 

vectors, they might not have compressed that knowledge into the concept of free 

vector. 

The next set of questions that the teachers were asked to comment upon (figure 8.2), 

involved addition of two vectors, where each example is ‘singular’ in some way (see 

section 6.1.2) 

 

 
  

2)In each case add the 

two vectors together 
3)If there is any other 
way you could have 
done any of the additions 
of the two vectors in Q2 

show it. 

(a) (b) (c)  

Fig. 8.2 Test questions 2 and 3: Add two vectors 

P: “This is confusing, especially part (a). They might think that two 

vectors should be attached to each other. [...] In (b) they will add them 

using the parallelogram. [...] They are taught to use the parallelogram if 

the two vectors are connected at one point. When you give them a 

question with the two tugs, they find it more useful to answer using a 

parallelogram. They can see that it is pulled in a specific direction.” 

(Interviewer: “What about the triangle?”) “The triangle is used for 

resolving.[...] I would use the triangle with them if it was a 

displacement.” (Interviewer: “What about part (c)?”) “Confusing, they 

do not get the idea that the arrows have to follow ends. Some might 

resolve using matrices.” (The teacher refers to the use of column 
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vectors). (Interviewer: “What about question in part (c)?”). “They 

might do it horizontally and vertically.” 

M1: “They will do them by placing ‘nose to tail’ or will use column vectors. 

For some, these vectors might seem fixed in space and they will draw 

another two vectors between them to close the polygon. In part (b) they 

might think that they are connected in the wrong way and simply join 

them up with a third vector. Later on in the year they should use a 

triangle or maybe a parallelogram. They would think of the translation 

as a displacement. Parts (b) and (c) are two different visual images. 

They should be able to answer part (c) by the end of the course. They 

might use a triangle rather then a parallelogram. [...] Part three should 

make them think, and maybe even amend their answers to question 

two.” 

M2: “They might be able to answer part (a) if they have the idea of moving 

them ‘nose to tail’. In (b) they have to disrupt a diagram, so only some 

might do the parallel displacement of the bottom vector and use the 

triangle rule. I don’t think that they will think of a parallelogram. In (c) 

if they answer they will definitely think of translating a vector. [...] 

Question three should make them think that there are different ways of 

doing things. If they already used a triangle rule one way they might 

use it the other way. [...] They might put vectors ‘nose to tail’ without 

drawing the resultant because sometimes they are taught to do this and 

expect them to fill the gap, not realising they will not know it should be 

filled.” 

Summary:  

The Physics teacher refers to real-life situations that occur in teaching, when for 

example 2 forces (“the two tugs”) are acting on an object, or two journeys that follow 

each other. The teacher thought that the students would use the parallelogram law of 

addition in case (b). She thought that the students would be confused about part (a) as 

it has no real-life significance. This suggests that, from a physical point of view, part 

(a) is a ‘singular’ case. She thought that students would find part (c) an unusual 
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situation and would resort to numerical methods such as column vectors (horizontal 

and vertical components). She was aware that some students have difficulties moving 

vectors ‘nose to tail’. 

The Mathematics teachers thought that the students would answer differently 

before the course and after the course and allowed therefore for a conceptual 

development. They both realised that if students have the idea of using the ‘nose to 

tail’ technique of adding vectors then they should be able to solve all three parts. 

However one teacher (M1) thought that students might think of the vectors as ‘fixed 

in space’ and therefore have a problem with the questions unless they use the 

numerical method. The other teacher (M2) expressed the idea of vectors being ‘fixed 

in space’ as diagrams which the students might not want to “disturb”. The first teacher 

thought that the students might use the triangle law of addition in part (b) or maybe a 

parallelogram law, but the second teacher thought that it is unlikely that students will 

use the parallelogram. They realised that parts (b) and (c) present “two different visual 

images” and that part (c) being ‘more difficult’ should be solvable to the students by 

the end of the course. One teacher mentions that the students might place vectors 

‘nose to tail’ without showing the resultant. The second teacher mentions that the 

students who are familiar with the technique of ‘nose to tail’ but not addition, might 

instead feel that the addition means placing vectors next to each other (like a journey). 

Comment: 

The Physics teacher thought about these questions in a physical way: “two tugs”, “use 

of the triangle if it was a displacement.” She also indicated that the parallelogram rule 

is for forces and the triangle rule for displacement. It might be that Physics teachers 

do not use the ‘nose to tail’ technique when adding vectors. She also treated question 

(a) where vectors are separated as a ‘singular’ case. It was neither a journey nor 

forces. She was not considering vectors in a general mathematical context, focusing 

only on what the diagram could mean physically. When we consider that students 

learn vectors in physics first, then it would seem realistic to consider that it would be 
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very difficult for them to conceptualise a vector (arrow) as a mathematical symbol 

without referring in their mind to some physical situation. This is the reason why the 

experimental lessons were conducted by starting students working on a physical 

object in a flexible physical context to allow them to realise the mathematical 

implications of a free vector. 

The Mathematics teachers mentioned two ways of solving the questions. 

Implicitly, according to the teachers, some students have knowledge of moving 

vectors ‘nose to tail’ and others see them as fixed in space and will either do the 

addition of components numerically or use some other method based on partial 

knowledge. The mathematics teachers used the meaning of the parallelogram and 

triangular laws of addition interchangeably supported by phrases such as “translating 

a vector”, “parallel displacement” and “close the polygon.” In their language they 

considered the questions partly as set in the mathematical context, but with hints of a 

physical context by saying “translation as a displacement” and “fixed in space”. 

All 3 teachers saw that the arrows coming to one point in part (c) represent a 

‘singular case’ (as something that students would have not met before). 

The teachers also realised that some questions are ‘harder’ which the researcher 

considered to be at the higher conceptual level. In particular, teacher M2 used the 

term “disrupt” to represent the movement of vectors in (b), which indicates that she 

regarded it as being significantly different from the case students usually meet. 

This use of the word “disrupt”, which the teacher M2 mentions on several 

occasions interests me very much, as it seems to give the diagram a physical meaning. 

It is as if the teacher herself embodies the diagram with a physical meaning. Given the 

many subtle ways in which physical meaning interfere with the mathematical 

meanings, I found the phenomenon very significant. 

The overall impression from the teachers was that some questions are ‘singular’ 

as students would not have met such situations before. The physical implication of the 

question could have affected the way it is responded to by students. In Watson, 

Spyrou and Tall (2002) we started by regarding questions (a) and (c) as more suitable 
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for use of the triangle law of addition, while question (b) as more suitable for the 

parallelogram law. The teachers also mention both laws in some of their responses. 

However when we triangulate this which the students’ test responses only one student 

used the parallelogram law of addition. 

The next question, (Figure 8.3) asked the students to add 3 free vectors. The teachers’ 

responses to the possible answers that students might give to the question shown in 

are listed below. 

 

Fig. 8.3 Test question 4: Add three vectors 

P: “We never do anything like this, so I am not sure.” 

M1: “I think that they will be tempted to join them together. The problem is 

that they need mathematical equipment to do this and they are not used 

to using it. Pupils had to do Technical Drawing years ago but these 

skills are not required any more. They might have a problem 

connecting them if they happen to cross each other. It might seem 

wrong.” 

M2: “They will choose the longest and then join them in the order of size. 

They probably will do it below, so they do not cross.” 

Summary:  

The Physics teacher said that the students had no experience with this type of question 

and therefore their responses will be unknown to her. The Mathematics teachers 

thought that the students might “join them together” meaning place them ‘nose to 

tail’. However one teacher was concerned about the students’ lack of skills for such an 

activity, due to lack of technical drawing skills; the other was concerned about 

students’ confusion if the vectors cross. 
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Comment:  

The Physics teacher indicated that the context matters and if the question cannot be 

used in the physical context it is not valid from her subject point of view. Actually the 

question could be placed in the physical context which was used in the experimental 

lesson. It could have been for example three displacements each taken from a 

different point on the object, or three forces placed at three different points on one 

object, but since in her subject such questions are not being considered this did not 

come into consideration. It can be concluded that in Physics the students are not 

taught the idea of the free vector which can be used in any required context. 

One of the Mathematics teachers (M1) implied that the question would be 

difficult to answer without the use of mathematical equipment, and that students are 

no longer taught drawing skills. The other teacher (M2) was concerned about the 

difficulty that might occur when the drawing leads to two vectors crossing. This is 

consistent with the idea that such a case is a ‘singular’ and not generic because it 

contains specific properties that need not occur in the general case. (Such a case 

happens again in a later question discussed with the teachers (in figure 8.6c). Both 

teachers seem to concentrate concentrated on how students can use the procedure of 

adding vectors and what might prevent them using it. 

The next 2 questions the teachers commented on are shown in figure 8.4. The 

questions were placed in the specific physical situation and restricted the number of 

vectors students were supposed to use, but otherwise were open-ended. 

 

Draw a representation of three forces and 
add them together. 

Draw a representation of two 
displacements and add them together. 

(a) (b) 

Fig. 8.4 Questions set in two different contexts 

P: “In the first one they would draw forces acting at one point, all in line, 

at least to start with, and later they might draw an object and draw 

forces acting vertically and horizontally. In the second one they will 

draw one journey followed by the other.” 
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M1: “After the course they should draw forces acting on a particle, but then 

it is not easy to add. [...] Bit like question 2(a) [Figure 8.2b]. For 

displacements they would draw one after the other. You cannot 

displace from the same point twice.” 

M2: “They would draw them from one point and then they would have to 

disturb the diagram to add them. With forces they would think of 

something acting on a particle. I think in a question with displacement 

they would have to draw a shape to displace. Most students would have 

difficulty to do this question without something to refer to.” 

Summary: 

All three teachers agreed that the students would use three forces acting at one point 

in part (a). The discrepancy occurred in their anticipation of the way the students 

would add the forces together. The Physics teacher gave a simple solution of drawing 

(the components of) the forces only horizontally and vertically. 

All three teachers distinguished between the two different contexts and 

anticipate that students would show the difference between the two ways of 

representation. One Mathematics teacher (M2) suggested that students will find 

difficulty in representing the displacement without the object to act on: “in a question 

with displacement they would have to draw a shape to displace” and also that students 

might find difficulty adding vectors which are connected in the question, again using 

the expression “they would have to disturb the diagram”. 

Comment: 

Since a lot of mathematics has been cut out from the Physics syllabus at all 

stages of studying of this subject, a solution showing forces as vectors in 2-

Dimensions only, as anticipated by the Physics teacher, would have been the most 

likely response by the students. However she thought that the concept of journey will 

be stronger in terms of vectors following each other. The mathematics teacher M1 

agreed about the concept of journey with the Physics teacher, however teacher M2 
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was concerned that students need an object to act on. The teacher M1, by saying “you 

cannot displace from the same point twice”, intimated that if a displacement is 

measured from the origin, this is saying that a second displacement must be drawn 

from where the first ends, you cannot go back and displace the first point twice. 

Both Mathematics teachers agreed with the assumption of the Physics teacher 

about drawing forces acting on an object and therefore being drawn from one point. 

However neither of them realised the way students are taught to add forces in Physics 

and thought and therefore anticipated problems with addition. They seemed to know 

instinctively that students have problems with dealing with ‘free vectors’ 

geometrically in ‘singular’ type of cases. Thus M1 said what the student would try to 

do, which in the context of forces means drawing them from a point, (which may give 

them difficulties) but for the second part (displacements) she said that they would 

place them one after the other. The teacher M2 expressed the opinion that students 

need an object to perform an action on, which means she anticipated a very physical 

attitude to addition of displacements. 

All three teachers suggested different approaches from the students according to 

the context they would operate in. One teacher suggested that in the physical context 

students would only be able to follow the procedures if they first had an object to act 

on, and therefore implied that students operate differently with vectors in different 

physical contexts. 

The last two questions (figures 8.5 and 8.6) are very different from the previous 

questions.  
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Fig. 8.5 Question on vector addition set in the diagram 

 

 

Fig. 8.6 Singular question on vector addition set in the diagram 

The students had to pick their information from ‘busy’ diagrams and recognise the 

specific symbolism for the displacement vector (starting at a specific point and ending 

at another specific point). The questions in figure 8.5 should be familiar to students 

because it is of a type encountered in the previous year’s course. However the 

questions in figure 8.6 would not be familiar because they require the students to draw 

additional lines not in the figure. The teachers’ responses are shown below. 

 

P: “We never do anything like this, so I do not know” (Interviewer: “Any 

thoughts”) “Some of these [points to questions shown in figure 8.6] are 

impossible [...] the answer does not fit on the drawing.” 

(Interviewer: ”They do not need to be a part of the drawing”). “It is not clear, I 

think the students would assume that it should be part of the drawing.” 

M1: “Most students should do the first one (Figure 8.5). This is a GCSE 

material (Year 11). Part (b) seems more difficult but the students who 

want to do ‘A’ levels are used to keep going so it does not matter if the 

most difficult question is in the middle. [...] The second one (Figure 

8.6) is very difficult. It is a mental jump to draw a new line. They 

would expect the answer to be in a diagram. This might go beyond 

their understanding. It would require a confidence to answer. [...] Only 

those who understand about vectors will be able to do this question.” 
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M2: “Looking at the first one (Figure 8.5) they will put arrows on the lines 

when trying to add the vectors. The arrows would help them to think if 

they are going the right way. [...] Students would assume that ABDE is 

a parallelogram and use the opposite side in part (b) to make the second 

vector follow the first. It is back to a journey. They should be able to 

answer these questions. The second one (Figure 8.6) is much more 

difficult. [...] They might feel uncomfortable moving out of the 

drawing and even when drawing outside they might try to compare it to 

the sides already present in the diagram.” 

