313 changes: 313 additions & 0 deletions libc/src/math/generic/atan2.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,313 @@
//===-- Double-precision atan2 function -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "src/math/atan2.h"
#include "inv_trigf_utils.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/PolyEval.h"
#include "src/__support/FPUtil/double_double.h"
#include "src/__support/FPUtil/multiply_add.h"
#include "src/__support/FPUtil/nearest_integer.h"
#include "src/__support/FPUtil/rounding_mode.h"
#include "src/__support/macros/config.h"
#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY

namespace LIBC_NAMESPACE_DECL {

namespace {

using DoubleDouble = fputil::DoubleDouble;

// atan(i/64) with i = 0..64, generated by Sollya with:
// > for i from 0 to 64 do {
// a = round(atan(i/64), D, RN);
// b = round(atan(i/64) - a, D, RN);
// print("{", b, ",", a, "},");
// };
constexpr fputil::DoubleDouble ATAN_I[65] = {
{0.0, 0.0},
{-0x1.220c39d4dff5p-61, 0x1.fff555bbb729bp-7},
{-0x1.5ec431444912cp-60, 0x1.ffd55bba97625p-6},
{-0x1.86ef8f794f105p-63, 0x1.7fb818430da2ap-5},
{-0x1.c934d86d23f1dp-60, 0x1.ff55bb72cfdeap-5},
{0x1.ac4ce285df847p-58, 0x1.3f59f0e7c559dp-4},
{-0x1.cfb654c0c3d98p-58, 0x1.7ee182602f10fp-4},
{0x1.f7b8f29a05987p-58, 0x1.be39ebe6f07c3p-4},
{-0x1.cd37686760c17p-59, 0x1.fd5ba9aac2f6ep-4},
{-0x1.b485914dacf8cp-59, 0x1.1e1fafb043727p-3},
{0x1.61a3b0ce9281bp-57, 0x1.3d6eee8c6626cp-3},
{-0x1.054ab2c010f3dp-58, 0x1.5c9811e3ec26ap-3},
{0x1.347b0b4f881cap-58, 0x1.7b97b4bce5b02p-3},
{0x1.cf601e7b4348ep-59, 0x1.9a6a8e96c8626p-3},
{0x1.17b10d2e0e5abp-61, 0x1.b90d7529260a2p-3},
{0x1.c648d1534597ep-57, 0x1.d77d5df205736p-3},
{0x1.8ab6e3cf7afbdp-57, 0x1.f5b75f92c80ddp-3},
{0x1.62e47390cb865p-56, 0x1.09dc597d86362p-2},
{0x1.30ca4748b1bf9p-57, 0x1.18bf5a30bf178p-2},
{-0x1.077cdd36dfc81p-56, 0x1.278372057ef46p-2},
{-0x1.963a544b672d8p-57, 0x1.362773707ebccp-2},
{-0x1.5d5e43c55b3bap-56, 0x1.44aa436c2af0ap-2},
{-0x1.2566480884082p-57, 0x1.530ad9951cd4ap-2},
{-0x1.a725715711fp-56, 0x1.614840309cfe2p-2},
{-0x1.c63aae6f6e918p-56, 0x1.6f61941e4def1p-2},
{0x1.69c885c2b249ap-56, 0x1.7d5604b63b3f7p-2},
{0x1.b6d0ba3748fa8p-56, 0x1.8b24d394a1b25p-2},
{0x1.9e6c988fd0a77p-56, 0x1.98cd5454d6b18p-2},
{-0x1.24dec1b50b7ffp-56, 0x1.a64eec3cc23fdp-2},
{0x1.ae187b1ca504p-56, 0x1.b3a911da65c6cp-2},
{-0x1.cc1ce70934c34p-56, 0x1.c0db4c94ec9fp-2},
{-0x1.a2cfa4418f1adp-56, 0x1.cde53432c1351p-2},
{0x1.a2b7f222f65e2p-56, 0x1.dac670561bb4fp-2},
{0x1.0e53dc1bf3435p-56, 0x1.e77eb7f175a34p-2},
{-0x1.a3992dc382a23p-57, 0x1.f40dd0b541418p-2},
{-0x1.b32c949c9d593p-55, 0x1.0039c73c1a40cp-1},
{-0x1.d5b495f6349e6p-56, 0x1.0657e94db30dp-1},
{0x1.974fa13b5404fp-58, 0x1.0c6145b5b43dap-1},
{-0x1.2bdaee1c0ee35p-58, 0x1.1255d9bfbd2a9p-1},
{0x1.c621cec00c301p-55, 0x1.1835a88be7c13p-1},
{-0x1.928df287a668fp-58, 0x1.1e00babdefeb4p-1},
{0x1.c421c9f38224ep-57, 0x1.23b71e2cc9e6ap-1},
{-0x1.09e73b0c6c087p-56, 0x1.2958e59308e31p-1},
{0x1.c5d5e9ff0cf8dp-55, 0x1.2ee628406cbcap-1},
{0x1.1021137c71102p-55, 0x1.345f01cce37bbp-1},
{-0x1.2304331d8bf46p-55, 0x1.39c391cd4171ap-1},
{0x1.ecf8b492644fp-56, 0x1.3f13fb89e96f4p-1},
{-0x1.f76d0163f79c8p-56, 0x1.445065b795b56p-1},
{0x1.2419a87f2a458p-56, 0x1.4978fa3269ee1p-1},
{0x1.4a33dbeb3796cp-55, 0x1.4e8de5bb6ec04p-1},
{-0x1.1bb74abda520cp-55, 0x1.538f57b89061fp-1},
{-0x1.5e5c9d8c5a95p-56, 0x1.587d81f732fbbp-1},
{0x1.0028e4bc5e7cap-57, 0x1.5d58987169b18p-1},
{-0x1.2b785350ee8c1p-57, 0x1.6220d115d7b8ep-1},
{-0x1.6ea6febe8bbbap-56, 0x1.66d663923e087p-1},
{-0x1.a80386188c50ep-55, 0x1.6b798920b3d99p-1},
{-0x1.8c34d25aadef6p-56, 0x1.700a7c5784634p-1},
{0x1.7b2a6165884a1p-59, 0x1.748978fba8e0fp-1},
{0x1.406a08980374p-55, 0x1.78f6bbd5d315ep-1},
{0x1.560821e2f3aa9p-55, 0x1.7d528289fa093p-1},
{-0x1.bf76229d3b917p-56, 0x1.819d0b7158a4dp-1},
{0x1.6b66e7fc8b8c3p-57, 0x1.85d69576cc2c5p-1},
{-0x1.55b9a5e177a1bp-55, 0x1.89ff5ff57f1f8p-1},
{-0x1.ec182ab042f61p-56, 0x1.8e17aa99cc05ep-1},
{0x1.1a62633145c07p-55, 0x1.921fb54442d18p-1},
};

