318 changes: 318 additions & 0 deletions libc/src/math/generic/tan.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,318 @@
//===-- Double-precision tan function -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "src/math/tan.h"
#include "hdr/errno_macros.h"
#include "src/__support/FPUtil/FEnvImpl.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/PolyEval.h"
#include "src/__support/FPUtil/double_double.h"
#include "src/__support/FPUtil/dyadic_float.h"
#include "src/__support/FPUtil/except_value_utils.h"
#include "src/__support/FPUtil/multiply_add.h"
#include "src/__support/FPUtil/rounding_mode.h"
#include "src/__support/common.h"
#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
#include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA

#ifdef LIBC_TARGET_CPU_HAS_FMA
#include "range_reduction_double_fma.h"

// With FMA, we limit the maxmimum exponent to be 2^16, so that the error bound
// from the fma::range_reduction_small is bounded by 2^-88 instead of 2^-72.
#define FAST_PASS_EXPONENT 16
using LIBC_NAMESPACE::fma::ONE_TWENTY_EIGHT_OVER_PI;
using LIBC_NAMESPACE::fma::range_reduction_small;
using LIBC_NAMESPACE::fma::SIN_K_PI_OVER_128;

LIBC_INLINE constexpr bool NO_FMA = false;
#else
#include "range_reduction_double_nofma.h"

using LIBC_NAMESPACE::nofma::FAST_PASS_EXPONENT;
using LIBC_NAMESPACE::nofma::ONE_TWENTY_EIGHT_OVER_PI;
using LIBC_NAMESPACE::nofma::range_reduction_small;
using LIBC_NAMESPACE::nofma::SIN_K_PI_OVER_128;

LIBC_INLINE constexpr bool NO_FMA = true;
#endif // LIBC_TARGET_CPU_HAS_FMA

// TODO: We might be able to improve the performance of large range reduction of
// non-FMA targets further by operating directly on 25-bit chunks of 128/pi and
// pre-split SIN_K_PI_OVER_128, but that might double the memory footprint of
// those lookup table.
#include "range_reduction_double_common.h"

#if ((LIBC_MATH & LIBC_MATH_SKIP_ACCURATE_PASS) != 0)
#define LIBC_MATH_TAN_SKIP_ACCURATE_PASS
#endif

namespace LIBC_NAMESPACE {

using DoubleDouble = fputil::DoubleDouble;
using Float128 = typename fputil::DyadicFloat<128>;

namespace {

LIBC_INLINE DoubleDouble tan_eval(const DoubleDouble &u) {
// Evaluate tan(y) = tan(x - k * (pi/128))
// We use the degree-9 Taylor approximation:
// tan(y) ~ P(y) = y + y^3/3 + 2*y^5/15 + 17*y^7/315 + 62*y^9/2835
// Then the error is bounded by:
// |tan(y) - P(y)| < 2^-6 * |y|^11 < 2^-6 * 2^-66 = 2^-72.
// For y ~ u_hi + u_lo, fully expanding the polynomial and drop any terms
// < ulp(u_hi^3) gives us:
// P(y) = y + y^3/3 + 2*y^5/15 + 17*y^7/315 + 62*y^9/2835 = ...
// ~ u_hi + u_hi^3 * (1/3 + u_hi^2 * (2/15 + u_hi^2 * (17/315 +
// + u_hi^2 * 62/2835))) +
// + u_lo (1 + u_hi^2 * (1 + u_hi^2 * 2/3))
double u_hi_sq = u.hi * u.hi; // Error < ulp(u_hi^2) < 2^(-6 - 52) = 2^-58.
// p1 ~ 17/315 + u_hi^2 62 / 2835.
double p1 =
fputil::multiply_add(u_hi_sq, 0x1.664f4882c10fap-6, 0x1.ba1ba1ba1ba1cp-5);
// p2 ~ 1/3 + u_hi^2 2 / 15.
double p2 =
fputil::multiply_add(u_hi_sq, 0x1.1111111111111p-3, 0x1.5555555555555p-2);
// q1 ~ 1 + u_hi^2 * 2/3.
double q1 = fputil::multiply_add(u_hi_sq, 0x1.5555555555555p-1, 1.0);
double u_hi_3 = u_hi_sq * u.hi;
double u_hi_4 = u_hi_sq * u_hi_sq;
// p3 ~ 1/3 + u_hi^2 * (2/15 + u_hi^2 * (17/315 + u_hi^2 * 62/2835))
double p3 = fputil::multiply_add(u_hi_4, p1, p2);
// q2 ~ 1 + u_hi^2 * (1 + u_hi^2 * 2/3)
double q2 = fputil::multiply_add(u_hi_sq, q1, 1.0);
double tan_lo = fputil::multiply_add(u_hi_3, p3, u.lo * q2);
// Overall, |tan(y) - (u_hi + tan_lo)| < ulp(u_hi^3) <= 2^-71.
// And the relative errors is:
// |(tan(y) - (u_hi + tan_lo)) / tan(y) | <= 2*ulp(u_hi^2) < 2^-64

