|
|
@@ -0,0 +1,848 @@ |
|
|
//===--- RDFLiveness.cpp --------------------------------------------------===// |
|
|
// |
|
|
// The LLVM Compiler Infrastructure |
|
|
// |
|
|
// This file is distributed under the University of Illinois Open Source |
|
|
// License. See LICENSE.TXT for details. |
|
|
// |
|
|
//===----------------------------------------------------------------------===// |
|
|
// |
|
|
// Computation of the liveness information from the data-flow graph. |
|
|
// |
|
|
// The main functionality of this code is to compute block live-in |
|
|
// information. With the live-in information in place, the placement |
|
|
// of kill flags can also be recalculated. |
|
|
// |
|
|
// The block live-in calculation is based on the ideas from the following |
|
|
// publication: |
|
|
// |
|
|
// Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin. |
|
|
// "Efficient Liveness Computation Using Merge Sets and DJ-Graphs." |
|
|
// ACM Transactions on Architecture and Code Optimization, Association for |
|
|
// Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance |
|
|
// and Embedded Architectures and Compilers", 8 (4), |
|
|
// <10.1145/2086696.2086706>. <hal-00647369> |
|
|
// |
|
|
#include "RDFGraph.h" |
|
|
#include "RDFLiveness.h" |
|
|
#include "llvm/ADT/SetVector.h" |
|
|
#include "llvm/CodeGen/MachineBasicBlock.h" |
|
|
#include "llvm/CodeGen/MachineDominanceFrontier.h" |
|
|
#include "llvm/CodeGen/MachineDominators.h" |
|
|
#include "llvm/CodeGen/MachineFunction.h" |
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h" |
|
|
#include "llvm/Target/TargetRegisterInfo.h" |
|
|
|
|
|
using namespace llvm; |
|
|
using namespace rdf; |
|
|
|
|
|
namespace rdf { |
|
|
template<> |
|
|
raw_ostream &operator<< (raw_ostream &OS, const Print<Liveness::RefMap> &P) { |
|
|
OS << '{'; |
|
|
for (auto I : P.Obj) { |
|
|
OS << ' ' << Print<RegisterRef>(I.first, P.G) << '{'; |
|
|
for (auto J = I.second.begin(), E = I.second.end(); J != E; ) { |
|
|
OS << Print<NodeId>(*J, P.G); |
|
|
if (++J != E) |
|
|
OS << ','; |
|
|
} |
|
|
OS << '}'; |
|
|
} |
|
|
OS << " }"; |
|
|
return OS; |
|
|
} |
|
|
} |
|
|
|
|
|
// The order in the returned sequence is the order of reaching defs in the |
|
|
// upward traversal: the first def is the closest to the given reference RefA, |
|
|
// the next one is further up, and so on. |
|
|
// The list ends at a reaching phi def, or when the reference from RefA is |
|
|
// covered by the defs in the list (see FullChain). |
|
|
// This function provides two modes of operation: |
|
|
// (1) Returning the sequence of reaching defs for a particular reference |
|
|
// node. This sequence will terminate at the first phi node [1]. |
|
|
// (2) Returning a partial sequence of reaching defs, where the final goal |
|
|
// is to traverse past phi nodes to the actual defs arising from the code |
|
|
// itself. |
|
|
// In mode (2), the register reference for which the search was started |
|
|
// may be different from the reference node RefA, for which this call was |
|
|
// made, hence the argument RefRR, which holds the original register. |
|
|
// Also, some definitions may have already been encountered in a previous |
|
|
// call that will influence register covering. The register references |
|
|
// already defined are passed in through DefRRs. |
|
|
// In mode (1), the "continuation" considerations do not apply, and the |
|
|
// RefRR is the same as the register in RefA, and the set DefRRs is empty. |
|
|
// |
|
|
// [1] It is possible for multiple phi nodes to be included in the returned |
|
|
// sequence: |
|
|
// SubA = phi ... |
|
|
// SubB = phi ... |
|
|
// ... = SuperAB(rdef:SubA), SuperAB"(rdef:SubB) |
|
|
// However, these phi nodes are independent from one another in terms of |
|
|
// the data-flow. |
|
|
|
|
|
NodeList Liveness::getAllReachingDefs(RegisterRef RefRR, |
|
|
NodeAddr<RefNode*> RefA, bool FullChain, const RegisterSet &DefRRs) { |
