diff --git a/clang/include/clang/Analysis/FlowSensitive/Arena.h b/clang/include/clang/Analysis/FlowSensitive/Arena.h index b6c62e7624625..83b4ddeec0256 100644 --- a/clang/include/clang/Analysis/FlowSensitive/Arena.h +++ b/clang/include/clang/Analysis/FlowSensitive/Arena.h @@ -8,7 +8,6 @@ #ifndef LLVM_CLANG_ANALYSIS_FLOWSENSITIVE__ARENA_H #define LLVM_CLANG_ANALYSIS_FLOWSENSITIVE__ARENA_H -#include "clang/Analysis/FlowSensitive/Formula.h" #include "clang/Analysis/FlowSensitive/StorageLocation.h" #include "clang/Analysis/FlowSensitive/Value.h" #include @@ -105,17 +104,7 @@ class Arena { return create(); } - /// Gets the boolean formula equivalent of a BoolValue. - /// Each unique Top values is translated to an Atom. - /// TODO: migrate to storing Formula directly in Values instead. - const Formula &getFormula(const BoolValue &); - - /// Returns a new atomic boolean variable, distinct from any other. - Atom makeAtom() { return static_cast(NextAtom++); }; - private: - llvm::BumpPtrAllocator Alloc; - // Storage for the state of a program. std::vector> Locs; std::vector> Vals; @@ -133,9 +122,6 @@ class Arena { llvm::DenseMap, BiconditionalValue *> BiconditionalVals; - llvm::DenseMap ValToFormula; - unsigned NextAtom = 0; - AtomicBoolValue &TrueVal; AtomicBoolValue &FalseVal; }; diff --git a/clang/include/clang/Analysis/FlowSensitive/DebugSupport.h b/clang/include/clang/Analysis/FlowSensitive/DebugSupport.h index 6b9f3681490af..360786b02729f 100644 --- a/clang/include/clang/Analysis/FlowSensitive/DebugSupport.h +++ b/clang/include/clang/Analysis/FlowSensitive/DebugSupport.h @@ -19,6 +19,7 @@ #include "clang/Analysis/FlowSensitive/Solver.h" #include "clang/Analysis/FlowSensitive/Value.h" +#include "llvm/ADT/DenseMap.h" #include "llvm/ADT/StringRef.h" namespace clang { @@ -27,9 +28,52 @@ namespace dataflow { /// Returns a string representation of a value kind. llvm::StringRef debugString(Value::Kind Kind); +/// Returns a string representation of a boolean assignment to true or false. +llvm::StringRef debugString(Solver::Result::Assignment Assignment); + /// Returns a string representation of the result status of a SAT check. llvm::StringRef debugString(Solver::Result::Status Status); +/// Returns a string representation for the boolean value `B`. +/// +/// Atomic booleans appearing in the boolean value `B` are assigned to labels +/// either specified in `AtomNames` or created by default rules as B0, B1, ... +/// +/// Requirements: +/// +/// Names assigned to atoms should not be repeated in `AtomNames`. +std::string debugString( + const BoolValue &B, + llvm::DenseMap AtomNames = {{}}); + +/// Returns a string representation for `Constraints` - a collection of boolean +/// formulas. +/// +/// Atomic booleans appearing in the boolean value `Constraints` are assigned to +/// labels either specified in `AtomNames` or created by default rules as B0, +/// B1, ... +/// +/// Requirements: +/// +/// Names assigned to atoms should not be repeated in `AtomNames`. +std::string debugString( + const llvm::ArrayRef Constraints, + llvm::DenseMap AtomNames = {{}}); + +/// Returns a string representation for `Constraints` - a collection of boolean +/// formulas and the `Result` of satisfiability checking. +/// +/// Atomic booleans appearing in `Constraints` and `Result` are assigned to +/// labels either specified in `AtomNames` or created by default rules as B0, +/// B1, ... +/// +/// Requirements: +/// +/// Names assigned to atoms should not be repeated in `AtomNames`. +std::string debugString( + ArrayRef Constraints, const Solver::Result &Result, + llvm::DenseMap AtomNames = {{}}); + } // namespace dataflow } // namespace clang diff --git a/clang/include/clang/Analysis/FlowSensitive/Formula.h b/clang/include/clang/Analysis/FlowSensitive/Formula.h deleted file mode 100644 index 0c7b1ecd02b17..0000000000000 --- a/clang/include/clang/Analysis/FlowSensitive/Formula.h +++ /dev/null @@ -1,137 +0,0 @@ -//===- Formula.h - Boolean formulas -----------------------------*- C++ -*-===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// - -#ifndef LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_FORMULA_H -#define LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_FORMULA_H - -#include "clang/Basic/LLVM.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/DenseMapInfo.h" -#include "llvm/ADT/STLFunctionalExtras.h" -#include "llvm/Support/Allocator.h" -#include "llvm/Support/raw_ostream.h" -#include -#include -#include - -namespace clang::dataflow { - -/// Identifies an atomic boolean variable such as "V1". -/// -/// This often represents an assertion that is interesting to the analysis but -/// cannot immediately be proven true or false. For example: -/// - V1 may mean "the program reaches this point", -/// - V2 may mean "the parameter was null" -/// -/// We can use these variables in formulas to describe relationships we know -/// to be true: "if the parameter was null, the program reaches this point". -/// We also express hypotheses as formulas, and use a SAT solver to check -/// whether they are consistent with the known facts. -enum class Atom : unsigned {}; - -/// A boolean expression such as "true" or "V1 & !V2". -/// Expressions may refer to boolean atomic variables. These should take a -/// consistent true/false value across the set of formulas being considered. -/// -/// (Formulas are always expressions in terms of boolean variables rather than -/// e.g. integers because our underlying model is SAT rather than e.g. SMT). -/// -/// Simple formulas such as "true" and "V1" are self-contained. -/// Compound formulas connect other formulas, e.g. "(V1 & V2) || V3" is an 'or' -/// formula, with pointers to its operands "(V1 & V2)" and "V3" stored as -/// trailing objects. -/// For this reason, Formulas are Arena-allocated and over-aligned. -class Formula; -class alignas(const Formula *) Formula { -public: - enum Kind : unsigned { - /// A reference to an atomic boolean variable. - /// We name these e.g. "V3", where 3 == atom identity == Value. - AtomRef, - // FIXME: add const true/false rather than modeling them as variables - - Not, /// True if its only operand is false - - // These kinds connect two operands LHS and RHS - And, /// True if LHS and RHS are both true - Or, /// True if either LHS or RHS is true - Implies, /// True if LHS is false or RHS is true - Equal, /// True if LHS and RHS have the same truth value - }; - Kind kind() const { return FormulaKind; } - - Atom getAtom() const { - assert(kind() == AtomRef); - return static_cast(Value); - } - - ArrayRef operands() const { - return ArrayRef(reinterpret_cast(this + 1), - numOperands(kind())); - } - - using AtomNames = llvm::DenseMap; - // Produce a stable human-readable representation of this formula. - // For example: (V3 | !(V1 & V2)) - // If AtomNames is provided, these override the default V0, V1... names. - void print(llvm::raw_ostream &OS, const AtomNames * = nullptr) const; - - // Allocate Formulas using Arena rather than calling this function directly. - static Formula &create(llvm::BumpPtrAllocator &Alloc, Kind K, - ArrayRef Operands, - unsigned Value = 0); - -private: - Formula() = default; - Formula(const Formula &) = delete; - Formula &operator=(const Formula &) = delete; - - static unsigned numOperands(Kind K) { - switch (K) { - case AtomRef: - return 0; - case Not: - return 1; - case And: - case Or: - case Implies: - case Equal: - return 2; - } - } - - Kind FormulaKind; - // Some kinds of formula have scalar values, e.g. AtomRef's atom number. - unsigned Value; -}; - -// The default names of atoms are V0, V1 etc in order of creation. -inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, Atom A) { - return OS << 'V' << static_cast(A); -} -inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, const Formula &F) { - F.print(OS); - return OS; -} - -} // namespace clang::dataflow -namespace llvm { -template <> struct DenseMapInfo { - using Atom = clang::dataflow::Atom; - using Underlying = std::underlying_type_t; - - static inline Atom getEmptyKey() { return Atom(Underlying(-1)); } - static inline Atom getTombstoneKey() { return Atom(Underlying(-2)); } - static unsigned getHashValue(const Atom &Val) { - return DenseMapInfo::getHashValue(Underlying(Val)); - } - static bool isEqual(const Atom &LHS, const Atom &RHS) { return LHS == RHS; } -}; -} // namespace llvm -#endif diff --git a/clang/include/clang/Analysis/FlowSensitive/Solver.h b/clang/include/clang/Analysis/FlowSensitive/Solver.h index 079f6802f241e..10964eab8c34c 100644 --- a/clang/include/clang/Analysis/FlowSensitive/Solver.h +++ b/clang/include/clang/Analysis/FlowSensitive/Solver.h @@ -14,10 +14,12 @@ #ifndef LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_SOLVER_H #define LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_SOLVER_H -#include "clang/Analysis/FlowSensitive/Formula.h" +#include "clang/Analysis/FlowSensitive/Value.h" #include "clang/Basic/LLVM.