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Today's Outline

Today will look something like this:

Brief Intro to R (30 min)

Memory in R (10 min)

BigMemory (30 min)

Parallel Package (90 min)

Lunch (1 hr)

Foreach (30 min)

Rdsm (30 min)

pbdR (1 hr)

Scalable Data Analysis Best Practices (30 min)

·

·

·

·

Multicore

Snow

-

-

·

·

·

·

·
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R for the Pythonically Inclined



R for the Pythonically Inclined

Primitive types

Lists

Vectors

Slicing

NA

Matrices, Arrays

Dataframes

Functions

*pply: lapply, apply, tapply

·

·

·

·

·

·

·

·

·
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Quick Intro to R

R and Python have important similarities…

Scripting language

Interactive use, with or without IDE (IDLE/IPython; RStudio)

Large repository of community packages

Profilers, debuggers

Object oriented, polymorphic

High-level functions

·

·

·

·

·

·
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Quick Intro to R

…but also important differences

R is all about data analysis: not general purpose language

R is designed with interactive data exploration in mind

R is closer to functional in approach

·

Several important things (numerics, visualization) are baked into language, not
add-ons

Not as useful outside of number crunching

-

-

·

Lots of suprising things "just work" interactively

Makes it a little difficult to debug large non-interactive programs

-

-

·
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R Types

Enter in these statements and play with them:

a <- 1; b <- 1.73; c <- "hello"; d <- FALSE; e <- "world"
a + b

## [1] 2.73

!d

## [1] TRUE

paste(c,e)

## [1] "hello world"

class(b)

## [1] "numeric" 7/170



R Types

Similar primitive types

Some differences:

integer

"numeric": floating types (as with Python, double precision)

logicals

character strings

·

·

·

·

R: idiomatic assignment operator is <-

logical literals are shoutier (TRUE/FALSE)

·

·
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R Lists

l <- list(a,b,c,d,e,pi)
str(l)

## List of 6
##  $ : num 1
##  $ : num 1.73
##  $ : chr "hello"
##  $ : logi FALSE
##  $ : chr "world"
##  $ : num 3.14

l[[6]]

## [1] 3.141593

l[1:2]

## [[1]]
## [1] 1
## 
## [[2]]
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R Lists

As with python lists, can be of various types - including lists

Note:

Indexing individual items in a list is done with [[ ]].

Indexing starts at 1, as with most scientific computing languages. (Indices, not offsets.)

Slicing is done with [ ]; and last item is included (unlike python)

What does slicing with a negative number do - eg, l[-1]?

·

·

·

·
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R Named Lists

named.list <- list(value=5,word="text",number=7.3)
str(named.list)

## List of 3
##  $ value : num 5
##  $ word  : chr "text"
##  $ number: num 7.3

named.list$value; named.list[["number"]]

## [1] 5

## [1] 7.3

names(named.list)

## [1] "value"  "word"   "number"
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R Vectors

Unlike python, vectors are built into the language

Homogenous (same type)

Compact

Not nested

Like numpy vectors

·

·

·

·

a <- c(1,2,3)
b <- c("Hello","World","From","A","Vector")
str(b)

##  chr [1:5] "Hello" "World" "From" "A" "Vector"

d <- 1:17
str(d)

##  int [1:17] 1 2 3 4 5 6 7 8 9 10 ...
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Appending to vectors

Can add to vectors (or even lists) using c()

Use sparingly! Better to fill length you need first, using seq() or rep(), then set
elements as needed.

Increasing length of vector/list one at a time is:

·

·

slow

likely to cause memory problems

-

-

# probably bad
a <- c(1,2,3); a <- c(a,4); a <- c(a,5); a

## [1] 1 2 3 4 5

# probably bad and certainly funny-looking
a[length(a)+1] <- 6; a

## [1] 1 2 3 4 5 6
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Appending to vectors

When not sure of what an R function does, can use help:

rep(1,3)

## [1] 1 1 1

seq(17,23)

## [1] 17 18 19 20 21 22 23

# good
a <- rep(0,5); a[4] <- 4; a[5] <- 5; a

## [1] 0 0 0 4 5

help(seq)
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R Vectors

As with numpy vectors, certain operations happen automatically on vectors

b <- rep(2.,5); d <- sample(c(TRUE,FALSE),5,replace=TRUE)
a*b

## [1]  0  0  0  8 10

sin(a)

## [1]  0.0000000  0.0000000  0.0000000 -0.7568025 -0.9589243

!d

## [1] FALSE FALSE  TRUE  TRUE FALSE

a[d]

## [1] 0 0 5 15/170



More Slicing

Can slice with:

vectors of integers

ranges (which are really just vectors of integers)

vector of booleans (which pull out the values corresponding to TRUE)

·

·

·

a[2:4]; a[c(1,3,5)]

## [1] 0 0 4

## [1] 0 0 5

a[-c(1,2,3)]; a[a<3]

## [1] 4 5

## [1] 0 0 0
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NA

Let's try extending the a vector by another 3 items, and only set the last one:

NA (Not Available) is used to represent missing or invalid data. The right thing to do with
NAs will depend on the application, but will often need to deal with NAs specially.

a

## [1] 0 0 0 4 5

a[length(a)+3] <- 9
a

## [1]  0  0  0  4  5 NA NA  9
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NA

Can use is.na() to pick out NAs:

is.na(a) 

## [1] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE

a[!is.na(a)]

## [1] 0 0 0 4 5 9

a[is.na(a)] <- -1
a

## [1]  0  0  0  4  5 -1 -1  9

18/170



NA

Most math operations on NAs will return NA; generally have built-in optional ways of
dealing with them.

a[a==-1] <- NA
a

## [1]  0  0  0  4  5 NA NA  9

sum(a)

## [1] NA

sum(a,na.rm=TRUE)

## [1] 18
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Matrices, Arrays

Vectors are generalized into matrix and array types - matrices are 2d and you can do
matrix math on them:

A <- matrix(rnorm(9),nrow=3,ncol=3); b <- 1:3
class(A)

## [1] "matrix"

A

##            [,1]         [,2]       [,3]
## [1,]  1.2724293 -0.928567035  2.4046534
## [2,]  0.4146414 -0.294720447  0.7635935
## [3,] -1.5399500 -0.005767173 -0.7990092

A %*% b

##           [,1]
## [1,]  6.629255
## [2,]  2.115981
## [3,] -3.948512
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Matrices, Arrays

Vectors are generalized into matrix and array types - matrices are 2d and you can do
matrix math on them:

t(A)

##           [,1]       [,2]         [,3]
## [1,]  1.272429  0.4146414 -1.539950042
## [2,] -0.928567 -0.2947204 -0.005767173
## [3,]  2.404653  0.7635935 -0.799009249

b

## [1] 1 2 3

solve(A,b)

## [1]  167.2186 -604.9507 -321.6726
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Matrices, Arrays

Arrays can have any rank

B <- array(1:12,c(2,3,2))
class(B)

## [1] "array"

B

## , , 1
## 
##      [,1] [,2] [,3]
## [1,]    1    3    5
## [2,]    2    4    6
## 
## , , 2
## 
##      [,1] [,2] [,3]
## [1,]    7    9   11
## [2,]    8   10   12
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Data frames

Data frames are a building block for data analysis in R; in python, pandas data frames
are based on them.

A data frame is a list of vectors; each vector (a column of the frame) has the same length,
but different columns may have different types.

Thus every row of the frame is a list.

data <- read.csv("data/idealgas/ideal-gas-fixedV-small.csv")
class(data); str(data)

## [1] "data.frame"

## 'data.frame':    100 obs. of  5 variables:
##  $ X   : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ pres: num  99000 99250 99500 99750 100000 ...
##  $ vol : num  0.0244 0.0244 0.0244 0.0244 0.0244 0.0244 0.0244 0.0244 0.0244 0.0244 ...
##  $ n   : num  0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 ...
##  $ temp: num  363 365 365 364 366 ...
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Data frames slicing

Accessing parts of the data frame makes a lot more sense when you remember it's just a
list of vectors.

data[1:3,"vol"]

## [1] 0.0244 0.0244 0.0244

data[2,]

##   X  pres    vol   n     temp
## 2 2 99250 0.0244 0.8 364.8595

data$pres[4:5]

## [1]  99750 100000
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Updating Data Frames

Performance tip: While you can update individual items in a data frame via slicing:

it turns out this is extremely slow and memory intensive, for boring reasons. If you have
do a number of such updates, try to minimize the number of updates to the dataframe.

E.g., extract a column, update it, and then update the whole column at once:

data[1,"vol"] <- 12

vol <- data$vol
vol <- 2.*vol+1
data$vol <- vol
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R Functions

What do the following do?

a <- 1:5
doubleVector <- function(x) { x <- x*2 }
doubleVector2 <- function(x) { x*2 }
a
doubleVector(a)
a
a <- doubleVector2(a)
a
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R Functions

What do the following do?

a <- 1:5
doubleVector <- function(x) { x <- x*2 }
doubleVector2 <- function(x) { x*2 }

a

## [1] 1 2 3 4 5

doubleVector(a)
a

## [1] 1 2 3 4 5

a <- doubleVector(a)
a

## [1]  2  4  6  8 10
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R Functions

R tends towards functional programming; functions aren't normally called for side
effects.

Return whatever values are needed.

