diff --git a/flang/include/flang/Lower/ConvertArrayConstructor.h b/flang/include/flang/Lower/ConvertArrayConstructor.h new file mode 100644 index 0000000000000..69cad2a526689 --- /dev/null +++ b/flang/include/flang/Lower/ConvertArrayConstructor.h @@ -0,0 +1,46 @@ +//===-- ConvertArrayConstructor.h -- Array constructor lowering -*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ +// +//===----------------------------------------------------------------------===// +/// +/// Implements the conversion from evaluate::ArrayConstructor to HLFIR. +/// +//===----------------------------------------------------------------------===// +#ifndef FORTRAN_LOWER_CONVERTARRAYCONSTRUCTOR_H +#define FORTRAN_LOWER_CONVERTARRAYCONSTRUCTOR_H + +#include "flang/Evaluate/type.h" +#include "flang/Optimizer/Builder/HLFIRTools.h" + +namespace Fortran::evaluate { +template +class ArrayConstructor; +} + +namespace Fortran::lower { +class AbstractConverter; +class SymMap; +class StatementContext; + +/// Class to lower evaluate::ArrayConstructor to hlfir::EntityWithAttributes. +template +class ArrayConstructorBuilder { +public: + static hlfir::EntityWithAttributes + gen(mlir::Location loc, Fortran::lower::AbstractConverter &converter, + const Fortran::evaluate::ArrayConstructor &expr, + Fortran::lower::SymMap &symMap, + Fortran::lower::StatementContext &stmtCtx); +}; +using namespace evaluate; +FOR_EACH_SPECIFIC_TYPE(extern template class ArrayConstructorBuilder, ) +} // namespace Fortran::lower + +#endif // FORTRAN_LOWER_CONVERTARRAYCONSTRUCTOR_H diff --git a/flang/lib/Lower/CMakeLists.txt b/flang/lib/Lower/CMakeLists.txt index d4a12edfc56bc..7d2264c3ed8fb 100644 --- a/flang/lib/Lower/CMakeLists.txt +++ b/flang/lib/Lower/CMakeLists.txt @@ -5,6 +5,7 @@ add_flang_library(FortranLower Bridge.cpp CallInterface.cpp Coarray.cpp + ConvertArrayConstructor.cpp ConvertCall.cpp ConvertConstant.cpp ConvertExpr.cpp diff --git a/flang/lib/Lower/ConvertArrayConstructor.cpp b/flang/lib/Lower/ConvertArrayConstructor.cpp new file mode 100644 index 0000000000000..2343a8a2edc77 --- /dev/null +++ b/flang/lib/Lower/ConvertArrayConstructor.cpp @@ -0,0 +1,538 @@ +//===- ConvertArrayConstructor.cpp -- Array Constructor ---------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#include "flang/Lower/ConvertArrayConstructor.h" +#include "flang/Evaluate/expression.h" +#include "flang/Lower/AbstractConverter.h" +#include "flang/Lower/ConvertExprToHLFIR.h" +#include "flang/Lower/ConvertType.h" +#include "flang/Lower/StatementContext.h" +#include "flang/Lower/SymbolMap.h" +#include "flang/Optimizer/Builder/HLFIRTools.h" +#include "flang/Optimizer/Builder/Todo.h" +#include "flang/Optimizer/HLFIR/HLFIROps.h" + +// Array constructors are lowered with three different strategies. +// All strategies are not possible with all array constructors. +// +// - Strategy 1: runtime approach (RuntimeTempStrategy). +// This strategy works will all array constructors, but will create more +// complex code that is harder to optimize. An allocatable temp is created, +// it may be unallocated if the array constructor length parameters or extent +// could not be computed. Then, the runtime is called to push lowered +// ac-value (array constructor elements) into the allocatable. The runtime +// will allocate or reallocate as needed while values are being pushed. +// In the end, the allocatable contain a temporary with all the array +// constructor evaluated elements. +// +// - Strategy 2: inlined temporary approach (InlinedTempStrategyImpl) +// This strategy can only be used if the array constructor extent and length +// parameters can be pre-computed without evaluating any ac-value, and if all +// of the ac-value are scalars (at least for now). +// A temporary is allocated inline in one go, and an index pointing at the +// current ac-value position in the array constructor element sequence is +// maintained and used to store ac-value as they are being lowered. +// +// - Strategy 3: "function of the indices" approach (AsElementalStrategy) +// This strategy can only be used if the array constructor extent and length +// parameters can be pre-computed and, if the array constructor is of the +// form "[(scalar_expr, ac-implied-do-control)]". In this case, it is lowered +// into an hlfir.elemental without creating any temporary in lowering. This +// form should maximize the chance of array temporary elision when assigning +// the array constructor, potentially reshaped, to an array variable. +// +// The array constructor lowering looks like: +// ``` +// strategy = selectArrayCtorLoweringStrategy(array-ctor-expr); +// for (ac-value : array-ctor-expr) +// if (ac-value is expression) { +// strategy.pushValue(ac-value); +// } else if (ac-value is implied-do) { +// strategy.startImpliedDo(lower, upper, stride); +// // lower nested values +// } +// result = strategy.finishArrayCtorLowering(); +// ``` + +//===----------------------------------------------------------------------===// +// Definition of the lowering strategies. Each lowering strategy is defined +// as a class that implements "pushValue", "startImpliedDo", and +// "finishArrayCtorLowering". +//===----------------------------------------------------------------------===// + +namespace { +/// Class that implements the "inlined temp strategy" to lower array +/// constructors. It must be further provided a CounterType class to specify how +/// the current ac-value insertion position is tracked. +template +class InlinedTempStrategyImpl { + /// Name that will be given to the temporary allocation and hlfir.declare in + /// the IR. + static constexpr char tempName[] = ".tmp.arrayctor"; + +public: + /// Start lowering an array constructor according to the inline strategy. + /// The temporary is created right away. + InlinedTempStrategyImpl(mlir::Location loc, fir::FirOpBuilder &builder, + fir::SequenceType declaredType, mlir::Value extent, + llvm::ArrayRef lengths) + : one{builder.createIntegerConstant(loc, builder.getIndexType(), 1)}, + counter{loc, builder, one} { + // Allocate the temporary storage. + llvm::SmallVector extents{extent}; + mlir::Value tempStorage = builder.createHeapTemporary( + loc, declaredType, tempName, extents, lengths); + mlir::Value shape = builder.genShape(loc, extents); + temp = + builder + .create(loc, tempStorage, tempName, shape, + lengths, fir::FortranVariableFlagsAttr{}) + .getBase(); + } + + /// Push a lowered ac-value into the current insertion point and + /// increment the insertion point. + void pushValue(mlir::Location loc, fir::FirOpBuilder &builder, + hlfir::Entity value) { + assert(value.isScalar() && "cannot use inlined temp with array values"); + mlir::Value indexValue = counter.getAndIncrementIndex(loc, builder, one); + hlfir::Entity tempElement = hlfir::getElementAt( + loc, builder, hlfir::Entity{temp}, mlir::ValueRange{indexValue}); + // TODO: "copy" would probably be better than assign to ensure there are no + // side effects (user assignments, temp, lhs finalization)? + // This only makes a difference for derived types, so for now derived types + // will use the runtime strategy to avoid any bad behaviors. + builder.create(loc, value, tempElement); + } + + /// Start a fir.do_loop with the control from an implied-do and return + /// the loop induction variable that is the ac-do-variable value. + /// Only usable if the counter is able to track the position through loops. + mlir::Value startImpliedDo(mlir::Location loc, fir::FirOpBuilder &builder, + mlir::Value lower, mlir::Value upper, + mlir::Value stride) { + if constexpr (!CounterType::canCountThroughLoops) + fir::emitFatalError(loc, "array constructor lowering is inconsistent"); + auto loop = builder.create(loc, lower, upper, stride, + /*unordered=*/false, + /*finalCount=*/false); + builder.setInsertionPointToStart(loop.getBody()); + return loop.getInductionVar(); + } + + /// Move the temporary to an hlfir.expr value (array constructors are not + /// variables and cannot be further modified). + hlfir::Entity finishArrayCtorLowering(mlir::Location loc, + fir::FirOpBuilder &builder) { + // Temp is created using createHeapTemporary. + mlir::Value mustFree = builder.createBool(loc, true); + auto hlfirExpr = builder.create(loc, temp, mustFree); + return hlfir::Entity{hlfirExpr}; + } + +private: + mlir::Value one; + CounterType counter; + mlir::Value temp; +}; + +/// A simple SSA value counter to lower array constructors without any +/// implied-do in the "inlined temp strategy". +/// The SSA value being tracked by the counter (hence, this +/// cannot count through loops since the SSA value in the loop becomes +/// inaccessible after the loop). +/// Semantic analysis expression rewrites unroll implied do loop with +/// compile time constant bounds (even if huge). So this minimalistic +/// counter greatly reduces the generated IR for simple but big array +/// constructors [(i,i=1,constant-expr)] that are expected to be quite +/// common. +class ValueCounter { +public: + static constexpr bool canCountThroughLoops = false; + ValueCounter(mlir::Location loc, fir::FirOpBuilder &builder, + mlir::Value initialValue) { + indexValue = initialValue; + } + + mlir::Value getAndIncrementIndex(mlir::Location loc, + fir::FirOpBuilder &builder, + mlir::Value increment) { + mlir::Value currentValue = indexValue; + indexValue = + builder.create(loc, indexValue, increment); + return currentValue; + } + +private: + mlir::Value indexValue; +}; +using LooplessInlinedTempStrategy = InlinedTempStrategyImpl; + +/// A generic memory based counter that can deal with all cases of +/// "inlined temp strategy". The counter value is stored in a temp +/// from which it is loaded, incremented, and stored every time an +/// ac-value is pushed. +class InMemoryCounter { +public: + static constexpr bool canCountThroughLoops = true; + InMemoryCounter(mlir::Location loc, fir::FirOpBuilder &builder, + mlir::Value initialValue) { + indexVar = builder.createTemporary(loc, initialValue.getType()); + builder.create(loc, initialValue, indexVar); + } + + mlir::Value getAndIncrementIndex(mlir::Location loc, + fir::FirOpBuilder &builder, + mlir::Value increment) const { + mlir::Value indexValue = builder.create(loc, indexVar); + indexValue = + builder.create(loc, indexValue, increment); + builder.create(loc, indexValue, indexVar); + return indexValue; + } + +private: + mlir::Value indexVar; +}; +using InlinedTempStrategy = InlinedTempStrategyImpl; + +// TODO: add and implement AsElementalStrategy. + +// TODO: add and implement RuntimeTempStrategy. + +/// Wrapper class