




Traits
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MLIR allows for a truly open ecosystem, as any dialect may define attributes, operations, and types that suit a specific level of abstraction. Traits are a mechanism which abstracts implementation details and properties that are common across many different attributes/operations/types/etc.. Traits may be used to specify special properties and constraints of the object, including whether an operation has side effects or that its output has the same type as the input. Some examples of operation traits are Commutative, SingleResult, Terminator, etc. See the more comprehensive list of operation traits below for more examples of what is possible.


Defining a Trait

Traits may be defined in C++ by inheriting from the TraitBase<ConcreteType, TraitType> class for the specific IR type. For attributes, this is AttributeTrait::TraitBase. For operations, this is OpTrait::TraitBase. For types, this is TypeTrait::TraitBase. This base class takes as template parameters:


	ConcreteType

	The concrete class type that this trait was attached to.




	TraitType

	The type of the trait class that is being defined, for use with the Curiously Recurring Template Pattern.






A derived trait class is expected to take a single template that corresponds to the ConcreteType. An example trait definition is shown below:

template <typename ConcreteType>
class MyTrait : public TraitBase<ConcreteType, MyTrait> {
};


Operation traits may also provide a verifyTrait hook, that is called when verifying the concrete operation. The trait verifiers will currently always be invoked before the main Op::verify.

template <typename ConcreteType>
class MyTrait : public OpTrait::TraitBase<ConcreteType, MyTrait> {
public:
  /// Override the 'verifyTrait' hook to add additional verification on the
  /// concrete operation.
  static LogicalResult verifyTrait(Operation *op) {
    // ...
  }
};


Note: It is generally good practice to define the implementation of the verifyTrait hook out-of-line as a free function when possible to avoid instantiating the implementation for every concrete operation type.

Operation traits may also provide a foldTrait hook that is called when folding the concrete operation. The trait folders will only be invoked if the concrete operation fold is either not implemented, fails, or performs an in-place fold.

The following signature of fold will be called if it is implemented and the op has a single result.

template <typename ConcreteType>
class MyTrait : public OpTrait::TraitBase<ConcreteType, MyTrait> {
public:
  /// Override the 'foldTrait' hook to support trait based folding on the
  /// concrete operation.
  static OpFoldResult foldTrait(Operation *op, ArrayRef<Attribute> operands) { {
    // ...
  }
};


Otherwise, if the operation has a single result and the above signature is not implemented, or the operation has multiple results, then the following signature will be used (if implemented):

template <typename ConcreteType>
class MyTrait : public OpTrait::TraitBase<ConcreteType, MyTrait> {
public:
  /// Override the 'foldTrait' hook to support trait based folding on the
  /// concrete operation.
  static LogicalResult foldTrait(Operation *op, ArrayRef<Attribute> operands,
                                 SmallVectorImpl<OpFoldResult> &results) { {
    // ...
  }
};


Note: It is generally good practice to define the implementation of the foldTrait hook out-of-line as a free function when possible to avoid instantiating the implementation for every concrete operation type.


Parametric Traits

The above demonstrates the definition of a simple self-contained trait. It is also often useful to provide some static parameters to the trait to control its behavior. Given that the definition of the trait class is rigid, i.e. we must have a single template argument for the concrete object, the templates for the parameters will need to be split out. An example is shown below:

template <int Parameter>
class MyParametricTrait {
public:
  template <typename ConcreteType>
  class Impl : public TraitBase<ConcreteType, Impl> {
    // Inside of 'Impl' we have full access to the template parameters
    // specified above.
  };
};





Attaching a Trait

Traits may be used when defining a derived object type, by simply appending the name of the trait class to the end of the base object class operation type:

/// Here we define 'MyAttr' along with the 'MyTrait' and `MyParametric trait
/// classes we defined previously.
class MyAttr : public Attribute::AttrBase<MyAttr, ..., MyTrait, MyParametricTrait<10>::Impl> {};
/// Here we define 'MyOp' along with the 'MyTrait' and `MyParametric trait
/// classes we defined previously.
class MyOp : public Op<MyOp, MyTrait, MyParametricTrait<10>::Impl> {};
/// Here we define 'MyType' along with the 'MyTrait' and `MyParametric trait
/// classes we defined previously.
class MyType : public Type::TypeBase<MyType, ..., MyTrait, MyParametricTrait<10>::Impl> {};



Attaching Operation Traits in ODS

To use an operation trait in the ODS framework, we need to provide a definition of the trait class. This can be done using the NativeOpTrait and ParamNativeOpTrait classes. ParamNativeOpTrait provides a mechanism in which to specify arguments to a parametric trait class with an internal Impl.

// The argument is the c++ trait class name.
def MyTrait : NativeOpTrait<"MyTrait">;

// The first argument is the parent c++ class name. The second argument is a
// string containing the parameter list.
class MyParametricTrait<int prop>
  : NativeOpTrait<"MyParametricTrait", !cast<string>(!head(parameters))>;

These can then be used in the traits list of an op definition:

def OpWithInferTypeInterfaceOp : Op<...[MyTrait, MyParametricTrait<10>]> { ... }

See the documentation on operation definitions for more details.




Using a Trait

Traits may be used to provide additional methods, static fields, or other information directly on the concrete object. Traits internally become Base classes of the concrete operation, so all of these are directly accessible. To expose this information opaquely to transformations and analyses, interfaces may be used.

To query if a specific object contains a specific trait, the hasTrait<> method may be used. This takes as a template parameter the trait class, which is the same as the one passed when attaching the trait to an operation.

Operation *op = ..;
if (op->hasTrait<MyTrait>() || op->hasTrait<MyParametricTrait<10>::Impl>())
  ...;




Operation Traits List

MLIR provides a suite of traits that provide various functionalities that are common across many different operations. Below is a list of some key traits that may be used directly by any dialect. The format of the header for each trait section goes as follows:


	Header

	(C++ class – ODS class(if applicable))







AffineScope


	OpTrait::AffineScope – AffineScope



This trait is carried by region holding operations that define a new scope for the purposes of polyhedral optimization and the affine dialect in particular. Any SSA values of ‘index’ type that either dominate such operations, or are defined at the top-level of such operations, or appear as region arguments for such operations automatically become valid symbols for the polyhedral scope defined by that operation. As a result, such SSA values could be used as the operands or index operands of various affine dialect operations like affine.for, affine.load, and affine.store. The polyhedral scope defined by an operation with this trait includes all operations in its region excluding operations that are nested inside of other operations that themselves have this trait.



AutomaticAllocationScope


	OpTrait::AutomaticAllocationScope – AutomaticAllocationScope



This trait is carried by region holding operations that define a new scope for automatic allocation. Such allocations are automatically freed when control is transferred back from the regions of such operations. As an example, allocations performed by std.alloca are automatically freed when control leaves the region of its closest surrounding op that has the trait AutomaticAllocationScope.



Broadcastable


	OpTrait::ResultsBroadcastableShape – ResultsBroadcastableShape



This trait adds the property that the operation is known to have broadcast-compatible operands and its result types’ shape is the broadcast compatible with the shape of the broadcasted operands. Specifically, starting from the most varying dimension, each dimension pair of the two operands’ shapes should either be the same or one of them is one. Also, the result shape should have the corresponding dimension equal to the larger one, if known. Shapes are checked partially if ranks or dimensions are not known. For example, an op with tensor<?x2xf32> and tensor<2xf32> as operand types and tensor<3x2xf32> as the result type is broadcast-compatible.

This trait requires that the operands are either vector or tensor types.



Commutative


	OpTrait::IsCommutative – Commutative



This trait adds the property that the operation is commutative, i.e. X op Y == Y op X



Function-Like


	OpTrait::FunctionLike



This trait provides APIs for operations that behave like functions. In particular:


	Ops must be symbols, i.e. also have the Symbol trait;

	Ops have a single region with multiple blocks that corresponds to the body of the function;

	the absence of a region corresponds to an external function;

	arguments of the first block of the region are treated as function arguments;

	they can have argument and result attributes that are stored in dictionary attributes on the operation itself.



This trait does NOT provide type support for the functions, meaning that concrete Ops must handle the type of the declared or defined function. getTypeAttrName() is a convenience function that returns the name of the attribute that can be used to store the function type, but the trait makes no assumption based on it.



HasParent


	OpTrait::HasParent<typename ParentOpType> – HasParent<string op>



This trait provides APIs and verifiers for operations that can only be nested within regions that are attached to operations of ParentOpType.



IsolatedFromAbove


	OpTrait::IsIsolatedFromAbove – IsolatedFromAbove



This trait signals that the regions of an operations are known to be isolated from above. This trait asserts that the regions of an operation will not capture, or reference, SSA values defined above the region scope. This means that the following is invalid if foo.region_op is defined as IsolatedFromAbove:

%result = constant 10 : i32
foo.region_op {
  foo.yield %result : i32
}

This trait is an important structural property of the IR, and enables operations to have passes scheduled under them.



MemRefsNormalizable


	OpTrait::MemRefsNormalizable – MemRefsNormalizable



This trait is used to flag operations that consume or produce values of MemRef type where those references can be ‘normalized’. In cases where an associated MemRef has a non-identity memory-layout specification, such normalizable operations can be modified so that the MemRef has an identity layout specification. This can be implemented by associating the operation with its own index expression that can express the equivalent of the memory-layout specification of the MemRef type. See [the -normalize-memrefs pass]. (https://mlir.llvm.org/docs/Passes/#-normalize-memrefs-normalize-memrefs)



Single Block with Implicit Terminator


	OpTrait::SingleBlockImplicitTerminator<typename TerminatorOpType> : SingleBlockImplicitTerminator<string op>



This trait provides APIs and verifiers for operations with regions that have a single block that must terminate with TerminatorOpType.



SymbolTable


	OpTrait::SymbolTable – SymbolTable



This trait is used for operations that define a SymbolTable.



Terminator


	OpTrait::IsTerminator – Terminator



This trait provides verification and functionality for operations that are known to be terminators.






Pass Infrastructure

[TOC]

Passes represent the basic infrastructure for transformation and optimization. This document provides a quickstart to the pass infrastructure in MLIR and how to use it.

See MLIR specification for more information about MLIR and its core aspects, such as the IR structure and operations.

See MLIR Rewrites for a quick start on graph rewriting in MLIR. If your transformation involves pattern matching operation DAGs, this is a great place to start.


Operation Pass

In MLIR, the main unit of abstraction and transformation is an operation. As such, the pass manager is designed to work on instances of operations at different levels of nesting. The structure of the pass manager, and the concept of nesting, is detailed further below. All passes in MLIR derive from OperationPass and adhere to the following restrictions; any noncompliance will lead to problematic behavior in multithreaded and other advanced scenarios:


	Modify anything within the parent block/region/operation/etc, outside of the current operation being operated on. This includes adding or removing operations from the parent block.

	Maintain pass state across invocations of runOnOperation. A pass may be run on several different operations with no guarantee of execution order.

	When multithreading, a specific pass instance may not even execute on all operations within the module. As such, a pass should not rely on running on all operations.




	Modify the state of another operation not nested within the current operation being operated on.

	Other threads may be operating on different operations within the module simultaneously.




	Maintain any global mutable state, e.g. static variables within the source file. All mutable state should be maintained by an instance of the pass.

	Must be copy-constructible, multiple instances of the pass may be created by the pass manager to process operations in parallel.

	Inspect the IR of sibling operations. Other threads may be modifying these operations in parallel.



When creating an operation pass, there are two different types to choose from depending on the usage scenario:


OperationPass : Op-Specific

An op-specific operation pass operates explicitly on a given operation type. This operation type must adhere to the restrictions set by the pass manager for pass execution.

To define an op-specific operation pass, a derived class must adhere to the following:


	Inherit from the CRTP class OperationPass and provide the operation type as an additional template parameter.

	Override the virtual void runOnOperation() method.



A simple pass may look like:

namespace {
struct MyFunctionPass : public OperationPass<MyFunctionPass, FuncOp> {
  void runOnOperation() override {
    // Get the current FuncOp operation being operated on.
    FuncOp f = getOperation();

    // Walk the operations within the function.
    f.walk([](Operation *inst) {
      ....
    });
  }
};
} // end anonymous namespace

// Register this pass to make it accessible to utilities like mlir-opt.
// (Pass registration is discussed more below)
static PassRegistration<MyFunctionPass> pass(
    "flag-name-to-invoke-pass-via-mlir-opt", "Pass description here");




OperationPass : Op-Agnostic

An op-agnostic pass operates on the operation type of the pass manager that it is added to. This means that a pass that operates on several different operation types in the same way only needs one implementation.

To create an operation pass, a derived class must adhere to the following:


	Inherit from the CRTP class OperationPass.

	Override the virtual void runOnOperation() method.



A simple pass may look like:

struct MyOperationPass : public OperationPass<MyOperationPass> {
  void runOnOperation() override {
    // Get the current operation being operated on.
    Operation *op = getOperation();
    ...
  }
};




Dependent Dialects

Dialects must be loaded in the MLIRContext before entities from these dialects (operations, types, attributes, …) can be created. Dialects must be loaded before starting the multi-threaded pass pipeline execution. To this end, a pass that can create an entity from a dialect that isn’t already loaded must express this by overriding the getDependentDialects() method and declare this list of Dialects explicitly.




Analysis Management

An important concept, along with transformation passes, are analyses. These are conceptually similar to transformation passes, except that they compute information on a specific operation without modifying it. In MLIR, analyses are not passes but free-standing classes that are computed lazily on-demand and cached to avoid unnecessary recomputation. An analysis in MLIR must adhere to the following:


	Provide a valid constructor taking an Operation*.

	Must not modify the given operation.



An analysis may provide additional hooks to control various behavior:


	bool isInvalidated(const AnalysisManager::PreservedAnalyses &)



Given a preserved analysis set, the analysis returns true if it should truly be invalidated. This allows for more fine-tuned invalidation in cases where an analysis wasn’t explicitly marked preserved, but may be preserved (or invalidated) based upon other properties such as analyses sets.


Querying Analyses

The base OperationPass class provides utilities for querying and preserving analyses for the current operation being processed.


	OperationPass automatically provides the following utilities for querying analyses:

	getAnalysis<>

	Get an analysis for the current operation, constructing it if necessary.




	getCachedAnalysis<>

	Get an analysis for the current operation, if it already exists.




	getCachedParentAnalysis<>

	Get an analysis for a given parent operation, if it exists.




	getCachedChildAnalysis<>

	Get an analysis for a given child operation, if it exists.




	getChildAnalysis<>

	Get an analysis for a given child operation, constructing it if necessary.









Using the example passes defined above, let’s see some examples:

/// An interesting analysis.
struct MyOperationAnalysis {
  // Compute this analysis with the provided operation.
  MyOperationAnalysis(Operation *op);
};

void MyOperationPass::runOnOperation() {
  // Query MyOperationAnalysis for the current operation.
  MyOperationAnalysis &myAnalysis = getAnalysis<MyOperationAnalysis>();

  // Query a cached instance of MyOperationAnalysis for the current operation.
  // It will not be computed if it doesn't exist.
  auto optionalAnalysis = getCachedAnalysis<MyOperationAnalysis>();
  if (optionalAnalysis)
    ...

  // Query a cached instance of MyOperationAnalysis for the parent operation of
  // the current operation. It will not be computed if it doesn't exist.
  auto optionalAnalysis = getCachedParentAnalysis<MyOperationAnalysis>();
  if (optionalAnalysis)
    ...
}




Preserving Analyses

Analyses that are constructed after being queried by a pass are cached to avoid unnecessary computation if they are requested again later. To avoid stale analyses, all analyses are assumed to be invalidated by a pass. To avoid invalidation, a pass must specifically mark analyses that are known to be preserved.


	All Pass classes automatically provide the following utilities for preserving analyses:

	markAllAnalysesPreserved

	markAnalysesPreserved<>






void MyOperationPass::runOnOperation() {
  // Mark all analyses as preserved. This is useful if a pass can guarantee
  // that no transformation was performed.
  markAllAnalysesPreserved();

  // Mark specific analyses as preserved. This is used if some transformation
  // was performed, but some analyses were either unaffected or explicitly
  // preserved.
  markAnalysesPreserved<MyAnalysis, MyAnalyses...>();
}





Pass Failure

Passes in MLIR are allowed to gracefully fail. This may happen if some invariant of the pass was broken, potentially leaving the IR in some invalid state. If such a situation occurs, the pass can directly signal a failure to the pass manager. If a pass signaled a failure when executing, no other passes in the pipeline will execute and the PassManager::run will return failure. Failure signaling is provided in the form of a signalPassFailure method.

void MyPass::runOnOperation() {
  // Signal failure on a broken invariant.
  if (some_broken_invariant) {
    signalPassFailure();
    return;
  }
}




Pass Manager

Above we introduced the different types of passes and their constraints. Now that we have our pass we need to be able to run it over a specific module. This is where the pass manager comes into play. The PassManager class is used to configure and run a pipeline. The OpPassManager class is used to schedule passes to run at a specific level of nesting.


OpPassManager

An OpPassManager is essentially a collection of passes to execute on an operation of a given type. This operation type must adhere to the following requirement:


	Must be registered and marked IsolatedFromAbove.


	Passes are expected to not modify operations at or above the current operation being processed. If the operation is not isolated, it may inadvertently modify the use-list of an operation it is not supposed to modify.






Passes can be added to a pass manager via addPass. The pass must either be an op-specific pass operating on the same operation type as OpPassManager, or an op-agnostic pass.

An OpPassManager cannot be created directly, but must be explicitly nested within another OpPassManager via the nest<> method. This method takes the operation type that the nested pass manager will operate on. At the top-level, a PassManager acts as an OpPassManager that operates on the module operation. Nesting in this sense, corresponds to the structural nesting within Regions of the IR.