Typical upsides/downsides to functional programming:

Easy to read, understand, debug

Makes parallelism somewhat easier

Requires lots of temporary memory (copies being made)

·

·

·
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Apply family of functions

The apply family of functions make it very easy (and fast) to repeatedly apply a function
to a lot of individual elements.

"Higher level functions": functions that apply functions.

Very common functionality in functional programming environments

Many parallel routines are parallel versions of these higher level functions.

lapply: apply a function to each element of a list/vector, get a list back

sapply: simplify the lapply return list to a vector or array if possible

apply: apply function to rows, columns, or individual elements of an array

tapply: apply function to subsets of a list/vector

mapply: (not covered): apply function to "transpose" of lists. Pass two lists of length
three, apply fuction to first items of lists, then second, then third.

·

·

·

·

·
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Lapply

Repeatedly applies a function to each element of a list or a vector. (Think list
comprehensions.) Let's say we wanted to show that as N grew larger, the mean of N
normally distributed random numbers tended to zero.

mean.n.rnorm <- function(n) {
  random.nums <- rnorm(n)
  mean(random.nums)
}
ns <- c(1,10,100,1000,10000)
lapply(ns, mean.n.rnorm)

## [[1]]
## [1] -1.147657
## 
## [[2]]
## [1] -0.2155276
## 
## [[3]]
## [1] -0.006790555
## 
## [[4]]
## [1] -0.03718887
## 
## [[5]]
## [1] 0.007448216
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Lapply

We could even do this in two steps, applying rnorm to the list of ns, and then mean to
the list-of-vectors:

ns <- c(1,10,100,1000,10000)
random.nums <- lapply(ns, rnorm)
means <- lapply(random.nums, mean)
means

## [[1]]
## [1] -2.153528
## 
## [[2]]
## [1] -0.3463529
## 
## [[3]]
## [1] -0.04793373
## 
## [[4]]
## [1] -0.001286234
## 
## [[5]]
## [1] 0.003927185
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Sapply

And we can get that final result as a sometimes-more-convenient vector rather than list
with sapply:

ns <- c(1,10,100,1000,10000)
random.nums <- lapply(ns, rnorm)
means <- sapply(random.nums, mean)
means

## [1]  1.04741708 -0.54441476 -0.19241777 -0.03963452  0.00955447

means*means

## [1] 1.097083e+00 2.963874e-01 3.702460e-02 1.570895e-03 9.128789e-05
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Sapply/Vapply

Performance Tip: If you know the size and type that sapply will return, create such a
vector/matrix and use vapply, passing it the example object as the third parameter
(everything else stays the same.) Can be substantially faster, more memory-effective for
large outputs.
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Apply

Easier to just demonstrate:

A <- matrix(1:9,nrow=3,ncol=3)
A

##      [,1] [,2] [,3]
## [1,]    1    4    7
## [2,]    2    5    8
## [3,]    3    6    9

apply(A, MARGIN=1, max)  # max of each row

## [1] 7 8 9

apply(A, MARGIN=2, max)  # max of each col

## [1] 3 6 9
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Apply

Apply applies a function to the rows (MARGIN=1) or columns (MARGIN=2) of an array.
(also relevent here: rowSums, colSums)

You can also apply it to each element by using MARGIN=1:2.

Here we square each element of the array.

A

##      [,1] [,2] [,3]
## [1,]    1    4    7
## [2,]    2    5    8
## [3,]    3    6    9

apply(A, MARGIN=1:2, function(x) { x**2 })  # square of each item

##      [,1] [,2] [,3]
## [1,]    1   16   49
## [2,]    4   25   64
## [3,]    9   36   81
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Tapply

Finally, tapply is also a lot easier to just demonstrate than explain:

Above, tapply takes the temperature values, splits them up into a list of vectors by the
values of n, and applies mean to each vector.

str(data)

## 'data.frame':    100 obs. of  5 variables:
##  $ X   : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ pres: num  99000 99250 99500 99750 100000 ...
##  $ vol : num  0.0244 0.0244 0.0244 0.0244 0.0244 0.0244 0.0244 0.0244 0.0244 0.0244 ...
##  $ n   : num  0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 ...
##  $ temp: num  363 365 365 364 366 ...

tapply(data$temp, data$n, mean)  # mean temperature, binned by n

##      0.8      0.9        1      1.1 
## 374.0273 332.7460 299.0366 272.7240
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Tapply/split

Try playing with split to understand the splitting:

How would you get the mean values given that split list?

split(data$temp, data$n)
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Scalable Data Analysis in R



What do you need to scale?

One turns to parallel computing to solve one of two problems:

Not on this list:

These I/O bound problems are not easily solved with parallelism - adding more
processors or nodes doesn't necessarily help (can make worse).

My program is too slow. Perhaps using more processors — e.g., all cores on my
desktop — will make things faster.

My program crashes due to lack of memory. Perhaps splitting the problem up onto
multiple nodes in a cluster will give it access to enough memory to run.

·

Compute bound.

Tools: parallel/multicore, Rdsm

-

-

·

Memory bound

Tools: parallel/snow, pbdR,

-

-

My program constantly randomly reads from and writes to thousands of files and
these operations are very slow.

·
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R and Memory



A Few Words on R and Memory

Because R frequently needs to make temporary copies, hitting memory limit frequently
becomes a problem.

Avoiding hitting that limit too early requires some caution.

Need to know how R handles variables and memory.
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Garbage Collection

Like a lot of dynamic languages, R relies on garbage collection to limit memory usage.

"Every so often", a garbage collection task runs and deletes variables that won't be used
any more.

You can force the garbage collection to run at any given time by calling gc(), but this
almost never fixes anything significant.

How can the gc know that you're not going to use that big variable in the next line?

Gc needs your help to be effective.
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Useful commands for memory
management

gc(verbose=TRUE), or just gc(TRUE).

ls()

object.size()

rm()

Fun little one-liner which prints out all variables by size in bytes:

·

gc() alone probably won't help anything. This calls gc() - likely not very useful - but
gives verbose output, returning current memory usage as a matrix.

-

·

Lists current variables-

·

Pass it a variable, it prints out its size. Pass it get("variablename") (eg, quoted)
and it will get that variable and print its size.

-

·

Deletes a variable you're not going to use. Lets gc() go to work.-

·

sort( sapply( ls(), function(x) { object.size(get(x))} ),decreasing=TRUE )
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Object.size() and gc(TRUE)

Let's play with object.size() and gc(TRUE):

gc(TRUE)

##          used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 267667 14.3     407500 21.8   350000 18.7
## Vcells 514759  4.0    1031040  7.9   870823  6.7

old.mem <- gc(TRUE)[,c(1:2,5:6)]
x <- rep(0.,(16*1024)**2)
xsize <- object.size(x)
xsize

## 2147483688 bytes
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Object.size() and gc(TRUE)

Let's play with object.size() and gc(TRUE):

xsize

## 2147483688 bytes

print(xsize,units="MB")

## 2048 Mb

new.mem <- gc(TRUE)[,c(1:2,5:6)]
new.mem-old.mem

##             used   (Mb)  max used   (Mb)
## Ncells       295    0.1     35223    1.9
## Vcells 268435801 2048.0 268190592 2046.1
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Object.size() and gc(TRUE)

Now let's delete the object and see how system memory behaves:

rm(x)
final.mem <- gc(TRUE)[,c(1:2,5:6)]
final.mem

##          used (Mb)  max used   (Mb)
## Ncells 268087 14.4    385223   20.6
## Vcells 515296  4.0 269061415 2052.8

final.mem-old.mem

##        used (Mb)  max used   (Mb)
## Ncells  414  0.1     35223    1.9
## Vcells  547  0.0 268190592 2046.1
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Better to Use Functions

Can certainly make sure you rm() any temporary intermediate variable…

trunc.gc <- function() { gc(TRUE)[,c(1:2,5:6)] }
orig.gc <- trunc.gc()
x <- rnorm(16*1024*1024)
s <- sum(x)
s

## [1] -667.4828

rm(x)
after.gc <- trunc.gc()
after.gc - orig.gc

##        used (Mb) max used (Mb)
## Ncells   46    0        0    0
## Vcells   52    0        0    0
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Better to Use Functions

… but if you use functions:

Variables deleted as they fall out of scope

Code is more readable, maintable, reusable

·

·

rnorm.sum <- function(n) {
  x <- rnorm(n)
  sum(x)
}
orig.gc <- trunc.gc()
rnorm.sum(16*1024*1024)

## [1] -4429.352

after.gc <- trunc.gc()
after.gc - orig.gc

##        used (Mb) max used (Mb)
## Ncells   12    0        0    0
## Vcells    7    0        0    0
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Single-Node Out-of-Core
Computations with
Bigmemory



Out Of Core / External Memory
Computation

Some problems require doing fairly simple analysis on a data set too large to fit into
memory.

In that case, one processor may be enough; you just want a way to not overrun memory.

Out of Core, or External Memory computation leaves the data on disk, bringing in to
memory only what is needed/fits at any given point.

For some computations, this works well (but note: disk access is always much slower
than memory access.)

Min/mean/max

Data cleaning

Even linear fitting is pretty simple

·

·

·
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Bigmemory Package

The bigmemory package defines a generalization of a matrix class, big.matrix, which
can be file-backed - that is, can exist primarily on disk, with parts brought into memory
when necessary.