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/Support/Compiler.h" #include #include @@ -47,7 +49,8 @@ class Solver { /// Constructs a result indicating that the queried boolean formula is /// satisfiable. The result will hold a solution found by the solver. - static Result Satisfiable(llvm::DenseMap Solution) { + static Result + Satisfiable(llvm::DenseMap Solution) { return Result(Status::Satisfiable, std::move(Solution)); } @@ -65,17 +68,19 @@ class Solver { /// Returns a truth assignment to boolean values that satisfies the queried /// boolean formula if available. Otherwise, an empty optional is returned. - std::optional> getSolution() const { + std::optional> + getSolution() const { return Solution; } private: - Result(Status SATCheckStatus, - std::optional> Solution) + Result( + enum Status SATCheckStatus, + std::optional> Solution) : SATCheckStatus(SATCheckStatus), Solution(std::move(Solution)) {} Status SATCheckStatus; - std::optional> Solution; + std::optional> Solution; }; virtual ~Solver() = default; @@ -86,11 +91,13 @@ class Solver { /// Requirements: /// /// All elements in `Vals` must not be null. - virtual Result solve(llvm::ArrayRef Vals) = 0; -}; + virtual Result solve(llvm::ArrayRef Vals) = 0; -llvm::raw_ostream &operator<<(llvm::raw_ostream &, const Solver::Result &); -llvm::raw_ostream &operator<<(llvm::raw_ostream &, Solver::Result::Assignment); + LLVM_DEPRECATED("Pass ArrayRef for determinism", "") + virtual Result solve(llvm::DenseSet Vals) { + return solve(ArrayRef(std::vector(Vals.begin(), Vals.end()))); + } +}; } // namespace dataflow } // namespace clang diff --git a/clang/include/clang/Analysis/FlowSensitive/WatchedLiteralsSolver.h b/clang/include/clang/Analysis/FlowSensitive/WatchedLiteralsSolver.h index a0cdce93c9d47..b69cc01542c55 100644 --- a/clang/include/clang/Analysis/FlowSensitive/WatchedLiteralsSolver.h +++ b/clang/include/clang/Analysis/FlowSensitive/WatchedLiteralsSolver.h @@ -14,8 +14,8 @@ #ifndef LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_WATCHEDLITERALSSOLVER_H #define LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_WATCHEDLITERALSSOLVER_H -#include "clang/Analysis/FlowSensitive/Formula.h" #include "clang/Analysis/FlowSensitive/Solver.h" +#include "clang/Analysis/FlowSensitive/Value.h" #include "llvm/ADT/ArrayRef.h" #include @@ -46,7 +46,7 @@ class WatchedLiteralsSolver : public Solver { explicit WatchedLiteralsSolver(std::int64_t WorkLimit) : MaxIterations(WorkLimit) {} - Result solve(llvm::ArrayRef Vals) override; + Result solve(llvm::ArrayRef Vals) override; }; } // namespace dataflow diff --git a/clang/lib/Analysis/FlowSensitive/Arena.cpp b/clang/lib/Analysis/FlowSensitive/Arena.cpp index e576affc6a41b..cff6c45e18542 100644 --- a/clang/lib/Analysis/FlowSensitive/Arena.cpp +++ b/clang/lib/Analysis/FlowSensitive/Arena.cpp @@ -76,50 +76,4 @@ IntegerValue &Arena::makeIntLiteral(llvm::APInt Value) { return *It->second; } -const Formula &Arena::getFormula(const BoolValue &B) { - auto It = ValToFormula.find(&B); - if (It != ValToFormula.end()) - return *It->second; - Formula &F = [&]() -> Formula & { - switch (B.getKind()) { - case Value::Kind::Integer: - case Value::Kind::Reference: - case Value::Kind::Pointer: - case Value::Kind::Struct: - llvm_unreachable("not a boolean"); - case Value::Kind::TopBool: - case Value::Kind::AtomicBool: - // TODO: assign atom numbers on creation rather than in getFormula(), so - // they will be deterministic and maybe even meaningful. - return Formula::create(Alloc, Formula::AtomRef, {}, - static_cast(makeAtom())); - case Value::Kind::Conjunction: - return Formula::create( - Alloc, Formula::And, - {&getFormula(cast(B).getLeftSubValue()), - &getFormula(cast(B).getRightSubValue())}); - case Value::Kind::Disjunction: - return Formula::create( - Alloc, Formula::Or, - {&getFormula(cast(B).getLeftSubValue()), - &getFormula(cast(B).getRightSubValue())}); - case Value::Kind::Negation: - return Formula::create(Alloc, Formula::Not, - {&getFormula(cast(B).getSubVal())}); - case Value::Kind::Implication: - return Formula::create( - Alloc, Formula::Implies, - {&getFormula(cast(B).getLeftSubValue()), - &getFormula(cast(B).getRightSubValue())}); - case Value::Kind::Biconditional: - return Formula::create( - Alloc, Formula::Equal, - {&getFormula(cast(B).getLeftSubValue()), - &getFormula(cast(B).getRightSubValue())}); - } - }(); - ValToFormula.try_emplace(&B, &F); - return F; -} - } // namespace clang::dataflow diff --git a/clang/lib/Analysis/FlowSensitive/CMakeLists.txt b/clang/lib/Analysis/FlowSensitive/CMakeLists.txt index 171884afe8f4b..d59bebf6a5a12 100644 --- a/clang/lib/Analysis/FlowSensitive/CMakeLists.txt +++ b/clang/lib/Analysis/FlowSensitive/CMakeLists.txt @@ -3,7 +3,6 @@ add_clang_library(clangAnalysisFlowSensitive ControlFlowContext.cpp DataflowAnalysisContext.cpp DataflowEnvironment.cpp - Formula.cpp HTMLLogger.cpp Logger.cpp RecordOps.cpp diff --git a/clang/lib/Analysis/FlowSensitive/DataflowAnalysisContext.cpp b/clang/lib/Analysis/FlowSensitive/DataflowAnalysisContext.cpp index 42cc6d4c3d143..37bcc8be95879 100644 --- a/clang/lib/Analysis/FlowSensitive/DataflowAnalysisContext.cpp +++ b/clang/lib/Analysis/FlowSensitive/DataflowAnalysisContext.cpp @@ -15,7 +15,6 @@ #include "clang/Analysis/FlowSensitive/DataflowAnalysisContext.h" #include "clang/AST/ExprCXX.h" #include "clang/Analysis/FlowSensitive/DebugSupport.h" -#include "clang/Analysis/FlowSensitive/Formula.h" #include "clang/Analysis/FlowSensitive/Logger.h" #include "clang/Analysis/FlowSensitive/Value.h" #include "llvm/ADT/SetOperations.h" @@ -24,12 +23,9 @@ #include "llvm/Support/Debug.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Path.h" -#include "llvm/Support/raw_ostream.h" #include #include -#include #include -#include static llvm::cl::opt DataflowLog( "dataflow-log", llvm::cl::Hidden, llvm::cl::ValueOptional, @@ -133,10 +129,7 @@ Solver::Result DataflowAnalysisContext::querySolver(llvm::SetVector Constraints) { Constraints.insert(&arena().makeLiteral(true)); Constraints.insert(&arena().makeNot(arena().makeLiteral(false))); - std::vector Formulas; - for (const BoolValue *Constraint : Constraints) - Formulas.push_back(&arena().getFormula(*Constraint)); - return S->solve(Formulas); + return S->solve(Constraints.getArrayRef()); } bool DataflowAnalysisContext::flowConditionImplies(AtomicBoolValue &Token, @@ -198,21 +191,15 @@ void DataflowAnalysisContext::addTransitiveFlowConditionConstraints( void DataflowAnalysisContext::dumpFlowCondition(AtomicBoolValue &Token, llvm::raw_ostream &OS) { - // TODO: accumulate formulas directly instead llvm::SetVector Constraints; Constraints.insert(&Token); llvm::DenseSet VisitedTokens; addTransitiveFlowConditionConstraints(Token, Constraints, VisitedTokens); - // TODO: have formulas know about true/false directly instead - Atom True = arena().getFormula(arena().makeLiteral(true)).getAtom(); - Atom False = arena().getFormula(arena().makeLiteral(false)).getAtom(); - Formula::AtomNames Names = {{False, "false"}, {True, "true"}}; - - for (const auto *Constraint : Constraints) { - arena().getFormula(*Constraint).print(OS, &Names); - OS << "\n"; - } + llvm::DenseMap AtomNames = { + {&arena().makeLiteral(false), "False"}, + {&arena().makeLiteral(true), "True"}}; + OS << debugString(Constraints.getArrayRef(), AtomNames); } const ControlFlowContext * diff --git a/clang/lib/Analysis/FlowSensitive/DebugSupport.cpp b/clang/lib/Analysis/FlowSensitive/DebugSupport.cpp index 34e53249ba4d8..25225ed6266fb 100644 --- a/clang/lib/Analysis/FlowSensitive/DebugSupport.cpp +++ b/clang/lib/Analysis/FlowSensitive/DebugSupport.cpp @@ -16,12 +16,22 @@ #include "clang/Analysis/FlowSensitive/DebugSupport.h" #include "clang/Analysis/FlowSensitive/Solver.h" #include "clang/Analysis/FlowSensitive/Value.