return fputil::exact_add(u.hi, tan_lo);
}

// Accurate evaluation of tan for small u.
Float128 tan_eval(const Float128 &u) {
Float128 u_sq = fputil::quick_mul(u, u);

// tan(x) ~ x + x^3/3 + x^5 * 2/15 + x^7 * 17/315 + x^9 * 62/2835 +
// + x^11 * 1382/155925 + x^13 * 21844/6081075 +
// + x^15 * 929569/638512875 + x^17 * 6404582/10854718875
// Relative errors < 2^-127 for |u| < pi/256.
constexpr Float128 TAN_COEFFS[] = {
{Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1
{Sign::POS, -129, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // 1
{Sign::POS, -130, 0x88888888'88888888'88888888'88888889_u128}, // 2/15
{Sign::POS, -132, 0xdd0dd0dd'0dd0dd0d'd0dd0dd0'dd0dd0dd_u128}, // 17/315
{Sign::POS, -133, 0xb327a441'6087cf99'6b5dd24e'ec0b327a_u128}, // 62/2835
{Sign::POS, -134,
0x91371aaf'3611e47a'da8e1cba'7d900eca_u128}, // 1382/155925
{Sign::POS, -136,
0xeb69e870'abeefdaf'e606d2e4'd1e65fbc_u128}, // 21844/6081075
{Sign::POS, -137,
0xbed1b229'5baf15b5'0ec9af45'a2619971_u128}, // 929569/638512875
{Sign::POS, -138,
0x9aac1240'1b3a2291'1b2ac7e3'e4627d0a_u128}, // 6404582/10854718875
};

return fputil::quick_mul(
u, fputil::polyeval(u_sq, TAN_COEFFS[0], TAN_COEFFS[1], TAN_COEFFS[2],
TAN_COEFFS[3], TAN_COEFFS[4], TAN_COEFFS[5],
TAN_COEFFS[6], TAN_COEFFS[7], TAN_COEFFS[8]));
}

// Calculation a / b = a * (1/b) for Float128.
// Using the initial approximation of q ~ (1/b), then apply 2 Newton-Raphson
// iterations, before multiplying by a.
Float128 newton_raphson_div(const Float128 &a, Float128 b, double q) {
Float128 q0(q);
constexpr Float128 TWO(2.0);
b.sign = (b.sign == Sign::POS) ? Sign::NEG : Sign::POS;
Float128 q1 =
fputil::quick_mul(q0, fputil::quick_add(TWO, fputil::quick_mul(b, q0)));
Float128 q2 =
fputil::quick_mul(q1, fputil::quick_add(TWO, fputil::quick_mul(b, q1)));
return fputil::quick_mul(a, q2);
}

} // anonymous namespace

LLVM_LIBC_FUNCTION(double, tan, (double x)) {
using FPBits = typename fputil::FPBits<double>;
FPBits xbits(x);

uint16_t x_e = xbits.get_biased_exponent();

DoubleDouble y;
unsigned k;
generic::LargeRangeReduction<NO_FMA> range_reduction_large;

// |x| < 2^32 (with FMA) or |x| < 2^23 (w/o FMA)
if (LIBC_LIKELY(x_e < FPBits::EXP_BIAS + FAST_PASS_EXPONENT)) {
// |x| < 2^-27
if (LIBC_UNLIKELY(x_e < FPBits::EXP_BIAS - 27)) {
// Signed zeros.
if (LIBC_UNLIKELY(x == 0.0))
return x;