This approach works fairly well when one's data access involves passing through the
entire data set once or a very small number of times, either combining data or extracting
a subset.

Packages like bigalgebra or biganalytics (not covered here) build onbigmemory.
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Ideal gas Data Set

In data/idealgas, we have a set of synthetic data files describing an ideal gas
experiment - setting temperature, amount of material, and volume, and measuring the
pressure.

Simple data sets:

Row name, pressure (Pa), volume (m3), N (moles), and temperature (K).

A larger data set consisting of 124M rows, 5.8GB, is sitting in ideal-gas-fixedT-large.csv,
and we'd like to do some analysis of this data set. But the size is a problem.

small.data <- read.csv("data/idealgas/ideal-gas-fixedT-small.csv")
small.data[1:2,]

##   X  pres        vol   n temp
## 1 1 99000 0.02036345 0.8  300
## 2 2 99250 0.02018306 0.8  300

52/170



A Note on File Formats

Let's consider the humble .csv file:

$ ls -sh1 airOT2010.*
151M airOT2010.RDS
151M airOT2010.Rdata
1.4G airOT2010.csv

$ Rscript  timeexamples.R
[1] "Reading Rdata file"
   user  system elapsed
 11.697   0.616  12.319
[1] "Reading RDS file"
   user  system elapsed
 11.041   0.644  11.694
[1] "Reading CSV file"
   user  system elapsed
140.640   3.352 144.142
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A Note on File Formats

CSV — or really, any text-based format — is the worst possible format for quantiative
data. It manages the trifecta of being:

Converting floating point numbers back and forth between internal represenatations
and strings is slow and prone to truncation.

Use binary formats whenver possible. .Rdata is a bit prone to change; .RDS is modestly
better. Portable file formats like HDF5 (for data frames) or NetCDF4 (for matrices and
arrays) are compact, accurate, fast (not as fast as .Rdata/.RDS), and can be read by tools
other than R.

Slow to read

Huge

Inaccurate

·

·

·
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Creating a file-backed big matrix

We've already created a big.matrix file from this data set, using

This reads in the .csv file and outputs a binary equivalent (the "backingfile") and a
descriptor (in the "descriptorfile") which contains all of the information which describes
the binary blob.

You can read the descriptorfile: more ideal-gas-fixedT-large.desc

Done for you since initial convertion takes 12 minutes for this set - kind of boring.

Note: converts into a matrix, which is a less flexible data type than a data frame;
homogeneous type. Here, we'll use all numeric.

data <- read.big.matrix("data/idealgas/ideal-gas-fixedT-large.csv", header=TRUE,  
                        backingfile="data/idealgas/ideal-gas-fixedT-large.bin", 
                        descriptorfile="ideal-gas-fixedT-large.desc")
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Using a big.matrix

Let's do some simple analysis on the data set and see how memory behaves.

library(bigmemory, quiet=TRUE)

## 
## bigmemory >= 4.0 is a major revision since 3.1.2; please see packages
## biganalytics and and bigtabulate and http://www.bigmemory.org for more information.

orig.gc <- trunc.gc()
data <- attach.big.matrix("data/idealgas/ideal-gas-fixedT-large.desc")
trunc.gc()-orig.gc

##        used (Mb) max used (Mb)
## Ncells 1108  0.1        0    0
## Vcells 1599  0.0        0    0
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Using a big.matrix

Let's do some simple analysis on the data set and see how memory behaves.

data[1:2,]

##           pres        vol   n temp
## [1,] 1 90000.0 0.01328657 0.5  280
## [2,] 2 90012.5 0.01285503 0.5  280

system.time(min.p <- min(data[,"pres"]))

##    user  system elapsed 
##   0.617   1.169   5.597

trunc.gc()-orig.gc

##        used (Mb) max used (Mb)
## Ncells 2820  0.2        0    0
## Vcells 3640  0.0        0    0
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Using a big.matrix

That only took ~7 seconds to scan through 124M records to find a minimum. Let's try a
few other calculations: Let's do some simple analysis on the data set and see how
memory behaves.

min.p

## [1] 90000

system.time(max.p <- max(data[,"pres"]))

##    user  system elapsed 
##   0.620   0.667   3.770

system.time(mean.t <- mean(data[,"temp"]))

##    user  system elapsed 
##   1.376   1.361   7.205
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Using a big.matrix

Going through the same column a second time was faster, because some of the data
was cached; going through a new column was about the same speed as the first. What
has that done to memory?

trunc.gc()-orig.gc

##        used (Mb) max used (Mb)
## Ncells 2772  0.2        0    0
## Vcells 3456  0.0        0    0
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Using a big.matrix

Let's try something more complicated: we know that averaged over our data, we should
have . Let's try to infer the gas constant :pV = nRT R

system.time(sum.pv <- sum(data[,"pres"]*data[,"vol"]))

##    user  system elapsed 
##   1.826   4.594  15.887

system.time(sum.nt <- sum(data[,"n"]*data[,"temp"]))

##    user  system elapsed 
##   1.672   3.723  13.777

sum.pv/sum.nt

## [1] 8.314471
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Using a big.matrix

And we're still not using that much memory.

trunc.gc()-orig.gc

##        used (Mb)  max used  (Mb)
## Ncells 2790  0.2         0   0.0
## Vcells 3524  0.0 104175967 794.8
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Using a big.matrix

Let's extract a subset of the data and analyze it.

The mwhere command in bigmemory lets us search through the data for multiple
conditions, and extract that data:

system.time(subset.data <- data[mwhich(data, cols=c("n","pres"), 
                                       vals=c(1.,101000.), comps="eq", op="AND"),])

##    user  system elapsed 
##   1.581   0.195   3.288

class(subset.data)

## [1] "matrix"

fit <- lm(vol ~ temp, data=as.data.frame(subset.data))
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Using a big.matrix

summary(fit)

## 
## Call:
## lm(formula = vol ~ temp, data = as.data.frame(subset.data))
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -1.243e-03 -3.155e-04 -3.487e-05  2.993e-04  1.289e-03 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -6.688e-04  4.711e-04   -1.42    0.156    
## temp         8.459e-05  1.569e-06   53.90   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.0004595 on 639 degrees of freedom
## Multiple R-squared:  0.8197, Adjusted R-squared:  0.8194 
## F-statistic:  2905 on 1 and 639 DF,  p-value: < 2.2e-16
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Using a big.matrix

object.size(subset.data)

## 26336 bytes

trunc.gc()-orig.gc

##         used (Mb)  max used  (Mb)
## Ncells 19393  1.0     20961   1.1
## Vcells 41409  0.3 104175967 794.8
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Using a big.matrix

Other options:

morder or mpermute allow you to sort the data in memory or on disk

head and tail let you get the start/end rows

mwhich allows all sorts of slicing and dicing

sub.big.matrix lets you extract contiguous regions of the matrix

·

·

·

·

65/170



Summary: bigmemory

If you just have a data file much larger than memory that you have to crunch and the
amount of actual computation is not a bottleneck, the bigmemory and related packages
may be all you need.

Works best if:

Data is of homogeneous type - eg, all integer, all numeric, all string

Just need to work on a subset of data at a time, or

Just need to make one or two passes through the data to complete analysis

·

·

·
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Bigmemory hands-on

lm() doesn't work natively on a big.matrix - but we can write our own.

If we have an OLS model , we can fit it with

Using the examples above, fit a couple of columns of the ideal gas data set. Do the
results make sense? (Once it's working, try fitting .) How much memory is used?

= a + b + ϵyî xi

b = − aȳ x̄

a = −n∑i xi yi x̄ȳ
−n∑i x 2

i x̄x̄

pV ∝ nT
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Using multiple processors in R

The rest of today will cover using more processors and/or nodes to do large-scale
computations in R.

Outline:

No-work parallelism: existing packages

parallel package:

foreach package: different interface to similar functionality

Rdsm: shared-memory parallelism (on-node) with big.matrix

pbdR: massive scale computation with MPI+R

·

·

multicore (use all cores on a computer): non-windows

snow (use all cores on a computer, or across a cluster)

-

-

·

·

·
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Existing parallelism

It's important to realize that many fundamental routines as well as higher-level packages
come with some degree of scalability and parallelism "baked in".

Open another terminal to your node, and run top while executing the following in R:

n <- 4*1024
A <- matrix( rnorm(n*n), ncol=n, nrow=n )
B <- matrix( rnorm(n*n), ncol=n, nrow=n )
C <- A %*% B
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Existing parallelism

One R process using 458% of a processor.

R can be built using high performance threaded libraries for math in general, and linear
algebra — which underlies many data analysis algorithms — in particular.

Here the single R process has launched several threads of execution – all of which are
part of the same process, and so can see the same memory, eg the large matrices.
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Processes vs Threads vs CPUs vs Cores

A process is a running program. It has data, the program code, and one or more threads
of execution - points in the code that is currently being run.

A thread can see all of the data (and all other threads) within a process; you can't see
anything outside of your own user process.

The operating system assigns running threads to cores (or CPUs, or processors, which
are the same thing and I'll use the terms interchangably.)

"Core" is the least ambiguous term — an independent processing unit.
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Split, Apply, Combine

Popularized by Henry Wickham for R (in the paper describing his pylr pacakge), this has
become a model for thinking about data analysis in R (and to some extent, pandas.)