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringRef.h" +#include "llvm/ADT/StringSet.h" #include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/FormatAdapters.h" +#include "llvm/Support/FormatCommon.h" +#include "llvm/Support/FormatVariadic.h" namespace clang { namespace dataflow { +using llvm::AlignStyle; +using llvm::fmt_pad; +using llvm::formatv; + llvm::StringRef debugString(Value::Kind Kind) { switch (Kind) { case Value::Kind::Integer: @@ -50,13 +60,12 @@ llvm::StringRef debugString(Value::Kind Kind) { llvm_unreachable("Unhandled value kind"); } -llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, - Solver::Result::Assignment Assignment) { +llvm::StringRef debugString(Solver::Result::Assignment Assignment) { switch (Assignment) { case Solver::Result::Assignment::AssignedFalse: - return OS << "False"; + return "False"; case Solver::Result::Assignment::AssignedTrue: - return OS << "True"; + return "True"; } llvm_unreachable("Booleans can only be assigned true/false"); } @@ -73,16 +82,174 @@ llvm::StringRef debugString(Solver::Result::Status Status) { llvm_unreachable("Unhandled SAT check result status"); } -llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, const Solver::Result &R) { - OS << debugString(R.getStatus()) << "\n"; - if (auto Solution = R.getSolution()) { - std::vector> Sorted = { - Solution->begin(), Solution->end()}; - llvm::sort(Sorted); - for (const auto &Entry : Sorted) - OS << Entry.first << " = " << Entry.second << "\n"; +namespace { + +class DebugStringGenerator { +public: + explicit DebugStringGenerator( + llvm::DenseMap AtomNamesArg) + : Counter(0), AtomNames(std::move(AtomNamesArg)) { +#ifndef NDEBUG + llvm::StringSet<> Names; + for (auto &N : AtomNames) { + assert(Names.insert(N.second).second && + "The same name must not assigned to different atoms"); + } +#endif + } + + /// Returns a string representation of a boolean value `B`. + std::string debugString(const BoolValue &B, size_t Depth = 0) { + std::string S; + switch (B.getKind()) { + case Value::Kind::AtomicBool: { + S = getAtomName(&cast(B)); + break; + } + case Value::Kind::TopBool: { + S = "top"; + break; + } + case Value::Kind::Conjunction: { + auto &C = cast(B); + auto L = debugString(C.getLeftSubValue(), Depth + 1); + auto R = debugString(C.getRightSubValue(), Depth + 1); + S = formatv("(and\n{0}\n{1})", L, R); + break; + } + case Value::Kind::Disjunction: { + auto &D = cast(B); + auto L = debugString(D.getLeftSubValue(), Depth + 1); + auto R = debugString(D.getRightSubValue(), Depth + 1); + S = formatv("(or\n{0}\n{1})", L, R); + break; + } + case Value::Kind::Negation: { + auto &N = cast(B); + S = formatv("(not\n{0})", debugString(N.getSubVal(), Depth + 1)); + break; + } + case Value::Kind::Implication: { + auto &IV = cast(B); + auto L = debugString(IV.getLeftSubValue(), Depth + 1); + auto R = debugString(IV.getRightSubValue(), Depth + 1); + S = formatv("(=>\n{0}\n{1})", L, R); + break; + } + case Value::Kind::Biconditional: { + auto &BV = cast(B); + auto L = debugString(BV.getLeftSubValue(), Depth + 1); + auto R = debugString(BV.getRightSubValue(), Depth + 1); + S = formatv("(=\n{0}\n{1})", L, R); + break; + } + default: + llvm_unreachable("Unhandled value kind"); + } + auto Indent = Depth * 4; + return formatv("{0}", fmt_pad(S, Indent, 0)); + } + + std::string debugString(const llvm::ArrayRef &Constraints) { + std::string Result; + for (const BoolValue *S : Constraints) { + Result += debugString(*S); + Result += '\n'; + } + return Result; + } + + /// Returns a string representation of a set of boolean `Constraints` and the + /// `Result` of satisfiability checking on the `Constraints`. + std::string debugString(ArrayRef &Constraints, + const Solver::Result &Result) { + auto Template = R"( +Constraints +------------ +{0:$[ + +]} +------------ +{1}. +{2} +)"; + + std::vector ConstraintsStrings; + ConstraintsStrings.reserve(Constraints.size()); + for (auto &Constraint : Constraints) { + ConstraintsStrings.push_back(debugString(*Constraint)); + } + + auto StatusString = clang::dataflow::debugString(Result.getStatus()); + auto Solution = Result.getSolution(); + auto SolutionString = Solution ? "\n" + debugString(*Solution) : ""; + + return formatv( + Template, + llvm::make_range(ConstraintsStrings.begin(), ConstraintsStrings.end()), + StatusString, SolutionString); + } + +private: + /// Returns a string representation of a truth assignment to atom booleans. + std::string debugString( + const llvm::DenseMap + &AtomAssignments) { + size_t MaxNameLength = 0; + for (auto &AtomName : AtomNames) { + MaxNameLength = std::max(MaxNameLength, AtomName.second.size()); + } + + std::vector Lines; + for (auto &AtomAssignment : AtomAssignments) { + auto Line = formatv("{0} = {1}", + fmt_align(getAtomName(AtomAssignment.first), + AlignStyle::Left, MaxNameLength), + clang::dataflow::debugString(AtomAssignment.second)); + Lines.push_back(Line); + } + llvm::sort(Lines); + + return formatv("{0:$[\n]}", llvm::make_range(Lines.begin(), Lines.end())); } - return OS; + + /// Returns the name assigned to `Atom`, either user-specified or created by + /// default rules (B0, B1, ...). + std::string getAtomName(const AtomicBoolValue *Atom) { + auto Entry = AtomNames.try_emplace(Atom, formatv("B{0}", Counter)); + if (Entry.second) { + Counter++; + } + return Entry.first->second; + } + + // Keep track of number of atoms without a user-specified name, used to assign + // non-repeating default names to such atoms. + size_t Counter; + + // Keep track of names assigned to atoms. + llvm::DenseMap AtomNames; +}; + +} // namespace + +std::string +debugString(const BoolValue &B, + llvm::DenseMap AtomNames) { + return DebugStringGenerator(std::move(AtomNames)).debugString(B); +} + +std::string +debugString(llvm::ArrayRef Constraints, + llvm::DenseMap AtomNames) { + return DebugStringGenerator(std::move(AtomNames)).debugString(Constraints); +} + +std::string +debugString(ArrayRef Constraints, const Solver::Result &Result, + llvm::DenseMap AtomNames) { + return DebugStringGenerator(std::move(AtomNames)) + .debugString(Constraints, Result); } } // namespace dataflow diff --git a/clang/lib/Analysis/FlowSensitive/Formula.cpp b/clang/lib/Analysis/FlowSensitive/Formula.cpp deleted file mode 100644 index 504ad2fb7938a..0000000000000 --- a/clang/lib/Analysis/FlowSensitive/Formula.cpp +++ /dev/null @@ -1,82 +0,0 @@ -//===- Formula.cpp ----------------------------------------------*- C++ -*-===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// - -#include "clang/Analysis/FlowSensitive/Formula.h" -#include "clang/Basic/LLVM.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/StringRef.h" -#include "llvm/Support/Allocator.h" -#include "llvm/Support/ErrorHandling.h" -#include - -namespace clang::dataflow { - -Formula &Formula::create(llvm::BumpPtrAllocator &Alloc, Kind K, - ArrayRef Operands, unsigned Value) { - assert(Operands.size() == numOperands(K)); - if (Value != 0) // Currently, formulas have values or operands, not both. - assert(numOperands(K) == 0); - void *Mem = Alloc.Allocate(sizeof(Formula) + - Operands.size() * sizeof(Operands.front()), - alignof(Formula)); - Formula *Result = new (Mem) Formula(); - Result->FormulaKind = K; - Result->Value = Value; - // Operands are stored as `const Formula *`s after the formula itself. - // We don't need to construct an object as pointers are trivial types. - // Formula is alignas(const Formula *), so alignment is satisfied. - llvm::copy(Operands, reinterpret_cast(Result + 1)); - return *Result; -} - -static llvm::StringLiteral sigil(Formula::Kind K) { - switch (K) { - case Formula::AtomRef: - return ""; - case Formula::Not: - return "!"; - case Formula::And: - return " & "; - case Formula::Or: - return " | "; - case Formula::Implies: - return " => "; - case Formula::Equal: - return " = "; - } - llvm_unreachable("unhandled formula kind"); -} - -void Formula::print(llvm::raw_ostream &OS, const AtomNames *Names) const { - if (Names && kind() == AtomRef) - if (auto It = Names->find(getAtom()); It != Names->end()) { - OS << It->second; - return; - } - - switch (numOperands(kind())) { - case 0: - OS << getAtom(); - break; - case 1: - OS << sigil(kind()); - operands()[0]->print(OS, Names); - break; - case 2: - OS << '('; - operands()[0]->print(OS, Names); - OS << sigil(kind()); - operands()[1]->print(OS, Names); - OS << ')'; - break; - default: - llvm_unreachable("unhandled formula arity"); - } -} - -} // namespace clang::dataflow \ No newline at end of file diff --git a/clang/lib/Analysis/FlowSensitive/WatchedLiteralsSolver.cpp b/clang/lib/Analysis/FlowSensitive/WatchedLiteralsSolver.cpp index 037886d09c4f7..db2e1d694457b 100644 --- a/clang/lib/Analysis/FlowSensitive/WatchedLiteralsSolver.cpp +++ b/clang/lib/Analysis/FlowSensitive/WatchedLiteralsSolver.cpp @@ -17,8 +17,8 @@ #include #include -#include "clang/Analysis/FlowSensitive/Formula.h" #include "clang/Analysis/FlowSensitive/Solver.h" +#include "clang/Analysis/FlowSensitive/Value.h" #include "clang/Analysis/FlowSensitive/WatchedLiteralsSolver.