// Approximate atan(x) for |x| <= 2^-7.
// Using degree-9 Taylor polynomial:
// P = x - x^3/3 + x^5/5 -x^7/7 + x^9/9;
// Then the absolute error is bounded by:
// |atan(x) - P(x)| < |x|^11/11 < 2^(-7*11) / 11 < 2^-80.
// And the relative error is bounded by:
// |(atan(x) - P(x))/atan(x)| < |x|^10 / 10 < 2^-73.
// For x = x_hi + x_lo, fully expand the polynomial and drop any terms less than
// ulp(x_hi^3 / 3) gives us:
// P(x) ~ x_hi - x_hi^3/3 + x_hi^5/5 - x_hi^7/7 + x_hi^9/9 +
// + x_lo * (1 - x_hi^2 + x_hi^4)
DoubleDouble atan_eval(const DoubleDouble &x) {
DoubleDouble p;
p.hi = x.hi;
double x_hi_sq = x.hi * x.hi;
// c0 ~ x_hi^2 * 1/5 - 1/3
double c0 = fputil::multiply_add(x_hi_sq, 0x1.999999999999ap-3,
-0x1.5555555555555p-2);
// c1 ~ x_hi^2 * 1/9 - 1/7
double c1 = fputil::multiply_add(x_hi_sq, 0x1.c71c71c71c71cp-4,
-0x1.2492492492492p-3);
// x_hi^3
double x_hi_3 = x_hi_sq * x.hi;
// x_hi^4
double x_hi_4 = x_hi_sq * x_hi_sq;
// d0 ~ 1/3 - x_hi^2 / 5 + x_hi^4 / 7 - x_hi^6 / 9
double d0 = fputil::multiply_add(x_hi_4, c1, c0);
// x_lo - x_lo * x_hi^2 + x_lo * x_hi^4
double d1 = fputil::multiply_add(x_hi_4 - x_hi_sq, x.lo, x.lo);
// p.lo ~ -x_hi^3/3 + x_hi^5/5 - x_hi^7/7 + x_hi^9/9 +
// + x_lo * (1 - x_hi^2 + x_hi^4)
p.lo = fputil::multiply_add(x_hi_3, d0, d1);
return p;
}