// For |x| < 2^-27, |tan(x) - x| < ulp(x)/2.
#ifdef LIBC_TARGET_CPU_HAS_FMA
return fputil::multiply_add(x, 0x1.0p-54, x);
#else
if (LIBC_UNLIKELY(x_e < 4)) {
int rounding_mode = fputil::quick_get_round();
if (rounding_mode == FE_TOWARDZERO ||
(xbits.sign() == Sign::POS && rounding_mode == FE_DOWNWARD) ||
(xbits.sign() == Sign::NEG && rounding_mode == FE_UPWARD))
return FPBits(xbits.uintval() + 1).get_val();
}
return fputil::multiply_add(x, 0x1.0p-54, x);
#endif // LIBC_TARGET_CPU_HAS_FMA
}

// // Small range reduction.
k = range_reduction_small(x, y);
} else {
// Inf or NaN
if (LIBC_UNLIKELY(x_e > 2 * FPBits::EXP_BIAS)) {
// tan(+-Inf) = NaN
if (xbits.get_mantissa() == 0) {
fputil::set_errno_if_required(EDOM);
fputil::raise_except_if_required(FE_INVALID);
}
return x + FPBits::quiet_nan().get_val();
}

// Large range reduction.
k = range_reduction_large.compute_high_part(x);
y = range_reduction_large.fast();
}

DoubleDouble tan_y = tan_eval(y);

// Look up sin(k * pi/128) and cos(k * pi/128)
// Memory saving versions:

// Use 128-entry table instead:
// DoubleDouble sin_k = SIN_K_PI_OVER_128[k & 127];
// uint64_t sin_s = static_cast<uint64_t>(k & 128) << (63 - 7);
// sin_k.hi = FPBits(FPBits(sin_k.hi).uintval() ^ sin_s).get_val();
// sin_k.lo = FPBits(FPBits(sin_k.hi).uintval() ^ sin_s).get_val();
// DoubleDouble cos_k = SIN_K_PI_OVER_128[(k + 64) & 127];
// uint64_t cos_s = static_cast<uint64_t>((k + 64) & 128) << (63 - 7);
// cos_k.hi = FPBits(FPBits(cos_k.hi).uintval() ^ cos_s).get_val();
// cos_k.lo = FPBits(FPBits(cos_k.hi).uintval() ^ cos_s).get_val();

// Use 64-entry table instead:
// auto get_idx_dd = [](unsigned kk) -> DoubleDouble {
// unsigned idx = (kk & 64) ? 64 - (kk & 63) : (kk & 63);
// DoubleDouble ans = SIN_K_PI_OVER_128[idx];
// if (kk & 128) {
// ans.hi = -ans.hi;
// ans.lo = -ans.lo;
// }
// return ans;
// };
// DoubleDouble msin_k = get_idx_dd(k + 128);
// DoubleDouble cos_k = get_idx_dd(k + 64);

// Fast look up version, but needs 256-entry table.
// cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128).
DoubleDouble msin_k = SIN_K_PI_OVER_128[(k + 128) & 255];
DoubleDouble cos_k = SIN_K_PI_OVER_128[(k + 64) & 255];

// After range reduction, k = round(x * 128 / pi) and y = x - k * (pi / 128).
// So k is an integer and -pi / 256 <= y <= pi / 256.
// Then tan(x) = sin(x) / cos(x)
// = sin((k * pi/128 + y) / cos((k * pi/128 + y)
// = (cos(y) * sin(k*pi/128) + sin(y) * cos(k*pi/128)) /
// / (cos(y) * cos(k*pi/128) - sin(y) * sin(k*pi/128))
// = (sin(k*pi/128) + tan(y) * cos(k*pi/128)) /
// / (cos(k*pi/128) - tan(y) * sin(k*pi/128))
DoubleDouble cos_k_tan_y = fputil::quick_mult<NO_FMA>(tan_y, cos_k);
DoubleDouble msin_k_tan_y = fputil::quick_mult<NO_FMA>(tan_y, msin_k);

// num_dd = sin(k*pi/128) + tan(y) * cos(k*pi/128)
DoubleDouble num_dd = fputil::exact_add<false>(cos_k_tan_y.hi, -msin_k.hi);
// den_dd = cos(k*pi/128) - tan(y) * sin(k*pi/128)
DoubleDouble den_dd = fputil::exact_add<false>(msin_k_tan_y.hi, cos_k.hi);
num_dd.lo += cos_k_tan_y.lo - msin_k.lo;
den_dd.lo += msin_k_tan_y.lo + cos_k.lo;

#ifdef LIBC_MATH_TAN_SKIP_ACCURATE_PASS
double tan_x = (num_dd.hi + num_dd.lo) / (den_dd.hi + den_dd.lo);
return tan_x;
#else
// Accurate test and pass for correctly rounded implementation.