Split the data set up into relevant sub-sets; apply some analysis to it; combine the
results.

E.g., seasonal detrending - break data up by months before applying. Break public health
data up into relevant demographic groups, and apply analyses. Etc.

This is exactly the way to think about scalable data analysis. Split the data - or tasks on
that data - up between computing elements; do the analyses; then combine the results
somehow.

The details depend a great deal on the analyses (and the nature of the data.)
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Packages that explicitly use parallelism

For a complete list, see

http://cran.r-project.org/web/views/HighPerformanceComputing.html .

Plus packages that use linear algebra or other expensive math operations which can be
implicitly multithreaded.

When at all possible, don't do the hard work yourself — look to see if a package already
exists which will do your analysis at scale.

Biopara

BiocParallel for Bioconductor

bigrf - Random Forests

caret - cross-validation, bootstrap characterization of predictive models

GAMBoost - boosting glms

·

·

·

·

·
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The Parallel Package

Since R 2.14.0 (late 2011), the parallel package has been part of core R.

Incorporates - and mostly supersedes - two other packages:

Many packages which use parallelism use one of these two, so worth understanding.

Both create new processes (not threads) to run on different processors; but in
importantly different ways.

multicore: for using all processors on a single processor. Not on windows.

snow: for using any group of processors, possibly across a cluster.

·

·
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Multicore - forking

Multicore creates new processes by forking — cloning – the original process.

That means the new processes starts off seeing a copy of exactly the same data as the
original. E.g., first process can read a file, and then fork two new processes - each will see
copy of the file.

Not shared memory; changes in one process will not be reflected in others.

Windows doesn't have fork(), so windows can't use these routines.
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Multicore - forking

Performance Tip: Modern OSs are lazy - the copy of memory isn't made unless it has to
be, and it doesn't have to be until one process or the other writes to the memory.

That copy is slow, and takes new memory.

So in multicore, don't overwrite old variables if possible.
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Snow - Spawning

Snow creates entirely new R processes to run the jobs.

A downside is that you need to explicitly copy over any needed data, functions.

But the upsides are that spawning a new process can be done on a remote machine, not
just current machine. So you can in principle use entire clusters.

In addition, the flipside of the downside: new processes don't have any unneeded data -
less total memory footprint.
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mcparallel/mccollect

The simplest use of the multicore package is the pair of functions mcparallel() and
mccollect().

mcparallel() forks a task to run a given function; it then runs in the background.
mccollect() waits for and gets the result.

Let's pick an example: reading the airlines data set, we want — for a particular month —
to know both the total number of planes in the data (by tail number) and the median
elapsed flight time. These are two independant calculations, and so can be done
independantly.
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mcparallel/mccollect

We start the two tasks with mcparallel, and collect the answers withmccollect:

We get a list of answers, with each element "named" by the process ID that ran the job.
We find that there are 4555 planes in the data set, and the median flight in the data set
is 110 minutes in the air.

library(parallel, quiet=TRUE)
source("data/airline/read_airline.R")
jan2010 <- read.airline("data/airline/airOT201001.csv")
unique.planes <- mcparallel( length( unique( sort(jan2010$TAIL_NUM) ) ) ) 
median.elapsed <- mcparallel( median( jan2010$ACTUAL_ELAPSED_TIME, na.rm=TRUE ) )
ans <- mccollect( list(unique.planes, median.elapsed) )
ans

## $`60035`
## [1] 4555
## 
## $`60036`
## [1] 110
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mcparallel/mccollect

Does this save any time? Let's do some independent fits to the data. Let's try to see what
the average in-flight speed is by fitting time in the air to distance flown; and let's see how
the arrival delay correlates with the departure delay. (Do planes, on average, make up
some time in the air, or do delays compound?)

system.time(fit1 <-  lm(DISTANCE ~ AIR_TIME, data=jan2010))

##    user  system elapsed 
##   0.805   0.053   0.860

system.time(fit2 <-  lm(ARR_DELAY ~ DEP_DELAY, data=jan2010))

##    user  system elapsed 
##   0.379   0.033   0.413
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mcparallel/mccollect

So the time to beat is about 1.2s:

We do see a savings of time — ~1.0s vs 1.2s (and the best we could have done is ~0.8s.
Why?). But clearly actually forking the processes and waiting for them to rejoin itself
takes some time.

This overhead means that we want to launch jobs that take a significant length of time to
run - much longer than the overhead (hundredths to tenths of seconds for fork().)

parfits <- function() {
  pfit1 <- mcparallel(lm(DISTANCE ~ AIR_TIME, data=jan2010))
  pfit2 <- mcparallel(lm(ARR_DELAY ~ DEP_DELAY, data=jan2010))
  mccollect( list(pfit1, pfit2) )
}
system.time( parfits() )

##    user  system elapsed 
##   3.484   0.282   1.317
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Clustering

Typically we want to do more than an itemized list of independent tasks - we have a list
of similar tasks we want to perform.

mclapply is the multicore equivalent of lapply - apply a function to a list, get a list back.

Let's say we want to see what similarities there are between delays at O'Hare airport in
Chicago in 2010. Clustering methods attempt to uncover "similar" rows in a dataset by
finding points that are near each other in some -dimensional space, where  is the
number of columns.

-Means is a particularly simple, randomized, method; it picks  cluster centre-points at
random, finds the rows closest to them, assigns them to the cluster, then moves the
cluster centres towards the centre of mass of their cluster, and repeats.

Quality of result depends on number of random trials.

p p

k k
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Clustering

Let's try that with our subset of data:

# columns listing various delay measures
delaycols <- c(18, 28, 40, 41, 42, 43, 44)
air2010 <- readRDS("data/airline/airOT2010.RDS")
ord.delays <- air2010[(air2010$ORIGIN=="ORD"), delaycols]
rm(air2010)
ord.delays <- ord.delays[(ord.delays$ARR_DELAY_NEW > 0),]
ord.delays <- ord.delays[complete.cases(ord.delays),]

system.time( serial.res   <- kmeans(ord.delays, centers=2, nstart=40) )

##    user  system elapsed 
##   3.497   0.166   3.671

serial.res$betweenss

## [1] 349691373
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Clustering with lapply

Running 40 random trials is the same as running 10 random trials 4 times. Let's try that
approach with lapply:

Get the same answer, but a little longer - bit of overhead from splitting it up and starting
the process four times. We could make the overhead less important by using more trials,
which would be better anyway.

do.n.kmeans <- function(n) { kmeans(ord.delays, centers=2, nstart=n) }
system.time( list.res <- lapply( rep(10,4), do.n.kmeans ) )

##    user  system elapsed 
##   8.275   0.228   8.590

res <- sapply( list.res, function(x) x$tot.withinss )
lapply.res <- list.res[[which.min(res)]]
lapply.res$withinss

## [1] 125489706 254304505
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Clustering with mclapply

mclapply works the same way as lapply, but forking off the processes (as with
mcparallel)

system.time( list.res <- mclapply( rep(10,4), do.n.kmeans, mc.cores=4 ) )

##    user  system elapsed 
##   7.736   0.625   2.673

res <- sapply( list.res, function(x) x$tot.withinss )
mclapply.res <- list.res[[which.min(res)]]
mclapply.res$tot.withinss

## [1] 379794211
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Clustering with mclapply

Note what the output of top looks like when this is running:

There are four separate processes running - not one process using multiple CPUs via
threads.
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Clustering with mclapply

Looks good! Let's take a look at the list of results:

What happened here?

res

## [1] 379794211 379794211 379794211 379794211
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Parallel RNG

Depending on what you are doing, it may be very important to have different (or the
same!) random numbers generated in each process.

Here, we definitely want them different - the whole point is to generate different random
realizations.

parallel has a good RNG suitable for parallel work based on the work of Pierre
L'Ecuyer in Montréal:

RNGkind("L'Ecuyer-CMRG")
mclapply( rep(1,4), rnorm, mc.cores=4, mc.set.seed=TRUE)

## [[1]]
## [1] -0.2663316
## 
## [[2]]
## [1] 0.05669145
## 
## [[3]]
## [1] -0.8542507
## 
## [[4]]
## [1] -1.585133 90/170



Load balancing

Let's say that, instead of running multiple random trials to find the best given a set of
clusters, we were unsure of how many clusters we wanted to run:

do.kmeans.nclusters <- function(n) { kmeans(ord.delays, centers=n, nstart=10) }
time.it <- function(n) { system.time( res <- do.kmeans.nclusters(n)) }
lapply(1:4, time.it)

## [[1]]
##    user  system elapsed 
##   1.557   0.037   1.594 
## 
## [[2]]
##    user  system elapsed 
##   1.979   0.052   2.040 
## 
## [[3]]
##    user  system elapsed 
##   2.678   0.044   2.730 
## 
## [[4]]
##    user  system elapsed 
##   3.948   0.049   4.003
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Load balancing

More clusters takes longer. If we were to mclapply these four tasks on 2 CPUs, the first
CPU would get the two short tasks, and the second CPU would get the second, longer
tasks - bad load balance.

Normally, we want to hand multiple tasks of work off to each processor and only hear
back when they're completely done - minimal overhead. But that works best when all
tasks have similar lengths of time.

If you don't know that this is true, you can do dynamic scheduling - give each processor
one task, and when they're done they can ask for another task.

