|
|
@@ -0,0 +1,337 @@ |
|
|
//===- DivergenceAnalysis.cpp ------ Divergence Analysis ------------------===// |
|
|
// |
|
|
// The LLVM Compiler Infrastructure |
|
|
// |
|
|
// This file is distributed under the University of Illinois Open Source |
|
|
// License. See LICENSE.TXT for details. |
|
|
// |
|
|
//===----------------------------------------------------------------------===// |
|
|
// |
|
|
// This file defines divergence analysis which determines whether a branch in a |
|
|
// GPU program is divergent. It can help branch optimizations such as jump |
|
|
// threading and loop unswitching to make better decisions. |
|
|
// |
|
|
// GPU programs typically use the SIMD execution model, where multiple threads |
|
|
// in the same execution group have to execute in lock-step. Therefore, if the |
|
|
// code contains divergent branches (i.e., threads in a group do not agree on |
|
|
// which path of the branch to take), the group of threads has to execute all |
|
|
// the paths from that branch with different subsets of threads enabled until |
|
|
// they converge at the immediately post-dominating BB of the paths. |
|
|
// |
|
|
// Due to this execution model, some optimizations such as jump |
|
|
// threading and loop unswitching can be unfortunately harmful when performed on |
|
|
// divergent branches. Therefore, an analysis that computes which branches in a |
|
|
// GPU program are divergent can help the compiler to selectively run these |
|
|
// optimizations. |
|
|
// |
|
|
// This file defines divergence analysis which computes a conservative but |
|
|
// non-trivial approximation of all divergent branches in a GPU program. It |
|
|
// partially implements the approach described in |
|
|
// |
|
|
// Divergence Analysis |
|
|
// Sampaio, Souza, Collange, Pereira |
|
|
// TOPLAS '13 |
|
|
// |
|
|
// The divergence analysis identifies the sources of divergence (e.g., special |
|
|
// variables that hold the thread ID), and recursively marks variables that are |
|
|
// data or sync dependent on a source of divergence as divergent. |
|
|
// |
|
|
// While data dependency is a well-known concept, the notion of sync dependency |
|
|
// is worth more explanation. Sync dependence characterizes the control flow |
|
|
// aspect of the propagation of branch divergence. For example, |
|
|
// |
|
|
// %cond = icmp slt i32 %tid, 10 |
|
|
// br i1 %cond, label %then, label %else |
|
|
// then: |
|
|
// br label %merge |
|
|
// else: |
|
|
// br label %merge |
|
|
// merge: |
|
|
// %a = phi i32 [ 0, %then ], [ 1, %else ] |
|
|
// |
|
|
// Suppose %tid holds the thread ID. Although %a is not data dependent on %tid |
|
|
// because %tid is not on its use-def chains, %a is sync dependent on %tid |
|
|
// because the branch "br i1 %cond" depends on %tid and affects which value %a |
|
|
// is assigned to. |
|
|
// |
|
|
// The current implementation has the following limitations: |
|
|
// 1. intra-procedural. It conservatively considers the arguments of a |
|
|
// non-kernel-entry function and the return value of a function call as |
|
|
// divergent. |
|
|
// 2. memory as black box. It conservatively considers values loaded from |
|
|
// generic or local address as divergent. This can be improved by leveraging |
|
|
// pointer analysis. |
|
|
//===----------------------------------------------------------------------===// |
