67 changes: 67 additions & 0 deletions libc/test/src/math/sqrtl_test.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
//===-- Unittests for sqrtl ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===---------------------------------------------------------------------===//

#include "include/math.h"
#include "src/math/sqrtl.h"
#include "utils/FPUtil/FPBits.h"
#include "utils/FPUtil/TestHelpers.h"
#include "utils/MPFRWrapper/MPFRUtils.h"

using FPBits = __llvm_libc::fputil::FPBits<long double>;
using UIntType = typename FPBits::UIntType;

namespace mpfr = __llvm_libc::testing::mpfr;

constexpr UIntType HiddenBit =
UIntType(1) << __llvm_libc::fputil::MantissaWidth<long double>::value;

long double nan = FPBits::buildNaN(1);
long double inf = FPBits::inf();
long double negInf = FPBits::negInf();

TEST(SqrtlTest, SpecialValues) {
ASSERT_FP_EQ(nan, __llvm_libc::sqrtl(nan));
ASSERT_FP_EQ(inf, __llvm_libc::sqrtl(inf));
ASSERT_FP_EQ(nan, __llvm_libc::sqrtl(negInf));
ASSERT_FP_EQ(0.0L, __llvm_libc::sqrtl(0.0L));
ASSERT_FP_EQ(-0.0L, __llvm_libc::sqrtl(-0.0L));
ASSERT_FP_EQ(nan, __llvm_libc::sqrtl(-1.0L));
ASSERT_FP_EQ(1.0L, __llvm_libc::sqrtl(1.0L));
ASSERT_FP_EQ(2.0L, __llvm_libc::sqrtl(4.0L));
ASSERT_FP_EQ(3.0L, __llvm_libc::sqrtl(9.0L));
}

TEST(SqrtlTest, DenormalValues) {
for (UIntType mant = 1; mant < HiddenBit; mant <<= 1) {
FPBits denormal(0.0L);
denormal.mantissa = mant;

ASSERT_MPFR_MATCH(mpfr::Operation::Sqrt, static_cast<long double>(denormal),
__llvm_libc::sqrtl(denormal), 0.5);
}

constexpr UIntType count = 1'000'001;
constexpr UIntType step = HiddenBit / count;
for (UIntType i = 0, v = 0; i <= count; ++i, v += step) {
long double x = *reinterpret_cast<long double *>(&v);
ASSERT_MPFR_MATCH(mpfr::Operation::Sqrt, x, __llvm_libc::sqrtl(x), 0.5);
}
}

TEST(SqrtlTest, InLongDoubleRange) {
constexpr UIntType count = 10'000'001;
constexpr UIntType step = UIntType(-1) / count;
for (UIntType i = 0, v = 0; i <= count; ++i, v += step) {
long double x = *reinterpret_cast<long double *>(&v);
if (isnan(x) || (x < 0)) {
continue;
}

ASSERT_MPFR_MATCH(mpfr::Operation::Sqrt, x, __llvm_libc::sqrtl(x), 0.5);
}
}
186 changes: 186 additions & 0 deletions libc/utils/FPUtil/Sqrt.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,186 @@
//===-- Square root of IEEE 754 floating point numbers ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIBC_UTILS_FPUTIL_SQRT_H
#define LLVM_LIBC_UTILS_FPUTIL_SQRT_H

#include "FPBits.h"

#include "utils/CPP/TypeTraits.h"

namespace __llvm_libc {
namespace fputil {

namespace internal {

template <typename T>
static inline void normalize(int &exponent,
typename FPBits<T>::UIntType &mantissa);

template <> inline void normalize<float>(int &exponent, uint32_t &mantissa) {
// Use binary search to shift the leading 1 bit.
// With MantissaWidth<float> = 23, it will take
// ceil(log2(23)) = 5 steps checking the mantissa bits as followed:
// Step 1: 0000 0000 0000 XXXX XXXX XXXX
// Step 2: 0000 00XX XXXX XXXX XXXX XXXX
// Step 3: 000X XXXX XXXX XXXX XXXX XXXX
// Step 4: 00XX XXXX XXXX XXXX XXXX XXXX
// Step 5: 0XXX XXXX XXXX XXXX XXXX XXXX
constexpr int nsteps = 5; // = ceil(log2(MantissaWidth))
constexpr uint32_t bounds[nsteps] = {1 << 12, 1 << 18, 1 << 21, 1 << 22,
1 << 23};
constexpr int shifts[nsteps] = {12, 6, 3, 2, 1};

for (int i = 0; i < nsteps; ++i) {
if (mantissa < bounds[i]) {
exponent -= shifts[i];
mantissa <<= shifts[i];
}
}
}

template <> inline void normalize<double>(int &exponent, uint64_t &mantissa) {
// Use binary search to shift the leading 1 bit similar to float.
// With MantissaWidth<double> = 52, it will take
// ceil(log2(52)) = 6 steps checking the mantissa bits.
constexpr int nsteps = 6; // = ceil(log2(MantissaWidth))
constexpr uint64_t bounds[nsteps] = {1ULL << 26, 1ULL << 39, 1ULL << 46,
1ULL << 49, 1ULL << 51, 1ULL << 52};
constexpr int shifts[nsteps] = {27, 14, 7, 4, 2, 1};

for (int i = 0; i < nsteps; ++i) {
if (mantissa < bounds[i]) {
exponent -= shifts[i];
mantissa <<= shifts[i];
}
}
}

