|
|
@@ -0,0 +1,312 @@ |
|
|
//===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===// |
|
|
// |
|
|
// The LLVM Compiler Infrastructure |
|
|
// |
|
|
// This file is distributed under the University of Illinois Open Source |
|
|
// License. See LICENSE.TXT for details. |
|
|
// |
|
|
//===----------------------------------------------------------------------===// |
|
|
// |
|
|
/// \file |
|
|
/// This contains a MachineSchedStrategy implementation for maximizing wave |
|
|
/// occupancy on GCN hardware. |
|
|
//===----------------------------------------------------------------------===// |
|
|
|
|
|
#include "GCNSchedStrategy.h" |
|
|
#include "AMDGPUSubtarget.h" |
|
|
#include "SIInstrInfo.h" |
|
|
#include "SIMachineFunctionInfo.h" |
|
|
#include "SIRegisterInfo.h" |
|
|
#include "llvm/CodeGen/RegisterClassInfo.h" |
|
|
|
|
|
#define DEBUG_TYPE "misched" |
|
|
|
|
|
using namespace llvm; |
|
|
|
|
|
GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy( |
|
|
const MachineSchedContext *C) : |
|
|
GenericScheduler(C) { } |
|
|
|
|
|
static unsigned getMaxWaves(unsigned SGPRs, unsigned VGPRs, |
|
|
const MachineFunction &MF) { |
|
|
|
|
|
const SISubtarget &ST = MF.getSubtarget<SISubtarget>(); |
|
|
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
|
|
unsigned MinRegOccupancy = std::min(ST.getOccupancyWithNumSGPRs(SGPRs), |
|
|
ST.getOccupancyWithNumVGPRs(VGPRs)); |
|
|
return std::min(MinRegOccupancy, |
|
|
ST.getOccupancyWithLocalMemSize(MFI->getLDSSize())); |
|
|
} |
|
|
|
|
|
void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU, |
|
|
bool AtTop, const RegPressureTracker &RPTracker, |
|
|
const SIRegisterInfo *SRI, |
|
|
int SGPRPressure, |
|
|
int VGPRPressure, |
|
|
int SGPRExcessLimit, |
|
|
int VGPRExcessLimit, |
|
|
int SGPRCriticalLimit, |
|
|
int VGPRCriticalLimit) { |
|
|
|
|
|
Cand.SU = SU; |
|
|
Cand.AtTop = AtTop; |
|
|
|
|
|
// getDownwardPressure() and getUpwardPressure() make temporary changes to |
|
|
// the the tracker, so we need to pass those function a non-const copy. |
|
|
RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); |
|
|
|
|
|
std::vector<unsigned> Pressure; |
|
|
std::vector<unsigned> MaxPressure; |
|
|
|
|
|
if (AtTop) |
|
|
TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure); |
|
|
else { |
|
|
// FIXME: I think for bottom up scheduling, the register pressure is cached |
|
|
// and can be retrieved by DAG->getPressureDif(SU). |
|
|
TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure); |
|
|
} |
|
|
|
|
|
int NewSGPRPressure = Pressure[SRI->getSGPRPressureSet()]; |
|
|
int NewVGPRPressure = Pressure[SRI->getVGPRPressureSet()]; |
|
|
|
|
|
// If two instructions increase the pressure of different register sets |
|
|
// by the same amount, the generic scheduler will prefer to schedule the |
|
|
// instruction that increases the set with the least amount of registers, |
|
|
// which in our case would be SGPRs. This is rarely what we want, so |
|
|
// when we report excess/critical register pressure, we do it either |
|
|
// only for VGPRs or only for SGPRs. |
|
|
|
|
|
// FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs. |
|
|
const int MaxVGPRPressureInc = 16; |
|
|
bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit; |
|
|
bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit; |
|
|
|
|
|
|
|
|
// FIXME: We have to enter REG-EXCESS before we reach the actual threshold |
|
|
// to increase the likelihood we don't go over the limits. We should improve |
|
|
// the analysis to look through dependencies to find the path with the least |
|
|
// register pressure. |
|
|
// FIXME: This is also necessary, because some passes that run after |
|
|
// scheduling and before regalloc increase register pressure. |
|
|
const int ErrorMargin = 3; |
|
|
VGPRExcessLimit -= ErrorMargin; |
|
|
SGPRExcessLimit -= ErrorMargin; |
|
|
|
|
|
// We only need to update the RPDelata for instructions that increase |
|
|
// register pressure. Instructions that decrease or keep reg pressure |
|
|
// the same will be marked as RegExcess in tryCandidate() when they |
|
|
// are compared with instructions that increase the register pressure. |