For example, the following .mlir:

module {
  spv.module "Logical" "GLSL450" {
    func @foo() {
      ...
    }
  }
}

Has the nesting structure of:

`module`
  `spv.module`
    `function`

Below is an example of constructing a pipeline that operates on the above structure:

PassManager pm(ctx);

// Add a pass on the top-level module operation.
pm.addPass(std::make_unique<MyModulePass>());

// Nest a pass manager that operates on spirv module operations nested directly
// under the top-level module.
OpPassManager &nestedModulePM = pm.nest<spirv::ModuleOp>();
nestedModulePM.addPass(std::make_unique<MySPIRVModulePass>());

// Nest a pass manager that operates on functions within the nested SPIRV
// module.
OpPassManager &nestedFunctionPM = nestedModulePM.nest<FuncOp>();
nestedFunctionPM.addPass(std::make_unique<MyFunctionPass>());

// Run the pass manager on the top-level module.
Module m = ...;
if (failed(pm.run(m)))
    ... // One of the passes signaled a failure.


The above pass manager would contain the following pipeline structure:

OpPassManager<ModuleOp>
  MyModulePass
  OpPassManager<spirv::ModuleOp>
    MySPIRVModulePass
    OpPassManager<FuncOp>
      MyFunctionPass

These pipelines are then run over a single operation at a time. This means that, for example, given a series of consecutive passes on FuncOp, it will execute all on the first function, then all on the second function, etc. until the entire program has been run through the passes. This provides several benefits:


	This improves the cache behavior of the compiler, because it is only touching a single function at a time, instead of traversing the entire program.

	This improves multi-threading performance by reducing the number of jobs that need to be scheduled, as well as increasing the efficiency of each job. An entire function pipeline can be run on each function asynchronously.






Pass Registration

Briefly shown in the example definitions of the various pass types is the PassRegistration class. This is a utility to register derived pass classes so that they may be created, and inspected, by utilities like mlir-opt. Registering a pass class takes the form:

static PassRegistration<MyPass> pass("command-line-arg", "description");



	MyPass is the name of the derived pass class.

	“command-line-arg” is the argument to use on the command line to invoke the pass from mlir-opt.

	“description” is a description of the pass.



For passes that cannot be default-constructed, PassRegistration accepts an optional third argument that takes a callback to create the pass:

static PassRegistration<MyParametricPass> pass(
    "command-line-arg", "description",
    []() -> std::unique_ptr<Pass> {
      std::unique_ptr<Pass> p = std::make_unique<MyParametricPass>(/*options*/);
      /*... non-trivial-logic to configure the pass ...*/;
      return p;
    });


This variant of registration can be used, for example, to accept the configuration of a pass from command-line arguments and pass it over to the pass constructor. Make sure that the pass is copy-constructible in a way that does not share data as the pass manager may create copies of the pass to run in parallel.


Pass Pipeline Registration

Described above is the mechanism used for registering a specific derived pass class. On top of that, MLIR allows for registering custom pass pipelines in a similar fashion. This allows for custom pipelines to be available to tools like mlir-opt in the same way that passes are, which is useful for encapsulating common pipelines like the “-O1” series of passes. Pipelines are registered via a similar mechanism to passes in the form of PassPipelineRegistration. Compared to PassRegistration, this class takes an additional parameter in the form of a pipeline builder that modifies a provided OpPassManager.

void pipelineBuilder(OpPassManager &pm) {
  pm.addPass(std::make_unique<MyPass>());
  pm.addPass(std::make_unique<MyOtherPass>());
}

// Register an existing pipeline builder function.
static PassPipelineRegistration<> pipeline(
  "command-line-arg", "description", pipelineBuilder);

// Register an inline pipeline builder.
static PassPipelineRegistration<> pipeline(
  "command-line-arg", "description", [](OpPassManager &pm) {
    pm.addPass(std::make_unique<MyPass>());
    pm.addPass(std::make_unique<MyOtherPass>());
  });


Pipeline registration also allows for simplified registration of specializations for existing passes:

static PassPipelineRegistration<> foo10(
    "foo-10", "Foo Pass 10", [] { return std::make_unique<FooPass>(10); } );




Textual Pass Pipeline Specification

In the previous sections, we showed how to register passes and pass pipelines with a specific argument and description. Once registered, these can be used on the command line to configure a pass manager. The limitation of using these arguments directly is that they cannot build a nested pipeline. For example, if our module has another module nested underneath, with just -my-module-pass there is no way to specify that this pass should run on the nested module and not the top-level module. This is due to the flattened nature of the command line.

To circumvent this limitation, MLIR also supports a textual description of a pass pipeline. This allows for explicitly specifying the structure of the pipeline to add to the pass manager. This includes the nesting structure, as well as the passes and pass pipelines to run. A textual pipeline is defined as a series of names, each of which may in itself recursively contain a nested pipeline description. The syntax for this specification is as follows:

pipeline          ::= op-name `(` pipeline-element (`,` pipeline-element)* `)`
pipeline-element  ::= pipeline | (pass-name | pass-pipeline-name) options?
options           ::= '{' (key ('=' value)?)+ '}'


	op-name

	This corresponds to the mnemonic name of an operation to run passes on, e.g. func or module.




	pass-name | pass-pipeline-name

	This corresponds to the command-line argument of a registered pass or pass pipeline, e.g. cse or canonicalize.




	options

	Options are pass specific key value pairs that are handled as described in the instance specific pass options section.






For example, the following pipeline:

$ mlir-opt foo.mlir -cse -canonicalize -convert-std-to-llvm

Can also be specified as (via the -pass-pipeline flag):

$ mlir-opt foo.mlir -pass-pipeline='func(cse, canonicalize), convert-std-to-llvm'

In order to support round-tripping your pass to the textual representation using OpPassManager::printAsTextualPipeline(raw_ostream&), override Pass::printAsTextualPipeline(raw_ostream&) to format your pass-name and options in the format described above.



Instance Specific Pass Options

Options may be specified for a parametric pass. Individual options are defined using the LLVM command line flag definition rules. These options will then be parsed at pass construction time independently for each instance of the pass. To provide options for passes, the Option<> and OptionList<> classes may be used:

struct MyPass ... {
  /// Make sure that we have a valid default constructor and copy constructor to
  /// make sure that the options are initialized properly.
  MyPass() = default;
  MyPass(const MyPass& pass) {}

  // These just forward onto llvm::cl::list and llvm::cl::opt respectively.
  Option<int> exampleOption{*this, "flag-name", llvm::cl::desc("...")};
  ListOption<int> exampleListOption{*this, "list-flag-name",
                                    llvm::cl::desc("...")};
};


For pass pipelines, the PassPipelineRegistration templates take an additional optional template parameter that is the Option struct definition to be used for that pipeline. To use pipeline specific options, create a class that inherits from mlir::PassPipelineOptions that contains the desired options. When using PassPipelineRegistration, the constructor now takes a function with the signature void (OpPassManager &pm, const MyPipelineOptions&) which should construct the passes from the options and pass them to the pm:

struct MyPipelineOptions : public PassPipelineOptions {
  // These just forward onto llvm::cl::list and llvm::cl::opt respectively.
  Option<int> exampleOption{*this, "flag-name", llvm::cl::desc("...")};
  ListOption<int> exampleListOption{*this, "list-flag-name",
                                    llvm::cl::desc("...")};
};


static mlir::PassPipelineRegistration<MyPipelineOptions> pipeline(
    "example-pipeline", "Run an example pipeline.",
    [](OpPassManager &pm, const MyPipelineOptions &pipelineOptions) {
      // Initialize the pass manager.
    });





Pass Statistics

Statistics are a way to keep track of what the compiler is doing and how effective various transformations are. It is often useful to see what effect specific transformations have on a particular program, and how often they trigger. Pass statistics are instance specific which allow for taking this a step further as you are able to see the effect of placing a particular transformation at specific places within the pass pipeline. For example, they help answer questions like What happens if I run CSE again here?.

Statistics can be added to a pass by using the ‘Pass::Statistic’ class. This class takes as a constructor arguments: the parent pass, a name, and a description. This class acts like an unsigned integer, and may be incremented and updated accordingly. These statistics use the same infrastructure as llvm::Statistic and thus have similar usage constraints. Collected statistics can be dumped by the pass manager programmatically via PassManager::enableStatistics; or via -pass-statistics and -pass-statistics-display on the command line.

An example is shown below:

struct MyPass : public OperationPass<MyPass> {
  Statistic testStat{this, "testStat", "A test statistic"};

  void runOnOperation() {
    ...

    // Update our statistic after some invariant was hit.
    ++testStat;

    ...
  }
};


The collected statistics may be aggregated in two types of views:

A pipeline view that models the structure of the pass manager, this is the default view:

$ mlir-opt -pass-pipeline='func(my-pass,my-pass)' foo.mlir -pass-statistics

===-------------------------------------------------------------------------===
                         ... Pass statistics report ...
===-------------------------------------------------------------------------===
'func' Pipeline
  MyPass
    (S) 15 testStat - A test statistic
  VerifierPass
  MyPass
    (S)  6 testStat - A test statistic
  VerifierPass
VerifierPass

And a list view that aggregates all instances of a specific pass together:

$ mlir-opt -pass-pipeline='func(my-pass, my-pass)' foo.mlir -pass-statistics -pass-statistics-display=list

===-------------------------------------------------------------------------===
                         ... Pass statistics report ...
===-------------------------------------------------------------------------===
MyPass
  (S) 21 testStat - A test statistic



Declarative Pass Specification

Some aspects of a Pass may be specified declaratively, in a form similar to operations. This specification simplifies several mechanisms used when defining passes. It can be used for generating pass registration calls, defining boilerplate pass utilities, and generating pass documentation.

Consider the following pass specified in C++:

struct MyPass : PassWrapper<MyPass, OperationPass<ModuleOp>> {
  ...

  /// Options.
  Option<bool> option{
      *this, "example-option",
      llvm::cl::desc("An example option"), llvm::cl::init(true)};
  ListOption<int64_t> listOption{
      *this, "example-list",
      llvm::cl::desc("An example list option"), llvm::cl::ZeroOrMore,
      llvm::cl::MiscFlags::CommaSeparated};

  /// Statistics.
  Statistic statistic{this, "example-statistic", "An example statistic"};
};

/// Expose this pass to the outside world.
std::unique_ptr<Pass> foo::createMyPass() {
  return std::make_unique<MyPass>();
}

static PassRegistration<MyPass> pass("my-pass", "My pass summary");


This pass may be specified declaratively as so:

def MyPass : Pass<"my-pass", "ModuleOp"> {
  let summary = "My Pass Summary";
  let description = [{
    Here we can now give a much larger description of `MyPass`, including all of
    its various constraints and behavior.
  }];

  // A constructor must be provided to specify how to create a default instance
  // of MyPass.
  let constructor = "foo::createMyPass()";

  // Specify any options.
  let options = [
    Option<"option", "example-option", "bool", /*default=*/"true",
           "An example option">,
    ListOption<"listOption", "example-list", "int64_t",
               "An example list option",
               "llvm::cl::ZeroOrMore, llvm::cl::MiscFlags::CommaSeparated">
  ];

  // Specify any statistics.
  let statistics = [
    Statistic<"statistic", "example-statistic", "An example statistic">
  ];
}

Using the gen-pass-decls generator, we can generate the much of the boilerplater above automatically. This generator takes as an input a -name parameter, that provides a tag for the group of passes that are being generated. This generator produces two chunks of output:

The first is the code for registering the declarative passes with the global registry. For each pass, the generator produces a registerFooPass where Foo is the name of the definition specified in tablegen. It also generates a registerGroupPasses, where Group is the tag provided via the -name input parameter, that registers all of the passes present.

#define GEN_PASS_REGISTRATION
#include "Passes.h.inc"

void registerMyPasses() {
  // Register all of our passes.
  registerMyPasses();

  // Register `MyPass` specifically.
  registerMyPassPass();
}


The second is a base class for each of the passes, with each containing most of the boiler plate related to pass definition. These classes are named in the form of MyPassBase, where MyPass is the name of the definition in tablegen. We can update the original C++ pass definition as so:

/// Include the generated base pass class definitions.
#define GEN_PASS_CLASSES
#include "Passes.h.inc"

// Define the main class as deriving from the generated base class.
struct MyPass : MyPassBase<MyPass> {
  ...
};

/// Expose this pass to the outside world.
std::unique_ptr<Pass> foo::createMyPass() {
  return std::make_unique<MyPass>();
}


Using the gen-pass-doc generator, we can generate markdown documentation for each of our passes. See Passes.md for example output of real MLIR passes.


Tablegen Specification

The Pass class is used to begin a new pass definition. This class takes as an argument the command line argument to attribute to the pass, as well as an optional string corresponding to the operation type that the pass operates on. It contains the following fields:


	summary

	A short one line summary of the pass, used as the description when registering the pass.




	description

	A longer, more detailed description of the pass. This is used when generating pass documentation.




	dependentDialects

	A list of strings that are the Dialect classes this pass can introduce.




	constructor

	A piece of C++ code used to create a default instance of the pass.




	options

	A list of pass options used by the pass.




	statistics

	A list of pass statistics used by the pass.







Options

Options can be specified by the Option and ListOption classes. The Option class takes the following fields:


	C++ variable name

	A name to use for the generated option variable.




	argument

	The command line argument of the option.




	type

	The C++ type of the option.




	default value

	The default option value.




	description

	A one line description of the option.




	additional option flags

	A string containing any additional options necessary to construct the option.






The ListOption class takes the following fields:


	C++ variable name

	A name to use for the generated option variable.




	argument

	The command line argument of the option.




	element type

	The C++ type of the list element.




	description

	A one line description of the option.




	additional option flags

	A string containing any additional options necessary to construct the option.








Statistic

Statistics can be specified via the Statistic, which takes the following fields:


	C++ variable name

	A name to use for the generated statistic variable.




	display name

	The name used when displaying the statistic.




	description

	A one line description of the statistic.










Pass Instrumentation

MLIR provides a customizable framework to instrument pass execution and analysis computation. This is provided via the PassInstrumentation class. This class provides hooks into the PassManager that observe various pass events:


	runBeforePipeline

	This callback is run just before a pass pipeline, i.e. pass manager, is executed.




	runAfterPipeline

	This callback is run right after a pass pipeline has been executed, successfully or not.




	runBeforePass

	This callback is run just before a pass is executed.




	runAfterPass

	This callback is run right after a pass has been successfully executed. If this hook is executed, runAfterPassFailed will not be.




	runAfterPassFailed

	This callback is run right after a pass execution fails. If this hook is executed, runAfterPass will not be.




	runBeforeAnalysis

	This callback is run just before an analysis is computed.




	runAfterAnalysis

	This callback is run right after an analysis is computed.






PassInstrumentation objects can be registered directly with a PassManager instance via the addInstrumentation method. Instrumentations added to the PassManager are run in a stack like fashion, i.e. the last instrumentation to execute a runBefore* hook will be the first to execute the respective runAfter* hook. Below in an example instrumentation that counts the number of times DominanceInfo is computed:

struct DominanceCounterInstrumentation : public PassInstrumentation {
  unsigned &count;

  DominanceCounterInstrumentation(unsigned &count) : count(count) {}
  void runAfterAnalysis(llvm::StringRef, TypeID id, Operation *) override {
    if (id == TypeID::get<DominanceInfo>())
      ++count;
  }
};

MLIRContext *ctx = ...;
PassManager pm(ctx);

// Add the instrumentation to the pass manager.
unsigned domInfoCount;
pm.addInstrumentation(
    std::make_unique<DominanceCounterInstrumentation>(domInfoCount));

// Run the pass manager on a module operation.
ModuleOp m = ...;
if (failed(pm.run(m)))
    ...

llvm::errs() << "DominanceInfo was computed " << domInfoCount << " times!\n";



Standard Instrumentations

MLIR utilizes the pass instrumentation framework to provide a few useful developer tools and utilities. Each of these instrumentations are immediately available to all users of the MLIR pass framework.


Pass Timing

The PassTiming instrumentation provides timing information about the execution of passes and computation of analyses. This provides a quick glimpse into what passes are taking the most time to execute, as well as how much of an effect your pass has on the total execution time of the pipeline. Users can enable this instrumentation directly on the PassManager via enableTiming. This instrumentation is also made available in mlir-opt via the -pass-timing flag. The PassTiming instrumentation provides several different display modes for the timing results, each of which is described below:


List Display Mode

In this mode, the results are displayed in a list sorted by total time with each pass/analysis instance aggregated into one unique result. This view is useful for getting an overview of what analyses/passes are taking the most time in a pipeline. This display mode is available in mlir-opt via -pass-timing-display=list.

$ mlir-opt foo.mlir -mlir-disable-threading -pass-pipeline='func(cse,canonicalize)' -convert-std-to-llvm -pass-timing -pass-timing-display=list

===-------------------------------------------------------------------------===
                      ... Pass execution timing report ...
===-------------------------------------------------------------------------===
  Total Execution Time: 0.0203 seconds

   ---Wall Time---  --- Name ---
   0.0047 ( 55.9%)  Canonicalizer
   0.0019 ( 22.2%)  VerifierPass
   0.0016 ( 18.5%)  LLVMLoweringPass
   0.0003 (  3.4%)  CSE
   0.0002 (  1.9%)  (A) DominanceInfo
   0.0084 (100.0%)  Total



Pipeline Display Mode

In this mode, the results are displayed in a nested pipeline view that mirrors the internal pass pipeline that is being executed in the pass manager. This view is useful for understanding specifically which parts of the pipeline are taking the most time, and can also be used to identify when analyses are being invalidated and recomputed. This is the default display mode.

$ mlir-opt foo.mlir -mlir-disable-threading -pass-pipeline='func(cse,canonicalize)' -convert-std-to-llvm -pass-timing

===-------------------------------------------------------------------------===
                      ... Pass execution timing report ...
===-------------------------------------------------------------------------===
  Total Execution Time: 0.0249 seconds

   ---Wall Time---  --- Name ---
   0.0058 ( 70.8%)  'func' Pipeline
   0.0004 (  4.3%)    CSE
   0.0002 (  2.6%)      (A) DominanceInfo
   0.0004 (  4.8%)    VerifierPass
   0.0046 ( 55.4%)    Canonicalizer
   0.0005 (  6.2%)    VerifierPass
   0.0005 (  5.8%)  VerifierPass
   0.0014 ( 17.2%)  LLVMLoweringPass
   0.0005 (  6.2%)  VerifierPass
   0.0082 (100.0%)  Total



Multi-threaded Pass Timing

When multi-threading is enabled in the pass manager the meaning of the display slightly changes. First, a new timing column is added, User Time, that displays the total time spent across all threads. Secondly, the Wall Time column displays the longest individual time spent amongst all of the threads. This means that the Wall Time column will continue to give an indicator on the perceived time, or clock time, whereas the User Time will display the total cpu time.