|
|
SetVector<NodeId> DefQ; |
|
|
SetVector<NodeId> Owners; |
|
|
|
|
|
// The initial queue should not have reaching defs for shadows. The |
|
|
// whole point of a shadow is that it will have a reaching def that |
|
|
// is not aliased to the reaching defs of the related shadows. |
|
|
NodeId Start = RefA.Id; |
|
|
auto SNA = DFG.addr<RefNode*>(Start); |
|
|
if (NodeId RD = SNA.Addr->getReachingDef()) |
|
|
DefQ.insert(RD); |
|
|
|
|
|
// Collect all the reaching defs, going up until a phi node is encountered, |
|
|
// or there are no more reaching defs. From this set, the actual set of |
|
|
// reaching defs will be selected. |
|
|
// The traversal upwards must go on until a covering def is encountered. |
|
|
// It is possible that a collection of non-covering (individually) defs |
|
|
// will be sufficient, but keep going until a covering one is found. |
|
|
for (unsigned i = 0; i < DefQ.size(); ++i) { |
|
|
auto TA = DFG.addr<DefNode*>(DefQ[i]); |
|
|
if (TA.Addr->getFlags() & NodeAttrs::PhiRef) |
|
|
continue; |
|
|
// Stop at the covering/overwriting def of the initial register reference. |
|
|
RegisterRef RR = TA.Addr->getRegRef(); |
|
|
if (RAI.covers(RR, RefRR)) { |
|
|
uint16_t Flags = TA.Addr->getFlags(); |
|
|
if (!(Flags & NodeAttrs::Preserving)) |
|
|
continue; |
|
|
} |
|
|
// Get the next level of reaching defs. This will include multiple |
|
|
// reaching defs for shadows. |
|
|
for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA)) |
|
|
if (auto RD = NodeAddr<RefNode*>(S).Addr->getReachingDef()) |
|
|
DefQ.insert(RD); |
|
|
} |
|
|
|
|
|
// Remove all non-phi defs that are not aliased to RefRR, and collect |
|
|
// the owners of the remaining defs. |
|
|
SetVector<NodeId> Defs; |
|
|
for (auto N : DefQ) { |
|
|
auto TA = DFG.addr<DefNode*>(N); |
|
|
bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef; |
|
|
if (!IsPhi && !RAI.alias(RefRR, TA.Addr->getRegRef())) |
|
|
continue; |
|
|
Defs.insert(TA.Id); |
|
|
Owners.insert(TA.Addr->getOwner(DFG).Id); |
|
|
} |
|
|
|
|
|
// Return the MachineBasicBlock containing a given instruction. |
|
|
auto Block = [this] (NodeAddr<InstrNode*> IA) -> MachineBasicBlock* { |
|
|
if (IA.Addr->getKind() == NodeAttrs::Stmt) |
|
|
return NodeAddr<StmtNode*>(IA).Addr->getCode()->getParent(); |
|
|
assert(IA.Addr->getKind() == NodeAttrs::Phi); |
|
|
NodeAddr<PhiNode*> PA = IA; |
|
|
NodeAddr<BlockNode*> BA = PA.Addr->getOwner(DFG); |
|
|
return BA.Addr->getCode(); |
|
|
}; |
|
|
// Less(A,B) iff instruction A is further down in the dominator tree than B. |
|
|
auto Less = [&Block,this] (NodeId A, NodeId B) -> bool { |
|
|
if (A == B) |
|
|
return false; |
|
|
auto OA = DFG.addr<InstrNode*>(A), OB = DFG.addr<InstrNode*>(B); |
|
|
MachineBasicBlock *BA = Block(OA), *BB = Block(OB); |
|
|
if (BA != BB) |
|
|
return MDT.dominates(BB, BA); |
|
|
// They are in the same block. |
|
|
bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt; |
|
|
bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt; |
|
|
if (StmtA) { |
|
|
if (!StmtB) // OB is a phi and phis dominate statements. |
|
|
return true; |
|
|
auto CA = NodeAddr<StmtNode*>(OA).Addr->getCode(); |
|
|
auto CB = NodeAddr<StmtNode*>(OB).Addr->getCode(); |
|
|
// The order must be linear, so tie-break such equalities. |
|
|
if (CA == CB) |
|
|
return A < B; |
|
|
return MDT.dominates(CB, CA); |
|
|
} else { |
|
|
// OA is a phi. |
|
|
if (StmtB) |
|
|
return false; |
|
|
// Both are phis. There is no ordering between phis (in terms of |
|
|
// the data-flow), so tie-break this via node id comparison. |
|
|
return A < B; |
|
|
} |
|
|
}; |
|
|
|
|
|
std::vector<NodeId> Tmp(Owners.begin(), Owners.end()); |
|
|
std::sort(Tmp.begin(), Tmp.end(), Less); |
|
|
|
|
|
// The vector is a list of instructions, so that defs coming from |
|
|
// the same instruction don't need to be artificially ordered. |
|
|
// Then, when computing the initial segment, and iterating over an |