|
|
if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) { |
|
|
Cand.RPDelta.Excess = PressureChange(SRI->getVGPRPressureSet()); |
|
|
Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit); |
|
|
} |
|
|
|
|
|
if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) { |
|
|
Cand.RPDelta.Excess = PressureChange(SRI->getSGPRPressureSet()); |
|
|
Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure = SGPRExcessLimit); |
|
|
} |
|
|
|
|
|
// Register pressure is considered 'CRITICAL' if it is approaching a value |
|
|
// that would reduce the wave occupancy for the execution unit. When |
|
|
// register pressure is 'CRITICAL', increading SGPR and VGPR pressure both |
|
|
// has the same cost, so we don't need to prefer one over the other. |
|
|
|
|
|
VGPRCriticalLimit -= ErrorMargin; |
|
|
SGPRCriticalLimit -= ErrorMargin; |
|
|
|
|
|
int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit; |
|
|
int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit; |
|
|
|
|
|
if (SGPRDelta >= 0 || VGPRDelta >= 0) { |
|
|
if (SGPRDelta > VGPRDelta) { |
|
|
Cand.RPDelta.CriticalMax = PressureChange(SRI->getSGPRPressureSet()); |
|
|
Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta); |
|
|
} else { |
|
|
Cand.RPDelta.CriticalMax = PressureChange(SRI->getVGPRPressureSet()); |
|
|
Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta); |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
// This function is mostly cut and pasted from |
|
|
// GenericScheduler::pickNodeFromQueue() |
|
|
void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone, |
|
|
const CandPolicy &ZonePolicy, |
|
|
const RegPressureTracker &RPTracker, |
|
|
SchedCandidate &Cand) { |
|
|
const SISubtarget &ST = DAG->MF.getSubtarget<SISubtarget>(); |
|
|
const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI); |
|
|
ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos(); |
|
|
unsigned SGPRPressure = Pressure[SRI->getSGPRPressureSet()]; |
|
|
unsigned VGPRPressure = Pressure[SRI->getVGPRPressureSet()]; |
|
|
unsigned SGPRExcessLimit = |
|
|
Context->RegClassInfo->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass); |
|
|
unsigned VGPRExcessLimit = |
|
|
Context->RegClassInfo->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass); |
|
|
unsigned MaxWaves = getMaxWaves(SGPRPressure, VGPRPressure, DAG->MF); |
|
|
unsigned SGPRCriticalLimit = SRI->getNumSGPRsAllowed(ST, MaxWaves); |
|
|
unsigned VGPRCriticalLimit = SRI->getNumVGPRsAllowed(MaxWaves); |
|
|
|
|
|
ReadyQueue &Q = Zone.Available; |
|
|
for (SUnit *SU : Q) { |
|
|
|
|
|
SchedCandidate TryCand(ZonePolicy); |
|
|
initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI, |
|
|
SGPRPressure, VGPRPressure, |
|
|
SGPRExcessLimit, VGPRExcessLimit, |
|
|
SGPRCriticalLimit, VGPRCriticalLimit); |
|
|
// Pass SchedBoundary only when comparing nodes from the same boundary. |
|
|
SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; |
|
|
GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg); |
|
|
if (TryCand.Reason != NoCand) { |
|
|
// Initialize resource delta if needed in case future heuristics query it. |
|
|
if (TryCand.ResDelta == SchedResourceDelta()) |
|
|
TryCand.initResourceDelta(Zone.DAG, SchedModel); |
|
|
Cand.setBest(TryCand); |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
static int getBidirectionalReasonRank(GenericSchedulerBase::CandReason Reason) { |
|
|
switch (Reason) { |
|
|
default: |
|
|
return Reason; |
|
|
case GenericSchedulerBase::RegCritical: |
|
|
case GenericSchedulerBase::RegExcess: |
|
|
return -Reason; |
|
|
} |
|
|
} |
|
|
|
|
|
// This function is mostly cut and pasted from |
|
|
// GenericScheduler::pickNodeBidirectional() |
|
|
SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) { |
|
|
// Schedule as far as possible in the direction of no choice. This is most |
|
|
// efficient, but also provides the best heuristics for CriticalPSets. |
|
|
if (SUnit *SU = Bot.pickOnlyChoice()) { |
|
|
IsTopNode = false; |
|
|
return SU; |
|
|
} |
|
|
if (SUnit *SU = Top.pickOnlyChoice()) { |
|
|
IsTopNode = true; |
|
|
return SU; |
|
|
} |
|
|
// Set the bottom-up policy based on the state of the current bottom zone and |