Summary:  

The lack of context mattered to the Physics teacher. She did not want to commit 

herself to speculating on students’ responses in an area which was unfamiliar to her. 

However, when asked for some sort of comment, she responded that the second set of 

questions is more difficult as students have to draw the additional lines as their 

responses. She therefore recognised that the questions presented in figure 8.6 are 

‘harder’. 

The Mathematics teachers thought that only part (b) of the question presented in 

figure 8.5 could cause a problem. The question asks students to add vectors which are 

written in a reverse order than the way they follow each other. They also anticipated 

students would have a problem when answering the set of questions presented in 

figure 8.6. 

Comment: 

All three teachers recognised that the question presented in figure 8.6 could 

cause students problems and in fact this was a ‘singular question’ as the students 

never met anything like this before.  

The Mathematics teachers also recognised that part (b) of the questions 

presented in figure 8.5 is different. In this part students could have used the 

commutative law of addition where u + v = v + u. The teachers however did not 

consider students using that law and thought that they might use the rule of the 
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equivalent vectors. The teacher, M1, implied that dealing with free vectors is another 

stage in the cognitive development: “It is a mental jump to draw a new line”. 

8.3 General Summary 

The main hypothesis in chapter 7 states that: 

Teachers can help students develop the notion of a translation as a free 

vector through focusing on the effects of physical actions, linking 

graphic and symbolic representations, so that the concept of free 

vector is constructed as a cognitive unit that may be used in a versatile 

way in a range of different contexts. 

If we triangulate the teachers’ interviews and the students’ responses to the tests, we 

may conclude that teachers are very aware of most mistakes that students might make.  

For instance, one of the Mathematics teachers comments, “They might put 

vectors ‘nose to tail’ without drawing the resultant, because sometimes they are taught 

to do this.” From the results of the quantitative tests, it is clear that a number of 

students added two vectors BCAB + by simply drawing them ‘nose to tail’ but did not 

draw the resultant AC . The theoretical framework would suggest that the student 

may see the addition of two vectors as a journey from A to C via B and not as the 

higher level concept of free vector. However, this was not a concern expressed by any 

teacher. It may be that in coping with a crowded syllabus, the quest is often to get the 

students to respond correctly rather than seek for subtle reasons why they may make 

mistakes. 

If students have no experience of the idea of the free vector in placing vectors 

‘nose to tail’ then they are less likely to make the connection of an arrow being a 

symbol for a free vector that can be used the same way regardless of the context.  

The Science teacher said, “... sometimes they ignore the direction and not place 

an arrow on the line”, which means that she is used to students misinterpreting a 

graphical symbol of a vector which could cause them difficulties in coping with the 
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concept of free vector in any context that does not have a physical meaning. She did 

not expect students to make connections between the actions and symbols. 

The second hypothesis in chapter 7 states that: 

Students who were helped in building a concept of a free vector can 

add vectors in ‘singular’ cases, not just generic ones; they can also use 

free vectors independent of the context the addition is set in and 

realise that the commutative law applies to the vector addition. 

If we again triangulate the students’ test responses with the teachers’ comments we 

can see that the teachers were aware that some questions are more difficult than the 

others (singular cases) but the views from the Physics teacher and the Mathematics 

teachers differed substantially.  

The Physics teacher expected students to have problems with questions where 

vectors were drawn separately (figures 8.2 (a) and 8.3). She did not expect the student 

to use the idea of the free vector at all and every time the question could not be 

connected to the obvious physical context, she treated it as a ‘singular’ case. 

Generally the Mathematics teachers expected students to use the idea of ‘free 

vectors’ at the end of year 12, but did not realise that the concept was essentially 

required by the end of their year 11 teaching; the text book introduces the concept of 

vector (through the implied APOS theory) by moving from action on objects through 

equivalent vectors to the concept of free vector. However they spoke in a way which 

indicated a subtle sense of the steps in the development: For instance, one teacher 

said, “I would expect them to go across and along. To go from a point on shape A to a 

corresponding point on B is another building block”. This suggests an awareness of 

the conceptual change that is required to move from one stage to the next. When the 

need of drawing the equivalent vector arose, one teacher said: “It is a mental jump to 

draw a new line.” In the case of the ‘singular’ question in figure 8.2 (c) one of the 

teachers responded: “This might go beyond their understanding” and the other teacher 

said: “They might feel uncomfortable.” 
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These comments all show the sensitive realisation by the teachers of the 

possible areas were students may have difficulty. It is matched by the difficulties that 

are experienced by many students prior to the course and by some of the control 

students after the course. The success of the experimental group suggests that it may 

be a help to other teachers to be aware of the simple idea of ‘focusing on the effect of 

an action’ which may help students form the idea of free vector in a more versatile 

and confident way. 



 

Chapter 9 

Main Study: Qualitative Data Analysis 

Interviews with the students 

9.1 Introduction 

This chapter focuses on the qualitative issues through individual interviews with the 

students. The interviews were intended to gain a greater insight into: 

• students’ use and flexibility of language when discussing problems connected 

with vector addition; 

• students’ focus of attention at any given time (whether it is on actions, or 

procedures or on the effects of those actions and procedures); 

• the way in which different contexts affect their thinking; 

• their flexibility in dealing with different modes of operation 

(graphical/symbolic). 

The interviews were also intended to test if the students were placed, on the basis of 

the test analysis, in the right categories according to the theoretical framework 

developed in chapter 3. It was intended that interviewed students should be selected 

from a spread of different categories (uni-modal, higher uni-modal, multi-skilled, 

versatile & fully integrated) as well as from both groups (experimental and control). 

There were two sets of interviews: after the pre-test and after the post-test. 

Different students were interviewed each time. The extracts from the interviews with 

students are presented in the two sections below (9.1, 9.2). 
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 9.2 The interviews following the pre-test 

The pre-test interviews were conducted with four student coded as: 

S1: answered in an ‘intuitive’ way; 

S2: answered mainly symbolically and has been classified as higher uni-
modal; 

S3: answered mainly graphically and has been classified as higher uni-
modal; 

S4: classified as belonging to the highest fully integrated category. 

The students S1 and S2 were from the experimental group (A) and students S3 and S4 

were from the control group (B). 

9.2.1 Student S1 

The examples of the student’s S1 responses are shown in figure 9.1. 

 

 

(a) (b) (c) 

Fig. 9.1 Student S1: examples of responses to the pre-test 

Figure 9.1 parts (a) and (b) are the student’s pre-test (T1) responses to the questions 

shown in chapter 6, figure 6.2 (a) and (b), while 9.1 part (c) is the response to the 

questions asking for the addition of the three given vectors (figure 6.4). In the first 

question (figure 9.1 (a)) the student was asked to add two vectors, which he named 

AB  and CD . The student filled gaps between vectors with extra vectors ( BC  and 

DA ). In the second question (figure 9.1 (b)) the student was asked to add two vectors, 

which he named AB  and AC . The vector CB  was drawn to close the gap. In the 

third question (figure 9.1 (c)) the student was given three vectors to add, which he 
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named AB , BC  and AC . He ignored the magnitude of the vectors in this question 

and just considered the approximate directions to form a triangle. This is why the 

student was categorised as Physical Intuitive. Parts of the interview are presented 

below (I – stands for the interviewer). 

 

I: Look at your answers in the first part of question 2 can you explain it to 

me? (fig. 9.1a). 

S1: In this I drew them clockwise. 

I: What is the result of the addition? 

S1: Sum. 

I: Which one is your sum? 

S1: A there to D [points]. 

I: So what would this one mean? [The interviewer points to BC.] 

S1: This one just joins these two vectors so they can be added together. 

I: So what were you looking for? 

S1: Continuity. 

I: What about the next part? (fig. 9.1b). 

S1: I was trying to do them the same way? 

I: How did you do them the same way? 

S1: These two (points to B and C) go in separate directions. 

I: Did it worry you in any way? 

S1: No 
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I: Can we look at your answer to Q4? (fig. 9.1c). How did you add the 

vectors? 

S1: I connected all the vectors together so it will be easier to add them all 

together. 

I: Didn’t worry you that they have different length on your drawing 

S1: I did not draw them to scale but to different scale just to give a general 

idea of how to add them. 

I: Didn’t you think of doing some measurements when adding the three 

vectors? 

S1: No 

The responses the student gave to the questions in the two different contexts are 

shown in figure 9.2. 

 

  

(a) (b)  

Fig. 9.2 Student S1: examples of responses to the pre-test 

I: When you were asked to add three forces together, you drew a triangle 

[fig. 9.2a] but when you were adding two displacements you did not 

[fig. 9.2b], can you explain it? 

S1: I think I forgot a line joining beginning to the end (point from A to C, 

figure 9.2 (b)). 

I: What would this line represent? 
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S1: It would be a displacement from the first point to the last point (points 

from A to B) 

I: Can you explain it a bit more? 

S1: Distance, instead of going from A to B and B to C you can go shorter 

distance from A to C. 

I: In the other question, if all three forces form a triangle does it mean 

anything physically? 

S1: Not clearly, no. 

I: Could there be a situation when they do not meet like that, when there 

is a gap left? 

S1: Didn’t come back to the starting point? What would it mean if they 

didn’t? 

I: Would it make any difference if they did not meet? 

S1: Then you would not be able to add them all together. 

I:  Can you draw for me an example of forces acting on an object? 

S1: If you have a particle, you would have the gravity, the resistance and if 

you were pushing it from one side you would have a force acting this 

way [student draws two vertical forces and one horizontal]. 

 

Fig. 9.3 Student S1: example of response to the pre-test 

I: Can you add them for me 
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S1: You add the y components, you would multiply the gravity by the mass 

and this has to be equal to the force up.  

I: Why do they have to be the same? 

S1: Because if it remains still in the horizontal angle then it is not going 

downwards or going upwards 

I: If you had two additional forces on your object (interviewer draws two 

forces) and the object would not be moving, how could it work? 

S1: You could work it up by using a force and then using an angle and use 

cosine to work out what this component is and what this component is 

and work it out ( student waves his pen in the horizontal direction 

below each of the forces, but without the particular direction). 

I: Could you do it graphically? 

S1: Well, [student starts by drawing horizontal components and vertical 

components]. 

Summary 

The student S1 does not show the flexibility of language when discussing the problem 

connected with vectors. Although he knows what it means to join vectors ‘nose to tail’ 

he has no awareness of the notion of equivalent vectors and vector addition. He does 

not fully understand the symbolic representation in a graphical sense. The student uses 

the word “continuity” to mean that one vector follows immediately after another, 

without a gap. He attached labels to the graphical symbols of vectors (the way it is 

taught in the Year 11 text book) and shows addition in that way but without showing 

the result — the effect of that addition. 

When adding vectors, the student focuses on the idea of continuity in two ways: 

either by adding extra vectors to fill in the spaces, or joining them together one after 

another, but without showing the resultant. He used a ruler to draw all his answers 
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except the one shown in figure 9.10 part (c) as this could possibly defy his own theory 

about vector addition. He confirms it by saying that if the vectors did not join then 

“Then you would not be able to add them all together.” He does not connect the 

physical effect of the addition in a more general way, as a total effect. Although he 

draws the arrows in figures 9.1 (a) and 9.2 (a), when he describes what is happening 

he indicates the correct direction and he seems to have some concept of the same 

effect in the embodied sense of a journey: “Distance, instead of going from A to B and 

B to C you can go the shorter distance from A to C”.  

When he adds vectors, in any context he looks for the continuity. He can operate 

in one directional environment as far as forces are concerned. He indicates it by 

saying that, for the object not to move, the vectors should be of the same magnitude 

but in the opposite directions (his explanation to his own drawing in figure 9.3). He 

also thinks that the forces should close the loop. When asked what would happen if 

after putting forces graphically together there was a gap left, he seems dismayed and 

answers: “Didn’t come back to the starting point? What would it mean if they didn’t? 

[...] Then you would not be able to add them all together.” His preferable mode of 

operation when he thinks of forces, under different angles than vertical, seems to be 

symbolic. He suggested adding the horizontal and vertical components for the vectors 

drawn (in figure 9.3) under different angles. However in the context of displacement 

he thinks of a journey which follows the vectors as they are placed one after another, 

in physical terms. He does not consider the addition of two displacements giving the 

total effect but simply as getting from the first point to the last one in a shorter 

distance. 

From the above discussion with him it can be concluded that he is partly in a 

physical intuitive class and partly at stage 1 of the graphical mode and stage 2 of the 

symbolic mode. So maybe he could be classified as uni-modal however the dividing 

line is not clear. 
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Comment 

The student’s understanding seems to be at a very low stage in the graphical mode: 

putting vectors ’nose to tail’ to give continuity, as if it is a journey of which one part 

has to start where the previous finishes and working with forces in one direction. 

However he has no awareness of the idea of equivalent vectors or free vectors. This 

student seems to be graphically locked in either a context of journey or forces but only 

in one direction in dealing with vectors. He might have answered better in the 

symbolic mode if everything was set on grids. However, he sensed from the type of 

questions asked that the graphical method was the preferable one but he was not 

confident with it. 