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" @@ -79,7 +79,7 @@ using ClauseID = uint32_t; static constexpr ClauseID NullClause = 0; /// A boolean formula in conjunctive normal form. -struct CNFFormula { +struct BooleanFormula { /// `LargestVar` is equal to the largest positive integer that represents a /// variable in the formula. const Variable LargestVar; @@ -121,12 +121,12 @@ struct CNFFormula { /// clauses in the formula start from the element at index 1. std::vector NextWatched; - /// Stores the variable identifier and Atom for atomic booleans in the - /// formula. - llvm::DenseMap Atomics; + /// Stores the variable identifier and value location for atomic booleans in + /// the formula. + llvm::DenseMap Atomics; - explicit CNFFormula(Variable LargestVar, - llvm::DenseMap Atomics) + explicit BooleanFormula(Variable LargestVar, + llvm::DenseMap Atomics) : LargestVar(LargestVar), Atomics(std::move(Atomics)) { Clauses.push_back(0); ClauseStarts.push_back(0); @@ -144,8 +144,8 @@ struct CNFFormula { /// /// All literals in the input that are not `NullLit` must be distinct. void addClause(Literal L1, Literal L2 = NullLit, Literal L3 = NullLit) { - // The literals are guaranteed to be distinct from properties of Formula - // and the construction in `buildCNF`. + // The literals are guaranteed to be distinct from properties of BoolValue + // and the construction in `buildBooleanFormula`. assert(L1 != NullLit && L1 != L2 && L1 != L3 && (L2 != L3 || L2 == NullLit)); @@ -178,59 +178,98 @@ struct CNFFormula { /// Converts the conjunction of `Vals` into a formula in conjunctive normal /// form where each clause has at least one and at most three literals. -CNFFormula buildCNF(const llvm::ArrayRef &Vals) { +BooleanFormula buildBooleanFormula(const llvm::ArrayRef &Vals) { // The general strategy of the algorithm implemented below is to map each // of the sub-values in `Vals` to a unique variable and use these variables in // the resulting CNF expression to avoid exponential blow up. The number of // literals in the resulting formula is guaranteed to be linear in the number - // of sub-formulas in `Vals`. + // of sub-values in `Vals`. - // Map each sub-formula in `Vals` to a unique variable. - llvm::DenseMap SubValsToVar; - // Store variable identifiers and Atom of atomic booleans. - llvm::DenseMap Atomics; + // Map each sub-value in `Vals` to a unique variable. + llvm::DenseMap SubValsToVar; + // Store variable identifiers and value location of atomic booleans. + llvm::DenseMap Atomics; Variable NextVar = 1; { - std::queue UnprocessedSubVals; - for (const Formula *Val : Vals) + std::queue UnprocessedSubVals; + for (BoolValue *Val : Vals) UnprocessedSubVals.push(Val); while (!UnprocessedSubVals.empty()) { Variable Var = NextVar; - const Formula *Val = UnprocessedSubVals.front(); + BoolValue *Val = UnprocessedSubVals.front(); UnprocessedSubVals.pop(); if (!SubValsToVar.try_emplace(Val, Var).second) continue; ++NextVar; - for (const Formula *F : Val->operands()) - UnprocessedSubVals.push(F); - if (Val->kind() == Formula::AtomRef) - Atomics[Var] = Val->getAtom(); + // Visit the sub-values of `Val`. + switch (Val->getKind()) { + case Value::Kind::Conjunction: { + auto *C = cast(Val); + UnprocessedSubVals.push(&C->getLeftSubValue()); + UnprocessedSubVals.push(&C->getRightSubValue()); + break; + } + case Value::Kind::Disjunction: { + auto *D = cast(Val); + UnprocessedSubVals.push(&D->getLeftSubValue()); + UnprocessedSubVals.push(&D->getRightSubValue()); + break; + } + case Value::Kind::Negation: { + auto *N = cast(Val); + UnprocessedSubVals.push(&N->getSubVal()); + break; + } + case Value::Kind::Implication: { + auto *I = cast(Val); + UnprocessedSubVals.push(&I->getLeftSubValue()); + UnprocessedSubVals.push(&I->getRightSubValue()); + break; + } + case Value::Kind::Biconditional: { + auto *B = cast(Val); + UnprocessedSubVals.push(&B->getLeftSubValue()); + UnprocessedSubVals.push(&B->getRightSubValue()); + break; + } + case Value::Kind::TopBool: + // Nothing more to do. This `TopBool` instance has already been mapped + // to a fresh solver variable (`NextVar`, above) and is thereafter + // anonymous. The solver never sees `Top`. + break; + case Value::Kind::AtomicBool: { + Atomics[Var] = cast(Val); + break; + } + default: + llvm_unreachable("buildBooleanFormula: unhandled value kind"); + } } } - auto GetVar = [&SubValsToVar](const Formula *Val) { + auto GetVar = [&SubValsToVar](const BoolValue *Val) { auto ValIt = SubValsToVar.find(Val); assert(ValIt != SubValsToVar.end()); return ValIt->second; }; - CNFFormula CNF(NextVar - 1, std::move(Atomics)); + BooleanFormula Formula(NextVar - 1, std::move(Atomics)); std::vector ProcessedSubVals(NextVar, false); - // Add a conjunct for each variable that represents a top-level formula in - // `Vals`. - for (const Formula *Val : Vals) - CNF.addClause(posLit(GetVar(Val))); + // Add a conjunct for each variable that represents a top-level conjunction + // value in `Vals`. + for (BoolValue *Val : Vals) + Formula.addClause(posLit(GetVar(Val))); // Add conjuncts that represent the mapping between newly-created variables - // and their corresponding sub-formulas. - std::queue UnprocessedSubVals; - for (const Formula *Val : Vals) + // and their corresponding sub-values. + std::queue UnprocessedSubVals; + for (BoolValue *Val : Vals) UnprocessedSubVals.push(Val); while (!UnprocessedSubVals.empty()) { - const Formula *Val = UnprocessedSubVals.front(); + const BoolValue *Val = UnprocessedSubVals.front(); UnprocessedSubVals.pop(); const Variable Var = GetVar(Val); @@ -238,107 +277,117 @@ CNFFormula buildCNF(const llvm::ArrayRef &Vals) { continue; ProcessedSubVals[Var] = true; - switch (Val->kind()) { - case Formula::AtomRef: - break; - case Formula::And: { - const Variable LHS = GetVar(Val->operands()[0]); - const Variable RHS = GetVar(Val->operands()[1]); + if (auto *C = dyn_cast(Val)) { + const Variable LeftSubVar = GetVar(&C->getLeftSubValue()); + const Variable RightSubVar = GetVar(&C->getRightSubValue()); - if (LHS == RHS) { + if (LeftSubVar == RightSubVar) { // `X <=> (A ^ A)` is equivalent to `(!X v A) ^ (X v !A)` which is // already in conjunctive normal form. Below we add each of the // conjuncts of the latter expression to the result. - CNF.addClause(negLit(Var), posLit(LHS)); - CNF.addClause(posLit(Var), negLit(LHS)); + Formula.addClause(negLit(Var), posLit(LeftSubVar)); + Formula.addClause(posLit(Var), negLit(LeftSubVar)); + + // Visit a sub-value of `Val` (pick any, they are identical). + UnprocessedSubVals.push(&C->getLeftSubValue()); } else { // `X <=> (A ^ B)` is equivalent to `(!X v A) ^ (!X v B) ^ (X v !A v !B)` // which is already in conjunctive normal form. Below we add each of the // conjuncts of the latter expression to the result. - CNF.addClause(negLit(Var), posLit(LHS)); - CNF.addClause(negLit(Var), posLit(RHS)); - CNF.addClause(posLit(Var), negLit(LHS), negLit(RHS)); + Formula.addClause(negLit(Var), posLit(LeftSubVar)); + Formula.addClause(negLit(Var), posLit(RightSubVar)); + Formula.addClause(posLit(Var), negLit(LeftSubVar), negLit(RightSubVar)); + + // Visit the sub-values of `Val`. + UnprocessedSubVals.push(&C->getLeftSubValue()); + UnprocessedSubVals.push(&C->getRightSubValue()); } - break; - } - case Formula::Or: { - const Variable LHS = GetVar(Val->operands()[0]); - const Variable RHS = GetVar(Val->operands()[1]); + } else if (auto *D = dyn_cast(Val)) { + const Variable LeftSubVar = GetVar(&D->getLeftSubValue()); + const Variable RightSubVar = GetVar(&D->getRightSubValue()); - if (LHS == RHS) { + if (LeftSubVar == RightSubVar) { // `X <=> (A v A)` is equivalent to `(!X v A) ^ (X v !A)` which is // already in conjunctive normal form. Below we add each of the // conjuncts of the latter expression to the result. - CNF.addClause(negLit(Var), posLit(LHS)); - CNF.addClause(posLit(Var), negLit(LHS)); + Formula.addClause(negLit(Var), posLit(LeftSubVar)); + Formula.addClause(posLit(Var), negLit(LeftSubVar)); + + // Visit a sub-value of `Val` (pick any, they are identical). + UnprocessedSubVals.push(&D->getLeftSubValue()); } else { - // `X <=> (A v B)` is equivalent to `(!X v A v B) ^ (X v !A) ^ (X v - // !B)` which is already in conjunctive normal form. Below we add each - // of the conjuncts of the latter expression to the result. - CNF.addClause(negLit(Var), posLit(LHS), posLit(RHS)); - CNF.addClause(posLit(Var), negLit(LHS)); - CNF.addClause(posLit(Var), negLit(RHS)); + // `X <=> (A v B)` is equivalent to `(!X v A v B) ^ (X v !A) ^ (X v !B)` + // which is already in conjunctive normal form. Below we add each of the + // conjuncts of the latter expression to the result. + Formula.addClause(negLit(Var), posLit(LeftSubVar), posLit(RightSubVar)); + Formula.addClause(posLit(Var), negLit(LeftSubVar)); + Formula.addClause(posLit(Var), negLit(RightSubVar)); + + // Visit the sub-values of `Val`. + UnprocessedSubVals.push(&D->getLeftSubValue()); + UnprocessedSubVals.push(&D->getRightSubValue()); } - break; - } - case Formula::Not: { - const Variable Operand = GetVar(Val->operands()[0]); - - // `X <=> !Y` is equivalent to `(!X v !Y) ^ (X v Y)` which is - // already in conjunctive normal form. Below we add each of the - // conjuncts of the latter expression to the result. - CNF.addClause(negLit(Var), negLit(Operand)); - CNF.addClause(posLit(Var), posLit(Operand)); - break; - } - case Formula::Implies: { - const Variable LHS = GetVar(Val->operands()[0]); - const Variable RHS = GetVar(Val->operands()[1]); + } else if (auto *N = dyn_cast(Val)) { + const Variable SubVar = GetVar(&N->getSubVal()); + + // `X <=> !Y` is equivalent to `(!X v !Y) ^ (X v Y)` which is already in + // conjunctive normal form. Below we add each of the conjuncts of the + // latter expression to the result. + Formula.addClause(negLit(Var), negLit(SubVar)); + Formula.addClause(posLit(Var), posLit(SubVar)); + + // Visit the sub-values of `Val`. + UnprocessedSubVals.push(&N->getSubVal()); + } else if (auto *I = dyn_cast(Val)) { + const Variable LeftSubVar = GetVar(&I->getLeftSubValue()); + const Variable RightSubVar = GetVar(&I->getRightSubValue()); // `X <=> (A => B)` is equivalent to // `(X v A) ^ (X v !B) ^ (!X v !A v B)` which is already in - // conjunctive normal form. Below we add each of the conjuncts of - // the latter expression to the result. - CNF.addClause(posLit(Var), posLit(LHS)); - CNF.addClause(posLit(Var), negLit(RHS)); - CNF.addClause(negLit(Var), negLit(LHS), posLit(RHS)); - break; - } - case Formula::Equal: { - const Variable LHS = GetVar(Val->operands()[0]); - const Variable RHS = GetVar(Val->operands()[1]); - - if (LHS == RHS) { + // conjunctive normal form. Below we add each of the conjuncts of the + // latter expression to the result. + Formula.addClause(posLit(Var), posLit(LeftSubVar)); + Formula.addClause(posLit(Var), negLit(RightSubVar)); + Formula.addClause(negLit(Var), negLit(LeftSubVar), posLit(RightSubVar)); + + // Visit the sub-values of `Val`. + UnprocessedSubVals.push(&I->getLeftSubValue()); + UnprocessedSubVals.push(&I->getRightSubValue()); + } else if (auto *B = dyn_cast(Val)) { + const Variable LeftSubVar = GetVar(&B->getLeftSubValue()); + const Variable RightSubVar = GetVar(&B->getRightSubValue()); + + if (LeftSubVar == RightSubVar) { // `X <=> (A <=> A)` is equvalent to `X` which is already in // conjunctive normal form. Below we add each of the conjuncts of the // latter expression to the result. - CNF.addClause(posLit(Var)); + Formula.addClause(posLit(Var)); // No need to visit the sub-values of `Val`. - continue; + } else { + // `X <=> (A <=> B)` is equivalent to + // `(X v A v B) ^ (X v !A v !B) ^ (!X v A v !B) ^ (!X v !A v B)` which is + // already in conjunctive normal form. Below we add each of the conjuncts + // of the latter expression to the result. + Formula.addClause(posLit(Var), posLit(LeftSubVar), posLit(RightSubVar)); + Formula.addClause(posLit(Var), negLit(LeftSubVar), negLit(RightSubVar)); + Formula.addClause(negLit(Var), posLit(LeftSubVar), negLit(RightSubVar)); + Formula.addClause(negLit(Var), negLit(LeftSubVar), posLit(RightSubVar)); + + // Visit the sub-values of `Val`. + UnprocessedSubVals.push(&B->getLeftSubValue()); + UnprocessedSubVals.push(&B->getRightSubValue()); } - // `X <=> (A <=> B)` is equivalent to - // `(X v A v B) ^ (X v !A v !B) ^ (!X v A v !B) ^ (!X v !A v B)` which - // is already in conjunctive normal form. Below we add each of the - // conjuncts of the latter expression to the result. - CNF.addClause(posLit(Var), posLit(LHS), posLit(RHS)); - CNF.addClause(posLit(Var), negLit(LHS), negLit(RHS)); - CNF.addClause(negLit(Var), posLit(LHS), negLit(RHS)); - CNF.addClause(negLit(Var), negLit(LHS), posLit(RHS)); - break; - } } - for (const Formula *Child : Val->operands()) - UnprocessedSubVals.push(Child); } - return CNF; + return Formula; } class WatchedLiteralsSolverImpl { /// A boolean formula in conjunctive normal form that the solver will attempt /// to prove satisfiable. The formula will be modified in the process. - CNFFormula CNF; + BooleanFormula Formula; /// The search for a satisfying assignment of the variables in `Formula` will /// proceed in levels, starting from 1 and going up to `Formula.LargestVar` @@ -390,10 +439,9 @@ class WatchedLiteralsSolverImpl { std::vector ActiveVars; public: - explicit WatchedLiteralsSolverImpl( - const llvm::ArrayRef &Vals) - : CNF(buildCNF(Vals)), LevelVars(CNF.LargestVar + 1), - LevelStates(CNF.LargestVar + 1) { + explicit WatchedLiteralsSolverImpl(const llvm::ArrayRef &Vals) + : Formula(buildBooleanFormula(Vals)), LevelVars(Formula.LargestVar + 1), + LevelStates(Formula.LargestVar + 1) { assert(!Vals.empty()); // Initialize the state at the root level to a decision so that in @@ -402,10 +450,10 @@ class WatchedLiteralsSolverImpl { LevelStates[0] = State::Decision; // Initialize all variables as unassigned. - VarAssignments.resize(CNF.LargestVar + 1, Assignment::Unassigned); + VarAssignments.resize(Formula.LargestVar + 1, Assignment::Unassigned); // Initialize the active variables. - for (Variable Var = CNF.LargestVar; Var != NullVar; --Var) { + for (Variable Var = Formula.LargestVar; Var != NullVar; --Var) { if (isWatched(posLit(Var)) || isWatched(negLit(Var))) ActiveVars.push_back(Var); } @@ -426,7 +474,7 @@ class WatchedLiteralsSolverImpl { // 3. Unassigned variables that form watched literals are active. // FIXME: Consider replacing these with test cases that fail if the any // of the invariants is broken. That might not be easy due to the - // transformations performed by `buildCNF`. + // transformations performed by `buildBooleanFormula`. assert(activeVarsAreUnassigned()); assert(activeVarsFormWatchedLiterals()); assert(unassignedVarsFormingWatchedLiteralsAreActive()); @@ -507,10 +555,12 @@ class WatchedLiteralsSolverImpl { } private: - /// Returns a satisfying truth assignment to the atoms in the boolean formula. - llvm::DenseMap buildSolution() { - llvm::DenseMap Solution; - for (auto &Atomic : CNF.Atomics) { + /// Returns a satisfying truth assignment to the atomic values in the boolean + /// formula. + llvm::DenseMap + buildSolution() { + llvm::DenseMap Solution; + for (auto &Atomic : Formula.Atomics) { // A variable may have a definite true/false assignment, or it may be // unassigned indicating its truth value does not affect the result of // the formula. Unassigned variables are assigned to true as a default. @@ -546,24 +596,24 @@ class WatchedLiteralsSolverImpl { const Literal FalseLit = VarAssignments[Var] == Assignment::AssignedTrue ? negLit(Var) : posLit(Var); - ClauseID FalseLitWatcher = CNF.WatchedHead[FalseLit]; - CNF.WatchedHead[FalseLit] = NullClause; + ClauseID FalseLitWatcher = Formula.WatchedHead[FalseLit]; + Formula.WatchedHead[FalseLit] = NullClause; while (FalseLitWatcher != NullClause) { - const ClauseID NextFalseLitWatcher = CNF.NextWatched[FalseLitWatcher]; + const ClauseID NextFalseLitWatcher = Formula.NextWatched[FalseLitWatcher]; // Pick the first non-false literal as the new watched literal. - const size_t FalseLitWatcherStart = CNF.ClauseStarts[FalseLitWatcher]; + const size_t FalseLitWatcherStart = Formula.ClauseStarts[FalseLitWatcher]; size_t NewWatchedLitIdx = FalseLitWatcherStart + 1; - while (isCurrentlyFalse(CNF.Clauses[NewWatchedLitIdx])) + while (isCurrentlyFalse(Formula.Clauses[NewWatchedLitIdx])) ++NewWatchedLitIdx; - const Literal NewWatchedLit = CNF.Clauses[NewWatchedLitIdx]; + const Literal NewWatchedLit = Formula.Clauses[NewWatchedLitIdx]; const Variable NewWatchedLitVar = var(NewWatchedLit); // Swap the old watched literal for the new one in `FalseLitWatcher` to // maintain the invariant that the watched literal is at the beginning of // the clause. - CNF.Clauses[NewWatchedLitIdx] = FalseLit; - CNF.Clauses[FalseLitWatcherStart] = NewWatchedLit; + Formula.Clauses[NewWatchedLitIdx] = FalseLit; + Formula.Clauses[FalseLitWatcherStart] = NewWatchedLit; // If the new watched literal isn't watched by any other clause and its // variable isn't assigned we need to add it to the active variables. @@ -571,8 +621,8 @@ class WatchedLiteralsSolverImpl { VarAssignments[NewWatchedLitVar] == Assignment::Unassigned) ActiveVars.push_back(NewWatchedLitVar); - CNF.NextWatched[FalseLitWatcher] = CNF.WatchedHead[NewWatchedLit]; - CNF.WatchedHead[NewWatchedLit] = FalseLitWatcher; + Formula.NextWatched[FalseLitWatcher] = Formula.WatchedHead[NewWatchedLit]; + Formula.WatchedHead[NewWatchedLit] = FalseLitWatcher; // Go to the next clause that watches `FalseLit`. FalseLitWatcher = NextFalseLitWatcher; @@ -582,15 +632,16 @@ class WatchedLiteralsSolverImpl { /// Returns true if and only if one of the clauses that watch `Lit` is a unit /// clause. bool watchedByUnitClause(Literal Lit) const { - for (ClauseID