diff --git a/llvm/test/Analysis/ScalarEvolution/exit-count-select-safe.ll b/llvm/test/Analysis/ScalarEvolution/exit-count-select-safe.ll index 65ea5e09b20bc..e8fb7c9d779cc 100644 --- a/llvm/test/Analysis/ScalarEvolution/exit-count-select-safe.ll +++ b/llvm/test/Analysis/ScalarEvolution/exit-count-select-safe.ll @@ -1048,4 +1048,291 @@ guard.fail: ret i32 -1 } +define i32 @logical_and_known_smaller(i16 %n, i16 %m) { +; CHECK-LABEL: 'logical_and_known_smaller' +; CHECK-NEXT: Classifying expressions for: @logical_and_known_smaller +; CHECK-NEXT: %n.ext = zext i16 %n to i32 +; CHECK-NEXT: --> (zext i16 %n to i32) U: [0,65536) S: [0,65536) +; CHECK-NEXT: %m.ext = zext i16 %m to i32 +; CHECK-NEXT: --> (zext i16 %m to i32) U: [0,65536) S: [0,65536) +; CHECK-NEXT: %m.add = add i32 %m.ext, 65536 +; CHECK-NEXT: --> (65536 + (zext i16 %m to i32)) U: [65536,131072) S: [65536,131072) +; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] +; CHECK-NEXT: --> {0,+,1}<%loop> U: [0,65536) S: [0,65536) Exits: ((zext i16 %n to i32) umin_seq (65536 + (zext i16 %m to i32))) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: %i.next = add i32 %i, 1 +; CHECK-NEXT: --> {1,+,1}<%loop> U: [1,65537) S: [1,65537) Exits: (1 + ((zext i16 %n to i32) umin_seq (65536 + (zext i16 %m to i32)))) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false +; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } +; CHECK-NEXT: Determining loop execution counts for: @logical_and_known_smaller +; CHECK-NEXT: Loop %loop: backedge-taken count is ((zext i16 %n to i32) umin_seq (65536 + (zext i16 %m to i32))) +; CHECK-NEXT: Loop %loop: max backedge-taken count is 65535 +; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((zext i16 %n to i32) umin_seq (65536 + (zext i16 %m to i32))) +; CHECK-NEXT: Predicates: +; CHECK: Loop %loop: Trip multiple is 1 +; +entry: + %n.ext = zext i16 %n to i32 + %m.ext = zext i16 %m to i32 + %m.add = add i32 %m.ext, 65536 + br label %loop +loop: + %i = phi i32 [0, %entry], [%i.next, %loop] + %i.next = add i32 %i, 1 + %cond_p0 = icmp ult i32 %i, %n.ext + %cond_p1 = icmp ult i32 %i, %m.add + %cond = select i1 %cond_p0, i1 %cond_p1, i1 false + br i1 %cond, label %loop, label %exit +exit: + ret i32 %i +} + +define i32 @logical_and_known_smaller_equal(i16 %n, i16 %m) { +; CHECK-LABEL: 'logical_and_known_smaller_equal' +; CHECK-NEXT: Classifying expressions for: @logical_and_known_smaller_equal +; CHECK-NEXT: %n.ext = zext i16 %n to i32 +; CHECK-NEXT: --> (zext i16 %n to i32) U: [0,65536) S: [0,65536) +; CHECK-NEXT: %m.ext = zext i16 %m to i32 +; CHECK-NEXT: --> (zext i16 %m to i32) U: [0,65536) S: [0,65536) +; CHECK-NEXT: %m.add = add i32 %m.ext, 65535 +; CHECK-NEXT: --> (65535 + (zext i16 %m to i32)) U: [65535,131071) S: [65535,131071) +; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] +; CHECK-NEXT: --> {0,+,1}<%loop> U: [0,65536) S: [0,65536) Exits: ((zext i16 %n to i32) umin_seq (65535 + (zext i16 %m to i32))) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: %i.next = add i32 %i, 1 +; CHECK-NEXT: --> {1,+,1}<%loop> U: [1,65537) S: [1,65537) Exits: (1 + ((zext i16 %n to i32) umin_seq (65535 + (zext i16 %m to i32)))) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false +; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } +; CHECK-NEXT: Determining loop execution counts for: @logical_and_known_smaller_equal +; CHECK-NEXT: Loop %loop: backedge-taken count is ((zext i16 %n to i32) umin_seq (65535 + (zext i16 %m to i32))) +; CHECK-NEXT: Loop %loop: max backedge-taken count is 65535 +; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((zext i16 %n to i32) umin_seq (65535 + (zext i16 %m to i32))) +; CHECK-NEXT: Predicates: +; CHECK: Loop %loop: Trip multiple is 1 +; +entry: + %n.ext = zext i16 %n to i32 + %m.ext = zext i16 %m to i32 + %m.add = add i32 %m.ext, 65535 + br label %loop +loop: + %i = phi i32 [0, %entry], [%i.next, %loop] + %i.next = add i32 %i, 1 + %cond_p0 = icmp ult i32 %i, %n.ext + %cond_p1 = icmp ult i32 %i, %m.add + %cond = select i1 %cond_p0, i1 %cond_p1, i1 false + br i1 %cond, label %loop, label %exit +exit: + ret i32 %i +} + +define i32 @logical_and_not_known_smaller_equal(i16 %n, i16 %m) { +; CHECK-LABEL: 'logical_and_not_known_smaller_equal' +; CHECK-NEXT: Classifying expressions for: @logical_and_not_known_smaller_equal +; CHECK-NEXT: %n.ext = zext i16 %n to i32 +; CHECK-NEXT: --> (zext i16 %n to i32) U: [0,65536) S: [0,65536) +; CHECK-NEXT: %m.ext = zext i16 %m to i32 +; CHECK-NEXT: --> (zext i16 %m to i32) U: [0,65536) S: [0,65536) +; CHECK-NEXT: %m.add = add i32 %m.ext, 65534 +; CHECK-NEXT: --> (65534 + (zext i16 %m to i32)) U: [65534,131070) S: [65534,131070) +; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] +; CHECK-NEXT: --> {0,+,1}<%loop> U: [0,65536) S: [0,65536) Exits: ((zext i16 %n to i32) umin_seq (65534 + (zext i16 %m to i32))) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: %i.next = add i32 %i, 1 +; CHECK-NEXT: --> {1,+,1}<%loop> U: [1,65537) S: [1,65537) Exits: (1 + ((zext i16 %n to i32) umin_seq (65534 + (zext i16 %m to i32)))) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false +; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } +; CHECK-NEXT: Determining loop execution counts for: @logical_and_not_known_smaller_equal +; CHECK-NEXT: Loop %loop: backedge-taken count is ((zext i16 %n to i32) umin_seq (65534 + (zext i16 %m to i32))) +; CHECK-NEXT: Loop %loop: max backedge-taken count is 65535 +; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((zext i16 %n to i32) umin_seq (65534 + (zext i16 %m to i32))) +; CHECK-NEXT: Predicates: +; CHECK: Loop %loop: Trip multiple is 1 +; +entry: + %n.ext = zext i16 %n to i32 + %m.ext = zext i16 %m to i32 + %m.add = add i32 %m.ext, 65534 + br label %loop +loop: + %i = phi i32 [0, %entry], [%i.next, %loop] + %i.next = add i32 %i, 1 + %cond_p0 = icmp ult i32 %i, %n.ext + %cond_p1 = icmp ult i32 %i, %m.add + %cond = select i1 %cond_p0, i1 %cond_p1, i1 false + br i1 %cond, label %loop, label %exit +exit: + ret i32 %i +} + +define i32 @logical_and_known_greater(i16 %n, i16 %m) { +; CHECK-LABEL: 'logical_and_known_greater' +; CHECK-NEXT: Classifying expressions for: @logical_and_known_greater +; CHECK-NEXT: %n.ext = zext i16 %n to i32 +; CHECK-NEXT: --> (zext i16 %n to i32) U: [0,65536) S: [0,65536) +; CHECK-NEXT: %m.ext = zext i16 %m to i32 +; CHECK-NEXT: --> (zext i16 %m to i32) U: [0,65536) S: [0,65536) +; CHECK-NEXT: %m.add = add i32 %m.ext, 65536 +; CHECK-NEXT: --> (65536 + (zext i16 %m to i32)) U: [65536,131072) S: [65536,131072) +; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] +; CHECK-NEXT: --> {0,+,1}<%loop> U: [0,65536) S: [0,65536) Exits: (zext i16 %n to i32) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: %i.next = add i32 %i, 1 +; CHECK-NEXT: --> {1,+,1}<%loop> U: [1,65537) S: [1,65537) Exits: (1 + (zext i16 %n to i32)) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false +; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } +; CHECK-NEXT: Determining loop execution counts for: @logical_and_known_greater +; CHECK-NEXT: Loop %loop: backedge-taken count is (zext i16 %n to i32) +; CHECK-NEXT: Loop %loop: max backedge-taken count is 65535 +; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (zext i16 %n to i32) +; CHECK-NEXT: Predicates: +; CHECK: Loop %loop: Trip multiple is 1 +; +entry: + %n.ext = zext i16 %n to i32 + %m.ext = zext i16 %m to i32 + %m.add = add i32 %m.ext, 65536 + br label %loop +loop: + %i = phi i32 [0, %entry], [%i.next, %loop] + %i.next = add i32 %i, 1 + %cond_p0 = icmp ult i32 %i, %m.add + %cond_p1 = icmp ult i32 %i, %n.ext + %cond = select i1 %cond_p0, i1 %cond_p1, i1 false + br i1 %cond, label %loop, label %exit +exit: + ret i32 %i +} + +define i32 @logical_and_known_greater_equal(i16 %n, i16 %m) { +; CHECK-LABEL: 'logical_and_known_greater_equal' +; CHECK-NEXT: Classifying expressions for: @logical_and_known_greater_equal +; CHECK-NEXT: %n.ext = zext i16 %n to i32 +; CHECK-NEXT: --> (zext i16 %n to i32) U: [0,65536) S: [0,65536) +; CHECK-NEXT: %m.ext = zext i16 %m to i32 +; CHECK-NEXT: --> (zext i16 %m to i32) U: [0,65536) S: [0,65536) +; CHECK-NEXT: %m.add = add i32 %m.ext, 65535 +; CHECK-NEXT: --> (65535 + (zext i16 %m to i32)) U: [65535,131071) S: [65535,131071) +; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] +; CHECK-NEXT: --> {0,+,1}<%loop> U: [0,65536) S: [0,65536) Exits: (zext i16 %n to i32) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: %i.next = add i32 %i, 1 +; CHECK-NEXT: --> {1,+,1}<%loop> U: [1,65537) S: [1,65537) Exits: (1 + (zext i16 %n to i32)) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false +; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } +; CHECK-NEXT: Determining loop execution counts for: @logical_and_known_greater_equal +; CHECK-NEXT: Loop %loop: backedge-taken count is (zext i16 %n to i32) +; CHECK-NEXT: Loop %loop: max backedge-taken count is 65535 +; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (zext i16 %n to i32) +; CHECK-NEXT: Predicates: +; CHECK: Loop %loop: Trip multiple is 1 +; +entry: + %n.ext = zext i16 %n to i32 + %m.ext = zext i16 %m to i32 + %m.add = add i32 %m.ext, 65535 + br label %loop +loop: + %i = phi i32 [0, %entry], [%i.next, %loop] + %i.next = add i32 %i, 1 + %cond_p0 = icmp ult i32 %i, %m.add + %cond_p1 = icmp ult i32 %i, %n.ext + %cond = select i1 %cond_p0, i1 %cond_p1, i1 false + br i1 %cond, label %loop, label %exit +exit: + ret i32 %i +} + +define i32 @logical_and_not_known_greater_equal(i16 %n, i16 %m) { +; CHECK-LABEL: 'logical_and_not_known_greater_equal' +; CHECK-NEXT: Classifying expressions for: @logical_and_not_known_greater_equal +; CHECK-NEXT: %n.ext = zext i16 %n to i32 +; CHECK-NEXT: --> (zext i16 %n to i32) U: [0,65536) S: [0,65536) +; CHECK-NEXT: %m.ext = zext i16 %m to i32 +; CHECK-NEXT: --> (zext i16 %m to i32) U: [0,65536) S: [0,65536) +; CHECK-NEXT: %m.add = add i32 %m.ext, 65534 +; CHECK-NEXT: --> (65534 + (zext i16 %m to i32)) U: [65534,131070) S: [65534,131070) +; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] +; CHECK-NEXT: --> {0,+,1}<%loop> U: [0,65536) S: [0,65536) Exits: ((zext i16 %n to i32) umin (65534 + (zext i16 %m to i32))) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: %i.next = add i32 %i, 1 +; CHECK-NEXT: --> {1,+,1}<%loop> U: [1,65537) S: [1,65537) Exits: (1 + ((zext i16 %n to