9.2.2 Student S2 

The second student (S2) responded, in the pre-test, mainly using the symbolic mode. 

The examples of her pre-test responses are presented in figure 9.4. The relevant part 

of the interview is shown below the figure 9.4. 

 

   
(a) (b) (c) 

Fig. 9.4 Student S2: examples of responses to the pre-test 

I: What do you think the question is asking you to do? 

S2: I thought you want an actual number. 

I: Why do you think I wanted a number? 

S2: Because of the way I was taught, we were taught to put them on the 

grids. 

I: So what is your technique in a graphical mode? 
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S2: I put them nose to tail [places them ‘nose to tail without any precision, 

figure 9.5]. 

 

Fig. 9.5 Student S2: response to the interview question 

I: What about the last question? 

S2: [Student connects them again nose to tail on a separate drawing, using 

a ruler, figure 9.6]. 

 

Fig. 9.6 Student S2: the interview response to the singular question 

I: The next question asks to do it in a different way. How would you do 

that? 

S2: You can work out all the vertical and horizontal stuff, I am not sure. 

I: The numbers you have used in your answer, what meaning did they 

have for your resultant? 

S2: I think I just used centimetres. 

I: Why centimetres? 

S2: I did not think it really mattered what the scale was. 

 



Main Study: Qualitative Data Analysis—Interviews with students Chapter 9 

 176

  

(a) pre-test response (b) interview response 

Fig. 9.7 Student S2: responses to the different contexts pre-test questions 

I: What about the next question? (referring to the question set in the 

context of forces; the test response in figure 9.7, part a). 

S2: I am used to forces going out. 

I: What about the next question, you left it blank? 

S2: I guess I just didn’t really know what you meant by displacement. Are 

displacements the same as vectors? 

I: So doesn’t Physics talk about displacement? 

S2: Oh, it is like movement? Isn’t it?  in a certain direction, but isn’t it 

what a vector is? [...] So would you like me to do just the same thing 

again? 

I: Would you like to answer it now? 

S2: [student draws two vectors following each other and the resultant as 

shown in figure 9.7 (b)]. 

I: When you started answering you first thought was to use numbers. 

Why do you think that the number answer was your first choice? 

S2: Because if you just draw there are no numbers involved and you should 

have some numbers in the answer. Drawing the picture doesn’t really 

answer the question. 
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Summary 

The language the student S2 uses lacks flexibility when different contexts are 

concerned. She is not sure about the concept of vector in case of displacements but 

seem to be quite confident with the idea of vector to represent forces.  

She is able to focus on the effect of the procedures which she shows when 

adding vectors even in the singular cases (figure 9.6) as well as in case of adding 

forces (figure 9.7, part a). When she realises that displacement is “movement” and 

therefore can be represented by a vector she also can use addition in the second 

physical context. 

She proved in the interview to have flexibility in dealing with different modes 

of operation, which was not so clear from the test, as she answered only one question 

graphically. She explained that she used numbers because this is what she though was 

expected in vector questions. She is not sure about the scale as only met problems 

presented on grids till now. She was also under impression that “drawing the picture 

doesn’t really answer the question”. 

It would seem that the student S2 could belong in the ‘versatile’ category and 

not the higher multi-skilled category. 

Comment 

The student’s answer raises an interesting point of what is considered to be 

mathematical response. The student said “Drawing the picture doesn’t really answer 

the question.” The implication is that graphical responses are not valued in 

Mathematics despite that the text book from the previous year included that stage of 

development in teaching vectors. The student did not seem to be aware that the 

numbers which she used did not have any significant value. In fact, as an answer, they 

were meaningless in both a mathematical and a physical sense. However the student 

was aware of the graphical responses she could give and gave a vague answer to the 
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generic type of question (figure 9.5) and a much more precise response to the singular 

question (figure 9.6), as if the singular question demanded more thought from her. 

It could be suggested from all of the student’s responses that she understands 

vectors as a mathematical concept that can be used in the same way in any physical 

context. The student also does not mention the parallelogram law of addition and the 

only rule she mentions is ‘nose to tail’ movement, which is the necessary part of the 

triangle law of addition although this was never explicitly mentioned. She also does 

not use the commutative law of addition in graphical or symbolic mode. 

9.2.3 Student S3 

The third student (S3) answered most questions graphically. His pre-test 

responses to three of the questions are shown in figure 9.8. 

 

 
  

(a) (b) (c) 

Fig. 9.8 Student S3: examples of responses to the pre-test 

The response in 9.8 (c) is equivalent to the graphical response as student indicates that 

to add vectors as journeys the direction of vector B would have to be changed and 

indicates it with ‘-B’. However the student actually completes the addition only in the 

question shown in figure 9.8 part (a). The relevant parts of the interview are shown 

below. 

I: could you look at your answers and give me some idea of your thinking 

at that time? 

S3: I thought it was asking me to put them into a triangle and then join up 

(fig. 9.8a). 

I: What about the other two? (fig. 9.8 b and c) 
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S3: I did not know how to do it. 

I: Was it anything you did in the past which made you answer in this 

way? 

S3: I didn’t know how to do it so I just guessed. 

I: Is there any other way you could have answered any of these 

questions? 

S3: I cannot think of any other way. 

I: In question 5 you were asked to draw a representation of three forces 

and add them together and in question 6 you are asked to draw a 

representation of two displacements and add them together. Can you 

explain why you answered them in this particular way? (The student’s 

answers are shown in figure 9.9.) 

  
(a) response to Q5 (b) response to Q6 

Fig. 9.9 Student S3: responses to different contexts questions in the pre-test 

S3: I though that if they are displacements they have to come out from the 

same point (figure 9.8 (b)). [...] I thought that a displacement has to 

always start at the origin, hasn’t it? 

I: And what about forces? 

S3: I just drew any three vectors? 

I: No specific reason? 

S3: No 

I:: Why did you write AC  here (the interviewer points to the resultant in 

figure 9.9 part (a)). 
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S3: I cannot remember. I think that’s because it starts at A and end with the 

point on C. Should it be ABC? 

Summary 

The language student uses lacks clarity. For example when adding two vectors 

students says: “I thought it was asking me to put them into a triangle and then join 

up”. What he probably means was to join the vectors and close the triangle. His 

explanation seems to indicate some learnt procedure and not the answer he thought 

out. He also mixes the names of vectors: displacement with position vector. Also the 

student’s language of notation lacks precision. He does not realise that in symbol AC  

the A and C initially refer to specific points in space. 

The student seem to concentrate on the procedure :” I thought it was asking me 

to put them into a triangle and then join up”, which he thought is expected of him. It is 

not clear from the student responses if he focuses also on the effect of his actions. He 

was able to answer his own addition of two vectors (figure 9.9 part (b)) while he could 

not answer the same question set for him in a general context, as shown in figure 9.8 

part (b). This could indicate that the context affects this student’s thinking. 

The student S3 does not show the flexibility in dealing with different modes. At 

no stage did he indicate that he could answer the questions symbolically/numerically, 

even when prompted. However this could just indicate that the student realised that 

the graphical mode was the most efficient way of answering the questions. 

The student used a ruler to show all his responses, but at no time he used commutative 

law of addition or the parallelogram law of addition and only mentioned, in a vague 

way, the triangle as a way of adding. The student S3 seems therefore to be high uni-

modal focused on the basis of some responses to the test. 



Main Study: Qualitative Data Analysis—Interviews with students Chapter 9 

 181

Comment 

One of the interviewed teachers suggested during the interview that students might 

feel that vectors drawn in this way are “fixed in space” and just “connected in the 

wrong way and simply join them up with a third vector.” This might be a case with 

this student when the questions are set in the purely mathematical context. The 

student therefore lacks flexibility and versatility of using his knowledge. It has been 

not embedded properly nor turned into a cognitive unit. The student also mixes the 

notation of the free vectors, for example u and v, which can be written as a sum u + v 

with the notation of the displacement vector from A to B written as AB and from B to 

C written as BC , which added together would give ACBCAB =+ . 

9.2.4 Student S4 

The next student (S4) has been categorised as fully integrated. He could vary his 

answers from the graphical mode to symbolic and did not have any problems with 

different contexts or with the singular questions. Below are the examples of his test 

responses (figure 9.10) to the test. 

 

(a) (b) (c) 

Fig. 9.10 Student S4: examples of responses to the pre-test 

I: What do you think the question is asking you to do? (refers to question 

answered in figure 9.10 part (a)). 

S4: Find the resultant vector when there are two given together so if you 

put the end to end it will be an overall translation. 

I: So what about the next one? (refers to question answered in figure 9.10 

part (b)). 
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S4: The same. You add them together.  

I: What do you think question 3 is asking you to do? 

[Pause] 

S4: If you display each vector into two perpendicular directions, and then 

add the two horizontal and the two vertical. 

I: Did your previous teacher teach you this method? 

S4: I don’t think so, It makes sense, I must have got it from somewhere. 

I: Thank you very much. Which method seems easier to you, the first one 

or the second one? 

S4: If I was given values for the vectors and if they were given on the 

graph or squared paper I would find this one easier. [He points to figure 

9.10 part (c)). 

 

 
 

(a) (b) 

Fig. 9.11 Student S4: responses to different contexts questions in the pre-test 

I: Did they show you anything like this in Physics? (the interviewer 

points to the students’ answers in figure 9.11 (a)). 

S4: No I do not think [...] Yes we’ve done vectors as forces, so we would 

have used Newton’s as the vectors. Stuff like … [He draws the 

example of three forces acting from one point with the values in 

Newton’s next to them and angles in between, figure 9.12] 
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Fig. 9.12 Student S4: response to the interview question 

I: How would you find the resultant? 

S4: I would split them, yes, I would split into horizontal and vertical forces 

[draws horizontal and vertical component on each force] and add them. 

I: Would you use the angles? 

S4: Yes, this would be 45, [points] and this would be a hypotenuse [points 

to the force] then this would be cos 45° and so on. 

I: What about the next one? [referring to the question shown in part (b) of 

figure 9.11]. 

S4: Oh, this is displacement.  

I: Is that natural for you to draw the displacements separately? 

S4: I just drew them like this because they are drawn separately in question 

2. 

I: But Question 2 says vectors not displacements? 

S4: Well a vector looks more like a displacement. Displacements are 

obviously vectors. 

I: So are forces vectors? 
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S4: Well they are. It is an arrow there (points to his answer with forces, to 

one of the vertical forces) but nothing actually moves. 

Summary 

The student S4 uses the language of vectors more flexibly than the previous 3 

students. He uses phrases like: “if you put the end to end it will be an overall 

translation”; and “you display each vector into two perpendicular directions, and then 

add the two horizontal and the two vertical” (the word ‘components’ is missing from 

the last sentence). He also said: “I would split into horizontal and vertical forces” and 

does not maybe realise that they are only components of the forces and not two 

different forces. 

From his statement about the “overall translation” we can also assume that he 

thinks about the effect of actions. He also considers forces acting on an object, 

without object actually moving although this is not quite correct according to his 

drawing in figure 9.12 as there will be a resultant force which would cause the object 

to accelerate.  

The student S4 seems to think of a vector in the same way whatever the context. 

This could be implied from his verbal responses: “I just drew them like this because 

they are drawn separately in question 2”; “Displacements are obviously vectors; and 

in reply to a question “So are forces vectors?” he responded “Well they are. It is an 

arrow there”. The student seem to understand (judging from his responses) the 

concept of vector as something representing a quantity which has a magnitude and a 

direction. 

The student S4 seem to be able to operate in both modes (graphical or 

symbolic), in both generic and singular type of questions (figure 9.10 parts (b) and 

(c)). The student did not use the ruler to draw or measure but his drawings are fairly 

precise approximations and it is clear that he understands the idea of equivalent and 

free vectors. He does not use the commutative law of addition or the parallelogram 
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law anywhere in his responses. The student was placed in the fully integrated category 

on the basis of the test and there is no evidence to change this categorisation. 

Comment 

The student seems to operate with ease on vectors using two different modes 

(graphical and symbolic) of operations, and in different contexts. He is aware of the 

same effect in a mathematical sense and does not try to use the vocabulary of a 

specific physical context when dealing with general situation: “Find the resultant 

vector when there are two given together so if you put them end to end it will be an 

overall translation.” This student can deal with the singular cases (figure 9.10 (b) and 

(c)) and seems to adapt the mode of answering according to whichever is more 

suitable. It could be also concluded from some of the responses that student gained his 

knowledge and understanding of vectors on basis of one context: “Well a vector looks 

more like a displacement,” and built this into a cognitive unit which he uses in other 

contextual situations. When asked if forces are vectors, he answers: “Well they are, it 

is an arrow there but nothing actually moves.” The student is aware of the triangular 

law of addition but does not mention the parallelogram law. 

9.3 The interviews following the post-test 

The interviews were conducted with the student coded as: 

S5: from group B and classified as belonging to the uni-modal category; 

S6: from group B and classified as belonging to the higher uni-modal 

category; 

S7: from group B and classified as belonging to the versatile category. 

S8: from group A and classified as belonging to the higher uni-modal 

category; 

S9: from group A and classified as belonging to the versatile category; 

There were no students in group A, at that stage, left in the uni-modal category. 
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9.3.1 Student S5 

The examples of student’s S5 responses are presented in figure 9.13. Part (i) shows 

two responses, the top one to question 2 (a) and the bottom one to question 3 (a). 

