Expand Up
@@ -1626,6 +1626,18 @@ void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
}
}
// Move What before Where in the IR. The end result is taht What will belong to
// the right lists and have the right Block set, but will not otherwise be
// correct. It will not have the right defining access, and if it is a def,
// things below it will not properly be updated.
void MemorySSA::moveTo (MemoryUseOrDef *What, BasicBlock *BB,
AccessList::iterator Where) {
// Keep it in the lookup tables, remove from the lists
removeFromLists (What, false );
What->setBlock (BB);
insertIntoListsBefore (What, BB, Where);
}
MemoryPhi *MemorySSA::createMemoryPhi (BasicBlock *BB) {
assert (!getMemoryAccess (BB) && " MemoryPhi already exists for this BB" );
MemoryPhi *Phi = new MemoryPhi (BB->getContext (), BB, NextID++);
Expand Down
Expand Up
@@ -1681,29 +1693,6 @@ MemoryUseOrDef *MemorySSA::createMemoryAccessAfter(Instruction *I,
return NewAccess;
}
void MemorySSA::spliceMemoryAccessAbove (MemoryDef *Where,
MemoryUseOrDef *What) {
assert (What != getLiveOnEntryDef () && Where != getLiveOnEntryDef () &&
" Can't splice (above) LOE." );
assert (dominates (Where, What) && " Only upwards splices are permitted." );
if (Where == What)
return ;
if (isa<MemoryDef>(What)) {
// TODO: possibly use removeMemoryAccess' more efficient RAUW
What->replaceAllUsesWith (What->getDefiningAccess ());
What->setDefiningAccess (Where->getDefiningAccess ());
Where->setDefiningAccess (What);
}
AccessList *Src = getWritableBlockAccesses (What->getBlock ());
AccessList *Dest = getWritableBlockAccesses (Where->getBlock ());
Dest->splice (AccessList::iterator (Where), *Src, What);
BlockNumberingValid.erase (What->getBlock ());
if (What->getBlock () != Where->getBlock ())
BlockNumberingValid.erase (Where->getBlock ());
}
// / \brief Helper function to create new memory accesses
MemoryUseOrDef *MemorySSA::createNewAccess (Instruction *I) {
// The assume intrinsic has a control dependency which we model by claiming
Expand Down
Expand Up
@@ -1795,9 +1784,6 @@ static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
}
// / \brief Properly remove \p MA from all of MemorySSA's lookup tables.
// /
// / Because of the way the intrusive list and use lists work, it is important to
// / do removal in the right order.
void MemorySSA::removeFromLookups (MemoryAccess *MA) {
assert (MA->use_empty () &&
" Trying to remove memory access that still has uses" );
Expand All
@@ -1818,7 +1804,15 @@ void MemorySSA::removeFromLookups(MemoryAccess *MA) {
auto VMA = ValueToMemoryAccess.find (MemoryInst);
if (VMA->second == MA)
ValueToMemoryAccess.erase (VMA);
}
// / \brief Properly remove \p MA from all of MemorySSA's lists.
// /
// / Because of the way the intrusive list and use lists work, it is important to
// / do removal in the right order.
// / ShouldDelete defaults to true, and will cause the memory access to also be
// / deleted, not just removed.
void MemorySSA::removeFromLists (MemoryAccess *MA, bool ShouldDelete) {
// The access list owns the reference, so we erase it from the non-owning list
// first.
if (!isa<MemoryUse>(MA)) {
Expand All
@@ -1829,9 +1823,15 @@ void MemorySSA::removeFromLookups(MemoryAccess *MA) {
PerBlockDefs.erase (DefsIt);
}
// The erase call here will delete it. If we don't want it deleted, we call
// remove instead.
auto AccessIt = PerBlockAccesses.find (MA->getBlock ());
std::unique_ptr<AccessList> &Accesses = AccessIt->second ;
Accesses->erase (MA);
if (ShouldDelete)
Accesses->erase (MA);
else
Accesses->remove (MA);
if (Accesses->empty ())
PerBlockAccesses.erase (AccessIt);
}
Expand All
@@ -1855,7 +1855,7 @@ void MemorySSA::removeMemoryAccess(MemoryAccess *MA) {
}
// Re-point the uses at our defining access
if (!MA->use_empty ()) {
if (!isa<MemoryUse>(MA) && ! MA->use_empty ()) {
// Reset optimized on users of this store, and reset the uses.
