diff --git a/mlir/lib/Dialect/XeGPU/Transforms/XeGPUSubgroupDistribute.cpp b/mlir/lib/Dialect/XeGPU/Transforms/XeGPUSubgroupDistribute.cpp index 449b8eb030b07..882691fd19f58 100644 --- a/mlir/lib/Dialect/XeGPU/Transforms/XeGPUSubgroupDistribute.cpp +++ b/mlir/lib/Dialect/XeGPU/Transforms/XeGPUSubgroupDistribute.cpp @@ -268,7 +268,7 @@ struct MoveFuncBodyToWarpExecuteOnLane0 /// %r = gpu.warp_execute_on_lane_0(%laneid) -> /// (!xegpu.tensor_desc<4x8xf32, #layout0>) { /// ... -/// %td = xegpu.create_nd_tdesc %arg0[0, 0] +/// %td = xegpu.create_nd_tdesc %arg0 /// : memref<4x8xf32> -> !xegpu.tensor_desc<4x8xf32, #layout0> /// vector.yield %td /// } @@ -277,11 +277,11 @@ struct MoveFuncBodyToWarpExecuteOnLane0 /// ``` /// %r:2 = gpu.warp_execute_on_lane_0(%laneid) -> (...) { /// ... -/// %dead = xegpu.create_nd_tdesc %arg0[0, 0] +/// %dead = xegpu.create_nd_tdesc %arg0 /// : memref<4x8xf32> -> !xegpu.tensor_desc<4x8xf32, #layout0> /// vector.yield %arg0, %dead /// } -/// %td = xegpu.create_nd_tdesc %r#0[0, 0]: memref<4x8xf32> +/// %td = xegpu.create_nd_tdesc %r#0: memref<4x8xf32> /// -> !xegpu.tensor_desc<4x8xf32> /// /// ``` @@ -301,6 +301,10 @@ struct CreateNdDescDistribution final : public gpu::WarpDistributionPattern { if (!layout) return rewriter.notifyMatchFailure( descOp, "the tensor descriptor lacks layout attribute"); + // CreateNdOp must not have offsets. + if (descOp.getMixedOffsets().size()) + return rewriter.notifyMatchFailure( + descOp, "xegpu::CreateNdDescOp must not have offsets"); SmallVector newRetIndices; rewriter.setInsertionPoint(warpOp); @@ -339,22 +343,23 @@ struct CreateNdDescDistribution final : public gpu::WarpDistributionPattern { /// #layout0 = #xegpu.layout /// gpu.warp_execute_on_lane_0(%laneid) -> () { /// ... -/// xegpu.store_nd %arg0, %arg1: vector<4x8xf32>, +/// xegpu.store_nd %arg0, %arg1 [%x, %y]: vector<4x8xf32>, /// !xegpu.tensor_desc<4x8xf32, #layout0> /// } /// ``` /// To /// ``` /// %r:2 = gpu.warp_execute_on_lane_0(%laneid) -> (vector<4x1xf32>, -/// !xegpu.tensor_desc<4x8xf32, #layout0>) { -/// gpu.yield %arg0, %arg1: vector<4x8xf32>, !xegpu.tensor_desc<4x8xf32, -/// #layout0> +/// !xegpu.tensor_desc<4x8xf32, #layout0>, index, index) { +/// ... +/// gpu.yield %arg0, %arg1, %x, %y: vector<4x8xf32>, +/// !xegpu.tensor_desc<4x8xf32, #layout0>, index, index /// } /// %0 = vector.shape_cast %r#0: vector<4x1xf32> to vector<4xf32> /// %1 = unrealized_conversion_cast %r#1: !xegpu.tensor_desc<4x8xf32, /// #layout0> /// -> !xegpu.tensor_desc<4x8xf32> -/// xegpu.store_nd %0, %1: vector<4xf32>, +/// xegpu.store_nd %0, %1 [%r#2, %r#3]: vector<4xf32>, /// !xegpu.tensor_desc<4x8xf32> /// /// ``` @@ -368,10 +373,15 @@ struct StoreNdDistribution final : public gpu::WarpDistributionPattern { if (!storeOp) return failure(); - int64_t offsetSize = static_cast(storeOp.getOffsets().size()); - if ((offsetSize != 0) || storeOp.getConstOffsetsAttr()) - return failure(); - + SmallVector offsets = storeOp.getMixedOffsets(); + // Expecting offsets to be present. + if (offsets.empty()) + return rewriter.notifyMatchFailure(storeOp, + "the store op must have offsets"); + SmallVector offsetsAsValues = + vector::getAsValues(rewriter, storeOp.getLoc(), offsets); + SmallVector offsetTypes = llvm::to_vector( + llvm::map_range(offsetsAsValues, [](Value v) { return v.getType(); })); xegpu::TensorDescType tensorDescTy = storeOp.getTensorDescType(); xegpu::LayoutAttr layout = tensorDescTy.getLayoutAttr(); if (!layout) @@ -387,13 +397,13 @@ struct StoreNdDistribution final : public gpu::WarpDistributionPattern { distributedTypeByWarpOpOrFailure.value(); SmallVector newRetIndices; + SmallVector newYieldedValues = {storeOp.getValue(), + storeOp.getTensorDesc()}; + SmallVector newYieldedTypes = {distributedTypeByWarpOp, tensorDescTy}; + newYieldedValues.append(offsetsAsValues.begin(), offsetsAsValues.end()); + newYieldedTypes.append(offsetTypes.begin(), offsetTypes.end()); gpu::WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns( - rewriter, warpOp, - /* new yielded values = */ - ValueRange{storeOp.getValue(), storeOp.getTensorDesc()}, - /* new yielded types = */ - TypeRange{distributedTypeByWarpOp, storeOp.getTensorDescType()}, - newRetIndices); + rewriter, warpOp, newYieldedValues, newYieldedTypes, newRetIndices); // Create a new store op outside the warp op with the distributed vector // type. Tensor descriptor is not distributed. rewriter.setInsertionPointAfter(newWarpOp); @@ -418,6 +428,9 @@ struct StoreNdDistribution final : public gpu::WarpDistributionPattern { newStoreOperands.push_back( resolveDistributedTy(newWarpOp.getResult(newRetIndices[1]), distributedTensorDescTy, rewriter)); + // Collect offsets. + for (size_t i = 2; i < newRetIndices.size(); ++i) + newStoreOperands.push_back(newWarpOp.getResult(newRetIndices[i])); auto newStoreOp = xegpu::StoreNdOp::create(rewriter, newWarpOp.getLoc(), TypeRange{}, @@ -491,9 +504,15 @@ struct LoadNdDistribution final : public gpu::WarpDistributionPattern { loadOp, "xegpu::LoadNdOp require chip information to determine transpose " "requirement"); - int64_t offsetSize = static_cast(loadOp.getOffsets().size()); - if ((offsetSize != 0) || loadOp.getConstOffsetsAttr()) - return failure(); + // Expecting offsets to be present. + SmallVector offsets = loadOp.getMixedOffsets(); + if (offsets.empty()) + return rewriter.notifyMatchFailure(loadOp, + "the load op must have offsets"); + SmallVector offsetsAsValues = + vector::getAsValues(rewriter, loadOp.getLoc(), offsets); + SmallVector offsetTypes = llvm::to_vector( + llvm::map_range(offsetsAsValues, [](Value v) { return v.getType(); })); xegpu::TensorDescType tensorDescTy = loadOp.getTensorDescType(); xegpu::LayoutAttr layout = tensorDescTy.getLayoutAttr(); @@ -506,10 +525,12 @@ struct LoadNdDistribution final : public gpu::WarpDistributionPattern { cast(warpOp.getResult(operandIdx).getType()); SmallVector newRetIndices; + SmallVector newYieldedValues = {loadOp.getTensorDesc()}; + SmallVector newYieldedTypes = {tensorDescTy}; + newYieldedValues.append(offsetsAsValues.begin(), offsetsAsValues.end()); + newYieldedTypes.append(offsetTypes.begin(), offsetTypes.end()); gpu::WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns( - rewriter, warpOp, - /* new yielded values = */ loadOp.getTensorDesc(), - /* new yielded types = */ tensorDescTy, newRetIndices); + rewriter, warpOp, newYieldedValues, newYieldedTypes, newRetIndices); // Create a new load op outside the warp op with the distributed vector // type. @@ -523,11 +544,15 @@ struct LoadNdDistribution final : public gpu::WarpDistributionPattern { loadOp.getTensorDescType().dropLayouts(); // Distributed tensor // descriptor type does not // contain layout info. + SmallVector newLoadOperands{ + resolveDistributedTy(newWarpOp.getResult(newRetIndices[0]), + distributedTensorDescTy, rewriter)}; + // Collect offsets. + for (size_t i = 1; i < newRetIndices.size(); ++i) + newLoadOperands.push_back(newWarpOp.getResult(newRetIndices[i])); auto newLoadOp = xegpu::LoadNdOp::create( rewriter, newWarpOp.getLoc(), loadNdDistValueTyOrFailure.value(), - resolveDistributedTy(newWarpOp->getResult(newRetIndices[0]), - distributedTensorDescTy, rewriter), - loadOp->getAttrs()); + newLoadOperands, loadOp->getAttrs()); xegpu::removeLayoutAttrs(newLoadOp); // Set the packed attribute if the layout requires it. newLoadOp.setPacked(requirePacked(layout)); @@ -677,85 +702,6 @@ struct DpasDistribution final : public gpu::WarpDistributionPattern { } }; -/// Sink an update_nd_offset op feeding into yield op of an enclosing -/// `gpu.warp_execute_on_lane_0` region. The warp op will still contain the -/// original op that will not be used by the yield op (and should be cleaned -/// up later). The yield op will bypass the updateOp's arguments. The tensor -/// descriptor type is not distributed. Appropriate cast ops are inserted if -/// the distributed types does not match expected xegpu SIMT types. -/// Example: -/// ``` -/// #layout0 = #xegpu.layout -/// %r = gpu.warp_execute_on_lane_0(%laneid) -> -/// (!xegpu.tensor_desc<4x8xf32, #layout0>) { -/// ... -/// %update = xegpu.update_nd_offset %arg0, [%c32, %c16]: -/// !xegpu.tensor_desc<4x8xf32, #layout0> -/// gpu.yield %update -/// } -/// ... -/// ``` -/// To -/// ``` -/// %r:2 = gpu.warp_execute_on_lane_0(%laneid) -> ( -/// !xegpu.tensor_desc<4x8xf32, #layout0>, -/// !xegpu.tensor_desc<4x8xf32, #layout0>, index, index) { -/// ... -/// %dead = xegpu.update_nd_offset %arg0, [%c32, %c16]: -/// !xegpu.tensor_desc<4x8xf32, #layout0> gpu.yield %dead, %arg0 -/// gpu.yield %dead, %arg0, %c32, %c16 -/// } -/// %0 = xegpu.unrealized_conversion_cast %r#1: !xegpu.tensor_desc<4x8xf32, -/// #layout0> -> !xegpu.tensor_desc<4x8xf32> -/// %1 = xegpu.update_nd_offset %0, [%r#2, %r#3]: -/// !xegpu.tensor_desc<4x8xf32> -/// ... -/// ``` -struct UpdateNdOffsetDistribution final : public gpu::WarpDistributionPattern { - using gpu::WarpDistributionPattern::WarpDistributionPattern; - LogicalResult matchAndRewrite(gpu::WarpExecuteOnLane0Op warpOp, - PatternRewriter &rewriter) const override { - OpOperand *operand = - getWarpResult(warpOp, llvm::IsaPred); - if (!operand) - return rewriter.notifyMatchFailure( - warpOp, "warp result is not a xegpu::UpdateNdOffset op"); - auto updateOp = operand->get().getDefiningOp(); - unsigned operandIdx = operand->getOperandNumber(); - - SmallVector newRetIndices; - gpu::WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns( - rewriter, warpOp, updateOp->getOperands(), updateOp.getOperandTypes(), - newRetIndices); - rewriter.setInsertionPointAfter(newWarpOp); - // new update op does not have layout attribute. - xegpu::TensorDescType distributedTensorDescTy = - updateOp.getTensorDescType().dropLayouts(); - SmallVector newUpdateOperands = - llvm::map_to_vector(newRetIndices, [&](size_t i) { - // For the tensor descriptor operand, the layout attribute is - // dropped after distribution. Types needs to be resolved in this - // case. - if (isa(newWarpOp.getResult(i).getType())) { - return resolveDistributedTy(newWarpOp.getResult(i), - distributedTensorDescTy, rewriter); - } - return newWarpOp.getResult(i); - }); - // Create a new update op outside the warp op. - auto newUpdateOp = xegpu::UpdateNdOffsetOp::create( - rewriter, newWarpOp.getLoc(), distributedTensorDescTy, - newUpdateOperands, updateOp->getAttrs()); - xegpu::removeLayoutAttrs(newUpdateOp); - Value distributedVal = newWarpOp.getResult(operandIdx); - // Resolve the distributed type with the original type. - Value typeResolved = resolveDistributedTy( - newUpdateOp.getResult(), distributedVal.getType(), rewriter); - rewriter.replaceAllUsesWith(distributedVal, typeResolved); - return success(); - } -}; - /// Distribute a prefetch_nd op at the end of enclosing /// `gpu.warp_execute_on_lane_0`. In case arguments for the prefetch are passed /// through the warp op interface they would be propagated as returned values. @@ -769,18 +715,19 @@ struct UpdateNdOffsetDistribution final : public gpu::WarpDistributionPattern { /// #layout0 = #xegpu.layout /// gpu.warp_execute_on_lane_0(%laneid) -> () { /// ... -/// xegpu.prefetch_nd %arg0 : !xegpu.tensor_desc<4x8xf32, #layout0> +/// xegpu.prefetch_nd %arg0 [%x, %y] : !xegpu.tensor_desc<4x8xf32, #layout0> /// } /// ``` /// To /// ``` /// %r:1 = gpu.warp_execute_on_lane_0(%laneid) -> ( -/// !xegpu.tensor_desc<4x8xf32, #layout0>) { -/// gpu.yield %arg0: !xegpu.tensor_desc<4x8xf32, #layout0> +/// !xegpu.tensor_desc<4x8xf32, #layout0>, index, index) { +/// gpu.yield %arg0, %x, %y: !xegpu.tensor_desc<4x8xf32, #layout0>, index, +/// index /// } /// %1 = unrealized_conversion_cast %r#0: !xegpu.tensor_desc<4x8xf32, /// #layout0> -> !xegpu.tensor_desc<4x8xf32> -/// xegpu.prefetch_nd %1 : !xegpu.tensor_desc<4x8xf32> +/// xegpu.prefetch_nd %1 [%r#1, %r#2] : !xegpu.tensor_desc<4x8xf32> /// /// ``` struct PrefetchNdDistribution final : public gpu::WarpDistributionPattern { @@ -793,17 +740,25 @@ struct PrefetchNdDistribution final : public gpu::WarpDistributionPattern { if (!prefetchOp) return failure(); - int64_t offsetSize = static_cast(prefetchOp.getOffsets().size()); - if ((offsetSize != 0) || prefetchOp.getConstOffsetsAttr()) - return failure(); + SmallVector offsets = prefetchOp.getMixedOffsets(); + // PrefetchNdOp must have offsets. + if (offsets.empty()) + return rewriter.notifyMatchFailure(prefetchOp, + "the prefetch op must have offsets"); + SmallVector offsetsAsValues = + vector::getAsValues(rewriter, prefetchOp.getLoc(), offsets); + SmallVector offsetTypes = llvm::to_vector( + llvm::map_range(offsetsAsValues, [](Value v) { return v.getType(); })); xegpu::LayoutAttr layout = prefetchOp.getTensorDescType().getLayoutAttr(); if (!layout) return rewriter.notifyMatchFailure( prefetchOp, "the source tensor descriptor lacks layout attribute"); - SmallVector newYieldValues = {prefetchOp.getTensorDesc()}; - SmallVector newYieldTypes = {prefetchOp.getTensorDescType()}; + SmallVector newYieldValues = {prefetchOp.getTensorDesc()}; + SmallVector newYieldTypes = {prefetchOp.getTensorDescType()}; + newYieldValues.append(offsetsAsValues.begin(), offsetsAsValues.end()); + newYieldTypes.append(offsetTypes.begin(), offsetTypes.end()); SmallVector newRetIndices; gpu::WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns( rewriter, warpOp, newYieldValues, newYieldTypes, newRetIndices); @@ -814,6 +769,9 @@ struct PrefetchNdDistribution final : public gpu::WarpDistributionPattern { rewriter.setInsertionPointAfter(newWarpOp); SmallVector newPrefetchOperands = {resolveDistributedTy( newWarpOp.getResult(newRetIndices[0]), newTensorDescTy, rewriter)}; + // Collect offsets. + for (size_t i = 1; i < newRetIndices.size(); ++i) + newPrefetchOperands.push_back(newWarpOp.getResult(newRetIndices[i])); xegpu::PrefetchNdOp::create(rewriter, newWarpOp.getLoc(), TypeRange{}, newPrefetchOperands, prefetchOp->getAttrs()); xegpu::removeLayoutAttrs(prefetchOp); @@ -1456,15 +1414,14 @@ struct XeGPUSubgroupDistributePass final void xegpu::populateXeGPUSubgroupDistributePatterns( RewritePatternSet &patterns) { - patterns - .add( - patterns.getContext(), - /*pattern benefit=*/regularPatternBenefit); + patterns.add( + patterns.getContext(), + /*pattern benefit=*/regularPatternBenefit); patterns.add( patterns.getContext(), /*pattern benefit=*/highPatternBenefit); diff --git a/mlir/test/Dialect/XeGPU/subgroup-distribute.mlir b/mlir/test/Dialect/XeGPU/subgroup-distribute.mlir index 13b0ed176eb0c..59fac26d18cf4 100644 --- a/mlir/test/Dialect/XeGPU/subgroup-distribute.mlir +++ b/mlir/test/Dialect/XeGPU/subgroup-distribute.mlir @@ -8,15 +8,15 @@ // CHECK-LABEL: gpu.func @store_nd_1d // CHECK: (%[[ARG0:[0-9a-zA-Z]+]]: memref<16xf32>) { // CHECK-DAG: %[[CST:.