|
|
// instruction, pick the defs that contribute to the covering (i.e. is |
|
|
// not covered by previously added defs). Check the defs individually, |
|
|
// i.e. first check each def if is covered or not (without adding them |
|
|
// to the tracking set), and then add all the selected ones. |
|
|
|
|
|
// The reason for this is this example: |
|
|
// *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes). |
|
|
// *d3<C> If A \incl BuC, and B \incl AuC, then *d2 would be |
|
|
// covered if we added A first, and A would be covered |
|
|
// if we added B first. |
|
|
|
|
|
NodeList RDefs; |
|
|
RegisterSet RRs = DefRRs; |
|
|
|
|
|
auto DefInSet = [&Defs] (NodeAddr<RefNode*> TA) -> bool { |
|
|
return TA.Addr->getKind() == NodeAttrs::Def && |
|
|
Defs.count(TA.Id); |
|
|
}; |
|
|
for (auto T : Tmp) { |
|
|
if (!FullChain && RAI.covers(RRs, RefRR)) |
|
|
break; |
|
|
auto TA = DFG.addr<InstrNode*>(T); |
|
|
bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(TA); |
|
|
NodeList Ds; |
|
|
for (NodeAddr<DefNode*> DA : TA.Addr->members_if(DefInSet, DFG)) { |
|
|
auto QR = DA.Addr->getRegRef(); |
|
|
// Add phi defs even if they are covered by subsequent defs. This is |
|
|
// for cases where the reached use is not covered by any of the defs |
|
|
// encountered so far: the phi def is needed to expose the liveness |
|
|
// of that use to the entry of the block. |
|
|
// Example: |
|
|
// phi d1<R3>(,d2,), ... Phi def d1 is covered by d2. |
|
|
// d2<R3>(d1,,u3), ... |
|
|
// ..., u3<D1>(d2) This use needs to be live on entry. |
|
|
if (FullChain || IsPhi || !RAI.covers(RRs, QR)) |
|
|
Ds.push_back(DA); |
|
|
} |
|
|
RDefs.insert(RDefs.end(), Ds.begin(), Ds.end()); |
|
|
for (NodeAddr<DefNode*> DA : Ds) { |
|
|
// When collecting a full chain of definitions, do not consider phi |
|
|
// defs to actually define a register. |
|
|
uint16_t Flags = DA.Addr->getFlags(); |
|
|
if (!FullChain || !(Flags & NodeAttrs::PhiRef)) |
|
|
if (!(Flags & NodeAttrs::Preserving)) |
|
|
RRs.insert(DA.Addr->getRegRef()); |
|
|
} |
|
|
} |
|
|
|
|
|
return RDefs; |
|
|
} |
|
|
|
|
|
|
|
|
static const RegisterSet NoRegs; |
|
|
|
|
|
NodeList Liveness::getAllReachingDefs(NodeAddr<RefNode*> RefA) { |
|
|
return getAllReachingDefs(RefA.Addr->getRegRef(), RefA, false, NoRegs); |
|
|
} |
|
|
|
|
|
|
|
|
void Liveness::computePhiInfo() { |
|
|
NodeList Phis; |
|
|
NodeAddr<FuncNode*> FA = DFG.getFunc(); |
|
|
auto Blocks = FA.Addr->members(DFG); |
|
|
for (NodeAddr<BlockNode*> BA : Blocks) { |
|
|
auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG); |
|
|
Phis.insert(Phis.end(), Ps.begin(), Ps.end()); |
|
|
} |
|
|
|
|
|
// phi use -> (map: reaching phi -> set of registers defined in between) |
|
|
std::map<NodeId,std::map<NodeId,RegisterSet>> PhiUp; |
|
|
std::vector<NodeId> PhiUQ; // Work list of phis for upward propagation. |
|
|
|
|
|
// Go over all phis. |
|
|
for (NodeAddr<PhiNode*> PhiA : Phis) { |
|
|
// Go over all defs and collect the reached uses that are non-phi uses |
|
|
// (i.e. the "real uses"). |
|
|
auto &RealUses = RealUseMap[PhiA.Id]; |
|
|
auto PhiRefs = PhiA.Addr->members(DFG); |
|
|
|
|
|
// Have a work queue of defs whose reached uses need to be found. |
|
|
// For each def, add to the queue all reached (non-phi) defs. |
|
|
SetVector<NodeId> DefQ; |
|
|
NodeSet PhiDefs; |
|
|
for (auto R : PhiRefs) { |
|
|
if (!DFG.IsRef<NodeAttrs::Def>(R)) |
|
|
continue; |
|
|
DefQ.insert(R.Id); |
|
|
PhiDefs.insert(R.Id); |
|
|
} |
|
|
for (unsigned i = 0; i < DefQ.size(); ++i) { |
|
|
NodeAddr<DefNode*> DA = DFG.addr<DefNode*>(DefQ[i]); |
|
|
NodeId UN = DA.Addr->getReachedUse(); |
|
|
while (UN != 0) { |
|
|
NodeAddr<UseNode*> A = DFG.addr<UseNode*>(UN); |
|
|
if (!(A.Addr->getFlags() & NodeAttrs::PhiRef)) |
|
|
RealUses[getRestrictedRegRef(A)].insert(A.Id); |
|
|
UN = A.Addr->getSibling(); |
|
|
} |
|
|
NodeId DN = DA.Addr->getReachedDef(); |
|
|
while (DN != 0) { |