that dispatch to the selected array constructor lowering +/// strategy and does nothing else. +class ArrayCtorLoweringStrategy { +public: + template + ArrayCtorLoweringStrategy(A &&impl) : implVariant{std::forward(impl)} {} + + void pushValue(mlir::Location loc, fir::FirOpBuilder &builder, + hlfir::Entity value) { + return std::visit( + [&](auto &impl) { return impl.pushValue(loc, builder, value); }, + implVariant); + } + + mlir::Value startImpliedDo(mlir::Location loc, fir::FirOpBuilder &builder, + mlir::Value lower, mlir::Value upper, + mlir::Value stride) { + return std::visit( + [&](auto &impl) { + return impl.startImpliedDo(loc, builder, lower, upper, stride); + }, + implVariant); + } + + hlfir::Entity finishArrayCtorLowering(mlir::Location loc, + fir::FirOpBuilder &builder) { + return std::visit( + [&](auto &impl) { return impl.finishArrayCtorLowering(loc, builder); }, + implVariant); + } + +private: + std::variant implVariant; +}; +} // namespace + +//===----------------------------------------------------------------------===// +// Definition of selectArrayCtorLoweringStrategy and its helpers. +// This is the code that analyses the evaluate::ArrayConstructor, +// pre-lowers the array constructor extent and length parameters if it can, +// and chooses the lowering strategy. +//===----------------------------------------------------------------------===// + +namespace { +/// Helper class to lower the array constructor type and its length parameters. +/// The length parameters, if any, are only lowered if this does not require +/// evaluating an ac-value. +template +struct LengthAndTypeCollector { + static mlir::Type collect(mlir::Location, + Fortran::lower::AbstractConverter &converter, + const Fortran::evaluate::ArrayConstructor &, + Fortran::lower::SymMap &, + Fortran::lower::StatementContext &, + mlir::SmallVectorImpl &) { + // Numerical and Logical types. + return Fortran::lower::getFIRType(&converter.getMLIRContext(), T::category, + T::kind, /*lenParams*/ {}); + } +}; + +template <> +struct LengthAndTypeCollector { + static mlir::Type collect( + mlir::Location loc, Fortran::lower::AbstractConverter &converter, + const Fortran::evaluate::ArrayConstructor + &arrayCtorExpr, + Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, + mlir::SmallVectorImpl &lengths) { + TODO(loc, "collect derived type and length"); + } +}; + +template +using Character = + Fortran::evaluate::Type; +template +struct LengthAndTypeCollector> { + static mlir::Type collect( + mlir::Location loc, Fortran::lower::AbstractConverter &converter, + const Fortran::evaluate::ArrayConstructor> &arrayCtorExpr, + Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, + mlir::SmallVectorImpl &lengths) { + TODO(loc, "collect character type and length"); + } +}; +} // namespace + +/// Does the array constructor have length parameters that +/// LengthAndTypeCollector::collect could not lower because this requires +/// lowering an ac-value and must be delayed? +static bool +failedToGatherLengthParameters(mlir::Type elementType, + llvm::ArrayRef lengths) { + return (elementType.isa() || + fir::isRecordWithTypeParameters(elementType)) && + lengths.empty(); +} + +namespace { +/// Structure that analyses the ac-value and implied-do of +/// evaluate::ArrayConstructor before they are lowered. It does not generate any +/// IR. The result of this analysis pass is used to select the lowering +/// strategy. +struct ArrayCtorAnalysis { + template + ArrayCtorAnalysis( + const Fortran::evaluate::ArrayConstructor &arrayCtorExpr); + + // Can the array constructor easily be rewritten into an hlfir.elemental ? + bool isSingleImpliedDoWithOneScalarExpr() const { + return !anyArrayExpr && isPerfectLoopNest && + innerNumberOfExprIfPrefectNest == 1 && depthIfPerfectLoopNest == 1; + } + + bool anyImpliedDo{false}; + bool anyArrayExpr{false}; + bool isPerfectLoopNest{true}; + std::int64_t innerNumberOfExprIfPrefectNest = 0; + std::int64_t depthIfPerfectLoopNest = 0; +}; +} // namespace + +template +ArrayCtorAnalysis::ArrayCtorAnalysis( + const Fortran::evaluate::ArrayConstructor &arrayCtorExpr) { + llvm::SmallVector *> + arrayValueListStack{&arrayCtorExpr}; + // Loop through the ac-value-list(s) of the array constructor. + while (!arrayValueListStack.empty()) { + std::int64_t localNumberOfImpliedDo = 0; + std::int64_t localNumberOfExpr = 0; + // Loop though the ac-value of an ac-value list, and add any nested + // ac-value-list of ac-implied-do to the stack. + for (const Fortran::evaluate::ArrayConstructorValue &acValue : + *arrayValueListStack.pop_back_val()) + std::visit(Fortran::common::visitors{ + [&](const Fortran::evaluate::ImpliedDo &impledDo) { + arrayValueListStack.push_back(&impledDo.values()); + localNumberOfImpliedDo++; + }, + [&](const Fortran::evaluate::Expr &expr) { + localNumberOfExpr++; + anyArrayExpr = anyArrayExpr || expr.Rank() > 0; + }}, + acValue.u); + anyImpliedDo = anyImpliedDo || localNumberOfImpliedDo > 0; + + if (localNumberOfImpliedDo == 0) { + // Leaf ac-value-list in the array constructor ac-value tree. + if (isPerfectLoopNest) + // This this the only leaf of the array-constructor (the array + // constructor is a nest of single implied-do with a list of expression + // in the last deeper implied do). e.g: "[((i+j, i=1,n)j=1,m)]". + innerNumberOfExprIfPrefectNest = localNumberOfExpr; + } else if (localNumberOfImpliedDo == 1 && localNumberOfExpr == 0) { + // Perfect implied-do nest new level. + ++depthIfPerfectLoopNest; + } else { + // More than one implied-do, or at least one implied-do and an expr + // at that level. This will not form a perfect nest. Examples: + // "[a, (i, i=1,n)]" or "[(i, i=1,n), (j, j=1,m)]". + isPerfectLoopNest = false; + } + } +} + +/// Helper to lower a scalar extent expression (like implied-do bounds). +static mlir::Value lowerExtentExpr(mlir::Location loc, + Fortran::lower::AbstractConverter &converter, + Fortran::lower::SymMap &symMap, + Fortran::lower::StatementContext &stmtCtx, + const Fortran::evaluate::ExtentExpr &expr) { + fir::FirOpBuilder &builder = converter.getFirOpBuilder(); + mlir::IndexType idxTy = builder.getIndexType(); + hlfir::Entity value = Fortran::lower::convertExprToHLFIR( + loc, converter, toEvExpr(expr), symMap, stmtCtx); + value = hlfir::loadTrivialScalar(loc, builder, value); + return builder.createConvert(loc, idxTy, value); +} + +/// Does \p expr contain no calls to user function? +static bool isCallFreeExpr(const Fortran::evaluate::ExtentExpr &expr) { + for (const Fortran::semantics::Symbol &symbol : + Fortran::evaluate::CollectSymbols(expr)) + if (Fortran::semantics::IsProcedure(symbol)) + return false; + return true; +} + +/// Core function that pre-lowers the extent and length parameters of +/// array constructors if it can, runs the ac-value analysis and +/// select the lowering strategy accordingly. +template +static ArrayCtorLoweringStrategy selectArrayCtorLoweringStrategy( + mlir::Location loc, Fortran::lower::AbstractConverter &converter, + const Fortran::evaluate::ArrayConstructor &arrayCtorExpr, + Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { + fir::FirOpBuilder &builder = converter.getFirOpBuilder(); + mlir::Type idxType = builder.getIndexType(); + // Try to gather the array constructor extent. + mlir::Value extent; + fir::SequenceType::Extent typeExtent = fir::SequenceType::getUnknownExtent(); + auto shapeExpr = + Fortran::evaluate::GetShape(converter.getFoldingContext(), arrayCtorExpr); + if (shapeExpr && shapeExpr->size() == 1 && (*shapeExpr)[0]) { + const Fortran::evaluate::ExtentExpr &extentExpr = *(*shapeExpr)[0]; + if (auto constantExtent = Fortran::evaluate::ToInt64(extentExpr)) { + typeExtent = *constantExtent; + extent = builder.createIntegerConstant(loc, idxType, typeExtent); + } else if (isCallFreeExpr(extentExpr)) { + // The expression built by expression analysis for the array constructor + // extent does not contain procedure symbols. It is side effect free. + // This could be relaxed to allow pure procedure, but some care must + // be taken to not bring in "unmapped" symbols from callee scopes. + extent = lowerExtentExpr(loc, converter, symMap, stmtCtx, extentExpr); + } + // Otherwise, the temporary will have to be built step by step with + // reallocation and the extent will only be known at the end of the array + // constructor evaluation. + } + // Convert the array constructor type and try to gather its length parameter + // values, if any. + mlir::SmallVector lengths; + mlir::Type elementType = LengthAndTypeCollector::collect( + loc, converter, arrayCtorExpr, symMap, stmtCtx, lengths); + // Run an analysis of the array constructor ac-value. + ArrayCtorAnalysis analysis(arrayCtorExpr); + bool needToEvaluateOneExprToGetLengthParameters = + failedToGatherLengthParameters(elementType, lengths); + + // Based on what was gathered and the result of the analysis, select and + // instantiate the right lowering strategy for the array constructor. + if (!extent || needToEvaluateOneExprToGetLengthParameters || + analysis.anyArrayExpr) + TODO(loc, "Lowering of array constructor requiring the runtime"); + + auto declaredType = fir::SequenceType::get({typeExtent}, elementType); + if (analysis.isSingleImpliedDoWithOneScalarExpr()) + TODO(loc, "Lowering of array constructor as hlfir.elemental"); + + if (analysis.anyImpliedDo) + return InlinedTempStrategy(loc, builder, declaredType, extent, lengths); + + return LooplessInlinedTempStrategy(loc, builder, declaredType, extent, + lengths); +} + +/// Lower an ac-value expression \p expr and forward it to the selected +/// lowering strategy \p arrayBuilder, +template +static void genAcValue(mlir::Location loc, + Fortran::lower::AbstractConverter &converter, + const Fortran::evaluate::Expr &expr, + Fortran::lower::SymMap &symMap, + Fortran::lower::StatementContext &stmtCtx, + ArrayCtorLoweringStrategy &arrayBuilder) { + if (expr.Rank() != 0) + TODO(loc, "array constructor with array ac-value in HLFIR"); + // TODO: get rid of the toEvExpr indirection. + fir::FirOpBuilder &builder = converter.getFirOpBuilder(); + hlfir::Entity value = Fortran::lower::convertExprToHLFIR( + loc, converter, toEvExpr(expr), symMap, stmtCtx); + value = hlfir::loadTrivialScalar(loc, builder, value); + arrayBuilder.pushValue(loc, builder, value); +} + +/// Lowers an ac-value implied-do \p impledDo according to the selected +/// lowering strategy \p arrayBuilder. +template +static void genAcValue(mlir::Location loc, + Fortran::lower::AbstractConverter &converter, + const Fortran::evaluate::ImpliedDo &impledDo, + Fortran::lower::SymMap &symMap, + Fortran::lower::StatementContext &stmtCtx, + ArrayCtorLoweringStrategy &arrayBuilder) { + auto lowerIndex = + [&](const Fortran::evaluate::ExtentExpr expr) -> mlir::Value { + return lowerExtentExpr(loc, converter, symMap, stmtCtx, expr); + }; + mlir::Value lower = lowerIndex(impledDo.lower()); + mlir::Value upper = lowerIndex(impledDo.upper()); + mlir::Value stride = lowerIndex(impledDo.stride()); + fir::FirOpBuilder &builder = converter.getFirOpBuilder(); + mlir::OpBuilder::InsertPoint insertPt = builder.saveInsertionPoint(); + mlir::Value impliedDoIndexValue = + arrayBuilder.startImpliedDo(loc, builder, lower, upper, stride); + symMap.pushImpliedDoBinding(toStringRef(impledDo.name()), + impliedDoIndexValue); + stmtCtx.pushScope(); + + for (const auto &acValue : impledDo.values()) + std::visit( + [&](const auto &x) { + genAcValue(loc, converter, x, symMap, stmtCtx, arrayBuilder); + }, + acValue.u); + + stmtCtx.finalizeAndPop(); + symMap.popImpliedDoBinding(); + builder.restoreInsertionPoint(insertPt); +} + +/// Entry point for evaluate::ArrayConstructor lowering. +template +hlfir::EntityWithAttributes Fortran::lower::ArrayConstructorBuilder::gen( + mlir::Location loc, Fortran::lower::AbstractConverter &converter, + const Fortran::evaluate::ArrayConstructor &arrayCtorExpr, + Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { + fir::FirOpBuilder &builder = converter.getFirOpBuilder(); + // Select the lowering strategy given the array constructor. + auto arrayBuilder = selectArrayCtorLoweringStrategy( + loc, converter, arrayCtorExpr, symMap, stmtCtx); + // Run the array lowering strategy through the ac-values. + for (const auto &acValue : arrayCtorExpr) + std::visit( + [&](const auto &x) { + genAcValue(loc, converter, x, symMap, stmtCtx, arrayBuilder); + }, + acValue.u); + hlfir::Entity hlfirExpr = arrayBuilder.finishArrayCtorLowering(loc, builder); + // Insert the clean-up for the created hlfir.expr. + fir::FirOpBuilder *bldr = &builder; + stmtCtx.attachCleanup( + [=]() { bldr->create(loc, hlfirExpr); }); + return hlfir::EntityWithAttributes{hlfirExpr}; +} + +using namespace Fortran::evaluate; +using namespace Fortran::common; +FOR_EACH_SPECIFIC_TYPE(template class Fortran::lower::ArrayConstructorBuilder, ) diff --git a/flang/lib/Lower/ConvertExprToHLFIR.cpp b/flang/lib/Lower/ConvertExprToHLFIR.cpp index f0344ba59e0bd..49a2c52629335 100644 --- a/flang/lib/Lower/ConvertExprToHLFIR.cpp +++ b/flang/lib/Lower/ConvertExprToHLFIR.cpp @@ -14,6 +14,7 @@ #include "flang/Evaluate/shape.h" #include "flang/Lower/AbstractConverter.h" #include "flang/Lower/CallInterface.h" +#include "flang/Lower/ConvertArrayConstructor.h" #include "flang/Lower/ConvertCall.h" #include "flang/Lower/ConvertConstant.h" #include "flang/Lower/ConvertProcedureDesignator.h" @@ -1074,8 +1075,9 @@ class HlfirBuilder { template hlfir::EntityWithAttributes - gen(const Fortran::evaluate::ArrayConstructor &expr) { - TODO(getLoc(), "lowering ArrayCtor to HLFIR"); + gen(const Fortran::evaluate::ArrayConstructor &arrayCtor) { + return Fortran::lower::ArrayConstructorBuilder::gen( + getLoc(), getConverter(), arrayCtor, getSymMap(), getStmtCtx()); } template @@ -1208,7 +1210,9 @@ class HlfirBuilder { hlfir::EntityWithAttributes gen(const Fortran::evaluate::ImpliedDoIndex &var) { - TODO(getLoc(), "lowering implied do index to HLFIR"); + mlir::Value value = symMap.lookupImpliedDo(toStringRef(var.name)); + assert(value && "impled do was not mapped"); + return hlfir::EntityWithAttributes{value}; } hlfir::EntityWithAttributes diff --git a/flang/test/Lower/HLFIR/array-ctor-as-inlined-temp.f90 b/flang/test/Lower/HLFIR/array-ctor-as-inlined-temp.f90 new file mode 100644 index 0000000000000..a3e0d09cfb71a --- /dev/null +++ b/flang/test/Lower/HLFIR/array-ctor-as-inlined-temp.f90 @@ -0,0 +1,280 @@ +! Test lowering of array constructors as inlined temporary. +! RUN: bbc -emit-fir -hlfir -o - %s | FileCheck %s + +subroutine test_simple(i) + call takes_int([42, i]) +end subroutine +! CHECK-LABEL: func.func @_QPtest_simple( +! CHECK: %[[VAL_1:.*]]:2 = hlfir.declare {{.*}}Ei +! CHECK: %[[VAL_2:.*]] = arith.constant 2 : index +! CHECK: %[[VAL_3:.*]] = arith.constant 1 : index +! CHECK: %[[VAL_4:.*]] = fir.allocmem !fir.array<2xi32> {bindc_name = ".tmp.arrayctor", uniq_name = ""} +! CHECK: %[[VAL_5:.*]] = fir.shape %[[VAL_2]] : (index) -> !fir.shape<1> +! CHECK: %[[VAL_6:.*]]:2 = hlfir.declare %[[VAL_4]](%[[VAL_5]]) {uniq_name = ".tmp.arrayctor"} : (!fir.heap>, !fir.shape<1>) -> (!fir.heap>, !fir.heap>) +! CHECK: %[[VAL_7:.*]] = arith.constant 42 : i32 +! CHECK: %[[VAL_8:.*]] = arith.addi %[[VAL_3]], %[[VAL_3]] : index +! CHECK: %[[VAL_9:.*]] = hlfir.designate %[[VAL_6]]#0 (%[[VAL_3]]) : (!fir.heap>, index) -> !fir.ref +! CHECK: hlfir.assign %[[VAL_7]] to %[[VAL_9]] : i32, !fir.ref +! CHECK: %[[VAL_10:.*]] = fir.load %[[VAL_1]]#0 : !fir.ref +! CHECK: %[[VAL_11:.*]] = hlfir.designate %[[VAL_6]]#0 (%[[VAL_8]]) : (!fir.heap>, index) -> !fir.ref +! CHECK: hlfir.assign %[[VAL_10]] to %[[VAL_11]] : i32, !fir.ref +! CHECK: %[[VAL_12:.*]] = arith.constant true +! CHECK: %[[VAL_13:.