243 changes: 123 additions & 120 deletions libc/src/__support/block.h
Original file line number Diff line number Diff line change
Expand Up @@ -95,6 +95,26 @@ using cpp::optional;
/// +----------+----------+--------------+
/// @endcode
///
/// As a space optimization, when a block is allocated, it consumes the prev
/// field of the following block:
///
/// Block 1 (used):
/// +---------------------+--------------+
/// | Header | Usable space |
/// +----------+----------+--------------+
/// | prev | next | |
/// | 0......3 | 4......7 | 8........230 |
/// | 00000000 | 00000230 | <app data> |
/// +----------+----------+--------------+
/// Block 2:
/// +---------------------+--------------+
/// | B1 | Header | Usable space |
/// +----------+----------+--------------+
/// | | next | |
/// | 0......3 | 4......7 | 8........827 |
/// | xxxxxxxx | 00000830 | f7f7....f7f7 |
/// +----------+----------+--------------+
///
/// The next offset of a block matches the previous offset of its next block.
/// The first block in a list is denoted by having a previous offset of `0`.
///
Expand All @@ -110,9 +130,9 @@ using cpp::optional;
template <typename OffsetType = uintptr_t, size_t kAlign = alignof(max_align_t)>
class Block {
// Masks for the contents of the next_ field.
static constexpr size_t USED_MASK = 1 << 0;
static constexpr size_t PREV_FREE_MASK = 1 << 0;
static constexpr size_t LAST_MASK = 1 << 1;
static constexpr size_t SIZE_MASK = ~(USED_MASK | LAST_MASK);
static constexpr size_t SIZE_MASK = ~(PREV_FREE_MASK | LAST_MASK);

public:
using offset_type = OffsetType;
Expand All @@ -126,7 +146,8 @@ class Block {
Block(const Block &other) = delete;
Block &operator=(const Block &other) = delete;

/// Creates the first block for a given memory region.
/// Creates the first block for a given memory region, followed by a sentinel
/// last block. Returns the first block.
static optional<Block *> init(ByteSpan region);

/// @returns A pointer to a `Block`, given a pointer to the start of the
Expand All @@ -148,8 +169,22 @@ class Block {
/// @returns The total size of the block in bytes, including the header.
size_t outer_size() const { return next_ & SIZE_MASK; }

static size_t outer_size(size_t inner_size) {
// The usable region includes the prev_ field of the next block.
return inner_size - sizeof(prev_) + BLOCK_OVERHEAD;
}

/// @returns The number of usable bytes inside the block.
size_t inner_size() const { return outer_size() - BLOCK_OVERHEAD; }
size_t inner_size() const {
if (!next())
return 0;
return inner_size(outer_size());
}

static size_t inner_size(size_t outer_size) {
// The usable region includes the prev_ field of the next block.
return outer_size - BLOCK_OVERHEAD + sizeof(prev_);
}

/// @returns A pointer to the usable space inside this block.
cpp::byte *usable_space() {
Expand All @@ -167,8 +202,9 @@ class Block {
/// Attempts to split this block.
///
/// If successful, the block will have an inner size of `new_inner_size`,
/// rounded up to a `ALIGNMENT` boundary. The remaining space will be
/// returned as a new block.
/// rounded to ensure that the split point is on an ALIGNMENT boundary. The
/// remaining space will be returned as a new block. Note that the prev_ field
/// of the next block counts as part of the inner size of the returnd block.
///
/// This method may fail if the remaining space is too small to hold a new
/// block. If this method fails for any reason, the original block is
Expand All @@ -182,40 +218,39 @@ class Block {
/// is the last block.
Block *next() const;

/// @returns The block immediately before this one, or a null pointer if this
/// is the first block.
Block *prev() const;
/// @returns The free block immediately before this one, otherwise nullptr.
Block *prev_free() const;

/// Indicates whether the block is in use.
///
/// @returns `true` if the block is in use or `false` if not.
bool used() const { return next_ & USED_MASK; }
/// @returns Whether the block is unavailable for allocation.
bool used() const { return !next() || !next()->prev_free(); }

/// Marks this block as in use.
void mark_used() { next_ |= USED_MASK; }
void mark_used() {
LIBC_ASSERT(next() && "last block is always considered used");
next()->next_ &= ~PREV_FREE_MASK;
}

/// Marks this block as free.
void mark_free() { next_ &= ~USED_MASK; }
void mark_free() {
LIBC_ASSERT(next() && "last block is always considered used");
next()->next_ |= PREV_FREE_MASK;
// The next block's prev_ field becomes alive, as it is no longer part of
// this block's used space.
*new (&next()->prev_) offset_type = outer_size();
}

/// Marks this block as the last one in the chain. Makes next() return
/// nullptr.
constexpr void mark_last() { next_ |= LAST_MASK; }

/// @brief Checks if a block is valid.
///
/// @returns `true` if and only if the following conditions are met:
/// * The block is aligned.
/// * The prev/next fields match with the previous and next blocks.
bool is_valid() const {
return check_status() == internal::BlockStatus::VALID;
}
void mark_last() { next_ |= LAST_MASK; }

constexpr Block(size_t prev_outer_size, size_t outer_size);
constexpr Block(size_t outer_size);

bool is_usable_space_aligned(size_t alignment) const {
return reinterpret_cast<uintptr_t>(usable_space()) % alignment == 0;
}

/// @returns The new inner size of this block that would give the usable
/// space of the next block the given alignment.
size_t padding_for_alignment(size_t alignment) const {
if (is_usable_space_aligned(alignment))
return 0;
Expand All @@ -235,9 +270,11 @@ class Block {
// ^
// Alignment requirement
//
uintptr_t start = reinterpret_cast<uintptr_t>(usable_space());
alignment = cpp::max(alignment, ALIGNMENT);
return align_up(start + BLOCK_OVERHEAD, alignment) - start;
uintptr_t start = reinterpret_cast<uintptr_t>(usable_space());
uintptr_t next_usable_space = align_up(start + BLOCK_OVERHEAD, alignment);
uintptr_t next_block = next_usable_space - BLOCK_OVERHEAD;
return next_block - start + sizeof(prev_);
}