More overhead, but better distribution of work.
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Load balancing

system.time( res <- mclapply(1:4, time.it, mc.cores=2) )

##    user  system elapsed 
##   4.746   0.257   6.502

system.time( res <- mclapply(1:4, time.it, mc.cores=2, mc.preschedule=FALSE) )

##    user  system elapsed 
##  13.114   0.809   6.213
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Splitting the data set

So far we've seen splitting the tasks; let's consider splitting the dataset.

Let's make a histogram of the times flights took off - say, binned by the hour.

get.hour <- function(timeInt) timeInt %/% 100
count.hours <- function(range) {
  counts <- rep(0,24)
  hours <- sapply(jan2010$DEP_TIME[range], get.hour)
  hist <- rle( sort(hours) )
  for (i in 1:length(hist$values)) {
    j <- hist$values[i] + 1
    if (j == 25) j = 1
    counts[j] <- hist$lengths[i]
  }
  counts
}

94/170



Splitting the data set

We can count up all flight hours like so:

system.time(scounts <- count.hours(1:nrow(jan2010)))

##    user  system elapsed 
##   1.959   0.040   2.011

scounts

##  [1]    23   383   127    40   205 12321 30203 31435 34210 32344 31989
## [12] 34075 31938 33802 32555 31020 33869 33731 30760 29542 19592 14260
## [23]  7470  2574
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Splitting the data set

Can we split this up between tasks? Let's try this:

nr <- nrow(jan2010)
ncores <- 4
chunks <- split(1:nr, rep(1:ncores, each=nr/ncores))

## Warning in split.default(1:nr, rep(1:ncores, each = nr/ncores)): data
## length is not a multiple of split variable

system.time(counts <- mclapply( chunks, count.hours, mc.cores=ncores) )

##    user  system elapsed 
##   3.753   0.183   0.398
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Splitting the data set

That was definitely faster - how do the answers look?

To be fair, we'd have to include the Reduction time in the total time - but that's just the
sum of four short vectors, probably not a big deal.

str(counts)

## List of 4
##  $ 1: num [1:24] 8 204 75 32 54 ...
##  $ 2: num [1:24] 9 121 49 4 78 ...
##  $ 3: num [1:24] 4 49 2 2 64 ...
##  $ 4: num [1:24] 2 9 1 2 9 ...

Reduce("+", counts)

##  [1]    23   383   127    40   205 12321 30203 31435 34210 32344 31989
## [12] 34075 31938 33802 32555 31020 33869 33731 30760 29542 19592 14260
## [23]  7470  2574
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pvec - simplified mclapply

For the simple and common case of applying a function to each element of a vector and
returning a vector, the parallel package has a simplified version of mclapply called pvec.

fx <- function(x) x^5-x^3+x^2-1
maxn <- 1e6
system.time( res <- sapply(1:maxn, fx) )

##    user  system elapsed 
##   4.663   0.055   4.725

system.time( res <- vapply(1:maxn, fx, 0.) )

##    user  system elapsed 
##   1.449   0.061   1.511
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pvec - simplified mclapply

system.time( res <- pvec(1:maxn, fx, mc.cores=2) )

##    user  system elapsed 
##   1.108   0.444   0.113

system.time( res <- pvec(1:maxn, fx, mc.cores=4) )

##    user  system elapsed 
##   0.137   0.061   0.095

system.time( res <- mclapply(1:maxn, fx, mc.cores=4) )

##    user  system elapsed 
##   0.922   0.298   1.077
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parallel/multicore hands-on

Using the entire 2010 dataset, and the examples above, examine one of the following
questions:

In 2010, what airport (with more than say 10 outgoing flights) had the largest fraction
of outgoing flights delayed?

For some given airport - what hour of the day had the highest relative fraction of
delayed flights?

For all airports?

What is the effect of including the split() and the Reduce() on the serial-vs-parallel
timings for this histogram? Is there a better way of doing the splitting?

·

·

·

·
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Summary: parallel/multicore

The mc* routines in parallel work particularly well when:

Things to watch for:

You want to make full use of the processors on a single computer

Each task only reads from some big common data structure and produces modest-
sized results

mcparallel works very well for task parallelism; the mclapply for data parallelism.

·

·

·

Modifying the big common data structure:

You can only use one machine's processors

Won't work on Windows (but what does?)

mc.cores is a lie. It's the number of tasks, not cores. On an 8-core machine, if you have
multithreaded libraries for (say linear algebra) and launch something mc.cores=8
that does heavy linear algebra, you'll end up with 64 threads competing for 8 cores.
Either make sure to turn off threading (export OMP_NUM_THREADS=1), or use fewer
tasks.

·

Won't be seen by other processes,

But will blow up the memory requirements

-

-

·

·

·
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Multiple computers with parallel/snow

The other half of parallel, routines that were in the still-active snow package, allow you to
again launch new R processes — by default, on the current computer, but also on any
computer you have access to. (SNOW stands for "Simple Network of Workstations",
which was the original use case).

The recipe for doing computations with snow looks something like:

other than the makeCluster()/stopCluster(), it looks very much like multicore and
mclapply.

library(parallel)
cl <- makeCluster(nworkers,...)
results1 <- clusterApply(cl, ...)
results2 <- clusterApply(cl, ...)
stopCluster(cl)
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Hello world

Let's try starting up a "cluster" (eg, a set of workers) and generating some random
numbers from each:

library(parallel)
cl <- makeCluster(4)
clusterCall(cl, rnorm, 5)

## [[1]]
## [1] -1.67980521  0.07231453 -2.86222510 -1.14412811 -1.07507705
## 
## [[2]]
## [1]  1.7225937 -2.1514615  0.7479726  0.3462565  0.4007136
## 
## [[3]]
## [1]  2.1567110  1.4165691  0.6163711 -0.5946785 -0.1505198
## 
## [[4]]
## [1] -1.5087876 -0.5692297 -0.4687581 -0.5582737 -1.4143717

stopCluster(cl)
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Hello world

clusterCall() runs the same function (here, rnorm, with argument 5) on all workers in
the cluster. A related helper function is clusterEvalQ() which is handier to use for
some setup tasks - eg,

clusterEvalQ(cl, {library(parallel); library(foreach); NULL} )
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Clustering on Clusters

Emboldened by our success so far, let's try re-doing our -means calculations:

Ah! Failure.

k

delaycols <- c(18, 28, 40, 41, 42, 43, 44)

source("data/airline/read_airline.R")
jan2010 <- read.airline("data/airline/airOT201001.csv")
jan2010 <- jan2010[,delaycols]
jan2010 <- jan2010[complete.cases(jan2010),]
do.n.kmeans <- function(n) { kmeans(jan2010, centers=4, nstart=n) }

library(parallel)
cl <- makeCluster(4)
res <- clusterApply(cl, rep(5,4), do.n.kmeans)
stopCluster(cl)

##  Error in checkForRemoteErrors(val) : 
##    4 nodes produced errors; first error: object 'jan2010' not found
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Clustering on Clusters

Recall that we aren't forking here; we are creating processes from scratch. These
processes, new to this world, are not familiar with our ways, customs, or datasets. We
actually have to ship the data out to the workers:

cl <- makeCluster(4)
system.time(clusterExport(cl, "jan2010"))

##    user  system elapsed 
##   0.140   0.034   0.531

system.time(cares <- clusterApply(cl, rep(5,4), do.n.kmeans))

##    user  system elapsed 
##   0.410   0.039  17.325

stopCluster(cl)
system.time( mcres <- mclapply(rep(5,4), do.n.kmeans, mc.cores=4) )

##    user  system elapsed 
##  46.919   2.061  16.895 107/170



Clustering on Clusters

Note that the costs of shipping out data back and forth, and creating the processes from
scratch, is relatively costly - but this is the price we pay for being able to spawn the
processes anywhere.

(And if our computations take hours to run, we don't really care about several-second
delays.)
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Running across machines

The default cluster is a sockets-based cluster; you can run on multiple machines by
specifying them to a different call to makeCluster:

For this to work, you will almost certainly have to (temporarily) tack the line

to the bottom of your .bashrc. But once it is done, you have succcessfully run random
number generators across multiple hosts.

hosts <- c( rep("localhost",8), rep("gpc01", 2) )
cl <- makePSOCKcluster(names=hosts)
clusterCall(cl, rnorm, 5)
clusterCall(cl, system, "hostname")
stopCluster(cl)

source ${SCRATCH}/ScalableDataAnalysis/R/setup
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Cluster types

parallel has several different cluster types:

PSOCK (Posix sockets): the default type

Fork workers: but if you're going to use this, you may as well just use multicore.

MPI: this is similar in a way to PSOCK clusters, but startup and communications can
be much faster once you start going to large numbers (say >64) of hosts. We won't
cover this today; using the MPI cluster type is conceptually identical to PSOCK clusters.

·

·

·
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Work distribution and Load Balancing

Because of the need to send (possibly large) data to the workers, the scheduling of
workers is even more important than with multicore.

