291 changes: 166 additions & 125 deletions libc/src/__support/FPUtil/FPBits.h
Original file line number Diff line number Diff line change
Expand Up @@ -75,27 +75,32 @@ LIBC_INLINE_VAR constexpr Sign Sign::POS = Sign(false);
// │ │
// └────────────┬─────────────┘
//
// ┌──────────┐
// FPRep<T> │
// └───────────┘
// ┌───────┴───────┐
//FPRepImpl<T> │
// └───────▲───────┘
//
// ┌─────┴─────┐
// │ FPBits<T> │
// └───────────┘
// ┌────────┴────────┐
// ┌─────┴─────┐ ┌─────┴─────┐
// │ FPRep<T> │ │ FPBits<T> │
// └───────────┘ └───────────┘
//
// - 'FPLayout' defines only a few constants, namely the 'StorageType' and
// length of the sign, the exponent, fraction and significand parts.
// length of the sign, the exponent, fraction and significand parts.
// - 'FPStorage' builds more constants on top of those from 'FPLayout' like
// exponent bias and masks. It also holds the bit representation of the
// floating point as a 'StorageType' type and defines tools to assemble or test
// these parts.
// exponent bias and masks. It also holds the bit representation of the
// floating point as a 'StorageType' type and defines tools to assemble or
// test these parts.
// - 'FPRepSem' defines functions to interact semantically with the floating
// point representation. The default implementation is the one for 'IEEE754', a
// specialization is provided for X86 Extended Precision.
// - 'FPRep' derives from 'FPRepSem' and adds functions that are common to all
// implementations.
// - 'FPBits' exposes all functions from 'FPRep' but operates on the native C++
// floating point type instead of 'FPType'.
// point representation. The default implementation is the one for 'IEEE754',
// a specialization is provided for X86 Extended Precision.
// - 'FPRepImpl' derives from 'FPRepSem' and adds functions that are common to
// all implementations or build on the ones in 'FPRepSem'.
// - 'FPRep' exposes all functions from 'FPRepImpl' and returns 'FPRep'
// instances when using Builders (static functions to create values).
// - 'FPBits' exposes all the functions from 'FPRepImpl' but operates on the
// native C++ floating point type instead of 'FPType'. An additional 'get_val'
// function allows getting the C++ floating point type value back. Builders
// called from 'FPBits' return 'FPBits' instances.

namespace internal {

Expand Down Expand Up @@ -197,20 +202,37 @@ template <FPType fp_type> struct FPStorage : public FPLayout<fp_type> {
static_assert((SIG_MASK | EXP_MASK | SIGN_MASK) == FP_MASK, "masks cover");

protected:
// Merge bits from 'a' and 'b' values according to 'mask'.
// Use 'a' bits when corresponding 'mask' bits are zeroes and 'b' bits when
// corresponding bits are ones.
LIBC_INLINE static constexpr StorageType merge(StorageType a, StorageType b,
StorageType mask) {
// https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
return a ^ ((a ^ b) & mask);
}

// A stongly typed integer that prevents mixing and matching integers with
// different semantics.
template <typename T> struct TypedInt {
using value_type = T;
LIBC_INLINE constexpr explicit TypedInt(T value) : value(value) {}
LIBC_INLINE constexpr TypedInt(const TypedInt &value) = default;
LIBC_INLINE constexpr TypedInt &operator=(const TypedInt &value) = default;

LIBC_INLINE constexpr explicit operator T() const { return value; }

LIBC_INLINE constexpr StorageType to_storage_type() const {
return StorageType(value);
}

private:
LIBC_INLINE friend constexpr bool operator==(TypedInt a, TypedInt b) {
return a.value == b.value;
}
LIBC_INLINE friend constexpr bool operator!=(TypedInt a, TypedInt b) {
return a.value != b.value;
}

protected:
T value;
};

Expand All @@ -220,10 +242,13 @@ template <FPType fp_type> struct FPStorage : public FPLayout<fp_type> {
struct Exponent : public TypedInt<int32_t> {
using UP = TypedInt<int32_t>;
using UP::UP;
LIBC_INLINE
static constexpr auto MIN() { return Exponent(1 - EXP_BIAS); }
LIBC_INLINE static constexpr auto SUBNORMAL() {
return Exponent(-EXP_BIAS);
}
LIBC_INLINE static constexpr auto MIN() { return Exponent(1 - EXP_BIAS); }
LIBC_INLINE static constexpr auto ZERO() { return Exponent(0); }
LIBC_INLINE static constexpr auto MAX() { return Exponent(EXP_BIAS); }
LIBC_INLINE static constexpr auto INF() { return Exponent(EXP_BIAS + 1); }
};