// Check that we can `allocate` a block with a given alignment and size from
Expand Down Expand Up @@ -272,21 +309,16 @@ class Block {
private:
/// Construct a block to represent a span of bytes. Overwrites only enough
/// memory for the block header; the rest of the span is left alone.
static Block *as_block(size_t prev_outer_size, ByteSpan bytes);

/// Returns a `BlockStatus` that is either VALID or indicates the reason why
/// the block is invalid.
///
/// If the block is invalid at multiple points, this function will only return
/// one of the reasons.
internal::BlockStatus check_status() const;
static Block *as_block(ByteSpan bytes);

/// Like `split`, but assumes the caller has already checked to parameters to
/// ensure the split will succeed.
Block *split_impl(size_t new_inner_size);

/// Offset from this block to the previous block. 0 if this is the first
/// block.
/// block. This field is only alive when the previous block is free;
/// otherwise, its memory is reused as part of the previous block's usable
/// space.
offset_type prev_ = 0;

/// Offset from this block to the next block. Valid even if this is the last
Expand All @@ -296,14 +328,12 @@ class Block {
/// Information about the current state of the block is stored in the two low
/// order bits of the next_ value. These are guaranteed free by a minimum
/// alignment (and thus, alignment of the size) of 4. The lowest bit is the
/// `used` flag, and the other bit is the `last` flag.
/// `prev_free` flag, and the other bit is the `last` flag.
///
/// * If the `used` flag is set, the block's usable memory has been allocated
/// and is being used.
/// * If the `last` flag is set, the block does not have a next block.
/// * If the `used` flag is set, the alignment represents the requested value
/// when the memory was allocated, which may be less strict than the actual
/// alignment.
/// * If the `prev_free` flag is set, the block isn't the first and the
/// previous block is free.
/// * If the `last` flag is set, the block is the sentinel last block. It is
/// summarily considered used and has no next block.
} __attribute__((packed, aligned(cpp::max(kAlign, size_t{4}))));

// Public template method implementations.
Expand Down Expand Up @@ -332,29 +362,35 @@ Block<OffsetType, kAlign>::init(ByteSpan region) {
return {};

region = result.value();
if (region.size() < BLOCK_OVERHEAD)
// Two blocks are allocated: a free block and a sentinel last block.
if (region.size() < 2 * BLOCK_OVERHEAD)
return {};

if (cpp::numeric_limits<OffsetType>::max() < region.size())
return {};

Block *block = as_block(0, region);
block->mark_last();
Block *block = as_block(region.first(region.size() - BLOCK_OVERHEAD));
Block *last = as_block(region.last(BLOCK_OVERHEAD));
block->mark_free();
last->mark_last();
return block;
}

template <typename OffsetType, size_t kAlign>
bool Block<OffsetType, kAlign>::can_allocate(size_t alignment,
size_t size) const {
if (is_usable_space_aligned(alignment) && inner_size() >= size)
return true; // Size and alignment constraints met.

// Either the alignment isn't met or we don't have enough size.
// If we don't meet alignment, we can always adjust such that we do meet the
// alignment. If we meet the alignment but just don't have enough size. This
// check will fail anyway.
size_t adjustment = padding_for_alignment(alignment);
return inner_size() >= size + adjustment;
if (inner_size() < size)
return false;
if (is_usable_space_aligned(alignment))
return true;

// Alignment isn't met, so a padding block is needed. Determine amount of
// inner_size() consumed by the padding block.
size_t padding_size = padding_for_alignment(alignment) - sizeof(prev_);

// Check that there is room for the allocation in the following aligned block.
size_t aligned_inner_size = inner_size() - padding_size - BLOCK_OVERHEAD;
return size <= aligned_inner_size;
}

template <typename OffsetType, size_t kAlign>
Expand All @@ -369,26 +405,19 @@ Block<OffsetType, kAlign>::allocate(Block *block, size_t alignment,
BlockInfo info{block, /*prev=*/nullptr, /*next=*/nullptr};

if (!info.block->is_usable_space_aligned(alignment)) {
size_t adjustment = info.block->padding_for_alignment(alignment);
LIBC_ASSERT((adjustment - BLOCK_OVERHEAD) % ALIGNMENT == 0 &&
"The adjustment calculation should always return a new size "
"that's a multiple of ALIGNMENT");

Block *original = info.block;
optional<Block *> maybe_aligned_block =
original->split(adjustment - BLOCK_OVERHEAD);
original->split(info.block->padding_for_alignment(alignment));
LIBC_ASSERT(maybe_aligned_block.has_value() &&
"This split should always result in a new block. The check in "
"`can_allocate` ensures that we have enough space here to make "
"two blocks.");

if (Block *prev = original->prev()) {
// If there is a block before this, we can merge the current one with the
// newly created one.
if (Block *prev = original->prev_free()) {
// If there is a free block before this, we can merge the current one with
// the newly created one.
prev->merge_next();
} else {
// Otherwise, this was the very first block in the chain. Now we can make
// it the new first block.
info.prev = original;
}

Expand All @@ -410,9 +439,14 @@ optional<Block<OffsetType, kAlign> *>
Block<OffsetType, kAlign>::split(size_t new_inner_size) {
if (used())
return {};
// The prev_ field of the next block is always available, so there is a
// minimum size to a block created through splitting.
if (new_inner_size < sizeof(prev_))
return {};

size_t old_inner_size = inner_size();
new_inner_size = align_up(new_inner_size, ALIGNMENT);
new_inner_size =
align_up(new_inner_size - sizeof(prev_), ALIGNMENT) + sizeof(prev_);
if (old_inner_size < new_inner_size)
return {};