$ mlir-opt foo.mlir -pass-pipeline='func(cse,canonicalize)' -convert-std-to-llvm -pass-timing

===-------------------------------------------------------------------------===
                      ... Pass execution timing report ...
===-------------------------------------------------------------------------===
  Total Execution Time: 0.0078 seconds

   ---User Time---   ---Wall Time---  --- Name ---
   0.0177 ( 88.5%)     0.0057 ( 71.3%)  'func' Pipeline
   0.0044 ( 22.0%)     0.0015 ( 18.9%)    CSE
   0.0029 ( 14.5%)     0.0012 ( 15.2%)      (A) DominanceInfo
   0.0038 ( 18.9%)     0.0015 ( 18.7%)    VerifierPass
   0.0089 ( 44.6%)     0.0025 ( 31.1%)    Canonicalizer
   0.0006 (  3.0%)     0.0002 (  2.6%)    VerifierPass
   0.0004 (  2.2%)     0.0004 (  5.4%)  VerifierPass
   0.0013 (  6.5%)     0.0013 ( 16.3%)  LLVMLoweringPass
   0.0006 (  2.8%)     0.0006 (  7.0%)  VerifierPass
   0.0200 (100.0%)     0.0081 (100.0%)  Total




IR Printing

When debugging it is often useful to dump the IR at various stages of a pass pipeline. This is where the IR printing instrumentation comes into play. This instrumentation allows for conditionally printing the IR before and after pass execution by optionally filtering on the pass being executed. This instrumentation can be added directly to the PassManager via the enableIRPrinting method. mlir-opt provides a few useful flags for utilizing this instrumentation:


	print-ir-before=(comma-separated-pass-list)

	Print the IR before each of the passes provided within the pass list.




	print-ir-before-all

	Print the IR before every pass in the pipeline.






$ mlir-opt foo.mlir -pass-pipeline='func(cse)' -print-ir-before=cse

*** IR Dump Before CSE ***
func @simple_constant() -> (i32, i32) {
  %c1_i32 = constant 1 : i32
  %c1_i32_0 = constant 1 : i32
  return %c1_i32, %c1_i32_0 : i32, i32
}


	print-ir-after=(comma-separated-pass-list)

	Print the IR after each of the passes provided within the pass list.




	print-ir-after-all

	Print the IR after every pass in the pipeline.






$ mlir-opt foo.mlir -pass-pipeline='func(cse)' -print-ir-after=cse

*** IR Dump After CSE ***
func @simple_constant() -> (i32, i32) {
  %c1_i32 = constant 1 : i32
  return %c1_i32, %c1_i32 : i32, i32
}


	print-ir-after-change

	Only print the IR after a pass if the pass mutated the IR. This helps to reduce the number of IR dumps for “uninteresting” passes.

	Note: Changes are detected by comparing a hash of the operation before and after the pass. This adds additional run-time to compute the hash of the IR, and in some rare cases may result in false-positives depending on the collision rate of the hash algorithm used.

	Note: This option should be used in unison with one of the other ‘print-ir-after’ options above, as this option alone does not enable printing.






$ mlir-opt foo.mlir -pass-pipeline='func(cse,cse)' -print-ir-after=cse -print-ir-after-change

*** IR Dump After CSE ***
func @simple_constant() -> (i32, i32) {
  %c1_i32 = constant 1 : i32
  return %c1_i32, %c1_i32 : i32, i32
}


	print-ir-module-scope

	Always print the top-level module operation, regardless of pass type or operation nesting level.

	Note: Printing at module scope should only be used when multi-threading is disabled(-mlir-disable-threading)






$ mlir-opt foo.mlir -mlir-disable-threading -pass-pipeline='func(cse)' -print-ir-after=cse -print-ir-module-scope

*** IR Dump After CSE ***  ('func' operation: @bar)
func @bar(%arg0: f32, %arg1: f32) -> f32 {
  ...
}

func @simple_constant() -> (i32, i32) {
  %c1_i32 = constant 1 : i32
  %c1_i32_0 = constant 1 : i32
  return %c1_i32, %c1_i32_0 : i32, i32
}

*** IR Dump After CSE ***  ('func' operation: @simple_constant)
func @bar(%arg0: f32, %arg1: f32) -> f32 {
  ...
}

func @simple_constant() -> (i32, i32) {
  %c1_i32 = constant 1 : i32
  return %c1_i32, %c1_i32 : i32, i32
}





Crash and Failure Reproduction

The pass manager in MLIR contains a builtin mechanism to generate reproducibles in the even of a crash, or a pass failure. This functionality can be enabled via PassManager::enableCrashReproducerGeneration or via the command line flag pass-pipeline-crash-reproducer. In either case, an argument is provided that corresponds to the output .mlir file name that the reproducible should be written to. The reproducible contains the configuration of the pass manager that was executing, as well as the initial IR before any passes were run. A potential reproducible may have the form:

// configuration: -pass-pipeline='func(cse, canonicalize), inline'
// note: verifyPasses=false

module {
  func @foo() {
    ...
  }
}


Local Reproducer Generation

An additional flag may be passed to PassManager::enableCrashReproducerGeneration, and specified via pass-pipeline-local-reproducer on the command line, that signals that the pass manager should attempt to generate a “local” reproducer. This will attempt to generate a reproducer containing IR right before the pass that fails. This is useful for situations where the crash is known to be within a specific pass, or when the original input relies on components (like dialects or passes) that may not always be available.

For example, if the failure in the previous example came from canonicalize, the following reproducer will be generated:

// configuration: -pass-pipeline='func(canonicalize)'
// note: verifyPasses=false

module {
  func @foo() {
    ...
  }
}






Table-driven Declarative Rewrite Rule (DRR)

In addition to subclassing the mlir::RewritePattern C++ class, MLIR also supports defining rewrite rules in a declarative manner. Similar to Op Definition Specification (ODS), this is achieved via TableGen, which is a language to maintain records of domain-specific information. The rewrite rules are specified concisely in a TableGen record, which will be expanded into an equivalent mlir::RewritePattern subclass at compiler build time.

This manual explains in detail all of the available mechanisms for defining rewrite rules in such a declarative manner. It aims to be a specification instead of a tutorial. Please refer to Quickstart tutorial to adding MLIR graph rewrite for the latter.

Given that declarative rewrite rules depend on op definition specification, this manual assumes knowledge of the ODS doc.


Benefits

Compared to the hand-written C++ classes, this declarative approach has several benefits, including but not limited to:


	Being declarative: The pattern creator just needs to state the rewrite pattern declaratively, without worrying about the concrete C++ methods to call.

	Removing boilerplate and showing the very essence of the rewrite: mlir::RewritePattern is already good at hiding boilerplate for defining a rewrite rule. But we still need to write the class and function structures required by the C++ programming language, inspect ops for matching, and call op build() methods for constructing. These statements are typically quite simple and similar, so they can be further condensed with auto-generation. Because we reduce the boilerplate to the bare minimum, the declarative rewrite rule will just contain the very essence of the rewrite. This makes it very easy to understand the pattern.





Strengths and Limitations

The declarative rewrite rule is operation-based: it describes a rule to match against a directed acyclic graph (DAG) of operations and generate DAGs of operations. This gives DRR both its strengths and limitations: it is good at expressing op to op conversions, but not that well suited for, say, converting an op into a loop nest.

Per the current implementation, DRR does not have good support for the following features:


	Matching and generating ops with regions.

	Matching and generating ops with block arguments.

	Matching multi-result ops in nested patterns.

	Matching and generating variadic operand/result ops in nested patterns.

	Packing and unpacking variadic operands/results during generation.

	NativeCodeCall returning more than one results.





Rule Definition

The core construct for defining a rewrite rule is defined in OpBase.td as

class Pattern<
    dag sourcePattern, list<dag> resultPatterns,
    list<dag> additionalConstraints = [],
    dag benefitsAdded = (addBenefit 0)>;

A declarative rewrite rule contains two main components:


	A source pattern, which is used for matching a DAG of operations.

	One or more result patterns, which are used for generating DAGs of operations to replace the matched DAG of operations.



We allow multiple result patterns to support multi-result ops and auxiliary ops, but frequently we just want to convert one DAG of operations to another DAG of operations. There is a handy wrapper of Pattern, Pat, which takes a single result pattern:

class Pat<
    dag sourcePattern, dag resultPattern,
    list<dag> additionalConstraints = [],
    dag benefitsAdded = (addBenefit 0)> :
  Pattern<sourcePattern, [resultPattern], additionalConstraints, benefitAdded>;

Each pattern is specified as a TableGen dag object with the syntax of (operator arg0, arg1, ...).

operator is typically an MLIR op, but it can also be other directives. argN is for matching (if used in source pattern) or generating (if used in result pattern) the N-th argument for operator. If the operator is some MLIR operation, it means the N-th argument as specified in the arguments list of the op’s definition. Therefore, we say op argument specification in pattern is position-based: the position where they appear matters.

argN can be a dag object itself, thus we can have nested dag tree to model the def-use relationship between ops.


Source pattern

The source pattern is for matching a DAG of operations. Arguments in the dag object are intended to capture the op arguments. They can also be used to further limit the match criteria. The capturing is done by specifying a symbol starting with the $ sign, while further constraints are introduced by specifying a TypeConstraint (for an operand) or a AttrConstraint (for an attribute).


Binding op arguments and limiting the match

For example,

def AOp : Op<"a_op"> {
    let arguments = (ins
      AnyType:$a_input,
      AnyAttr:$a_attr
    );

    let results = (outs
      AnyType:$a_output
    );
}

def : Pat<(AOp $input, F32Attr:$attr), ...>;

In the above, we are matching an AOp whose $input can be anything valid as defined by the op and whose $attr must be a float attribute. If the match succeeds, we bind the $input symbol to the op’s only input ($a_input) and $attr to the only attribute ($a_attr); we can reference them using $input and $attr in result patterns and additional constraints.

The pattern is position-based: the symbol names used for capturing here do not need to match with the op definition as shown in the above example. As another example, the pattern can be written as def : Pat<(AOp $a, F32Attr:$b), ...>; and use $a and $b to refer to the captured input and attribute. But using the ODS name directly in the pattern is also allowed.

Also note that we only need to add TypeConstraint or AttributeConstraint when we need to further limit the match criteria. If all valid cases to the op are acceptable, then we can leave the constraint unspecified.

$_ is a special symbol to mean ignore capturing an argument. For example, def : Pat<(AOp $_, $b), ...> means only $b is interesting to capture and will be referenced later in result patterns. It’s still possible to place additional constraints even if the symbol is not to be captured; for such case, you can simply use just the TypeConstraint or AttributeConstraint without a bound symbol, for example, def : Pat<(AOp $a, F32Attr), ...>.



Matching DAG of operations

To match a DAG of ops, use nested dag objects:


def BOp : Op<"b_op"> {
    let arguments = (ins);

    let results = (outs
      AnyType:$b_output
    );
}


def : Pat<(AOp (BOp), $attr), ...>;

The above pattern matches an AOp whose only operand is generated by a BOp, that is, the following MLIR code:

%0 = "b_op"() : () -> (...)
%1 = "a_op"(%0) {attr: ...} : () -> (...)



Binding op results

To bind a symbol to the results of a matched op for later reference, attach the symbol to the op itself:

def : Pat<(AOp (BOp:$b_result), $attr), ...>;

The above will bind $b_result to the matched BOp’s result. (There are more details regarding multi-result ops, which is covered later.)




Result pattern

The result pattern is for generating a DAG of operations. Arguments in the dag object are intended to reference values captured in the source pattern and potentially apply transformations.


Referencing bound symbols

For example,

def COp : Op<"c_op"> {
    let arguments = (ins
      AnyType:$c_input,
      AnyAttr:$c_attr
    );

    let results = (outs
      AnyType:$c_output
    );
}

def : Pat<(AOp $input, $attr), (COp $input, $attr)>;

In the above, AOp’s only operand and attribute are bound to $input and $attr, respectively. We then reference them in the result pattern for generating the COp by passing them in as arguments to COp’s build() method.

We can also reference symbols bound to matched op’s results:

def : Pat<(AOp (BOp:$b_result) $attr), (COp $b_result $attr)>;

In the above, we are using BOp’s result for building COp.



Building operations

Given that COp was specified with table-driven op definition, there will be several build() methods generated for it. One of them has aggregated parameters for result types, operands, and attributes in the signature: void COp::build(..., ArrayRef<Type> resultTypes, Array<Value> operands, ArrayRef<NamedAttribute> attr). The pattern in the above calls this build() method for constructing the COp.

In general, arguments in the result pattern will be passed directly to the build() method to leverage the auto-generated build() method, list them in the pattern by following the exact same order as the ODS arguments definition. Otherwise, a custom build() method that matches the argument list is required.

Right now all ODS-generated build() methods require specifying the result type(s), unless the op has known traits like SameOperandsAndResultType that we can use to auto-generate a build() method with result type deduction. When generating an op to replace the result of the matched root op, we can use the matched root op’s result type when calling the ODS-generated builder. Otherwise (e.g., generating an auxiliary op or generating an op with a nested result pattern), DRR will not be able to deduce the result type(s). The pattern author will need to define a custom builder that has result type deduction ability via OpBuilder in ODS. For example, in the following pattern

def : Pat<(AOp $input, $attr), (COp (AOp $input, $attr) $attr)>;

AOp is generated via a nested result pattern; DRR won’t be able to deduce the result type for it. A custom builder for AOp should be defined and it should deduce the result type by itself. The builder should have the separate parameter for each operand and attribute and deduce the result type internally by itself. For example, for the above AOp, a possible builder is:


void AOp::build(OpBuilder &builder, OperationState &state,
                Value input, Attribute attr) {
  state.addOperands({input});
  state.addAttribute("a_attr", attr);
  Type type = ...; // Deduce result type here
  state.addTypes({type});
}


Failing to define such a builder will result in an error at C++ compilation time saying the call to AOp::build() cannot be resolved because of the number of parameters mismatch.



Generating DAG of operations

dag objects can be nested to generate a DAG of operations:

def : Pat<(AOp $input, $attr), (COp (BOp), $attr)>;

In the above, we generate a BOp, and then use its result to generate the COp to replace the matched AOp.



Binding op results

In the result pattern, we can bind to the result(s) of a newly built op by attaching symbols to the op. (But we cannot bind to op arguments given that they are referencing previously bound symbols.) This is useful for reusing newly created results where suitable. For example,

def DOp : Op<"d_op"> {
    let arguments = (ins
      AnyType:$d_input1,
      AnyType:$d_input2,
    );

    let results = (outs
      AnyType:$d_output
    );
}

def : Pat<(AOp $input, $ignored_attr), (DOp (BOp:$b_result) $b_result)>;

In this pattern, an AOp is matched and replaced with a DOp whose two operands are from the result of a single BOp. This is only possible by binding the result of the BOp to a name and reuse it for the second operand of the DOp



NativeCodeCall: transforming the generated op

Sometimes the captured arguments are not exactly what we want so they cannot be directly fed in as arguments to build the new op. For such cases, we can apply transformations on the arguments by calling into C++ helper functions. This is achieved by NativeCodeCall.

For example, if we want to capture some op’s attributes and group them as an array attribute to construct a new op:


def TwoAttrOp : Op<"two_attr_op"> {
    let arguments = (ins
      AnyAttr:$op_attr1,
      AnyAttr:$op_attr2
    );

    let results = (outs
      AnyType:$op_output
    );
}

def OneAttrOp : Op<"one_attr_op"> {
    let arguments = (ins
      ArrayAttr:$op_attr
    );

    let results = (outs
      AnyType:$op_output
    );
}

We can write a C++ helper function:

Attribute createArrayAttr(Builder &builder, Attribute a, Attribute b) {
  return builder.getArrayAttr({a, b});
}


And then write the pattern as:

def createArrayAttr : NativeCodeCall<"createArrayAttr($_builder, $0, $1)">;

def : Pat<(TwoAttrOp $attr1, $attr2),
          (OneAttrOp (createArrayAttr $attr1, $attr2))>;

And make sure the generated C++ code from the above pattern has access to the definition of the C++ helper function.

In the above example, we are using a string to specialize the NativeCodeCall template. The string can be an arbitrary C++ expression that evaluates into some C++ object expected at the NativeCodeCall site (here it would be expecting an array attribute). Typically the string should be a function call.

Note that currently NativeCodeCall must return no more than one value or attribute. This might change in the future.


NativeCodeCall placeholders

In NativeCodeCall, we can use placeholders like $_builder, $N. The former is called special placeholder, while the latter is called positional placeholder.

NativeCodeCall right now only supports three special placeholders: $_builder, $_loc, and $_self:


	$_builder will be replaced by the current mlir::PatternRewriter.

	$_loc will be replaced by the fused location or custom location (as determined by location directive).

	$_self will be replaced with the entity NativeCodeCall is attached to.



We have seen how $_builder can be used in the above; it allows us to pass a mlir::Builder (mlir::PatternRewriter is a subclass of mlir::OpBuilder, which is a subclass of mlir::Builder) to the C++ helper function to use the handy methods on mlir::Builder.

$_self is useful when we want to write something in the form of NativeCodeCall<"...">:$symbol. For example, if we want to reverse the previous example and decompose the array attribute into two attributes:

class getNthAttr<int n> : NativeCodeCall<"$_self[" # n # "]">;

def : Pat<(OneAttrOp $attr),
          (TwoAttrOp (getNthAttr<0>:$attr), (getNthAttr<1>:$attr)>;

In the above, $_self is substituted by the attribute bound by $attr, which is OneAttrOp’s array attribute.

Positional placeholders will be substituted by the dag object parameters at the NativeCodeCall use site. For example, if we define SomeCall : NativeCodeCall<"someFn($1, $2, $0)"> and use it like (SomeCall $in0, $in1, $in2), then this will be translated into C++ call someFn($in1, $in2, $in0).