#if !(defined(__x86_64__) || defined(__i386__))
template <>
inline void normalize<long double>(int &exponent, __uint128_t &mantissa) {
// Use binary search to shift the leading 1 bit similar to float.
// With MantissaWidth<long double> = 112, it will take
// ceil(log2(112)) = 7 steps checking the mantissa bits.
constexpr int nsteps = 7; // = ceil(log2(MantissaWidth))
constexpr __uint128_t bounds[nsteps] = {
__uint128_t(1) << 56, __uint128_t(1) << 84, __uint128_t(1) << 98,
__uint128_t(1) << 105, __uint128_t(1) << 109, __uint128_t(1) << 111,
__uint128_t(1) << 112};
constexpr int shifts[nsteps] = {57, 29, 15, 8, 4, 2, 1};

for (int i = 0; i < nsteps; ++i) {
if (mantissa < bounds[i]) {
exponent -= shifts[i];
mantissa <<= shifts[i];
}
}
}
#endif

} // namespace internal

// Correctly rounded IEEE 754 SQRT with round to nearest, ties to even.
// Shift-and-add algorithm.
template <typename T,
cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0>
static inline T sqrt(T x) {
using UIntType = typename FPBits<T>::UIntType;
constexpr UIntType One = UIntType(1) << MantissaWidth<T>::value;

FPBits<T> bits(x);

if (bits.isInfOrNaN()) {
if (bits.sign && (bits.mantissa == 0)) {
// sqrt(-Inf) = NaN
return FPBits<T>::buildNaN(One >> 1);
} else {
// sqrt(NaN) = NaN
// sqrt(+Inf) = +Inf
return x;
}
} else if (bits.isZero()) {
// sqrt(+0) = +0
// sqrt(-0) = -0
return x;
} else if (bits.sign) {
// sqrt( negative numbers ) = NaN
return FPBits<T>::buildNaN(One >> 1);
} else {
int xExp = bits.getExponent();
UIntType xMant = bits.mantissa;

// Step 1a: Normalize denormal input and append hiddent bit to the mantissa
if (bits.exponent == 0) {
++xExp; // let xExp be the correct exponent of One bit.
internal::normalize<T>(xExp, xMant);
} else {
xMant |= One;
}

// Step 1b: Make sure the exponent is even.
if (xExp & 1) {
--xExp;
xMant <<= 1;
}

// After step 1b, x = 2^(xExp) * xMant, where xExp is even, and
// 1 <= xMant < 4. So sqrt(x) = 2^(xExp / 2) * y, with 1 <= y < 2.
// Notice that the output of sqrt is always in the normal range.
// To perform shift-and-add algorithm to find y, let denote:
// y(n) = 1.y_1 y_2 ... y_n, we can define the nth residue to be:
// r(n) = 2^n ( xMant - y(n)^2 ).
// That leads to the following recurrence formula:
// r(n) = 2*r(n-1) - y_n*[ 2*y(n-1) + 2^(-n-1) ]
// with the initial conditions: y(0) = 1, and r(0) = x - 1.
// So the nth digit y_n of the mantissa of sqrt(x) can be found by:
// y_n = 1 if 2*r(n-1) >= 2*y(n - 1) + 2^(-n-1)
// 0 otherwise.
UIntType y = One;
UIntType r = xMant - One;

for (UIntType current_bit = One >> 1; current_bit; current_bit >>= 1) {
r <<= 1;
UIntType tmp = (y << 1) + current_bit; // 2*y(n - 1) + 2^(-n-1)
if (r >= tmp) {
r -= tmp;
y += current_bit;
}
}

// We compute one more iteration in order to round correctly.
bool lsb = y & 1; // Least significant bit
bool rb = false; // Round bit
r <<= 2;
UIntType tmp = (y << 2) + 1;
if (r >= tmp) {
r -= tmp;
rb = true;
}

// Remove hidden bit and append the exponent field.
xExp = ((xExp >> 1) + FPBits<T>::exponentBias);

y = (y - One) | (static_cast<UIntType>(xExp) << MantissaWidth<T>::value);
// Round to nearest, ties to even
if (rb && (lsb || (r != 0))) {
++y;
}

return *reinterpret_cast<T *>(&y);
}
}

} // namespace fputil
} // namespace __llvm_libc

#if (defined(__x86_64__) || defined(__i386__))
#include "SqrtLongDoubleX86.h"
#endif // defined(__x86_64__) || defined(__i386__)