|
|
NodeAddr<DefNode*> A = DFG.addr<DefNode*>(DN); |
|
|
for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) { |
|
|
uint16_t Flags = NodeAddr<DefNode*>(T).Addr->getFlags(); |
|
|
// Must traverse the reached-def chain. Consider: |
|
|
// def(D0) -> def(R0) -> def(R0) -> use(D0) |
|
|
// The reachable use of D0 passes through a def of R0. |
|
|
if (!(Flags & NodeAttrs::PhiRef)) |
|
|
DefQ.insert(T.Id); |
|
|
} |
|
|
DN = A.Addr->getSibling(); |
|
|
} |
|
|
} |
|
|
// Filter out these uses that appear to be reachable, but really |
|
|
// are not. For example: |
|
|
// |
|
|
// R1:0 = d1 |
|
|
// = R1:0 u2 Reached by d1. |
|
|
// R0 = d3 |
|
|
// = R1:0 u4 Still reached by d1: indirectly through |
|
|
// the def d3. |
|
|
// R1 = d5 |
|
|
// = R1:0 u6 Not reached by d1 (covered collectively |
|
|
// by d3 and d5), but following reached |
|
|
// defs and uses from d1 will lead here. |
|
|
auto HasDef = [&PhiDefs] (NodeAddr<DefNode*> DA) -> bool { |
|
|
return PhiDefs.count(DA.Id); |
|
|
}; |
|
|
for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE; ) { |
|
|
// For each reached register UI->first, there is a set UI->second, of |
|
|
// uses of it. For each such use, check if it is reached by this phi, |
|
|
// i.e. check if the set of its reaching uses intersects the set of |
|
|
// this phi's defs. |
|
|
auto &Uses = UI->second; |
|
|
for (auto I = Uses.begin(), E = Uses.end(); I != E; ) { |
|
|
auto UA = DFG.addr<UseNode*>(*I); |
|
|
NodeList RDs = getAllReachingDefs(UI->first, UA); |
|
|
if (std::any_of(RDs.begin(), RDs.end(), HasDef)) |
|
|
++I; |
|
|
else |
|
|
I = Uses.erase(I); |
|
|
} |
|
|
if (Uses.empty()) |
|
|
UI = RealUses.erase(UI); |
|
|
else |
|
|
++UI; |
|
|
} |
|
|
|
|
|
// If this phi reaches some "real" uses, add it to the queue for upward |
|
|
// propagation. |
|
|
if (!RealUses.empty()) |
|
|
PhiUQ.push_back(PhiA.Id); |
|
|
|
|
|
// Go over all phi uses and check if the reaching def is another phi. |
|
|
// Collect the phis that are among the reaching defs of these uses. |
|
|
// While traversing the list of reaching defs for each phi use, collect |
|
|
// the set of registers defined between this phi (Phi) and the owner phi |
|
|
// of the reaching def. |
|
|
for (auto I : PhiRefs) { |
|
|
if (!DFG.IsRef<NodeAttrs::Use>(I)) |
|
|
continue; |
|
|
NodeAddr<UseNode*> UA = I; |
|
|
auto &UpMap = PhiUp[UA.Id]; |
|
|
RegisterSet DefRRs; |
|
|
for (NodeAddr<DefNode*> DA : getAllReachingDefs(UA)) { |
|
|
if (DA.Addr->getFlags() & NodeAttrs::PhiRef) |
|
|
UpMap[DA.Addr->getOwner(DFG).Id] = DefRRs; |
|
|
else |
|
|
DefRRs.insert(DA.Addr->getRegRef()); |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
if (Trace) { |
|
|
dbgs() << "Phi-up-to-phi map:\n"; |
|
|
for (auto I : PhiUp) { |
|
|
dbgs() << "phi " << Print<NodeId>(I.first, DFG) << " -> {"; |
|
|
for (auto R : I.second) |
|
|
dbgs() << ' ' << Print<NodeId>(R.first, DFG) |
|
|
<< Print<RegisterSet>(R.second, DFG); |
|
|
dbgs() << " }\n"; |
|
|
} |
|
|
} |
|
|
|
|
|
// Propagate the reached registers up in the phi chain. |
|
|
// |
|
|
// The following type of situation needs careful handling: |
|
|
// |
|
|
// phi d1<R1:0> (1) |
|
|
// | |
|
|
// ... d2<R1> |
|
|
// | |
|
|
// phi u3<R1:0> (2) |
|
|
// | |
|
|
// ... u4<R1> |
|
|
// |
|
|
// The phi node (2) defines a register pair R1:0, and reaches a "real" |
|
|
// use u4 of just R1. The same phi node is also known to reach (upwards) |
|
|
// the phi node (1). However, the use u4 is not reached by phi (1), |
|
|
// because of the intervening definition d2 of R1. The data flow between |
|
|
// phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0. |
|
|
// |
|
|
// When propagating uses up the phi chains, get the all reaching defs |
|
|
// for a given phi use, and traverse the list until the propagated ref |
|
|
// is covered, or until or until reaching the final phi. Only assume |
|
|
// that the reference reaches the phi in the latter case. |