Expand All @@ -425,41 +459,26 @@ Block<OffsetType, kAlign>::split(size_t new_inner_size) {
template <typename OffsetType, size_t kAlign>
Block<OffsetType, kAlign> *
Block<OffsetType, kAlign>::split_impl(size_t new_inner_size) {
size_t outer_size1 = new_inner_size + BLOCK_OVERHEAD;
bool has_next = next();
size_t outer_size1 = outer_size(new_inner_size);
LIBC_ASSERT(outer_size1 % ALIGNMENT == 0 && "new size must be aligned");
ByteSpan new_region = region().subspan(outer_size1);
LIBC_ASSERT(!used() && "used blocks cannot be split");
// The low order bits of outer_size1 should both be zero, and is the correct
// value for the flags is false.
next_ = outer_size1;
LIBC_ASSERT(!used() && next() && "incorrect first split flags");
Block *new_block = as_block(outer_size1, new_region);

if (has_next) {
// The two flags are both false, so next_ is a plain size.
LIBC_ASSERT(!new_block->used() && next() && "flags disrupt use of size");
new_block->next()->prev_ = new_block->next_;
} else {
new_block->mark_last();
}
next_ &= ~SIZE_MASK;
next_ |= outer_size1;

Block *new_block = as_block(new_region);
mark_free(); // Free status for this block is now stored in new_block.
new_block->next()->prev_ = new_region.size();
return new_block;
}

template <typename OffsetType, size_t kAlign>
bool Block<OffsetType, kAlign>::merge_next() {
if (used() || !next() || next()->used())
if (used() || next()->used())
return false;

// Extend the size and copy the last() flag from the next block to this one.
next_ &= SIZE_MASK;
next_ += next()->next_;

if (next()) {
// The two flags are both false, so next_ is a plain size.
LIBC_ASSERT(!used() && next() && "flags disrupt use of size");
next()->prev_ = next_;
}

size_t new_size = outer_size() + next()->outer_size();
next_ &= ~SIZE_MASK;
next_ |= new_size;
next()->prev_ = new_size;
return true;
}

Expand All @@ -472,39 +491,23 @@ Block<OffsetType, kAlign> *Block<OffsetType, kAlign>::next() const {
}

template <typename OffsetType, size_t kAlign>
Block<OffsetType, kAlign> *Block<OffsetType, kAlign>::prev() const {
uintptr_t addr = (prev_ == 0) ? 0 : reinterpret_cast<uintptr_t>(this) - prev_;
return reinterpret_cast<Block *>(addr);
Block<OffsetType, kAlign> *Block<OffsetType, kAlign>::prev_free() const {
if (!(next_ & PREV_FREE_MASK))
return nullptr;
return reinterpret_cast<Block *>(reinterpret_cast<uintptr_t>(this) - prev_);
}

// Private template method implementations.

template <typename OffsetType, size_t kAlign>
constexpr Block<OffsetType, kAlign>::Block(size_t prev_outer_size,
size_t outer_size) {
prev_ = prev_outer_size;
constexpr Block<OffsetType, kAlign>::Block(size_t outer_size)
: next_(outer_size) {
LIBC_ASSERT(outer_size % ALIGNMENT == 0 && "block sizes must be aligned");
next_ = outer_size;
}

template <typename OffsetType, size_t kAlign>
Block<OffsetType, kAlign> *
Block<OffsetType, kAlign>::as_block(size_t prev_outer_size, ByteSpan bytes) {
return ::new (bytes.data()) Block(prev_outer_size, bytes.size());
}

template <typename OffsetType, size_t kAlign>
internal::BlockStatus Block<OffsetType, kAlign>::check_status() const {
if (reinterpret_cast<uintptr_t>(this) % ALIGNMENT != 0)
return internal::BlockStatus::MISALIGNED;

if (next() && (this >= next() || this != next()->prev()))
return internal::BlockStatus::NEXT_MISMATCHED;

if (prev() && (this <= prev() || this != prev()->next()))
return internal::BlockStatus::PREV_MISMATCHED;

return internal::BlockStatus::VALID;
Block<OffsetType, kAlign> *Block<OffsetType, kAlign>::as_block(ByteSpan bytes) {
return ::new (bytes.data()) Block(bytes.size());
}

} // namespace LIBC_NAMESPACE_DECL
Expand Down
40 changes: 7 additions & 33 deletions libc/src/__support/freelist_heap.h
Original file line number Diff line number Diff line change
Expand Up @@ -41,15 +41,6 @@ template <size_t NUM_BUCKETS = DEFAULT_BUCKETS.size()> class FreeListHeap {
static constexpr size_t MIN_ALIGNMENT =
cpp::max(BlockType::ALIGNMENT, alignof(max_align_t));

struct HeapStats {
size_t total_bytes;
size_t bytes_allocated;
size_t cumulative_allocated;
size_t cumulative_freed;
size_t total_allocate_calls;
size_t total_free_calls;
};

constexpr FreeListHeap() : begin_(&_end), end_(&__llvm_libc_heap_limit) {}

constexpr FreeListHeap(span<cpp::byte> region)
Expand All @@ -63,8 +54,6 @@ template <size_t NUM_BUCKETS = DEFAULT_BUCKETS.size()> class FreeListHeap {
void *realloc(void *ptr, size_t size);
void *calloc(size_t num, size_t size);

const HeapStats &heap_stats() const { return heap_stats_; }

cpp::span<cpp::byte> region() const { return {begin_, end_}; }

private:
Expand All @@ -82,7 +71,6 @@ template <size_t NUM_BUCKETS = DEFAULT_BUCKETS.size()> class FreeListHeap {
cpp::byte *begin_;
cpp::byte *end_;
FreeListType freelist_{DEFAULT_BUCKETS};
HeapStats heap_stats_{};
};

template <size_t BUFF_SIZE, size_t NUM_BUCKETS = DEFAULT_BUCKETS.size()>
Expand All @@ -100,7 +88,6 @@ class FreeListHeapBuffer : public FreeListHeap<NUM_BUCKETS> {