Similarly part (ii) shows responses to questions 2 (b) and 3 (b) and part (iii) shows 

responses to questions 2 (c) and 3 (c). The relevant parts of the interview with the 

student S6 are shown below the figure 9.13. 
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 (i) (ii) (iii) 

Fig. 9.13 Student S5: responses to questions 2 & 3 in the post-test 

I: How did you answer question 2? 

S5: I misunderstood the questions and I was adding another two vectors 

from the end of the one already there. 

I: Can you answer the question as you understand it now? 
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(a) (b) (c) 

Fig. 9.14 Student S5: corrected responses to question 2 during interview 

S5: [The student draws his answers as shown in figure 9.14.] 

I: So what is the rule for adding vectors? 

S5: When one ends, starts the other one, only I could not do it here [points 

to his answer in figure 9.14 (c)] because they meet in one point, but 

here I could because they start at one point [points to his answer in 

figure 9.14 (b)]. 

The student’s S5 responses to the two questions, set in two different contexts, are 

shown in figure 9.15. Part (a) shows student’s response when being asked to draw 

three different forces and add them together and part (b) when being asked to draw 

two displacements and add them together. 

 

 
 

(a) - forces (b) - displacements 

Fig. 9.15 Student S5: responses to different contexts questions in the post-test 

I: How did you answer questions 5 and 6? 

S5: I have seen questions like this before. [He points to his answer in figure 

9.15a.] 
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I: Why did you draw answer in Q6 in this specific way? (referring to 

figure 9.15  (b)) 

S5: Because then they go in the same direction and I don’t have to use sine 

or cosine, just add the two forces. 

Summary 

The student seems to say that he misunderstood the instruction “add the two vectors”. 

He also referred in both questions set in two different contexts to vectors as 

forces. When describing the rule for vector addition he said: “When one ends starts 

the other one” and never explicitly mentioned the ‘nose to tail’ rule. 

He mentions two procedures he knows for the addition of vectors: one of 

them—in the graphical mode—seems to relate to him to vectors set in a general 

context, which he also tried to use in the case of adding forces (figure 9.15 (a)); 

however in case of adding two displacements, he mentioned a different procedure, 

“they go in the same direction and I don’t have to use sine or cosine.” 

The student’s interview answers, shown in figure 9.14 parts (a) and (b), lack the 

precision but show the correct concept of the vector addition, however in part (c) the 

resultant has the wrong direction. He is aware of the procedure of putting vectors 

‘nose to tail’ when adding them graphically: “When one ends start the other one.” 

However he could not add vectors in the singular case even after realising that adding 

vectors meant finding the resultant, but did not have the same problem with the 

question is generic for forces: “I could not do it because they meet in one point, but 

here I could because they start at one point.”  

He added forces (figure 9.15 (a)) into a closed triangle, without the resultant, 

even although his proper magnitudes did not agree with his assumption and therefore 

he does not seem to understand the equivalence of vectors. In the case of 

displacements he used a 1-dimensional situation for simplicity as he did not want to 

use “sine or cosine”. He never used or mentioned use of the column vectors or other 

symbolic methods although by mentioning the trigonometrical ratios he is obviously 
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aware of other methods of operation on vectors. He does not seem to be flexible in 

dealing with different modes of operation. 

Comment 

The responses of student S5, written as well as verbal, show his awareness of the idea 

of the ‘same effect’ only at a very basic level. He did not use the flexibility of the 

language when discussing problems of addition of vectors and his knowledge is 

limited to the generic cases, which means that he has a limited procedural view. He 

lacked precision in his drawings, and therefore had no awareness of operating on 

equivalent or free vectors, which might have influenced his development of 

conceptual ideas. He did not have symbolic knowledge to fall back on either. He seem 

to be a good example of what the lack of teaching proper techniques of drawing 

equivalent vectors can cause and how it can prevent building the concept of vector 

into a cognitive unit. This student does not seem to be aware of the parallelogram rule 

of addition and is only aware of the rule of joining the beginning of one with the end 

of the other and thinks that 3 forces should make a triangle so he does not understand 

the idea of the resultant force. He also does not give any indication of awareness of 

the commutative law of addition. 

After the interview the student was still classified in the uni-modal category. 

The student answers only graphically but at a lower stage of the cognitive 

development.  

 

9.3.2 Student S6 

The responses of student S6 to questions 2 and 3 are presented in figure 9.16. Part (i) 

shows two responses, the top one to question 2 (a) and the bottom one to question 3 

(a). Similarly part (ii) shows responses to questions 2 (b) and 3 (b) and part (iii) shows 

responses to questions 2 (c) and 3 (c). The relevant parts of the interview with the 
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student S6 are shown below the figure 9.16. In each case he draws the resultant as a 

line of dashes. 
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 (i) (ii) (iii) 

Fig. 9.16 Student S6: post-test responses to questions 2 & 3 

I: Can you talk me through your answers to question 2? 

S6: I can do it in two ways [indicates with the pencil translating vectors to the end 
of one another in two ways]. 

I:  what about b and c? 

S6: The same [indicates with the pencil translating vectors to the end of one 
another in two ways]. 

I:  What about question 3? 

S6: Simply moved vectors in a different order. 

I: Did you think at all about answering in a different way. 

S6: I could draw horizontal and vertical but it would difficult in this case. 

I: If you go back to the question 2. How did you choose the direction of the 
arrow for the resultant vector? 

S6: It is simply the direction of the two arrows together. 

The next figure (9.17) shows the responses from student S6 to the two questions set in 

two different contexts. 
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(a) (b) 

Fig. 9.17 Student S6: post-test responses to the different contexts questions 

I:  In this question 7 (figure 9.17 part a) you have to represent 3 forces and add 
the together, how did you do it? 

S6: It is the same as adding three vectors together. 

I: Why did you specifically draw vectors like this? Is this all right for forces? 

S6: Well, these are just representations of forces. 

I:  What about question 8? 

S6: First you move in this direction [points to one of the separate vectors] then in 
this direction [points to the other separate vector] then you add them together. 

I:  It does not worry you that they are not connected? 

S6: We can transfer vectors anywhere. 

Summary 

The student S6 indicates, in the language he is using, that he treats vectors in the same 

way whatever the context. However looking at his graphical responses he does not put 

arrows on the resultant vector, even when prompted, anywhere apart from the 

question set in the context of forces (figure 9.17 (a)). He implies the commutative law 

of vector addition when he says: “Simply moved vectors in a different order”. He also 

implies that he realises some idea about the same effect by saying “It is simply the 

direction of the two arrows together”. However, he only mentions the direction and 

not the magnitude. He realises that vectors are only the “representations of forces” 

and displacements and indicates that he has a concept of equivalent and free vectors 

by saying: “We can transfer vectors anywhere”. 

The student S6 seems to be focusing on the effect of the procedures and treats 

vectors in the same way whatever the context. He also implied (“I could draw 
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horizontal and vertical, but it would difficult in this case”) that he is aware of the 

symbolic mode of operation and did not use it as, according to him, it is not proper in 

this case. This could mean that he has flexibility in dealing with different modes of 

operations and uses the most appropriate one for the question. 

Comment 

The student S6 seem to have very good grasp of a vector as a mathematical tool for 

solving problems in mathematical and physical problems. He is very competent in his 

use of the equivalent vectors and free vectors and realises that the commutative law of 

addition applies to addition of vectors. What is not clear is how he understands the 

idea of the same effect. He seems to understand it in the context of forces. His 

resultant force has a direction but the rest of the questions seem to lack that part of the 

answer. It might be possible that his understanding of the addition is limited to 

following the arrows from the beginning to the end, after they are placed ‘nose to tail’. 

Further questioning was not possible due to the lack of time. 

The student S6 maybe could be reclassified as versatile, but the classification is 

unclear as he never explains why he does not place the arrows on his resultant vectors 

in response to the addition. 

 

9.3.3 Student S7 

The next interview was conducted with another student from group B who was coded 

as S7. This student was also classified to belong to the multi-skilled category 

according to his responses to the post-test and observation of how he was attempting 

the test questions (he was measuring horizontal components and angles of the vectors, 

adding them together and then drawing the resultant vector, which is indicated in 

oblongs on his responses). Some of his answers to the post-test are shown in figure 

9.18. Part (i) shows two responses, the top one to question 2 (a) and the bottom one to 

question 3 (a). Similarly part (ii) shows responses to questions 2 (b) and 3 (b) and part 
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(iii) shows responses to questions 2 (c) and 3 (c). The relevant parts of the interview 

with the student S6 are shown below the figure 9.18. 
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(i) (ii) (iii) 

Fig. 9.18 Student S7: responses to the pre-test questions 2 & 3 

I: How did you answer question 2? 

S7: I used a ruler and compasses [he means protractor] to measure these 

vectors and then drew them here [points to the answers in oblongs]. 

I: Can you show me what you did? 

S7: I very roughly took an angle [uses protractor to measure the angles 

from the horizontal direction] so it is twenty and then the other one 

here, which is about 40 and drew them together and measured the 

answer...and....[shows the resultant vector]. 

I: What about question 3? 

S7: The problem with this question ... I did not know what you meant by 

“add the two vectors” so I assumed it was put them together as arrows. 

I: What do you understand by the addition? 

S7: Join them by end to tail and draw the arrow between them. 
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I: When we look at your answers to the next question you actually put 

them as we say ‘nose to tail’ but you did not draw an arrow? 

S7: Well I did not quite know what add means so I just join them together 

so it shows the direction. 

I: So do you understand addition of vectors as putting them together? 

S7: Yes I understand the addition as showing the total movement. 

I: So did you show the total movement in the previous question? 

S7: Yes, and here I am showing the total movement but in two separate 

parts. If I was told to put vectors together I would draw the resultant 

force or whatever movement it was and the other way I just thought I 

would show it the other way.  

Figure 9.19 shows the student’s S7 responses to two different contexts questions: part 

(a)- displacement; part (b)-forces. 

 

 
 

(a)  (b)  

Fig. 9.19 Student S7: responses to the questions set in different contexts 

I: What did you do in the question 7 and 8? 

S7: Yes, the same thing. 

I: Can you explain, why did you answer both questions in the same way? 

S7: Apart from that there is an extra force in 7, they are exactly the same. 

I: Why do you think they are the same and yet there is a different 

physical situation? 
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S7: How do you mean a different physical situation? 

I: The first refers to three forces and the second to two displacement 

S7: I honestly did not read it like this. Ah,…… The forces ……..are not 

necessarily vectors I don’t think, they are movements. Whereas 

displacements are distance from a point, displacements and vectors are 

different things, the displacement is a distance from a point, which will 

be still the same. Sorry I will start again. These are vectors (points to 

the question on forces) and have magnitude and direction, whereas 

these are just movements from a certain point, it is just a difference, a 

movement, which is this one. 

Summary 

The student’s S7 use of language when discussing problems connected with vector 

addition is confused, especially when he talks about addition of vectors representing 

the physical quantities (forces and displacements). His last response indicates it very 

clearly. He answered all his questions not thinking about the contexts they were set in 

but when this was brought to his attention he was confused. 

His focuses on vectors as an action of movement (“If I was told to put vectors 

together I would draw the resultant force or whatever movement it was”), even when 

he has to deal with forces he think of movement (“The forces ……..are not 

necessarily vectors I don’t think, they are movements”). 

He implies that the addition can be shown in two different ways: one when he 

shows the resultant “I understand the addition as showing the total movement”; and 

another as a journey following the route, without showing the resultant “I am showing 

the total movement but in two separate parts”. 

The context he is working in makes a difference to the way he thinks: “These 

are vectors and have magnitude and direction, whereas these are just movements from 

a certain point, it is just a difference, a movement. 
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He can use two modes of operation, however only at a lower stage of the 

cognitive development (journey) in the graphical mode. 

The student was classified as multi-skilled; maybe he could be classified as 

higher uni-modal in the symbolic way, but this is also arguable. 

Comment 

The student S7 displaced great confusion in his understanding of vectors and vector 

addition. He has answered some further questions in a way which could indicate that 

he could be classified as higher uni-modal on the basis of all of his test responses but 

not on the responses shown above. His language lacks flexibility. He did not develop 

a concept of vector as a cognitive unit. 

9.3.4 Student S8 

Some students in group A were inconsistent in their graphical solutions and one of 

them, S8, was interviewed to find out how serious the problem was. The student was 

classified as multi-skilled. For example, as shown in figure 9.20, the student did not 

draw the resultant in some general addition questions. As previously, some of his 

answers to the post-test are shown in figure 9.20. Part (i) shows two responses, the top 

one to question 2 (a) and the bottom one to question 3 (a). Similarly part (ii) shows 

responses to questions 2 (b) and 3 (b) and part (iii) shows responses to questions 2 (c) 

and 3 (c). The relevant parts of the interview with the student S6 are shown below the 

figure 9.20. 
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Fig. 9.20 Student S8: post-test responses to questions 2 & 3 

I: When you were answering question 2 did you give me the full answer?  

S8: As I was meant to. I could do it differently now. I could draw an arrow 

from here to here [showed the correct resultants with his hand]. 

I: So that would be your alternative? 

S8: Yes. 

I: Do you remember why you did not draw the arrows? 

S8: I must have read the questions the wrong way? 

I: Can you explain a bit more? 

S8: If it said show the resultant I would have drawn an arrow going from 

that point to that point [shows correctly with the pen]. When you added 

vectors you do it in a different way.  