|
|
|
|
|
for (unsigned i = 0; i < PhiUQ.size(); ++i) { |
|
|
auto PA = DFG.addr<PhiNode*>(PhiUQ[i]); |
|
|
auto &RealUses = RealUseMap[PA.Id]; |
|
|
for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) { |
|
|
NodeAddr<UseNode*> UA = U; |
|
|
auto &UpPhis = PhiUp[UA.Id]; |
|
|
for (auto UP : UpPhis) { |
|
|
bool Changed = false; |
|
|
auto &MidDefs = UP.second; |
|
|
// Collect the set UpReached of uses that are reached by the current |
|
|
// phi PA, and are not covered by any intervening def between PA and |
|
|
// the upward phi UP. |
|
|
RegisterSet UpReached; |
|
|
for (auto T : RealUses) { |
|
|
if (!isRestricted(PA, UA, T.first)) |
|
|
continue; |
|
|
if (!RAI.covers(MidDefs, T.first)) |
|
|
UpReached.insert(T.first); |
|
|
} |
|
|
if (UpReached.empty()) |
|
|
continue; |
|
|
// Update the set PRUs of real uses reached by the upward phi UP with |
|
|
// the actual set of uses (UpReached) that the UP phi reaches. |
|
|
auto &PRUs = RealUseMap[UP.first]; |
|
|
for (auto R : UpReached) { |
|
|
unsigned Z = PRUs[R].size(); |
|
|
PRUs[R].insert(RealUses[R].begin(), RealUses[R].end()); |
|
|
Changed |= (PRUs[R].size() != Z); |
|
|
} |
|
|
if (Changed) |
|
|
PhiUQ.push_back(UP.first); |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
if (Trace) { |
|
|
dbgs() << "Real use map:\n"; |
|
|
for (auto I : RealUseMap) { |
|
|
dbgs() << "phi " << Print<NodeId>(I.first, DFG); |
|
|
NodeAddr<PhiNode*> PA = DFG.addr<PhiNode*>(I.first); |
|
|
NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG); |
|
|
if (!Ds.empty()) { |
|
|
RegisterRef RR = NodeAddr<DefNode*>(Ds[0]).Addr->getRegRef(); |
|
|
dbgs() << '<' << Print<RegisterRef>(RR, DFG) << '>'; |
|
|
} else { |
|
|
dbgs() << "<noreg>"; |
|
|
} |
|
|
dbgs() << " -> " << Print<RefMap>(I.second, DFG) << '\n'; |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
void Liveness::computeLiveIns() { |
|
|
// Populate the node-to-block map. This speeds up the calculations |
|
|
// significantly. |
|
|
NBMap.clear(); |
|
|
for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) { |
|
|
MachineBasicBlock *BB = BA.Addr->getCode(); |
|
|
for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) { |
|
|
for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG)) |
|
|
NBMap.insert(std::make_pair(RA.Id, BB)); |
|
|
NBMap.insert(std::make_pair(IA.Id, BB)); |
|
|
} |
|
|
} |
|
|
|
|
|
MachineFunction &MF = DFG.getMF(); |
|
|
|
|
|
// Compute IDF first, then the inverse. |
|
|
decltype(IIDF) IDF; |
|
|
for (auto &B : MF) { |
|
|
auto F1 = MDF.find(&B); |
|
|
if (F1 == MDF.end()) |
|
|
continue; |
|
|
SetVector<MachineBasicBlock*> IDFB(F1->second.begin(), F1->second.end()); |
|
|
for (unsigned i = 0; i < IDFB.size(); ++i) { |
|
|
auto F2 = MDF.find(IDFB[i]); |
|
|
if (F2 != MDF.end()) |
|
|
IDFB.insert(F2->second.begin(), F2->second.end()); |
|
|
} |
|
|
// Add B to the IDF(B). This will put B in the IIDF(B). |
|
|
IDFB.insert(&B); |
|
|
IDF[&B].insert(IDFB.begin(), IDFB.end()); |
|
|
} |
|
|
|
|
|
for (auto I : IDF) |
|
|
for (auto S : I.second) |
|
|
IIDF[S].insert(I.first); |
|
|
|
|
|
computePhiInfo(); |
|
|
|
|
|
NodeAddr<FuncNode*> FA = DFG.getFunc(); |
|
|
auto Blocks = FA.Addr->members(DFG); |
|
|
|
|
|
// Build the phi live-on-entry map. |
|
|
for (NodeAddr<BlockNode*> BA : Blocks) { |
|
|
MachineBasicBlock *MB = BA.Addr->getCode(); |
|
|
auto &LON = PhiLON[MB]; |
|
|
for (auto P : BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG)) |
|
|
for (auto S : RealUseMap[P.Id]) |
|
|
LON[S.first].insert(S.second.begin(), S.second.end()); |
|
|
} |
|
|
|
|
|
if (Trace) { |
|
|
dbgs() << "Phi live-on-entry map:\n"; |
|
|
for (auto I : PhiLON) |
|
|
dbgs() << "block #" << I.first->getNumber() << " -> " |
|
|
<< Print<RefMap>(I.second, DFG) << '\n'; |
|
|
} |
|
|
|
|
|
// Build the phi live-on-exit map. Each phi node has some set of reached |
|
|
// "real" uses. Propagate this set backwards into the block predecessors |