// An opaque type to store a floating point biased exponent.
Expand All @@ -236,13 +261,10 @@ template <FPType fp_type> struct FPStorage : public FPLayout<fp_type> {

LIBC_INLINE constexpr BiasedExponent(Exponent exp)
: UP(static_cast<int32_t>(exp) + EXP_BIAS) {}
// The exponent value for denormal numbers.
LIBC_INLINE static constexpr auto BITS_ALL_ZEROES() {
return BiasedExponent(uint32_t(0));
}
// The exponent value for infinity.
LIBC_INLINE static constexpr auto BITS_ALL_ONES() {
return BiasedExponent(uint32_t(2 * EXP_BIAS + 1));

// Cast operator to get convert from BiasedExponent to Exponent.
LIBC_INLINE constexpr operator Exponent() const {
return Exponent(UP::value - EXP_BIAS);
}
};

Expand Down Expand Up @@ -316,6 +338,23 @@ template <FPType fp_type> struct FPStorage : public FPLayout<fp_type> {
LIBC_INLINE constexpr StorageType exp_sig_bits() const {
return bits & EXP_SIG_MASK;
}

// Parts
LIBC_INLINE constexpr BiasedExponent biased_exponent() const {
return BiasedExponent(static_cast<uint32_t>(exp_bits() >> SIG_LEN));
}
LIBC_INLINE constexpr void set_biased_exponent(BiasedExponent biased) {
bits = merge(bits, encode(biased), EXP_MASK);
}

public:
LIBC_INLINE constexpr Sign sign() const {
return (bits & SIGN_MASK) ? Sign::NEG : Sign::POS;
}
LIBC_INLINE constexpr void set_sign(Sign signVal) {
if (sign() != signVal)
bits ^= SIGN_MASK;
}
};

// This layer defines all functions that are specific to how the the floating
Expand All @@ -329,9 +368,8 @@ struct FPRepSem : public FPStorage<fp_type> {
using UP::FRACTION_MASK;

protected:
using BiasedExp = typename UP::BiasedExponent;
using Exp = typename UP::Exponent;
using Sig = typename UP::Significand;
using typename UP::Exponent;
using typename UP::Significand;
using UP::encode;
using UP::exp_bits;
using UP::exp_sig_bits;
Expand All @@ -340,61 +378,66 @@ struct FPRepSem : public FPStorage<fp_type> {

public:
// Builders
LIBC_INLINE static constexpr RetT zero(Sign sign = Sign::POS) {
return RetT(encode(sign, Exponent::SUBNORMAL(), Significand::ZERO()));
}
LIBC_INLINE static constexpr RetT one(Sign sign = Sign::POS) {
return RetT(encode(sign, Exp::ZERO(), Sig::ZERO()));
return RetT(encode(sign, Exponent::ZERO(), Significand::ZERO()));
}
LIBC_INLINE static constexpr RetT min_subnormal(Sign sign = Sign::POS) {
return RetT(encode(sign, BiasedExp::BITS_ALL_ZEROES(), Sig::LSB()));
return RetT(encode(sign, Exponent::SUBNORMAL(), Significand::LSB()));
}
LIBC_INLINE static constexpr RetT max_subnormal(Sign sign = Sign::POS) {
return RetT(
encode(sign, BiasedExp::BITS_ALL_ZEROES(), Sig::BITS_ALL_ONES()));
encode(sign, Exponent::SUBNORMAL(), Significand::BITS_ALL_ONES()));
}
LIBC_INLINE static constexpr RetT min_normal(Sign sign = Sign::POS) {
return RetT(encode(sign, Exp::MIN(), Sig::ZERO()));
return RetT(encode(sign, Exponent::MIN(), Significand::ZERO()));
}
LIBC_INLINE static constexpr RetT max_normal(Sign sign = Sign::POS) {
return RetT(encode(sign, Exp::MAX(), Sig::BITS_ALL_ONES()));
return RetT(encode(sign, Exponent::MAX(), Significand::BITS_ALL_ONES()));
}
LIBC_INLINE static constexpr RetT inf(Sign sign = Sign::POS) {
return RetT(encode(sign, BiasedExp::BITS_ALL_ONES(), Sig::ZERO()));
return RetT(encode(sign, Exponent::INF(), Significand::ZERO()));
}
LIBC_INLINE static constexpr RetT signaling_nan(Sign sign = Sign::POS,
StorageType v = 0) {
return RetT(encode(sign, BiasedExp::BITS_ALL_ONES(),
(v ? Sig(v) : (Sig::MSB() >> 1))));
return RetT(encode(sign, Exponent::INF(),
(v ? Significand(v) : (Significand::MSB() >> 1))));
}
LIBC_INLINE static constexpr RetT quiet_nan(Sign sign = Sign::POS,
StorageType v = 0) {
return RetT(encode(sign, BiasedExp::BITS_ALL_ONES(), Sig::MSB() | Sig(v)));
return RetT(
encode(sign, Exponent::INF(), Significand::MSB() | Significand(v)));
}