|
|
|
|
|
#include <vector> |
|
|
#include "llvm/IR/Dominators.h" |
|
|
#include "llvm/ADT/DenseSet.h" |
|
|
#include "llvm/Analysis/Passes.h" |
|
|
#include "llvm/Analysis/PostDominators.h" |
|
|
#include "llvm/Analysis/TargetTransformInfo.h" |
|
|
#include "llvm/IR/Function.h" |
|
|
#include "llvm/IR/InstIterator.h" |
|
|
#include "llvm/IR/Instructions.h" |
|
|
#include "llvm/IR/IntrinsicInst.h" |
|
|
#include "llvm/IR/Value.h" |
|
|
#include "llvm/Pass.h" |
|
|
#include "llvm/Support/CommandLine.h" |
|
|
#include "llvm/Support/Debug.h" |
|
|
#include "llvm/Support/raw_ostream.h" |
|
|
#include "llvm/Transforms/Scalar.h" |
|
|
using namespace llvm; |
|
|
|
|
|
#define DEBUG_TYPE "divergence" |
|
|
|
|
|
namespace { |
|
|
class DivergenceAnalysis : public FunctionPass { |
|
|
public: |
|
|
static char ID; |
|
|
|
|
|
DivergenceAnalysis() : FunctionPass(ID) { |
|
|
initializeDivergenceAnalysisPass(*PassRegistry::getPassRegistry()); |
|
|
} |
|
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override { |
|
|
AU.addRequired<DominatorTreeWrapperPass>(); |
|
|
AU.addRequired<PostDominatorTree>(); |
|
|
AU.setPreservesAll(); |
|
|
} |
|
|
|
|
|
bool runOnFunction(Function &F) override; |
|
|
|
|
|
// Print all divergent branches in the function. |
|
|
void print(raw_ostream &OS, const Module *) const override; |
|
|
|
|
|
// Returns true if V is divergent. |
|
|
bool isDivergent(const Value *V) const { return DivergentValues.count(V); } |
|
|
// Returns true if V is uniform/non-divergent. |
|
|
bool isUniform(const Value *V) const { return !isDivergent(V); } |
|
|
|
|
|
private: |
|
|
// Stores all divergent values. |
|
|
DenseSet<const Value *> DivergentValues; |
|
|
}; |
|
|
} // End of anonymous namespace |
|
|
|
|
|
// Register this pass. |
|
|
char DivergenceAnalysis::ID = 0; |
|
|
INITIALIZE_PASS_BEGIN(DivergenceAnalysis, "divergence", "Divergence Analysis", |
|
|
false, true) |
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
|
|
INITIALIZE_PASS_DEPENDENCY(PostDominatorTree) |
|
|
INITIALIZE_PASS_END(DivergenceAnalysis, "divergence", "Divergence Analysis", |
|
|
false, true) |
|
|
|
|
|
namespace { |
|
|
|
|
|
class DivergencePropagator { |
|
|
public: |
|
|
DivergencePropagator(Function &F, TargetTransformInfo &TTI, |
|
|
DominatorTree &DT, PostDominatorTree &PDT, |
|
|
DenseSet<const Value *> &DV) |
|
|
: F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV) {} |
|
|
void populateWithSourcesOfDivergence(); |
|
|
void propagate(); |
|
|
|
|
|
private: |
|
|
// A helper function that explores data dependents of V. |
|
|
void exploreDataDependency(Value *V); |
|
|
// A helper function that explores sync dependents of TI. |
|
|
void exploreSyncDependency(TerminatorInst *TI); |
|
|
// Computes the influence region from Start to End. This region includes all |
|
|
// basic blocks on any path from Start to End. |
|
|
void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End, |
|
|
DenseSet<BasicBlock *> &InfluenceRegion); |
|
|
// Finds all users of I that are outside the influence region, and add these |
|
|
// users to Worklist. |
|
|
void findUsersOutsideInfluenceRegion( |
|
|
Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion); |
|
|
|
|
|
Function &F; |
|
|
TargetTransformInfo &TTI; |
|
|
DominatorTree &DT; |
|
|
PostDominatorTree &PDT; |
|
|
std::vector<Value *> Worklist; // Stack for DFS. |