*]] = arith.constant dense<1.000000e+00> : vector<1xf32> -// CHECK-DAG: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG0]][%{{.*}}] : memref<16xf32> -> !xegpu.tensor_desc<16xf32> -// CHECK: xegpu.store_nd %[[CST]], %[[T0]] : vector<1xf32>, !xegpu.tensor_desc<16xf32> +// CHECK-DAG: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG0]] : memref<16xf32> -> !xegpu.tensor_desc<16xf32> +// CHECK: xegpu.store_nd %[[CST]], %[[T0]][%{{.*}}] : vector<1xf32>, !xegpu.tensor_desc<16xf32> // CHECK: gpu.return gpu.module @xevm_module{ gpu.func @store_nd_1d(%arg0: memref<16xf32>) { %c0 = arith.constant 0 : index %cst = arith.constant {layout_result_0 = #xegpu.layout} dense<1.000000e+00> : vector<16xf32> - %0 = xegpu.create_nd_tdesc %arg0[%c0] : memref<16xf32> -> !xegpu.tensor_desc<16xf32, #xegpu.layout> - xegpu.store_nd %cst, %0 : vector<16xf32>, !xegpu.tensor_desc<16xf32, #xegpu.layout> + %0 = xegpu.create_nd_tdesc %arg0 : memref<16xf32> -> !xegpu.tensor_desc<16xf32, #xegpu.layout> + xegpu.store_nd %cst, %0 [%c0] : vector<16xf32>, !xegpu.tensor_desc<16xf32, #xegpu.layout> gpu.return } } @@ -25,14 +25,14 @@ gpu.module @xevm_module{ // CHECK-LABEL: gpu.func @store_nd_2d // CHECK: (%[[ARG0:[0-9a-zA-Z]+]]: memref<16x16xf16>) { // CHECK-DAG: %[[CST:.*]] = arith.constant dense<1.000000e+00> : vector<16xf16> -// CHECK-DAG: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG0]][%{{.*}}] : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16> -// CHECK: xegpu.store_nd %[[CST]], %[[T0]] : vector<16xf16>, !xegpu.tensor_desc<16x16xf16> +// CHECK-DAG: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG0]] : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16> +// CHECK: xegpu.store_nd %[[CST]], %[[T0]][%{{.*}}] : vector<16xf16>, !xegpu.tensor_desc<16x16xf16> gpu.module @xevm_module{ gpu.func @store_nd_2d(%arg0: memref<16x16xf16>) { %c0 = arith.constant 0 : index %cst = arith.constant {layout_result_0 = #xegpu.layout} dense<1.000000e+00> : vector<16x16xf16> - %0 = xegpu.create_nd_tdesc %arg0[%c0, %c0] : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.layout> - xegpu.store_nd %cst, %0 : vector<16x16xf16>, !xegpu.tensor_desc<16x16xf16, #xegpu.layout> + %0 = xegpu.create_nd_tdesc %arg0 : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.layout> + xegpu.store_nd %cst, %0 [%c0, %c0] : vector<16x16xf16>, !xegpu.tensor_desc<16x16xf16, #xegpu.layout> gpu.return } } @@ -42,17 +42,17 @@ gpu.module @xevm_module{ // ----- // CHECK-LABEL: gpu.func @load_nd_1d // CHECK: (%[[ARG0:[0-9a-zA-Z]+]]: memref<16xf32>, %[[ARG1:[0-9a-zA-Z]+]]: memref<16xf32>) { -// CHECK: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG0]][%{{.*}}] : memref<16xf32> -> !xegpu.tensor_desc<16xf32> -// CHECK-DAG: %[[T1:.*]] = xegpu.load_nd %[[T0]] : !xegpu.tensor_desc<16xf32> -> vector<1xf32> -// CHECK-DAG: %[[T2:.*]] = xegpu.create_nd_tdesc %[[ARG1]][%{{.*}}] : memref<16xf32> -> !xegpu.tensor_desc<16xf32> -// CHECK: xegpu.store_nd %[[T1]], %[[T2]] : vector<1xf32>, !xegpu.tensor_desc<16xf32> +// CHECK: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG0]] : memref<16xf32> -> !xegpu.tensor_desc<16xf32> +// CHECK-DAG: %[[T1:.*]] = xegpu.load_nd %[[T0]][%{{.*}}] : !xegpu.tensor_desc<16xf32> -> vector<1xf32> +// CHECK-DAG: %[[T2:.*]] = xegpu.create_nd_tdesc %[[ARG1]] : memref<16xf32> -> !xegpu.tensor_desc<16xf32> +// CHECK: xegpu.store_nd %[[T1]], %[[T2]][%{{.*}}] : vector<1xf32>, !xegpu.tensor_desc<16xf32> gpu.module @xevm_module{ gpu.func @load_nd_1d(%arg0: memref<16xf32>, %arg1: memref<16xf32>) { %c0 = arith.constant 0 : index - %0 = xegpu.create_nd_tdesc %arg0[%c0] : memref<16xf32> -> !xegpu.tensor_desc<16xf32, #xegpu.layout> - %1 = xegpu.load_nd %0 {layout_result_0 = #xegpu.layout} : !xegpu.tensor_desc<16xf32, #xegpu.layout> -> vector<16xf32> - %2 = xegpu.create_nd_tdesc %arg1[%c0] : memref<16xf32> -> !xegpu.tensor_desc<16xf32, #xegpu.layout> - xegpu.store_nd %1, %2 : vector<16xf32>, !xegpu.tensor_desc<16xf32, #xegpu.layout> + %0 = xegpu.create_nd_tdesc %arg0 : memref<16xf32> -> !xegpu.tensor_desc<16xf32, #xegpu.layout> + %1 = xegpu.load_nd %0 [%c0] {layout_result_0 = #xegpu.layout} : !xegpu.tensor_desc<16xf32, #xegpu.layout> -> vector<16xf32> + %2 = xegpu.create_nd_tdesc %arg1 : memref<16xf32> -> !xegpu.tensor_desc<16xf32, #xegpu.layout> + xegpu.store_nd %1, %2 [%c0] : vector<16xf32>, !xegpu.tensor_desc<16xf32, #xegpu.layout> gpu.return } } @@ -60,17 +60,17 @@ gpu.module @xevm_module{ // ----- // CHECK-LABEL: gpu.func @load_nd_2d // CHECK: (%[[ARG0:[0-9a-zA-Z]+]]: memref<16x16xf16>, %[[ARG1:[0-9a-zA-Z]+]]: memref<16x16xf16>) { -// CHECK: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG0]][%{{.*}}] : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16> -// CHECK-DAG: %[[T1:.*]] = xegpu.load_nd %[[T0]] : !xegpu.tensor_desc<16x16xf16> -> vector<16xf16> -// CHECK-DAG: %[[T2:.*]] = xegpu.create_nd_tdesc %[[ARG1]][%{{.*}}] : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16> -// CHECK: xegpu.store_nd %[[T1]], %[[T2]] : vector<16xf16>, !xegpu.tensor_desc<16x16xf16> +// CHECK: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG0]] : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16> +// CHECK-DAG: %[[T1:.*]] = xegpu.load_nd %[[T0]][%{{.*}}] : !xegpu.tensor_desc<16x16xf16> -> vector<16xf16> +// CHECK-DAG: %[[T2:.*]] = xegpu.create_nd_tdesc %[[ARG1]] : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16> +// CHECK: xegpu.store_nd %[[T1]], %[[T2]][%{{.*}}] : vector<16xf16>, !xegpu.tensor_desc<16x16xf16> gpu.module @xevm_module{ gpu.func @load_nd_2d(%arg0: memref<16x16xf16>, %arg1: memref<16x16xf16>) { %c0 = arith.constant 0 : index - %0 = xegpu.create_nd_tdesc %arg0[%c0, %c0] : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.layout> - %1 = xegpu.load_nd %0 {layout_result_0 = #xegpu.layout} : !xegpu.tensor_desc<16x16xf16, #xegpu.layout> -> vector<16x16xf16> - %2 = xegpu.create_nd_tdesc %arg1[%c0, %c0] : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.layout> - xegpu.store_nd %1, %2 : vector<16x16xf16>, !xegpu.tensor_desc<16x16xf16, #xegpu.layout> + %0 = xegpu.create_nd_tdesc %arg0 : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.layout> + %1 = xegpu.load_nd %0[%c0, %c0] {layout_result_0 = #xegpu.layout} : !xegpu.tensor_desc<16x16xf16, #xegpu.layout> -> vector<16x16xf16> + %2 = xegpu.create_nd_tdesc %arg1: memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.layout> + xegpu.store_nd %1, %2[%c0, %c0] : vector<16x16xf16>, !xegpu.tensor_desc<16x16xf16, #xegpu.layout> gpu.return } } @@ -78,21 +78,21 @@ gpu.module @xevm_module{ // ----- // CHECK-LABEL: gpu.func @load_nd_array_length // CHECK: (%[[ARG0:[0-9a-zA-Z]+]]: memref<16x16xf16>, %[[ARG1:[0-9a-zA-Z]+]]: memref<16x16xf16>) { -// CHECK: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG0]][%{{.