|
|
@@ -0,0 +1,267 @@ |
|
|
//===-- Implementation of hypotf function ---------------------------------===// |
|
|
// |
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
|
|
// See https://llvm.org/LICENSE.txt for license information. |
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
|
|
// |
|
|
//===----------------------------------------------------------------------===// |
|
|
|
|
|
#ifndef LLVM_LIBC_UTILS_FPUTIL_HYPOT_H |
|
|
#define LLVM_LIBC_UTILS_FPUTIL_HYPOT_H |
|
|
|
|
|
#include "BasicOperations.h" |
|
|
#include "FPBits.h" |
|
|
#include "utils/CPP/TypeTraits.h" |
|
|
|
|
|
namespace __llvm_libc { |
|
|
namespace fputil { |
|
|
|
|
|
namespace internal { |
|
|
|
|
|
template <typename T> static inline T findLeadingOne(T mant, int &shift_length); |
|
|
|
|
|
template <> |
|
|
inline uint32_t findLeadingOne<uint32_t>(uint32_t mant, int &shift_length) { |
|
|
shift_length = 0; |
|
|
constexpr int nsteps = 5; |
|
|
constexpr uint32_t bounds[nsteps] = {1 << 16, 1 << 8, 1 << 4, 1 << 2, 1 << 1}; |
|
|
constexpr int shifts[nsteps] = {16, 8, 4, 2, 1}; |
|
|
for (int i = 0; i < nsteps; ++i) { |
|
|
if (mant >= bounds[i]) { |
|
|
shift_length += shifts[i]; |
|
|
mant >>= shifts[i]; |
|
|
} |
|
|
} |
|
|
return 1U << shift_length; |
|
|
} |
|
|
|
|
|
template <> |
|
|
inline uint64_t findLeadingOne<uint64_t>(uint64_t mant, int &shift_length) { |
|
|
shift_length = 0; |
|
|
constexpr int nsteps = 6; |
|
|
constexpr uint64_t bounds[nsteps] = {1ULL << 32, 1ULL << 16, 1ULL << 8, |
|
|
1ULL << 4, 1ULL << 2, 1ULL << 1}; |
|
|
constexpr int shifts[nsteps] = {32, 16, 8, 4, 2, 1}; |
|
|
for (int i = 0; i < nsteps; ++i) { |
|
|
if (mant >= bounds[i]) { |
|
|
shift_length += shifts[i]; |
|
|
mant >>= shifts[i]; |
|
|
} |
|
|
} |
|
|
return 1ULL << shift_length; |
|
|
} |
|
|
|
|
|
} // namespace internal |
|
|
|
|
|
template <typename T> struct DoubleLength; |
|
|
|
|
|
template <> struct DoubleLength<uint16_t> { using Type = uint32_t; }; |
|
|
|
|
|
template <> struct DoubleLength<uint32_t> { using Type = uint64_t; }; |
|
|
|
|
|
template <> struct DoubleLength<uint64_t> { using Type = __uint128_t; }; |
|
|
|
|
|
// Correctly rounded IEEE 754 HYPOT(x, y) with round to nearest, ties to even. |
|
|
// |
|
|
// Algorithm: |
|
|
// - Let a = max(|x|, |y|), b = min(|x|, |y|), then we have that: |
|
|
// a <= sqrt(a^2 + b^2) <= min(a + b, a*sqrt(2)) |
|
|
// 1. So if b < eps(a)/2, then HYPOT(x, y) = a. |
|
|
// |
|
|
// - Moreover, the exponent part of HYPOT(x, y) is either the same or 1 more |
|
|
// than the exponent part of a. |
|
|
// |
|
|
// 2. For the remaining cases, we will use the digit-by-digit (shift-and-add) |
|
|
// algorithm to compute SQRT(Z): |
|
|
// |
|
|
// - For Y = y0.y1...yn... = SQRT(Z), |
|
|
// let Y(n) = y0.y1...yn be the first n fractional digits of Y. |
|
|
// |
|
|
// - The nth scaled residual R(n) is defined to be: |
|
|
// R(n) = 2^n * (Z - Y(n)^2) |
|
|
// |
|
|
// - Since Y(n) = Y(n - 1) + yn * 2^(-n), the scaled residual |