// Observers
LIBC_INLINE constexpr bool is_zero() const { return exp_sig_bits() == 0; }
LIBC_INLINE constexpr bool is_nan() const {
return exp_sig_bits() > encode(BiasedExp::BITS_ALL_ONES(), Sig::ZERO());
return exp_sig_bits() > encode(Exponent::INF(), Significand::ZERO());
}
LIBC_INLINE constexpr bool is_quiet_nan() const {
return exp_sig_bits() >= encode(BiasedExp::BITS_ALL_ONES(), Sig::MSB());
return exp_sig_bits() >= encode(Exponent::INF(), Significand::MSB());
}
LIBC_INLINE constexpr bool is_signaling_nan() const {
return is_nan() && !is_quiet_nan();
}
LIBC_INLINE constexpr bool is_inf() const {
return exp_sig_bits() == encode(BiasedExp::BITS_ALL_ONES(), Sig::ZERO());
return exp_sig_bits() == encode(Exponent::INF(), Significand::ZERO());
}
LIBC_INLINE constexpr bool is_finite() const {
return exp_bits() != encode(BiasedExp::BITS_ALL_ONES());
return exp_bits() != encode(Exponent::INF());
}
LIBC_INLINE
constexpr bool is_subnormal() const {
return exp_bits() == encode(BiasedExp::BITS_ALL_ZEROES());
return exp_bits() == encode(Exponent::SUBNORMAL());
}
LIBC_INLINE constexpr bool is_normal() const {
return is_finite() && !is_subnormal();
}
// Returns the mantissa with the implicit bit set iff the current
// value is a valid normal number.
LIBC_INLINE constexpr StorageType get_explicit_mantissa() {
LIBC_INLINE constexpr StorageType get_explicit_mantissa() const {
if (is_subnormal())
return sig_bits();
return (StorageType(1) << UP::SIG_LEN) | sig_bits();
Expand Down Expand Up @@ -422,44 +465,50 @@ struct FPRepSem<FPType::X86_Binary80, RetT>
"whole significand");

protected:
using BiasedExp = typename UP::BiasedExponent;
using Sig = typename UP::Significand;
using typename UP::Exponent;
using typename UP::Significand;
using UP::encode;
using UP::UP;