template <size_t NUM_BUCKETS> void FreeListHeap<NUM_BUCKETS>::init() {
LIBC_ASSERT(!is_initialized_ && "duplicate initialization");
heap_stats_.total_bytes = region().size();
auto result = BlockType::init(region());
BlockType *block = *result;
freelist_.add_chunk(block_to_span(block));
Expand Down Expand Up @@ -139,10 +126,6 @@ void *FreeListHeap<NUM_BUCKETS>::allocate_impl(size_t alignment, size_t size) {

chunk_block->mark_used();

heap_stats_.bytes_allocated += size;
heap_stats_.cumulative_allocated += size;
heap_stats_.total_allocate_calls += 1;

return chunk_block->usable_space();
}

Expand Down Expand Up @@ -171,35 +154,26 @@ template <size_t NUM_BUCKETS> void FreeListHeap<NUM_BUCKETS>::free(void *ptr) {
LIBC_ASSERT(is_valid_ptr(bytes) && "Invalid pointer");

BlockType *chunk_block = BlockType::from_usable_space(bytes);

size_t size_freed = chunk_block->inner_size();
LIBC_ASSERT(chunk_block->next() && "sentinel last block cannot be freed");
LIBC_ASSERT(chunk_block->used() && "The block is not in-use");
chunk_block->mark_free();

// Can we combine with the left or right blocks?
BlockType *prev = chunk_block->prev();
BlockType *next = nullptr;
BlockType *prev_free = chunk_block->prev_free();
BlockType *next = chunk_block->next();

if (chunk_block->next())
next = chunk_block->next();

if (prev != nullptr && !prev->used()) {
if (prev_free != nullptr) {
// Remove from freelist and merge
freelist_.remove_chunk(block_to_span(prev));
chunk_block = chunk_block->prev();
freelist_.remove_chunk(block_to_span(prev_free));
chunk_block = prev_free;
chunk_block->merge_next();
}

if (next != nullptr && !next->used()) {
if (!next->used()) {
freelist_.remove_chunk(block_to_span(next));
chunk_block->merge_next();
}
// Add back to the freelist
freelist_.add_chunk(block_to_span(chunk_block));

heap_stats_.bytes_allocated -= size_freed;
heap_stats_.cumulative_freed += size_freed;
heap_stats_.total_free_calls += 1;
}

// Follows constract of the C standard realloc() function
Expand Down
200 changes: 87 additions & 113 deletions libc/test/src/__support/block_test.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -49,10 +49,20 @@ TEST_FOR_EACH_BLOCK_TYPE(CanCreateSingleAlignedBlock) {
ASSERT_TRUE(result.has_value());
BlockType *block = *result;

EXPECT_EQ(block->outer_size(), kN);
EXPECT_EQ(block->inner_size(), kN - BlockType::BLOCK_OVERHEAD);
EXPECT_EQ(block->prev(), static_cast<BlockType *>(nullptr));
EXPECT_EQ(block->next(), static_cast<BlockType *>(nullptr));
BlockType *last = block->next();
ASSERT_NE(last, static_cast<BlockType *>(nullptr));
constexpr size_t last_outer_size = BlockType::BLOCK_OVERHEAD;
EXPECT_EQ(last->outer_size(), last_outer_size);
EXPECT_EQ(last->prev_free(), block);
EXPECT_TRUE(last->used());

EXPECT_EQ(block->outer_size(), kN - last_outer_size);
constexpr size_t last_prev_field_size =
sizeof(typename BlockType::offset_type);
EXPECT_EQ(block->inner_size(), kN - last_outer_size -
BlockType::BLOCK_OVERHEAD +
last_prev_field_size);
EXPECT_EQ(block->prev_free(), static_cast<BlockType *>(nullptr));
EXPECT_FALSE(block->used());
}

Expand Down Expand Up @@ -88,26 +98,29 @@ TEST(LlvmLibcBlockTest, CannotCreateTooLargeBlock) {

TEST_FOR_EACH_BLOCK_TYPE(CanSplitBlock) {
constexpr size_t kN = 1024;
constexpr size_t kSplitN = 512;
constexpr size_t prev_field_size = sizeof(typename BlockType::offset_type);
// Give the split position a large alignment.
constexpr size_t kSplitN = 512 + prev_field_size;

alignas(BlockType::ALIGNMENT) array<byte, kN> bytes;
auto result = BlockType::init(bytes);
ASSERT_TRUE(result.has_value());
auto *block1 = *result;
size_t orig_size = block1->outer_size();

result = block1->split(kSplitN);
ASSERT_TRUE(result.has_value());

auto *block2 = *result;

EXPECT_EQ(block1->inner_size(), kSplitN);
EXPECT_EQ(block1->outer_size(), kSplitN + BlockType::BLOCK_OVERHEAD);
EXPECT_EQ(block1->outer_size(),
kSplitN - prev_field_size + BlockType::BLOCK_OVERHEAD);

EXPECT_EQ(block2->outer_size(), kN - kSplitN - BlockType::BLOCK_OVERHEAD);
EXPECT_EQ(block2->outer_size(), orig_size - block1->outer_size());
EXPECT_FALSE(block2->used());

EXPECT_EQ(block1->next(), block2);
EXPECT_EQ(block2->prev(), block1);
EXPECT_EQ(block2->prev_free(), block1);
}

TEST_FOR_EACH_BLOCK_TYPE(CanSplitBlockUnaligned) {
Expand All @@ -117,26 +130,27 @@ TEST_FOR_EACH_BLOCK_TYPE(CanSplitBlockUnaligned) {
auto result = BlockType::init(bytes);
ASSERT_TRUE(result.has_value());
BlockType *block1 = *result;
size_t orig_size = block1->outer_size();