// A few notes:
// 1. This is a slightly modified version of RAUW to avoid walking the
Expand All
@@ -1880,6 +1880,7 @@ void MemorySSA::removeMemoryAccess(MemoryAccess *MA) {
// The call below to erase will destroy MA, so we can't change the order we
// are doing things here
removeFromLookups (MA);
removeFromLists (MA);
}
void MemorySSA::print (raw_ostream &OS) const {
Expand Down
Expand Up
@@ -2396,4 +2397,343 @@ MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
return Use->getDefiningAccess ();
return StartingAccess;
}
// This is the marker algorithm from "Simple and Efficient Construction of
// Static Single Assignment Form"
// The simple, non-marker algorithm places phi nodes at any join
// Here, we place markers, and only place phi nodes if they end up necessary.
// They are only necessary if they break a cycle (IE we recursively visit
// ourselves again), or we discover, while getting the value of the operands,
// that there are two or more definitions needing to be merged.
// This still will leave non-minimal form in the case of irreducible control
// flow, where phi nodes may be in cycles with themselves, but unnecessary.
MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive (BasicBlock *BB) {
// Single predecessor case, just recurse, we can only have one definition.
if (BasicBlock *Pred = BB->getSinglePredecessor ()) {
return getPreviousDefFromEnd (Pred);
} else if (VisitedBlocks.count (BB)) {
// We hit our node again, meaning we had a cycle, we must insert a phi
// node to break it so we have an operand. The only case this will
// insert useless phis is if we have irreducible control flow.
return MSSA->createMemoryPhi (BB);
} else if (VisitedBlocks.insert (BB).second ) {
// Mark us visited so we can detect a cycle
SmallVector<MemoryAccess *, 8 > PhiOps;
// Recurse to get the values in our predecessors for placement of a
// potential phi node. This will insert phi nodes if we cycle in order to
// break the cycle and have an operand.
for (auto *Pred : predecessors (BB))
PhiOps.push_back (getPreviousDefFromEnd (Pred));
// Now try to simplify the ops to avoid placing a phi.
// This may return null if we never created a phi yet, that's okay
MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess (BB));
bool PHIExistsButNeedsUpdate = false ;
// See if the existing phi operands match what we need.
// Unlike normal SSA, we only allow one phi node per block, so we can't just
// create a new one.
if (Phi && Phi->getNumOperands () != 0 )
if (!std::equal (Phi->op_begin (), Phi->op_end (), PhiOps.begin ())) {
PHIExistsButNeedsUpdate = true ;
}
// See if we can avoid the phi by simplifying it.
auto *Result = tryRemoveTrivialPhi (Phi, PhiOps);
// If we couldn't simplify, we may have to create a phi
if (Result == Phi) {
if (!Phi)
Phi = MSSA->createMemoryPhi (BB);
// These will have been filled in by the recursive read we did above.
if (PHIExistsButNeedsUpdate) {
std::copy (PhiOps.begin (), PhiOps.end (), Phi->op_begin ());
std::copy (pred_begin (BB), pred_end (BB), Phi->block_begin ());
} else {
unsigned i = 0 ;
for (auto *Pred : predecessors (BB))
Phi->addIncoming (PhiOps[i++], Pred);
}
Result = Phi;
}
if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Result))
InsertedPHIs.push_back (MP);
// Set ourselves up for the next variable by resetting visited state.
VisitedBlocks.erase (BB);
return Result;
}
llvm_unreachable (" Should have hit one of the three cases above" );
}
// This starts at the memory access, and goes backwards in the block to find the
// previous definition. If a definition is not found the block of the access,
// it continues globally, creating phi nodes to ensure we have a single
// definition.
MemoryAccess *MemorySSAUpdater::getPreviousDef (MemoryAccess *MA) {
auto *LocalResult = getPreviousDefInBlock (MA);
return LocalResult ? LocalResult : getPreviousDefRecursive (MA->getBlock ());
}
// This starts at the memory access, and goes backwards in the block to the find
// the previous definition. If the definition is not found in the block of the
// access, it returns nullptr.
MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock (MemoryAccess *MA) {
auto *Defs = MSSA->getWritableBlockDefs (MA->getBlock ());
// It's possible there are no defs, or we got handed the first def to start.
if (Defs) {
// If this is a def, we can just use the def iterators.
if (!isa<MemoryUse>(MA)) {
auto Iter = MA->getReverseDefsIterator ();
++Iter;
if (Iter != Defs->rend ())
return &*Iter;
} else {
// Otherwise, have to walk the all access iterator.
auto Iter = MA->getReverseIterator ();
++Iter;
while (&*Iter != &*Defs->begin ()) {
if (!isa<MemoryUse>(*Iter))
return &*Iter;
--Iter;
}
// At this point it must be pointing at firstdef
assert (&*Iter == &*Defs->begin () &&
" Should have hit first def walking backwards" );
return &*Iter;
}
}
return nullptr ;
}
// This starts at the end of block
MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd (BasicBlock *BB) {
auto *Defs = MSSA->getWritableBlockDefs (BB);
if (Defs)
return &*Defs->rbegin ();
return getPreviousDefRecursive (BB);
}
// Recurse over a set of phi uses to eliminate the trivial ones
MemoryAccess *MemorySSAUpdater::recursePhi (MemoryAccess *Phi) {
if (!Phi)
return nullptr ;
TrackingVH<MemoryAccess> Res (Phi);
SmallVector<TrackingVH<Value>, 8 > Uses;
std::copy (Phi->user_begin (), Phi->user_end (), std::back_inserter (Uses));
for (auto &U : Uses) {
if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) {
auto OperRange = UsePhi->operands ();
tryRemoveTrivialPhi (UsePhi, OperRange);
}
}
return Res;
}
// Eliminate trivial phis
// Phis are trivial if they are defined either by themselves, or all the same
// argument.
// IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
// We recursively try to remove them.
template <class RangeType >
MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi (MemoryPhi *Phi,
RangeType &Operands) {
// Detect equal or self arguments
MemoryAccess *Same = nullptr ;
for (auto &Op : Operands) {
// If the same or self, good so far
if (Op == Phi || Op == Same)
continue ;
// not the same, return the phi since it's not eliminatable by us
if (Same)
return Phi;
Same = cast<MemoryAccess>(Op);
}
// Never found a non-self reference, the phi is undef
if (Same == nullptr )
return MSSA->getLiveOnEntryDef ();
if (Phi) {
Phi->replaceAllUsesWith (Same);
MSSA->removeMemoryAccess (Phi);
}
// We should only end up recursing in case we replaced something, in which
// case, we may have made other Phis trivial.
return recursePhi (Same);
}
void MemorySSAUpdater::insertUse (MemoryUse *MU) {
InsertedPHIs.clear ();
MU->setDefiningAccess (getPreviousDef (MU));
// Unlike for defs, there is no extra work to do. Because uses do not create
// new may-defs, there are only two cases:
//
// 1. There was a def already below us, and therefore, we should not have
// created a phi node because it was already needed for the def.
//
// 2. There is no def below us, and therefore, there is no extra renaming work
// to do.
}
void setMemoryPhiValueForBlock (MemoryPhi *MP, const BasicBlock *BB,
MemoryAccess *NewDef) {
// Replace any operand with us an incoming block with the new defining
// access.
int i = MP->getBasicBlockIndex (BB);
assert (i != -1 && " Should have found the basic block in the phi" );
while (MP->getIncomingBlock (i) == BB) {
// Unlike above, there is already a phi node here, so we only need
// to set the right value.
MP->setIncomingValue (i, NewDef);
++i;
}
}
// A brief description of the algorithm:
// First, we compute what should define the new def, using the SSA
// construction algorithm.
// Then, we update the defs below us (and any new phi nodes) in the graph to
// point to the correct new defs, to ensure we only have one variable, and no
// disconnected stores.
void MemorySSAUpdater::insertDef (MemoryDef *MD) {
InsertedPHIs.clear ();
// See if we had a local def, and if not, go hunting.
MemoryAccess *DefBefore = getPreviousDefInBlock (MD);
bool DefBeforeSameBlock = DefBefore != nullptr ;
if (!DefBefore)
DefBefore = getPreviousDefRecursive (MD->getBlock ());
// There is a def before us, which means we can replace any store/phi uses
// of that thing with us, since we are in the way of whatever was there
// before.
// We now define that def's memorydefs and memoryphis
for (auto UI = DefBefore->use_begin (), UE = DefBefore->use_end (); UI != UE;) {
Use &U = *UI++;
// Leave the uses alone
if (isa<MemoryUse>(U.getUser ()))
continue ;
U.set (MD);
}
// and that def is now our defining access.
// We change them in this order otherwise we will appear in the use list
// above and reset ourselves.