Customizing entire op building

NativeCodeCall is not only limited to transforming arguments for building an op; it can be also used to specify how to build an op entirely. An example:

If we have a C++ function for building an op:

Operation *createMyOp(OpBuilder builder, Value input, Attribute attr);


We can wrap it up and invoke it like:

def createMyOp : NativeCodeCall<"createMyOp($_builder, $0, $1)">;

def : Pat<(... $input, $attr), (createMyOp $input, $attr)>;





Supporting auxiliary ops

A declarative rewrite rule supports multiple result patterns. One of the purposes is to allow generating auxiliary ops. Auxiliary ops are operations used for building the replacement ops; but they are not directly used for replacement themselves.

For the case of uni-result ops, if there are multiple result patterns, only the value generated from the last result pattern will be used to replace the matched root op’s result; all other result patterns will be considered as generating auxiliary ops.

Normally we want to specify ops as nested dag objects if their def-use relationship can be expressed in the way that an op’s result can feed as the argument to consuming op. But that is not always possible. For example, if we want to allocate memory and store some computation (in pseudocode):

%dst = addi %lhs, %rhs

into

%shape = shape %lhs
%mem = alloc %shape
%sum = addi %lhs, %rhs
store %mem, %sum
%dst = load %mem

We cannot fit in with just one result pattern given store does not return a value. Instead we can use multiple result patterns:

def : Pattern<(AddIOp $lhs, $rhs),
              [(StoreOp (AllocOp:$mem (ShapeOp $lhs)), (AddIOp $lhs, $rhs)),
               (LoadOp $mem)];

In the above we use the first result pattern to generate the first four ops, and use the last pattern to generate the last op, which is used to replace the matched op.



Supporting multi-result ops

Multi-result ops bring extra complexity to declarative rewrite rules. We use TableGen dag objects to represent ops in patterns; there is no native way to indicate that an op generates multiple results. The approach adopted is based on naming convention: a __N suffix is added to a symbol to indicate the N-th result.


__N suffix

The __N suffix is specifying the N-th result as a whole (which can be variadic). For example, we can bind a symbol to some multi-result op and reference a specific result later:

def ThreeResultOp : Op<"three_result_op"> {
    let arguments = (ins ...);

    let results = (outs
      AnyTensor:$op_output1,
      AnyTensor:$op_output2,
      AnyTensor:$op_output3
    );
}

def : Pattern<(ThreeResultOp:$results ...),
              [(... $results__0), ..., (... $results__2), ...]>;

In the above pattern we bind $results to all the results generated by ThreeResultOp and references its $input1 and $input3 later in the result patterns.

We can also bind a symbol and reference one of its specific result at the same time, which is typically useful when generating multi-result ops:

// TwoResultOp has similar definition as ThreeResultOp, but only has two
// results.

def : Pattern<(TwoResultOp ...),
              [(ThreeResultOp:$results__2, ...),
               (replaceWithValue $results__0)]>;

In the above, we created a ThreeResultOp and bind results to its results, and uses its last result ($output3) and first result ($output1) to replace the TwoResultOp’s two results, respectively.



Replacing multi-result ops

The above example also shows how to replace a matched multi-result op.

To replace an N-result op, the result patterns must generate at least N declared values (see Declared vs. actual value for definition). If there are more than N declared values generated, only the last N declared values will be used to replace the matched op. Note that because of the existence of multi-result op, one result pattern may generate multiple declared values. So it means we do not necessarily need N result patterns to replace an N-result op. For example, to replace an op with three results, you can have

// ThreeResultOp/TwoResultOp/OneResultOp generates three/two/one result(s),
// respectively.

// Replace each result with a result generated from an individual op.
def : Pattern<(ThreeResultOp ...),
              [(OneResultOp ...), (OneResultOp ...), (OneResultOp ...)]>;

// Replace the first two results with two results generated from the same op.
def : Pattern<(ThreeResultOp ...),
              [(TwoResultOp ...), (OneResultOp ...)]>;

// Replace all three results with three results generated from the same op.
def : Pat<(ThreeResultOp ...), (ThreeResultOp ...)>;

def : Pattern<(ThreeResultOp ...),
              [(AuxiliaryOp ...), (ThreeResultOp ...)]>;

But using a single op to serve as both auxiliary op and replacement op is forbidden, i.e., the following is not allowed because that the first TwoResultOp generates two results but only the second result is used for replacing the matched op’s result:

def : Pattern<(ThreeResultOp ...),
              [(TwoResultOp ...), (TwoResultOp ...)]>;




Supporting variadic ops


Declared vs. actual value

Before going into details on variadic op support, we need to define a few terms regarding an op’s values.


	Value: either an operand or a result

	Declared operand/result/value: an operand/result/value statically declared in ODS of the op

	Actual operand/result/value: an operand/result/value of an op instance at runtime



The above terms are needed because ops can have multiple results, and some of the results can also be variadic. For example,

def MultiVariadicOp : Op<"multi_variadic_op"> {
    let arguments = (ins
      AnyTensor:$input1,
      Variadic<AnyTensor>:$input2,
      AnyTensor:$input3
    );

    let results = (outs
      AnyTensor:$output1,
      Variadic<AnyTensor>:$output2,
      AnyTensor:$output3
    );
}

We say the above op has 3 declared operands and 3 declared results. But at runtime, an instance can have 3 values corresponding to $input2 and 2 values correspond to $output2; we say it has 5 actual operands and 4 actual results. A variadic operand/result is a considered as a declared value that can correspond to multiple actual values.

[TODO]




Supplying additional constraints

Constraints can be placed on op arguments when matching. But sometimes we need to also place constraints on the matched op’s results or sometimes need to limit the matching with some constraints that cover both the arguments and the results. The third parameter to Pattern (and Pat) is for this purpose.

For example, we can write

def HasNoUseOf: Constraint<CPred<"$_self.use_empty()">, "has no use">;

def HasSameElementType : Constraint<
    CPred<"$0.cast<ShapedType>().getElementType() == "
          "$1.cast<ShapedType>().getElementType()">,
    "has same element type">;

def : Pattern<(TwoResultOp:$results $input),
              [(...), (...)],
              [(F32Tensor:$results__0), (HasNoUseOf:$results__1),
               (HasSameElementShape $results__0, $input)]>;

You can


	Use normal TypeConstraints on previous bound symbols (the first result of TwoResultOp must be a float tensor);

	Define new Constraint for previous bound symbols (the second result of TwoResultOp must has no use);

	Apply constraints on multiple bound symbols ($input and TwoResultOp’s first result must have the same element type).





Adjusting benefits

The benefit of a Pattern is an integer value indicating the benefit of matching the pattern. It determines the priorities of patterns inside the pattern rewrite driver. A pattern with a higher benefit is applied before one with a lower benefit.

In DRR, a rule is set to have a benefit of the number of ops in the source pattern. This is based on the heuristics and assumptions that:


	Larger matches are more beneficial than smaller ones.

	If a smaller one is applied first the larger one may not apply anymore.



The fourth parameter to Pattern (and Pat) allows to manually tweak a pattern’s benefit. Just supply (addBenefit N) to add N to the benefit value.




Rewrite directives


location

By default the C++ pattern expanded from a DRR pattern uses the fused location of all source ops as the location for all generated ops. This is not always the best location mapping relationship. For such cases, DRR provides the location directive to provide finer control.

location is of the following syntax:

(location $symbol0, $symbol1, ...)

where all $symbol should be bound previously in the pattern and one optional string may be specified as an attribute. The following locations are created:


	If only 1 symbol is specified then that symbol’s location is used,

	If multiple are specified then a fused location is created;

	If no symbol is specified then string must be specified and a NamedLoc is created instead;



location must be used as the last argument to an op creation. For example,

def : Pat<(LocSrc1Op:$src1 (LocSrc2Op:$src2 ...),
          (LocDst1Op (LocDst2Op ..., (location $src2)), (location "outer"))>;

In the above pattern, the generated LocDst2Op will use the matched location of LocSrc2Op while the root LocDst1Op node will used the named location outer.



replaceWithValue

The replaceWithValue directive is used to eliminate a matched op by replacing all of it uses with a captured value. It is of the following syntax:

(replaceWithValue $symbol)

where $symbol should be a symbol bound previously in the pattern.

For example,

def : Pat<(Foo $input), (replaceWithValue $input)>;

The above pattern removes the Foo and replaces all uses of Foo with $input.




Debugging Tips


Run mlir-tblgen to see the generated content

TableGen syntax sometimes can be obscure; reading the generated content can be a very helpful way to understand and debug issues. To build mlir-tblgen, run cmake --build . --target mlir-tblgen in your build directory and find the mlir-tblgen binary in the bin/ subdirectory. All the supported generators can be found via mlir-tblgen --help.

To see the generated code, invoke mlir-tblgen with a specific generator by providing include paths via -I. For example,

# To see all the C++ pattern rewrite classes
mlir-tblgen --gen-rewriters -I /path/to/mlir/include /path/to/input/td/file




Compilation error: no matching member function for call to ‘build’

This is because DRR is failing to call a build() method with result type deduction ability. See building operations for more details.






Passes

This document describes the available MLIR passes and their contracts.

[TOC]


General Transformation Passes

[include “GeneralPasses.md”]



Conversion Passes

[include “ConversionPasses.md”]



affine Dialect Passes

[include “AffinePasses.md”]



gpu Dialect Passes

[include “GPUPasses.md”]



linalg Dialect Passes

[include “LinalgPasses.md”]



llvm Dialect Passes

[include “LLVMPasses.md”]



quant Dialect Passes

[include “QuantPasses.md”]



Reducer Passes

[include “ReducerPasses.md”]



scf Dialect Passes

[include “SCFPasses.md”]



shape Dialect Passes

[include “ShapePasses.md”]



spv Dialect Passes

[include “SPIRVPasses.md”]



standard Dialect Passes

[include “StandardPasses.md”]





Background: declarative builders API

The main purpose of the declarative builders API is to provide an intuitive way of constructing MLIR programmatically. In the majority of cases, the IR we wish to construct exhibits structured control-flow. The Declarative builders in the EDSC library (Embedded Domain Specific Constructs) provide an API to make MLIR construction and manipulation very idiomatic, for the structured control-flow case, in C++.


ScopedContext

mlir::edsc::ScopedContext provides an implicit thread-local context, supporting a simple declarative API with globally accessible builders. These declarative builders are available within the lifetime of a ScopedContext.



Intrinsics

mlir::ValueBuilder is a generic wrapper for the mlir::OpBuilder::create method that operates on Value objects and return a single Value. For instructions that return no values or that return multiple values, the mlir::edsc::OperationBuilder can be used. Named intrinsics are provided as syntactic sugar to further reduce boilerplate.

using load = ValueBuilder<LoadOp>;
using store = OperationBuilder<StoreOp>;




LoopBuilder and AffineLoopNestBuilder

mlir::edsc::AffineLoopNestBuilder provides an interface to allow writing concise and structured loop nests.

  ScopedContext scope(f.get());
  Value i, j, lb(f->getArgument(0)), ub(f->getArgument(1));
  Value f7(std_constant_float(llvm::APFloat(7.0f), f32Type)),
           f13(std_constant_float(llvm::APFloat(13.0f), f32Type)),
           i7(constant_int(7, 32)),
           i13(constant_int(13, 32));
  AffineLoopNestBuilder(&i, lb, ub, 3)([&]{
      lb * index_type(3) + ub;
      lb + index_type(3);
      AffineLoopNestBuilder(&j, lb, ub, 2)([&]{
          ceilDiv(index_type(31) * floorDiv(i + j * index_type(3), index_type(32)),
                  index_type(32));
          ((f7 + f13) / f7) % f13 - f7 * f13;
          ((i7 + i13) / i7) % i13 - i7 * i13;
      });
  });




IndexedValue

mlir::edsc::IndexedValue provides an index notation around load and store operations on abstract data types by overloading the C++ assignment and parenthesis operators. The relevant loads and stores are emitted as appropriate.



Putting it all together

With declarative builders, it becomes fairly concise to build rank and type-agnostic custom operations even though MLIR does not yet have generic types. Here is what a definition of a general pointwise add looks in Tablegen with declarative builders.

def AddOp : Op<"x.add">,
    Arguments<(ins Tensor:$A, Tensor:$B)>,
    Results<(outs Tensor: $C)> {
  code referenceImplementation = [{
    SmallVector<Value, 4> ivs(view_A.rank());
    IndexedValue A(arg_A), B(arg_B), C(arg_C);
    AffineLoopNestBuilder(
      ivs, view_A.getLbs(), view_A.getUbs(), view_A.getSteps())([&]{
        C(ivs) = A(ivs) + B(ivs)
      });
  }];
}


Depending on the function signature on which this emitter is called, the generated IR resembles the following, for a 4-D memref of vector<4xi8>:

// CHECK-LABEL: func @t1(%lhs: memref<3x4x5x6xvector<4xi8>>, %rhs: memref<3x4x5x6xvector<4xi8>>, %result: memref<3x4x5x6xvector<4xi8>>) -> () {
//       CHECK: affine.for {{.*}} = 0 to 3 {
//       CHECK:   affine.for {{.*}} = 0 to 4 {
//       CHECK:     affine.for {{.*}} = 0 to 5 {
//       CHECK:       affine.for {{.*}}= 0 to 6 {
//       CHECK:         {{.*}} = load %arg1[{{.*}}] : memref<3x4x5x6xvector<4xi8>>
//       CHECK:         {{.*}} = load %arg0[{{.*}}] : memref<3x4x5x6xvector<4xi8>>
//       CHECK:         {{.*}} = addi {{.*}} : vector<4xi8>
//       CHECK:         store {{.*}}, %arg2[{{.*}}] : memref<3x4x5x6xvector<4xi8>>

or the following, for a 0-D memref<f32>:

// CHECK-LABEL: func @t3(%lhs: memref<f32>, %rhs: memref<f32>, %result: memref<f32>) -> () {
//       CHECK: {{.*}} = load %arg1[] : memref<f32>
//       CHECK: {{.*}} = load %arg0[] : memref<f32>
//       CHECK: {{.*}} = addf {{.*}}, {{.*}} : f32
//       CHECK: store {{.*}}, %arg2[] : memref<f32>

Similar APIs are provided to emit the lower-level scf.for op with LoopNestBuilder. See the builder-api-test.cpp test for more usage examples.

Since the implementation of declarative builders is in C++, it is also available to program the IR with an embedded-DSL flavor directly integrated in MLIR.





MLIR C API

Current status: Under development, API unstable, built by default.


Design

Many languages can interoperate with C but have a harder time with C++ due to name mangling and memory model differences. Although the C API for MLIR can be used directly from C, it is primarily intended to be wrapped in higher-level language- or library-specific constructs. Therefore the API tends towards simplicity and feature minimalism.

Note: while the C API is expected to be more stable than C++ API, it currently offers no stability guarantees.


Scope

The API is provided for core IR components (attributes, blocks, operations, regions, types, values), Passes and some fundamental type and attribute kinds. The core IR API is intentionally low-level, e.g. exposes a plain list of operation’s operands and attributes without attempting to assign “semantic” names to them. Users of specific dialects are expected to wrap the core API in a dialect-specific way, for example, by implementing an ODS backend.



Object Model

Core IR components are exposed as opaque handles to an IR object existing in C++. They are not intended to be inspected by the API users (and, in many cases, cannot be meaningfully inspected). Instead the users are expected to pass handles to the appropriate manipulation functions.

The handle may or may not own the underlying object.



Naming Convention and Ownership Model

All objects are prefixed with Mlir. They are typedefs and should be used without struct.

All functions are prefixed with mlir.

Functions primarily operating on an instance of MlirX are prefixed with mlirX. They take the instance being acted upon as their first argument (except for creation functions). For example, mlirOperationGetNumOperands inspects an MlirOperation, which it takes as its first operand.

The ownership model is encoded in the naming convention as follows.


	By default, the ownership is not transferred.

	Functions that transfer the ownership of the result to the caller can be in one of two forms:

	functions that create a new object have the name mlirXCreate<...>, for example, mlirOperationCreate;

	functions that detach an object from a parent object have the name mlirYTake<...>, for example mlirOperationStateTakeRegion.




	Functions that take ownership of some of their arguments have the form mlirY<...>OwnedX<...> where X can refer to the type or any other sufficiently unique description of the argument, the ownership of which will be taken by the callee, for example mlirRegionAppendOwnedBlock.

	Functions that create an object by default do not transfer its ownership to the caller, i.e. one of other objects passed in as an argument retains the ownership, they have the form mlirX<...>Get. For example, mlirTypeParseGet.

	Functions that destroy an object owned by the caller are of the form mlirXDestroy.



If the code owns an object, it is responsible for destroying the object when it is no longer necessary. If an object that owns other objects is destroyed, any handles to those objects become invalid. Note that types and attributes are owned by the MlirContext in which they were created.



Nullity

A handle may refer to a null object. It is the responsibility of the caller to check if an object is null by using mlirXIsNull(MlirX). API functions do not expect null objects as arguments unless explicitly stated otherwise. API functions may return null objects.



Type Hierarchies

MLIR objects can form type hierarchies in C++. For example, all IR classes representing types are derived from mlir::Type, some of them may also be also derived from common base classes such as mlir::ShapedType or dialect-specific base classes. Type hierarchies are exposed to C API through naming conventions as follows.


	Only the top-level class of each hierarchy is exposed, e.g. MlirType is defined as a type but MlirShapedType is not. This avoids the need for explicit upcasting when passing an object of a derived type to a function that expects a base type (this happens more often in core/standard APIs, while downcasting usually involves further checks anyway).

	A type Y that derives from X provides a function int mlirXIsAY(MlirX) that returns a non-zero value if the given dynamic instance of X is also an instance of Y. For example, int MlirTypeIsAInteger(MlirType).

	A function that expects a derived type as its first argument takes the base type instead and documents the expectation by using Y in its name MlirY<...>(MlirX, ...). This function asserts that the dynamic instance of its first argument is Y, and it is the responsibility of the caller to ensure it is indeed the case.