// Accurate double-double division
DoubleDouble tan_x = fputil::div(num_dd, den_dd);

// Relative errors for k != 0 mod 64 is:
// absolute errors / min(sin(k*pi/128), cos(k*pi/128)) <= 2^-71 / 2^-7
// = 2^-64.
// For k = 0 mod 64, the relative errors is bounded by:
// 2^-71 / 2^(exponent of x).
constexpr int ERR = 64;

int y_exp = 7 + FPBits(y.hi).get_exponent();
int rel_err_exp = ERR + static_cast<int>((k & 63) == 0) * y_exp;
int64_t tan_x_err = static_cast<int64_t>(FPBits(tan_x.hi).uintval()) -
(static_cast<int64_t>(rel_err_exp) << 52);
double tan_err = FPBits(static_cast<uint64_t>(tan_x_err)).get_val();

double err_higher = tan_x.lo + tan_err;
double err_lower = tan_x.lo - tan_err;

double tan_upper = tan_x.hi + err_higher;
double tan_lower = tan_x.hi + err_lower;

// Ziv's rounding test.
if (LIBC_LIKELY(tan_upper == tan_lower))
return tan_upper;

Float128 u_f128;
if (LIBC_LIKELY(x_e < FPBits::EXP_BIAS + FAST_PASS_EXPONENT))
u_f128 = generic::range_reduction_small_f128(x);
else
u_f128 = range_reduction_large.accurate();

Float128 tan_u = tan_eval(u_f128);

auto get_sin_k = [](unsigned kk) -> Float128 {
unsigned idx = (kk & 64) ? 64 - (kk & 63) : (kk & 63);
Float128 ans = generic::SIN_K_PI_OVER_128_F128[idx];
if (kk & 128)
ans.sign = Sign::NEG;
return ans;
};

// cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128).
Float128 sin_k_f128 = get_sin_k(k);
Float128 cos_k_f128 = get_sin_k(k + 64);
Float128 msin_k_f128 = get_sin_k(k + 128);

// num_f128 = sin(k*pi/128) + tan(y) * cos(k*pi/128)
Float128 num_f128 =
fputil::quick_add(sin_k_f128, fputil::quick_mul(cos_k_f128, tan_u));
// den_f128 = cos(k*pi/128) - tan(y) * sin(k*pi/128)
Float128 den_f128 =
fputil::quick_add(cos_k_f128, fputil::quick_mul(msin_k_f128, tan_u));

// tan(x) = (sin(k*pi/128) + tan(y) * cos(k*pi/128)) /
// / (cos(k*pi/128) - tan(y) * sin(k*pi/128))
// TODO: The initial seed 1.0/den_dd.hi for Newton-Raphson reciprocal can be
// reused from DoubleDouble fputil::div in the fast pass.
Float128 result = newton_raphson_div(num_f128, den_f128, 1.0 / den_dd.hi);

// TODO: Add assertion if Ziv's accuracy tests fail in debug mode.
// https://github.com/llvm/llvm-project/issues/96452.
return static_cast<double>(result);

#endif // !LIBC_MATH_TAN_SKIP_ACCURATE_PASS
}

} // namespace LIBC_NAMESPACE
9 changes: 0 additions & 9 deletions libc/src/math/x86_64/CMakeLists.txt

This file was deleted.

23 changes: 0 additions & 23 deletions libc/src/math/x86_64/tan.cpp

This file was deleted.