*}}] : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.block_tdesc_attr> -// CHECK: %[[T1:.*]] = xegpu.load_nd %[[T0]] : !xegpu.tensor_desc<16x16xf16, #xegpu.block_tdesc_attr> -> vector<32xf16> +// CHECK: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG0]] : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.block_tdesc_attr> +// CHECK: %[[T1:.*]] = xegpu.load_nd %[[T0]][%{{.*}}] : !xegpu.tensor_desc<16x16xf16, #xegpu.block_tdesc_attr> -> vector<32xf16> // CHECK: %[[T2:.*]] = vector.shape_cast %[[T1]] : vector<32xf16> to vector<2x16x1xf16> // CHECK: %[[T3:.*]] = vector.extract %[[T2]][0] : vector<16x1xf16> from vector<2x16x1xf16> -// CHECK-DAG: %[[T4:.*]] = xegpu.create_nd_tdesc %[[ARG1]][%{{.*}}] : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16> +// CHECK-DAG: %[[T4:.*]] = xegpu.create_nd_tdesc %[[ARG1]] : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16> // CHECK-DAG: %[[T5:.*]] = vector.shape_cast %[[T3]] : vector<16x1xf16> to vector<16xf16> -// CHECK: xegpu.store_nd %[[T5]], %[[T4]] : vector<16xf16>, !xegpu.tensor_desc<16x16xf16> +// CHECK: xegpu.store_nd %[[T5]], %[[T4]][%{{.*}}] : vector<16xf16>, !xegpu.tensor_desc<16x16xf16> gpu.module @xevm_module{ gpu.func @load_nd_array_length(%arg0: memref<16x16xf16>, %arg1: memref<16x16xf16>) { %c0 = arith.constant 0 : index - %0 = xegpu.create_nd_tdesc %arg0[%c0, %c0] : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.block_tdesc_attr, #xegpu.layout> - %1 = xegpu.load_nd %0 {layout_result_0 = #xegpu.layout} : !xegpu.tensor_desc<16x16xf16, #xegpu.block_tdesc_attr, #xegpu.layout> -> vector<2x16x16xf16> + %0 = xegpu.create_nd_tdesc %arg0 : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.block_tdesc_attr, #xegpu.layout> + %1 = xegpu.load_nd %0[%c0, %c0] {layout_result_0 = #xegpu.layout} : !xegpu.tensor_desc<16x16xf16, #xegpu.block_tdesc_attr, #xegpu.layout> -> vector<2x16x16xf16> %2 = vector.extract %1[%c0] {layout_result_0 = #xegpu.layout} : vector<16x16xf16> from vector<2x16x16xf16> - %3 = xegpu.create_nd_tdesc %arg1[%c0, %c0] : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.layout> - xegpu.store_nd %2, %3 : vector<16x16xf16>, !xegpu.tensor_desc<16x16xf16, #xegpu.layout> + %3 = xegpu.create_nd_tdesc %arg1 : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.layout> + xegpu.store_nd %2, %3[%c0, %c0] : vector<16x16xf16>, !xegpu.tensor_desc<16x16xf16, #xegpu.layout> gpu.return } } @@ -100,23 +100,23 @@ gpu.module @xevm_module{ // ----- // CHECK-LABEL: gpu.func @load_dpas_store // CHECK: (%[[ARG0:[0-9a-zA-Z]+]]: memref<8x16xf16>, %[[ARG1:[0-9a-zA-Z]+]]: memref<16x16xf16>, %[[ARG2:[0-9a-zA-Z]+]]: memref<8x16xf32>) { -// CHECK: %[[T2:.*]] = xegpu.create_nd_tdesc %[[ARG0]][%{{.*}}] : memref<8x16xf16> -> !xegpu.tensor_desc<8x16xf16> -// CHECK: %[[T3:.*]] = xegpu.load_nd %[[T2]] : !xegpu.tensor_desc<8x16xf16> -> vector<8xf16> -// CHECK: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG1]][%{{.*}}] : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16> -// CHECK: %[[T1:.*]] = xegpu.load_nd %[[T0]] <{packed}> : !xegpu.tensor_desc<16x16xf16> -> vector<16xf16> +// CHECK: %[[T2:.*]] = xegpu.create_nd_tdesc %[[ARG0]] : memref<8x16xf16> -> !xegpu.tensor_desc<8x16xf16> +// CHECK: %[[T3:.*]] = xegpu.load_nd %[[T2]][%{{.*}}] : !xegpu.tensor_desc<8x16xf16> -> vector<8xf16> +// CHECK: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG1]] : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16> +// CHECK: %[[T1:.*]] = xegpu.load_nd %[[T0]][%{{.*}}] <{packed}> : !xegpu.tensor_desc<16x16xf16> -> vector<16xf16> // CHECK-DAG: %[[T4:.*]] = xegpu.dpas %[[T3]], %[[T1]] : vector<8xf16>, vector<16xf16> -> vector<8xf32> -// CHECK-DAG: %[[T5:.*]] = xegpu.create_nd_tdesc %[[ARG2]][%{{.*}}] : memref<8x16xf32> -> !xegpu.tensor_desc<8x16xf32> -// CHECK: xegpu.store_nd %[[T4]], %[[T5]] : vector<8xf32>, !xegpu.tensor_desc<8x16xf32> +// CHECK-DAG: %[[T5:.*]] = xegpu.create_nd_tdesc %[[ARG2]] : memref<8x16xf32> -> !xegpu.tensor_desc<8x16xf32> +// CHECK: xegpu.store_nd %[[T4]], %[[T5]][%{{.*}}] : vector<8xf32>, !xegpu.tensor_desc<8x16xf32> gpu.module @xevm_module{ gpu.func @load_dpas_store(%arg0: memref<8x16xf16>, %arg1: memref<16x16xf16>, %arg2: memref<8x16xf32>) { %c0 = arith.constant 0 : index - %0 = xegpu.create_nd_tdesc %arg0[%c0, %c0] : memref<8x16xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.layout> - %1 = xegpu.load_nd %0 {layout_result_0 = #xegpu.layout} : !xegpu.tensor_desc<8x16xf16, #xegpu.layout> -> vector<8x16xf16> - %2 = xegpu.create_nd_tdesc %arg1[%c0, %c0] : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.layout> - %3 = xegpu.load_nd %2 {layout_result_0 = #xegpu.layout} : !xegpu.tensor_desc<16x16xf16, #xegpu.layout> -> vector<16x16xf16> + %0 = xegpu.create_nd_tdesc %arg0 : memref<8x16xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.layout> + %1 = xegpu.load_nd %0[%c0, %c0] {layout_result_0 = #xegpu.layout} : !xegpu.tensor_desc<8x16xf16, #xegpu.layout> -> vector<8x16xf16> + %2 = xegpu.create_nd_tdesc %arg1: memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.layout> + %3 = xegpu.load_nd %2[%c0, %c0] {layout_result_0 = #xegpu.layout} : !xegpu.tensor_desc<16x16xf16, #xegpu.layout> -> vector<16x16xf16> %4 = xegpu.dpas %1, %3 {layout_result_0 = #xegpu.layout} : vector<8x16xf16>, vector<16x16xf16> -> vector<8x16xf32> - %5 = xegpu.create_nd_tdesc %arg2[%c0, %c0] : memref<8x16xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.layout> - xegpu.store_nd %4, %5 : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32, #xegpu.layout> + %5 = xegpu.create_nd_tdesc %arg2 : memref<8x16xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.layout> + xegpu.store_nd %4, %5[%c0, %c0] : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32, #xegpu.layout> gpu.return } } @@ -125,27 +125,27 @@ gpu.module @xevm_module{ // ----- // CHECK-LABEL: gpu.func @load_dpas_postop_store // CHECK: (%[[ARG0:[0-9a-zA-Z]+]]: memref<8x16xf16>, %[[ARG1:[0-9a-zA-Z]+]]: memref<16x16xf16>, %[[ARG2:[0-9a-zA-Z]+]]: memref<8x16xf32>) { -// CHECK: %[[T2:.*]] = xegpu.create_nd_tdesc %[[ARG0]][%{{.*}}] : memref<8x16xf16> -> !xegpu.tensor_desc<8x16xf16> -// CHECK: %[[T3:.*]] = xegpu.load_nd %[[T2]] : !xegpu.tensor_desc<8x16xf16> -> vector<8xf16> -// CHECK: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG1]][%{{.*}}] : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16> -// CHECK: %[[T1:.*]] = xegpu.load_nd %[[T0]] <{packed}> : !xegpu.tensor_desc<16x16xf16> -> vector<16xf16> +// CHECK: %[[T2:.*]] = xegpu.create_nd_tdesc %[[ARG0]] : memref<8x16xf16> -> !xegpu.tensor_desc<8x16xf16> +// CHECK: %[[T3:.