|
|
// through the reaching defs of the corresponding phi uses. |
|
|
for (NodeAddr<BlockNode*> BA : Blocks) { |
|
|
auto Phis = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG); |
|
|
for (NodeAddr<PhiNode*> PA : Phis) { |
|
|
auto &RUs = RealUseMap[PA.Id]; |
|
|
if (RUs.empty()) |
|
|
continue; |
|
|
|
|
|
for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) { |
|
|
NodeAddr<PhiUseNode*> UA = U; |
|
|
if (UA.Addr->getReachingDef() == 0) |
|
|
continue; |
|
|
|
|
|
// Mark all reached "real" uses of P as live on exit in the |
|
|
// predecessor. |
|
|
// Remap all the RUs so that they have a correct reaching def. |
|
|
auto PrA = DFG.addr<BlockNode*>(UA.Addr->getPredecessor()); |
|
|
auto &LOX = PhiLOX[PrA.Addr->getCode()]; |
|
|
for (auto R : RUs) { |
|
|
RegisterRef RR = R.first; |
|
|
if (!isRestricted(PA, UA, RR)) |
|
|
RR = getRestrictedRegRef(UA); |
|
|
// The restricted ref may be different from the ref that was |
|
|
// accessed in the "real use". This means that this phi use |
|
|
// is not the one that carries this reference, so skip it. |
|
|
if (!RAI.alias(R.first, RR)) |
|
|
continue; |
|
|
for (auto D : getAllReachingDefs(RR, UA)) |
|
|
LOX[RR].insert(D.Id); |
|
|
} |
|
|
} // for U : phi uses |
|
|
} // for P : Phis |
|
|
} // for B : Blocks |
|
|
|
|
|
if (Trace) { |
|
|
dbgs() << "Phi live-on-exit map:\n"; |
|
|
for (auto I : PhiLOX) |
|
|
dbgs() << "block #" << I.first->getNumber() << " -> " |
|
|
<< Print<RefMap>(I.second, DFG) << '\n'; |
|
|
} |
|
|
|
|
|
RefMap LiveIn; |
|
|
traverse(&MF.front(), LiveIn); |
|
|
|
|
|
// Add function live-ins to the live-in set of the function entry block. |
|
|
auto &EntryIn = LiveMap[&MF.front()]; |
|
|
for (auto I = MRI.livein_begin(), E = MRI.livein_end(); I != E; ++I) |
|
|
EntryIn.insert({I->first,0}); |
|
|
|
|
|
if (Trace) { |
|
|
// Dump the liveness map |
|
|
for (auto &B : MF) { |
|
|
BitVector LV(TRI.getNumRegs()); |
|
|
for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I) |
|
|
LV.set(I->PhysReg); |
|
|
dbgs() << "BB#" << B.getNumber() << "\t rec = {"; |
|
|
for (int x = LV.find_first(); x >= 0; x = LV.find_next(x)) |
|
|
dbgs() << ' ' << Print<RegisterRef>({unsigned(x),0}, DFG); |
|
|
dbgs() << " }\n"; |
|
|
dbgs() << "\tcomp = " << Print<RegisterSet>(LiveMap[&B], DFG) << '\n'; |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
void Liveness::resetLiveIns() { |
|
|
for (auto &B : DFG.getMF()) { |
|
|
// Remove all live-ins. |
|
|
std::vector<unsigned> T; |
|
|
for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I) |
|
|
T.push_back(I->PhysReg); |
|
|
for (auto I : T) |
|
|
B.removeLiveIn(I); |
|
|
// Add the newly computed live-ins. |
|
|
auto &LiveIns = LiveMap[&B]; |
|
|
for (auto I : LiveIns) { |
|
|
assert(I.Sub == 0); |
|
|
B.addLiveIn(I.Reg); |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
void Liveness::resetKills() { |
|
|
for (auto &B : DFG.getMF()) |
|
|
resetKills(&B); |
|
|
} |
|
|
|
|
|
|
|
|
void Liveness::resetKills(MachineBasicBlock *B) { |
|
|
auto CopyLiveIns = [] (MachineBasicBlock *B, BitVector &LV) -> void { |
|
|
for (auto I = B->livein_begin(), E = B->livein_end(); I != E; ++I) |
|
|
LV.set(I->PhysReg); |
|
|
}; |
|
|
|
|
|
BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs()); |
|
|
CopyLiveIns(B, LiveIn); |
|
|
for (auto SI : B->successors()) |
|
|
CopyLiveIns(SI, Live); |
|
|
|
|
|
for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) { |
|
|
MachineInstr *MI = &*I; |
|
|
if (MI->isDebugValue()) |
|
|
continue; |
|
|
|
|
|
MI->clearKillInfo(); |
|
|
for (auto &Op : MI->operands()) { |
|
|
if (!Op.isReg() || !Op.isDef()) |
|
|
continue; |
|
|
unsigned R = Op.getReg(); |
|
|
if (!TargetRegisterInfo::isPhysicalRegister(R)) |
|
|
continue; |
|
|
for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR) |
|
|
Live.reset(*SR); |
|
|
} |
|
|
for (auto &Op : MI->operands()) { |
|
|
if (!Op.isReg() || !Op.isUse()) |
|
|
continue; |