The snow library has very nice visualization tools for timing that are inexplicably absent
from parallel; so let's temporarily use snow:

library(snow,quiet=TRUE)

## 
## Attaching package: 'snow'
## 
## The following objects are masked from 'package:parallel':
## 
##     clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
##     clusterExport, clusterMap, clusterSplit, makeCluster,
##     parApply, parCapply, parLapply, parRapply, parSapply,
##     splitIndices, stopCluster
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Work distribution and Load Balancing

do.kmeans.nclusters <- function(n) { kmeans(jan2010, centers=n, nstart=10) }

cl <- makeCluster(2)
clusterExport(cl,"jan2010")
tm <- snow.time( clusterApply(cl, 1:6, do.kmeans.nclusters) )
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Work distribution and Load Balancing

plot(tm)
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Work distribution and Load Balancing

tm.lb <- snow.time(clusterApplyLB(cl, 1:6, do.kmeans.nclusters))
plot(tm.lb)

114/170



Work distribution and Load Balancing

The default clusterApply sends off one task to each worker, waits until they're both
done, then sends off another. (Question: why?)

clusterApplyLB does something more like mc.preschedule=FALSE; it fires off tasks to
each worker as needed.

Sending off one task at a time can be inefficient if there is a lot of commnication
involved. But it allows flexibility in scheduling, which is vitally important if the tasks are of
widely varying durations.
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clusterSplit and Hour Histogram

Of course, for some applications, we don't need to send the entire data structure across.
Let's consider the departure-time histogram again. This time, we're only going to send
across the data that's going t be computed:

jan2010 <- read.airline("data/airline/airOT201001.csv")
jan2010 <- jan2010[complete.cases(jan2010),]

get.hour <- function(timeInt) timeInt %/% 100
count.hours <- function(timesInt) {
  counts <- rep(0,24)
  hours <- sapply(timesInt, get.hour)
  hist <- rle( sort(hours) )
  for (i in 1:length(hist$values)) {
    j <- hist$values[i] + 1
    if (j == 25) j = 1
    counts[j] <- hist$lengths[i]
  }
  counts
}
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clusterSplit and Hour Histogram

This time, rather than exporting the entire data set, we'll just send across the bits we
need:

cl <- makeCluster(2)
clusterExport(cl,"get.hour")  # have to export _functions_, too.
datapieces <- clusterSplit(cl,jan2010$DEP_TIME)
str(datapieces)

## List of 2
##  $ : int [1:253778] 1425 1228 1053 1047 1753 1755 1846 1859 1752 1757 ...
##  $ : int [1:253779] 1450 1459 1458 1455 723 704 659 658 701 702 ...

ans <- clusterApply(cl, datapieces, count.hours)
Reduce("+", ans)

##  [1]    23   381   126    40   205 12279 30069 31268 34042 32198 31881
## [12] 33936 31843 33686 32437 30907 33750 33644 30686 29455 19522 14184
## [23]  7434  2556
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clusterSplit and Hour Histogram

To look a little more closely at some communciations and load balance issues, I'm going
to split the data up into more pieces than workers, and distribute them:

stopCluster(cl)
cl <- makeCluster(6)
datapieces <- clusterSplit(cl,jan2010$DEP_TIME)
stopCluster(cl)

cl <- makeCluster(2)
clusterExport(cl,"get.hour")  # have to export _functions_, too.
str(datapieces)

## List of 6
##  $ : int [1:84255] 1425 1228 1053 1047 1753 1755 1846 1859 1752 1757 ...
##  $ : int [1:84762] 1337 2045 658 1423 1645 1923 853 1613 2048 755 ...
##  $ : int [1:84761] 2048 2037 2031 2039 2034 2035 2036 1634 1840 1639 ...
##  $ : int [1:84762] 1450 1459 1458 1455 723 704 659 658 701 702 ...
##  $ : int [1:84762] 723 723 825 919 912 726 722 723 725 727 ...
##  $ : int [1:84255] 1705 1036 1242 942 1653 2135 1330 734 1831 1253 ...
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clusterSplit and Hour Histogram

tm <- snow.time( ans <- clusterApply(cl, datapieces, count.hours) )
plot(tm)
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clusterSplit and Hour Histogram

tm <- snow.time( ans <- parLapply(cl, datapieces, count.hours) )
plot(tm)
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clusterSplit and Hour Histogram

If the list you are operating on consists of big chunks of data, the relevant piece is sent to
the worker for its task.

Sometimes that's exactly what you want:

But if it's not necessary, it adds a delay to the task. If you know ahead of time the tasks
are of similar duration:

The chunks nearly fill up memory

You don't know which task will do which chunk (clusterApplyLB)

·

·

clusterExport the whole data set (if everyone needs the whole data set)

Use clusterSplit to split the data set into exactly what each worker needs

or use parLapply to chunk up the data for you and send all the data for one task all
at once.

·

·

·
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Back to parallel

detach("package:snow", unload=TRUE)
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Summary: parallel/snow

The cluster routines in parallel are good if you know you will eventually have to
move to using multiple computers (nodes in a cluster, or desktops in a lab) for a single
computation.

Use clusterExport for functions and data that will be needed by everyone.

Communicating data is slow, but much faster than having every worker read the same
data from a file.

Use clusterApplyLB if the tasks vary greatly in runtime.

Use clusterApply if each task requires an enormous amount of data.

Use parLapply if tasks are similar duration and data from multiple tasks will fit in
memory.

snow::snow.time is great for understanding performance.

Use makePSOCKcluster for small clusters; consider makeMPIcluster for larger (but
see pbdR section this afternoon).

·

·

·

·

·

·

·
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Hands-On: parallel/snow

Working with a partner, qsub a session with two nodes, and setup a PSOCK cluster
across both nodes. (you can cat $PBS_NODEFILE once your job has started to see the
other node.) Call unlist(clusterCall(cl, system, "hostname")) to make sure that
you have workers on both nodes.

Load the 2010 data and break it up by month (look up the split command) and see
which month had the highest fraction of cancelled flights.

Then split the data up by airline and see which airline had the highest fraction of
cancelled flights.

There are two big downsides with how we are doing this: the master is doing a huge
amount of the work by doing the pre-splitting, and the whole data set has to be in
memory. Tackle one or the other of them:

Master doing too much work: Just partition the data into chunks, and let each worker
do the splitting up and counting itself. For the combined results to be meaningful, the
worker will need to know the full set of airlines (or the full set of months, which is
somewhat easier.)
How to do that?

Master having whole problem in memory: use bigmemory along with parallel.

·

·
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foreach and doparallel

The "master/worker" approach that parallel enables works extremely well for
moderately sized problems, and isn't that difficult to use. It is all based on one form of R
iteration, apply, which is well understood.

However, going from serial to parallel requires some re-writing, and even going from one
method of parallelism to another (eg, multicore-style to snow-style) requires some
modification of code.

The foreach package is based on another style of iterating through data - a for loop -
and is designed so that one can go from serial to several forms of parallel relatively
easily. There are then a number of tools one can use in the library to improve
performance.
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foreach - serial

The standard R for loop looks like this:

The foreach operator looks similar, but returns a list of the iterations:

for (i in 1:3) print(sqrt(i))

## [1] 1
## [1] 1.414214
## [1] 1.732051

library(foreach)
foreach (i=1:3) %do% sqrt(i)

## [[1]]
## [1] 1
## 
## [[2]]
## [1] 1.414214
## 
## [[3]]
## [1] 1.732051
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foreach - serial

The foreach function creates an object, and the %do% operator operates on the code
(here just one statement, but it can be multiple lines between braces, as with a for loop)
and the foreach object.

library(foreach)
foreach (i=1:3) %do% sqrt(i)
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foreach + doParallel

Foreach works with a variety of backends to distribute computation - doParallel, which
allows snow- and multicore-style parallelism, and doMPI (not covered here).

Switching the above loop to paralleljust requires registering a backend and using
%dopar% rather than %do%:

library(doParallel)

## Loading required package: iterators

registerDoParallel(3)  # use multicore-style forking
foreach (i=1:3) %dopar% sqrt(i)

## [[1]]
## [1] 1
## 
## [[2]]
## [1] 1.414214
## 
## [[3]]
## [1] 1.732051
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foreach + doParallel

One can also use a PSOCK cluster:

cl <- makePSOCKcluster(3)
registerDoParallel(cl)  # use the just-made PSOCK cluster
foreach (i=1:3) %dopar% sqrt(i)

## [[1]]
## [1] 1
## 
## [[2]]
## [1] 1.414214
## 
## [[3]]
## [1] 1.732051

stopCluster(cl)
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Combining results

While returning a list is the default, foreach has a number of ways to combine the
individual results:

foreach (i=1:3, .combine=c) %do% sqrt(i)

## [1] 1.000000 1.414214 1.732051

foreach (i=1:3, .combine=cbind) %do% sqrt(i)

##      result.1 result.2 result.3
## [1,]        1 1.414214 1.732051

foreach (i=1:3, .combine="+") %do% sqrt(i)

## [1] 4.146264

foreach (i=1:3, .multicombine=TRUE, .combine="sum") %do% sqrt(i)

## [1] 4.146264
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Combining results

Most of these are self explanatory. multicombine is worth mentioning: by default,
foreach will combine each new item individually. If .multicombine=TRUE, then you are
saying that you're passing a function which will do the right thing even if foreach gives it
a whole wack of new results as a list or vector - e.g., a whole chunk at a time.
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Composing foreach Objects

There's one more operator: %:%. This lets you compose or nest foreach objects:

foreach (i=1:3, .combine="c") %:% 
  foreach (j=1:3, .combine="c") %do% {
    i*j
  }