I: In the next question you showed two column vectors but you did not 

give the final answer, why?  

S8: It is the same, because it shows the direction. 

In the next part of the interview the student was asked to complete the questions on 

vectors in different context that he missed out in the test, therefore figure 9.21 (a) 
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shows the questions completed during the interview. The next question (figure 9.21b) 

was done from the beginning during the interview. 

 

  
(a) (b) 

Fig. 9.21 Student S8: responses to the post-test questions set in different contexts 

I: In question 7, if I had asked for the resultant, how would you draw it? 

(Fig. 9.21a). 

S8: Should I draw it? 

I: Yes please. 

S8: [Student drew the correct resultant.] 

I: When I asked the next question you did not answer, was there any 

reason for it?  

S8: I don’t know. 

I: If I asked you to do it now, how can you do it?  

S8: [student’s work in Fig. 9.21b]. 

I: When you drew the forces you drew them from one point, the 

displacements you drew separately, can you explain why? 

S8: I kind of relate forces acting on a point, whilst a displacement I don’t 

know, I would see it as some type of instrument. 

I: How do you see displacement? 

S8: Moving an object…..across a distance. 
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I: If you would have to make a story what story could you make? 

S8: If someone would walk from A to B and then from C to D, how far 

would they walk, I don’t know [points to his triangle] I don’t know. If 

they were together [draws them following each other] it would be 

easier to explain. I don’t know why I drew them separately. 

Summary 

This student in the same was as some of the previous students connects ‘adding 

vectors’ with placing them ‘nose to tail’ and nothing else, but when asked to give the 

resultant seems not to have a problem. He also mentions that adding vectors is 

showing a direction, which could imply the total effect of the addition. 

The vectors set in a context of displacement, seem to make a difference to the 

way he was thinking, but only when he actually is prompted to think of that context in 

a precise way. His first impulse was to just treat displacements as any vectors. 

However when dealing with the context of forces he was he was very precise of the 

way he was thinking: “I kind of relate forces acting on a point”. 

He indicated that, as long as the question asks for the resultant and not addition, 

he can manipulate vectors in both modes of operation, even in case of the singular 

questions. He therefore remains in the multi-skilled category. 

Comment 

The student, coded S8, seems to be confused in the language of vector addition. If the 

vectors are journeys in his mind then he might be thinking that the addition means 

showing whole ‘journey’ from the start to the end (figure 9.20). However this is not 

consistent with his other responses (figure 9.21). This student is from the 

experimental group and drew the displacements separately in the test (figure 9.21b) 

but could not remember why. So although he might have remembered from the 

experimental lessons that the displacement can be drawn separately he did not built a 

cognitive unit of a free vector from that work and therefore moved only partly 
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towards understanding. Maybe he would have benefited from revisiting the idea a few 

times.  

This can be triangulated with the teachers’ comments. One of the teachers said 

that the adding vectors is putting them ‘nose to tail’ but because the answer is 

‘obvious’ some of them omit showing it, which could have been one reason for 

omitting indicating the ‘total effect’. However, in case of the student S8, the omission 

could be due to lack of understanding of the language rather that not realising the 

concept of the total effect. He seems to be connecting addition with the procedure of 

placing vectors ‘nose to tail’, and showing the resultant with the total effect of 

‘addition’. 

9.3.5 Student S9 

The student coded S9 was chosen as she was one out of six students in group A, who, 

in the post-test analysis, was classified into the versatile category. The interview 

meant to check whether the student is indeed flexible in her thinking and whether she 

just uses the procedures or whether she has a conceptual understanding of vector 

addition. Figure 9.22 shows the student’s responses to question 2 & 3, which asked to 

add vectors in two different ways. Part (i) shows two responses, the top one to 

question 2 (a) and the bottom one to question 3 (a). Similarly part (ii) shows responses 

to questions 2 (b) and 3 (b) and part (iii) shows responses to questions 2 (c) and 3 (c). 

The relevant parts of the interview with the student S6 are shown below the figure 

9.22. 
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Fig. 9.22 Student S9: responses to the post-test questions 2 and 3 

I: How did you answer question 2? 

S9: I was sliding the vectors so one is at the end of the other one, so that 

they are nose to tail, and then drew a resultant from the beginning of 

one to the end of the second one (shows correctly for all three with her 

finger) 

I: So what about the next question 3? 

S9: I worked out the length and direction and put them together. I did them 

in i and j directions and added them together. 

I: Did you do questions like 2 (c) before? 

S9: I’ve never done questions like this before, so I was making my own 

way of doing it. 

The responses from student S9 to the two questions set in two different contexts are 

shown in figure 9.19. Part (a) shows the student’s response when being asked to draw 

three different forces and add them together and part (b) when being asked to draw 

two displacements and add them together. 
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(a) (b) 

Fig. 9.19 Student S9: responses to the post-test questions set in different contexts 

I: Could you look at questions 5 and 6? (figure 9.19 a and b) 

S9: They are the same. You could do them in i and j directions and add 

them together or you could draw them so they are nose to tail and draw 

the resultant. 

Summary: 

The interview indicated that the student S9 reached the highest stage of cognitive 

development in both graphical and numerical mode. He gives enactive responses like: 

“slide the vector”, “put them together”, and “I drew them so the tail of one is at the 

beginning of that one” and after reflecting on his ‘actions’ could this through the next 

stage of the development  The student is not confused about the language of addition: 

“I did them in i and j directions and added them together” or the total effect: “then I 

drew a resultant from the beginning of one to the end of the second one”. She was not 

confused by the two different contexts and said: “They are the same. You could do 

them in i and j directions and add them together, or you could draw them so they are 

nose to tail and draw the resultant.” By the same statement the student implies its own 

flexibility in using either modes of operation. It seems from this student’s responses 

that she can use the procedures very well and uses mathematical concept of vector in 

different contexts. In further questions in the test the student also used the 

commutative law of addition. 
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Comment: 

The student S9 showed the ability to operate at the highest cognitive stage of 

development in both modes of operations. She showed flexibility in dealing with 

singular cases “I’ve never done questions like this before, so was making my own 

way of doing it.” When asked to comment about two questions placed in different 

contexts his response was: “They are the same.” which indicates that she used the 

mathematical concept of vector independent of the context. She used the triangle 

method of addition but did not mention or imply the parallelogram law. The student is 

still considered to be at least in the versatile category or maybe even fully integrated. 

9.4 Summary from the interviews 

By performing the triangulation between the responses from the teachers and the 

responses from the students we can see that, although the mathematics teachers 

anticipated students’ perception of vector addition as thinking of compiling journeys, 

the students at higher levels of cognitive development did not have this problem. They 

developed a concept of vector as a cognitive unit which they could use flexibly. 

The students working at the lower levels of the cognitive development had 

problems/misconceptions in their responses to both the generic and singular questions 

which were anticipated by the mathematics teachers. For example the student S1 

answered the question in figure 9.1 (a) as if the vectors were “fixed in space.” The 

teachers also anticipated that students might not show the resultant as “they might feel 

the addition means placing vectors one after another,” and indeed student S1 (figure 

9.2 (b)), student S7 (figure 9.18) and student S8 (figure 9.20) had that problem. 

They also thought that students might have more problems with singular 

questions and we can see this happening in case of the student S3 who answered the 

simpler generic question (figure 9.8 (a)) but had a problem with more complicated 

generic question and the singular question (figure 9.8 (b) and (c)). The same situation 

occurred with student S5 (figure 9.13). 
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The Mathematics teachers were also saying that questions which might evoke 

physical implications may cause problems; this occurred with students at the lower 

stages of the conceptual ladder. This was especially clear in the questions set in two 

different contexts. Students S1, S3 before the course and S5 afterwards showed 

clearly that their thinking was changing dependent on the context and also with 

questions which might imply a physical context (two vector starting at one point, as in 

questions 2 (b) and 2 (c)). 

On the other hand the problems anticipated by the Physics teacher that students 

will not be able to add vectors drawn separately occurred only in case of the student 

S1 and only in one question (figure 9.1 (a)). However her prediction that the students 

might not place arrows on the resultant vectors proved correct in many cases and one 

of them occurred with the student S6 (figure 9.16), who did not correct this omission 

even when prompted in the interview. 

It seems from the interviews that the students could not communicate their 

problems as clearly as the teachers in anticipating the problems and therefore the 

interviews may not, in some cases, show the students’ misconceptions or strengths 

clearly enough. 

Generally all of the students interviewed concentrated on specific procedures, 

however the students working on the higher levels of the cognitive development 

generally made better connections between those procedures. Although different 

contexts affected most of their thinking, the higher level students seem to have been 

using a vector as a tool to solve problems of addition, showing the awareness of both 

aspects of a vector: magnitude and direction. The lower level students seemed to have 

concentrated only on one of those aspects (mainly direction) and ignored the other one 

(magnitude). This gives support to hypothesis 3 that the students operating at the 

higher levels conceive the concept of vector as a cognitive unit, as an entity in itself 

which can be used in different contexts. 

In chapter 7, the question arose as to whether students were revealing their full 

ability in the separate graphic and numeric modes on the questionnaire. The students 
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who answered questions mainly symbolically but at a higher level, as seen in the 

interview with the student S2, proved to be multi-skilled and capable of answering 

questions graphically at a higher level. However this does not necessarily follow with 

students who responded only graphically at a lower level. Students S1, S3 and S5 did 

not show this ability, even when prompted to respond symbolically. 

There is an apparent difference in the language which the students operating at 

different levels of cognitive development use to describe their responses to the test 

questions. This difference occurred in the interviews following the pre-test as well as 

in the interviews following the post-test. 

The lower level students use phrases like: “I connected all the vectors together 

so it will be easier to add them all together,” (S1); I did not draw them to scale but to 

different scale just to give a general idea of how to add them,” (S1); “you can go 

shorter distance from A to B,” (S1); “ I thought it was asking me to put them in a 

triangle and then join up,” (S3); “I cannot think of any other way,” (S3); “When one 

ends starts the other one,” (S5); “Well, I did not quite know what add means so I just 

join them together so it shows the direction,” (S7); “... displacements and vectors are 

different things...,”(S7). 

The higher level students use phrases like: “I put them nose to tail,” (S2);  “... if 

you put the them end to end it will be an overall translation,” (S4); “If you display 

each vector in two perpendicular directions, and then add two horizontal and the two 

vertical,” (S4); “Displacements are obviously vectors,” (S4); “simply moved vectors 

in a different order,” (S6);  “Well, they are just representations of forces,” (S6); “I was 

sliding the vectors so one is at the end of the other one, so that they are nose to tail, 

and then drew a resultant from the beginning of one to the end of the second one,” 

(S9); “They are the same. You could do them in i and j directions and add them 

together or you could draw them so they are nose to tail and draw the resultant,” (S9). 

From the responses we may conclude that the higher-level students were more 

likely to develop the concept of vector as a cognitive unit, while the lower-level 



Main Study: Qualitative Data Analysis—Interviews with students Chapter 9 

 206

students were not. This gives evidence to support hypothesis 3 from a qualitative 

viewpoint, giving fuller information to underline the quantitative support in chapter 7. 

The interviews were consistent with the overall theoretical framework, revealing 

new detail. For example, when students connect vectors ‘nose to tail’, they do not use 

the idea of free vectors, only the procedures of joining different journeys together to 

show a total journey. They therefore do not add vectors in the mathematical sense. 

Another important aspect is that these students do not consider the parallelogram law 

when adding two vectors and that the triangle law has an overpowering importance 

with some of them to such an extent that they do not use equivalent vectors. 

9.5 Overall triangulation between the interviews and the quantitative data 

The interviews in this chapter revealed a consistency between the teachers’ views of 

the kind of difficulties that the students would have with the questions and the 

responses of the students. There is a clear difference in the views from physics and 

mathematics, where the first focuses on meaningful real-life examples which, 

nevertheless cause difficulties with the concept of free vector, and the latter focuses 

on the development of the concept within successive years of the syllabus. 

The interviews in this chapter were consistent with the idea that the quantitative 

study satisfactorily represented the students’ performance, with the exception that 

some graphical questions may not show the full range of symbolic thinking that was 

available to the student as this was not directly required. This confirmed the decision 

to measure the higher stages attained by the students rather than taking a numerical 

average of student performance across the whole set of questions. 

The language of the students at different levels revealed graphically that 

students who were succeeding at the higher levels regarded the notion of free vector 

as a coherent single concept that had meaning across different contexts whereas the 

students who were less successful tended to apply different procedures in different 

contexts. The fluent and flexible way in which the more successful students operated 

with the concept of free vector is consistent with hypothesis 3 and gives support the 
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general theoretical framework. The research hypotheses formulated in chapter seven 

are supported by the evidence, both quantitative and qualitative. 
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Chapter 10 

Summary and plans for the future research 

10.1 Introduction 

This research was designed to test if the cycle of process-object encapsulation to form 

the concept of free vector can be enhanced by concentrating on effect. The intention 

was to build on students’ intuitions to get ‘real’ understanding of the vector concept 

and to encapsulate it as a symbol of a free vector which can be operated on as a 

cognitive unit.  