*]] = hlfir.as_expr %[[VAL_6]]#0 move %[[VAL_12]] : (!fir.heap>, i1) -> !hlfir.expr<2xi32> +! CHECK: fir.call +! CHECK: hlfir.destroy %[[VAL_13]] : !hlfir.expr<2xi32> + +subroutine test_simple_real(x) + real(2) :: x + call takes_real_2([x, 0._2]) +end subroutine +! CHECK-LABEL: func.func @_QPtest_simple_real( +! CHECK: %[[VAL_1:.*]]:2 = hlfir.declare {{.*}}Ex +! CHECK: %[[VAL_2:.*]] = arith.constant 2 : index +! CHECK: %[[VAL_3:.*]] = arith.constant 1 : index +! CHECK: %[[VAL_4:.*]] = fir.allocmem !fir.array<2xf16> {bindc_name = ".tmp.arrayctor", uniq_name = ""} +! CHECK: %[[VAL_5:.*]] = fir.shape %[[VAL_2]] : (index) -> !fir.shape<1> +! CHECK: %[[VAL_6:.*]]:2 = hlfir.declare %[[VAL_4]](%[[VAL_5]]) {uniq_name = ".tmp.arrayctor"} : (!fir.heap>, !fir.shape<1>) -> (!fir.heap>, !fir.heap>) +! CHECK: %[[VAL_7:.*]] = fir.load %[[VAL_1]]#0 : !fir.ref +! CHECK: %[[VAL_8:.*]] = arith.addi %[[VAL_3]], %[[VAL_3]] : index +! CHECK: %[[VAL_9:.*]] = hlfir.designate %[[VAL_6]]#0 (%[[VAL_3]]) : (!fir.heap>, index) -> !fir.ref +! CHECK: hlfir.assign %[[VAL_7]] to %[[VAL_9]] : f16, !fir.ref +! CHECK: %[[VAL_10:.*]] = arith.constant 0.000000e+00 : f16 +! CHECK: %[[VAL_11:.*]] = hlfir.designate %[[VAL_6]]#0 (%[[VAL_8]]) : (!fir.heap>, index) -> !fir.ref +! CHECK: hlfir.assign %[[VAL_10]] to %[[VAL_11]] : f16, !fir.ref +! CHECK: %[[VAL_12:.*]] = arith.constant true +! CHECK: %[[VAL_13:.*]] = hlfir.as_expr %[[VAL_6]]#0 move %[[VAL_12]] : (!fir.heap>, i1) -> !hlfir.expr<2xf16> +! CHECK: fir.call +! CHECK: hlfir.destroy %[[VAL_13]] : !hlfir.expr<2xf16> + +subroutine test_simple_complex(z) + complex :: z + call takes_cmplx_8([complex(8):: 42, z]) +end subroutine +! CHECK-LABEL: func.func @_QPtest_simple_complex( +! CHECK: %[[VAL_1:.*]]:2 = hlfir.declare {{.*}}Ez +! CHECK: %[[VAL_2:.*]] = arith.constant 2 : index +! CHECK: %[[VAL_3:.*]] = arith.constant 1 : index +! CHECK: %[[VAL_4:.*]] = fir.allocmem !fir.array<2x!fir.complex<8>> {bindc_name = ".tmp.arrayctor", uniq_name = ""} +! CHECK: %[[VAL_5:.*]] = fir.shape %[[VAL_2]] : (index) -> !fir.shape<1> +! CHECK: %[[VAL_6:.*]]:2 = hlfir.declare %[[VAL_4]](%[[VAL_5]]) {uniq_name = ".tmp.arrayctor"} : (!fir.heap>>, !fir.shape<1>) -> (!fir.heap>>, !fir.heap>>) +! CHECK: %[[VAL_7:.*]] = arith.constant 42 : i32 +! CHECK: %[[VAL_8:.*]] = fir.convert %[[VAL_7]] : (i32) -> f64 +! CHECK: %[[VAL_9:.*]] = arith.constant 0.000000e+00 : f64 +! CHECK: %[[VAL_10:.*]] = fir.undefined !fir.complex<8> +! CHECK: %[[VAL_11:.*]] = fir.insert_value %[[VAL_10]], %[[VAL_8]], [0 : index] : (!fir.complex<8>, f64) -> !fir.complex<8> +! CHECK: %[[VAL_12:.*]] = fir.insert_value %[[VAL_11]], %[[VAL_9]], [1 : index] : (!fir.complex<8>, f64) -> !fir.complex<8> +! CHECK: %[[VAL_13:.*]] = arith.addi %[[VAL_3]], %[[VAL_3]] : index +! CHECK: %[[VAL_14:.*]] = hlfir.designate %[[VAL_6]]#0 (%[[VAL_3]]) : (!fir.heap>>, index) -> !fir.ref> +! CHECK: hlfir.assign %[[VAL_12]] to %[[VAL_14]] : !fir.complex<8>, !fir.ref> +! CHECK: %[[VAL_15:.*]] = fir.load %[[VAL_1]]#0 : !fir.ref> +! CHECK: %[[VAL_16:.*]] = fir.convert %[[VAL_15]] : (!fir.complex<4>) -> !fir.complex<8> +! CHECK: %[[VAL_17:.*]] = hlfir.designate %[[VAL_6]]#0 (%[[VAL_13]]) : (!fir.heap>>, index) -> !fir.ref> +! CHECK: hlfir.assign %[[VAL_16]] to %[[VAL_17]] : !fir.complex<8>, !fir.ref> +! CHECK: %[[VAL_18:.*]] = arith.constant true +! CHECK: %[[VAL_19:.*]] = hlfir.as_expr %[[VAL_6]]#0 move %[[VAL_18]] : (!fir.heap>>, i1) -> !hlfir.expr<2x!fir.complex<8>> +! CHECK: fir.call +! CHECK: hlfir.destroy %[[VAL_19]] : !hlfir.expr<2x!fir.complex<8>> + +subroutine test_simple_logical(a, b) + logical :: a, b + call takes_logical([a, a.and.b]) +end subroutine +! CHECK-LABEL: func.func @_QPtest_simple_logical( +! CHECK: %[[VAL_2:.*]]:2 = hlfir.declare {{.*}}Ea +! CHECK: %[[VAL_3:.*]]:2 = hlfir.declare {{.*}}Eb +! CHECK: %[[VAL_4:.*]] = arith.constant 2 : index +! CHECK: %[[VAL_5:.*]] = arith.constant 1 : index +! CHECK: %[[VAL_6:.*]] = fir.allocmem !fir.array<2x!fir.logical<4>> {bindc_name = ".tmp.arrayctor", uniq_name = ""} +! CHECK: %[[VAL_7:.*]] = fir.shape %[[VAL_4]] : (index) -> !fir.shape<1> +! CHECK: %[[VAL_8:.*]]:2 = hlfir.declare %[[VAL_6]](%[[VAL_7]]) {uniq_name = ".tmp.arrayctor"} : (!fir.heap>>, !fir.shape<1>) -> (!fir.heap>>, !fir.heap>>) +! CHECK: %[[VAL_9:.*]] = fir.load %[[VAL_2]]#0 : !fir.ref> +! CHECK: %[[VAL_10:.*]] = arith.addi %[[VAL_5]], %[[VAL_5]] : index +! CHECK: %[[VAL_11:.*]] = hlfir.designate %[[VAL_8]]#0 (%[[VAL_5]]) : (!fir.heap>>, index) -> !fir.ref> +! CHECK: hlfir.assign %[[VAL_9]] to %[[VAL_11]] : !fir.logical<4>, !fir.ref> +! CHECK: %[[VAL_12:.*]] = fir.load %[[VAL_2]]#0 : !fir.ref> +! CHECK: %[[VAL_13:.*]] = fir.load %[[VAL_3]]#0 : !fir.ref> +! CHECK: %[[VAL_14:.*]] = fir.convert %[[VAL_12]] : (!fir.logical<4>) -> i1 +! CHECK: %[[VAL_15:.*]] = fir.convert %[[VAL_13]] : (!fir.logical<4>) -> i1 +! CHECK: %[[VAL_16:.*]] = arith.andi %[[VAL_14]], %[[VAL_15]] : i1 +! CHECK: %[[VAL_17:.*]] = hlfir.designate %[[VAL_8]]#0 (%[[VAL_10]]) : (!fir.heap>>, index) -> !fir.ref> +! CHECK: hlfir.assign %[[VAL_16]] to %[[VAL_17]] : i1, !fir.ref> +! CHECK: %[[VAL_18:.*]] = arith.constant true +! CHECK: %[[VAL_19:.*]] = hlfir.as_expr %[[VAL_8]]#0 move %[[VAL_18]] : (!fir.heap>>, i1) -> !hlfir.expr<2x!fir.logical<4>> +! CHECK: fir.call +! CHECK: hlfir.destroy %[[VAL_19]] : !hlfir.expr<2x!fir.logical<4>> + +subroutine test_implied_do(n) + integer(8) :: n + ! This implied do cannot easily be promoted to hlfir.elemental because + ! the implied do contains more than one scalar ac-value. + call takes_int([(42, j, j=1,n)]) +end subroutine +! CHECK-LABEL: func.func @_QPtest_implied_do( +! CHECK: %[[VAL_1:.