LitWatcher = CNF.WatchedHead[Lit]; LitWatcher != NullClause; - LitWatcher = CNF.NextWatched[LitWatcher]) { - llvm::ArrayRef Clause = CNF.clauseLiterals(LitWatcher); + for (ClauseID LitWatcher = Formula.WatchedHead[Lit]; + LitWatcher != NullClause; + LitWatcher = Formula.NextWatched[LitWatcher]) { + llvm::ArrayRef Clause = Formula.clauseLiterals(LitWatcher); // Assert the invariant that the watched literal is always the first one // in the clause. // FIXME: Consider replacing this with a test case that fails if the // invariant is broken by `updateWatchedLiterals`. That might not be easy - // due to the transformations performed by `buildCNF`. + // due to the transformations performed by `buildBooleanFormula`. assert(Clause.front() == Lit); if (isUnit(Clause)) @@ -614,7 +665,7 @@ class WatchedLiteralsSolverImpl { /// Returns true if and only if `Lit` is watched by a clause in `Formula`. bool isWatched(Literal Lit) const { - return CNF.WatchedHead[Lit] != NullClause; + return Formula.WatchedHead[Lit] != NullClause; } /// Returns an assignment for an unassigned variable. @@ -627,8 +678,8 @@ class WatchedLiteralsSolverImpl { /// Returns a set of all watched literals. llvm::DenseSet watchedLiterals() const { llvm::DenseSet WatchedLiterals; - for (Literal Lit = 2; Lit < CNF.WatchedHead.size(); Lit++) { - if (CNF.WatchedHead[Lit] == NullClause) + for (Literal Lit = 2; Lit < Formula.WatchedHead.size(); Lit++) { + if (Formula.WatchedHead[Lit] == NullClause) continue; WatchedLiterals.insert(Lit); } @@ -668,8 +719,7 @@ class WatchedLiteralsSolverImpl { } }; -Solver::Result -WatchedLiteralsSolver::solve(llvm::ArrayRef Vals) { +Solver::Result WatchedLiteralsSolver::solve(llvm::ArrayRef Vals) { if (Vals.empty()) return Solver::Result::Satisfiable({{}}); auto [Res, Iterations] = diff --git a/clang/unittests/Analysis/FlowSensitive/ArenaTest.cpp b/clang/unittests/Analysis/FlowSensitive/ArenaTest.cpp index 53131723ff5ce..407abf58529a5 100644 --- a/clang/unittests/Analysis/FlowSensitive/ArenaTest.cpp +++ b/clang/unittests/Analysis/FlowSensitive/ArenaTest.cpp @@ -7,7 +7,6 @@ //===----------------------------------------------------------------------===// #include "clang/Analysis/FlowSensitive/Arena.h" -#include "llvm/Support/ScopedPrinter.h" #include "gmock/gmock.h" #include "gtest/gtest.h" @@ -126,26 +125,5 @@ TEST_F(ArenaTest, GetOrCreateIffReturnsSameExprOnSubsequentCalls) { EXPECT_NE(&XIffY1, &XIffZ); } -TEST_F(ArenaTest, ValueToFormula) { - auto &X = A.create(); - auto &Y = A.create(); - auto &XIffY = A.makeEquals(X, Y); - auto &XOrNotY = A.makeOr(X, A.makeNot(Y)); - auto &Implies = A.makeImplies(XIffY, XOrNotY); - - EXPECT_EQ(llvm::to_string(A.getFormula(Implies)), - "((V0 = V1) => (V0 | !V1))"); -} - -TEST_F(ArenaTest, ValueToFormulaCached) { - auto &X = A.create(); - auto &Y = A.create(); - auto &XIffY = A.makeEquals(X, Y); - - auto &Formula1 = A.getFormula(XIffY); - auto &Formula2 = A.getFormula(XIffY); - EXPECT_EQ(&Formula1, &Formula2); -} - } // namespace } // namespace clang::dataflow diff --git a/clang/unittests/Analysis/FlowSensitive/DebugSupportTest.cpp b/clang/unittests/Analysis/FlowSensitive/DebugSupportTest.cpp index 8ee56ae08b98a..10fcd204c9ab0 100644 --- a/clang/unittests/Analysis/FlowSensitive/DebugSupportTest.cpp +++ b/clang/unittests/Analysis/FlowSensitive/DebugSupportTest.cpp @@ -8,9 +8,8 @@ #include "clang/Analysis/FlowSensitive/DebugSupport.h" #include "TestingSupport.h" -#include "clang/Analysis/FlowSensitive/Formula.h" -#include "llvm/Support/ScopedPrinter.h" -#include "llvm/Support/raw_ostream.h" +#include "clang/Analysis/FlowSensitive/Value.h" +#include "clang/Analysis/FlowSensitive/WatchedLiteralsSolver.h" #include "gmock/gmock.h" #include "gtest/gtest.h" @@ -23,88 +22,429 @@ using test::ConstraintContext; using testing::StrEq; TEST(BoolValueDebugStringTest, AtomicBoolean) { + // B0 ConstraintContext Ctx; auto B = Ctx.atom(); - auto Expected = "V0"; - EXPECT_THAT(llvm::to_string(*B), StrEq(Expected)); + auto Expected = R"(B0)"; + EXPECT_THAT(debugString(*B), StrEq(Expected)); +} + +TEST(BoolValueDebugStringTest, Top) { + ConstraintContext Ctx; + auto B = Ctx.top(); + + auto Expected = R"(top)"; + EXPECT_THAT(debugString(*B), StrEq(Expected)); } TEST(BoolValueDebugStringTest, Negation) { + // !B0 ConstraintContext Ctx; auto B = Ctx.neg(Ctx.atom()); - auto Expected = "!V0"; - EXPECT_THAT(llvm::to_string(*B), StrEq(Expected)); + auto Expected = R"((not + B0))"; + EXPECT_THAT(debugString(*B), StrEq(Expected)); } TEST(BoolValueDebugStringTest, Conjunction) { + // B0 ^ B1 ConstraintContext Ctx; auto B = Ctx.conj(Ctx.atom(), Ctx.atom()); - auto Expected = "(V0 & V1)"; - EXPECT_THAT(llvm::to_string(*B), StrEq(Expected)); + auto Expected = R"((and + B0 + B1))"; + EXPECT_THAT(debugString(*B), StrEq(Expected)); } TEST(BoolValueDebugStringTest, Disjunction) { + // B0 v B1 ConstraintContext Ctx; auto B = Ctx.disj(Ctx.atom(), Ctx.atom()); - auto Expected = "(V0 | V1)"; - EXPECT_THAT(llvm::to_string(*B), StrEq(Expected)); + auto Expected = R"((or + B0 + B1))"; + EXPECT_THAT(debugString(*B), StrEq(Expected)); } TEST(BoolValueDebugStringTest, Implication) { + // B0 => B1 ConstraintContext Ctx; auto B = Ctx.impl(Ctx.atom(), Ctx.atom()); - auto Expected = "(V0 => V1)"; - EXPECT_THAT(llvm::to_string(*B), StrEq(Expected)); + auto Expected = R"((=> + B0 + B1))"; + EXPECT_THAT(debugString(*B), StrEq(Expected)); } TEST(BoolValueDebugStringTest, Iff) { + // B0 <=> B1 ConstraintContext Ctx; auto B = Ctx.iff(Ctx.atom(), Ctx.atom()); - auto Expected = "(V0 = V1)"; - EXPECT_THAT(llvm::to_string(*B), StrEq(Expected)); + auto Expected = R"((= + B0 + B1))"; + EXPECT_THAT(debugString(*B), StrEq(Expected)); } TEST(BoolValueDebugStringTest, Xor) { + // (B0 ^ !B1) V (!B0 ^ B1) ConstraintContext Ctx; auto B0 = Ctx.atom(); auto B1 = Ctx.atom(); auto B = Ctx.disj(Ctx.conj(B0, Ctx.neg(B1)), Ctx.conj(Ctx.neg(B0), B1)); - auto Expected = "((V0 & !V1) | (!V0 & V1))"; - EXPECT_THAT(llvm::to_string(*B), StrEq(Expected)); + auto Expected = R"((or + (and + B0 + (not + B1)) + (and + (not + B0) + B1)))"; + EXPECT_THAT(debugString(*B), StrEq(Expected)); } TEST(BoolValueDebugStringTest, NestedBoolean) { + // B0 ^ (B1 v (B2 ^ (B3 v B4))) ConstraintContext Ctx; auto B = Ctx.conj( Ctx.atom(), Ctx.disj(Ctx.atom(), Ctx.conj(Ctx.atom(), Ctx.disj(Ctx.atom(), Ctx.atom())))); - auto Expected = "(V0 & (V1 | (V2 & (V3 | V4))))"; - EXPECT_THAT(llvm::to_string(*B), StrEq(Expected)); + auto Expected = R"((and + B0 + (or + B1 + (and + B2 + (or + B3 + B4)))))"; + EXPECT_THAT(debugString(*B), StrEq(Expected)); +} + +TEST(BoolValueDebugStringTest, AtomicBooleanWithName) { + // True + ConstraintContext Ctx; + auto True = cast(Ctx.atom()); + auto B = True; + + auto Expected = R"(True)"; + EXPECT_THAT(debugString(*B, {{True, "True"}}), StrEq(Expected)); +} + +TEST(BoolValueDebugStringTest, ComplexBooleanWithNames) { + // (Cond ^ Then ^ !Else) v (!Cond ^ !Then ^ Else) + ConstraintContext Ctx; + auto Cond = cast(Ctx.atom()); + auto Then = cast(Ctx.atom()); + auto Else = cast(Ctx.atom()); + auto B = Ctx.disj(Ctx.conj(Cond, Ctx.conj(Then, Ctx.neg(Else))), + Ctx.conj(Ctx.neg(Cond), Ctx.conj(Ctx.neg(Then), Else))); + + auto Expected = R"((or + (and + Cond + (and + Then + (not + Else))) + (and + (not + Cond) + (and + (not + Then) + Else))))"; + EXPECT_THAT(debugString(*B, {{Cond, "Cond"}, {Then, "Then"}, {Else, "Else"}}), + StrEq(Expected)); } TEST(BoolValueDebugStringTest, ComplexBooleanWithSomeNames) { + // (False && B0) v (True v B1) ConstraintContext Ctx; - auto True = Ctx.atom(); - auto False = Ctx.atom(); - Formula::AtomNames Names; - Names[True->getAtom()] = "true"; - Names[False->getAtom()] = "false"; + auto True = cast(Ctx.atom()); + auto False = cast(Ctx.atom()); auto B = Ctx.disj(Ctx.conj(False, Ctx.atom()), Ctx.disj(True, Ctx.atom())); - auto Expected = R"(((false & V2) | (true | V3)))"; - std::string Actual; - llvm::raw_string_ostream OS(Actual); - B->print(OS, &Names); - EXPECT_THAT(Actual, StrEq(Expected)); + auto Expected = R"((or + (and + False + B0) + (or + True + B1)))"; + EXPECT_THAT(debugString(*B, {{True, "True"}, {False, "False"}}), + StrEq(Expected)); +} + +TEST(ConstraintSetDebugStringTest, Empty) { + llvm::ArrayRef Constraints; + EXPECT_THAT(debugString(Constraints), StrEq("")); +} + +TEST(ConstraintSetDebugStringTest, Simple) { + ConstraintContext Ctx; + std::vector Constraints; + auto X = cast(Ctx.atom()); + auto Y = cast(Ctx.atom()); + Constraints.push_back(Ctx.disj(X, Y)); + Constraints.push_back(Ctx.disj(X, Ctx.neg(Y))); + + auto Expected = R"((or + X + Y) +(or + X + (not + Y)) +)"; + EXPECT_THAT(debugString(Constraints, {{X, "X"}, {Y, "Y"}}), + StrEq(Expected)); +} + +Solver::Result CheckSAT(std::vector