public:
// Builders
LIBC_INLINE static constexpr RetT zero(Sign sign = Sign::POS) {
return RetT(encode(sign, Exponent::SUBNORMAL(), Significand::ZERO()));
}
LIBC_INLINE static constexpr RetT one(Sign sign = Sign::POS) {
return RetT(encode(sign, Exponent::ZERO(), Sig::MSB()));
return RetT(encode(sign, Exponent::ZERO(), Significand::MSB()));
}
LIBC_INLINE static constexpr RetT min_subnormal(Sign sign = Sign::POS) {
return RetT(encode(sign, BiasedExp::BITS_ALL_ZEROES(), Sig::LSB()));
return RetT(encode(sign, Exponent::SUBNORMAL(), Significand::LSB()));
}
LIBC_INLINE static constexpr RetT max_subnormal(Sign sign = Sign::POS) {
return RetT(encode(sign, BiasedExp::BITS_ALL_ZEROES(),
Sig::BITS_ALL_ONES() ^ Sig::MSB()));
return RetT(encode(sign, Exponent::SUBNORMAL(),
Significand::BITS_ALL_ONES() ^ Significand::MSB()));
}
LIBC_INLINE static constexpr RetT min_normal(Sign sign = Sign::POS) {
return RetT(encode(sign, Exponent::MIN(), Sig::MSB()));
return RetT(encode(sign, Exponent::MIN(), Significand::MSB()));
}
LIBC_INLINE static constexpr RetT max_normal(Sign sign = Sign::POS) {
return RetT(encode(sign, Exponent::MAX(), Sig::BITS_ALL_ONES()));
return RetT(encode(sign, Exponent::MAX(), Significand::BITS_ALL_ONES()));
}
LIBC_INLINE static constexpr RetT inf(Sign sign = Sign::POS) {
return RetT(encode(sign, BiasedExp::BITS_ALL_ONES(), Sig::MSB()));
return RetT(encode(sign, Exponent::INF(), Significand::MSB()));
}
LIBC_INLINE static constexpr RetT signaling_nan(Sign sign = Sign::POS,
StorageType v = 0) {
return RetT(encode(sign, BiasedExp::BITS_ALL_ONES(),
Sig::MSB() | (v ? Sig(v) : (Sig::MSB() >> 2))));
return RetT(encode(sign, Exponent::INF(),
Significand::MSB() |
(v ? Significand(v) : (Significand::MSB() >> 2))));
}
LIBC_INLINE static constexpr RetT quiet_nan(Sign sign = Sign::POS,
StorageType v = 0) {
return RetT(encode(sign, BiasedExp::BITS_ALL_ONES(),
Sig::MSB() | (Sig::MSB() >> 1) | Sig(v)));
return RetT(encode(sign, Exponent::INF(),
Significand::MSB() | (Significand::MSB() >> 1) |
Significand(v)));
}

// Observers
LIBC_INLINE constexpr bool is_zero() const { return exp_sig_bits() == 0; }
LIBC_INLINE constexpr bool is_nan() const {
// Most encoding forms from the table found in
// https://en.wikipedia.org/wiki/Extended_precision#x86_extended_precision_format
Expand All @@ -472,33 +521,33 @@ struct FPRepSem<FPType::X86_Binary80, RetT>
// - Quiet Not a Number
// - Unnormal
// This can be reduced to the following logic:
if (exp_bits() == encode(BiasedExp::BITS_ALL_ONES()))
if (exp_bits() == encode(Exponent::INF()))
return !is_inf();
if (exp_bits() != encode(BiasedExp::BITS_ALL_ZEROES()))
return (sig_bits() & encode(Sig::MSB())) == 0;
if (exp_bits() != encode(Exponent::SUBNORMAL()))
return (sig_bits() & encode(Significand::MSB())) == 0;
return false;
}
LIBC_INLINE constexpr bool is_quiet_nan() const {
return exp_sig_bits() >=
encode(BiasedExp::BITS_ALL_ONES(), Sig::MSB() | (Sig::MSB() >> 1));
encode(Exponent::INF(),
Significand::MSB() | (Significand::MSB() >> 1));
}
LIBC_INLINE constexpr bool is_signaling_nan() const {
return is_nan() && !is_quiet_nan();
}
LIBC_INLINE constexpr bool is_inf() const {
return exp_sig_bits() == encode(BiasedExp::BITS_ALL_ONES(), Sig::MSB());
return exp_sig_bits() == encode(Exponent::INF(), Significand::MSB());
}
LIBC_INLINE constexpr bool is_finite() const {
return !is_inf() && !is_nan();
}
LIBC_INLINE
constexpr bool is_subnormal() const {
return exp_bits() == encode(BiasedExp::BITS_ALL_ZEROES());
return exp_bits() == encode(Exponent::SUBNORMAL());
}
LIBC_INLINE constexpr bool is_normal() const {
const auto exp = exp_bits();
if (exp == encode(BiasedExp::BITS_ALL_ZEROES()) ||
exp == encode(BiasedExp::BITS_ALL_ONES()))
if (exp == encode(Exponent::SUBNORMAL()) || exp == encode(Exponent::INF()))
return false;
return get_implicit_bit();
}
Expand All @@ -520,21 +569,21 @@ struct FPRepSem<FPType::X86_Binary80, RetT>
}
};