*]] = xegpu.load_nd %[[T2]][%{{.*}}] : !xegpu.tensor_desc<8x16xf16> -> vector<8xf16> +// CHECK: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG1]] : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16> +// CHECK: %[[T1:.*]] = xegpu.load_nd %[[T0]][%{{.*}}] <{packed}> : !xegpu.tensor_desc<16x16xf16> -> vector<16xf16> // CHECK-DAG: %[[T4:.*]] = xegpu.dpas %[[T3]], %[[T1]] : vector<8xf16>, vector<16xf16> -> vector<8xf32> // CHECK: %[[T5:.*]] = vector.shape_cast %[[T4]] : vector<8xf32> to vector<8x1xf32> // CHECK: %[[T6:.*]] = math.exp %[[T5]] {{{.*}}} : vector<8x1xf32> // CHECK-DAG: %[[T8:.*]] = vector.shape_cast %[[T6]] : vector<8x1xf32> to vector<8xf32> -// CHECK-DAG: %[[T7:.*]] = xegpu.create_nd_tdesc %[[ARG2]][{{.*}}] : memref<8x16xf32> -> !xegpu.tensor_desc<8x16xf32> -// CHECK: xegpu.store_nd %[[T8]], %[[T7]] : vector<8xf32>, !xegpu.tensor_desc<8x16xf32> +// CHECK-DAG: %[[T7:.*]] = xegpu.create_nd_tdesc %[[ARG2]] : memref<8x16xf32> -> !xegpu.tensor_desc<8x16xf32> +// CHECK: xegpu.store_nd %[[T8]], %[[T7]][{{.*}}] : vector<8xf32>, !xegpu.tensor_desc<8x16xf32> gpu.module @xevm_module{ gpu.func @load_dpas_postop_store(%arg0: memref<8x16xf16>, %arg1: memref<16x16xf16>, %arg2: memref<8x16xf32>) { %c0 = arith.constant 0 : index - %0 = xegpu.create_nd_tdesc %arg0[%c0, %c0] : memref<8x16xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.layout> - %1 = xegpu.load_nd %0 {layout_result_0 = #xegpu.layout} : !xegpu.tensor_desc<8x16xf16, #xegpu.layout> -> vector<8x16xf16> - %2 = xegpu.create_nd_tdesc %arg1[%c0, %c0] : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.layout> - %3 = xegpu.load_nd %2 {layout_result_0 = #xegpu.layout} : !xegpu.tensor_desc<16x16xf16, #xegpu.layout> -> vector<16x16xf16> + %0 = xegpu.create_nd_tdesc %arg0 : memref<8x16xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.layout> + %1 = xegpu.load_nd %0[%c0, %c0] {layout_result_0 = #xegpu.layout} : !xegpu.tensor_desc<8x16xf16, #xegpu.layout> -> vector<8x16xf16> + %2 = xegpu.create_nd_tdesc %arg1: memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.layout> + %3 = xegpu.load_nd %2[%c0, %c0] {layout_result_0 = #xegpu.layout} : !xegpu.tensor_desc<16x16xf16, #xegpu.layout> -> vector<16x16xf16> %4 = xegpu.dpas %1, %3 {layout_result_0 = #xegpu.layout} : vector<8x16xf16>, vector<16x16xf16> -> vector<8x16xf32> %5 = math.exp %4 {layout_result_0 = #xegpu.layout} : vector<8x16xf32> - %6 = xegpu.create_nd_tdesc %arg2[%c0, %c0] : memref<8x16xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.layout> - xegpu.store_nd %5, %6 : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32, #xegpu.layout> + %6 = xegpu.create_nd_tdesc %arg2 : memref<8x16xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.layout> + xegpu.store_nd %5, %6[%c0, %c0] : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32, #xegpu.layout> gpu.return } } @@ -155,17 +155,17 @@ gpu.module @xevm_module{ // CHECK: (%[[ARG0:[0-9a-zA-Z]+]]: ui64, %[[ARG1:[0-9a-zA-Z]+]]: ui64, %[[ARG2:[0-9a-zA-Z]+]]: index, // CHECK-SAME: %[[ARG3:[0-9a-zA-Z]+]]: index, %[[ARG4:[0-9a-zA-Z]+]]: index, // CHECK-SAME: %[[ARG5:[0-9a-zA-Z]+]]: index, %[[ARG6:[0-9a-zA-Z]+]]: index, %[[ARG7:[0-9a-zA-Z]+]]: index) { -// CHECK: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG0]][{{.*}}], shape : [%[[ARG2]], %[[ARG3]]], strides : [%[[ARG4]], %[[ARG5]]] : ui64 -> !xegpu.tensor_desc<16x16xf16> -// CHECK: %[[T1:.*]] = xegpu.load_nd %[[T0]] : !xegpu.tensor_desc<16x16xf16> -> vector<16xf16> -// CHECK: %[[T2:.*]] = xegpu.create_nd_tdesc %[[ARG1]][{{.*}}], shape : [%[[ARG2]], %[[ARG3]]], strides : [%[[ARG4]], %[[ARG5]]] : ui64 -> !xegpu.tensor_desc<16x16xf16> -// CHECK: xegpu.store_nd %[[T1]], %[[T2]] : vector<16xf16>, !xegpu.tensor_desc<16x16xf16> +// CHECK: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG0]], shape : [%[[ARG2]], %[[ARG3]]], strides : [%[[ARG4]], %[[ARG5]]] : ui64 -> !xegpu.tensor_desc<16x16xf16> +// CHECK: %[[T1:.*]] = xegpu.load_nd %[[T0]][{{.*}}] : !xegpu.tensor_desc<16x16xf16> -> vector<16xf16> +// CHECK: %[[T2:.*]] = xegpu.create_nd_tdesc %[[ARG1]], shape : [%[[ARG2]], %[[ARG3]]], strides : [%[[ARG4]], %[[ARG5]]] : ui64 -> !xegpu.tensor_desc<16x16xf16> +// CHECK: xegpu.store_nd %[[T1]], %[[T2]][{{.*}}] : vector<16xf16>, !xegpu.tensor_desc<16x16xf16> gpu.module @xevm_module{ gpu.func @create_nd_tdesc_non_memref(%arg0: ui64, %arg1: ui64, %arg2: index, %arg3: index, %arg4: index, %arg5: index, %arg6: index, %arg7: index) { %c0 = arith.constant 0 : index - %0 = xegpu.create_nd_tdesc %arg0[%c0, %c0], shape:[%arg2, %arg3], strides:[%arg4, %arg5] : ui64 -> !xegpu.tensor_desc<16x16xf16, #xegpu.layout> - %1 = xegpu.load_nd %0 {layout_result_0 = #xegpu.layout} : !xegpu.tensor_desc<16x16xf16, #xegpu.layout> -> vector<16x16xf16> - %2 = xegpu.create_nd_tdesc %arg1[%c0, %c0], shape:[%arg2, %arg3], strides:[%arg4, %arg5] : ui64 -> !xegpu.tensor_desc<16x16xf16, #xegpu.layout> - xegpu.store_nd %1, %2 : vector<16x16xf16>, !xegpu.tensor_desc<16x16xf16, #xegpu.layout> + %0 = xegpu.create_nd_tdesc %arg0, shape:[%arg2, %arg3], strides:[%arg4, %arg5] : ui64 -> !xegpu.tensor_desc<16x16xf16, #xegpu.layout> + %1 = xegpu.load_nd %0[%c0, %c0] {layout_result_0 = #xegpu.layout} : !xegpu.tensor_desc<16x16xf16, #xegpu.layout> -> vector<16x16xf16> + %2 = xegpu.create_nd_tdesc %arg1, shape:[%arg2, %arg3], strides:[%arg4, %arg5] : ui64 -> !xegpu.tensor_desc<16x16xf16, #xegpu.layout> + xegpu.store_nd %1, %2[%c0, %c0] : vector<16x16xf16>, !xegpu.tensor_desc<16x16xf16, #xegpu.layout> gpu.return } } @@ -178,21 +178,21 @@ gpu.module @xevm_module{ // CHECK-DAG: %[[BLOCK_ID_Y:.*]] = gpu.block_id y // CHECK-DAG: %[[Y_COORD:.*]] = arith.muli %[[BLOCK_ID_Y]], %c16 : index // CHECK-DAG: %[[X_COORD:.*]] = arith.muli %[[BLOCK_ID_X]], %c8 : index -// CHECK: %[[T2:.*]] = xegpu.create_nd_tdesc %[[ARG2]][%[[X_COORD]], %[[Y_COORD]]] : memref<1024x1024xf32> -> !xegpu.tensor_desc<8x16xf32> -// CHECK-NEXT: %[[T3:.*]] = xegpu.load_nd %[[T2]] : !xegpu.tensor_desc<8x16xf32> -> vector<8xf32> +// CHECK: %[[T2:.*]] = xegpu.create_nd_tdesc %[[ARG2]] : memref<1024x1024xf32> -> !xegpu.tensor_desc<8x16xf32> +// CHECK-NEXT: %[[T3:.*]] = xegpu.load_nd %[[T2]][%[[X_COORD]], %[[Y_COORD]]] : !xegpu.tensor_desc<8x16xf32> -> vector<8xf32> // CHECK-NEXT: %[[T4:.*]] = vector.shape_cast %[[T3]] : vector<8xf32> to vector<8x1xf32> // CHECK: %[[T5:.*]] = scf.for %[[K:.*]] = %{{.*}} to %{{.*}} step %{{.*}} iter_args(%[[ARG4:.*]] = %[[T4]]) -> (vector<8x1xf32>) { -// CHECK-DAG: %[[T10:.*]] = xegpu.create_nd_tdesc %[[ARG1]][%[[K]], %[[Y_COORD]]] : memref<1024x1024xbf16> -> !xegpu.tensor_desc<16x16xbf16> -// CHECK-DAG: %[[T11:.*]] = xegpu.load_nd %[[T10]] <{packed}> : !xegpu.tensor_desc<16x16xbf16> -> vector<16xbf16> -// CHECK-DAG: %[[T12:.*]] = xegpu.create_nd_tdesc %[[ARG0]][%[[X_COORD]], %[[K]]] : memref<1024x1024xbf16> -> !xegpu.tensor_desc<8x16xbf16> -// CHECK-DAG: %[[T13:.*]] = xegpu.load_nd %[[T12]] : !xegpu.tensor_desc<8x16xbf16> -> vector<8xbf16> +// CHECK-DAG: %[[T10:.*]] = xegpu.create_nd_tdesc %[[ARG1]] : memref<1024x1024xbf16> -> !xegpu.tensor_desc<16x16xbf16> +// CHECK-DAG: %[[T11:.