*]] = fir.alloca index +! CHECK: %[[VAL_2:.*]]:2 = hlfir.declare {{.*}}En +! CHECK: %[[VAL_3:.*]] = arith.constant 0 : i64 +! CHECK: %[[VAL_4:.*]] = arith.constant 2 : i64 +! CHECK: %[[VAL_5:.*]] = fir.load %[[VAL_2]]#0 : !fir.ref +! CHECK: %[[VAL_6:.*]] = arith.constant 1 : i64 +! CHECK: %[[VAL_7:.*]] = arith.subi %[[VAL_5]], %[[VAL_6]] : i64 +! CHECK: %[[VAL_8:.*]] = arith.constant 1 : i64 +! CHECK: %[[VAL_9:.*]] = arith.addi %[[VAL_7]], %[[VAL_8]] : i64 +! CHECK: %[[VAL_10:.*]] = arith.constant 1 : i64 +! CHECK: %[[VAL_11:.*]] = arith.divsi %[[VAL_9]], %[[VAL_10]] : i64 +! CHECK: %[[VAL_12:.*]] = arith.constant 0 : i64 +! CHECK: %[[VAL_13:.*]] = arith.cmpi sgt, %[[VAL_11]], %[[VAL_12]] : i64 +! CHECK: %[[VAL_14:.*]] = arith.select %[[VAL_13]], %[[VAL_11]], %[[VAL_12]] : i64 +! CHECK: %[[VAL_15:.*]] = arith.muli %[[VAL_4]], %[[VAL_14]] : i64 +! CHECK: %[[VAL_16:.*]] = arith.addi %[[VAL_3]], %[[VAL_15]] : i64 +! CHECK: %[[VAL_17:.*]] = fir.convert %[[VAL_16]] : (i64) -> index +! CHECK: %[[VAL_18:.*]] = arith.constant 1 : index +! CHECK: fir.store %[[VAL_18]] to %[[VAL_1]] : !fir.ref +! CHECK: %[[VAL_19:.*]] = fir.allocmem !fir.array, %[[VAL_17]] {bindc_name = ".tmp.arrayctor", uniq_name = ""} +! CHECK: %[[VAL_20:.*]] = fir.shape %[[VAL_17]] : (index) -> !fir.shape<1> +! CHECK: %[[VAL_21:.*]]:2 = hlfir.declare %[[VAL_19]](%[[VAL_20]]) {uniq_name = ".tmp.arrayctor"} : (!fir.heap>, !fir.shape<1>) -> (!fir.box>, !fir.heap>) +! CHECK: %[[VAL_22:.*]] = arith.constant 1 : i64 +! CHECK: %[[VAL_23:.*]] = fir.convert %[[VAL_22]] : (i64) -> index +! CHECK: %[[VAL_24:.*]] = fir.load %[[VAL_2]]#0 : !fir.ref +! CHECK: %[[VAL_25:.*]] = fir.convert %[[VAL_24]] : (i64) -> index +! CHECK: %[[VAL_26:.*]] = arith.constant 1 : i64 +! CHECK: %[[VAL_27:.*]] = fir.convert %[[VAL_26]] : (i64) -> index +! CHECK: fir.do_loop %[[VAL_28:.*]] = %[[VAL_23]] to %[[VAL_25]] step %[[VAL_27]] { +! CHECK: %[[VAL_29:.*]] = arith.constant 42 : i32 +! CHECK: %[[VAL_30:.*]] = fir.load %[[VAL_1]] : !fir.ref +! CHECK: %[[VAL_31:.*]] = arith.addi %[[VAL_30]], %[[VAL_18]] : index +! CHECK: fir.store %[[VAL_31]] to %[[VAL_1]] : !fir.ref +! CHECK: %[[VAL_32:.*]] = hlfir.designate %[[VAL_21]]#0 (%[[VAL_31]]) : (!fir.box>, index) -> !fir.ref +! CHECK: hlfir.assign %[[VAL_29]] to %[[VAL_32]] : i32, !fir.ref +! CHECK: %[[VAL_33:.*]] = fir.convert %[[VAL_28]] : (index) -> i32 +! CHECK: %[[VAL_34:.*]] = fir.load %[[VAL_1]] : !fir.ref +! CHECK: %[[VAL_35:.*]] = arith.addi %[[VAL_34]], %[[VAL_18]] : index +! CHECK: fir.store %[[VAL_35]] to %[[VAL_1]] : !fir.ref +! CHECK: %[[VAL_36:.*]] = hlfir.designate %[[VAL_21]]#0 (%[[VAL_35]]) : (!fir.box>, index) -> !fir.ref +! CHECK: hlfir.assign %[[VAL_33]] to %[[VAL_36]] : i32, !fir.ref +! CHECK: } +! CHECK: %[[VAL_37:.*]] = arith.constant true +! CHECK: %[[VAL_38:.*]] = hlfir.as_expr %[[VAL_21]]#0 move %[[VAL_37]] : (!fir.box>, i1) -> !hlfir.expr +! CHECK: fir.call +! CHECK: hlfir.destroy %[[VAL_38]] : !hlfir.expr + +subroutine test_strided_implied_do(lb, ub, stride) + integer(8) :: lb, ub, stride + call takes_int([(42, j, j=lb,ub,stride)]) +end subroutine +! CHECK-LABEL: func.func @_QPtest_strided_implied_do( +! CHECK: %[[VAL_3:.*]] = fir.alloca index +! CHECK: %[[VAL_4:.*]]:2 = hlfir.declare {{.*}}Elb +! CHECK: %[[VAL_5:.*]]:2 = hlfir.declare {{.*}}Estride +! CHECK: %[[VAL_6:.*]]:2 = hlfir.declare {{.*}}Eub +! CHECK: %[[VAL_7:.*]] = arith.constant 0 : i64 +! CHECK: %[[VAL_8:.*]] = arith.constant 2 : i64 +! CHECK: %[[VAL_9:.*]] = fir.load %[[VAL_6]]#0 : !fir.ref +! CHECK: %[[VAL_10:.*]] = fir.load %[[VAL_4]]#0 : !fir.ref +! CHECK: %[[VAL_11:.*]] = arith.subi %[[VAL_9]], %[[VAL_10]] : i64 +! CHECK: %[[VAL_12:.*]] = fir.load %[[VAL_5]]#0 : !fir.ref +! CHECK: %[[VAL_13:.*]] = arith.addi %[[VAL_11]], %[[VAL_12]] : i64 +! CHECK: %[[VAL_14:.*]] = fir.load %[[VAL_5]]#0 : !fir.ref +! CHECK: %[[VAL_15:.*]] = arith.divsi %[[VAL_13]], %[[VAL_14]] : i64 +! CHECK: %[[VAL_16:.*]] = arith.constant 0 : i64 +! CHECK: %[[VAL_17:.*]] = arith.cmpi sgt, %[[VAL_15]], %[[VAL_16]] : i64 +! CHECK: %[[VAL_18:.*]] = arith.select %[[VAL_17]], %[[VAL_15]], %[[VAL_16]] : i64 +! CHECK: %[[VAL_19:.*]] = arith.muli %[[VAL_8]], %[[VAL_18]] : i64 +! CHECK: %[[VAL_20:.*]] = arith.addi %[[VAL_7]], %[[VAL_19]] : i64 +! CHECK: %[[VAL_21:.*]] = fir.convert %[[VAL_20]] : (i64) -> index +! CHECK: %[[VAL_22:.*]] = arith.constant 1 : index +! CHECK: fir.store %[[VAL_22]] to %[[VAL_3]] : !fir.ref +! CHECK: %[[VAL_23:.*]] = fir.allocmem !fir.array, %[[VAL_21]] {bindc_name = ".tmp.arrayctor", uniq_name = ""} +! CHECK: %[[VAL_24:.*]] = fir.shape %[[VAL_21]] : (index) -> !fir.shape<1> +! CHECK: %[[VAL_25:.*]]:2 = hlfir.declare %[[VAL_23]](%[[VAL_24]]) {uniq_name = ".tmp.arrayctor"} : (!fir.heap>, !fir.shape<1>) -> (!fir.box>, !fir.heap>) +! CHECK: %[[VAL_26:.*]] = fir.load %[[VAL_4]]#0 : !fir.ref +! CHECK: %[[VAL_27:.*]] = fir.convert %[[VAL_26]] : (i64) -> index +! CHECK: %[[VAL_28:.*]] = fir.load %[[VAL_6]]#0 : !fir.ref +! CHECK: %[[VAL_29:.*]] = fir.convert %[[VAL_28]] : (i64) -> index +! CHECK: %[[VAL_30:.*]] = fir.load %[[VAL_5]]#0 : !fir.ref +! CHECK: %[[VAL_31:.