|
|
unsigned R = Op.getReg(); |
|
|
if (!TargetRegisterInfo::isPhysicalRegister(R)) |
|
|
continue; |
|
|
bool IsLive = false; |
|
|
for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR) { |
|
|
if (!Live[*SR]) |
|
|
continue; |
|
|
IsLive = true; |
|
|
break; |
|
|
} |
|
|
if (IsLive) |
|
|
continue; |
|
|
Op.setIsKill(true); |
|
|
for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR) |
|
|
Live.set(*SR); |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
// For shadows, determine if RR is aliased to a reaching def of any other |
|
|
// shadow associated with RA. If it is not, then RR is "restricted" to RA, |
|
|
// and so it can be considered a value specific to RA. This is important |
|
|
// for accurately determining values associated with phi uses. |
|
|
// For non-shadows, this function returns "true". |
|
|
bool Liveness::isRestricted(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA, |
|
|
RegisterRef RR) const { |
|
|
NodeId Start = RA.Id; |
|
|
for (NodeAddr<RefNode*> TA = DFG.getNextShadow(IA, RA); |
|
|
TA.Id != 0 && TA.Id != Start; TA = DFG.getNextShadow(IA, TA)) { |
|
|
NodeId RD = TA.Addr->getReachingDef(); |
|
|
if (RD == 0) |
|
|
continue; |
|
|
if (RAI.alias(RR, DFG.addr<DefNode*>(RD).Addr->getRegRef())) |
|
|
return false; |
|
|
} |
|
|
return true; |
|
|
} |
|
|
|
|
|
|
|
|
RegisterRef Liveness::getRestrictedRegRef(NodeAddr<RefNode*> RA) const { |
|
|
assert(DFG.IsRef<NodeAttrs::Use>(RA)); |
|
|
if (RA.Addr->getFlags() & NodeAttrs::Shadow) { |
|
|
NodeId RD = RA.Addr->getReachingDef(); |
|
|
assert(RD); |
|
|
RA = DFG.addr<DefNode*>(RD); |
|
|
} |
|
|
return RA.Addr->getRegRef(); |
|
|
} |
|
|
|
|
|
|
|
|
unsigned Liveness::getPhysReg(RegisterRef RR) const { |
|
|
if (!TargetRegisterInfo::isPhysicalRegister(RR.Reg)) |
|
|
return 0; |
|
|
return RR.Sub ? TRI.getSubReg(RR.Reg, RR.Sub) : RR.Reg; |
|
|
} |
|
|
|
|
|
|
|
|
// Helper function to obtain the basic block containing the reaching def |
|
|
// of the given use. |
|
|
MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const { |
|
|
auto F = NBMap.find(RN); |
|
|
if (F != NBMap.end()) |
|
|
return F->second; |
|
|
llvm_unreachable("Node id not in map"); |
|
|
} |
|
|
|
|
|
|
|
|
void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) { |
|
|
// The LiveIn map, for each (physical) register, contains the set of live |
|
|
// reaching defs of that register that are live on entry to the associated |
|
|
// block. |
|
|
|
|
|
// The summary of the traversal algorithm: |
|
|
// |
|
|
// R is live-in in B, if there exists a U(R), such that rdef(R) dom B |
|
|
// and (U \in IDF(B) or B dom U). |
|
|
// |
|
|
// for (C : children) { |
|
|
// LU = {} |
|
|
// traverse(C, LU) |
|
|
// LiveUses += LU |
|
|
// } |
|
|
// |
|
|
// LiveUses -= Defs(B); |
|
|
// LiveUses += UpwardExposedUses(B); |
|
|
// for (C : IIDF[B]) |
|
|
// for (U : LiveUses) |
|
|
// if (Rdef(U) dom C) |
|
|
// C.addLiveIn(U) |
|
|
// |
|
|
|
|
|
// Go up the dominator tree (depth-first). |
|
|
MachineDomTreeNode *N = MDT.getNode(B); |
|
|
for (auto I : *N) { |
|
|
RefMap L; |
|
|
MachineBasicBlock *SB = I->getBlock(); |
|
|
traverse(SB, L); |
|
|
|
|
|
for (auto S : L) |
|
|
LiveIn[S.first].insert(S.second.begin(), S.second.end()); |
|
|
} |
|
|
|
|
|
if (Trace) { |
|
|
dbgs() << LLVM_FUNCTION_NAME << " in BB#" << B->getNumber() |
|
|
<< " after recursion into"; |
|
|
for (auto I : *N) |
|
|
dbgs() << ' ' << I->getBlock()->getNumber(); |
|
|
dbgs() << "\n LiveIn: " << Print<RefMap>(LiveIn, DFG); |
|
|
dbgs() << "\n Local: " << Print<RegisterSet>(LiveMap[B], DFG) << '\n'; |
|
|
} |
|
|
|
|
|
// Add phi uses that are live on exit from this block. |
|
|
RefMap &PUs = PhiLOX[B]; |
|
|
for (auto S : PUs) |
|
|
LiveIn[S.first].insert(S.second.begin(), S.second.end()); |
|
|
|
|
|
if (Trace) { |
|
|
dbgs() << "after LOX\n"; |
|
|
dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; |
|
|