*]] = xegpu.load_nd %[[T10]][%[[K]], %[[Y_COORD]]] <{packed}> : !xegpu.tensor_desc<16x16xbf16> -> vector<16xbf16> +// CHECK-DAG: %[[T12:.*]] = xegpu.create_nd_tdesc %[[ARG0]] : memref<1024x1024xbf16> -> !xegpu.tensor_desc<8x16xbf16> +// CHECK-DAG: %[[T13:.*]] = xegpu.load_nd %[[T12]][%[[X_COORD]], %[[K]]] : !xegpu.tensor_desc<8x16xbf16> -> vector<8xbf16> // CHECK-DAG: %[[T14:.*]] = vector.shape_cast %[[ARG4]] : vector<8x1xf32> to vector<8xf32> // CHECK-NEXT: %[[T15:.*]] = xegpu.dpas %[[T13]], %[[T11]], %[[T14]] : vector<8xbf16>, vector<16xbf16>, vector<8xf32> -> vector<8xf32> // CHECK-NEXT: %[[T16:.*]] = vector.shape_cast %[[T15]] : vector<8xf32> to vector<8x1xf32> // CHECK-NEXT: scf.yield %[[T16]] : vector<8x1xf32> // CHECK-NEXT: } // CHECK-NEXT: %[[T9:.*]] = vector.shape_cast %[[T5]] : vector<8x1xf32> to vector<8xf32> -// CHECK-NEXT: xegpu.store_nd %[[T9]], %[[T2]] : vector<8xf32>, !xegpu.tensor_desc<8x16xf32> +// CHECK-NEXT: xegpu.store_nd %[[T9]], %[[T2]][%[[X_COORD]], %[[Y_COORD]]] : vector<8xf32>, !xegpu.tensor_desc<8x16xf32> gpu.module @xevm_module{ gpu.func @gemm(%arg0: memref<1024x1024xbf16>, %arg1: memref<1024x1024xbf16>, %arg2: memref<1024x1024xf32>){ %c0 = arith.constant 0 : index @@ -203,91 +203,31 @@ gpu.func @gemm(%arg0: memref<1024x1024xbf16>, %arg1: memref<1024x1024xbf16>, %ar %block_id_y = gpu.block_id y %0 = arith.muli %block_id_x, %c8 : index %1 = arith.muli %block_id_y, %c16 : index - %2 = xegpu.create_nd_tdesc %arg2[%0, %1] : memref<1024x1024xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.layout> - %3 = xegpu.load_nd %2 {layout_result_0 = #xegpu.layout} : !xegpu.tensor_desc<8x16xf32, #xegpu.layout> -> vector<8x16xf32> + %2 = xegpu.create_nd_tdesc %arg2 : memref<1024x1024xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.layout> + %3 = xegpu.load_nd %2[%0, %1] {layout_result_0 = #xegpu.layout} : !xegpu.tensor_desc<8x16xf32, #xegpu.layout> -> vector<8x16xf32> %4 = scf.for %arg3 = %c0 to %c1024 step %c16 iter_args(%arg4 = %3) -> (vector<8x16xf32>) { - %5 = xegpu.create_nd_tdesc %arg0[%0, %arg3] : memref<1024x1024xbf16> -> !xegpu.tensor_desc<8x16xbf16, #xegpu.layout> - %6 = xegpu.create_nd_tdesc %arg1[%arg3, %1] : memref<1024x1024xbf16> -> !xegpu.tensor_desc<16x16xbf16, #xegpu.layout> - %7 = xegpu.load_nd %5 {layout_result_0 = #xegpu.layout} : !xegpu.tensor_desc<8x16xbf16, #xegpu.layout> -> vector<8x16xbf16> - %8 = xegpu.load_nd %6 {layout_result_0 = #xegpu.layout} : !xegpu.tensor_desc<16x16xbf16, #xegpu.layout> -> vector<16x16xbf16> + %5 = xegpu.create_nd_tdesc %arg0: memref<1024x1024xbf16> -> !xegpu.tensor_desc<8x16xbf16, #xegpu.layout> + %6 = xegpu.create_nd_tdesc %arg1 : memref<1024x1024xbf16> -> !xegpu.tensor_desc<16x16xbf16, #xegpu.layout> + %7 = xegpu.load_nd %5[%0, %arg3] {layout_result_0 = #xegpu.layout} : !xegpu.tensor_desc<8x16xbf16, #xegpu.layout> -> vector<8x16xbf16> + %8 = xegpu.load_nd %6[%arg3, %1] {layout_result_0 = #xegpu.layout} : !xegpu.tensor_desc<16x16xbf16, #xegpu.layout> -> vector<16x16xbf16> %9 = xegpu.dpas %7, %8, %arg4 {layout_result_0 = #xegpu.layout} : vector<8x16xbf16>, vector<16x16xbf16>, vector<8x16xf32> -> vector<8x16xf32> scf.yield %9 : vector<8x16xf32> } {layout_result_0 = #xegpu.layout} - xegpu.store_nd %4, %2 : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32, #xegpu.layout> + xegpu.store_nd %4, %2[%0, %1] : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32, #xegpu.layout> gpu.return } } -// ----- -// CHECK-LABEL: gpu.func @update_nd_offset_1d( -// CHECK: %[[ARG0:[0-9a-zA-Z]+]]: memref<256xf32>) { -// CHECK: %[[CST:.*]] = arith.constant dense<1.000000e+00> : vector<1xf32> -// CHECK: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG0]][%{{.*}}] : memref<256xf32> -> !xegpu.tensor_desc<16xf32> -// CHECK: %[[T1:.*]] = xegpu.update_nd_offset %[[T0]], [%c32] : !xegpu.tensor_desc<16xf32> -// CHECK: xegpu.store_nd %[[CST]], %[[T1]] : vector<1xf32>, !xegpu.tensor_desc<16xf32> -gpu.module @xevm_module{ - gpu.func @update_nd_offset_1d(%arg0: memref<256xf32>) { - %c0 = arith.constant 0 : index - %c32 = arith.constant 32 : index - %cst = arith.constant {layout_result_0 = #xegpu.layout} dense<1.000000e+00> : vector<16xf32> - %0 = xegpu.create_nd_tdesc %arg0[%c0] : memref<256xf32> -> !xegpu.tensor_desc<16xf32, #xegpu.layout> - %1 = xegpu.update_nd_offset %0, [%c32] : !xegpu.tensor_desc<16xf32, #xegpu.layout> - xegpu.store_nd %cst, %1 : vector<16xf32>, !xegpu.tensor_desc<16xf32, #xegpu.layout> - gpu.return - } -} - -// ----- -// CHECK-LABEL: gpu.func @update_nd_offset_2d -// CHECK: %[[ARG0:[0-9a-zA-Z]+]]: memref<256x256xf32>) { -// CHECK: %[[CST:.*]] = arith.constant dense<1.000000e+00> : vector<16xf32> -// CHECK: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG0]][%{{.*}}] : memref<256x256xf32> -> !xegpu.tensor_desc<16x16xf32> -// CHECK: %[[T1:.*]] = xegpu.update_nd_offset %[[T0]], [%c32, %c32] : !xegpu.tensor_desc<16x16xf32> -// CHECK: xegpu.store_nd %[[CST]], %[[T1]] : vector<16xf32>, !xegpu.tensor_desc<16x16xf32> -gpu.module @xevm_module{ - gpu.func @update_nd_offset_2d(%arg0: memref<256x256xf32>) { - %c0 = arith.constant 0 : index - %c32 = arith.constant 32 : index - %cst = arith.constant {layout_result_0 = #xegpu.layout} dense<1.000000e+00> : vector<16x16xf32> - %0 = xegpu.create_nd_tdesc %arg0[%c0, %c0] : memref<256x256xf32> -> !xegpu.tensor_desc<16x16xf32, #xegpu.layout> - %1 = xegpu.update_nd_offset %0, [%c32, %c32] : !xegpu.tensor_desc<16x16xf32, #xegpu.layout> - xegpu.store_nd %cst, %1 : vector<16x16xf32>, !xegpu.tensor_desc<16x16xf32, #xegpu.layout> - gpu.return - } -} - // ----- // CHECK-LABEL: gpu.func @prefetch_2d // CHECK: (%[[ARG0:[0-9a-zA-Z]+]]: memref<256x256xf16>) { -// CHECK: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG0]][%{{.*}}] : memref<256x256xf16> -> !xegpu.tensor_desc<16x16xf16> -// CHECK: xegpu.prefetch_nd %[[T0]] <{l1_hint = #xegpu.cache_hint, l2_hint = #xegpu.cache_hint}> : !xegpu.tensor_desc<16x16xf16> +// CHECK: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG0]] : memref<256x256xf16> -> !xegpu.tensor_desc<16x16xf16> +// CHECK: xegpu.prefetch_nd %[[T0]][%{{.*}}] <{l1_hint = #xegpu.cache_hint, l2_hint = #xegpu.cache_hint}> : !xegpu.tensor_desc<16x16xf16> gpu.module @xevm_module{ gpu.func @prefetch_2d(%arg0: memref<256x256xf16>) { %c0 = arith.constant 0 : index - %0 = xegpu.create_nd_tdesc %arg0[%c0, %c0] : memref<256x256xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.layout> - xegpu.prefetch_nd %0 <{l1_hint = #xegpu.cache_hint, l2_hint = #xegpu.cache_hint}> : !xegpu.tensor_desc<16x16xf16, #xegpu.layout> - gpu.return - } -} - -// ----- -// Explicitly check that update_nd_offset op's source retain layout when yielded from the warp op (PR150545) -// CHECK-LABEL: gpu.func @check_update_nd_offset_distributed_tensor_desc -// CHECK: %[[W:.*]] = gpu.warp_execute_on_lane_0(%{{.*}})[16] -> -// CHECK-SAME: (!xegpu.tensor_desc<16x16xf32, #xegpu.layout>) { -// CHECK: %[[T0:.