Constraints) { + return WatchedLiteralsSolver().solve(std::move(Constraints)); +} + +TEST(SATCheckDebugStringTest, AtomicBoolean) { + // B0 + ConstraintContext Ctx; + std::vector Constraints({Ctx.atom()}); + auto Result = CheckSAT(Constraints); + + auto Expected = R"( +Constraints +------------ +B0 +------------ +Satisfiable. + +B0 = True +)"; + EXPECT_THAT(debugString(Constraints, Result), StrEq(Expected)); +} + +TEST(SATCheckDebugStringTest, AtomicBooleanAndNegation) { + // B0, !B0 + ConstraintContext Ctx; + auto B0 = Ctx.atom(); + std::vector Constraints({B0, Ctx.neg(B0)}); + auto Result = CheckSAT(Constraints); + + auto Expected = R"( +Constraints +------------ +B0 + +(not + B0) +------------ +Unsatisfiable. + +)"; + EXPECT_THAT(debugString(Constraints, Result), StrEq(Expected)); +} + +TEST(SATCheckDebugStringTest, MultipleAtomicBooleans) { + // B0, B1 + ConstraintContext Ctx; + std::vector Constraints({Ctx.atom(), Ctx.atom()}); + auto Result = CheckSAT(Constraints); + + auto Expected = R"( +Constraints +------------ +B0 + +B1 +------------ +Satisfiable. + +B0 = True +B1 = True +)"; + EXPECT_THAT(debugString(Constraints, Result), StrEq(Expected)); +} + +TEST(SATCheckDebugStringTest, Implication) { + // B0, B0 => B1 + ConstraintContext Ctx; + auto B0 = Ctx.atom(); + auto B1 = Ctx.atom(); + auto Impl = Ctx.disj(Ctx.neg(B0), B1); + std::vector Constraints({B0, Impl}); + auto Result = CheckSAT(Constraints); + + auto Expected = R"( +Constraints +------------ +B0 + +(or + (not + B0) + B1) +------------ +Satisfiable. + +B0 = True +B1 = True +)"; + EXPECT_THAT(debugString(Constraints, Result), StrEq(Expected)); } +TEST(SATCheckDebugStringTest, Iff) { + // B0, B0 <=> B1 + ConstraintContext Ctx; + auto B0 = Ctx.atom(); + auto B1 = Ctx.atom(); + auto Iff = Ctx.conj(Ctx.disj(Ctx.neg(B0), B1), Ctx.disj(B0, Ctx.neg(B1))); + std::vector Constraints({B0, Iff}); + auto Result = CheckSAT(Constraints); + + auto Expected = R"( +Constraints +------------ +B0 + +(and + (or + (not + B0) + B1) + (or + B0 + (not + B1))) +------------ +Satisfiable. + +B0 = True +B1 = True +)"; + EXPECT_THAT(debugString(Constraints, Result), StrEq(Expected)); +} + +TEST(SATCheckDebugStringTest, Xor) { + // B0, XOR(B0, B1) + ConstraintContext Ctx; + auto B0 = Ctx.atom(); + auto B1 = Ctx.atom(); + auto XOR = Ctx.disj(Ctx.conj(B0, Ctx.neg(B1)), Ctx.conj(Ctx.neg(B0), B1)); + std::vector Constraints({B0, XOR}); + auto Result = CheckSAT(Constraints); + + auto Expected = R"( +Constraints +------------ +B0 + +(or + (and + B0 + (not + B1)) + (and + (not + B0) + B1)) +------------ +Satisfiable. + +B0 = True +B1 = False +)"; + EXPECT_THAT(debugString(Constraints, Result), StrEq(Expected)); +} + +TEST(SATCheckDebugStringTest, ComplexBooleanWithNames) { + // Cond, (Cond ^ Then ^ !Else) v (!Cond ^ !Then ^ Else) + ConstraintContext Ctx; + auto Cond = cast(Ctx.atom()); + auto Then = cast(Ctx.atom()); + auto Else = cast(Ctx.atom()); + auto B = Ctx.disj(Ctx.conj(Cond, Ctx.conj(Then, Ctx.neg(Else))), + Ctx.conj(Ctx.neg(Cond), Ctx.conj(Ctx.neg(Then), Else))); + std::vector Constraints({Cond, B}); + auto Result = CheckSAT(Constraints); + + auto Expected = R"( +Constraints +------------ +Cond + +(or + (and + Cond + (and + Then + (not + Else))) + (and + (not + Cond) + (and + (not + Then) + Else))) +------------ +Satisfiable. + +Cond = True +Else = False +Then = True +)"; + EXPECT_THAT(debugString(Constraints, Result, + {{Cond, "Cond"}, {Then, "Then"}, {Else, "Else"}}), + StrEq(Expected)); +} + +TEST(SATCheckDebugStringTest, ComplexBooleanWithLongNames) { + // ThisIntEqZero, !IntsAreEq, ThisIntEqZero ^ OtherIntEqZero => IntsAreEq + ConstraintContext Ctx; + auto IntsAreEq = cast(Ctx.atom()); + auto ThisIntEqZero = cast(Ctx.atom()); + auto OtherIntEqZero = cast(Ctx.atom()); + auto BothZeroImpliesEQ = + Ctx.disj(Ctx.neg(Ctx.conj(ThisIntEqZero, OtherIntEqZero)), IntsAreEq); + std::vector Constraints( + {ThisIntEqZero, Ctx.neg(IntsAreEq), BothZeroImpliesEQ}); + auto Result = CheckSAT(Constraints); + + auto Expected = R"( +Constraints +------------ +ThisIntEqZero + +(not + IntsAreEq) + +(or + (not + (and + ThisIntEqZero + OtherIntEqZero)) + IntsAreEq) +------------ +Satisfiable. + +IntsAreEq = False +OtherIntEqZero = False +ThisIntEqZero = True +)"; + EXPECT_THAT(debugString(Constraints, Result, + {{IntsAreEq, "IntsAreEq"}, + {ThisIntEqZero, "ThisIntEqZero"}, + {OtherIntEqZero, "OtherIntEqZero"}}), + StrEq(Expected)); +} } // namespace diff --git a/clang/unittests/Analysis/FlowSensitive/SolverTest.cpp b/clang/unittests/Analysis/FlowSensitive/SolverTest.cpp index ba0a77a910d7c..9999dd3a475f1 100644 --- a/clang/unittests/Analysis/FlowSensitive/SolverTest.cpp +++ b/clang/unittests/Analysis/FlowSensitive/SolverTest.cpp @@ -9,10 +9,9 @@ #include #include "TestingSupport.h" -#include "clang/Analysis/FlowSensitive/Formula.h" #include "clang/Analysis/FlowSensitive/Solver.h" +#include "clang/Analysis/FlowSensitive/Value.h" #include "clang/Analysis/FlowSensitive/WatchedLiteralsSolver.h" -#include "llvm/ADT/ArrayRef.h" #include "gmock/gmock.h" #include "gtest/gtest.h" @@ -24,31 +23,26 @@ using namespace dataflow; using test::ConstraintContext; using testing::_; using testing::AnyOf; +using testing::IsEmpty; +using testing::Optional; using testing::Pair; using testing::UnorderedElementsAre; -constexpr auto AssignedTrue = Solver::Result::Assignment::AssignedTrue; -constexpr auto AssignedFalse = Solver::Result::Assignment::AssignedFalse; - // Checks if the conjunction of `Vals` is satisfiable and returns the // corresponding result. -Solver::Result solve(llvm::ArrayRef Vals) { +Solver::Result solve(llvm::ArrayRef Vals) { return WatchedLiteralsSolver().solve(Vals); } -MATCHER(unsat, "") { - return arg.getStatus() == Solver::Result::Status::Unsatisfiable; +void expectUnsatisfiable(Solver::Result Result) { + EXPECT_EQ(Result.getStatus(), Solver::Result::Status::Unsatisfiable); + EXPECT_FALSE(Result.getSolution().has_value()); } -MATCHER_P(sat, SolutionMatcher, - "is satisfiable, where solution " + - (testing::DescribeMatcher< - llvm::DenseMap>( - SolutionMatcher))) { - if (arg.getStatus() != Solver::Result::Status::Satisfiable) - return false; - auto Solution = *arg.getSolution(); - return testing::ExplainMatchResult(SolutionMatcher, Solution, - result_listener); + +template +void expectSatisfiable(Solver::Result Result, Matcher Solution) { + EXPECT_EQ(Result.getStatus(), Solver::Result::Status::Satisfiable); + EXPECT_THAT(Result.getSolution(), Optional(Solution)); } TEST(SolverTest, Var) { @@ -56,8 +50,9 @@ TEST(SolverTest, Var) { auto X = Ctx.atom(); // X - EXPECT_THAT(solve({X}), - sat(UnorderedElementsAre(Pair(X->getAtom(), AssignedTrue)))); + expectSatisfiable( + solve({X}), + UnorderedElementsAre(Pair(X, Solver::Result::Assignment::AssignedTrue))); } TEST(SolverTest, NegatedVar) { @@ -66,8 +61,9 @@ TEST(SolverTest, NegatedVar) { auto NotX = Ctx.neg(X); // !X - EXPECT_THAT(solve({NotX}), - sat(UnorderedElementsAre(Pair(X->getAtom(), AssignedFalse)))); + expectSatisfiable( + solve({NotX}), + UnorderedElementsAre(Pair(X, Solver::Result::Assignment::AssignedFalse))); } TEST(SolverTest, UnitConflict) { @@ -76,7 +72,7 @@ TEST(SolverTest, UnitConflict) { auto NotX = Ctx.neg(X); // X ^ !X - EXPECT_THAT(solve({X, NotX}), unsat()); + expectUnsatisfiable(solve({X, NotX})); } TEST(SolverTest, DistinctVars) { @@ -86,9 +82,36 @@ TEST(SolverTest, DistinctVars) { auto NotY = Ctx.neg(Y); // X ^ !Y - EXPECT_THAT(solve({X, NotY}), - sat(UnorderedElementsAre(Pair(X->getAtom(), AssignedTrue), - Pair(Y->getAtom(), AssignedFalse)))); + expectSatisfiable( + solve({X, NotY}), + UnorderedElementsAre(Pair(X, Solver::Result::Assignment::AssignedTrue), + Pair(Y, Solver::Result::Assignment::AssignedFalse))); +} + +TEST(SolverTest, Top) { + ConstraintContext Ctx; + auto X = Ctx.top(); + + // X. Since Top is anonymous, we do not get any results in the solution. + expectSatisfiable(solve({X}), IsEmpty()); +} + +TEST(SolverTest, NegatedTop) { + ConstraintContext Ctx; + auto X = Ctx.top(); + + // !X + expectSatisfiable(solve({Ctx.neg(X)}), IsEmpty()); +} + +TEST(SolverTest, DistinctTops) { + ConstraintContext Ctx; + auto X = Ctx.top(); + auto Y = Ctx.top(); + auto NotY = Ctx.neg(Y); + + // X ^ !Y + expectSatisfiable(solve({X, NotY}), IsEmpty()); } TEST(SolverTest, DoubleNegation) { @@ -98,7 +121,7 @@ TEST(SolverTest, DoubleNegation) { auto NotNotX = Ctx.neg(NotX); // !!X ^ !X - EXPECT_THAT(solve({NotNotX, NotX}), unsat()); + expectUnsatisfiable(solve({NotNotX, NotX})); } TEST(SolverTest, NegatedDisjunction) { @@ -109,7 +132,7 @@ TEST(SolverTest, NegatedDisjunction) { auto NotXOrY = Ctx.neg(XOrY); // !