|
|
DenseSet<const Value *> &DV; // Stores all divergent values. |
|
|
}; |
|
|
|
|
|
void DivergencePropagator::populateWithSourcesOfDivergence() { |
|
|
Worklist.clear(); |
|
|
DV.clear(); |
|
|
for (auto &I : inst_range(F)) { |
|
|
if (TTI.isSourceOfDivergence(&I)) { |
|
|
Worklist.push_back(&I); |
|
|
DV.insert(&I); |
|
|
} |
|
|
} |
|
|
for (auto &Arg : F.args()) { |
|
|
if (TTI.isSourceOfDivergence(&Arg)) { |
|
|
Worklist.push_back(&Arg); |
|
|
DV.insert(&Arg); |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
void DivergencePropagator::exploreSyncDependency(TerminatorInst *TI) { |
|
|
// Propagation rule 1: if branch TI is divergent, all PHINodes in TI's |
|
|
// immediate post dominator are divergent. This rule handles if-then-else |
|
|
// patterns. For example, |
|
|
// |
|
|
// if (tid < 5) |
|
|
// a1 = 1; |
|
|
// else |
|
|
// a2 = 2; |
|
|
// a = phi(a1, a2); // sync dependent on (tid < 5) |
|
|
BasicBlock *ThisBB = TI->getParent(); |
|
|
BasicBlock *IPostDom = PDT.getNode(ThisBB)->getIDom()->getBlock(); |
|
|
if (IPostDom == nullptr) |
|
|
return; |
|
|
|
|
|
for (auto I = IPostDom->begin(); isa<PHINode>(I); ++I) { |
|
|
// A PHINode is uniform if it returns the same value no matter which path is |
|
|
// taken. |
|
|
if (!cast<PHINode>(I)->hasConstantValue() && DV.insert(I).second) |
|
|
Worklist.push_back(I); |
|
|
} |
|
|
|
|
|
// Propagation rule 2: if a value defined in a loop is used outside, the user |
|
|
// is sync dependent on the condition of the loop exits that dominate the |
|
|
// user. For example, |
|
|
// |
|
|
// int i = 0; |
|
|
// do { |
|
|
// i++; |
|
|
// if (foo(i)) ... // uniform |
|
|
// } while (i < tid); |
|
|
// if (bar(i)) ... // divergent |
|
|
// |
|
|
// A program may contain unstructured loops. Therefore, we cannot leverage |
|
|
// LoopInfo, which only recognizes natural loops. |
|
|
// |
|
|
// The algorithm used here handles both natural and unstructured loops. Given |
|
|
// a branch TI, we first compute its influence region, the union of all simple |
|
|
// paths from TI to its immediate post dominator (IPostDom). Then, we search |
|
|
// for all the values defined in the influence region but used outside. All |
|
|
// these users are sync dependent on TI. |
|
|
DenseSet<BasicBlock *> InfluenceRegion; |
|
|
computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion); |
|
|
// An insight that can speed up the search process is that all the in-region |
|
|
// values that are used outside must dominate TI. Therefore, instead of |
|
|
// searching every basic blocks in the influence region, we search all the |
|
|
// dominators of TI until it is outside the influence region. |
|
|
BasicBlock *InfluencedBB = ThisBB; |
|
|
while (InfluenceRegion.count(InfluencedBB)) { |
|
|
for (auto &I : *InfluencedBB) |
|
|
findUsersOutsideInfluenceRegion(I, InfluenceRegion); |
|
|
DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom(); |
|
|
if (IDomNode == nullptr) |
|
|
break; |
|
|
InfluencedBB = IDomNode->getBlock(); |
|
|
} |
|
|
} |
|
|
|
|
|
void DivergencePropagator::findUsersOutsideInfluenceRegion( |
|
|
Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) { |
|
|
for (User *U : I.users()) { |
|
|
Instruction *UserInst = cast<Instruction>(U); |
|
|
if (!InfluenceRegion.count(UserInst->getParent())) { |
|
|
if (DV.insert(UserInst).second) |