// 'FPRep' is the bottom of the class hierarchy that only deals with 'FPType'.
// The operations dealing with specific float semantics are implemented by
// 'FPRepSem' above and specialized when needed.
// 'FPRepImpl' is the bottom of the class hierarchy that only deals with
// 'FPType'. The operations dealing with specific float semantics are
// implemented by 'FPRepSem' above and specialized when needed.
//
// The 'RetT' type is being propagated up to 'FPRepSem' so that the functions
// creating new values (Builders) can return the appropriate type. That is, when
// creating a value through 'FPBits' below the builder will return an 'FPBits'
// value:
// i.e., FPBits<float>::zero() // returns an FPBits<float>
// When we don't care about specific C++ floating point type we can use 'FPRep'
// directly and 'RetT' defaults to 'StorageType':
// i.e., FPRep<FPType:IEEE754_Binary32:>::zero() // returns an 'uint32_t'
template <FPType fp_type,
typename RetT = typename FPLayout<fp_type>::StorageType>
struct FPRep : public FPRepSem<fp_type, RetT> {
// value.
// FPBits<float>::zero(); // returns an FPBits<>
//
// When we don't care about specific C++ floating point type we can use
// 'FPRep' and specify the 'FPType' directly.
// FPRep<FPType::IEEE754_Binary32:>::zero() // returns an FPRep<>
template <FPType fp_type, typename RetT>
struct FPRepImpl : public FPRepSem<fp_type, RetT> {
using UP = FPRepSem<fp_type, RetT>;
using StorageType = typename UP::StorageType;

Expand All @@ -544,8 +593,9 @@ struct FPRep : public FPRepSem<fp_type, RetT> {
using UP::exp_bits;
using UP::exp_sig_bits;

using BiasedExp = typename UP::BiasedExponent;
using Sig = typename UP::Significand;
using typename UP::BiasedExponent;
using typename UP::Exponent;
using typename UP::Significand;

using UP::FP_MASK;
using UP::SIG_LEN;
Expand All @@ -559,14 +609,15 @@ struct FPRep : public FPRepSem<fp_type, RetT> {
LIBC_INLINE_VAR static constexpr int MAX_BIASED_EXPONENT =
(1 << UP::EXP_LEN) - 1;

LIBC_INLINE constexpr FPRep() = default;
LIBC_INLINE constexpr explicit FPRep(StorageType x) : UP(x) {}
// CTors
LIBC_INLINE constexpr FPRepImpl() = default;
LIBC_INLINE constexpr explicit FPRepImpl(StorageType x) : UP(x) {}

// Comparison
LIBC_INLINE constexpr friend bool operator==(FPRep a, FPRep b) {
LIBC_INLINE constexpr friend bool operator==(FPRepImpl a, FPRepImpl b) {
return a.uintval() == b.uintval();
}
LIBC_INLINE constexpr friend bool operator!=(FPRep a, FPRep b) {
LIBC_INLINE constexpr friend bool operator!=(FPRepImpl a, FPRepImpl b) {
return a.uintval() != b.uintval();
}

Expand All @@ -577,9 +628,6 @@ struct FPRep : public FPRepSem<fp_type, RetT> {
}

// Builders
LIBC_INLINE static constexpr RetT zero(Sign sign = Sign::POS) {
return RetT(encode(sign, BiasedExp::BITS_ALL_ZEROES(), Sig::ZERO()));
}
using UP::inf;
using UP::max_normal;
using UP::max_subnormal;
Expand All @@ -588,6 +636,7 @@ struct FPRep : public FPRepSem<fp_type, RetT> {
using UP::one;
using UP::quiet_nan;
using UP::signaling_nan;
using UP::zero;

// Modifiers
LIBC_INLINE constexpr RetT abs() const {
Expand All @@ -596,38 +645,29 @@ struct FPRep : public FPRepSem<fp_type, RetT> {

// Observers
using UP::get_explicit_mantissa;
LIBC_INLINE constexpr bool is_zero() const { return exp_sig_bits() == 0; }
LIBC_INLINE constexpr bool is_inf_or_nan() const { return !is_finite(); }
using UP::is_finite;
using UP::is_inf;
using UP::is_nan;
using UP::is_normal;
using UP::is_quiet_nan;
using UP::is_signaling_nan;
using UP::is_subnormal;
using UP::is_zero;
using UP::sign;
LIBC_INLINE constexpr bool is_inf_or_nan() const { return !is_finite(); }
LIBC_INLINE constexpr bool is_neg() const { return sign().is_neg(); }
LIBC_INLINE constexpr bool is_pos() const { return sign().is_pos(); }