Auxiliary Types


StringRef

Numerous MLIR functions return instances of StringRef to refer to a non-owning segment of a string. This segment may or may not be null-terminated. In C API, these are represented as instances of MlirStringRef structure that contains a pointer to the first character of the string fragment (str) and the fragment length (length). Note that the fragment is not necessarily null-terminated, the length field must be used to identify the last character. MlirStringRef is a non-owning pointer, the caller is in charge of perfoming the copy or ensuring that the pointee outlives all uses of MlirStringRef.




Printing

IR objects can be printed using mlirXPrint(MlirX, MlirStringCallback, void *) functions. These functions accept take arguments a callback with signature void (*)(const char *, intptr_t, void *) and a pointer to user-defined data. They call the callback and supply it with chunks of the string representation, provided as a pointer to the first character and a length, and forward the user-defined data unmodified. It is up to the caller to allocate memory if the string representation must be stored and perform the copy. There is no guarantee that the pointer supplied to the callback points to a null-terminated string, the size argument should be used to find the end of the string. The callback may be called multiple times with consecutive chunks of the string representation (the printing itself is buffered).

Rationale: this approach allows the caller to have full control of the allocation and avoid unnecessary allocation and copying inside the printer.

For convenience, mlirXDump(MlirX) functions are provided to print the given object to the standard error stream.




Common Patterns

The API adopts the following patterns for recurrent functionality in MLIR.


Indexed Components

An object has an indexed component if it has fields accessible using a zero-based contiguous integer index, typically arrays. For example, an MlirBlock has its arguments as an indexed component. An object may have several such components. For example, an MlirOperation has attributes, operands, regions, results and successors.

For indexed components, the following pair of functions is provided.


	intptr_t mlirXGetNum<Y>s(MlirX) returns the upper bound on the index.

	MlirY mlirXGet<Y>(MlirX, intptr_t pos) returns ‘pos’-th subobject.



The sizes are accepted and returned as signed pointer-sized integers, i.e. intptr_t. This typedef is available in C99.

Note that the name of subobject in the function does not necessarily match the type of the subobject. For example, mlirOperationGetOperand returns an MlirValue.



Iterable Components

An object has an iterable component if it has iterators accessing its fields in some order other than integer indexing, typically linked lists. For example, an MlirBlock has an iterable list of operations it contains. An object may have several iterable components.

For iterable components, the following triple of functions is provided.


	MlirY mlirXGetFirst<Y>(MlirX) returns the first subobject in the list.

	MlirY mlirYGetNextIn<X>(MlirY) returns the next subobject in the list that contains the given object, or a null object if the given object is the last in this list.

	int mlirYIsNull(MlirY) returns 1 if the given object is null.



Note that the name of subobject in the function may or may not match its type.

This approach enables one to iterate as follows.

MlirY iter;
for (iter = mlirXGetFirst<Y>(x); !mlirYIsNull(iter);
     iter = mlirYGetNextIn<X>(iter)) {
  /* User 'iter'. */
}





Extending the API


Extensions for Dialect Attributes and Types

Dialect attributes and types can follow the example of standard attributes and types, provided that implementations live in separate directories, i.e. include/mlir-c/<...>Dialect/ and lib/CAPI/<...>Dialect/. The core APIs provide implementation-private headers in include/mlir/CAPI/IR that allow one to convert between opaque C structures for core IR components and their C++ counterparts. wrap converts a C++ class into a C structure and unwrap does the inverse conversion. Once the C++ object is available, the API implementation should rely on isa to implement mlirXIsAY and is expected to use cast inside other API calls.






Shape Inference

Shape inference as discussed here is considered a specific instance of type inference for ShapedType. Type constraints are along (at least) three axis: 1) elemental type, 2) rank (including static or dynamic), 3) dimensions. While some operations have no compile time fixed shape (e.g., output shape is dictated by data) we could still have some knowledge of constraints/bounds in the system for that operation (e.g., the output of a tf.where is at most the size of the input data). That is, there are additional valuable constraints that could be captured even without full knowledge of the shape.

Type inference is currently modelled executionally for operation creation using the InferTypeOpInterface, while InferShapedTypeOpInterface is used to implement the shape and element type inference. The return type can often be deduced from the deduced return shape and elemental type (queryable from InferShapedTypeOpInterface) and so type inference for tensor types can be implemented with InferShapedTypeOpInterface.


Shape functions

The C++ interfaces are the base mechanism whereby shape inference is queried and executed, but not the intended way to specify shape constraints in general.

Initially the shape inference will be declaratively specified using:


	Constraints on the operands of an operation directly. For example constraining the input type to be tensor/vector elements or that the elemental type be of a specific type (e.g., output of computing the size of a value is of elemental type i1) or class (e.g., float-like).


	Constraints across operands and results of an operation.


	For example, specifying equality constraints on type/constituents of a type (shape and elemental type) between operands and results (e.g., the output type of an add is the same as those of the input operands).






NOTE: The C++ shape functions are an intermediate step until the shape dialect is more full-fledged, at which point the C++ functions should become the exceptional case.



Testing

Shape inference is currently tested alongside type inference by TestReturnTypeDriver in the test dialect. This driver performs two checks:


	Verification that the return types specified matches the inferred types. This explicit check will be removed and made part of Op verification instead.

	Test the creation of Ops without specifying the return type explicitly in function testCreateFunctions by creating new binary Ops (Op classes specified in TestReturnTypeDriver) using 1) all operands to testCreateFunctions as both operands, and 2) using combinations of input operands of the function.





Shape dialect

This section details the shape type inference dialect (shape). The initial focus will be on shape functions that describe shape functions could be used in runtime and compiler (for constructions of ops/refinement of shapes, reification of dynamic allocations for dialect including TF, TFLite, XLA & tensor compute dialect under discussion).

This will focus on the shape functions (e.g., determine the rank and dimensions of the output shape). As shown in the shaped container type, shape will be one of 3 components, the others being elemental type and attribute (which is currently left open with the intention of supporting extensions such as layouts or bounded shapes at a later point). This allows for decoupling of these:


	Not all the information is needed for all analysis;

	Not all shape functions need to provide all the information (e.g., one could define a base class function that only populates element type but composes with the others);

	It allows reusing the constraints between, say, Tensor and Memref representation of an operation;



An argument could be made that these are metadata function instead of shape functions, with some considering shape and elemental types different and some considering them both as part of shape. But shape function is IMHO descriptive and metadata can span too large a range of potential uses/values.


Requirements

The requirements for the shape inference functions are determined by the requirements of shape inference, but we believe the requirements below still allow freedom to consider different shape inference approaches and so we do not impose a particular shape inference approach here.


Shape inference functions


	Expressiveness shape functions need to support programs where tensors have shapes that are not known statically (for example, tensor<16x?xf32> or tensor<*xf32>*);


	Shape error detection Many operations will have constraints on their operands. If the constraints are not satisfied or cannot be determined if satisfied statically, then a runtime check/assertion could be generated.


	This also aligns with the requirement that the shape function description should be usable by both the compiler and runtime.

	Shape error functions should be easy to understand, at least what constraint of the operation is violated. This also requires that shape function error messages should be configurable by the author of the shape function (e.g., the author would be able to give the semantic constraint invalidated rather the low-level check that failed).

	The static analysis may be used to eliminate run-time checks that are guaranteed to pass.

	Ideally all would eventually (see section Inlining shape checking) be elided.




	Only reporting errors which are guaranteed to occur at runtime. If an error is only possible (rather than guaranteed) then we use a runtime assertion to fail and produce an error message with the invariant violated.




	Shape functions usable by compiler and runtime.


	This does not mean the exact same C++ function, but rather the description should be consumable by either.

	Shape function description should not be constrained by either runtime or compiler’s type system to handle types only used for analysis. That is, these two type systems differ and both should be supported, but the intersection of the two should not be required. As a particular example, if a compiler only wants to differentiate exact shapes vs dynamic shapes, then it need not consider a more generic shape lattice even though the shape description supports it.




	Declarative (e.g., analyzable at compile time, possible to generate different versions for different use cases)


	This may not strictly be a requirement, but a way to handle the former: a declarative specification could be reused by both while avoiding a need to map to or from a 3rd representation given these two systems have/and will have different types.




	Shape inference functions are expressible at runtime


	User can define a shape function for a new operation dynamically at runtime, this allows for vendors to describe an operation and shape function dynamically.

This requirement is on the wishlist.





	Doesn’t require graph-wide shape information (e.g., only require local information)


	Shape functions should be cheap to invoke on each kernel launch.

	Shape function can be dictated by arguments (operands, attributes and regions) only (e.g., same operands as the corresponding operation could be constructed & invoked with).

	Shape information that needs higher-level/graph information should use richer types (e.g., TensorList<F32>);

	The function should be invocable before/while constructing an op (e.g., can’t rely on the op being constructed).




	Shape functions should be pure functions.


	Should support functions whose type is only known dynamically (e.g., read_from_file op)


	Without needing to invoke the op (e.g., reading a file once for determining the shape & then post to be able to actually consume the output of the file).




	The shape function operation dialect should be interoperable with non-shape function dialect operations.


	There may be a common set of operations that satisfy most uses (e.g., merge, equal_type, arithmetic expressions, slice, concat, pattern matching on attributes such as padding etc.) that will be discovered and could cover a large percentage of the use cases. Among these there will be some which carry extra semantic info that could be used for symbolic constraints (e.g., checking equality of two dimensions resulting in setting an equality constraint) and higher-order interpretation for constraint solving.

It is therefore beneficial (but not required) to reuse operations, especially as for statically known shapes, arbitrary arithmetic computations could still be performed. This means that the computations performed statically may or may not be supported by an arbitrary solver, but would still be allowed.





	The shape function should be expandable such that symbolic equality and upper bound constraints (say) could be represented and may be propagated by shape inference.


	E.g., the shape functions may contain more information that is only useful when used from shape inference;




	Shape functions are allowed to fail and report an error. The error reporting should report the location of the operation that failed with, where possible, a user actionable error message.


	These failures could become inlined and become runtime failures with runtime values and error messages.

	Reporting errors should be optional. E.g., The same function may be used as to query validity without reporting an error.








Non-goals


	The shape dialect is an IR representations and not a programming language;

	While the functions should be readable, it doesn’t carry the conveniences of a programming language. Deciding how people write these things, e.g. a mini dsl, a C++ API that generates them, extracting them programmatically from SetShapeFn calls, etc., is still TBD.




	Describe the shape inference approach that will use the shape functions;

	The goal is that the shape functions and the constraints one could obtain from them are general enough that they would be useful for various analysis. But whether we follow very simple (e.g., only fully static information is used for shape output, unranked for everything else) to very advance (e.g., expression trees of symbolic constants) can be evaluated independently of this proposal and with concrete benefit analysis.




	Describe the approach whereby error messages will be generated;

	While the shape functions will be able to emit errors optionally, it will be possible to dictate when they emit an error. This enables deciding whether or which error to emit: there have been proposals in the literature that the iteration order for shape inference affect the quality of the error message produced, and the shape functions do not mandate that.




	Flow sensitive shape functions;

	To enable scalable/cheap shape inference, the shape functions do not intend to provide flow sensitive information. This facility could potentially be built as part of shome higher order analysis that reuse the shape functions/constraints due to the shape functions.




	All static functions are usable for dynamic/unknown shapes;

	More involved computations can be performed with statically known shapes than what can be sensibly analyzed with unknown/symbolic variables.









Discussion


Inline shape inference checks

Shape functions should be lowerable to runtime checks for validity. E.g. verify as much as possible statically, but enable generating instructions to compute the shape dynamically and or falling back to runtime checks for attributes not verifiable at compile time. These checks inserted should ideally only check that which could not have been verified statically.

These inlined calls could interfere with optimization patterns/passes (e.g., shape inference should not insert constructs that interfere with optimization patterns) and so could be delayed until later (with another round of optimizations, constant folding, CSE, etc., that should remove redundant runtime operations).




Possibly Asked Questions


What about ODS specifications of operations?

In ODS we have been recording the constraints for the operands & attributes of an operation. Where these are sufficient to constrain the output shape (e.g., SameOperandAndResultType or broadcastable) we should generate the shape function from those. Where not, an explicit shape function should be specified (spelling TBD but currently considering using the MLIR textual form as serialization approach).



Why not extract the shape function from reference implementation?

This could be done in future! The extracted shape function would use the shape inference dialect, so we are starting there. Especially for operations described in a structured way, one could autogenerate the shape function.



How/in what language will the shape functions be authored?

TBD. open to many approaches and suggestions, starting on the IR produced by whatever language is the priority of this proposal.



What shape inference approach is being suggested here?

None. There are multiple different shape inference approaches that we could layer on top of these. From the most basic (always return unranked), to more useful (return fixed shape for constant inputs/arguments) to the more advanced (create logical conjuctions of algebraic statements between symbolic named values).




Open points


	Should shape functions that produce dynamic outputs given all statically shaped inputs be marked specially? E.g., read from file.



TODO: Add examples here.




WIP/Future considerations

Shape functions are determined by attributes and could be arbitrarily complicated with a wide-range of specification possibilities. Equality relationships are common (e.g., the elemental type of the output matches the primitive type of the inputs, both inputs have exactly the same type [primitive type and shape]) and so these should be easy to specify. Algebraic relationships would also be common (e.g., a concat of [n,m] and [n,m] matrix along axis 0 is [n+n, m] matrix), while some ops only have defined shapes under certain cases (e.g., matrix multiplication of [a,b] and [c,d] is only defined if b == c).

Instead of specifying an additional mechanism to specify a shape transfer function, the reference implementation of the operation will be used to derive the shape function. The reference implementation is general and can support the arbitrary computations needed to specify output shapes.





Dialect Conversion

This document describes a framework in MLIR in which to perform operation conversions between, and within dialects. This framework allows for transforming illegal operations to those supported by a provided conversion target, via a set of pattern-based operation rewriting patterns.
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The dialect conversion framework consists of the following components:


	A Conversion Target

	A set of Rewrite Patterns

	A Type Converter (Optional)




Modes of Conversion

When applying a conversion to a set of operations, there are several different conversion modes that may be selected from:


	Partial Conversion


	A partial conversion will legalize as many operations to the target as possible, but will allow pre-existing operations that were not explicitly marked as “illegal” to remain unconverted. This allows for partially lowering parts of the input in the presence of unknown operations.

	A partial conversion can be applied via applyPartialConversion.




	Full Conversion


	A full conversion legalizes all input operations, and is only successful if all operations are properly legalized to the given conversion target. This ensures that only known operations will exist after the conversion process.

	A full conversion can be applied via applyFullConversion.




	Analysis Conversion


	An analysis conversion will analyze which operations are legalizable to the given conversion target if a conversion were to be applied. This is done by performing a ‘partial’ conversion and recording which operations would have been successfully converted if successful. Note that no rewrites, or transformations, are actually applied to the input operations.

	An analysis conversion can be applied via applyAnalysisConversion.








Conversion Target

The conversion target is a formal definition of what is considered to be legal during the conversion process. The final operations generated by the conversion framework must be marked as legal on the ConversionTarget for the rewrite to be a success. Depending on the conversion mode, existing operations need not always be legal. Operations and dialects may be marked with any of the provided legality actions below:


	Legal


	This action signals that every instance of a given operation is legal, i.e. any combination of attributes, operands, types, etc. are valid.




	Dynamic


	This action signals that only some instances of a given operation are legal. This allows for defining fine-tune constraints, e.g. saying that addi is only legal when operating on 32-bit integers.

	If a specific handler is not provided when setting the action, the target must override the isDynamicallyLegal hook provided by ConversionTarget.




	Illegal


	This action signals that no instance of a given operation is legal. Operations marked as “illegal” must always be converted for the conversion to be successful. This action also allows for selectively marking specific operations as illegal in an otherwise legal dialect.






An example conversion target is shown below:

struct MyTarget : public ConversionTarget {
  MyTarget(MLIRContext &ctx) : ConversionTarget(ctx) {
    //--------------------------------------------------------------------------
    // Marking an operation as Legal:

    /// Mark all operations within the LLVM dialect are legal.
    addLegalDialects<LLVMDialect>();

    /// Mark `std.constant` op is always legal on this target.
    addLegalOps<ConstantOp>();

    //--------------------------------------------------------------------------
    // Marking an operation as dynamically legal.

    /// Mark all operations within Affine dialect have dynamic legality
    /// constraints.
    addDynamicallyLegalDialects<AffineDialect>();

    /// Mark `std.return` as dynamically legal.
    addDynamicallyLegalOp<ReturnOp>();

    /// Mark `std.return` as dynamically legal, but provide a specific legality
    /// callback.
    addDynamicallyLegalOp<ReturnOp>([](ReturnOp op) { ... });

    /// Treat unknown operations, i.e. those without a legalization action
    /// directly set, as dynamically legal.
    markUnknownOpDynamicallyLegal();
    markUnknownOpDynamicallyLegal([](Operation *op) { ... });

    //--------------------------------------------------------------------------
    // Marking an operation as illegal.

    /// All operations within the GPU dialect are illegal.
    addIllegalDialect<GPUDialect>();

    /// Mark `std.br` and `std.cond_br` as illegal.
    addIllegalOp<BranchOp, CondBranchOp>();
  }

  /// Implement the default legalization handler to handle operations marked as
  /// dynamically legal that were not provided with an explicit handler.
  bool isDynamicallyLegal(Operation *op) override { ... }
};



Recursive Legality

In some cases, it may be desirable to mark entire regions as legal. This provides an additional granularity of context to the concept of “legal”. If an operation is marked recursively legal, either statically or dynamically, then all of the operations nested within are also considered legal even if they would otherwise be considered “illegal”. An operation can be marked via markOpRecursivelyLegal<>:

ConversionTarget &target = ...;

/// The operation must first be marked as `Legal` or `Dynamic`.
target.addLegalOp<MyOp>(...);
target.addDynamicallyLegalOp<MySecondOp>(...);

/// Mark the operation as always recursively legal.
target.markOpRecursivelyLegal<MyOp>();
/// Mark optionally with a callback to allow selective marking.
target.markOpRecursivelyLegal<MyOp, MySecondOp>([](Operation *op) { ... });
/// Mark optionally with a callback to allow selective marking.
target.markOpRecursivelyLegal<MyOp>([](MyOp op) { ... });





Rewrite Pattern Specification

After the conversion target has been defined, a set of legalization patterns must be provided to transform illegal operations into legal ones. The patterns supplied here have the same structure and restrictions as those described in the main Pattern documentation. The patterns provided do not need to generate operations that are directly legal on the target. The framework will automatically build a graph of conversions to convert non-legal operations into a set of legal ones.