dbgs() << " Local: " << Print<RegisterSet>(LiveMap[B], DFG) << '\n'; |
|
|
} |
|
|
|
|
|
// Stop tracking all uses defined in this block: erase those records |
|
|
// where the reaching def is located in B and which cover all reached |
|
|
// uses. |
|
|
auto Copy = LiveIn; |
|
|
LiveIn.clear(); |
|
|
|
|
|
for (auto I : Copy) { |
|
|
auto &Defs = LiveIn[I.first]; |
|
|
NodeSet Rest; |
|
|
for (auto R : I.second) { |
|
|
auto DA = DFG.addr<DefNode*>(R); |
|
|
RegisterRef DDR = DA.Addr->getRegRef(); |
|
|
NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG); |
|
|
NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG); |
|
|
// Defs from a different block need to be preserved. Defs from this |
|
|
// block will need to be processed further, except for phi defs, the |
|
|
// liveness of which is handled through the PhiLON/PhiLOX maps. |
|
|
if (B != BA.Addr->getCode()) |
|
|
Defs.insert(R); |
|
|
else { |
|
|
bool IsPreserving = DA.Addr->getFlags() & NodeAttrs::Preserving; |
|
|
if (IA.Addr->getKind() != NodeAttrs::Phi && !IsPreserving) { |
|
|
bool Covering = RAI.covers(DDR, I.first); |
|
|
NodeId U = DA.Addr->getReachedUse(); |
|
|
while (U && Covering) { |
|
|
auto DUA = DFG.addr<UseNode*>(U); |
|
|
RegisterRef Q = DUA.Addr->getRegRef(); |
|
|
Covering = RAI.covers(DA.Addr->getRegRef(), Q); |
|
|
U = DUA.Addr->getSibling(); |
|
|
} |
|
|
if (!Covering) |
|
|
Rest.insert(R); |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
// Non-covering defs from B. |
|
|
for (auto R : Rest) { |
|
|
auto DA = DFG.addr<DefNode*>(R); |
|
|
RegisterRef DRR = DA.Addr->getRegRef(); |
|
|
RegisterSet RRs; |
|
|
for (NodeAddr<DefNode*> TA : getAllReachingDefs(DA)) { |
|
|
NodeAddr<InstrNode*> IA = TA.Addr->getOwner(DFG); |
|
|
NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG); |
|
|
// Preserving defs do not count towards covering. |
|
|
if (!(TA.Addr->getFlags() & NodeAttrs::Preserving)) |
|
|
RRs.insert(TA.Addr->getRegRef()); |
|
|
if (BA.Addr->getCode() == B) |
|
|
continue; |
|
|
if (RAI.covers(RRs, DRR)) |
|
|
break; |
|
|
Defs.insert(TA.Id); |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
emptify(LiveIn); |
|
|
|
|
|
if (Trace) { |
|
|
dbgs() << "after defs in block\n"; |
|
|
dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; |
|
|
dbgs() << " Local: " << Print<RegisterSet>(LiveMap[B], DFG) << '\n'; |
|
|
} |
|
|
|
|
|
// Scan the block for upward-exposed uses and add them to the tracking set. |
|
|
for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) { |
|
|
NodeAddr<InstrNode*> IA = I; |
|
|
if (IA.Addr->getKind() != NodeAttrs::Stmt) |
|
|
continue; |
|
|
for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) { |
|
|
RegisterRef RR = UA.Addr->getRegRef(); |
|
|
for (auto D : getAllReachingDefs(UA)) |
|
|
if (getBlockWithRef(D.Id) != B) |
|
|
LiveIn[RR].insert(D.Id); |
|
|
} |
|
|
} |
|
|
|
|
|
if (Trace) { |
|
|
dbgs() << "after uses in block\n"; |
|
|
dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; |
|
|
dbgs() << " Local: " << Print<RegisterSet>(LiveMap[B], DFG) << '\n'; |
|
|
} |
|
|
|
|
|
// Phi uses should not be propagated up the dominator tree, since they |
|
|
// are not dominated by their corresponding reaching defs. |
|
|
auto &Local = LiveMap[B]; |
|
|
auto &LON = PhiLON[B]; |
|
|
for (auto R : LON) |
|
|
Local.insert(R.first); |
|
|
|
|
|
if (Trace) { |
|
|
dbgs() << "after phi uses in block\n"; |
|
|
dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; |
|
|
dbgs() << " Local: " << Print<RegisterSet>(Local, DFG) << '\n'; |
|
|
} |
|
|
|
|
|
for (auto C : IIDF[B]) { |
|
|
auto &LiveC = LiveMap[C]; |
|
|
for (auto S : LiveIn) |
|
|
for (auto R : S.second) |
|
|
if (MDT.properlyDominates(getBlockWithRef(R), C)) |
|
|
LiveC.insert(S.first); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
void Liveness::emptify(RefMap &M) { |
|
|
for (auto I = M.begin(), E = M.end(); I != E; ) |
|
|
I = I->second.empty() ? M.erase(I) : std::next(I); |
|
|
} |
|
|
|