// Parts
LIBC_INLINE constexpr Sign sign() const {
return (bits & SIGN_MASK) ? Sign::NEG : Sign::POS;
}

LIBC_INLINE constexpr void set_sign(Sign signVal) {
if (sign() != signVal)
bits ^= SIGN_MASK;
}

LIBC_INLINE constexpr uint16_t get_biased_exponent() const {
return uint16_t((bits & UP::EXP_MASK) >> UP::SIG_LEN);
return static_cast<uint16_t>(static_cast<uint32_t>(UP::biased_exponent()));
}

LIBC_INLINE constexpr void set_biased_exponent(StorageType biased) {
bits = merge(bits, biased << SIG_LEN, EXP_MASK);
UP::set_biased_exponent(BiasedExponent((int32_t)biased));
}

LIBC_INLINE constexpr int get_exponent() const {
return int(get_biased_exponent()) - EXP_BIAS;
return static_cast<int32_t>(Exponent(UP::biased_exponent()));
}

// If the number is subnormal, the exponent is treated as if it were the
Expand All @@ -637,22 +677,20 @@ struct FPRep : public FPRepSem<fp_type, RetT> {
// will give a slightly incorrect result. Additionally, zero has an exponent
// of zero, and that should actually be treated as zero.
LIBC_INLINE constexpr int get_explicit_exponent() const {
const int biased_exp = int(get_biased_exponent());
if (is_zero()) {
return 0;
} else if (biased_exp == 0) {
return 1 - EXP_BIAS;
} else {
return biased_exp - EXP_BIAS;
}
Exponent exponent(UP::biased_exponent());
if (is_zero())
exponent = Exponent::ZERO();
if (exponent == Exponent::SUBNORMAL())
exponent = Exponent::MIN();
return static_cast<int32_t>(exponent);
}

LIBC_INLINE constexpr StorageType get_mantissa() const {
return bits & FRACTION_MASK;
}

LIBC_INLINE constexpr void set_mantissa(StorageType mantVal) {
bits = merge(bits, mantVal, FRACTION_MASK);
bits = UP::merge(bits, mantVal, FRACTION_MASK);
}

// Unsafe function to create a floating point representation.
Expand All @@ -663,12 +701,12 @@ struct FPRep : public FPRepSem<fp_type, RetT> {
create_value(Sign sign, StorageType biased_exp, StorageType mantissa) {
static_assert(fp_type != FPType::X86_Binary80,
"This function is not tested for X86 Extended Precision");
return RetT(encode(sign, BiasedExp(static_cast<uint32_t>(biased_exp)),
Sig(mantissa)));
return RetT(encode(sign, BiasedExponent(static_cast<uint32_t>(biased_exp)),
Significand(mantissa)));
}

// The function converts integer number and unbiased exponent to proper float
// T type:
// The function converts integer number and unbiased exponent to proper
// float T type:
// Result = number * 2^(ep+1 - exponent_bias)
// Be careful!
// 1) "ep" is the raw exponent value.
Expand All @@ -680,7 +718,7 @@ struct FPRep : public FPRepSem<fp_type, RetT> {
LIBC_INLINE static constexpr RetT make_value(StorageType number, int ep) {
static_assert(fp_type != FPType::X86_Binary80,
"This function is not tested for X86 Extended Precision");
FPRep result;
FPRepImpl result;
// offset: +1 for sign, but -1 for implicit first bit
int lz = cpp::countl_zero(number) - UP::EXP_LEN;
number <<= lz;
Expand All @@ -695,15 +733,18 @@ struct FPRep : public FPRepSem<fp_type, RetT> {
}
return RetT(result.uintval());
}
};

private:
// Merge bits from 'a' and 'b' values according to 'mask'.
// Use 'a' bits when corresponding 'mask' bits are zeroes and 'b' bits when
// corresponding bits are ones.
LIBC_INLINE static constexpr StorageType merge(StorageType a, StorageType b,
StorageType mask) {
// https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
return a ^ ((a ^ b) & mask);
// A generic class to manipulate floating point formats.
// It derives its functionality to FPRepImpl above.
template <FPType fp_type>
struct FPRep : public FPRepImpl<fp_type, FPRep<fp_type>> {
using UP = FPRepImpl<fp_type, FPRep<fp_type>>;
using StorageType = typename UP::StorageType;
using UP::UP;