## [1] 1 2 3 2 4 6 3 6 9
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Filtering Items

And you can also filter items, using with:

foreach (a=rnorm(25), .combine="c") %:%
  when(a >= 0) %do%
    sqrt(a)

##  [1] 0.5711650 1.1747720 1.0368647 0.7757276 1.1703830 0.5745369 0.2390182
##  [8] 0.3328354 0.5997080 1.1569824
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Histogram

Let's consider our hour histogram again:

Note: like a function, we have to make sure the function we want to return is the last line
(or explicitly returned).

system.time(
  foreach (i=1:2000, .combine="+") %do% {
    hrs <- rep(0,24)
    hr <- get.hour(jan2010$DEP_TIME[i])
    hrs[hr+1] = hrs[hr+1] + 1
    hrs
  }
)

##    user  system elapsed 
##   1.046   0.007   1.055
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Parallel Histogram

What's more, this automatically works in parallel:

Which is actually sort of magic; PSOCK clusters don't share memory! foreach does a
good job of exporting necessary variables; if something isn't automatically exported, it
can be exported explicitly in the foreach line with, eg, foreach(...,
.export=c("jan2010")).

cl <- makePSOCKcluster(3)
registerDoParallel(cl,cores=3)
system.time(
  foreach (i=1:2000, .combine="+") %dopar% {
    hrs <- rep(0,24)
    hr <- get.hour(jan2010$DEP_TIME[i])
    hrs[hr+1] = hrs[hr+1] + 1
    hrs
  }
)

##    user  system elapsed 
##   1.865   0.286   3.698

stopCluster(cl)
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Histogram Performance

But this is incredibly slow:

Mainly because it's not vectorized; by looping over the data one item at a time we've
avoided using our lovely fast vector routines. Plus allocating a 24-hour-long vector per
item!

system.time(
  ans <- foreach (i=1:2000, .combine="+") %do% {
    hrs <- rep(0,24)
    hr <- get.hour(jan2010$DEP_TIME[i])
    hrs[hr+1] = hrs[hr+1] + 1
    hrs
  }
)

##    user  system elapsed 
##   1.023   0.006   1.029

system.time(ans <- count.hours(jan2010$DEP_TIME[1:2000]))

##    user  system elapsed 
##   0.003   0.000   0.003

137/170



Histogram Performance

Another problem - we've created a vector 1:2000 which in general is the same size as
the data set we're working on. For large data sets, big memory.

Foreach has iterators that can iterate through an object without creating something the
size of the object. For instance, icount() is like the difference between Python 2.x range
and xrange:

But that doens't help with the performance issue here.

system.time(
  ans <- foreach (i=icount(2000), .combine="+") %do% {
    hrs <- rep(0,24)
    hr <- get.hour(jan2010$DEP_TIME[i])
    hrs[hr+1] = hrs[hr+1] + 1
    hrs
  }
)
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Histogram Performance

We do a little bit better by avoiding the intermediate index; we don't care about  at all,
all we care about is the data. We can implicitly create an iterator on the object with

or explicitly, setting the chunk size to distribute between tasks:

i

 foreach (time=jan2010$DEP_TIME[1:2000],...

system.time(
  ans <- foreach (time=iter(jan2010$DEP_TIME[1:2000],chunksize=500), .combine="+") %do% {
    hrs <- rep(0,24)
    hr <- get.hour(time)
    hrs[hr+1] = hrs[hr+1] + 1
    hrs
  }
)

##    user  system elapsed 
##   1.005   0.004   1.010

ans
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Histogram Performance

As you can tell by the chunking, foreach can adjust the iteration scheduling in a number
of ways. Chunking is one of them.

The underlying back-end obviously has a lot to do with the scheduling. For multicore, for
instance, one can pass familiar options to multicore if we are using a multicore "cluster":

Performance Tip: If you don't care about the order that the results come back in,
specifying .inorder=FALSE gives the scheduler more flexibility in sending out tasks.
Otherwise, you're guaranteed that the first result back is from the first iteration, etc.

foreach( ..., .options.multicore=list(preschedule=FALSE,set.seed=TRUE))
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Histogram Performance

But really, we want to work on entire slices of the data at once. For objects like matricies
or data frames, you can send out a row, column, etc at a time; we can re-cast the data as
a matrix and send it out one row at a time:

jan.matrix = matrix(jan2010$DEP_TIME[1:2000], ncol=500)
system.time(
  ans <- foreach (times=iter(jan.matrix,by="row"), .combine="+") %do% {
    count.hours(times)
  }
)

##    user  system elapsed 
##   0.007   0.000   0.007

ans

##  [1]   0   0   0   0   0  86  53 166 154 107 117 102 221 138 109  96 137
## [18] 142 141  59  95  66   7   4
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Histogram Performance

And this works in parallel, as well

cl <- makePSOCKcluster(4)
registerDoParallel(cl,cores=4)
jan.matrix = matrix(jan2010$DEP_TIME[1:2000], ncol=500)
system.time(
  ans <- foreach (times=iter(jan.matrix,by="row"), .combine="+") %dopar% {
    count.hours(times)
  }
)

##    user  system elapsed 
##   0.012   0.001   0.058

stopCluster(cl)
ans

##  [1]   0   0   0   0   0  86  53 166 154 107 117 102 221 138 109  96 137
## [18] 142 141  59  95  66   7   4
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isplit

If we want each task to only work on some subset of the data, the isplit iterator will
split the data at the master, and send off the partitioned data to workers:

ans <- foreach (byAirline=isplit(jan2010$DEP_TIME, jan2010$UNIQUE_CARRIER), 
                .combine=cbind) %do% {
  df <- data.frame(count.hours(byAirline$value)); colnames(df) <- byAirline$key; df
}
ans$UA

##  [1]    2    4    0    0    0  957 1595 1817 2598 1401 1713 1774 1509 1907
## [15] 1442 1230 1510 1888 1775 1311  964  783  785  268

ans$OH

##  [1]   2   2   0   0   0 185 654 469 674 679 572 682 843 763 699 671 839
## [18] 777 507 764 467 186 130  20
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Stock prices example

In data/stocks/stocks.csv, we have 419 daily closing stock prices going back to 2000
(3654 prices). For stocks, it's often useful to deal with "log returns", rather than absolute
price numbers. We use:

How would we parallelize this with foreach? (Imagine we had thousands of stocks and
decades of data, which isn't implausable.)

stocks <- read.csv("data/stocks//stocks.csv")
log.returns <- function(values) { nv=length(values); log(values[2:nv]/values[1:nv-1]) }
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Stock Prices Example

registerDoParallel(4)
mat.log <- 
  foreach(col=iter(stocks[,-c(1,2)],by="col"), .combine="cbind")  %dopar% 
      log.returns(col)
stopImplicitCluster()

stocks.log <- as.data.frame(mat.log)
colnames(stocks.log) <- colnames(stocks)[-c(1,2)] 
stocks.log$date <- stocks$date[-1]   # get rid of the first day; no "return" for then
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Stock Correlations

A quantity we might be interested in is the correlation between the log returns of
various stocks: we can use R's cor() function to do this.

nstocks <- 419
cors <- matrix(rep(0,nstocks*nstocks), nrow=nstocks, ncol=nstocks)
system.time(
for (i in 1:419) {
  for (j in 1:419) {
    cors[i,j] <- cor(stocks.log[[i]],stocks.log[[j]])    
  }
}
)

##    user  system elapsed 
##  31.735   0.125  31.909
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Summary: foreach

Foreach is a wrapper for the other parallel methods we've seen, so it inherits some of
the advantages and drawbacks of each.

Use foreach if: - Your code already relys on for-style iteration; transition is easy - You
don't know if you want multicore vs. snow style parallel use: you can switch just by
registering a different backend! - You want to be able to incrementally improve the
performance of your code.

Note that you can have portions of your analysis code use foreach with parallel and
portions using the backend with apply-style parallelism; it doesn't have to be all one or
the other.
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Stock Correlations: Hands-on

Parallelize the stock correlation matrix calculation with foreach. You should get a proper
speedup here. Try working on just the first 10 stocks until you get things working.

Note: you can nest foreach() loops using the '%:%' operator:

When you're done that, take a look at a random year's airline data. Of the flights that
have a departure delay, is the arrival delay (on average) less than or greater than the
departure delay? Is: "This is the captain: Sorry for the delay folks, but we'll make it up in
the air" a lie?

How would you use foreach to loop over the various years' data?

foreach(...) %:%
  foreach(...)
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Advanced R: Rdsm, pbdR

We've looked at some of the standard scalable computing packages for R.

This afternoon, we're going to look at two somewhat more advanced pacakges, that
solve very different problems.

Rdsm: Get the most (performance, memory) out of a single-computer computation by
using shared memory.

pbdR: Get the most (performance, scale) out of a cluster computation by ditching
master-worker, and using very large-scale distributed routines.

·

·
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Rdsm

While it's generally true that processes can't peer into each other's memory, there is an
exception.

Processes can explicitly make a window of memory shared - visible to other processes.

This isn't necessary for threads within a process; but it is necessary for multiple
processes working on the same data.

Only works on-node; can't share memory across a network. 
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Rdsm

Rdsm allows you to share a matrix across processes on a node - for reading and for
writing.

Normally, when we split a data structure up across tasks, we make copies (PSOCK), or we
use read-only (multicore/fork).

If output is also going to be large, we now have 2-3 copies of the data structure floating
around.