10 changes: 10 additions & 0 deletions libc/test/src/math/smoke/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -3940,3 +3940,13 @@ add_fp_unittest(
DEPENDS
libc.src.math.sincos
)

add_fp_unittest(
tan_test
SUITE
libc-math-smoke-tests
SRCS
tan_test.cpp
DEPENDS
libc.src.math.tan
)
26 changes: 26 additions & 0 deletions libc/test/src/math/smoke/tan_test.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
//===-- Unittests for tan -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "src/math/tan.h"
#include "test/UnitTest/FPMatcher.h"
#include "test/UnitTest/Test.h"

using LlvmLibcTanTest = LIBC_NAMESPACE::testing::FPTest<double>;

using LIBC_NAMESPACE::testing::tlog;

TEST_F(LlvmLibcTanTest, SpecialNumbers) {
EXPECT_FP_EQ_ALL_ROUNDING(aNaN, LIBC_NAMESPACE::tan(aNaN));
EXPECT_FP_EQ_ALL_ROUNDING(aNaN, LIBC_NAMESPACE::tan(inf));
EXPECT_FP_EQ_ALL_ROUNDING(aNaN, LIBC_NAMESPACE::tan(neg_inf));
EXPECT_FP_EQ_ALL_ROUNDING(zero, LIBC_NAMESPACE::tan(zero));
EXPECT_FP_EQ_ALL_ROUNDING(neg_zero, LIBC_NAMESPACE::tan(neg_zero));
EXPECT_FP_EQ(0x1.0p-50, LIBC_NAMESPACE::tan(0x1.0p-50));
EXPECT_FP_EQ(min_normal, LIBC_NAMESPACE::tan(min_normal));
EXPECT_FP_EQ(min_denormal, LIBC_NAMESPACE::tan(min_denormal));
}
115 changes: 102 additions & 13 deletions libc/test/src/math/tan_test.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -6,27 +6,116 @@
//
//===----------------------------------------------------------------------===//

#include "src/__support/FPUtil/FPBits.h"
#include "src/math/tan.h"
#include "test/UnitTest/FPMatcher.h"
#include "test/UnitTest/Test.h"
#include "utils/MPFRWrapper/MPFRUtils.h"

#include "hdr/math_macros.h"

using LlvmLibcTanTest = LIBC_NAMESPACE::testing::FPTest<double>;

namespace mpfr = LIBC_NAMESPACE::testing::mpfr;

TEST_F(LlvmLibcTanTest, Range) {
static constexpr double _2pi = 6.283185307179586;
constexpr StorageType COUNT = 100'000;
constexpr StorageType STEP = STORAGE_MAX / COUNT;
for (StorageType i = 0, v = 0; i <= COUNT; ++i, v += STEP) {
double x = FPBits(v).get_val();
// TODO: Expand the range of testing after range reduction is implemented.
if (isnan(x) || isinf(x) || x > _2pi || x < -_2pi)
continue;

ASSERT_MPFR_MATCH(mpfr::Operation::Tan, x, LIBC_NAMESPACE::tan(x), 1.0);
using LIBC_NAMESPACE::testing::tlog;