|
|
// satisfies the following recurrence formula: |
|
|
// R(n) = 2*R(n - 1) - yn*(2*Y(n - 1) + 2^(-n)), |
|
|
// with the initial conditions: |
|
|
// Y(0) = y0, and R(0) = Z - y0. |
|
|
// |
|
|
// - So the nth fractional digit of Y = SQRT(Z) can be decided by: |
|
|
// yn = 1 if 2*R(n - 1) >= 2*Y(n - 1) + 2^(-n), |
|
|
// 0 otherwise. |
|
|
// |
|
|
// 3. Precision analysis: |
|
|
// |
|
|
// - Notice that in the decision function: |
|
|
// 2*R(n - 1) >= 2*Y(n - 1) + 2^(-n), |
|
|
// the right hand side only uses up to the 2^(-n)-bit, and both sides are |
|
|
// non-negative, so R(n - 1) can be truncated at the 2^(-(n + 1))-bit, so |
|
|
// that 2*R(n - 1) is corrected up to the 2^(-n)-bit. |
|
|
// |
|
|
// - Thus, in order to round SQRT(a^2 + b^2) correctly up to n-fractional |
|
|
// bits, we need to perform the summation (a^2 + b^2) correctly up to (2n + |
|
|
// 2)-fractional bits, and the remaining bits are sticky bits (i.e. we only |
|
|
// care if they are 0 or > 0), and the comparisons, additions/subtractions |
|
|
// can be done in n-fractional bits precision. |
|
|
// |
|
|
// - For single precision (float), we can use uint64_t to store the sum a^2 + |
|
|
// b^2 exact up to (2n + 2)-fractional bits. |
|
|
// |
|
|
// - Then we can feed this sum into the digit-by-digit algorithm for SQRT(Z) |
|
|
// described above. |
|
|
// |
|
|
// |
|
|
// Special cases: |
|
|
// - HYPOT(x, y) is +Inf if x or y is +Inf or -Inf; else |
|
|
// - HYPOT(x, y) is NaN if x or y is NaN. |
|
|
// |
|
|
template <typename T, |
|
|
cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0> |
|
|
static inline T hypot(T x, T y) { |
|
|
using FPBits_t = FPBits<T>; |
|
|
using UIntType = typename FPBits<T>::UIntType; |
|
|
using DUIntType = typename DoubleLength<UIntType>::Type; |
|
|
|
|
|
FPBits_t x_bits(x), y_bits(y); |
|
|
|
|
|
if (x_bits.isInf() || y_bits.isInf()) { |
|
|
return FPBits_t::inf(); |
|
|
} |
|
|
if (x_bits.isNaN()) { |
|
|
return x; |
|
|
} |
|
|
if (y_bits.isNaN()) { |
|
|
return y; |
|
|
} |
|
|
|
|
|
uint16_t a_exp, b_exp, out_exp; |
|
|
UIntType a_mant, b_mant; |
|
|
DUIntType a_mant_sq, b_mant_sq; |
|
|
bool sticky_bits; |
|
|
|
|
|
if ((x_bits.exponent >= y_bits.exponent + MantissaWidth<T>::value + 2) || |
|
|
(y == 0)) { |
|
|
return abs(x); |
|
|
} else if ((y_bits.exponent >= |
|
|
x_bits.exponent + MantissaWidth<T>::value + 2) || |
|
|
(x == 0)) { |
|
|
y_bits.sign = 0; |
|
|
return abs(y); |
|
|
} |
|
|
|
|
|
if (x >= y) { |
|
|
a_exp = x_bits.exponent; |
|
|
a_mant = x_bits.mantissa; |
|
|
b_exp = y_bits.exponent; |
|
|
b_mant = y_bits.mantissa; |
|
|
} else { |
|
|
a_exp = y_bits.exponent; |
|
|
a_mant = y_bits.mantissa; |
|
|
b_exp = x_bits.exponent; |
|
|
b_mant = x_bits.mantissa; |
|
|
} |
|
|
|
|
|
out_exp = a_exp; |
|
|
|
|
|
// Add an extra bit to simplify the final rounding bit computation. |
|
|
constexpr UIntType one = UIntType(1) << (MantissaWidth<T>::value + 1); |