MD->setDefiningAccess (DefBefore);
SmallVector<MemoryAccess *, 8 > FixupList (InsertedPHIs.begin (),
InsertedPHIs.end ());
if (!DefBeforeSameBlock) {
// If there was a local def before us, we must have the same effect it
// did. Because every may-def is the same, any phis/etc we would create, it
// would also have created. If there was no local def before us, we
// performed a global update, and have to search all successors and make
// sure we update the first def in each of them (following all paths until
// we hit the first def along each path). This may also insert phi nodes.
// TODO: There are other cases we can skip this work, such as when we have a
// single successor, and only used a straight line of single pred blocks
// backwards to find the def. To make that work, we'd have to track whether
// getDefRecursive only ever used the single predecessor case. These types
// of paths also only exist in between CFG simplifications.
FixupList.push_back (MD);
}
while (!FixupList.empty ()) {
unsigned StartingPHISize = InsertedPHIs.size ();
fixupDefs (FixupList);
FixupList.clear ();
// Put any new phis on the fixup list, and process them
FixupList.append (InsertedPHIs.end () - StartingPHISize, InsertedPHIs.end ());
}
}
void MemorySSAUpdater::fixupDefs (const SmallVectorImpl<MemoryAccess *> &Vars) {
SmallPtrSet<const BasicBlock *, 8 > Seen;
SmallVector<const BasicBlock *, 16 > Worklist;
for (auto *NewDef : Vars) {
// First, see if there is a local def after the operand.
auto *Defs = MSSA->getWritableBlockDefs (NewDef->getBlock ());
auto DefIter = NewDef->getDefsIterator ();
// If there is a local def after us, we only have to rename that.
if (++DefIter != Defs->end ()) {
cast<MemoryDef>(DefIter)->setDefiningAccess (NewDef);
continue ;
}
// Otherwise, we need to search down through the CFG.
// For each of our successors, handle it directly if their is a phi, or
// place on the fixup worklist.
for (const auto *S : successors (NewDef->getBlock ())) {
if (auto *MP = MSSA->getMemoryAccess (S))
setMemoryPhiValueForBlock (MP, NewDef->getBlock (), NewDef);
else
Worklist.push_back (S);
}
while (!Worklist.empty ()) {
const BasicBlock *FixupBlock = Worklist.back ();
Worklist.pop_back ();
// Get the first def in the block that isn't a phi node.
if (auto *Defs = MSSA->getWritableBlockDefs (FixupBlock)) {
auto *FirstDef = &*Defs->begin ();
// The loop above and below should have taken care of phi nodes
assert (!isa<MemoryPhi>(FirstDef) &&
" Should have already handled phi nodes!" );
// We are now this def's defining access, make sure we actually dominate
// it
assert (MSSA->dominates (NewDef, FirstDef) &&
" Should have dominated the new access" );
// This may insert new phi nodes, because we are not guaranteed the
// block we are processing has a single pred, and depending where the
// store was inserted, it may require phi nodes below it.
cast<MemoryDef>(FirstDef)->setDefiningAccess (getPreviousDef (FirstDef));
return ;
}
// We didn't find a def, so we must continue.
for (const auto *S : successors (FixupBlock)) {
// If there is a phi node, handle it.
// Otherwise, put the block on the worklist
if (auto *MP = MSSA->getMemoryAccess (S))
setMemoryPhiValueForBlock (MP, FixupBlock, NewDef);
else {
// If we cycle, we should have ended up at a phi node that we already
// processed. FIXME: Double check this
if (!Seen.insert (S).second )
continue ;
Worklist.push_back (S);
}
}
}
}
}
// Move What before Where in the MemorySSA IR.
void MemorySSAUpdater::moveTo (MemoryUseOrDef *What, BasicBlock *BB,
MemorySSA::AccessList::iterator Where) {
// Replace all our users with our defining access.
What->replaceAllUsesWith (What->getDefiningAccess ());
// Let MemorySSA take care of moving it around in the lists.
MSSA->moveTo (What, BB, Where);
// Now reinsert it into the IR and do whatever fixups needed.
if (auto *MD = dyn_cast<MemoryDef>(What))
insertDef (MD);
else
insertUse (cast<MemoryUse>(What));
}
// Move What before Where in the MemorySSA IR.
void MemorySSAUpdater::moveBefore (MemoryUseOrDef *What, MemoryUseOrDef *Where) {
moveTo (What, Where->getBlock (), Where->getIterator ());
}
// Move What after Where in the MemorySSA IR.
void MemorySSAUpdater::moveAfter (MemoryUseOrDef *What, MemoryUseOrDef *Where) {
moveTo (What, Where->getBlock (), ++Where->getIterator ());
}
} // namespace llvm