|
|
// the instructions outside the zone, including the top zone. |
|
|
CandPolicy BotPolicy; |
|
|
setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); |
|
|
// Set the top-down policy based on the state of the current top zone and |
|
|
// the instructions outside the zone, including the bottom zone. |
|
|
CandPolicy TopPolicy; |
|
|
setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); |
|
|
|
|
|
// See if BotCand is still valid (because we previously scheduled from Top). |
|
|
DEBUG(dbgs() << "Picking from Bot:\n"); |
|
|
if (!BotCand.isValid() || BotCand.SU->isScheduled || |
|
|
BotCand.Policy != BotPolicy) { |
|
|
BotCand.reset(CandPolicy()); |
|
|
pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); |
|
|
assert(BotCand.Reason != NoCand && "failed to find the first candidate"); |
|
|
} else { |
|
|
DEBUG(traceCandidate(BotCand)); |
|
|
} |
|
|
|
|
|
// Check if the top Q has a better candidate. |
|
|
DEBUG(dbgs() << "Picking from Top:\n"); |
|
|
if (!TopCand.isValid() || TopCand.SU->isScheduled || |
|
|
TopCand.Policy != TopPolicy) { |
|
|
TopCand.reset(CandPolicy()); |
|
|
pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); |
|
|
assert(TopCand.Reason != NoCand && "failed to find the first candidate"); |
|
|
} else { |
|
|
DEBUG(traceCandidate(TopCand)); |
|
|
} |
|
|
|
|
|
// Pick best from BotCand and TopCand. |
|
|
DEBUG( |
|
|
dbgs() << "Top Cand: "; |
|
|
traceCandidate(BotCand); |
|
|
dbgs() << "Bot Cand: "; |
|
|
traceCandidate(TopCand); |
|
|
); |
|
|
SchedCandidate Cand; |
|
|
if (TopCand.Reason == BotCand.Reason) { |
|
|
Cand = BotCand; |
|
|
GenericSchedulerBase::CandReason TopReason = TopCand.Reason; |
|
|
TopCand.Reason = NoCand; |
|
|
GenericScheduler::tryCandidate(Cand, TopCand, nullptr); |
|
|
if (TopCand.Reason != NoCand) { |
|
|
Cand.setBest(TopCand); |
|
|
} else { |
|
|
TopCand.Reason = TopReason; |
|
|
} |
|
|
} else { |
|
|
if (TopCand.Reason == RegExcess && TopCand.RPDelta.Excess.getUnitInc() <= 0) { |
|
|
Cand = TopCand; |
|
|
} else if (BotCand.Reason == RegExcess && BotCand.RPDelta.Excess.getUnitInc() <= 0) { |
|
|
Cand = BotCand; |
|
|
} else if (TopCand.Reason == RegCritical && TopCand.RPDelta.CriticalMax.getUnitInc() <= 0) { |
|
|
Cand = TopCand; |
|
|
} else if (BotCand.Reason == RegCritical && BotCand.RPDelta.CriticalMax.getUnitInc() <= 0) { |
|
|
Cand = BotCand; |
|
|
} else { |
|
|
int TopRank = getBidirectionalReasonRank(TopCand.Reason); |
|
|
int BotRank = getBidirectionalReasonRank(BotCand.Reason); |
|
|
if (TopRank > BotRank) { |
|
|
Cand = TopCand; |
|
|
} else { |
|
|
Cand = BotCand; |
|
|
} |
|
|
} |
|
|
} |
|
|
DEBUG( |
|
|
dbgs() << "Picking: "; |
|
|
traceCandidate(Cand); |
|
|
); |
|
|
|
|
|
IsTopNode = Cand.AtTop; |
|
|
return Cand.SU; |
|
|
} |
|
|
|
|
|
// This function is mostly cut and pasted from |
|
|
// GenericScheduler::pickNode() |
|
|
SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) { |
|
|
if (DAG->top() == DAG->bottom()) { |
|
|
assert(Top.Available.empty() && Top.Pending.empty() && |
|
|
Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); |
|
|
return nullptr; |
|
|
} |
|
|
SUnit *SU; |
|
|
do { |
|
|
if (RegionPolicy.OnlyTopDown) { |
|
|
SU = Top.pickOnlyChoice(); |
|
|
if (!SU) { |
|
|
CandPolicy NoPolicy; |
|
|
TopCand.reset(NoPolicy); |
|
|
pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); |
|
|
assert(TopCand.Reason != NoCand && "failed to find a candidate"); |
|
|
SU = TopCand.SU; |
|
|
} |
|
|
IsTopNode = true; |
|
|
} else if (RegionPolicy.OnlyBottomUp) { |
|
|
SU = Bot.pickOnlyChoice(); |
|
|
if (!SU) { |
|
|
CandPolicy NoPolicy; |
|
|
BotCand.reset(NoPolicy); |
|
|
pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); |
|
|
assert(BotCand.Reason != NoCand && "failed to find a candidate"); |
|
|
SU = BotCand.SU; |
|
|
} |
|
|
IsTopNode = false; |
|
|
} else { |
|
|
SU = pickNodeBidirectional(IsTopNode); |
|
|
} |
|
|
} while (SU->isScheduled); |
|
|
|
|
|
if (SU->isTopReady()) |
|
|
Top.removeReady(SU); |
|
|
if (SU->isBottomReady()) |
|
|
Bot.removeReady(SU); |
|
|
|
|
|
DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); |
|
|
return SU; |
|
|
} |