|
|
|
|
|
a_mant <<= 1; |
|
|
b_mant <<= 1; |
|
|
|
|
|
UIntType leading_one; |
|
|
int y_mant_width; |
|
|
if (a_exp != 0) { |
|
|
leading_one = one; |
|
|
a_mant |= one; |
|
|
y_mant_width = MantissaWidth<T>::value + 1; |
|
|
} else { |
|
|
leading_one = internal::findLeadingOne(a_mant, y_mant_width); |
|
|
} |
|
|
|
|
|
if (b_exp != 0) { |
|
|
b_mant |= one; |
|
|
} |
|
|
|
|
|
a_mant_sq = static_cast<DUIntType>(a_mant) * a_mant; |
|
|
b_mant_sq = static_cast<DUIntType>(b_mant) * b_mant; |
|
|
|
|
|
// At this point, a_exp >= b_exp > a_exp - 25, so in order to line up aSqMant |
|
|
// and bSqMant, we need to shift bSqMant to the right by (a_exp - b_exp) bits. |
|
|
// But before that, remember to store the losing bits to sticky. |
|
|
// The shift length is for a^2 and b^2, so it's double of the exponent |
|
|
// difference between a and b. |
|
|
uint16_t shift_length = 2 * (a_exp - b_exp); |
|
|
sticky_bits = |
|
|
((b_mant_sq & ((DUIntType(1) << shift_length) - DUIntType(1))) != |
|
|
DUIntType(0)); |
|
|
b_mant_sq >>= shift_length; |
|
|
|
|
|
DUIntType sum = a_mant_sq + b_mant_sq; |
|
|
if (sum >= (DUIntType(1) << (2 * y_mant_width + 2))) { |
|
|
// a^2 + b^2 >= 4* leading_one^2, so we will need an extra bit to the left. |
|
|
if (leading_one == one) { |
|
|
// For normal result, we discard the last 2 bits of the sum and increase |
|
|
// the exponent. |
|
|
sticky_bits = sticky_bits || ((sum & 0x3U) != 0); |
|
|
sum >>= 2; |
|
|
++out_exp; |
|
|
if (out_exp >= FPBits_t::maxExponent) { |
|
|
return FPBits_t::inf(); |
|
|
} |
|
|
} else { |
|
|
// For denormal result, we simply move the leading bit of the result to |
|
|
// the left by 1. |
|
|
leading_one <<= 1; |
|
|
++y_mant_width; |
|
|
} |
|
|
} |
|
|
|
|
|
UIntType Y = leading_one; |
|
|
UIntType R = static_cast<UIntType>(sum >> y_mant_width) - leading_one; |
|
|
UIntType tailBits = static_cast<UIntType>(sum) & (leading_one - 1); |
|
|
|
|
|
for (UIntType current_bit = leading_one >> 1; current_bit; |
|
|
current_bit >>= 1) { |
|
|
R = (R << 1) + ((tailBits & current_bit) ? 1 : 0); |
|
|
UIntType tmp = (Y << 1) + current_bit; // 2*y(n - 1) + 2^(-n) |
|
|
if (R >= tmp) { |
|
|
R -= tmp; |
|
|
Y += current_bit; |
|
|
} |
|
|
} |
|
|
|
|
|
bool round_bit = Y & UIntType(1); |
|
|
bool lsb = Y & UIntType(2); |
|
|
|
|
|
if (Y >= one) { |
|
|
Y -= one; |
|
|
|
|
|
if (out_exp == 0) { |
|
|
out_exp = 1; |
|
|
} |
|
|
} |
|
|
|
|
|
Y >>= 1; |
|
|
|
|
|
// Round to the nearest, tie to even. |
|
|
if (round_bit && (lsb || sticky_bits || (R != 0))) { |
|
|
++Y; |
|
|
} |
|
|
|
|
|
if (Y >= (one >> 1)) { |
|
|
Y -= one >> 1; |
|
|
++out_exp; |
|
|
if (out_exp >= FPBits_t::maxExponent) { |
|
|
return FPBits_t::inf(); |
|
|
} |
|
|
} |
|
|
|
|
|
Y |= static_cast<UIntType>(out_exp) << MantissaWidth<T>::value; |
|
|
return *reinterpret_cast<T *>(&Y); |
|
|
} |
|
|
|
|
|
} // namespace fputil |
|
|
} // namespace __llvm_libc |
|
|
|
|
|
#endif // LLVM_LIBC_UTILS_FPUTIL_HYPOT_H |