The sample of literature from science and mathematics education showed how 

complicated physical intuitions can be (Aguirre & Erickson, 1984, Jagger, 1988, 

Graham and Berry, 1997, Dubinsky, 1991). Aguirre and Erickson found various 

vector characteristics used in different contexts and discovered that most students 

used partial descriptions, mainly based on intuitions related to these characteristics 

when describing and dealing with different physical phenomena. Their research 

concentrated on students’ conceptions in different areas of vector quantities and 

suggested further investigation on the same basis. Jagger’s (1988) research also 

concentrated on studying difficulties students had with vectors in different physical 

contexts. She found that the change from one dimension to two dimensions proved to 

be a significant problem as well as lack of understanding of the Newton’s laws of 

motion. Graham & Berry (1997) similarly concluded that students seem to have 

problems with different physical concepts and Newtonian laws, which acted as an 

obstacle to their use of mathematics. They suggested as a remedy an approach that 

challenges students’ ‘intuitive ideas’. On the other hand, the research of Dubinsky 

(1991) from a mathematical viewpoint showed that the cycle of process-object 

encapsulation is difficult to complete, with students often reaching only the process 

level and failing to conceptualise the process as a mental object. 
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Skemp (1976) suggests that the mathematical idea should be built, not by 

working with several different contexts at once, but by focusing on one particular 

context to develop the mathematical concepts in a way that can then be applied to 

other contexts. In the case of constructing the mathematical concept of vector, the 

science education literature shows ample evidence of a range of ‘false intuitions’ that 

may arise. In choosing a specific context to work in, I chose to start, not with forces or 

journeys, but with the idea of physical transformations used in the mathematics text-

book. 

The main goal for my research is to seek a solution that enables students to 

reach a level where a free vector is encapsulated as a flexible mental object. The 

proposed solution, tested in this research, is to begin in the single context of a vector 

as a transformation, to focus on the effect of the transformation, to provide students 

with a focus for the construction of the concept of free vector. 

To encourage students to construct meaning for themselves, in a way that is 

consistent with the mathematical theory of vectors, the lessons began with physical 

activities in which students performed the action of translating a triangle on a table. 

The triangle functioned as a ‘base object’ on which the translations acted and, by 

focusing on the effect of the translation, students could gain experience that any arrow 

of a given magnitude and direction could be used to represent a translation of that 

magnitude and direction. The concept of an arrow as a free vector was then made the 

focus of attention and the addition of ‘free vectors’ by moving them ‘nose to tail’, 

giving a result that has the same effect as the action of following one vector by the 

other. The activities looked at different ways in which the vectors could be added (for 

example using the triangle method or the parallelogram method) to see their 

equivalence. 

The students’ own construction of the notion of free vector was supported by 

activities and discussions in reflective plenary sessions. The idea of the reflective 

plenaries has arisen from work of Barbara Jaworski (1993) who implied that after 

activities in which students participate, the teacher should create the situation in which 
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(s)he can enable them to construct meaningful concepts. This proved also to be 

advantageous as it linked with the idea of using plenaries in the English National 

Curriculum. In these plenaries, students were encouraged to build a meaningful 

concept of free vector as encapsulated object that they could operate on in different 

contexts, mathematical as well as physical. 

The Preliminary Investigations helped to build the main hypothesis formulated 

for testing in the main study: 

Main Hypothesis: Teachers can help students develop the notion of a 

translation as a free vector through focusing on the effects of physical 

actions, linking graphic and symbolic representations, so that the 

concept of free vector is constructed as a cognitive unit that may be 

used in a versatile way in a range of different contexts. 

This was developed from my instinctive feeling that if students were able to 

concentrate on the simplicity of mathematical ideas instead of the many complications 

connected to different contexts, they then would be in a better position to solve 

problems occurring in those contexts. 

The goal of the research was to find a strategy that would enable students to 

concentrate on the simplicity of the mathematical idea of vector instead of considering 

difficulties and variations in different contexts using vector quantities.  

After a review of relevant research (chapter 2), the research framework to be 

used at the outset was outlined in chapter 3. 

The empirical research consisted of three stages: an initial exploration of ideas 

that seemed relevant in a preliminary classroom study (chapter 4); the methodology 

and methods to be used (chapter 5); a pilot study to test out the teaching experiment 

and the design and analysis of the questionnaire  to produce refined hypotheses and 

methodology for the main study (chapter 6); the hypotheses were tested through the 

analysis of the results of the questionnaire in a pre-test, post-test and delayed post-test 
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(chapter 7), to be triangulated with interviews with teachers (chapter 8); and 

interviews with the students (chapter 9). 

10.2 Theoretical framework 

The strategy evolved from the Preliminary Investigations was to work in an 

environment which enables students to have the potential of focusing on the essential 

properties. To be able to work in such situations and to move from activities to 

essential mathematical concepts, a fundamental focus on specific ideas has to occur, 

which should lead to the essential compression of knowledge. This was encouraged in 

two ways: 

o by embodying actions and focusing on the effect of these actions; 

o by assigning a symbol to the effect to enable it to be conceptualised as a 
single idea — a cognitive unit. 

It was hoped that the power of this essential idea can be related to other contexts 

where the focus is now on the essential properties rather then the incidental details 

that previously caused difficulties. 

In the case of vector this was done through the translation of an object on a flat 

table; the students were encouraged to not concentrate on the movement of the object 

or some particular point on that object but on the effect of the movement. 

The movement of the particular point on the object from A to B can be 

represented by a particular arrow to which we can assigned a symbol AB , however 

the essential idea is the effect of the movement which can be represented by any 

equivalent arrow having the same magnitude and direction. In this way it becomes 

possible to imagine that these equivalent vectors operate as a single entity that 

represents the more subtle concept of free vector. A bonus is that the combined effect 

of one free vector followed by another can be represented by placing arrows 

representing the vectors ‘nose to tail’ to give the sum as the single free vector that has 

‘the same effect’. If we can free ourselves from the physical contexts, such vectors 
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can be joined together in any order to give a unique result. In particular, the triangle 

law and the parallelogram law are two different ways of seeing the same idea and can 

be used interchangeably. The theoretical framework was design to test the hypothesis 

claiming that if students participated in the experimental lessons and meaningful 

discussions, they should be able to use vector flexibly, as mathematical symbol, and 

retain their knowledge for a longer period of time. 

The hypotheses, discussed in detail in section 10.2, were tested through three 

tests. The comment on the results of the tests and interviews will be discussed in 

section 10.3. 

10.3 Themes of the testing 

Three parts of the main hypothesis, described already in chapter 7, were developed 

and tested. These were: 

Hypothesis 1: Students, who were involved in experimental lessons, 

are expected to rise through the cognitive stages further than students 

who are not exposed to the experimental lessons. 

Hypothesis 2: Students who were helped in building a concept of a 

free vector are expected to be more able to: 

(a) add vectors in singular cases, not just generic ones; 

(b) use free vectors independent of the context; 

(c) realise that the commutative law applies to vector addition. 

Hypothesis 3: Students who can concentrate on the effect of actions rather 

than actions themselves are more likely to build the concept of free vector 

as a cognitive unit, which can be used by students after a longer period of 

time and not only just after the experiment. 

The interviews, as described in chapter 9, were intended to gain a greater insight into: 

• students’ use and flexibility of language when discussing problems connected 

with vector addition; 
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• students’ focus of attention at any given time (whether it is on actions, or 

procedures or on the effects of those actions and procedures); 

• the way in which different contexts affect their thinking; 

• their flexibility in dealing with different modes of operation 

(graphical/symbolic). 

10.4 Testing Hypothesis 

The three hypotheses were tested three times: in the Preliminary Investigations, which 

helped to build the methodology; the pilot study which tested the methodology; and 

the main study, which proved that there were significant positive changes in the 

experimental group, compared to no significant changes in the control group. All 

three studies indicated positive change in students who have undergone the 

experimental lessons. During the main study, two groups of students were tested three 

times throughout year 12. The first test (pre-test) was conducted at the beginning of 

the year. The second test (post-test) was conducted one month after the part of the 

Mechanics course involving addition of forces finished and two months after the pre-

test. The third test (delayed post-test) was conducted a year after the pre-test, when 

students came back from their summer holidays. They were analysed using methods 

developed in chapter 4 and detailed in chapters 5, 6 and 7. 

The significance of the changes in the stages of the cognitive development that 

were achieved by students, was determined using the two-tail t-test. The other 

comparison was done using the scatter graphs and the chi-squared test. This test 

looked at the comparison of the proportions of students in two different areas of the 

graph: lower lever area included intuitive and uni-modal categories; and the higher 

level area included higher uni-modal, multi-skilled, versatile and fully integrated 

categories. The t-test taken for the graphical changes between the post-test T1 and the 

delayed post-test T3 show highly significant changes for Group A (t=3.83 at p<0.01) 

and no significant changes for Group B. The changes for the symbolic mode were not 
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significant for either group. When we triangulate the overall responses to all three 

tests and teachers’ comments together with the students’ interview responses, we can 

see that only some students at the beginning of the year even considered answering 

the questions graphically. The students seemed to realise that the test (without grids) 

was answered more efficiently graphically and attempted mainly to do so even if their 

graphical competence was not adequate to do so. The symbolic answers were given 

mainly as alternative responses but rarely as main responses. This is in all probability 

the reason why in all the tests the changes in the symbolic responses for both groups 

were not significant.  

These results provide evidence for hypotheses 1 and 3. The students who were 

involved in the experimental lessons rose through the cognitive stages further than 

students who were not exposed to the experimental lessons and their conceptual 

understanding worked after a longer period of time and not just immediately after the 

experiment. 

Differences occurred in the case of singular (hypothesis 2 (a)) questions where, 

for example, students from Group A were able to cope better with two vectors 

meeting at one point. The t-tests performed on students’ changes in the stages of the 

graphical cognitive development between the pre-test and the delayed post-test show 

that Group A underwent highly significant positive changes (t=3.13 at p<0.01) while 

the changes in Group B were not significant. These results support further hypothesis 

3 that Group A students’ conceptual knowledge of vector addition was more firm by 

the time of the delayed post-test and they could apply it more flexibly, even in the 

singular cases. The chi-squared test showed there was no significant difference 

between the two Groups in the delayed post-test. However if we consider that there 

was a significant difference with 
2 

= 4.24 (p<0.05) in the pre-test in favour of Group 

B and in the delayed post test 
2
 changed to 2.32 in favour of Group A, we can see 

that the positive change has occurred in favour of Group A. In fact Group B has not 

changed and only Group A has. 
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The highly significant positive changes also occurred in case of Group A when 

responding to the questions set in two different contexts (t = 8.71 at p<0.01) The 

Group B also improved but less significantly (t = 2.17 at p<0.05). The chi-squared test 

also shows a significant difference which favoured Group B in the pre-test ( 2 = 5.24 

at p<0.05) to the significant difference which this time favoured Group A in the 

delayed post-test ( 2 = 4.84 at p<0.05). 

This shows that, on the whole, Group A made much more significant 

improvement than Group B in their stages of cognitive development as far as the 

singular questions and the different contexts questions are concerned. From the 

students’ post-test and the delayed post-test responses it also became evident that 

students in Group A treated these questions in a more ‘mathematical’ way. The 

substantial number of them used their knowledge of free vectors in addition with 

confidence. 

These results support hypothesis 2 (a), that the experimental Group A, in 

comparison with control Group B, gained conceptually from the experimental lessons 

in the context of vector as force and sustained their knowledge between the post-test 

and the delayed post-test. The difference between the groups changed from Group B 

being significantly higher in the pre-test to Group A being significantly higher in the 

delayed post-test. It is relevant that there was no significant difference between the 

groups in the post-test, which emphasises the long-term effect of the experimental 

treatment. 

In addition to the results from the quantitative analysis the interviews also 

showed that there is an apparent difference in the language which the students 

operating at different levels of cognitive development use to describe their responses 

to the test questions (chapter 9). The analyses indicate that students operating at lower 

cognitive levels use procedures without using the concept of the free vector, while the 

students operating at higher cognitive levels developed the concept of vector as a 

cognitive unit. This gives the additional qualitative support to hypothesis 3. 
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For example one of the high attaining students from Group A, when asked how 

he tackled the singular case, in which two vectors met at one point, he said: “I was 

sliding the vectors so one is at the end of the other, so that they are nose to tail, and 

then drew a resultant. [...] I worked out the length and direction, did them in i and j 

direction and added them together.” When asked how he answered two questions set 

in different contexts (forces and displacement), he answered: “They are the same. You 

could do them in the i and j direction and add the together, or you could draw them so 

they are nose to tail and draw the resultant.” When asked how he approached the 

singular question at the end of the test, which many students found difficult even to 

start, he responded: “I didn’t know how to do this and this was like a second thought 

[...] I was making my own way of doing it.” His answers show that he has built a 

cognitive unit, which he was confident to apply to an unfamiliar situation. He also 

implied that every time he looked at the result of the addition, which meant that he 

concentrated on the effect of the addition, in both symbolic and graphical mode. 

On the other hand another student, this time from Group B, who just put two 

vectors together but did not draw the resultant, when asked how he went about 

answering the question responded: “I did not know what you meant by ‘add the two 

vectors’, so I assumed it was put them together as arrows.” He obviously concentrated 

on the procedure of addition and not on the effect of it. When asked to explain a bit 

more what he understood by addition, he answered: “I understand the addition as 

showing the total movement.” When asked how he tackled two questions, one asking 

him to draw and add three forces and another to draw and add two displacements, he 

answered: “Apart from the fact that there is an extra force in the first one, they are 

exactly the same.” He concentrated in both situations as if they applied to forces and 

answered them in that context, but not as free vectors in a mathematical context, in the 

manner that the previously described student did. When asked if he noticed the 

contexts are different he said: “Ah […] the forces are not necessarily vectors I don’t 

think they are movements.” He related to vectors as movements but since he knew 

that forces acting on an object do not have to cause a movement, he therefore did not 
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think that forces are vectors. He did not build a notion of vector into a cognitive unit. 