As an example, say you define a target that supports one operation: foo.add. When providing the following patterns: [bar.add -> baz.add, baz.add -> foo.add], the framework will automatically detect that it can legalize bar.add -> foo.add even though a direct conversion does not exist. This means that you don’t have to define a direct legalization pattern for bar.add -> foo.add.


Conversion Patterns

Along with the general RewritePattern classes, the conversion framework provides a special type of rewrite pattern that can be used when a pattern relies on interacting with constructs specific to the conversion process, the ConversionPattern. For example, the conversion process does not necessarily update operations in-place and instead creates a mapping of events such as replacements and erasures, and only applies them when the entire conversion process is successful. Certain classes of patterns rely on using the updated/remapped operands of an operation, such as when the types of results defined by an operation have changed. The general Rewrite Patterns can no longer be used in these situations, as the types of the operands of the operation being matched will not correspond with those expected by the user. This pattern provides, as an additional argument to the matchAndRewrite and rewrite methods, the list of operands that the operation should use after conversion. If an operand was the result of a non-converted operation, for example if it was already legal, the original operand is used. This means that the operands provided always have a 1-1 non-null correspondence with the operands on the operation. The original operands of the operation are still intact and may be inspected as normal. These patterns also utilize a special PatternRewriter, ConversionPatternRewriter, that provides special hooks for use with the conversion infrastructure.

struct MyConversionPattern : public ConversionPattern {
  /// The `matchAndRewrite` hooks on ConversionPatterns take an additional
  /// `operands` parameter, containing the remapped operands of the original
  /// operation.
  virtual LogicalResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const;
};



Type Safety

The types of the remapped operands provided to a conversion pattern must be of a type expected by the pattern. The expected types of a pattern are determined by a provided TypeConverter. If no type converter is provided, the types of the remapped operands are expected to match the types of the original operands. If a type converter is provided, the types of the remapped operands are expected to be legal as determined by the converter. If the remapped operand types are not of an expected type, and a materialization to the expected type could not be performed, the pattern fails application before the matchAndRewrite hook is invoked. This ensures that patterns do not have to explicitly ensure type safety, or sanitize the types of the incoming remapped operands. More information on type conversion is detailed in the dedicated section below.





Type Conversion

It is sometimes necessary as part of a conversion to convert the set types of being operated on. In these cases, a TypeConverter object may be defined that details how types should be converted when interfacing with a pattern. A TypeConverter may be used to convert the signatures of block arguments and regions, to define the expected inputs types of the pattern, and to reconcile type differences in general.


Type Converter

The TypeConverter contains several hooks for detailing how to convert types, and how to materialize conversions between types in various situations. The two main aspects of the TypeConverter are conversion and materialization.

A conversion describes how a given illegal source Type should be converted to N target types. If the source type is already “legal”, it should convert to itself. Type conversions are specified via the addConversion method described below.

A materialization describes how a set of values should be converted to a single value of a desired type. An important distinction with a conversion is that a materialization can produce IR, whereas a conversion cannot. These materializations are used by the conversion framework to ensure type safety during the conversion process. There are several types of materializations depending on the situation.


	Argument Materialization


	An argument materialization is used when converting the type of a block argument during a signature conversion.




	Source Materialization


	A source materialization converts from a value with a “legal” target type, back to a specific source type. This is used when an operation is “legal” during the conversion process, but contains a use of an illegal type. This may happen during a conversion where some operations are converted to those with different resultant types, but still retain users of the original type system.

	This materialization is used in the following situations:

	When a block argument has been converted to a different type, but the original argument still has users that will remain live after the conversion process has finished.

	When the result type of an operation has been converted to a different type, but the original result still has users that will remain live after the conversion process is finished.







	Target Materialization


	A target materialization converts from a value with an “illegal” source type, to a value of a “legal” type. This is used when a pattern expects the remapped operands to be of a certain set of types, but the original input operands have not been converted. This may happen during a conversion where some operations are converted to those with different resultant types, but still retain uses of the original type system.

	This materialization is used in the following situations:

	When the remapped operands of a conversion pattern are not legal for the type conversion provided by the pattern.









If a converted value is used by an operation that isn’t converted, it needs a conversion back to the source type, hence source materialization; if an unconverted value is used by an operation that is being converted, it needs conversion to the target type, hence target materialization.

As noted above, the conversion process guarantees that the type contract of the IR is preserved during the conversion. This means that the types of value uses will not implicitly change during the conversion process. When the type of a value definition, either block argument or operation result, is being changed, the users of that definition must also be updated during the conversion process. If they aren’t, a type conversion must be materialized to ensure that a value of the expected type is still present within the IR. If a target materialization is required, but cannot be performed, the pattern application fails. If a source materialization is required, but cannot be performed, the entire conversion process fails.

Several of the available hooks are detailed below:

class TypeConverter {
 public:
  /// Register a conversion function. A conversion function defines how a given
  /// source type should be converted. A conversion function must be convertible
  /// to any of the following forms(where `T` is a class derived from `Type`:
  ///   * Optional<Type>(T)
  ///     - This form represents a 1-1 type conversion. It should return nullptr
  ///       or `llvm::None` to signify failure. If `llvm::None` is returned, the
  ///       converter is allowed to try another conversion function to perform
  ///       the conversion.
  ///   * Optional<LogicalResult>(T, SmallVectorImpl<Type> &)
  ///     - This form represents a 1-N type conversion. It should return
  ///       `failure` or `llvm::None` to signify a failed conversion. If the new
  ///       set of types is empty, the type is removed and any usages of the
  ///       existing value are expected to be removed during conversion. If
  ///       `llvm::None` is returned, the converter is allowed to try another
  ///       conversion function to perform the conversion.
  /// Note: When attempting to convert a type, e.g. via 'convertType', the
  ///       mostly recently added conversions will be invoked first.
  template <typename FnT,
            typename T = typename llvm::function_traits<FnT>::template arg_t<0>>
  void addConversion(FnT &&callback) {
    registerConversion(wrapCallback<T>(std::forward<FnT>(callback)));
  }

  /// Register a materialization function, which must be convertible to the
  /// following form:
  ///   `Optional<Value> (OpBuilder &, T, ValueRange, Location)`,
  ///   where `T` is any subclass of `Type`.
  /// This function is responsible for creating an operation, using the
  /// OpBuilder and Location provided, that "converts" a range of values into a
  /// single value of the given type `T`. It must return a Value of the
  /// converted type on success, an `llvm::None` if it failed but other
  /// materialization can be attempted, and `nullptr` on unrecoverable failure.
  /// It will only be called for (sub)types of `T`.
  ///
  /// This method registers a materialization that will be called when
  /// converting an illegal block argument type, to a legal type.
  template <typename FnT,
            typename T = typename llvm::function_traits<FnT>::template arg_t<1>>
  void addArgumentMaterialization(FnT &&callback) {
    argumentMaterializations.emplace_back(
        wrapMaterialization<T>(std::forward<FnT>(callback)));
  }
  /// This method registers a materialization that will be called when
  /// converting a legal type to an illegal source type. This is used when
  /// conversions to an illegal type must persist beyond the main conversion.
  template <typename FnT,
            typename T = typename llvm::function_traits<FnT>::template arg_t<1>>
  void addSourceMaterialization(FnT &&callback) {
    sourceMaterializations.emplace_back(
        wrapMaterialization<T>(std::forward<FnT>(callback)));
  }
  /// This method registers a materialization that will be called when
  /// converting type from an illegal, or source, type to a legal type.
  template <typename FnT,
            typename T = typename llvm::function_traits<FnT>::template arg_t<1>>
  void addTargetMaterialization(FnT &&callback) {
    targetMaterializations.emplace_back(
        wrapMaterialization<T>(std::forward<FnT>(callback)));
  }
};




Region Signature Conversion

From the perspective of type conversion, the types of block arguments are a bit special. Throughout the conversion process, blocks may move between regions of different operations. Given this, the conversion of the types for blocks must be done explicitly via a conversion pattern. To convert the types of block arguments within a Region, a custom hook on the ConversionPatternRewriter must be invoked; convertRegionTypes. This hook uses a provided type converter to apply type conversions to all blocks within a given region, and all blocks that move into that region. As noted above, the conversions performed by this method use the argument materialization hook on the TypeConverter. This hook also takes an optional TypeConverter::SignatureConversion parameter that applies a custom conversion to the entry block of the region. The types of the entry block arguments are often tied semantically to details on the operation, e.g. FuncOp, AffineForOp, etc. To convert the signature of just the region entry block, and not any other blocks within the region, the applySignatureConversion hook may be used instead. A signature conversion, TypeConverter::SignatureConversion, can be built programmatically:

class SignatureConversion {
public:
    /// Remap an input of the original signature with a new set of types. The
    /// new types are appended to the new signature conversion.
    void addInputs(unsigned origInputNo, ArrayRef<Type> types);

    /// Append new input types to the signature conversion, this should only be
    /// used if the new types are not intended to remap an existing input.
    void addInputs(ArrayRef<Type> types);

    /// Remap an input of the original signature with a range of types in the
    /// new signature.
    void remapInput(unsigned origInputNo, unsigned newInputNo,
                    unsigned newInputCount = 1);

    /// Remap an input of the original signature to another `replacement`
    /// value. This drops the original argument.
    void remapInput(unsigned origInputNo, Value replacement);
};


The TypeConverter provides several default utilities for signature conversion and legality checking: convertSignatureArgs/convertBlockSignature/isLegal(Region *|Type).




Debugging

To debug the execution of the dialect conversion framework, -debug-only=dialect-conversion may be used. This command line flag activates LLVM’s debug logging infrastructure solely for the conversion framework. The output is formatted as a tree structure, mirroring the structure of the conversion process. This output contains all of the actions performed by the rewriter, how generated operations get legalized, and why they fail.

Example output is shown below:

//===-------------------------------------------===//
Legalizing operation : 'std.return'(0x608000002e20) {
  "std.return"() : () -> ()

  * Fold {
  } -> FAILURE : unable to fold

  * Pattern : 'std.return -> ()' {
    ** Insert  : 'spv.Return'(0x6070000453e0)
    ** Replace : 'std.return'(0x608000002e20)

    //===-------------------------------------------===//
    Legalizing operation : 'spv.Return'(0x6070000453e0) {
      "spv.Return"() : () -> ()

    } -> SUCCESS : operation marked legal by the target
    //===-------------------------------------------===//
  } -> SUCCESS : pattern applied successfully
} -> SUCCESS
//===-------------------------------------------===//

This output is describing the legalization of an std.return operation. We first try to legalize by folding the operation, but that is unsuccessful for std.return. From there, a pattern is applied that replaces the std.return with a spv.Return. The newly generated spv.Return is then processed for legalization, but is found to already legal as per the target.





Operation Canonicalization

Canonicalization is an important part of compiler IR design: it makes it easier to implement reliable compiler transformations and to reason about what is better or worse in the code, and it forces interesting discussions about the goals of a particular level of IR. Dan Gohman wrote an article exploring these issues; it is worth reading if you’re not familiar with these concepts.

Most compilers have canonicalization passes, and sometimes they have many different ones (e.g. instcombine, dag combine, etc in LLVM). Because MLIR is a multi-level IR, we can provide a single canonicalization infrastructure and reuse it across many different IRs that it represents. This document describes the general approach, global canonicalizations performed, and provides sections to capture IR-specific rules for reference.


General Design

MLIR has a single canonicalization pass, which iteratively applies canonicalization transformations in a greedy way until the IR converges. These transformations are defined by the operations themselves, which allows each dialect to define its own set of operations and canonicalizations together.

Some important things to think about w.r.t. canonicalization patterns:


	Repeated applications of patterns should converge. Unstable or cyclic rewrites will cause infinite loops in the canonicalizer.


	It is generally better to canonicalize towards operations that have fewer uses of a value when the operands are duplicated, because some patterns only match when a value has a single user. For example, it is generally good to canonicalize “x + x” into “x * 2”, because this reduces the number of uses of x by one.


	It is always good to eliminate operations entirely when possible, e.g. by folding known identities (like “x + 0 = x”).






Globally Applied Rules

These transformations are applied to all levels of IR:


	Elimination of operations that have no side effects and have no uses.


	Constant folding - e.g. “(addi 1, 2)” to “3”. Constant folding hooks are specified by operations.


	Move constant operands to commutative operators to the right side - e.g. “(addi 4, x)” to “(addi x, 4)”.


	constant-like operations are uniqued and hoisted into the entry block of the first parent barrier region. This is a region that is either isolated from above, e.g. the entry block of a function, or one marked as a barrier via the shouldMaterializeInto method on the DialectFoldInterface.






Defining Canonicalizations

Two mechanisms are available with which to define canonicalizations; getCanonicalizationPatterns and fold.


Canonicalizing with getCanonicalizationPatterns

This mechanism allows for providing canonicalizations as a set of RewritePatterns, either imperatively defined in C++ or declaratively as Declarative Rewrite Rules. The pattern rewrite infrastructure allows for expressing many different types of canonicalizations. These transformations may be as simple as replacing a multiplication with a shift, or even replacing a conditional branch with an unconditional one.

In ODS, an operation can set the hasCanonicalizer bit to generate a declaration for the getCanonicalizationPatterns method.

def MyOp : ... {
  let hasCanonicalizer = 1;
}

Canonicalization patterns can then be provided in the source file:

void MyOp::getCanonicalizationPatterns(OwningRewritePatternList &patterns,
                                       MLIRContext *context) {
  patterns.insert<...>(...);
}


See the quickstart guide for information on defining operation rewrites.



Canonicalizing with fold

The fold mechanism is an intentionally limited, but powerful mechanism that allows for applying canonicalizations in many places throughout the compiler. For example, outside of the canonicalizer pass, fold is used within the dialect conversion infrastructure as a legalization mechanism, and can be invoked directly anywhere with an OpBuilder via OpBuilder::createOrFold.

fold has the restriction that no new operations may be created, and only the root operation may be replaced. It allows for updating an operation in-place, or returning a set of pre-existing values (or attributes) to replace the operation with. This ensures that the fold method is a truly “local” transformation, and can be invoked without the need for a pattern rewriter.

In ODS, an operation can set the hasFolder bit to generate a declaration for the fold method. This method takes on a different form, depending on the structure of the operation.

def MyOp : ... {
  let hasFolder = 1;
}

If the operation has a single result the following will be generated:

/// Implementations of this hook can only perform the following changes to the
/// operation:
///
///  1. They can leave the operation alone and without changing the IR, and
///     return nullptr.
///  2. They can mutate the operation in place, without changing anything else
///     in the IR. In this case, return the operation itself.
///  3. They can return an existing value or attribute that can be used instead
///     of the operation. The caller will remove the operation and use that
///     result instead.
///
OpFoldResult MyOp::fold(ArrayRef<Attribute> operands) {
  ...
}


Otherwise, the following is generated:

/// Implementations of this hook can only perform the following changes to the
/// operation:
///
///  1. They can leave the operation alone and without changing the IR, and
///     return failure.
///  2. They can mutate the operation in place, without changing anything else
///     in the IR. In this case, return success.
///  3. They can return a list of existing values or attribute that can be used
///     instead of the operation. In this case, fill in the results list and
///     return success. The results list must correspond 1-1 with the results of
///     the operation, partial folding is not supported. The caller will remove
///     the operation and use those results instead.
///
LogicalResult MyOp::fold(ArrayRef<Attribute> operands,
                         SmallVectorImpl<OpFoldResult> &results) {
  ...
}


In the above, for each method an ArrayRef<Attribute> is provided that corresponds to the constant attribute value of each of the operands. These operands are those that implement the ConstantLike trait. If any of the operands are non-constant, a null Attribute value is provided instead. For example, if MyOp provides three operands [a, b, c], but only b is constant then operands will be of the form [Attribute(), b-value, Attribute()].

Also above, is the use of OpFoldResult. This class represents the possible result of folding an operation result: either an SSA Value, or an Attribute(for a constant result). If an SSA Value is provided, it must correspond to an existing value. The fold methods are not permitted to generate new Values. There are no specific restrictions on the form of the Attribute value returned, but it is important to ensure that the Attribute representation of a specific Type is consistent.

When the fold hook on an operation is not successful, the dialect can provide a fallback by implementing the DialectFoldInterface and overriding the fold hook.


Generating Constants from Attributes

When a fold method returns an Attribute as the result, it signifies that this result is “constant”. The Attribute is the constant representation of the value. Users of the fold method, such as the canonicalizer pass, will take these Attributes and materialize constant operations in the IR to represent them. To enable this materialization, the dialect of the operation must implement the materializeConstant hook. This hook takes in an Attribute value, generally returned by fold, and produces a “constant-like” operation that materializes that value.

In ODS, a dialect can set the hasConstantMaterializer bit to generate a declaration for the materializeConstant method.

def MyDialect_Dialect : ... {
  let hasConstantMaterializer = 1;
}

Constants can then be materialized in the source file:

/// Hook to materialize a single constant operation from a given attribute value
/// with the desired resultant type. This method should use the provided builder
/// to create the operation without changing the insertion position. The
/// generated operation is expected to be constant-like. On success, this hook
/// should return the value generated to represent the constant value.
/// Otherwise, it should return nullptr on failure.
Operation *MyDialect::materializeConstant(OpBuilder &builder, Attribute value,
                                          Type type, Location loc) {
  ...
}








Conversion to the LLVM Dialect

Conversion from the Standard to the LLVM Dialect can be performed by the specialized dialect conversion pass by running:

mlir-opt -convert-std-to-llvm <filename.mlir>

It performs type and operation conversions for a subset of operations from standard dialect (operations on scalars and vectors, control flow operations) as described in this document. We use the terminology defined by the LLVM IR Dialect description throughout this document.