|
|
Worklist.push_back(UserInst); |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
void DivergencePropagator::computeInfluenceRegion( |
|
|
BasicBlock *Start, BasicBlock *End, |
|
|
DenseSet<BasicBlock *> &InfluenceRegion) { |
|
|
assert(PDT.properlyDominates(End, Start) && |
|
|
"End does not properly dominate Start"); |
|
|
std::vector<BasicBlock *> InfluenceStack; |
|
|
InfluenceStack.push_back(Start); |
|
|
InfluenceRegion.insert(Start); |
|
|
while (!InfluenceStack.empty()) { |
|
|
BasicBlock *BB = InfluenceStack.back(); |
|
|
InfluenceStack.pop_back(); |
|
|
for (BasicBlock *Succ : successors(BB)) { |
|
|
if (End != Succ && InfluenceRegion.insert(Succ).second) |
|
|
InfluenceStack.push_back(Succ); |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
void DivergencePropagator::exploreDataDependency(Value *V) { |
|
|
// Follow def-use chains of V. |
|
|
for (User *U : V->users()) { |
|
|
Instruction *UserInst = cast<Instruction>(U); |
|
|
if (DV.insert(UserInst).second) |
|
|
Worklist.push_back(UserInst); |
|
|
} |
|
|
} |
|
|
|
|
|
void DivergencePropagator::propagate() { |
|
|
// Traverse the dependency graph using DFS. |
|
|
while (!Worklist.empty()) { |
|
|
Value *V = Worklist.back(); |
|
|
Worklist.pop_back(); |
|
|
if (TerminatorInst *TI = dyn_cast<TerminatorInst>(V)) { |
|
|
// Terminators with less than two successors won't introduce sync |
|
|
// dependency. Ignore them. |
|
|
if (TI->getNumSuccessors() > 1) |
|
|
exploreSyncDependency(TI); |
|
|
} |
|
|
exploreDataDependency(V); |
|
|
} |
|
|
} |
|
|
|
|
|
} /// end namespace anonymous |
|
|
|
|
|
FunctionPass *llvm::createDivergenceAnalysisPass() { |
|
|
return new DivergenceAnalysis(); |
|
|
} |
|
|
|
|
|
bool DivergenceAnalysis::runOnFunction(Function &F) { |
|
|
auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); |
|
|
if (TTIWP == nullptr) |
|
|
return false; |
|
|
|
|
|
TargetTransformInfo &TTI = TTIWP->getTTI(F); |
|
|
// Fast path: if the target does not have branch divergence, we do not mark |
|
|
// any branch as divergent. |
|
|
if (!TTI.hasBranchDivergence()) |
|
|
return false; |
|
|
|
|
|
DivergentValues.clear(); |
|
|
DivergencePropagator DP(F, TTI, |
|
|
getAnalysis<DominatorTreeWrapperPass>().getDomTree(), |
|
|
getAnalysis<PostDominatorTree>(), DivergentValues); |
|
|
DP.populateWithSourcesOfDivergence(); |
|
|
DP.propagate(); |
|
|
return false; |
|
|
} |
|
|
|
|
|
void DivergenceAnalysis::print(raw_ostream &OS, const Module *) const { |
|
|
if (DivergentValues.empty()) |
|
|
return; |
|
|
const Value *FirstDivergentValue = *DivergentValues.begin(); |
|
|
const Function *F; |
|
|
if (const Argument *Arg = dyn_cast<Argument>(FirstDivergentValue)) { |
|
|
F = Arg->getParent(); |
|
|
} else if (const Instruction *I = |
|
|
dyn_cast<Instruction>(FirstDivergentValue)) { |
|
|
F = I->getParent()->getParent(); |
|
|
} else { |
|
|
llvm_unreachable("Only arguments and instructions can be divergent"); |
|
|
} |
|
|
|
|
|
// Dumps all divergent values in F, arguments and then instructions. |
|
|
for (auto &Arg : F->args()) { |
|
|
if (DivergentValues.count(&Arg)) |
|
|
OS << "DIVERGENT: " << Arg << "\n"; |
|
|
} |
|
|
// Iterate instructions using inst_range to ensure a deterministic order. |
|
|
for (auto &I : inst_range(F)) { |
|
|
if (DivergentValues.count(&I)) |
|
|
OS << "DIVERGENT:" << I << "\n"; |
|
|
} |
|
|
} |