To him it was a different symbol when used in the different contexts of forces and 

journeys. There was no indication in the test that he knew that the addition of vectors 

is commutative. 

10.5 Summary of testing theory 

The quantitative analysis in Chapter 7, firmly confirm the main hypothesis by 

providing statistical evidence to support hypothesis 1, 2 and 3. The first part of the 

qualitative analyses (chapter 8) shows that the teachers clearly understand the kind of 

mistakes that the students might make, particularly the two mathematics teachers. The 

physics teacher differs, probably because she was looking at how students would 

respond in the Physics context, while the Mathematics teachers were considering how 

students would respond in Mechanics context. Students might try to adapt their 

responses to the subject they have to operate in, as they might try to respond in they 

way they think the teacher wants them to respond. 

Certain things came clear which the original theory did not consider explicitly, 

for example when we look at the way some students add two vectors together 

( AB and BC ), they move the beginning of the vector BC to the end of the vector AB  

and leave it. They treat this addition as showing the journey from A to C via B and 

therefore as far as they are concerned the task is completed. They see it as showing a 

journey and not as vector addition using equivalent vectors. To triangulate this with 

the teachers’ comments: one teacher says that “they forget to put the arrow in,” 

however it is possible that they do not forget but they just are not at the level where 

they understand the purpose of putting the arrow in. If they are told to remember it 

may not help them to understand the concept but might help them to get the good 

marks in the exam. 

The theory developed in this thesis, on the other hand, suggests the alternative 

to warning students what to do or not to do. It says that if we involve them in specific 

physical actions on vectors and mentor them in reflecting on the effect of these 
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actions (correspond to the idea of free vector), then the students will have some 

personal experience, from which they will be able to sense what it means to move the 

free vectors around. If they afterwards see the vectors on the paper they are more 

likely to be able to imagine moving them around. The other students might just have 

the experience of being told to place them one after another and place another arrow 

from the beginning of the first one to the end of the second one, without developing a 

concept of a free vector. These two approaches to teaching might have the effect of 

how long students remember how to solve vector problems. From the test results it 

shows that the embodied approach followed by reflecting on actions helps the 

teaching to have more permanent effect on what students remember. It may very well 

be that the non-verbal action of physical movement and the sensory and visual effect 

of this movement is more deeply entrenched in their personal psyche. Thus, over the 

long term, it fits more naturally with their thinking processes and is enhanced as time 

goes by. It may also be that, being non-verbal, the students find that they can ‘do’ the 

operation naturally and successfully, and yet, when interviewed, they may not be fully 

able to verbalise what they are doing. 

Chapter 8 shows also another discrepancy with the theoretical framework 

developed in the Preliminary Investigations, which involves use of the parallelogram 

law of addition. The theoretical framework suggested initially that forces were added 

using the parallelogram rule of addition and displacements were added using the 

triangular rule, although it might be true, in this case, the students seem to deal so 

much with the individual vectors that parallelogram law simply did not occur to them. 

Chapter 9 confirmed that the categorisation of students developed in chapter 4 

was satisfactory and did not need have to be modified. However the interviews show 

the wide difference between the language used by students working at the lower and 

higher cognitive levels. The students working at the higher cognitive level use 

language, which suggest they deal with some kind cognitive unit. They may not be 

eloquent in the way they express it but the language they use is more powerful than 

the language which the students working at the lower stages use. The experimental 
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lessons and reflection on actions were intended to move students to thinking about 

vector as a cognitive unit which in turn would allow them to be more flexible when 

using it. 

10.6 Limitation of the study 

The question arises as to whether the change is due to the teacher or the method. The 

study was done in one classroom in which I participated myself. It would be 

interesting to see if it could be repeated in another classroom with another teacher.  

There were also practical limitations. Many students who would have been 

interesting to study further and could have given an interesting insight into some 

answers were not available for interviews. The groups were not well balanced as they 

started with different levels of the cognitive development. Three quarters of each 

group also studied Physics and it was difficult to assess the influence which the 

teaching of Physics had on the students’ changes. 

10.7 Directions for future research 

As far as present research is concerned, the way of teaching students by focusing on 

the ‘effect’ of actions needs to be established in a school and tested with a wider range 

of students. If the premise is true that the use of non-verbal physical actions improves 

the students’ sense of meaning, then, given the different views expressed by the 

teachers, it is important to discuss this aspect with them in a way that helps them too 

to gain an insight into the process. It is also important to discuss with them the 

language used in lessons and its meaning, to refine it and to improve the clarity of 

communication with all students at different stages of development. These 

suggestions should be the object of future research. 

In general there is need for more research of the theory relating to embodiment 

and the symbolic compression. Some researchers (e.g. Pinto, 1998) have found that 

some students construct their ideas from their personal concept images while others 

do so from formal definitions and the structure of formal theorems. In the present 
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research it was noted that some students, at the beginning of the course, were already 

at the highest stages of cognitive development of the concept of vector and had built 

the cognitive units themselves from the theory given in the earlier education. These 

students were successful without having any exposure to the embodied approach in 

the experimental Group. This suggests that, although an embodied approach may be 

useful to give overall statistical improvements in the class as a unit, there needs to be 

continued research into the needs of students who may think in different ways. 

The notion of ‘effect’ of actions on base objects has applications in the 

construction of mathematical concepts encapsulated from processes. For example, the 

idea of two different actions having the same effect arises in a wide range of areas that 

are often interpreted in terms of an equivalence. For instance, equivalent fractions are 

different sharing procedures with the same effect, equivalent algebraic expressions are 

different procedures of evaluation with the same effect, and so on. A major line of 

research is to investigate the use of the focus on ‘effect’ in giving cognitive meaning 

to such mathematical concepts. 

10.8 Reflecting on the effect of the study 

In this thesis an approach was developed to make the transition from thinking of 

embodiments to manipulating symbols through the pivotal notion of effect. The results 

of the study revealed that there were significant changes in the class of students who 

followed this programme, in which they were more likely to conceive of the symbols 

for vectors as cognitive units that they could manipulate in a flexible and versatile 

manner. It is hoped that this fundamentally simple idea will be of use in improving the 

practical way in which teachers teach and students learn, not only in considering 

vectors but in every context where the effect of mathematical actions are represented 

by manipulable symbols. 
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Epilogue 

Having completed this research I found it of value to return to the source of my 

original inspiration. The opening of this thesis referred to my increasing concern that 

students seemed to be able to learn to perform techniques to score highly on 

examinations, yet seem not to be able to apply their knowledge to slightly different 

situations, nor to retain their skills for ready use in subsequent courses. One 

particular question seemed to symbolize this problem that was used in the 

Preliminary Investigations, but did not feature in the main study. As the writing of this 

thesis came to a close, I decided to revisit the problem to see if my theoretical 

approach had made any long-term difference, not 

only to the concept of free vector, but also to the 

application of the ideas in other contexts such as 

mechanics. 

Most of our students could successfully 

resolve forces horizontally and vertically and solve 

problems using this technique, but they had serious 

problems in drawing the forces involved when a 

rectangular block was placed on an inclined plane (figure 10.1). 

The analysis in this thesis suggests that students who approached vectors from 

an embodied viewpoint, focusing on the effect of translations to construct the notion 

of free vector in a meaningful way, would be able to build a mathematical concept 

that they could use in other contexts. I decided to give a variant of the original 

problem to several different groups of students, a year and a half after the students 

involved in the research had finished their course on vectors and half a year after 

their exams (figure 10.2). 

 

(draw the forces and resolve 
them parallel and 

perpendicular to the plane) 

Fig. 10.1 Question on 
forces (a slope) 
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A particle of mass 3 kg slides down a rough plane 
at an angle  = 30° to the horizontal. If µ = 0.5 find 
the acceleration of the mass. 

Fig. 10.2 Revisiting the original problem 

The question was given to four groups in all. Two were the groups who had been 

involved in the Main Study: 

Group A who had been given the experimental treatment in Year 12 
and were now at the end of 13, 

Group B who had been given the standard treatment in Year 12, but 
subsequently had revised the work with me in Year 13 including two 
plenary sessions. 

Two other Groups were also included from Year 12: 

Group C, in year 12 who were taught by a teacher who had been 
interviewed as part of the research and had shown interest in the ideas 
I had used and had adopted the techniques in her own teaching it. 

Group D, in Year 12, taught by a teacher who was not involved with 
the research. 

Every student in Group A answered correctly. All students in Group B except three 

answered correctly. The three who answered incorrectly made the error of omitting 

the parallel component of weight (as in happened in the Preliminary Investigations). 

When I checked my register, I realised that all three who made errors were absent 

for the experimental revision lessons. 

In Group C, taught by a teacher aware of the experimental technique, four out 

of six students answered correctly while two missed the parallel component of weight 

in their calculations. This supports the idea that the method may be used successfully 

by other teachers. However, in Group D, only one out of eleven students answered 
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correctly while the rest of them missed the parallel component of weight in their 

calculations. 

The data is gratifying. It shows that the class of students who were taught in the 

standard way continued to have difficulty with the resolution of forces with only one 

out of the whole class responding correctly. Meanwhile, almost all of the students 

who used the focus on effect, even for a short time, conceptualized the forces correctly 

several months after the lessons were given. They had not only conceptualized the 

idea flexibly, they had retained the ideas after the passage of time. 
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A ppendix 

M ain T est Quantitative Data for  I ndividual Students 

 
Students' cognitive development of vector  
T1: Pre-Test graphical responses  
Student  1  2a  2b  2c  3a  3b  3c  4  5  6  7a  7b  7c  8a  8b  8c  

1 A 3                 
2 A  3 4 4 4 1 1 1 1 1 1  1  0  0     
3 A 3           3  3      
4 A  3 3 0 0       1    1  1  1  
5 A  2          1  2  0  0  0  0   
6 A  2           2  2  0  0  0  0  
7 A 2        3   1        
8 A 3           2       
9 A                 

10 A   2 2 2             
11 A      4 4 4   0   2  0  0  0  0   
12 A            2  4  4  0  0  0  
13 A  2 4 4 4    4 4  2  0  0     
14 A  3           2  0  0  0  0  0  
15 A  3 4          2  4  0  0  4  4  
16 A                  
17 A                  

1 B  2 4 1 1       2  4  1     
2 B   0 0 0        2  3  4  0  0  3  
3 B  1           2  1  4  0  0   
4 B  0 4 0 0 3 0 0 3 1 1       
5 B   4 4 4        2  3  4  2    
6 B   0 0 0 0 0  0 0        
7 B  2 0          2  0  0  0  0  0  
8 B  1 1 1         2  4  0  0  0  0  
9 B 1*  4 4 4      2   2  3  4  0  4  4  

10 B            2  3  4     
11 B      0 0 0     2  3  3  0  0  0  
12 B  0 0 1 1 0 1 1 0   2  0  0  0  0  0  
13 B  0 0 0 0 0 0 0 0 0 0       
14 B  1   4 4     3 1 1  2  3  3  0    
15 B  0        0          
16 B  3 4 4 4 4 4 4 4 4 4  2  0  4     
17 B  1 4 4 4 4 4 4 4 4 4  2  4  4  3  3  3  



225 

References 

Aguirre, J. & Erickson, G. (1984). Students’ conceptions about the vector 

characteristics of three physics concepts. Journal of Research in Science 

Teaching. Vol. 21, No. 5. pp. 439–457. 

Ainley, J. (1999). Perceptions of Teachers’ Questioning Styles. In A. Borbás (Ed.) 
Proceeding of XII Annual Conference of the International Group for the 
Psychology of Mathematics Education, 2, 92–99, Veszprém, Hungary. 

Appleby, J., Cox, W. (2002). The Transition to Higher Education. In P. Kahn & J. 

Kyle (Eds), Effective Learning & Teaching in Mathematics & its Applications, 

Kogan Page Ltd: London. 

Barnard, T. & Tall, D. O. (1997). Cognitive Units, Connections and Mathematical 

Proof, Proceedings of PME 21, Lahti, Finland, 2, 41–48. 

Barnard, T. & Tall, D. O. (2001). A Comparative Study of Cognitive Units in 

Mathematical Thinking, Proceedings of the 25th Conference of the International 

Group for the Psychology of Mathematics Education, 2, 89–96, Amersfoort, 

The Netherlands. 

Belmont, J.M., & Butterfield, E.C. (1977). The instructional approach to 
developmental cognitive research. In R.V. Kail, Jr., & J.W. Hagen (Eds.), 
Perspectives on the development of memory and cognition, (pp. 437–481). 
Hillsdale, N.J.: Erlbaum. 

Berry, J. & Graham, T. (1992). Sixth Form Students Intuitive Understanding of 

Mechanics Concepts: Part 2, Teaching Mathematics and its Applications, 11 

(3), 106–111. 

Beth, E.W. & Piaget, J. (1966). Mathematical Epistemology and Psychology, (W. 
Mays, trans.), Reidel: Dordrecht (originally published 1965). 