// We should split at sizeof(BlockType) + kSplitN bytes. Then
// we need to round that up to an alignof(BlockType) boundary.
constexpr size_t kSplitN = 513;
uintptr_t split_addr = reinterpret_cast<uintptr_t>(block1) + kSplitN;
constexpr size_t prev_field_size = sizeof(typename BlockType::offset_type);
uintptr_t split_addr =
reinterpret_cast<uintptr_t>(block1) + (kSplitN - prev_field_size);
// Round split_addr up to a multiple of the alignment.
split_addr += alignof(BlockType) - (split_addr % alignof(BlockType));
uintptr_t split_len = split_addr - (uintptr_t)&bytes;
uintptr_t split_len = split_addr - (uintptr_t)&bytes + prev_field_size;

result = block1->split(kSplitN);
ASSERT_TRUE(result.has_value());
BlockType *block2 = *result;

EXPECT_EQ(block1->inner_size(), split_len);
EXPECT_EQ(block1->outer_size(), split_len + BlockType::BLOCK_OVERHEAD);

EXPECT_EQ(block2->outer_size(), kN - block1->outer_size());
EXPECT_EQ(block2->outer_size(), orig_size - block1->outer_size());
EXPECT_FALSE(block2->used());

EXPECT_EQ(block1->next(), block2);
EXPECT_EQ(block2->prev(), block1);
EXPECT_EQ(block2->prev_free(), block1);
}

TEST_FOR_EACH_BLOCK_TYPE(CanSplitMidBlock) {
Expand Down Expand Up @@ -167,9 +181,9 @@ TEST_FOR_EACH_BLOCK_TYPE(CanSplitMidBlock) {
BlockType *block3 = *result;

EXPECT_EQ(block1->next(), block3);
EXPECT_EQ(block3->prev(), block1);
EXPECT_EQ(block3->prev_free(), block1);
EXPECT_EQ(block3->next(), block2);
EXPECT_EQ(block2->prev(), block3);
EXPECT_EQ(block2->prev_free(), block3);
}

TEST_FOR_EACH_BLOCK_TYPE(CannotSplitTooSmallBlock) {
Expand All @@ -187,7 +201,7 @@ TEST_FOR_EACH_BLOCK_TYPE(CannotSplitTooSmallBlock) {

TEST_FOR_EACH_BLOCK_TYPE(CannotSplitBlockWithoutHeaderSpace) {
constexpr size_t kN = 1024;
constexpr size_t kSplitN = kN - BlockType::BLOCK_OVERHEAD - 1;
constexpr size_t kSplitN = kN - 2 * BlockType::BLOCK_OVERHEAD - 1;

alignas(BlockType::ALIGNMENT) array<byte, kN> bytes;
auto result = BlockType::init(bytes);
Expand Down Expand Up @@ -224,8 +238,9 @@ TEST_FOR_EACH_BLOCK_TYPE(CannotMakeSecondBlockLargerInSplit) {
ASSERT_FALSE(result.has_value());
}

TEST_FOR_EACH_BLOCK_TYPE(CanMakeZeroSizeFirstBlock) {
// This block does support splitting with zero payload size.
TEST_FOR_EACH_BLOCK_TYPE(CannotMakeZeroSizeFirstBlock) {
// This block doesn't support splitting with zero payload size, since the
// prev_ field of the next block is always available.
constexpr size_t kN = 1024;

alignas(BlockType::ALIGNMENT) array<byte, kN> bytes;
Expand All @@ -234,13 +249,28 @@ TEST_FOR_EACH_BLOCK_TYPE(CanMakeZeroSizeFirstBlock) {
BlockType *block = *result;

result = block->split(0);
EXPECT_FALSE(result.has_value());
}

TEST_FOR_EACH_BLOCK_TYPE(CanMakeMinimalSizeFirstBlock) {
// This block does support splitting with minimal payload size.
constexpr size_t kN = 1024;
constexpr size_t minimal_size = sizeof(typename BlockType::offset_type);

alignas(BlockType::ALIGNMENT) array<byte, kN> bytes;
auto result = BlockType::init(bytes);
ASSERT_TRUE(result.has_value());
BlockType *block = *result;

result = block->split(minimal_size);
ASSERT_TRUE(result.has_value());
EXPECT_EQ(block->inner_size(), static_cast<size_t>(0));
EXPECT_EQ(block->inner_size(), minimal_size);
}

TEST_FOR_EACH_BLOCK_TYPE(CanMakeZeroSizeSecondBlock) {
// Likewise, the split block can be zero-width.
TEST_FOR_EACH_BLOCK_TYPE(CanMakeMinimalSizeSecondBlock) {
// Likewise, the split block can be minimal-width.
constexpr size_t kN = 1024;
constexpr size_t minimal_size = sizeof(typename BlockType::offset_type);

alignas(BlockType::ALIGNMENT) array<byte, kN> bytes;
auto result = BlockType::init(bytes);
Expand All @@ -251,7 +281,7 @@ TEST_FOR_EACH_BLOCK_TYPE(CanMakeZeroSizeSecondBlock) {
ASSERT_TRUE(result.has_value());
BlockType *block2 = *result;

EXPECT_EQ(block2->inner_size(), static_cast<size_t>(0));
EXPECT_EQ(block2->inner_size(), minimal_size);
}

TEST_FOR_EACH_BLOCK_TYPE(CanMarkBlockUsed) {
Expand All @@ -261,12 +291,11 @@ TEST_FOR_EACH_BLOCK_TYPE(CanMarkBlockUsed) {
auto result = BlockType::init(bytes);
ASSERT_TRUE(result.has_value());
BlockType *block = *result;
size_t orig_size = block->outer_size();

block->mark_used();
EXPECT_TRUE(block->used());