*]] = fir.convert %[[VAL_30]] : (i64) -> index +! CHECK: fir.do_loop %[[VAL_32:.*]] = %[[VAL_27]] to %[[VAL_29]] step %[[VAL_31]] { +! CHECK: %[[VAL_33:.*]] = arith.constant 42 : i32 +! CHECK: %[[VAL_34:.*]] = fir.load %[[VAL_3]] : !fir.ref +! CHECK: %[[VAL_35:.*]] = arith.addi %[[VAL_34]], %[[VAL_22]] : index +! CHECK: fir.store %[[VAL_35]] to %[[VAL_3]] : !fir.ref +! CHECK: %[[VAL_36:.*]] = hlfir.designate %[[VAL_25]]#0 (%[[VAL_35]]) : (!fir.box>, index) -> !fir.ref +! CHECK: hlfir.assign %[[VAL_33]] to %[[VAL_36]] : i32, !fir.ref +! CHECK: %[[VAL_37:.*]] = fir.convert %[[VAL_32]] : (index) -> i32 +! CHECK: %[[VAL_38:.*]] = fir.load %[[VAL_3]] : !fir.ref +! CHECK: %[[VAL_39:.*]] = arith.addi %[[VAL_38]], %[[VAL_22]] : index +! CHECK: fir.store %[[VAL_39]] to %[[VAL_3]] : !fir.ref +! CHECK: %[[VAL_40:.*]] = hlfir.designate %[[VAL_25]]#0 (%[[VAL_39]]) : (!fir.box>, index) -> !fir.ref +! CHECK: hlfir.assign %[[VAL_37]] to %[[VAL_40]] : i32, !fir.ref +! CHECK: } +! CHECK: %[[VAL_41:.*]] = arith.constant true +! CHECK: %[[VAL_42:.*]] = hlfir.as_expr %[[VAL_25]]#0 move %[[VAL_41]] : (!fir.box>, i1) -> !hlfir.expr +! CHECK: fir.call +! CHECK: hlfir.destroy %[[VAL_42]] : !hlfir.expr + +subroutine test_nested_implied_do(n, m) + integer(8) :: n, m + call takes_int([((i+j, i=1,m), j=1,n)]) +end subroutine +! CHECK-LABEL: func.func @_QPtest_nested_implied_do( +! CHECK: %[[VAL_2:.*]] = fir.alloca index +! CHECK: %[[VAL_3:.*]]:2 = hlfir.declare {{.*}}Em +! CHECK: %[[VAL_4:.*]]:2 = hlfir.declare {{.*}}En +! CHECK: %[[VAL_5:.*]] = arith.constant 0 : i64 +! CHECK: %[[VAL_6:.*]] = arith.constant 0 : i64 +! CHECK: %[[VAL_7:.*]] = fir.load %[[VAL_3]]#0 : !fir.ref +! CHECK: %[[VAL_8:.*]] = arith.constant 1 : i64 +! CHECK: %[[VAL_9:.*]] = arith.subi %[[VAL_7]], %[[VAL_8]] : i64 +! CHECK: %[[VAL_10:.*]] = arith.constant 1 : i64 +! CHECK: %[[VAL_11:.*]] = arith.addi %[[VAL_9]], %[[VAL_10]] : i64 +! CHECK: %[[VAL_12:.*]] = arith.constant 1 : i64 +! CHECK: %[[VAL_13:.*]] = arith.divsi %[[VAL_11]], %[[VAL_12]] : i64 +! CHECK: %[[VAL_14:.*]] = arith.constant 0 : i64 +! CHECK: %[[VAL_15:.*]] = arith.cmpi sgt, %[[VAL_13]], %[[VAL_14]] : i64 +! CHECK: %[[VAL_16:.*]] = arith.select %[[VAL_15]], %[[VAL_13]], %[[VAL_14]] : i64 +! CHECK: %[[VAL_17:.*]] = arith.addi %[[VAL_6]], %[[VAL_16]] : i64 +! CHECK: %[[VAL_18:.*]] = fir.load %[[VAL_4]]#0 : !fir.ref +! CHECK: %[[VAL_19:.*]] = arith.constant 1 : i64 +! CHECK: %[[VAL_20:.*]] = arith.subi %[[VAL_18]], %[[VAL_19]] : i64 +! CHECK: %[[VAL_21:.*]] = arith.constant 1 : i64 +! CHECK: %[[VAL_22:.*]] = arith.addi %[[VAL_20]], %[[VAL_21]] : i64 +! CHECK: %[[VAL_23:.*]] = arith.constant 1 : i64 +! CHECK: %[[VAL_24:.*]] = arith.divsi %[[VAL_22]], %[[VAL_23]] : i64 +! CHECK: %[[VAL_25:.*]] = arith.constant 0 : i64 +! CHECK: %[[VAL_26:.*]] = arith.cmpi sgt, %[[VAL_24]], %[[VAL_25]] : i64 +! CHECK: %[[VAL_27:.*]] = arith.select %[[VAL_26]], %[[VAL_24]], %[[VAL_25]] : i64 +! CHECK: %[[VAL_28:.*]] = arith.muli %[[VAL_17]], %[[VAL_27]] : i64 +! CHECK: %[[VAL_29:.*]] = arith.addi %[[VAL_5]], %[[VAL_28]] : i64 +! CHECK: %[[VAL_30:.*]] = fir.convert %[[VAL_29]] : (i64) -> index +! CHECK: %[[VAL_31:.*]] = arith.constant 1 : index +! CHECK: fir.store %[[VAL_31]] to %[[VAL_2]] : !fir.ref +! CHECK: %[[VAL_32:.*]] = fir.allocmem !fir.array, %[[VAL_30]] {bindc_name = ".tmp.arrayctor", uniq_name = ""} +! CHECK: %[[VAL_33:.*]] = fir.shape %[[VAL_30]] : (index) -> !fir.shape<1> +! CHECK: %[[VAL_34:.*]]:2 = hlfir.declare %[[VAL_32]](%[[VAL_33]]) {uniq_name = ".tmp.arrayctor"} : (!fir.heap>, !fir.shape<1>) -> (!fir.box>, !fir.heap>) +! CHECK: %[[VAL_35:.*]] = arith.constant 1 : i64 +! CHECK: %[[VAL_36:.*]] = fir.convert %[[VAL_35]] : (i64) -> index +! CHECK: %[[VAL_37:.*]] = fir.load %[[VAL_4]]#0 : !fir.ref +! CHECK: %[[VAL_38:.*]] = fir.convert %[[VAL_37]] : (i64) -> index +! CHECK: %[[VAL_39:.*]] = arith.constant 1 : i64 +! CHECK: %[[VAL_40:.*]] = fir.convert %[[VAL_39]] : (i64) -> index +! CHECK: fir.do_loop %[[VAL_41:.*]] = %[[VAL_36]] to %[[VAL_38]] step %[[VAL_40]] { +! CHECK: %[[VAL_42:.*]] = arith.constant 1 : i64 +! CHECK: %[[VAL_43:.*]] = fir.convert %[[VAL_42]] : (i64) -> index +! CHECK: %[[VAL_44:.*]] = fir.load %[[VAL_3]]#0 : !fir.ref +! CHECK: %[[VAL_45:.*]] = fir.convert %[[VAL_44]] : (i64) -> index +! CHECK: %[[VAL_46:.*]] = arith.constant 1 : i64 +! CHECK: %[[VAL_47:.*]] = fir.convert %[[VAL_46]] : (i64) -> index +! CHECK: fir.do_loop %[[VAL_48:.*]] = %[[VAL_43]] to %[[VAL_45]] step %[[VAL_47]] { +! CHECK: %[[VAL_49:.*]] = fir.convert %[[VAL_48]] : (index) -> i32 +! CHECK: %[[VAL_50:.*]] = fir.convert %[[VAL_41]] : (index) -> i32 +! CHECK: %[[VAL_51:.*]] = arith.addi %[[VAL_49]], %[[VAL_50]] : i32 +! CHECK: %[[VAL_52:.*]] = fir.load %[[VAL_2]] : !fir.ref +! CHECK: %[[VAL_53:.*]] = arith.addi %[[VAL_52]], %[[VAL_31]] : index +! CHECK: fir.store %[[VAL_53]] to %[[VAL_2]] : !fir.ref +! CHECK: %[[VAL_54:.*]] = hlfir.designate %[[VAL_34]]#0 (%[[VAL_53]]) : (!fir.box>, index) -> !fir.ref +! CHECK: hlfir.assign %[[VAL_51]] to %[[VAL_54]] : i32, !fir.ref +! CHECK: } +! CHECK: } +! CHECK: %[[VAL_55:.*]] = arith.constant true +! CHECK: %[[VAL_56:.*]] = hlfir.as_expr %[[VAL_34]]#0 move %[[VAL_55]] : (!fir.box>, i1) -> !hlfir.expr +! CHECK: fir.call +! CHECK: hlfir.destroy %[[VAL_56]] : !hlfir.expr