} // anonymous namespace

// There are several range reduction steps we can take for atan2(y, x) as
// follow:

// * Range reduction 1: signness
// atan2(y, x) will return a number between -PI and PI representing the angle
// forming by the 0x axis and the vector (x, y) on the 0xy-plane.
// In particular, we have that:
// atan2(y, x) = atan( y/x ) if x >= 0 and y >= 0 (I-quadrant)
// = pi + atan( y/x ) if x < 0 and y >= 0 (II-quadrant)
// = -pi + atan( y/x ) if x < 0 and y < 0 (III-quadrant)
// = atan( y/x ) if x >= 0 and y < 0 (IV-quadrant)
// Since atan function is odd, we can use the formula:
// atan(-u) = -atan(u)
// to adjust the above conditions a bit further:
// atan2(y, x) = atan( |y|/|x| ) if x >= 0 and y >= 0 (I-quadrant)
// = pi - atan( |y|/|x| ) if x < 0 and y >= 0 (II-quadrant)
// = -pi + atan( |y|/|x| ) if x < 0 and y < 0 (III-quadrant)
// = -atan( |y|/|x| ) if x >= 0 and y < 0 (IV-quadrant)
// Which can be simplified to:
// atan2(y, x) = sign(y) * atan( |y|/|x| ) if x >= 0
// = sign(y) * (pi - atan( |y|/|x| )) if x < 0

// * Range reduction 2: reciprocal
// Now that the argument inside atan is positive, we can use the formula:
// atan(1/x) = pi/2 - atan(x)
// to make the argument inside atan <= 1 as follow:
// atan2(y, x) = sign(y) * atan( |y|/|x|) if 0 <= |y| <= x
// = sign(y) * (pi/2 - atan( |x|/|y| ) if 0 <= x < |y|
// = sign(y) * (pi - atan( |y|/|x| )) if 0 <= |y| <= -x
// = sign(y) * (pi/2 + atan( |x|/|y| )) if 0 <= -x < |y|

// * Range reduction 3: look up table.
// After the previous two range reduction steps, we reduce the problem to
// compute atan(u) with 0 <= u <= 1, or to be precise:
// atan( n / d ) where n = min(|x|, |y|) and d = max(|x|, |y|).
// An accurate polynomial approximation for the whole [0, 1] input range will
// require a very large degree. To make it more efficient, we reduce the input
// range further by finding an integer idx such that:
// | n/d - idx/64 | <= 1/128.
// In particular,
// idx := round(2^6 * n/d)
// Then for the fast pass, we find a polynomial approximation for:
// atan( n/d ) ~ atan( idx/64 ) + (n/d - idx/64) * Q(n/d - idx/64)
// For the accurate pass, we use the addition formula:
// atan( n/d ) - atan( idx/64 ) = atan( (n/d - idx/64)/(1 + (n*idx)/(64*d)) )
// = atan( (n - d*(idx/64))/(d + n*(idx/64)) )
// And for the fast pass, we use degree-9 Taylor polynomial to compute the RHS:
// atan(u) ~ P(u) = u - u^3/3 + u^5/5 - u^7/7 + u^9/9
// with absolute errors bounded by:
// |atan(u) - P(u)| < |u|^11 / 11 < 2^-80
// and relative errors bounded by:
// |(atan(u) - P(u)) / P(u)| < u^10 / 11 < 2^-73.