// Size should be unaffected.
EXPECT_EQ(block->outer_size(), kN);
EXPECT_EQ(block->outer_size(), orig_size);

block->mark_free();
EXPECT_FALSE(block->used());
Expand All @@ -290,13 +319,16 @@ TEST_FOR_EACH_BLOCK_TYPE(CanMergeWithNextBlock) {
// Do the three way merge from "CanSplitMidBlock", and let's
// merge block 3 and 2
constexpr size_t kN = 1024;
constexpr size_t kSplit1 = 512;
constexpr size_t kSplit2 = 256;
// Give the split positions large alignments.
constexpr size_t prev_field_size = sizeof(typename BlockType::offset_type);
constexpr size_t kSplit1 = 512 + prev_field_size;
constexpr size_t kSplit2 = 256 + prev_field_size;

alignas(BlockType::ALIGNMENT) array<byte, kN> bytes;
auto result = BlockType::init(bytes);
ASSERT_TRUE(result.has_value());
BlockType *block1 = *result;
size_t orig_size = block1->outer_size();

result = block1->split(kSplit1);
ASSERT_TRUE(result.has_value());
Expand All @@ -308,9 +340,9 @@ TEST_FOR_EACH_BLOCK_TYPE(CanMergeWithNextBlock) {
EXPECT_TRUE(block3->merge_next());

EXPECT_EQ(block1->next(), block3);
EXPECT_EQ(block3->prev(), block1);
EXPECT_EQ(block3->prev_free(), block1);
EXPECT_EQ(block1->inner_size(), kSplit2);
EXPECT_EQ(block3->outer_size(), kN - block1->outer_size());
EXPECT_EQ(block3->outer_size(), orig_size - block1->outer_size());
}

TEST_FOR_EACH_BLOCK_TYPE(CannotMergeWithFirstOrLastBlock) {
Expand Down Expand Up @@ -347,67 +379,6 @@ TEST_FOR_EACH_BLOCK_TYPE(CannotMergeUsedBlock) {
EXPECT_FALSE(block->merge_next());
}

TEST_FOR_EACH_BLOCK_TYPE(CanCheckValidBlock) {
constexpr size_t kN = 1024;
constexpr size_t kSplit1 = 512;
constexpr size_t kSplit2 = 256;

alignas(BlockType::ALIGNMENT) array<byte, kN> bytes;
auto result = BlockType::init(bytes);
ASSERT_TRUE(result.has_value());
BlockType *block1 = *result;

result = block1->split(kSplit1);
ASSERT_TRUE(result.has_value());
BlockType *block2 = *result;

result = block2->split(kSplit2);
ASSERT_TRUE(result.has_value());
BlockType *block3 = *result;

EXPECT_TRUE(block1->is_valid());
EXPECT_TRUE(block2->is_valid());
EXPECT_TRUE(block3->is_valid());
}

TEST_FOR_EACH_BLOCK_TYPE(CanCheckInvalidBlock) {
constexpr size_t kN = 1024;
constexpr size_t kSplit1 = 128;
constexpr size_t kSplit2 = 384;
constexpr size_t kSplit3 = 256;

array<byte, kN> bytes{};
auto result = BlockType::init(bytes);
ASSERT_TRUE(result.has_value());
BlockType *block1 = *result;

result = block1->split(kSplit1);
ASSERT_TRUE(result.has_value());
BlockType *block2 = *result;

result = block2->split(kSplit2);
ASSERT_TRUE(result.has_value());
BlockType *block3 = *result;

result = block3->split(kSplit3);
ASSERT_TRUE(result.has_value());

// Corrupt a Block header.
// This must not touch memory outside the original region, or the test may
// (correctly) abort when run with address sanitizer.
// To remain as agostic to the internals of `Block` as possible, the test
// copies a smaller block's header to a larger block.
EXPECT_TRUE(block1->is_valid());
EXPECT_TRUE(block2->is_valid());
EXPECT_TRUE(block3->is_valid());
auto *src = reinterpret_cast<byte *>(block1);
auto *dst = reinterpret_cast<byte *>(block2);
LIBC_NAMESPACE::memcpy(dst, src, sizeof(BlockType));
EXPECT_FALSE(block1->is_valid());
EXPECT_FALSE(block2->is_valid());
EXPECT_FALSE(block3->is_valid());
}

TEST_FOR_EACH_BLOCK_TYPE(CanGetBlockFromUsableSpace) {
constexpr size_t kN = 1024;

Expand Down Expand Up @@ -435,10 +406,10 @@ TEST_FOR_EACH_BLOCK_TYPE(CanGetConstBlockFromUsableSpace) {
}

TEST_FOR_EACH_BLOCK_TYPE(CanAllocate) {
constexpr size_t kN = 1024;
constexpr size_t kN = 1024 + BlockType::BLOCK_OVERHEAD;

// Ensure we can allocate everything up to the block size within this block.
for (size_t i = 0; i < kN - BlockType::BLOCK_OVERHEAD; ++i) {
for (size_t i = 0; i < kN - 2 * BlockType::BLOCK_OVERHEAD; ++i) {
alignas(BlockType::ALIGNMENT) array<byte, kN> bytes{};
auto result = BlockType::init(bytes);
ASSERT_TRUE(result.has_value());
Expand All @@ -458,12 +429,12 @@ TEST_FOR_EACH_BLOCK_TYPE(CanAllocate) {
ASSERT_TRUE(result.has_value());
BlockType *block = *result;

// Given a block of size kN (assuming it's also a power of two), we should be
// able to allocate a block within it that's aligned to half its size. This is
// Given a block of size N (assuming it's also a power of two), we should be
// able to allocate a block within it that's aligned to N/2. This is
// because regardless of where the buffer is located, we can always find a
// starting location within it that meets this alignment.
EXPECT_TRUE(block->can_allocate(kN / 2, 1));
auto info = BlockType::allocate(block, kN / 2, 1);
EXPECT_TRUE(block->can_allocate(block->outer_size() / 2, 1));
auto info = BlockType::allocate(block, block->outer_size() / 2, 1);
EXPECT_NE(info.block, static_cast<BlockType *>(nullptr));
}