(X v Y) ^ (X v Y) - EXPECT_THAT(solve({NotXOrY, XOrY}), unsat()); + expectUnsatisfiable(solve({NotXOrY, XOrY})); } TEST(SolverTest, NegatedConjunction) { @@ -120,7 +143,7 @@ TEST(SolverTest, NegatedConjunction) { auto NotXAndY = Ctx.neg(XAndY); // !(X ^ Y) ^ (X ^ Y) - EXPECT_THAT(solve({NotXAndY, XAndY}), unsat()); + expectUnsatisfiable(solve({NotXAndY, XAndY})); } TEST(SolverTest, DisjunctionSameVarWithNegation) { @@ -130,7 +153,7 @@ TEST(SolverTest, DisjunctionSameVarWithNegation) { auto XOrNotX = Ctx.disj(X, NotX); // X v !X - EXPECT_THAT(solve({XOrNotX}), sat(_)); + expectSatisfiable(solve({XOrNotX}), _); } TEST(SolverTest, DisjunctionSameVar) { @@ -139,7 +162,7 @@ TEST(SolverTest, DisjunctionSameVar) { auto XOrX = Ctx.disj(X, X); // X v X - EXPECT_THAT(solve({XOrX}), sat(_)); + expectSatisfiable(solve({XOrX}), _); } TEST(SolverTest, ConjunctionSameVarsConflict) { @@ -149,7 +172,7 @@ TEST(SolverTest, ConjunctionSameVarsConflict) { auto XAndNotX = Ctx.conj(X, NotX); // X ^ !X - EXPECT_THAT(solve({XAndNotX}), unsat()); + expectUnsatisfiable(solve({XAndNotX})); } TEST(SolverTest, ConjunctionSameVar) { @@ -158,7 +181,7 @@ TEST(SolverTest, ConjunctionSameVar) { auto XAndX = Ctx.conj(X, X); // X ^ X - EXPECT_THAT(solve({XAndX}), sat(_)); + expectSatisfiable(solve({XAndX}), _); } TEST(SolverTest, PureVar) { @@ -171,9 +194,10 @@ TEST(SolverTest, PureVar) { auto NotXOrNotY = Ctx.disj(NotX, NotY); // (!X v Y) ^ (!X v !Y) - EXPECT_THAT(solve({NotXOrY, NotXOrNotY}), - sat(UnorderedElementsAre(Pair(X->getAtom(), AssignedFalse), - Pair(Y->getAtom(), _)))); + expectSatisfiable( + solve({NotXOrY, NotXOrNotY}), + UnorderedElementsAre(Pair(X, Solver::Result::Assignment::AssignedFalse), + Pair(Y, _))); } TEST(SolverTest, MustAssumeVarIsFalse) { @@ -187,9 +211,10 @@ TEST(SolverTest, MustAssumeVarIsFalse) { auto NotXOrNotY = Ctx.disj(NotX, NotY); // (X v Y) ^ (!X v Y) ^ (!X v !Y) - EXPECT_THAT(solve({XOrY, NotXOrY, NotXOrNotY}), - sat(UnorderedElementsAre(Pair(X->getAtom(), AssignedFalse), - Pair(Y->getAtom(), AssignedTrue)))); + expectSatisfiable( + solve({XOrY, NotXOrY, NotXOrNotY}), + UnorderedElementsAre(Pair(X, Solver::Result::Assignment::AssignedFalse), + Pair(Y, Solver::Result::Assignment::AssignedTrue))); } TEST(SolverTest, DeepConflict) { @@ -204,7 +229,7 @@ TEST(SolverTest, DeepConflict) { auto XOrNotY = Ctx.disj(X, NotY); // (X v Y) ^ (!X v Y) ^ (!X v !Y) ^ (X v !Y) - EXPECT_THAT(solve({XOrY, NotXOrY, NotXOrNotY, XOrNotY}), unsat()); + expectUnsatisfiable(solve({XOrY, NotXOrY, NotXOrNotY, XOrNotY})); } TEST(SolverTest, IffIsEquivalentToDNF) { @@ -218,7 +243,7 @@ TEST(SolverTest, IffIsEquivalentToDNF) { auto NotEquivalent = Ctx.neg(Ctx.iff(XIffY, XIffYDNF)); // !((X <=> Y) <=> ((X ^ Y) v (!X ^ !Y))) - EXPECT_THAT(solve({NotEquivalent}), unsat()); + expectUnsatisfiable(solve({NotEquivalent})); } TEST(SolverTest, IffSameVars) { @@ -227,7 +252,7 @@ TEST(SolverTest, IffSameVars) { auto XEqX = Ctx.iff(X, X); // X <=> X - EXPECT_THAT(solve({XEqX}), sat(_)); + expectSatisfiable(solve({XEqX}), _); } TEST(SolverTest, IffDistinctVars) { @@ -237,12 +262,14 @@ TEST(SolverTest, IffDistinctVars) { auto XEqY = Ctx.iff(X, Y); // X <=> Y - EXPECT_THAT( + expectSatisfiable( solve({XEqY}), - sat(AnyOf(UnorderedElementsAre(Pair(X->getAtom(), AssignedTrue), - Pair(Y->getAtom(), AssignedTrue)), - UnorderedElementsAre(Pair(X->getAtom(), AssignedFalse), - Pair(Y->getAtom(), AssignedFalse))))); + AnyOf(UnorderedElementsAre( + Pair(X, Solver::Result::Assignment::AssignedTrue), + Pair(Y, Solver::Result::Assignment::AssignedTrue)), + UnorderedElementsAre( + Pair(X, Solver::Result::Assignment::AssignedFalse), + Pair(Y, Solver::Result::Assignment::AssignedFalse)))); } TEST(SolverTest, IffWithUnits) { @@ -252,9 +279,10 @@ TEST(SolverTest, IffWithUnits) { auto XEqY = Ctx.iff(X, Y); // (X <=> Y) ^ X ^ Y - EXPECT_THAT(solve({XEqY, X, Y}), - sat(UnorderedElementsAre(Pair(X->getAtom(), AssignedTrue), - Pair(Y->getAtom(), AssignedTrue)))); + expectSatisfiable( + solve({XEqY, X, Y}), + UnorderedElementsAre(Pair(X, Solver::Result::Assignment::AssignedTrue), + Pair(Y, Solver::Result::Assignment::AssignedTrue))); } TEST(SolverTest, IffWithUnitsConflict) { @@ -265,7 +293,7 @@ TEST(SolverTest, IffWithUnitsConflict) { auto NotY = Ctx.neg(Y); // (X <=> Y) ^ X !Y - EXPECT_THAT(solve({XEqY, X, NotY}), unsat()); + expectUnsatisfiable(solve({XEqY, X, NotY})); } TEST(SolverTest, IffTransitiveConflict) { @@ -278,7 +306,7 @@ TEST(SolverTest, IffTransitiveConflict) { auto NotX = Ctx.neg(X); // (X <=> Y) ^ (Y <=> Z) ^ Z ^ !X - EXPECT_THAT(solve({XEqY, YEqZ, Z, NotX}), unsat()); + expectUnsatisfiable(solve({XEqY, YEqZ, Z, NotX})); } TEST(SolverTest, DeMorgan) { @@ -295,7 +323,7 @@ TEST(SolverTest, DeMorgan) { auto B = Ctx.iff(Ctx.neg(Ctx.conj(Z, W)), Ctx.disj(Ctx.neg(Z), Ctx.neg(W))); // A ^ B - EXPECT_THAT(solve({A, B}), sat(_)); + expectSatisfiable(solve({A, B}), _); } TEST(SolverTest, RespectsAdditionalConstraints) { @@ -306,7 +334,7 @@ TEST(SolverTest, RespectsAdditionalConstraints) { auto NotY = Ctx.neg(Y); // (X <=> Y) ^ X ^ !Y - EXPECT_THAT(solve({XEqY, X, NotY}), unsat()); + expectUnsatisfiable(solve({XEqY, X, NotY})); } TEST(SolverTest, ImplicationIsEquivalentToDNF) { @@ -318,7 +346,7 @@ TEST(SolverTest, ImplicationIsEquivalentToDNF) { auto NotEquivalent = Ctx.neg(Ctx.iff(XImpliesY, XImpliesYDNF)); // !((X => Y) <=> (!X v Y)) - EXPECT_THAT(solve({NotEquivalent}), unsat()); + expectUnsatisfiable(solve({NotEquivalent})); } TEST(SolverTest, ImplicationConflict) { @@ -329,7 +357,7 @@ TEST(SolverTest, ImplicationConflict) { auto *XAndNotY = Ctx.conj(X, Ctx.neg(Y)); // X => Y ^ X ^ !Y - EXPECT_THAT(solve({XImplY, XAndNotY}), unsat()); + expectUnsatisfiable(solve({XImplY, XAndNotY})); } TEST(SolverTest, LowTimeoutResultsInTimedOut) { diff --git a/clang/unittests/Analysis/FlowSensitive/TestingSupport.h b/clang/unittests/Analysis/FlowSensitive/TestingSupport.h index 93991d87d77f2..e258eb7e75f59 100644 --- a/clang/unittests/Analysis/FlowSensitive/TestingSupport.h +++ b/clang/unittests/Analysis/FlowSensitive/TestingSupport.h @@ -43,7 +43,6 @@ #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" -#include "llvm/Support/Allocator.h" #include "llvm/Support/Errc.h" #include "llvm/Support/Error.h" #include "llvm/Testing/Annotations/Annotations.h" @@ -443,44 +442,55 @@ ValueT &getValueForDecl(ASTContext &ASTCtx, const Environment &Env, /// Creates and owns constraints which are boolean values. class ConstraintContext { - unsigned NextAtom = 0; - llvm::BumpPtrAllocator A; - - const Formula *make(Formula::Kind K, - llvm::ArrayRef Operands) { - return &Formula::create(A, K, Operands); +public: + // Creates an atomic boolean value. + BoolValue *atom() { + Vals.push_back(std::make_unique()); + return Vals.back().get(); } -public: - // Returns a reference to a fresh atomic variable. - const Formula *atom() { - return &Formula::create(A, Formula::AtomRef, {}, NextAtom++); + // Creates an instance of the Top boolean value. + BoolValue *top() { + Vals.push_back(std::make_unique()); + return Vals.back().get(); } - // Creates a boolean conjunction. - const Formula *conj(const Formula *LHS, const Formula *RHS) { - return make(Formula::And, {LHS, RHS}); + // Creates a boolean conjunction value. + BoolValue *conj(BoolValue *LeftSubVal, BoolValue *RightSubVal) { + Vals.push_back( + std::make_unique(*LeftSubVal, *RightSubVal)); + return Vals.back().get(); } - // Creates a boolean disjunction. - const Formula *disj(const Formula *LHS, const Formula *RHS) { - return make(Formula::Or, {LHS, RHS}); + // Creates a boolean disjunction value. + BoolValue *disj(BoolValue *LeftSubVal, BoolValue *RightSubVal) { + Vals.push_back( + std::make_unique(*LeftSubVal, *RightSubVal)); + return Vals.back().get(); } - // Creates a boolean negation. - const Formula *neg(const Formula *Operand) { - return make(Formula::Not, {Operand}); + // Creates a boolean negation value. + BoolValue *neg(BoolValue *SubVal) { + Vals.push_back(std::make_unique(*SubVal)); + return Vals.back().get(); } - // Creates a boolean implication. - const Formula *impl(const Formula *LHS, const Formula *RHS) { - return make(Formula::Implies, {LHS, RHS}); + // Creates a boolean implication value. + BoolValue *impl(BoolValue *LeftSubVal, BoolValue *RightSubVal) { + Vals.push_back( + std::make_unique(*LeftSubVal, *RightSubVal)); + return Vals.back().get(); } - // Creates a boolean biconditional. - const Formula *iff(const Formula *LHS, const Formula *RHS) { - return make(Formula::Equal, {LHS, RHS}); + // Creates a boolean biconditional value. + BoolValue *iff(BoolValue *LeftSubVal, BoolValue *RightSubVal) { + Vals.push_back( + std::make_unique(*LeftSubVal, *RightSubVal)); + return Vals.back().get(); } + +private: + std::vector> Vals; }; } // namespace test