#endif // LLVM_LIBC_UTILS_FPUTIL_SQRT_H
142 changes: 142 additions & 0 deletions libc/utils/FPUtil/SqrtLongDoubleX86.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,142 @@
//===-- Square root of x86 long double numbers ------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIBC_UTILS_FPUTIL_SQRT_LONG_DOUBLE_X86_H
#define LLVM_LIBC_UTILS_FPUTIL_SQRT_LONG_DOUBLE_X86_H

#include "FPBits.h"
#include "utils/CPP/TypeTraits.h"

namespace __llvm_libc {
namespace fputil {

#if (defined(__x86_64__) || defined(__i386__))
namespace internal {

template <>
inline void normalize<long double>(int &exponent, __uint128_t &mantissa) {
// Use binary search to shift the leading 1 bit similar to float.
// With MantissaWidth<long double> = 63, it will take
// ceil(log2(63)) = 6 steps checking the mantissa bits.
constexpr int nsteps = 6; // = ceil(log2(MantissaWidth))
constexpr __uint128_t bounds[nsteps] = {
__uint128_t(1) << 32, __uint128_t(1) << 48, __uint128_t(1) << 56,
__uint128_t(1) << 60, __uint128_t(1) << 62, __uint128_t(1) << 63};
constexpr int shifts[nsteps] = {32, 16, 8, 4, 2, 1};

for (int i = 0; i < nsteps; ++i) {
if (mantissa < bounds[i]) {
exponent -= shifts[i];
mantissa <<= shifts[i];
}
}
}

} // namespace internal

// Correctly rounded SQRT with round to nearest, ties to even.
// Shift-and-add algorithm.
template <> inline long double sqrt<long double, 0>(long double x) {
using UIntType = typename FPBits<long double>::UIntType;
constexpr UIntType One = UIntType(1)
<< int(MantissaWidth<long double>::value);

FPBits<long double> bits(x);

if (bits.isInfOrNaN()) {
if (bits.sign && (bits.mantissa == 0)) {
// sqrt(-Inf) = NaN
return FPBits<long double>::buildNaN(One >> 1);
} else {
// sqrt(NaN) = NaN
// sqrt(+Inf) = +Inf
return x;
}
} else if (bits.isZero()) {
// sqrt(+0) = +0
// sqrt(-0) = -0
return x;
} else if (bits.sign) {
// sqrt( negative numbers ) = NaN
return FPBits<long double>::buildNaN(One >> 1);
} else {
int xExp = bits.getExponent();
UIntType xMant = bits.mantissa;

// Step 1a: Normalize denormal input
if (bits.implicitBit) {
xMant |= One;
} else if (bits.exponent == 0) {
internal::normalize<long double>(xExp, xMant);
}

// Step 1b: Make sure the exponent is even.
if (xExp & 1) {
--xExp;
xMant <<= 1;
}

// After step 1b, x = 2^(xExp) * xMant, where xExp is even, and
// 1 <= xMant < 4. So sqrt(x) = 2^(xExp / 2) * y, with 1 <= y < 2.
// Notice that the output of sqrt is always in the normal range.
// To perform shift-and-add algorithm to find y, let denote:
// y(n) = 1.y_1 y_2 ... y_n, we can define the nth residue to be:
// r(n) = 2^n ( xMant - y(n)^2 ).
// That leads to the following recurrence formula:
// r(n) = 2*r(n-1) - y_n*[ 2*y(n-1) + 2^(-n-1) ]
// with the initial conditions: y(0) = 1, and r(0) = x - 1.
// So the nth digit y_n of the mantissa of sqrt(x) can be found by:
// y_n = 1 if 2*r(n-1) >= 2*y(n - 1) + 2^(-n-1)
// 0 otherwise.
UIntType y = One;
UIntType r = xMant - One;

for (UIntType current_bit = One >> 1; current_bit; current_bit >>= 1) {
r <<= 1;
UIntType tmp = (y << 1) + current_bit; // 2*y(n - 1) + 2^(-n-1)
if (r >= tmp) {
r -= tmp;
y += current_bit;
}
}

// We compute one more iteration in order to round correctly.
bool lsb = y & 1; // Least significant bit
bool rb = false; // Round bit
r <<= 2;
UIntType tmp = (y << 2) + 1;
if (r >= tmp) {
r -= tmp;
rb = true;
}

// Append the exponent field.
xExp = ((xExp >> 1) + FPBits<long double>::exponentBias);
y |= (static_cast<UIntType>(xExp)
<< (MantissaWidth<long double>::value + 1));

// Round to nearest, ties to even
if (rb && (lsb || (r != 0))) {
++y;
}

// Extract output
FPBits<long double> out(0.0L);
out.exponent = xExp;
out.implicitBit = 1;
out.mantissa = (y & (One - 1));

return out;
}
}
#endif // defined(__x86_64__) || defined(__i386__)

} // namespace fputil
} // namespace __llvm_libc

#endif // LLVM_LIBC_UTILS_FPUTIL_SQRT_LONG_DOUBLE_X86_H