Expand All @@ -477,7 +448,8 @@ TEST_FOR_EACH_BLOCK_TYPE(AllocateAlreadyAligned) {

// This should result in no new blocks.
constexpr size_t kAlignment = BlockType::ALIGNMENT;
constexpr size_t kExpectedSize = BlockType::ALIGNMENT;
constexpr size_t prev_field_size = sizeof(typename BlockType::offset_type);
constexpr size_t kExpectedSize = BlockType::ALIGNMENT + prev_field_size;
EXPECT_TRUE(block->can_allocate(kAlignment, kExpectedSize));

auto [aligned_block, prev, next] =
Expand All @@ -495,7 +467,7 @@ TEST_FOR_EACH_BLOCK_TYPE(AllocateAlreadyAligned) {
EXPECT_NE(next, static_cast<BlockType *>(nullptr));
EXPECT_EQ(aligned_block->next(), next);
EXPECT_EQ(reinterpret_cast<byte *>(next) + next->outer_size(),
bytes.data() + bytes.size());
bytes.data() + bytes.size() - BlockType::BLOCK_OVERHEAD);
}

TEST_FOR_EACH_BLOCK_TYPE(AllocateNeedsAlignment) {
Expand All @@ -508,7 +480,7 @@ TEST_FOR_EACH_BLOCK_TYPE(AllocateNeedsAlignment) {

// Ensure first the usable_data is only aligned to the block alignment.
ASSERT_EQ(block->usable_space(), bytes.data() + BlockType::BLOCK_OVERHEAD);
ASSERT_EQ(block->prev(), static_cast<BlockType *>(nullptr));
ASSERT_EQ(block->prev_free(), static_cast<BlockType *>(nullptr));

// Now pick an alignment such that the usable space is not already aligned to
// it. We want to explicitly test that the block will split into one before
Expand All @@ -525,7 +497,7 @@ TEST_FOR_EACH_BLOCK_TYPE(AllocateNeedsAlignment) {
// Check the previous block was created appropriately. Since this block is the
// first block, a new one should be made before this.
EXPECT_NE(prev, static_cast<BlockType *>(nullptr));
EXPECT_EQ(aligned_block->prev(), prev);
EXPECT_EQ(aligned_block->prev_free(), prev);
EXPECT_EQ(prev->next(), aligned_block);
EXPECT_EQ(prev->outer_size(), reinterpret_cast<uintptr_t>(aligned_block) -
reinterpret_cast<uintptr_t>(prev));
Expand All @@ -537,7 +509,8 @@ TEST_FOR_EACH_BLOCK_TYPE(AllocateNeedsAlignment) {
// Check the next block.
EXPECT_NE(next, static_cast<BlockType *>(nullptr));
EXPECT_EQ(aligned_block->next(), next);
EXPECT_EQ(reinterpret_cast<byte *>(next) + next->outer_size(), &*bytes.end());
EXPECT_EQ(reinterpret_cast<byte *>(next) + next->outer_size(),
bytes.data() + bytes.size() - BlockType::BLOCK_OVERHEAD);
}

TEST_FOR_EACH_BLOCK_TYPE(PreviousBlockMergedIfNotFirst) {
Expand All @@ -552,7 +525,7 @@ TEST_FOR_EACH_BLOCK_TYPE(PreviousBlockMergedIfNotFirst) {
auto result2 = block->split(kN / 2);
ASSERT_TRUE(result2.has_value());
BlockType *newblock = *result2;
ASSERT_EQ(newblock->prev(), block);
ASSERT_EQ(newblock->prev_free(), block);
size_t old_prev_size = block->outer_size();

// Now pick an alignment such that the usable space is not already aligned to
Expand All @@ -571,7 +544,7 @@ TEST_FOR_EACH_BLOCK_TYPE(PreviousBlockMergedIfNotFirst) {
// Now there should be no new previous block. Instead, the padding we did
// create should be merged into the original previous block.
EXPECT_EQ(prev, static_cast<BlockType *>(nullptr));
EXPECT_EQ(aligned_block->prev(), block);
EXPECT_EQ(aligned_block->prev_free(), block);
EXPECT_EQ(block->next(), aligned_block);
EXPECT_GT(block->outer_size(), old_prev_size);
}
Expand All @@ -587,10 +560,11 @@ TEST_FOR_EACH_BLOCK_TYPE(CanRemergeBlockAllocations) {
auto result = BlockType::init(bytes);
ASSERT_TRUE(result.has_value());
BlockType *block = *result;
BlockType *last = block->next();

// Ensure first the usable_data is only aligned to the block alignment.
ASSERT_EQ(block->usable_space(), bytes.data() + BlockType::BLOCK_OVERHEAD);
ASSERT_EQ(block->prev(), static_cast<BlockType *>(nullptr));
ASSERT_EQ(block->prev_free(), static_cast<BlockType *>(nullptr));

// Now pick an alignment such that the usable space is not already aligned to
// it. We want to explicitly test that the block will split into one before
Expand All @@ -606,20 +580,20 @@ TEST_FOR_EACH_BLOCK_TYPE(CanRemergeBlockAllocations) {

// Check we have the appropriate blocks.
ASSERT_NE(prev, static_cast<BlockType *>(nullptr));
ASSERT_EQ(aligned_block->prev(), prev);
EXPECT_NE(next, static_cast<BlockType *>(nullptr));
ASSERT_EQ(aligned_block->prev_free(), prev);
EXPECT_NE(next, static_cast<BlockType *>(nullptr));
EXPECT_EQ(aligned_block->next(), next);
EXPECT_EQ(next->next(), static_cast<BlockType *>(nullptr));
EXPECT_EQ(next->next(), last);

// Now check for successful merges.
EXPECT_TRUE(prev->merge_next());
EXPECT_EQ(prev->next(), next);
EXPECT_TRUE(prev->merge_next());
EXPECT_EQ(prev->next(), static_cast<BlockType *>(nullptr));
EXPECT_EQ(prev->next(), last);