TEST_F(LlvmLibcTanTest, TrickyInputs) {
constexpr double INPUTS[] = {
0x1.d130383d17321p-27, 0x1.8000000000009p-23, 0x1.8000000000024p-22,
0x1.800000000009p-21, 0x1.20000000000f3p-20, 0x1.800000000024p-20,
0x1.e0000000001c2p-20, 0x1.0da8cc189b47dp-10, 0x1.00a33764a0a83p-7,
0x1.911a18779813fp-7, 0x1.940c877fb7dacp-7, 0x1.f42fb19b5b9b2p-6,
0x1.0285070f9f1bcp-5, 0x1.6ca9ef729af76p-1, 0x1.23f40dccdef72p+0,
0x1.43cf16358c9d7p+0, 0x1.addf3b9722265p+0, 0x1.ae78d360afa15p+0,
0x1.fe81868fc47fep+1, 0x1.e31b55306f22cp+2, 0x1.e639103a05997p+2,
0x1.f7898d5a756ddp+2, 0x1.1685973506319p+3, 0x1.5f09cad750ab1p+3,
0x1.aaf85537ea4c7p+3, 0x1.4f2b874135d27p+4, 0x1.13114266f9764p+4,
0x1.a211877de55dbp+4, 0x1.a5eece87e8606p+4, 0x1.a65d441ea6dcep+4,
0x1.1ffb509f3db15p+5, 0x1.2345d1e090529p+5, 0x1.c96e28eb679f8p+5,
0x1.da1838053b866p+5, 0x1.be886d9c2324dp+6, 0x1.ab514bfc61c76p+7,
0x1.14823229799c2p+7, 0x1.48ff1782ca91dp+8, 0x1.dcbfda0c7559ep+8,
0x1.dcbfda0c7559ep+8, 0x1.2e566149bf5fdp+9, 0x1.cb996c60f437ep+9,
0x1.119471e9216cdp+10, 0x1.ae945054939c2p+10, 0x1.fffffffffdb6p+24,
0x1.fd4da4ef37075p+29, 0x1.55202aefde314p+31, 0x1.b951f1572eba5p+31,
0x1.76e86a7485a46p59, 0x1.7776c2343ba4ep+101, 0x1.85fc0f04c0128p+101,
0x1.678309fa50d58p+110, 0x1.524489232dc4ap+178, 0x1.fffffffffef4ep+199,
0x1.6deb37da81129p+205, 0x1.3eec5912ea7cdp+331, 0x1.08087e9aad90bp+887,
0x1.6ac5b262ca1ffp+843, 0x1.8bb5847d49973p+845, 0x1.6ac5b262ca1ffp+849,
0x1.f08b14e1c4d0fp+890, 0x1.2b5fe88a9d8d5p+903, 0x1.a880417b7b119p+1023,
0x1.f6d7518808571p+1023,
};
constexpr int N = sizeof(INPUTS) / sizeof(INPUTS[0]);

for (int i = 0; i < N; ++i) {
double x = INPUTS[i];
ASSERT_MPFR_MATCH_ALL_ROUNDING(mpfr::Operation::Tan, x,
LIBC_NAMESPACE::tan(x), 0.5);
ASSERT_MPFR_MATCH_ALL_ROUNDING(mpfr::Operation::Tan, -x,
LIBC_NAMESPACE::tan(-x), 0.5);
}
}

TEST_F(LlvmLibcTanTest, InDoubleRange) {
constexpr uint64_t COUNT = 1'234'51;
uint64_t START = LIBC_NAMESPACE::fputil::FPBits<double>(0x1.0p-50).uintval();
uint64_t STOP = LIBC_NAMESPACE::fputil::FPBits<double>(0x1.0p200).uintval();
uint64_t STEP = (STOP - START) / COUNT;

auto test = [&](mpfr::RoundingMode rounding_mode) {
mpfr::ForceRoundingMode force_rounding(rounding_mode);
if (!force_rounding.success)
return;

uint64_t fails = 0;
uint64_t tested = 0;
uint64_t total = 0;
double worst_input, worst_output = 0.0;
double ulp = 0.5;

for (uint64_t i = 0, v = START; i <= COUNT; ++i, v += STEP) {
double x = FPBits(v).get_val();
if (isnan(x) || isinf(x))
continue;

double result = LIBC_NAMESPACE::tan(x);
++total;
if (isnan(result) || isinf(result))
continue;

++tested;

if (!TEST_MPFR_MATCH_ROUNDING_SILENTLY(mpfr::Operation::Tan, x, result,
0.5, rounding_mode)) {
++fails;
while (!TEST_MPFR_MATCH_ROUNDING_SILENTLY(mpfr::Operation::Tan, x,
result, ulp, rounding_mode)) {
worst_input = x;
worst_output = result;

if (ulp > 1000.0)
break;

ulp *= 2.0;
}
}
}
if (fails) {
tlog << " Tan failed: " << fails << "/" << tested << "/" << total
<< " tests.\n";
tlog << " Max ULPs is at most: " << static_cast<uint64_t>(ulp) << ".\n";
EXPECT_MPFR_MATCH(mpfr::Operation::Tan, worst_input, worst_output, 0.5,
rounding_mode);
}
};

tlog << " Test Rounding To Nearest...\n";
test(mpfr::RoundingMode::Nearest);

tlog << " Test Rounding Downward...\n";
test(mpfr::RoundingMode::Downward);

tlog << " Test Rounding Upward...\n";
test(mpfr::RoundingMode::Upward);

tlog << " Test Rounding Toward Zero...\n";
test(mpfr::RoundingMode::TowardZero);
}