*]] = "some_op"() : () -> !xegpu.tensor_desc<16x16xf32, #xegpu.layout> -// CHECK: gpu.yield %[[T0]] : !xegpu.tensor_desc<16x16xf32, #xegpu.layout> -// CHECK: } -// CHECK: %[[T1:.*]] = builtin.unrealized_conversion_cast %[[W]] : -// CHECK-SAME: !xegpu.tensor_desc<16x16xf32, #xegpu.layout> to !xegpu.tensor_desc<16x16xf32> {resolve_simt_type_mismatch} -// CHECK: xegpu.update_nd_offset %[[T1]], [%{{.*}}] : !xegpu.tensor_desc<16x16xf32> -gpu.module @xevm_module{ - gpu.func @check_update_nd_offset_distributed_tensor_desc() { - %c32 = arith.constant 32 : index - %cst = arith.constant {layout_result_0 = #xegpu.layout} dense<1.000000e+00> : vector<16x16xf32> - %0 = "some_op"() : () -> !xegpu.tensor_desc<16x16xf32, #xegpu.layout> - %1 = xegpu.update_nd_offset %0, [%c32, %c32] : !xegpu.tensor_desc<16x16xf32, #xegpu.layout> - xegpu.store_nd %cst, %1 : vector<16x16xf32>, !xegpu.tensor_desc<16x16xf32, #xegpu.layout> + %0 = xegpu.create_nd_tdesc %arg0 : memref<256x256xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.layout> + xegpu.prefetch_nd %0[%c0, %c0] <{l1_hint = #xegpu.cache_hint, l2_hint = #xegpu.cache_hint}> : !xegpu.tensor_desc<16x16xf16, #xegpu.layout> gpu.return } } @@ -295,13 +235,13 @@ gpu.module @xevm_module{ // ----- // CHECK-LABEL: gpu.func @prefetch_1d // CHECK: (%[[ARG0:[0-9a-zA-Z]+]]: memref<256xf16>) { -// CHECK: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG0]][%{{.*}}] : memref<256xf16> -> !xegpu.tensor_desc<16xf16> -// CHECK: xegpu.prefetch_nd %[[T0]] <{l1_hint = #xegpu.cache_hint, l2_hint = #xegpu.cache_hint}> : !xegpu.tensor_desc<16xf16> +// CHECK: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG0]] : memref<256xf16> -> !xegpu.tensor_desc<16xf16> +// CHECK: xegpu.prefetch_nd %[[T0]][%{{.*}}] <{l1_hint = #xegpu.cache_hint, l2_hint = #xegpu.cache_hint}> : !xegpu.tensor_desc<16xf16> gpu.module @xevm_module{ gpu.func @prefetch_1d(%arg0: memref<256xf16>) { %c0 = arith.constant 0 : index - %0 = xegpu.create_nd_tdesc %arg0[%c0] : memref<256xf16> -> !xegpu.tensor_desc<16xf16, #xegpu.layout> - xegpu.prefetch_nd %0 <{l1_hint = #xegpu.cache_hint, l2_hint = #xegpu.cache_hint}> : !xegpu.tensor_desc<16xf16, #xegpu.layout> + %0 = xegpu.create_nd_tdesc %arg0: memref<256xf16> -> !xegpu.tensor_desc<16xf16, #xegpu.layout> + xegpu.prefetch_nd %0[%c0] <{l1_hint = #xegpu.cache_hint, l2_hint = #xegpu.cache_hint}> : !xegpu.tensor_desc<16xf16, #xegpu.layout> gpu.return } } @@ -309,18 +249,18 @@ gpu.module @xevm_module{ // ----- // CHECK-LABEL: gpu.func @gpu_barrier({{.*}}) { // CHECK: %[[T0:.*]] = xegpu.create_nd_tdesc %{{.*}} : memref<256xf16> -> !xegpu.tensor_desc<16xf16> -// CHECK-NEXT: %[[T1:.*]] = xegpu.load_nd %[[T0]] : !xegpu.tensor_desc<16xf16> -> vector<1xf16> +// CHECK-NEXT: %[[T1:.*]] = xegpu.load_nd %[[T0]][{{.*}}] : !xegpu.tensor_desc<16xf16> -> vector<1xf16> // CHECK-NEXT: gpu.barrier // CHECK-NEXT: %[[T2:.*]] = xegpu.create_nd_tdesc %{{.*}} : memref<256xf16> -> !xegpu.tensor_desc<16xf16> -// CHECK-NEXT: xegpu.store_nd %[[T1]], %[[T2]] : vector<1xf16>, !xegpu.tensor_desc<16xf16> +// CHECK-NEXT: xegpu.store_nd %[[T1]], %[[T2]][{{.*}}] : vector<1xf16>, !xegpu.tensor_desc<16xf16> gpu.module @xevm_module{ gpu.func @gpu_barrier(%arg0: memref<256xf16>, %arg1: memref<256xf16>) { %c0 = arith.constant 0 : index - %0 = xegpu.create_nd_tdesc %arg0[%c0] : memref<256xf16> -> !xegpu.tensor_desc<16xf16, #xegpu.layout> - %1 = xegpu.load_nd %0 {layout_result_0 = #xegpu.layout} : !xegpu.tensor_desc<16xf16, #xegpu.layout> -> vector<16xf16> + %0 = xegpu.create_nd_tdesc %arg0 : memref<256xf16> -> !xegpu.tensor_desc<16xf16, #xegpu.layout> + %1 = xegpu.load_nd %0[%c0] {layout_result_0 = #xegpu.layout} : !xegpu.tensor_desc<16xf16, #xegpu.layout> -> vector<16xf16> gpu.barrier - %2 = xegpu.create_nd_tdesc %arg1[%c0] : memref<256xf16> -> !xegpu.tensor_desc<16xf16, #xegpu.layout> - xegpu.store_nd %1, %2 : vector<16xf16>, !xegpu.tensor_desc<16xf16, #xegpu.layout> + %2 = xegpu.create_nd_tdesc %arg1 : memref<256xf16> -> !xegpu.tensor_desc<16xf16, #xegpu.layout> + xegpu.store_nd %1, %2[%c0] : vector<16xf16>, !xegpu.tensor_desc<16xf16, #xegpu.layout> gpu.return } } @@ -341,6 +281,7 @@ gpu.module @xevm_module{ // CHECK-NEXT: vector.from_elements %[[RED0]], %[[RED1]] : vector<2xf32> gpu.module @xevm_module{ gpu.func @vector_multi_reduction_dim1_distributed_dim0_reduction() { + %c0 = arith.constant 0 : index %0 = "some_def"() : () -> !xegpu.tensor_desc<1x32xf32, #xegpu.layout> %src = "some_def"() {layout_result_0 = #xegpu.layout} : () -> (vector<16x32xf32>) %acc = arith.constant {layout_result_0 = #xegpu.slice<#xegpu.layout, dims = [0]>} dense<0.0> : vector<32xf32> @@ -348,7 +289,7 @@ gpu.func @vector_multi_reduction_dim1_distributed_dim0_reduction() { : vector<16x32xf32> to vector<32xf32> %3 = vector.shape_cast %1 {layout_result_0 = #xegpu.layout} : vector<32xf32> to vector<1x32xf32> - xegpu.store_nd %3, %0 : vector<1x32xf32>, !xegpu.tensor_desc<1x32xf32, #xegpu.layout> + xegpu.store_nd %3, %0[%c0, %c0] : vector<1x32xf32>, !xegpu.tensor_desc<1x32xf32, #xegpu.layout> gpu.return } } @@ -367,6 +308,7 @@ gpu.func @vector_multi_reduction_dim1_distributed_dim0_reduction() { // CHECK-REDUCTION-NEXT: vector.from_elements %[[W]]#2, %[[W]]#1 : vector<2xf32> gpu.module @xevm_module{ gpu.func @vector_multi_reduction_dim1_distributed_dim1_reduction() { + %c0 = arith.constant 0 : index %0 = "some_def"() : () -> !xegpu.tensor_desc<2x16xf32, #xegpu.layout> %src = "some_def"() {layout_result_0 = #xegpu.layout} : () -> (vector<2x16xf32>) %acc = arith.constant {layout_result_0 = #xegpu.slice<#xegpu.layout, dims = [1]>} dense<0.0> : vector<2xf32> @@ -375,7 +317,7 @@ gpu.func @vector_multi_reduction_dim1_distributed_dim1_reduction() { %3 = vector.shape_cast %1 {layout_result_0 = #xegpu.layout} : vector<2xf32> to vector<2x1xf32> %4 = vector.broadcast %3 {layout_result_0 = #xegpu.layout} : vector<2x1xf32> to vector<2x16xf32> - xegpu.store_nd %4, %0 : vector<2x16xf32>, !xegpu.tensor_desc<2x16xf32, #xegpu.layout> + xegpu.store_nd %4, %0[%c0, %c0] : vector<2x16xf32>, !xegpu.tensor_desc<2x16xf32, #xegpu.layout> gpu.return } } @@ -394,6 +336,7 @@ gpu.func @vector_multi_reduction_dim1_distributed_dim1_reduction() { // CHECK-NEXT: vector.from_elements %[[R0]], %[[R1]] : vector<2xf32> gpu.module @xevm_module{ gpu.func @vector_multi_reduction_dim0_distributed_dim1_reduction() { + %c0 = arith.constant 0 : index %0 = "some_def"() : () -> !xegpu.tensor_desc<32x1xf32, #xegpu.layout> %src = "some_def"() {layout_result_0 = #xegpu.layout} : () -> (vector<32x16xf32>) %acc = arith.constant {layout_result_0 = #xegpu.slice<#xegpu.layout, dims = [1]>} dense<0.0> : vector<32xf32> @@ -401,7 +344,7 @@ gpu.func @vector_multi_reduction_dim0_distributed_dim1_reduction() { : vector<32x16xf32> to vector<32xf32> %3 = vector.shape_cast %1 {layout_result_0 = #xegpu.layout} : vector<32xf32> to vector<32x1xf32> - xegpu.store_nd %3, %0 : vector<32x1xf32>, !xegpu.tensor_desc<32x1xf32, #xegpu.layout> + xegpu.store_nd %3, %0[%c0, %c0] : vector<32x1xf32>, !xegpu.tensor_desc<32x1xf32, #xegpu.layout> gpu.return } } @@ -422,6 +365,7 @@ gpu.func @vector_multi_reduction_dim0_distributed_dim1_reduction() { // CHECK-REDUCTION-NEXT: vector.from_elements %[[W]]#2, %[[W]]#1 : vector<2xf32> gpu.module @xevm_module{ gpu.func @vector_multi_reduction_dim0_distributed_dim0_reduction() { + %c0 = arith.constant 0 : index %0 = "some_def"() : () -> !xegpu.tensor_desc<16x2xf32, #xegpu.layout> %src = "some_def"() {layout_result_0 = #xegpu.layout} : () -> (vector<16x2xf32>) %acc = arith.constant {layout_result_0 = #xegpu.slice<#xegpu.layout, dims = [0]>} dense<0.0> : vector<2xf32> @@ -430,7 +374,7 @@ gpu.func @vector_multi_reduction_dim0_distributed_dim0_reduction() { %3 = vector.shape_cast %1 {layout_result_0 = #xegpu.layout} : vector<2xf32> to vector<1x2xf32> %4 = vector.broadcast %3 {layout_result_0 = #xegpu.layout} : vector<1x2xf32> to vector<16x2xf32> - xegpu.store_nd %4, %0 : vector<16x2xf32>, !xegpu.tensor_desc<16x2xf32, #xegpu.layout> + xegpu.store_nd %4, %0[%c0, %c0] : vector<16x2xf32>, !xegpu.tensor_desc<16x2xf32, #xegpu.layout> gpu.return } } @@ -537,9 +481,9 @@ gpu.module @xevm_module{ %cst = arith.constant {layout_result_0 = #xegpu.layout} dense<1.000000e+00> : vector<16xf16> %ptr = memref.extract_aligned_pointer_as_index %arg0 : memref<256x256xf16> -> index %ptr_i64 = arith.index_cast %ptr : index to i64 - %tdesc = xegpu.create_nd_tdesc %ptr_i64[%c0], shape: [16], strides: [16] : i64 + %tdesc = xegpu.create_nd_tdesc %ptr_i64, shape: [16], strides: [16] : i64 -> !xegpu.tensor_desc<16xf16, #xegpu.layout> - xegpu.store_nd %cst, %tdesc : vector<16xf16>, !xegpu.tensor_desc<16xf16, #xegpu.layout> + xegpu.store_nd %cst, %tdesc[%c0] : vector<16xf16>, !xegpu.tensor_desc<16xf16, #xegpu.layout> gpu.return } } @@ -549,7 +493,7 @@ gpu.module @xevm_module{ // CHECK-LABEL: gpu.func @vector_transpose( // CHECK: %[[CST:.*]] = arith.constant dense<1.000000e+00> : vector<2xf32> // CHECK: %[[DEST:.*]] = xegpu.create_nd_tdesc %{{.*}} : memref<2x16xf32> -> !xegpu.tensor_desc<2x16xf32> -// CHECK: xegpu.store_nd %[[CST]], %[[DEST]] : vector<2xf32>, !xegpu.tensor_desc<2x16xf32> +// CHECK: xegpu.store_nd %[[CST]], %[[DEST]][{{.*}}] : vector<2xf32>, !xegpu.tensor_desc<2x16xf32> gpu.module @xevm_module{ gpu.func @vector_transpose(%arg0: memref<2x16xf32>) { %cst = arith.constant {layout_result_0 = #xegpu.layout} dense<1.000000e+00> @@ -557,9 +501,9 @@ gpu.module @xevm_module{ %c0 = arith.constant 0 : index %transpose = vector.transpose %cst, [1, 0] {layout_result_0 = #xegpu.layout} : vector<16x2xf32> to vector<2x16xf32> - %0 = xegpu.create_nd_tdesc %arg0[%c0, %c0] : memref<2x16xf32> + %0 = xegpu.create_nd_tdesc %arg0 : memref<2x16xf32> -> !xegpu.tensor_desc<2x16xf32, #xegpu.layout> - xegpu.store_nd %transpose, %0 : vector<2x16xf32>, + xegpu.store_nd %transpose, %0[%c0, %c0] : vector<2x16xf32>, !xegpu.tensor_desc<2x16xf32, #xegpu.layout> gpu.return } @@ -570,7 +514,7 @@ gpu.module @xevm_module{ // CHECK: %[[CAST:.*]] = vector.bitcast %{{.*}} : vector<4x2xi8> to vector<4x1xi16> // CHECK-NEXT: %[[DEST:.*]] = xegpu.create_nd_tdesc %{{.*}} : memref<4x16xi16> -> !xegpu.tensor_desc<4x16xi16> // CHECK-NEXT: %[[T0:.*]] = vector.shape_cast %[[CAST]] : vector<4x1xi16> to vector<4xi16> -// CHECK-NEXT: xegpu.store_nd %[[T0]], %[[DEST]] : vector<4xi16>, !xegpu.tensor_desc<4x16xi16> +// CHECK-NEXT: xegpu.store_nd %[[T0]], %[[DEST]][{{.*}}] : vector<4xi16>, !xegpu.tensor_desc<4x16xi16> gpu.module @xevm_module{ gpu.func @vector_bitcast(%arg0: memref<4x16xi16>) { %cst = "some_op"() {layout_result_0 = #xegpu.layout} @@ -578,9 +522,9 @@ gpu.module @xevm_module{ %bitcast = vector.bitcast %cst {layout_result_0 = #xegpu.layout} : vector<4x32xi8> to vector<4x16xi16> %c0 = arith.constant 0 : index - %0 = xegpu.create_nd_tdesc %arg0[%c0, %c0] : memref<4x16xi16> + %0 = xegpu.create_nd_tdesc %arg0 : memref<4x16xi16> -> !xegpu.tensor_desc<4x16xi16, #xegpu.layout> - xegpu.store_nd %bitcast, %0 : vector<4x16xi16>, + xegpu.store_nd %bitcast, %0[%c0, %c0] : vector<4x16xi16>, !xegpu.tensor_desc<4x16xi16, #xegpu.layout> gpu.return } @@ -589,10 +533,10 @@ gpu.module @xevm_module{ // ----- // CHECK-LABEL: gpu.func @mma_transpose_b( // CHECK: %[[ARG0:[0-9a-zA-Z]+]]: memref<8x16xf16>, %[[ARG1:[0-9a-zA-Z]+]]: memref<16x8xi32>, %[[ARG2:[0-9a-zA-Z]+]]: memref<8x16xf32>) { -// CHECK-DAG: %[[ADESC:.*]] = xegpu.create_nd_tdesc %[[ARG0]][%{{.*}}] : memref<8x16xf16> -> !xegpu.tensor_desc<8x16xf16> -// CHECK-DAG: %[[BDESC:.*]] = xegpu.create_nd_tdesc %[[ARG1]][%{{.*}}] : memref<16x8xi32> -> !xegpu.tensor_desc<16x8xi32> -// CHECK-DAG: %[[A:.*]] = xegpu.load_nd %[[ADESC]] : !xegpu.tensor_desc<8x16xf16> -> vector<8xf16> -// CHECK-DAG: %[[B:.*]] = xegpu.load_nd %[[BDESC]] <{transpose = array}> : !xegpu.tensor_desc<16x8xi32> -> vector<8xi32> +// CHECK-DAG: %[[ADESC:.*]] = xegpu.create_nd_tdesc %[[ARG0]] : memref<8x16xf16> -> !xegpu.tensor_desc<8x16xf16> +// CHECK-DAG: %[[BDESC:.*]] = xegpu.create_nd_tdesc %[[ARG1]] : memref<16x8xi32> -> !xegpu.tensor_desc<16x8xi32> +// CHECK-DAG: %[[A:.*]] = xegpu.load_nd %[[ADESC]][%{{.*}}] : !xegpu.tensor_desc<8x16xf16> -> vector<8xf16> +// CHECK-DAG: %[[B:.*]] = xegpu.load_nd %[[BDESC]][%{{.*}}] <{transpose = array}> : !xegpu.tensor_desc<16x8xi32> -> vector<8xi32> // CHECK-NEXT: %[[BCAST0:.*]] = vector.shape_cast %[[B]] : vector<8xi32> to vector<1x8xi32> // CHECK-NEXT: %[[BCAST1:.*]] = vector.bitcast %[[BCAST0]] : vector<1x8xi32> to vector<1x16xf16> // CHECK-NEXT: %[[BCAST2:.*]] = vector.shape_cast %[[BCAST1]] : vector<1x16xf16> to vector<16xf16> @@ -600,13 +544,13 @@ gpu.module @xevm_module{ gpu.module @xevm_module{ gpu.func @mma_transpose_b(%arg0: memref<8x16xf16>, %arg1: memref<16x8xi32>, %arg2: memref<8x16xf32>) { %c0 = arith.constant 0 : index - %0 = xegpu.create_nd_tdesc %arg0[%c0, %c0] : memref<8x16xf16> + %0 = xegpu.create_nd_tdesc %arg0 : memref<8x16xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.layout> - %1 = xegpu.load_nd %0 {layout_result_0 = #xegpu.layout} + %1 = xegpu.load_nd %0[%c0, %c0] {layout_result_0 = #xegpu.layout} : !xegpu.tensor_desc<8x16xf16, #xegpu.layout> -> vector<8x16xf16> - %2 = xegpu.create_nd_tdesc %arg1[%c0, %c0] : memref<16x8xi32> + %2 = xegpu.create_nd_tdesc %arg1 : memref<16x8xi32> -> !xegpu.tensor_desc<16x8xi32, #xegpu.layout> - %3 = xegpu.load_nd %2 {layout_result_0 = #xegpu.layout} + %3 = xegpu.load_nd %2[%c0, %c0] {layout_result_0 = #xegpu.layout} : !xegpu.tensor_desc<16x8xi32, #xegpu.layout> -> vector<16x8xi32> %4 = vector.bitcast %3 {layout_result_0 = #xegpu.layout} : vector<16x8xi32> to vector<16x16xf16> @@ -614,9 +558,9 @@ gpu.module @xevm_module{ : vector<16x16xf16> to vector<16x16xf16> %6 = xegpu.dpas %1, %5 {layout_result_0 = #xegpu.layout} : vector<8x16xf16>, vector<16x16xf16> -> vector<8x16xf32> - %7 = xegpu.create_nd_tdesc %arg2[%c0, %c0] : memref<8x16xf32> + %7 = xegpu.create_nd_tdesc %arg2 : memref<8x16xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.layout> - xegpu.store_nd %6, %7 : vector<8x16xf32>, + xegpu.store_nd %6, %7[%c0, %c0] : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32, #xegpu.layout> gpu.return