Rdsm allows (on-node) cluster tasks to collaboratively make a large output without
copies.
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Rdsm

Simple example - let's create a shared matrix, and have everyone fill it.

Create PSOCK cluster, an Rdsm instance, shared matrix, and a barrier:

library(parallel)
library(Rdsm)

nrows <- 7

cl <- makePSOCKcluster(3)       # form 3-process PSOCK (share-nothing) cluster
init <- mgrinit(cl)             # initialize Rdsm
mgrmakevar(cl,"m",nrows,nrows)  # make a 7x7 shared matrix
bar <- makebarr(cl)
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Rdsm

Everyone gets their task id, and which rows are "theirs";

…then fills it with their id.

# at each thread, set id to Rdsm built-in ID variable for that thread
clusterEvalQ(cl,myid <- myinfo$id)

## [[1]]
## [1] 1
## 
## [[2]]
## [1] 2
## 
## [[3]]
## [1] 3

clusterExport(cl,c("nrows"))
dmy <- clusterEvalQ(cl,myidxs <- getidxs(nrows))
dmy <- clusterEvalQ(cl, m[myidxs,1:nrows] <- myid)
dmy <- clusterEvalQ(cl,"barr()")
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Rdsm

Now, print the results.

print(m[,])

##      [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,]    1    1    1    1    1    1    1
## [2,]    1    1    1    1    1    1    1
## [3,]    2    2    2    2    2    2    2
## [4,]    2    2    2    2    2    2    2
## [5,]    2    2    2    2    2    2    2
## [6,]    3    3    3    3    3    3    3
## [7,]    3    3    3    3    3    3    3

stoprdsm(cl)  # stops cluster
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Summary: Rdsm

Allows collaborative use of a single pool of memory.

Avoids performance and memory problems of making copies to send back and forth.

Works well when:

Outputs are as large/larger than inputs. (Correlation matrix of stocks).

Inputs are very large, and want to do transformation in-place (values to log-returns).

·

·
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pbdR

The master-worker approach that all the methods we've used so far take works very well
for interactive work, is easy to loadbalance, and is easy to understand.

But there's a fairly narrow range of number of workers where master-worker works well.

For a small number of total processors (2-4, say), it really hurts to have one processor
doing nothing except some small amount of coordination.

For a very large number of processors (hundreds or more, depending on the size of each
task), the workerscan easily overwhelm the master, meaning all of the workers are
sitting around waiting while the master catches up.
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pbdR

At scale, idea of a single master isn't helpful.

Better: Coordinating peers.

Rather than a single master parcelling out work, the workers themselves decide which
part of the problem they should be working on, and combine their results cooperatively.

More efficient and can scale better; Downsides:

Dynamic load-balancing is substantially trickier (but doable)

Can't really do this interactively; need to write a script

·

·
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Departure Hour Histogram Example

In pbd/mpi-histogram.R we have a script that does hour histogram for eight full years
of data, sifting through 40 million flights, in about a minute:

$ time mpirun -np 8 Rscript mpi-histogram.R
COMM.RANK = 0
 [1]    4081  118767   27633    7194    9141  194613 2235007 2902703 3003510
[10] 2649823 2373934 2473105 2757256 2772498 2362334 2485699 2503423 2794298
[19] 2626931 2282125 2074739 1386485  649392  344257
COMM.RANK = 0
[1] 41038948

real  1m15.357s
user    9m39.943s
sys 0m10.910s
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Departure Hour Histogram Example

What sorcery is this?

# count.hours and get.hour definitions...
start.year <- 1990

init()
rank <- comm.rank()
my.year <- start.year + rank

myfile <- paste0("data/airline/airOT",as.character(my.year),".RDS")
data <- readRDS(myfile); data <- data$DEP_TIME
myhrs <- count.hours(data)

hrs <- allreduce( myhrs, op="sum" )
comm.print( hrs )
comm.print( sum(hrs) )

finalize()
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Departure Hour Histogram Example

Let's take a look at the first few lines

In this case, each task decides which year's data to work on. First ("zeroth") task works on
1990, next on 1991, etc.

Every task has to call the init() routine when starting, and finalize() routine when
done.

Then reads in the file.

# count.hours and get.hour definitions...
start.year <- 1990

init()
rank <- comm.rank()
my.year <- start.year + rank

myfile <- paste0("data/airline/airOT",as.character(my.year),".RDS")
data <- readRDS(myfile); data <- data$DEP_TIME
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Departure Hour Histogram Example

Once the file is read, we use our trusty count.hours routine again to work on the entire
vector.

Then an allreduce function sums each workers hours, and returns the sum to all
processors. We then print it out.

Rather than only the master running the main program and handing off bits to workers,
every task runs this identical program; the only difference is the value of comm.rank().

data <- readRDS(myfile); data <- data$DEP_TIME
myhrs <- count.hours(data)

hrs <- allreduce( myhrs, op="sum" )
comm.print( hrs )
comm.print( sum(hrs) )

finalize()
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Reductions

Reductions are one way of combining results, and they're very powerful:

init()
rank <- comm.rank()
my.year <- start.year + rank

myfile <- paste0("../data/airline/airOT",as.character(my.year),".RDS")
data <- readRDS(myfile); data <- data$CRS_ELAPSED_TIME
data <- data[!is.na(data)]

data.median <- pbd.quantile(data,0.5)
data.min <- allreduce(min(data), op="min")
data.max <- allreduce(max(data), op="max")
data.N <- allreduce(length(data), op="sum")
data.mean <- allreduce(sum(data), op="sum")/data.N

comm.print(data.min)
comm.print(data.median)
comm.print(data.mean)
comm.print(data.max)

finalize()
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Reductions

$ mpirun -np 4 Rscript ./min-median-mean-max.R
COMM.RANK = 0
[1] -70
COMM.RANK = 0
[1] 93.00004
COMM.RANK = 0
[1] 112.8207
COMM.RANK = 0
[1] 1613
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Median finding:

R's higher-level functions plus reductions are very powerful ways to do otherwise tricky
distributed problems - like median of distributed data:

pbd.quantile <- function( data, q=0.5 ) {
    if (q < 0 | q > 1) {
        stop("q should be between 0 and 1.")
    }

    N <- allreduce(length(data), op="sum")
    data.max <- allreduce(max(data), op="max")
    data.min <- allreduce(min(data), op="min")

    f.quantile <- function(x, prob=0.5) {
        allreduce(sum(data <= x), op="sum" )/N - prob
    }

    uniroot(f.quantile, c(data.min, data.max), prob=q)$root
}
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pbd*apply

pbd also has its parallel apply functions, but it's important to realize that these aren't
being farmed out by some master task; the tasks themselves decide which ones in the
list are "theirs".

pbd/histogram-pbdsapply.R

year.hours <- function(my.year) {
    myfile <- paste0("data/airline/airOT",as.character(my.year),".RDS")
    data <- readRDS(myfile)$DEP_TIME
    count.hours(data)
}

init()
years <- 1990:1993
all.hours.list <- pbdLapply(years, year.hours)
all.hours <- Reduce("+", all.hours.list)

comm.print( all.hours )
comm.print( sum(all.hours) )

finalize()
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pbd Data Distributions

pbd has a couple of ways of distributing data.

What we've used before is their so-called "GBD" distribution - globaly distributed data.
It's split up by rows.

However, for linear algebra computations, a block-cyclic distribution is much more
useful.
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Reading a pbdR Ddmatrix

pbdR comes with several packages for reading a data file and distributing it as a
ddmatrix:

read.csv.ddmatrix() for reading from csv

nc_get_dmat() to read from a NetCDF4 file

gbd2dmat() for conversions from row-oriented to a ddmatrix.

·

·

·
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pbd lm

And the reason that you'd use a ddmatrix is that several operations defined on regular R
matrices also work transparently on ddmatrix: lm, solve, chol.

pbd-lm.R:

init.grid()
rank <- comm.rank()
my.year <- start.year + rank

data <- cleandata(my.year)
Y <- data[[1]]
X <- as.matrix(data[,-1])

X.dm <- gbd2dmat(X)
Y.dm <- gbd2dmat(Y)

fit <- lm(Y ~ X)
comm.print(summary(fit))

finalize()
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pbd lm

$ mpirun -np 4 Rscript pbd-lm.R
Using 2x2 for the default grid size

COMM.RANK = 0

Call:
lm(formula = Y ~ X)

Residuals:
     Min       1Q   Median       3Q      Max
-1307.62    -6.03    -2.29     3.53  1431.70

Coefficients: (6 not defined because of singularities)
                       Estimate Std. Error t value Pr(>|t|)
(Intercept)           1.152e+01  9.616e-02  119.77   <2e-16 ***
XORIGIN_AIRPORT_ID   -1.895e-04  5.193e-06  -36.50   <2e-16 ***
XDEST_AIRPORT_ID     -2.257e-04  5.213e-06  -43.29   <2e-16 ***
XDEP_TIME            -3.382e-04  1.724e-05  -19.61   <2e-16 ***
XDEP_DELAY_NEW        1.426e+00  9.594e-03  148.68   <2e-16 ***
...
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 13.43 on 2741063 degrees of freedom
Multiple R-squared:  0.7809,  Adjusted R-squared:  0.7809
F-statistic: 1.628e+06 on 6 and 2741063 DF,  p-value: < 2.2e-16
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