i32) umin (65534 + (zext i16 %m to i32)))) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false +; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } +; CHECK-NEXT: Determining loop execution counts for: @logical_and_not_known_greater_equal +; CHECK-NEXT: Loop %loop: backedge-taken count is ((zext i16 %n to i32) umin (65534 + (zext i16 %m to i32))) +; CHECK-NEXT: Loop %loop: max backedge-taken count is 65535 +; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((zext i16 %n to i32) umin (65534 + (zext i16 %m to i32))) +; CHECK-NEXT: Predicates: +; CHECK: Loop %loop: Trip multiple is 1 +; +entry: + %n.ext = zext i16 %n to i32 + %m.ext = zext i16 %m to i32 + %m.add = add i32 %m.ext, 65534 + br label %loop +loop: + %i = phi i32 [0, %entry], [%i.next, %loop] + %i.next = add i32 %i, 1 + %cond_p0 = icmp ult i32 %i, %m.add + %cond_p1 = icmp ult i32 %i, %n.ext + %cond = select i1 %cond_p0, i1 %cond_p1, i1 false + br i1 %cond, label %loop, label %exit +exit: + ret i32 %i +} + +define i32 @logical_and_zero_arg1(i32 %n) { +; CHECK-LABEL: 'logical_and_zero_arg1' +; CHECK-NEXT: Classifying expressions for: @logical_and_zero_arg1 +; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] +; CHECK-NEXT: --> {0,+,1}<%loop> U: [0,1) S: [0,1) Exits: 0 LoopDispositions: { %loop: Computable } +; CHECK-NEXT: %i.next = add i32 %i, 1 +; CHECK-NEXT: --> {1,+,1}<%loop> U: [1,2) S: [1,2) Exits: 1 LoopDispositions: { %loop: Computable } +; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false +; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: false LoopDispositions: { %loop: Variant } +; CHECK-NEXT: Determining loop execution counts for: @logical_and_zero_arg1 +; CHECK-NEXT: Loop %loop: backedge-taken count is 0 +; CHECK-NEXT: Loop %loop: max backedge-taken count is 0 +; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is 0 +; CHECK-NEXT: Predicates: +; CHECK: Loop %loop: Trip multiple is 1 +; +entry: + br label %loop +loop: + %i = phi i32 [0, %entry], [%i.next, %loop] + %i.next = add i32 %i, 1 + %cond_p0 = icmp ult i32 %i, 0 + %cond_p1 = icmp ult i32 %i, %n + %cond = select i1 %cond_p0, i1 %cond_p1, i1 false + br i1 %cond, label %loop, label %exit +exit: + ret i32 %i +} + +define i32 @logical_and_zero_arg2(i32 %n) { +; CHECK-LABEL: 'logical_and_zero_arg2' +; CHECK-NEXT: Classifying expressions for: @logical_and_zero_arg2 +; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] +; CHECK-NEXT: --> {0,+,1}<%loop> U: [0,1) S: [0,1) Exits: 0 LoopDispositions: { %loop: Computable } +; CHECK-NEXT: %i.next = add i32 %i, 1 +; CHECK-NEXT: --> {1,+,1}<%loop> U: [1,2) S: [1,2) Exits: 1 LoopDispositions: { %loop: Computable } +; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false +; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: false LoopDispositions: { %loop: Variant } +; CHECK-NEXT: Determining loop execution counts for: @logical_and_zero_arg2 +; CHECK-NEXT: Loop %loop: backedge-taken count is 0 +; CHECK-NEXT: Loop %loop: max backedge-taken count is 0 +; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is 0 +; CHECK-NEXT: Predicates: +; CHECK: Loop %loop: Trip multiple is 1 +; +entry: + br label %loop +loop: + %i = phi i32 [0, %entry], [%i.next, %loop] + %i.next = add i32 %i, 1 + %cond_p0 = icmp ult i32 %i, %n + %cond_p1 = icmp ult i32 %i, 0 + %cond = select i1 %cond_p0, i1 %cond_p1, i1 false + br i1 %cond, label %loop, label %exit +exit: + ret i32 %i +} + + declare i32 @llvm.umin.i32(i32, i32)