LLVM_LIBC_FUNCTION(double, atan2, (double y, double x)) {
using FPBits = fputil::FPBits<double>;

constexpr double IS_NEG[2] = {1.0, -1.0};
constexpr DoubleDouble ZERO = {0.0, 0.0};
constexpr DoubleDouble MZERO = {-0.0, -0.0};
constexpr DoubleDouble PI = {0x1.1a62633145c07p-53, 0x1.921fb54442d18p+1};
constexpr DoubleDouble MPI = {-0x1.1a62633145c07p-53, -0x1.921fb54442d18p+1};
constexpr DoubleDouble PI_OVER_2 = {0x1.1a62633145c07p-54,
0x1.921fb54442d18p0};
constexpr DoubleDouble MPI_OVER_2 = {-0x1.1a62633145c07p-54,
-0x1.921fb54442d18p0};
constexpr DoubleDouble PI_OVER_4 = {0x1.1a62633145c07p-55,
0x1.921fb54442d18p-1};
constexpr DoubleDouble THREE_PI_OVER_4 = {0x1.a79394c9e8a0ap-54,
0x1.2d97c7f3321d2p+1};
// Adjustment for constant term:
// CONST_ADJ[x_sign][y_sign][recip]
constexpr DoubleDouble CONST_ADJ[2][2][2] = {
{{ZERO, MPI_OVER_2}, {MZERO, MPI_OVER_2}},
{{MPI, PI_OVER_2}, {MPI, PI_OVER_2}}};

FPBits x_bits(x), y_bits(y);
bool x_sign = x_bits.sign().is_neg();
bool y_sign = y_bits.sign().is_neg();
x_bits = x_bits.abs();
y_bits = y_bits.abs();
uint64_t x_abs = x_bits.uintval();
uint64_t y_abs = y_bits.uintval();
bool recip = x_abs < y_abs;
uint64_t min_abs = recip ? x_abs : y_abs;
uint64_t max_abs = !recip ? x_abs : y_abs;
unsigned min_exp = static_cast<unsigned>(min_abs >> FPBits::FRACTION_LEN);
unsigned max_exp = static_cast<unsigned>(max_abs >> FPBits::FRACTION_LEN);

double num = FPBits(min_abs).get_val();
double den = FPBits(max_abs).get_val();

// Check for exceptional cases, whether inputs are 0, inf, nan, or close to
// overflow, or close to underflow.
if (LIBC_UNLIKELY(max_exp > 0x7ffU - 128U || min_exp < 128U)) {
if (x_bits.is_nan() || y_bits.is_nan())
return FPBits::quiet_nan().get_val();
unsigned x_except = x_abs == 0 ? 0 : (FPBits(x_abs).is_inf() ? 2 : 1);
unsigned y_except = y_abs == 0 ? 0 : (FPBits(y_abs).is_inf() ? 2 : 1);

// Exceptional cases:
// EXCEPT[y_except][x_except][x_is_neg]
// with x_except & y_except:
// 0: zero
// 1: finite, non-zero
// 2: infinity
constexpr DoubleDouble EXCEPTS[3][3][2] = {
{{ZERO, PI}, {ZERO, PI}, {ZERO, PI}},
{{PI_OVER_2, PI_OVER_2}, {ZERO, ZERO}, {ZERO, PI}},
{{PI_OVER_2, PI_OVER_2},
{PI_OVER_2, PI_OVER_2},
{PI_OVER_4, THREE_PI_OVER_4}},
};

if ((x_except != 1) || (y_except != 1)) {
DoubleDouble r = EXCEPTS[y_except][x_except][x_sign];
return fputil::multiply_add(IS_NEG[y_sign], r.hi, IS_NEG[y_sign] * r.lo);
}
bool scale_up = min_exp < 128U;
bool scale_down = max_exp > 0x7ffU - 128U;
// At least one input is denormal, multiply both numerator and denominator
// by some large enough power of 2 to normalize denormal inputs.
if (scale_up) {
num *= 0x1.0p64;
if (!scale_down)
den *= 0x1.0p64;
} else if (scale_down) {
den *= 0x1.0p-64;
if (!scale_up)
num *= 0x1.0p-64;
}

min_abs = FPBits(num).uintval();
max_abs = FPBits(den).uintval();
min_exp = static_cast<unsigned>(min_abs >> FPBits::FRACTION_LEN);
max_exp = static_cast<unsigned>(max_abs >> FPBits::FRACTION_LEN);
}

double final_sign = IS_NEG[(x_sign != y_sign) != recip];
DoubleDouble const_term = CONST_ADJ[x_sign][y_sign][recip];
unsigned exp_diff = max_exp - min_exp;
// We have the following bound for normalized n and d:
// 2^(-exp_diff - 1) < n/d < 2^(-exp_diff + 1).
if (LIBC_UNLIKELY(exp_diff > 54)) {
return fputil::multiply_add(final_sign, const_term.hi,
final_sign * (const_term.lo + num / den));
}

double k = fputil::nearest_integer(64.0 * num / den);
unsigned idx = static_cast<unsigned>(k);
// k = idx / 64
k *= 0x1.0p-6;