LIBC_INLINE constexpr explicit operator StorageType() const {
return UP::uintval();
}
};

Expand Down Expand Up @@ -741,12 +782,12 @@ template <typename T> LIBC_INLINE static constexpr FPType get_fp_type() {
}

// A generic class to manipulate C++ floating point formats.
// It derives most of its functionality to FPRep above.
// It derives its functionality to FPRepImpl above.
template <typename T>
struct FPBits final : public internal::FPRep<get_fp_type<T>(), FPBits<T>> {
struct FPBits final : public internal::FPRepImpl<get_fp_type<T>(), FPBits<T>> {
static_assert(cpp::is_floating_point_v<T>,
"FPBits instantiated with invalid type.");
using UP = internal::FPRep<get_fp_type<T>(), FPBits<T>>;
using UP = internal::FPRepImpl<get_fp_type<T>(), FPBits<T>>;
using StorageType = typename UP::StorageType;

// Constructors.
Expand Down
68 changes: 34 additions & 34 deletions libc/test/src/__support/FPUtil/fpbits_test.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -231,47 +231,47 @@ enum class FP {
QUIET_NAN
};

constexpr FP all_fp_values[] = {
FP::ZERO, FP::MIN_SUBNORMAL, FP::MAX_SUBNORMAL,
FP::MIN_NORMAL, FP::ONE, FP::MAX_NORMAL,
FP::INF, FP::SIGNALING_NAN, FP::QUIET_NAN,
};

constexpr Sign all_signs[] = {Sign::POS, Sign::NEG};

using FPTypes = LIBC_NAMESPACE::testing::TypeList<
FPRep<FPType::IEEE754_Binary16>, FPRep<FPType::IEEE754_Binary32>,
FPRep<FPType::IEEE754_Binary64>, FPRep<FPType::IEEE754_Binary128>,
FPRep<FPType::X86_Binary80>>;

template <typename T> constexpr auto make(Sign sign, FP fp) {
switch (fp) {
case FP::ZERO:
return T::zero(sign);
case FP::MIN_SUBNORMAL:
return T::min_subnormal(sign);
case FP::MAX_SUBNORMAL:
return T::max_subnormal(sign);
case FP::MIN_NORMAL:
return T::min_normal(sign);
case FP::ONE:
return T::one(sign);
case FP::MAX_NORMAL:
return T::max_normal(sign);
case FP::INF:
return T::inf(sign);
case FP::SIGNALING_NAN:
return T::signaling_nan(sign);
case FP::QUIET_NAN:
return T::quiet_nan(sign);
}
};

// Tests all properties for all types of float.
TYPED_TEST(LlvmLibcFPBitsTest, Properties, FPTypes) {
static constexpr auto make_storage = [](Sign sign, FP fp) {
switch (fp) {
case FP::ZERO:
return T::zero(sign);
case FP::MIN_SUBNORMAL:
return T::min_subnormal(sign);
case FP::MAX_SUBNORMAL:
return T::max_subnormal(sign);
case FP::MIN_NORMAL:
return T::min_normal(sign);
case FP::ONE:
return T::one(sign);
case FP::MAX_NORMAL:
return T::max_normal(sign);
case FP::INF:
return T::inf(sign);
case FP::SIGNALING_NAN:
return T::signaling_nan(sign);
case FP::QUIET_NAN:
return T::quiet_nan(sign);
}
};
static constexpr auto make = [](Sign sign, FP fp) -> T {
return T(make_storage(sign, fp));
};
constexpr FP fp_values[] = {
FP::ZERO, FP::MIN_SUBNORMAL, FP::MAX_SUBNORMAL,
FP::MIN_NORMAL, FP::ONE, FP::MAX_NORMAL,
FP::INF, FP::SIGNALING_NAN, FP::QUIET_NAN,
};
constexpr Sign signs[] = {Sign::POS, Sign::NEG};
for (Sign sign : signs) {
for (FP fp : fp_values) {
const T value = make(sign, fp);
for (Sign sign : all_signs) {
for (FP fp : all_fp_values) {
const T value = make<T>(sign, fp);
// is_zero
ASSERT_EQ(value.is_zero(), fp == FP::ZERO);
// is_inf_or_nan
Expand Down