[TOC]


Type Conversion


Scalar Types

Scalar types are converted to their LLVM counterparts if they exist. The following conversions are currently implemented:


	i* converts to !llvm.i*

	f16 converts to !llvm.half

	f32 converts to !llvm.float

	f64 converts to !llvm.double



Note: bf16 type is not supported by LLVM IR and cannot be converted.



Index Type

Index type is converted to a wrapped LLVM IR integer with bitwidth equal to the bitwidth of the pointer size as specified by the data layout of the LLVM module contained in the LLVM Dialect object. For example, on x86-64 CPUs it converts to !llvm.i64.



Vector Types

LLVM IR only supports one-dimensional vectors, unlike MLIR where vectors can be multi-dimensional. Vector types cannot be nested in either IR. In the one-dimensional case, MLIR vectors are converted to LLVM IR vectors of the same size with element type converted using these conversion rules. In the n-dimensional case, MLIR vectors are converted to (n-1)-dimensional array types of one-dimensional vectors.

For example, vector<4 x f32> converts to !llvm<"<4 x float>"> and vector<4 x 8 x 16 x f32> converts to !llvm<"[4 x [8 x <16 x float>]]">.



Memref Types

Memref types in MLIR have both static and dynamic information associated with them. The dynamic information comprises the buffer pointer as well as sizes and strides of any dynamically-sized dimensions. Memref types are normalized and converted to a descriptor that is only dependent on the rank of the memref. The descriptor contains:


	the pointer to the data buffer, followed by

	the pointer to properly aligned data payload that the memref indexes, followed by

	a lowered index-type integer containing the distance between the beginning of the buffer and the first element to be accessed through the memref, followed by

	an array containing as many index-type integers as the rank of the memref: the array represents the size, in number of elements, of the memref along the given dimension. For constant MemRef dimensions, the corresponding size entry is a constant whose runtime value must match the static value, followed by

	a second array containing as many 64-bit integers as the rank of the MemRef: the second array represents the “stride” (in tensor abstraction sense), i.e. the number of consecutive elements of the underlying buffer.



For constant memref dimensions, the corresponding size entry is a constant whose runtime value matches the static value. This normalization serves as an ABI for the memref type to interoperate with externally linked functions. In the particular case of rank 0 memrefs, the size and stride arrays are omitted, resulting in a struct containing two pointers + offset.

Examples:

memref<f32> -> !llvm<"{ float*, float*, i64 }">
memref<1 x f32> -> !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
memref<? x f32> -> !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
memref<10x42x42x43x123 x f32> -> !llvm<"{ float*, float*, i64, [5 x i64], [5 x i64] }">
memref<10x?x42x?x123 x f32> -> !llvm<"{ float*, float*, i64, [5 x i64], [5 x i64]  }">

// Memref types can have vectors as element types
memref<1x? x vector<4xf32>> -> !llvm<"{ <4 x float>*, <4 x float>*, i64, [1 x i64], [1 x i64] }">

If the rank of the memref is unknown at compile time, the memref is converted to an unranked descriptor that contains:


	a 64-bit integer representing the dynamic rank of the memref, followed by

	a pointer to a ranked memref descriptor with the contents listed above.



Dynamic ranked memrefs should be used only to pass arguments to external library calls that expect a unified memref type. The called functions can parse any unranked memref descriptor by reading the rank and parsing the enclosed ranked descriptor pointer.

Examples:

// unranked descriptor
memref<*xf32> -> !llvm<"{i64, i8*}">

In function signatures, memref is passed as a pointer to the structured defined above to comply with the calling convention.

Example:

// A function type with memref as argument
(memref<?xf32>) -> ()
// is transformed into the LLVM function with pointer-to-structure argument.
!llvm<"void({ float*, float*, i64, [1 x i64], [1 x i64]}*) ">



Function Types

Function types get converted to LLVM function types. The arguments are converted individually according to these rules. The result types need to accommodate the fact that LLVM IR functions always have a return type, which may be a Void type. The converted function always has a single result type. If the original function type had no results, the converted function will have one result of the wrapped void type. If the original function type had one result, the converted function will also have one result converted using these rules. Otherwise, the result type will be a wrapped LLVM IR structure type where each element of the structure corresponds to one of the results of the original function, converted using these rules. In high-order functions, function-typed arguments and results are converted to a wrapped LLVM IR function pointer type (since LLVM IR does not allow passing functions to functions without indirection) with the pointee type converted using these rules.

Examples:

// zero-ary function type with no results.
() -> ()
// is converted to a zero-ary function with `void` result
!llvm<"void ()">

// unary function with one result
(i32) -> (i64)
// has its argument and result type converted, before creating the LLVM IR function type
!llvm<"i64 (i32)">

// binary function with one result
(i32, f32) -> (i64)
// has its arguments handled separately
!llvm<"i64 (i32, float)">

// binary function with two results
(i32, f32) -> (i64, f64)
// has its result aggregated into a structure type
!llvm<"{i64, double} (i32, f32)">

// function-typed arguments or results in higher-order functions
(() -> ()) -> (() -> ())
// are converted into pointers to functions
!llvm<"void ()* (void ()*)">




Calling Convention


Function Signature Conversion

LLVM IR functions are defined by a custom operation. The function itself has a wrapped LLVM IR function type converted as described above. The function definition operation uses MLIR syntax.

Examples:

// zero-ary function type with no results.
func @foo() -> ()
// gets LLVM type void().
llvm.func @foo() -> ()

// function with one result
func @bar(i32) -> (i64)
// gets converted to LLVM type i64(i32).
func @bar(!llvm.i32) -> !llvm.i64

// function with two results
func @qux(i32, f32) -> (i64, f64)
// has its result aggregated into a structure type
func @qux(!llvm.i32, !llvm.float) -> !llvm<"{i64, double}">

// function-typed arguments or results in higher-order functions
func @quux(() -> ()) -> (() -> ())
// are converted into pointers to functions
func @quux(!llvm<"void ()*">) -> !llvm<"void ()*">
// the call flow is handled by the LLVM dialect `call` operation supporting both
// direct and indirect calls



Result Packing

In case of multi-result functions, the returned values are inserted into a structure-typed value before being returned and extracted from it at the call site. This transformation is a part of the conversion and is transparent to the defines and uses of the values being returned.

Example:

func @foo(%arg0: i32, %arg1: i64) -> (i32, i64) {
  return %arg0, %arg1 : i32, i64
}
func @bar() {
  %0 = constant 42 : i32
  %1 = constant 17 : i64
  %2:2 = call @foo(%0, %1) : (i32, i64) -> (i32, i64)
  "use_i32"(%2#0) : (i32) -> ()
  "use_i64"(%2#1) : (i64) -> ()
}

// is transformed into

func @foo(%arg0: !llvm.i32, %arg1: !llvm.i64) -> !llvm<"{i32, i64}"> {
  // insert the vales into a structure
  %0 = llvm.mlir.undef :  !llvm<"{i32, i64}">
  %1 = llvm.insertvalue %arg0, %0[0] : !llvm<"{i32, i64}">
  %2 = llvm.insertvalue %arg1, %1[1] : !llvm<"{i32, i64}">

  // return the structure value
  llvm.return %2 : !llvm<"{i32, i64}">
}
func @bar() {
  %0 = llvm.mlir.constant(42 : i32) : !llvm.i32
  %1 = llvm.mlir.constant(17) : !llvm.i64

  // call and extract the values from the structure
  %2 = llvm.call @bar(%0, %1) : (%arg0: !llvm.i32, %arg1: !llvm.i32) -> !llvm<"{i32, i64}">
  %3 = llvm.extractvalue %2[0] : !llvm<"{i32, i64}">
  %4 = llvm.extractvalue %2[1] : !llvm<"{i32, i64}">

  // use as before
  "use_i32"(%3) : (!llvm.i32) -> ()
  "use_i64"(%4) : (!llvm.i64) -> ()
}



Calling Convention for Ranked memref

Function arguments of memref type, ranked or unranked, are expanded into a list of arguments of non-aggregate types that the memref descriptor defined above comprises. That is, the outer struct type and the inner array types are replaced with individual arguments.

This convention is implemented in the conversion of std.func and std.call to the LLVM dialect, with the former unpacking the descriptor into a set of individual values and the latter packing those values back into a descriptor so as to make it transparently usable by other operations. Conversions from other dialects should take this convention into account.

This specific convention is motivated by the necessity to specify alignment and aliasing attributes on the raw pointers underpinning the memref.

Examples:

func @foo(%arg0: memref<?xf32>) -> () {
  "use"(%arg0) : (memref<?xf32>) -> ()
  return
}

// Gets converted to the following.

llvm.func @foo(%arg0: !llvm<"float*">,   // Allocated pointer.
               %arg1: !llvm<"float*">,   // Aligned pointer.
               %arg2: !llvm.i64,         // Offset.
               %arg3: !llvm.i64,         // Size in dim 0.
               %arg4: !llvm.i64) {       // Stride in dim 0.
  // Populate memref descriptor structure.
  %0 = llvm.mlir.undef : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
  %1 = llvm.insertvalue %arg0, %0[0] : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
  %2 = llvm.insertvalue %arg1, %1[1] : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
  %3 = llvm.insertvalue %arg2, %2[2] : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
  %4 = llvm.insertvalue %arg3, %3[3, 0] : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
  %5 = llvm.insertvalue %arg4, %4[4, 0] : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">

  // Descriptor is now usable as a single value.
  "use"(%5) : (!llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">) -> ()
  llvm.return
}

func @bar() {
  %0 = "get"() : () -> (memref<?xf32>)
  call @foo(%0) : (memref<?xf32>) -> ()
  return
}

// Gets converted to the following.

llvm.func @bar() {
  %0 = "get"() : () -> !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">

  // Unpack the memref descriptor.
  %1 = llvm.extractvalue %0[0] : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
  %2 = llvm.extractvalue %0[1] : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
  %3 = llvm.extractvalue %0[2] : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
  %4 = llvm.extractvalue %0[3, 0] : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
  %5 = llvm.extractvalue %0[4, 0] : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">

  // Pass individual values to the callee.
  llvm.call @foo(%1, %2, %3, %4, %5) : (!llvm<"float*">, !llvm<"float*">, !llvm.i64, !llvm.i64, !llvm.i64) -> ()
  llvm.return
}




Calling Convention for Unranked memref

For unranked memrefs, the list of function arguments always contains two elements, same as the unranked memref descriptor: an integer rank, and a type-erased (!llvm<"i8*">) pointer to the ranked memref descriptor. Note that while the calling convention does not require stack allocation, casting to unranked memref does since one cannot take an address of an SSA value containing the ranked memref. The caller is in charge of ensuring the thread safety and eventually removing unnecessary stack allocations in cast operations.

Example

llvm.func @foo(%arg0: memref<*xf32>) -> () {
  "use"(%arg0) : (memref<*xf32>) -> ()
  return
}

// Gets converted to the following.

llvm.func @foo(%arg0: !llvm.i64       // Rank.
               %arg1: !llvm<"i8*">) { // Type-erased pointer to descriptor.
  // Pack the unranked memref descriptor.
  %0 = llvm.mlir.undef : !llvm<"{ i64, i8* }">
  %1 = llvm.insertvalue %arg0, %0[0] : !llvm<"{ i64, i8* }">
  %2 = llvm.insertvalue %arg1, %1[1] : !llvm<"{ i64, i8* }">

  "use"(%2) : (!llvm<"{ i64, i8* }">) -> ()
  llvm.return
}

llvm.func @bar() {
  %0 = "get"() : () -> (memref<*xf32>)
  call @foo(%0): (memref<*xf32>) -> ()
  return
}

// Gets converted to the following.

llvm.func @bar() {
  %0 = "get"() : () -> (!llvm<"{ i64, i8* }">)

  // Unpack the memref descriptor.
  %1 = llvm.extractvalue %0[0] : !llvm<"{ i64, i8* }">
  %2 = llvm.extractvalue %0[1] : !llvm<"{ i64, i8* }">

  // Pass individual values to the callee.
  llvm.call @foo(%1, %2) : (!llvm.i64, !llvm<"i8*">)
  llvm.return
}

Lifetime. The second element of the unranked memref descriptor points to some memory in which the ranked memref descriptor is stored. By convention, this memory is allocated on stack and has the lifetime of the function. (Note: due to function-length lifetime, creation of multiple unranked memref descriptors, e.g., in a loop, may lead to stack overflows.) If an unranked descriptor has to be returned from a function, the ranked descriptor it points to is copied into dynamically allocated memory, and the pointer in the unranked descriptor is updated accordingly. The allocation happens immediately before returning. It is the responsibility of the caller to free the dynamically allocated memory. The default conversion of std.call and std.call_indirect copies the ranked descriptor to newly allocated memory on the caller’s stack. Thus, the convention of the ranked memref descriptor pointed to by an unranked memref descriptor being stored on stack is respected.

This convention may or may not apply if the conversion of MemRef types is overridden by the user.



C-compatible wrapper emission

In practical cases, it may be desirable to have externally-facing functions with a single attribute corresponding to a MemRef argument. When interfacing with LLVM IR produced from C, the code needs to respect the corresponding calling convention. The conversion to the LLVM dialect provides an option to generate wrapper functions that take memref descriptors as pointers-to-struct compatible with data types produced by Clang when compiling C sources. The generation of such wrapper functions can additionally be controlled at a function granularity by setting the llvm.emit_c_interface unit attribute.

More specifically, a memref argument is converted into a pointer-to-struct argument of type {T*, T*, i64, i64[N], i64[N]}* in the wrapper function, where T is the converted element type and N is the memref rank. This type is compatible with that produced by Clang for the following C++ structure template instantiations or their equivalents in C.

template<typename T, size_t N>
struct MemRefDescriptor {
  T *allocated;
  T *aligned;
  intptr_t offset;
  intptr_t sizes[N];
  intptr_t strides[N];
};


If enabled, the option will do the following. For external functions declared in the MLIR module.


	Declare a new function _mlir_ciface_<original name> where memref arguments are converted to pointer-to-struct and the remaining arguments are converted as usual.

	Add a body to the original function (making it non-external) that

	allocates a memref descriptor,

	populates it, and

	passes the pointer to it into the newly declared interface function, then

	collects the result of the call and returns it to the caller.






For (non-external) functions defined in the MLIR module.


	Define a new function _mlir_ciface_<original name> where memref arguments are converted to pointer-to-struct and the remaining arguments are converted as usual.

	Populate the body of the newly defined function with IR that

	loads descriptors from pointers;

	unpacks descriptor into individual non-aggregate values;

	passes these values into the original function;

	collects the result of the call and returns it to the caller.






Examples:


func @qux(%arg0: memref<?x?xf32>)

// Gets converted into the following.

// Function with unpacked arguments.
llvm.func @qux(%arg0: !llvm<"float*">, %arg1: !llvm<"float*">, %arg2: !llvm.i64,
               %arg3: !llvm.i64, %arg4: !llvm.i64, %arg5: !llvm.i64,
               %arg6: !llvm.i64) {
  // Populate memref descriptor (as per calling convention).
  %0 = llvm.mlir.undef : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
  %1 = llvm.insertvalue %arg0, %0[0] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
  %2 = llvm.insertvalue %arg1, %1[1] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
  %3 = llvm.insertvalue %arg2, %2[2] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
  %4 = llvm.insertvalue %arg3, %3[3, 0] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
  %5 = llvm.insertvalue %arg5, %4[4, 0] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
  %6 = llvm.insertvalue %arg4, %5[3, 1] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
  %7 = llvm.insertvalue %arg6, %6[4, 1] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">

  // Store the descriptor in a stack-allocated space.
  %8 = llvm.mlir.constant(1 : index) : !llvm.i64
  %9 = llvm.alloca %8 x !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
                 : (!llvm.i64) -> !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }*">
  llvm.store %7, %9 : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }*">

  // Call the interface function.
  llvm.call @_mlir_ciface_qux(%9) : (!llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }*">) -> ()

  // The stored descriptor will be freed on return.
  llvm.return
}

// Interface function.
llvm.func @_mlir_ciface_qux(!llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }*">)

func @foo(%arg0: memref<?x?xf32>) {
  return
}

// Gets converted into the following.

// Function with unpacked arguments.
llvm.func @foo(%arg0: !llvm<"float*">, %arg1: !llvm<"float*">, %arg2: !llvm.i64,
               %arg3: !llvm.i64, %arg4: !llvm.i64, %arg5: !llvm.i64,
               %arg6: !llvm.i64) {
  llvm.return
}

// Interface function callable from C.
llvm.func @_mlir_ciface_foo(%arg0: !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }*">) {
  // Load the descriptor.
  %0 = llvm.load %arg0 : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }*">

  // Unpack the descriptor as per calling convention.
  %1 = llvm.extractvalue %0[0] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
  %2 = llvm.extractvalue %0[1] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
  %3 = llvm.extractvalue %0[2] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
  %4 = llvm.extractvalue %0[3, 0] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
  %5 = llvm.extractvalue %0[3, 1] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
  %6 = llvm.extractvalue %0[4, 0] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
  %7 = llvm.extractvalue %0[4, 1] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
  llvm.call @foo(%1, %2, %3, %4, %5, %6, %7)
    : (!llvm<"float*">, !llvm<"float*">, !llvm.i64, !llvm.i64, !llvm.i64,
       !llvm.i64, !llvm.i64) -> ()
  llvm.return
}

Rationale: Introducing auxiliary functions for C-compatible interfaces is preferred to modifying the calling convention since it will minimize the effect of C compatibility on intra-module calls or calls between MLIR-generated functions. In particular, when calling external functions from an MLIR module in a (parallel) loop, the fact of storing a memref descriptor on stack can lead to stack exhaustion and/or concurrent access to the same address. Auxiliary interface function serves as an allocation scope in this case. Furthermore, when targeting accelerators with separate memory spaces such as GPUs, stack-allocated descriptors passed by pointer would have to be transferred to the device memory, which introduces significant overhead. In such situations, auxiliary interface functions are executed on host and only pass the values through device function invocation mechanism.