// Range reduction:
// atan(n/d) - atan(k/64) = atan((n/d - k/64) / (1 + (n/d) * (k/64)))
// = atan((n - d * k/64)) / (d + n * k/64))
DoubleDouble num_k = fputil::exact_mult(num, k);
DoubleDouble den_k = fputil::exact_mult(den, k);

// num_dd = n - d * k
DoubleDouble num_dd = fputil::exact_add(num - den_k.hi, -den_k.lo);
// den_dd = d + n * k
DoubleDouble den_dd = fputil::exact_add(den, num_k.hi);
den_dd.lo += num_k.lo;

// q = (n - d * k) / (d + n * k)
DoubleDouble q = fputil::div(num_dd, den_dd);
// p ~ atan(q)
DoubleDouble p = atan_eval(q);

DoubleDouble r = fputil::add(const_term, fputil::add(ATAN_I[idx], p));
r.hi *= final_sign;
r.lo *= final_sign;

return r.hi + r.lo;
}

} // namespace LIBC_NAMESPACE_DECL
12 changes: 12 additions & 0 deletions libc/test/src/math/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -2044,6 +2044,18 @@ add_fp_unittest(
libc.src.__support.FPUtil.fp_bits
)

add_fp_unittest(
atan2_test
NEED_MPFR
SUITE
libc-math-unittests
SRCS
atan2_test.cpp
DEPENDS
libc.src.math.atan2
libc.src.__support.FPUtil.fp_bits
)

add_fp_unittest(
f16add_test
NEED_MPFR
Expand Down
125 changes: 125 additions & 0 deletions libc/test/src/math/atan2_test.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,125 @@
//===-- Unittests for atan2 -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "src/__support/FPUtil/FPBits.h"
#include "src/math/atan2.h"
#include "test/UnitTest/FPMatcher.h"
#include "test/UnitTest/Test.h"
#include "utils/MPFRWrapper/MPFRUtils.h"

using LlvmLibcAtan2Test = LIBC_NAMESPACE::testing::FPTest<double>;
using LIBC_NAMESPACE::testing::tlog;

namespace mpfr = LIBC_NAMESPACE::testing::mpfr;

TEST_F(LlvmLibcAtan2Test, TrickyInputs) {
mpfr::BinaryInput<double> inputs[] = {
{0x1.0853408534085p-2, 0x1.e7b54166c6126p-2},
{FPBits::inf().get_val(), 0x0.0000000000001p-1022},
};

for (mpfr::BinaryInput<double> &input : inputs) {
double x = input.x;
double y = input.y;
mpfr::RoundingMode rm = mpfr::RoundingMode::Downward;
mpfr::ForceRoundingMode rr(rm);
ASSERT_MPFR_MATCH(mpfr::Operation::Atan2, input,
LIBC_NAMESPACE::atan2(x, y), 0.5, rm);
input.x = -input.x;
ASSERT_MPFR_MATCH_ALL_ROUNDING(mpfr::Operation::Atan2, input,
LIBC_NAMESPACE::atan2(-x, y), 0.5);
input.y = -input.y;
ASSERT_MPFR_MATCH_ALL_ROUNDING(mpfr::Operation::Atan2, input,
LIBC_NAMESPACE::atan2(-x, -y), 0.5);
input.x = -input.x;
ASSERT_MPFR_MATCH_ALL_ROUNDING(mpfr::Operation::Atan2, input,
LIBC_NAMESPACE::atan2(x, -y), 0.5);
}
}