// We should have the original buffer.
EXPECT_EQ(reinterpret_cast<byte *>(prev), &*bytes.begin());
EXPECT_EQ(prev->outer_size(), bytes.size());
EXPECT_EQ(reinterpret_cast<byte *>(prev) + prev->outer_size(), &*bytes.end());
EXPECT_EQ(prev->outer_size(), bytes.size() - BlockType::BLOCK_OVERHEAD);
EXPECT_EQ(reinterpret_cast<byte *>(prev) + prev->outer_size(),
&*bytes.end() - BlockType::BLOCK_OVERHEAD);
}
2 changes: 1 addition & 1 deletion libc/test/src/__support/freelist_heap_test.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -99,7 +99,7 @@ TEST(LlvmLibcFreeListHeap, ReturnsNullWhenFull) {
// Use aligned_allocate so we don't need to worry about ensuring the `buf`
// being aligned to max_align_t.
EXPECT_NE(allocator.aligned_allocate(
1, N - FreeListHeap<>::BlockType::BLOCK_OVERHEAD),
1, N - 2 * FreeListHeap<>::BlockType::BLOCK_OVERHEAD),
static_cast<void *>(nullptr));
EXPECT_EQ(allocator.allocate(1), static_cast<void *>(nullptr));
}
Expand Down
49 changes: 16 additions & 33 deletions libc/test/src/__support/freelist_malloc_test.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -14,59 +14,42 @@
#include "test/UnitTest/Test.h"

using LIBC_NAMESPACE::freelist_heap;
using LIBC_NAMESPACE::FreeListHeap;
using LIBC_NAMESPACE::FreeListHeapBuffer;

TEST(LlvmLibcFreeListMalloc, MallocStats) {
TEST(LlvmLibcFreeListMalloc, Malloc) {
constexpr size_t kAllocSize = 256;
constexpr size_t kCallocNum = 4;
constexpr size_t kCallocSize = 64;

void *ptr1 = LIBC_NAMESPACE::malloc(kAllocSize);

const auto &freelist_heap_stats = freelist_heap->heap_stats();
typedef FreeListHeap<>::BlockType Block;

ASSERT_NE(ptr1, static_cast<void *>(nullptr));
EXPECT_EQ(freelist_heap_stats.bytes_allocated, kAllocSize);
EXPECT_EQ(freelist_heap_stats.cumulative_allocated, kAllocSize);
EXPECT_EQ(freelist_heap_stats.cumulative_freed, size_t(0));
void *ptr1 = LIBC_NAMESPACE::malloc(kAllocSize);
auto *block = Block::from_usable_space(ptr1);
EXPECT_GE(block->inner_size(), kAllocSize);

LIBC_NAMESPACE::free(ptr1);
EXPECT_EQ(freelist_heap_stats.bytes_allocated, size_t(0));
EXPECT_EQ(freelist_heap_stats.cumulative_allocated, kAllocSize);
EXPECT_EQ(freelist_heap_stats.cumulative_freed, kAllocSize);
ASSERT_NE(block->next(), static_cast<Block *>(nullptr));
ASSERT_EQ(block->next()->next(), static_cast<Block *>(nullptr));
size_t heap_size = block->inner_size();

void *ptr2 = LIBC_NAMESPACE::calloc(kCallocNum, kCallocSize);
ASSERT_NE(ptr2, static_cast<void *>(nullptr));
EXPECT_EQ(freelist_heap_stats.bytes_allocated, kCallocNum * kCallocSize);
EXPECT_EQ(freelist_heap_stats.cumulative_allocated,
kAllocSize + kCallocNum * kCallocSize);
EXPECT_EQ(freelist_heap_stats.cumulative_freed, kAllocSize);
ASSERT_EQ(ptr2, ptr1);
EXPECT_GE(block->inner_size(), kCallocNum * kCallocSize);

for (size_t i = 0; i < kCallocNum * kCallocSize; ++i) {
for (size_t i = 0; i < kCallocNum * kCallocSize; ++i)
EXPECT_EQ(reinterpret_cast<uint8_t *>(ptr2)[i], uint8_t(0));
}

LIBC_NAMESPACE::free(ptr2);
EXPECT_EQ(freelist_heap_stats.bytes_allocated, size_t(0));
EXPECT_EQ(freelist_heap_stats.cumulative_allocated,
kAllocSize + kCallocNum * kCallocSize);
EXPECT_EQ(freelist_heap_stats.cumulative_freed,
kAllocSize + kCallocNum * kCallocSize);
EXPECT_EQ(block->inner_size(), heap_size);

constexpr size_t ALIGN = kAllocSize;
void *ptr3 = LIBC_NAMESPACE::aligned_alloc(ALIGN, kAllocSize);
EXPECT_NE(ptr3, static_cast<void *>(nullptr));
EXPECT_EQ(reinterpret_cast<uintptr_t>(ptr3) % ALIGN, size_t(0));
EXPECT_EQ(freelist_heap_stats.bytes_allocated, kAllocSize);
EXPECT_EQ(freelist_heap_stats.cumulative_allocated,
kAllocSize + kCallocNum * kCallocSize + kAllocSize);
EXPECT_EQ(freelist_heap_stats.cumulative_freed,
kAllocSize + kCallocNum * kCallocSize);
auto *aligned_block = reinterpret_cast<Block *>(ptr3);
EXPECT_GE(aligned_block->inner_size(), kAllocSize);

LIBC_NAMESPACE::free(ptr3);
EXPECT_EQ(freelist_heap_stats.bytes_allocated, size_t(0));
EXPECT_EQ(freelist_heap_stats.cumulative_allocated,
kAllocSize + kCallocNum * kCallocSize + kAllocSize);
EXPECT_EQ(freelist_heap_stats.cumulative_freed,
kAllocSize + kCallocNum * kCallocSize + kAllocSize);
EXPECT_EQ(block->inner_size(), heap_size);
}