Biggs, J. & Collis, K. (1982). Evaluating the Quality of Learning: the SOLO 
Taxonomy. New York: Academic Press. 

Blackett, N. (1990). Developing Understanding of Trigonometry in Boys and Girls 
using a Computer to Link Numerical and Visual Representations, unpublished 
Ph.D. Thesis, University of Warwick. 

Breidenbach, D., Dubinsky, E., Hawks, J. & Nichols, D., (1992). Development of the 

Process Conception of Function, Educational Studies in Mathematics, 23 247–
285. 

Brumby, M. N. (1982). Consistent differences in Cognitive Styles Shown for 
Qualitative Biological Problem Solving, British Journal of Educational 
Psychology, 52, 244–257. 

Bruner, J. S. (1961). The Act of Discovery. Harvard Education Review, 31, 21–32. 
Bruner, J. S. (1966), Towards a Theory of Instruction. Cambridge, Mass.: Harvard 

University Press. 
Chae, Soo Duck (2002), Imagery and construction of conceptual knowledge in 

computer experiments with period doubling. Unpublished PhD thesis, 
University of Warwick. 

Clement, J. (1982). Students’ preconceptions in introductory mechanics. American 

Journal of Physics, 50, 66–71. 

Cohen, L., Manion, L., Morrison, K. (2000) Research methods in education, 5th 

Edition, Routledge: London. 



References 

 226

Cottrill, J., Dubinsky, E., Nichols, D., Schwingendorf, K., Thomas, K., Vidakovic, D. 
(1996). Understanding the Limit Concept: Beginning with a Coordinated 
Process Scheme. Journal of Mathematical Behavior, 15 (2), 167–192. 

Crick, F. (1994). The Astonishing Hypothesis. London: Simon & Schuster. 
Davis, P. J. & Anderson, J. A. (1979). Non-analytic Aspects of Mathematics and 

their Implication for Research and Education, SIAM Review 21, 112–117. 

Denzin, N. K. (1970). The Research Act in Sociology: a Theoretical Introduction to 

Sociological Methods. London: Butterworth. 

Dewey, R.B. (1988). Jak myslimy? Warszawa: PWN (Polish translation of How we 

think, first published in USA, 1910). 

Dreyfus, A., Jungwirth, E. & Eliovitch, R. (1990). Applying the "Cognitive Conflict" 
strategy for conceptual change - some implications, difficulties, and problems. 
Science Education, 74 (5) 555-569. 

Driver, R. (1989). Changing conceptions. In P. Adey, J. Bliss, J. Head, & M. Shayer 

(Eds.), Adolescent development and school science. New York: Falmer Press. 

Driver, R., & Oldham, V. (1986). A constructivist approach to curriculum 

development in science, Studies in Science Education, 13, 105–122. 

Dubinsky, E. (1991). Reflective Abstraction in Advanced Mathematical Thinking, In 

D. O. Tall (Ed.), Advanced Mathematical Thinking (pp. 95–123). Dordrecht: 

Kluwer Academic Publishers. 

Dubinsky, E. & McDonald, M: (2001). APOS: A Constructivist Theory of Learning 
in Undergraduate Mathematics Education Research. In D. Holton et al. (Eds.), 
The Teaching and Learning of Mathematics at University Level: An ICMI 
Study, Kluwer Academic Publishers, 273–280. 

Fischbein, E. (1993). The interaction between the formal, the algorithmic and the 

intuitive components in a mathematical activity. In R. Biehler, R. W. Scholz, 

R. Strasser, & B. Winkelmann (Eds.), Didactics of mathematics as a scientific 

discipline, (pp. 231-245). Netherlands, Dordrecht: Kluwer. 

Fischbein, E., Tirosh, D. & Melamed, U. (1981). Is it possible to measure the intuitive 

acceptance of a mathematical statement? Educational Studies in Mathematics 

12, 491–512. 

Gilbert, J.K., & Watts, D. M. (1983). Concepts, misconceptions and alternative 

conceptions: changing perspectives in science education. Studies in Science 

Education, 10, 61–98. 

Ginsburg, H. (1977). Learning to Count. Computing with Written Numbers. Mistakes. 
In Ginsburg, H., Children's Arithmetic: How They Learn It and How You 
Teach It, (pp. 1–29, 79–129). NY: Van Nostrand Reinhold. 

Ginsburg, H. (1981), The Clinical Interview in Psychological Research on 

Mathematical Thinking: Aims, Rationales, Techniques, For The Learning 

Mathematics, 1 (3), 57–64. 

Graham, T., Berry, J. (1997). A hierarchical model of the development of student 
understanding of force, International Journal of Mathematics Education in 
Science & Technology, 28 (6), 839–853. 

Graham, T., Boardman, S., Eaton, G., Parramore, K., Williamson, R., (2000). 

Mechanics 1, Advancing Maths for AQA, Heinemann Educational Publishers, 

Oxford, OX2 8EJ. 



References 

 227

Gray, E. M. & Tall, D. O. (1994). Duality, ambiguity and flexibility: A proceptual 

view of simple arithmetic. Journal for Research in Mathematics Education, 25, 

2, 115–141. 

Gray, E. M. & Tall, D. O. (2001). Relationships between embodied objects and 
symbolic procepts: an explanatory theory of success and failure in 
mathematics. In Marja van den Heuvel-Panhuizen (Ed.) Proceedings of the 
25th Conference of the International Group for the Psychology of 
Mathematics Education 3, 65–72. 

Heslop, N., Brodie, D., Williams, J. (2000). Science, Pupil’s Book, Hodder & 
Stoughton, London.   

Hiebert, J. & Carpenter, T. P. (1992). Learning and Teaching with Understanding. In 
D. Grouws, (Ed.), Handbook of Research on Mathematics Teaching and 
Learning (pp. 65–97). New York:  

Hiebert, J. & Lefevre, P. (1986). Procedural and Conceptual Knowledge. In J. 
Hiebert, (Ed.), Conceptual and Procedural Knowledge: The Case of 
Mathematics (pp. 1–27). 

Howson, A. G. (Ed.) (1973). Developments in mathematical education. Proceedings 
of the Second International Congress on Mathematical Education: Cambridge 
University Press. 

Jagger, J. M. (1988). A Report on a Questionnaire to Test Students’ Understanding of 

Mechanics, Teaching Mathematics and Its Applications. Vol. 7, No. 1, pp. 35–

41. 

Jaworski, B. (1994). Being mathematical in a mathematical community. In Michelle 

Selinger (Ed.), Teaching Mathematics (Open University Postgraduate 

Certificate of Education), Routledge, London. 

Kant, I. (1781)(translated J. M. D. Meiklejohn, 1934). Critique of Pure Reason. 
London: J. M. Dent & Sons, Ltd. 

Kerslake, D. (1986). Fractions: Children’s Strategies and Errors, A Report of the 

Strategies and Errors in Secondary Mathematics Project, NFER-NELSON 

Publishing Company Ltd., Berkshire. 

Kilpatrick, J. (1985), Reflection and recursion, Educational Studies in Mathematics 16, 

1–26. 

Krutetskii, V.A. (1976). The Psychology of Mathematical Abilities in Schoolchildren, 

The University of Chicago Press. 

Lakoff, G. & Johnson, M. (1980). Metaphors we live by. Chicago: Chicago University 
Press. 

Lakoff, G. & Johnson, M. (1999). Philosophy in the Flesh. New York: Basic Books. 

Lakoff, G. (1987). Women, Fire, and Dangerous Things, University of Chicago Press, 
Chicago. 

Lakoff, G., Núñez, R. E (2000). Where Mathematics comes from. Published by Basic 

Books. 

Lave, J. & Wenger, E. (1991). Situated Learning. Legitimate peripheral participation, 
Cambridge: University of Cambridge Press. 

Lawler, R. W. (1981) The Progressive Construction of Mind. Cognitive Science, 5, 1–
30. 

Locke, J. (1985). An essay concerning human understanding. In Modern philosophical 

thought in Great Britain, Part I, Gogut-Subczynska I., ed., Wydawnictwa 

Uniwersytetu Warszawskiego, 32–39. 



References 

 228

Mason, J. (1994). Researching from the inside in mathematics education: locating an 

I-You relationship, extended version, IP5. Milton Keynes: Centre for 

Mathematics Education, Open University. 

Mason, J. (1996). Qualitative Research, London: Sage, 93–4. 
National Council of Teachers of Mathematics (1991). Professional standards for the 

teaching of mathematics, Reston, VA. 
Oppenheim, A. N. (1992) Questionnaire Design and Attitude Measurement. London: 

Heinemann. 

Palmer, D. H.  & Flanagan, R. B. (1995). Readiness to Change The Conception That 

“Motion Implies Force”: A Comparison of 12-Year-Old a.nd 16-Year-Old 

Students. 

Pegg, J. & Tall, D. O., (2003). Fundamental Cycles of Cognitive Growth. In Anne D. 
Cockburn & Elena Nardi (Eds), Proceedings of the 26th Conference of the 
International Group for the Psychology of Mathematics Education, 4, 41–48. 
Norwich: UK. 

Piaget, J. (1970), Genetic Epistemology (E. Duckworth, trans.), Columbia University 

Press, New York. 

Piaget, J. (1985), The Equilibration of Cognitive Structures. Cambridge MA: Harvard. 
Pines, A. L., West, L.H. T. (1986). Conceptual understanding and science learning: An 

interpretation of research within a sources-of-knowledge framework. Science 

Education, 70, 583–604. 

Pinto, M. M. F. (1998). Students' Understanding of Real Analysis. PhD Thesis, 

Warwick University. 

Pledger, K. et al, (1996). London GCSE Mathematics, Higher Course. London: 
Heinemann. 

Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). 

Accommodation of scientific conceptions: Toward a theory of conceptual 

change. Science Education, 66 (2), 211–227. 

Rosch, E. (1987). In Lakoff, G. Women, Fire, and Dangerous Things, University of 
Chicago Press, Chicago. 

Royce, J. R., Coward, H., Egan, E., Kessel, F. and Moss, L. (1978). Psychological 

epistemology: A critical review of the empirical literature and theoretical 

issues. Genetic Psychology Monograph 97, p.5–353. 

Sadanand, N., & Kess, J. (1990). Concepts in force and motion. The Physics Teacher, 

28, 530–533. 

Schacter, D. (1996). Searching for memory, the brain, the mind, and the past. New 
York: Basic Books, 1996. 

Sfard, A. (1992). Operational origins of mathematical objects and the quandary of 
reification—the case of function. In Guershon Harel & Ed Dubinsky (Eds.), 
The Concept of Function: Aspects of Epistemology and Pedagogy, MAA 
Notes 25, (pp. 59–84). Washington DC: MAA. 

Sfard, A. (1991). On the dual nature of mathematical conceptions: reflections on 
processes and objects as different sides of the same coin, Educational Studies 
in Mathematics, 22, 1–36. 

Sierpinska, A. (1990). Some remarks on Understanding of Mathematics. For the 

Learning of Mathematics, 10 (3). 23–36. 



References 

 229

Sierpinska, A. (1995). Mathematics: ‘in context’, ‘pure’, or ‘with applications’?, For 
the Learning of Mathematics 15 (1), 2–15. 

Skemp, R. R. (1971). The Psychology of Learning Mathematics. Penguin, 

Harmondsworth, Middlesex, England. 

Skemp, R. R., (1976). Relational understanding and instrumental understanding, 
Mathematics Teaching, 77, 20–26. 

Skemp, R.R. (1979). Intelligence, Learning, and Action: A foundation for theory and 
practice in education, Chichester: John Wiley. 

Swanson, D. Schwarz R., Ginsburg, H. & Kossan, N. (1981) The Clinical Interview: 

Validity, Reliability and Diagnosis, For the Learning of Mathematics, 2, 31–

38. 

Tall, D. O. & Vinner, S. (1981). Concept image and concept definition in mathematics, 

with particular reference to limits and continuity. Educational Studies in 

Mathematics, 12, 151–169. 

Tall, D. O., Gray, E. M., Bin Ali, M., Crowley, L., DeMarois. P., McGowen, M., 
Pitta, D., Pinto, M. M. F., Thomas, M. O. J., & Yusof, Y.  (2001). Symbols 
and the Bifurcation between Procedural and Conceptual Thinking, Canadian 
Journal of Science, Mathematics and Technology Education 1, 81–104. 

Thurston, W. P. (1990). Mathematical Education, Notices of the American 
Mathematical Society, 37 (7), 844–850. 

Van Hiele, P. (2002). Similarities and Differences between the Theory of Learning and 

Teaching of Skemp and the Van Hiele Levels of Thinking. In D. O. Tall & M. 

O. J. Thomas (Eds), Intelligence, Learning and Understanding in 

Mathematics: A Tribute to Richard Skemp, (pp. 27-47), Post Pressed: Flaxton. 

Watson, A. (2002). Embodied action, effect and symbol in mathematical growth. In A. 

D. Cockburn & E. Nardi (Eds), Proceedings of the 26th Annual Conference of 

the International Group for the Psychology of Mathematics Education, 4, 370–

377. Norwich, UK. 

Watson, A., Spyrou, P., & Tall, D. O. (2003). The Relationship between Physical 

Embodiment and Mathematical Symbolism: The Concept of Vector. The 

Mediterranean Journal of Mathematics Education, 1(2), 73–97. 


	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13