TEST_F(LlvmLibcAtan2Test, InDoubleRange) {
constexpr uint64_t X_COUNT = 123;
constexpr uint64_t X_START = FPBits(0.25).uintval();
constexpr uint64_t X_STOP = FPBits(4.0).uintval();
constexpr uint64_t X_STEP = (X_STOP - X_START) / X_COUNT;

constexpr uint64_t Y_COUNT = 137;
constexpr uint64_t Y_START = FPBits(0.25).uintval();
constexpr uint64_t Y_STOP = FPBits(4.0).uintval();
constexpr uint64_t Y_STEP = (Y_STOP - Y_START) / Y_COUNT;

auto test = [&](mpfr::RoundingMode rounding_mode) {
mpfr::ForceRoundingMode __r(rounding_mode);
if (!__r.success)
return;

uint64_t fails = 0;
uint64_t finite_count = 0;
uint64_t total_count = 0;
double failed_x = 0.0, failed_y = 0.0, failed_r = 0.0;
double tol = 0.5;

for (uint64_t i = 0, v = X_START; i <= X_COUNT; ++i, v += X_STEP) {
double x = FPBits(v).get_val();
if (FPBits(x).is_inf_or_nan() || x < 0.0)
continue;

for (uint64_t j = 0, w = Y_START; j <= Y_COUNT; ++j, w += Y_STEP) {
double y = FPBits(w).get_val();
if (FPBits(y).is_inf_or_nan())
continue;

double result = LIBC_NAMESPACE::atan2(x, y);
++total_count;
if (FPBits(result).is_inf_or_nan())
continue;

++finite_count;
mpfr::BinaryInput<double> inputs{x, y};

if (!TEST_MPFR_MATCH_ROUNDING_SILENTLY(mpfr::Operation::Atan2, inputs,
result, 0.5, rounding_mode)) {
++fails;
while (!TEST_MPFR_MATCH_ROUNDING_SILENTLY(
mpfr::Operation::Atan2, inputs, result, tol, rounding_mode)) {
failed_x = x;
failed_y = y;
failed_r = result;

if (tol > 1000.0)
break;

tol *= 2.0;
}
}
}
}
if (fails || (finite_count < total_count)) {
tlog << " Atan2 failed: " << fails << "/" << finite_count << "/"
<< total_count << " tests.\n"
<< " Max ULPs is at most: " << static_cast<uint64_t>(tol) << ".\n";
}
if (fails) {
mpfr::BinaryInput<double> inputs{failed_x, failed_y};
EXPECT_MPFR_MATCH(mpfr::Operation::Atan2, inputs, failed_r, 0.5,
rounding_mode);
}
};

tlog << " Test Rounding To Nearest...\n";
test(mpfr::RoundingMode::Nearest);

tlog << " Test Rounding Downward...\n";
test(mpfr::RoundingMode::Downward);

tlog << " Test Rounding Upward...\n";
test(mpfr::RoundingMode::Upward);

tlog << " Test Rounding Toward Zero...\n";
test(mpfr::RoundingMode::TowardZero);
}
10 changes: 10 additions & 0 deletions libc/test/src/math/smoke/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -3531,6 +3531,16 @@ add_fp_unittest(
libc.src.__support.FPUtil.fp_bits
)

add_fp_unittest(
atan2_test
SUITE
libc-math-smoke-tests
SRCS
atan2_test.cpp
DEPENDS
libc.src.math.atan2
)

add_fp_unittest(
scalblnf16_test
SUITE
Expand Down
22 changes: 22 additions & 0 deletions libc/test/src/math/smoke/atan2_test.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
//===-- Unittests for atan2 -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "src/math/atan2.h"
#include "test/UnitTest/FPMatcher.h"
#include "test/UnitTest/Test.h"

using LlvmLibcAtan2Test = LIBC_NAMESPACE::testing::FPTest<double>;

TEST_F(LlvmLibcAtan2Test, SpecialNumbers) {
EXPECT_FP_EQ_ALL_ROUNDING(aNaN, LIBC_NAMESPACE::atan2(aNaN, zero));
EXPECT_FP_EQ_ALL_ROUNDING(aNaN, LIBC_NAMESPACE::atan2(1.0, aNaN));
EXPECT_FP_EQ_ALL_ROUNDING(0.0, LIBC_NAMESPACE::atan2(zero, zero));
EXPECT_FP_EQ_ALL_ROUNDING(-0.0, LIBC_NAMESPACE::atan2(-0.0, zero));
EXPECT_FP_EQ_ALL_ROUNDING(0.0, LIBC_NAMESPACE::atan2(1.0, inf));
EXPECT_FP_EQ_ALL_ROUNDING(-0.0, LIBC_NAMESPACE::atan2(-1.0, inf));
}