Repeated Successor Removal

Since the goal of the LLVM IR dialect is to reflect LLVM IR in MLIR, the dialect and the conversion procedure must account for the differences between block arguments and LLVM IR PHI nodes. In particular, LLVM IR disallows PHI nodes with different values coming from the same source. Therefore, the LLVM IR dialect disallows operations that have identical successors accepting arguments, which would lead to invalid PHI nodes. The conversion process resolves the potential PHI source ambiguity by injecting dummy blocks if the same block is used more than once as a successor in an instruction. These dummy blocks branch unconditionally to the original successors, pass them the original operands (available in the dummy block because it is dominated by the original block) and are used instead of them in the original terminator operation.

Example:

  cond_br %0, ^bb1(%1 : i32), ^bb1(%2 : i32)
^bb1(%3 : i32)
  "use"(%3) : (i32) -> ()

leads to a new basic block being inserted,

  cond_br %0, ^bb1(%1 : i32), ^dummy
^bb1(%3 : i32):
  "use"(%3) : (i32) -> ()
^dummy:
  br ^bb1(%4 : i32)

before the conversion to the LLVM IR dialect:

  llvm.cond_br  %0, ^bb1(%1 : !llvm.i32), ^dummy
^bb1(%3 : !llvm<"i32">):
  "use"(%3) : (!llvm.i32) -> ()
^dummy:
  llvm.br ^bb1(%2 : !llvm.i32)



Default Memref Model


Memref Descriptor

Within a converted function, a memref-typed value is represented by a memref descriptor, the type of which is the structure type obtained by converting from the memref type. This descriptor holds all the necessary information to produce an address of a specific element. In particular, it holds dynamic values for static sizes, and they are expected to match at all times.

It is created by the allocation operation and is updated by the conversion operations that may change static dimensions into dynamic dimensions and vice versa.

Note: LLVM IR conversion does not support memrefs with layouts that are not amenable to the strided form.



Index Linearization

Accesses to a memref element are transformed into an access to an element of the buffer pointed to by the descriptor. The position of the element in the buffer is calculated by linearizing memref indices in row-major order (lexically first index is the slowest varying, similar to C, but accounting for strides). The computation of the linear address is emitted as arithmetic operation in the LLVM IR dialect. Strides are extracted from the memref descriptor.

Accesses to zero-dimensional memref (that are interpreted as pointers to the elemental type) are directly converted into llvm.load or llvm.store without any pointer manipulations.

Examples:

An access to a zero-dimensional memref is converted into a plain load:

// before
%0 = load %m[] : memref<f32>

// after
%0 = llvm.load %m : !llvm<"float*">

An access to a memref with indices:

%0 = load %m[1,2,3,4] : memref<10x?x13x?xf32>

is transformed into the equivalent of the following code:

// Compute the linearized index from strides. Each block below extracts one
// stride from the descriptor, multiplies it with the index and accumulates
// the total offset.
%stride1 = llvm.extractvalue[4, 0] : !llvm<"{float*, float*, i64, i64[4], i64[4]}">
%idx1 = llvm.mlir.constant(1 : index) !llvm.i64
%addr1 = muli %stride1, %idx1 : !llvm.i64

%stride2 = llvm.extractvalue[4, 1] : !llvm<"{float*, float*, i64, i64[4], i64[4]}">
%idx2 = llvm.mlir.constant(2 : index) !llvm.i64
%addr2 = muli %stride2, %idx2 : !llvm.i64
%addr3 = addi %addr1, %addr2 : !llvm.i64

%stride3 = llvm.extractvalue[4, 2] : !llvm<"{float*, float*, i64, i64[4], i64[4]}">
%idx3 = llvm.mlir.constant(3 : index) !llvm.i64
%addr4 = muli %stride3, %idx3 : !llvm.i64
%addr5 = addi %addr3, %addr4 : !llvm.i64

%stride4 = llvm.extractvalue[4, 3] : !llvm<"{float*, float*, i64, i64[4], i64[4]}">
%idx4 = llvm.mlir.constant(4 : index) !llvm.i64
%addr6 = muli %stride4, %idx4 : !llvm.i64
%addr7 = addi %addr5, %addr6 : !llvm.i64

// Add the linear offset to the address.
%offset = llvm.extractvalue[2] : !llvm<"{float*, float*, i64, i64[4], i64[4]}">
%addr8 = addi %addr7, %offset : !llvm.i64

// Obtain the aligned pointer.
%aligned = llvm.extractvalue[1] : !llvm<"{float*, float*, i64, i64[4], i64[4]}">

// Get the address of the data pointer.
%ptr = llvm.getelementptr %aligned[%addr8]
    : !llvm<"{float*, float*, i64, i64[4], i64[4]}"> -> !llvm<"float*">

// Perform the actual load.
%0 = llvm.load %ptr : !llvm<"float*">

For stores, the address computation code is identical and only the actual store operation is different.

Note: the conversion does not perform any sort of common subexpression elimination when emitting memref accesses.






Interfaces

MLIR is a generic and extensible framework, representing different dialects with their own operations, attributes, types, and so on. MLIR Dialects can express operations with a wide variety of semantics and different levels of abstraction. The downside to this is that MLIR transformations and analyses need to account for the semantics of every operation, or handle operations conservatively. Without care, this can result in code with special-cases for each supported operation type. To combat this, MLIR provides the concept of interfaces.


Motivation

Interfaces provide a generic way of interacting with the IR. The goal is to be able to express transformations/analyses in terms of these interfaces without encoding specific knowledge about the exact operation or dialect involved. This makes the compiler more extensible by allowing the addition of new dialects and operations in a decoupled way with respect to the implementation of transformations/analyses.


Dialect Interfaces

Dialect interfaces are generally useful for transformation passes or analyses that want to operate generically on a set of attributes/operations/types, which might even be defined in different dialects. These interfaces generally involve wide coverage over the entire dialect and are only used for a handful of transformations/analyses. In these cases, registering the interface directly on each operation is overly complex and cumbersome. The interface is not core to the operation, just to the specific transformation. An example of where this type of interface would be used is inlining. Inlining generally queries high-level information about the operations within a dialect, like legality and cost modeling, that often is not specific to one operation.

A dialect interface can be defined by inheriting from the CRTP base class DialectInterfaceBase::Base. This class provides the necessary utilities for registering an interface with the dialect so that it can be looked up later. Once the interface has been defined, dialects can override it using dialect-specific information. The interfaces defined by a dialect are registered in a similar mechanism to Attributes, Operations, Types, etc.

/// Define an Inlining interface to allow for dialects to opt-in.
class DialectInlinerInterface :
    public DialectInterface::Base<DialectInlinerInterface> {
public:
  /// Returns true if the given region 'src' can be inlined into the region
  /// 'dest' that is attached to an operation registered to the current dialect.
  /// 'valueMapping' contains any remapped values from within the 'src' region.
  /// This can be used to examine what values will replace entry arguments into
  /// the 'src' region, for example.
  virtual bool isLegalToInline(Region *dest, Region *src,
                               BlockAndValueMapping &valueMapping) const {
    return false;
  }
};

/// Override the inliner interface to add support for inlining affine
/// operations.
struct AffineInlinerInterface : public DialectInlinerInterface {
  /// Affine structures have specific inlining constraints.
  bool isLegalToInline(Region *dest, Region *src,
                       BlockAndValueMapping &valueMapping) const final {
    ...
  }
};

/// Register the interface with the dialect.
AffineDialect::AffineDialect(MLIRContext *context) ... {
  addInterfaces<AffineInlinerInterface>();
}


Once registered, these interfaces can be queried from the dialect by the transformation/analysis that wants to use them, without determining the particular dialect subclass:

Dialect *dialect = ...;
if (auto *interface = dialect->getInterface<DialectInlinerInterface>())
    ... // The dialect provides this interface.



DialectInterfaceCollections

An additional utility is provided via DialectInterfaceCollection. This CRTP class allows for collecting all of the dialects that have registered a given interface within the context.

class InlinerInterface : public
    DialectInterfaceCollection<DialectInlinerInterface> {
  /// The hooks for this class mirror the hooks for the DialectInlinerInterface,
  /// with default implementations that call the hook on the interface for a
  /// given dialect.
  virtual bool isLegalToInline(Region *dest, Region *src,
                               BlockAndValueMapping &valueMapping) const {
    auto *handler = getInterfaceFor(dest->getContainingOp());
    return handler ? handler->isLegalToInline(dest, src, valueMapping) : false;
  }
};

MLIRContext *ctx = ...;
InlinerInterface interface(ctx);
if(!interface.isLegalToInline(...))
   ...





Attribute/Operation/Type Interfaces

Attribute/Operation/Type interfaces, as the names suggest, are those registered at the level of a specific attribute/operation/type. These interfaces provide access to derived objects by providing a virtual interface that must be implemented. As an example, the Linalg dialect may implement an interface that provides general queries about some of the dialects library operations. These queries may provide things like: the number of parallel loops; the number of inputs and outputs; etc.

These interfaces are defined by overriding the CRTP base class AttrInterface, OpInterface, or TypeInterface respectively. These classes take, as a template parameter, a Traits class that defines a Concept and a Model class. These classes provide an implementation of concept-based polymorphism, where the Concept defines a set of virtual methods that are overridden by the Model that is templated on the concrete object type. It is important to note that these classes should be pure in that they contain no non-static data members. Objects that wish to override this interface should add the provided trait *Interface<..>::Trait to the trait list upon registration.

struct ExampleOpInterfaceTraits {
  /// Define a base concept class that defines the virtual interface that needs
  /// to be overridden.
  struct Concept {
    virtual ~Concept();
    virtual unsigned getNumInputs(Operation *op) const = 0;
  };

  /// Define a model class that specializes a concept on a given operation type.
  template <typename OpT>
  struct Model : public Concept {
    /// Override the method to dispatch on the concrete operation.
    unsigned getNumInputs(Operation *op) const final {
      return llvm::cast<OpT>(op).getNumInputs();
    }
  };
};

class ExampleOpInterface : public OpInterface<ExampleOpInterface,
                                              ExampleOpInterfaceTraits> {
public:
  /// Use base class constructor to support LLVM-style casts.
  using OpInterface<ExampleOpInterface, ExampleOpInterfaceTraits>::OpInterface;

  /// The interface dispatches to 'getImpl()', an instance of the concept.
  unsigned getNumInputs() const {
    return getImpl()->getNumInputs(getOperation());
  }
};


Once the interface has been defined, it is registered to an operation by adding the provided trait ExampleOpInterface::Trait. Using this interface is just like using any other derived operation type, i.e. casting:

/// When defining the operation, the interface is registered via the nested
/// 'Trait' class provided by the 'OpInterface<>' base class.
class MyOp : public Op<MyOp, ExampleOpInterface::Trait> {
public:
  /// The definition of the interface method on the derived operation.
  unsigned getNumInputs() { return ...; }
};

/// Later, we can query if a specific operation(like 'MyOp') overrides the given
/// interface.
Operation *op = ...;
if (ExampleOpInterface example = dyn_cast<ExampleOpInterface>(op))
  llvm::errs() << "num inputs = " << example.getNumInputs() << "\n";



Utilizing the ODS Framework

Operation interfaces require a bit of boiler plate to connect all of the pieces together. The ODS(Operation Definition Specification) framework provides simplified mechanisms for defining interfaces.

As an example, using the ODS framework would allow for defining the example interface above as:

def ExampleOpInterface : OpInterface<"ExampleOpInterface"> {
  let description = [{
    This is an example interface definition.
  }];

  let methods = [
    InterfaceMethod<
      "Get the number of inputs for the current operation.",
      "unsigned", "getNumInputs"
    >,
  ];
}



Operation Interface List

MLIR includes standard interfaces providing functionality that is likely to be common across many different operations. Below is a list of some key interfaces that may be used directly by any dialect. The format of the header for each interface section goes as follows:


	Interface class name

	(C++ class – ODS class(if applicable))







CallInterfaces


	CallOpInterface - Used to represent operations like ‘call’

	CallInterfaceCallable getCallableForCallee()




	CallableOpInterface - Used to represent the target callee of call.

	Region * getCallableRegion()

	ArrayRef<Type> getCallableResults()








RegionKindInterfaces


	RegionKindInterface - Used to describe the abstract semantics of regions.

	RegionKind getRegionKind(unsigned index) - Return the kind of the region with the given index inside this operation.

	RegionKind::Graph - represents a graph region without control flow semantics

	RegionKind::SSACFG - represents an SSA-style control flow region with basic blocks and reachability




	hasSSADominance(unsigned index) - Return true if the region with the given index inside this operation requires dominance.








SymbolInterfaces


	SymbolOpInterface - Used to represent Symbol operations which reside immediately within a region that defines a SymbolTable.


	SymbolUserOpInterface - Used to represent operations that reference Symbol operations. This provides the ability to perform safe and efficient verification of symbol uses, as well as additional functionality.











‘llvm’ Dialect

This dialect wraps the LLVM IR types and instructions into MLIR types and operations. It provides several additional operations that are necessary to cover for the differences in the IR structure (e.g., MLIR does not have phi operations and LLVM IR does not have a constant operation).

In this document, we use “LLVM IR” to designate the intermediate representation of LLVM and “LLVM IR dialect” to refer to the MLIR dialect reflecting LLVM instructions and types.

[TOC]


Context and Module Association

The LLVM IR dialect object contains an LLVM Context and an LLVM Module that it uses to define, print, parse and manage LLVM IR types. These objects can be obtained from the dialect object using .getLLVMContext() and getLLVMModule(). All LLVM IR objects that interact with the LLVM IR dialect must exist in the dialect’s context.



Types

The LLVM IR dialect defines a single MLIR type, LLVM::LLVMType, that can wrap any existing LLVM IR type. Its syntax is as follows

type ::= `!llvm<"` llvm-canonical-type `">
llvm-canonical-type ::= <canonical textual representation defined by LLVM>

For example, one can use primitive types !llvm.i32, pointer types !llvm<"i8*">, vector types !llvm<"<4 x float>"> or structure types !llvm<"{i32, float}">. The parsing and printing of the canonical form are delegated to the LLVM assembly parser and printer.

LLVM IR dialect types contain an llvm::Type* object that can be obtained by calling .getUnderlyingType() and used in LLVM API calls directly. These objects are allocated within the LLVM context associated with the LLVM IR dialect and may be linked to the properties of the associated LLVM module.

LLVM IR dialect type can be constructed from any llvm::Type* that is associated with the LLVM context of the dialect. In this document, we use the term “wrapped LLVM IR type” to refer to the LLVM IR dialect type containing a specific LLVM IR type.



Operations

All operations in the LLVM IR dialect have a custom form in MLIR. The mnemonic of an operation is that used in LLVM IR prefixed with “llvm.”.


LLVM functions

MLIR functions are defined by an operation that is not built into the IR itself. The LLVM IR dialect provides an llvm.func operation to define functions compatible with LLVM IR. These functions have wrapped LLVM IR function type but use MLIR syntax to express it. They are required to have exactly one result type. LLVM function operation is intended to capture additional properties of LLVM functions, such as linkage and calling convention, that may be modeled differently by the built-in MLIR function.

// The type of @bar is !llvm<"i64 (i64)">
llvm.func @bar(%arg0: !llvm.i64) -> !llvm.i64 {
  llvm.return %arg0 : !llvm.i64
}

// Type type of @foo is !llvm<"void (i64)">
// !llvm.void type is omitted
llvm.func @foo(%arg0: !llvm.i64) {
  llvm.return
}

// A function with `internal` linkage.
llvm.func internal @internal_func() {
  llvm.return
}



Attribute pass-through

An LLVM IR dialect function provides a mechanism to forward function-level attributes to LLVM IR using the passthrough attribute. This is an array attribute containing either string attributes or array attributes. In the former case, the value of the string is interpreted as the name of LLVM IR function attribute. In the latter case, the array is expected to contain exactly two string attributes, the first corresponding to the name of LLVM IR function attribute, and the second corresponding to its value. Note that even integer LLVM IR function attributes have their value represented in the string form.

Example:

llvm.func @func() attributes {
  passthrough = ["noinline",           // value-less attribute
                 ["alignstack", "4"],  // integer attribute with value
                 ["other", "attr"]]    // attribute unknown to LLVM
} {
  llvm.return
}

If the attribute is not known to LLVM IR, it will be attached as a string attribute.



Linkage

An LLVM IR dialect function has a linkage attribute derived from LLVM IR linkage types. Linkage is specified by the same keyword as in LLVM IR and is located between llvm.func and the symbol name. If no linkage keyword is present, external linkage is assumed by default.




LLVM IR operations

The following operations are currently supported. The semantics of these operations corresponds to the semantics of the similarly-named LLVM IR instructions.


Integer binary arithmetic operations

Take two arguments of wrapped LLVM IR integer type, produce one value of the same type.


	add

	sub

	mul

	udiv

	sdiv

	urem

	srem



Examples:

// Integer addition.
%0 = llvm.add %a, %b : !llvm.i32

// Unsigned integer division.
%1 = llvm.udiv %a, %b : !llvm.i32



Floating point binary arithmetic operations

Take two arguments of wrapped LLVM IR floating point type, produce one value of the same type.


	fadd

	fsub

	fmul

	fdiv

	frem



Examples:

// Float addition.
%0 = llvm.fadd %a, %b : !llvm.float

// Float division.
%1 = llvm.fdiv %a, %b : !llvm.float



Memory-related operations


	<r> = alloca <size> x <type>

	<r> = getelementptr <address>[<index> (, <index>)+]

	<r> = load <address>

	store <value>, <address>



In these operations, <size> must be a value of wrapped LLVM IR integer type, <address> must be a value of wrapped LLVM IR pointer type, and <value> must be a value of wrapped LLVM IR type that corresponds to the pointer type of <address>.

The index operands are integer values whose semantics is identical to the non-pointer arguments of LLVM IR’s getelementptr.

Examples:

// Allocate an array of 4 floats on stack
%c4 = llvm.mlir.constant(4) : !llvm.i64
%0 = llvm.alloca %c4 x !llvm.float : (!llvm.i64) -> !llvm<"float*">

// Get the second element of the array (note 0-based indexing).
%c1 = llvm.mlir.constant(1) : !llvm.i64
%1 = llvm.getelementptr %0[%c1] : (!llvm<"float*">, !llvm.i64)
                                   -> !llvm<"float*">

// Store a constant into this element.
%cf = llvm.mlir.constant(42.0 : f32) : !llvm.float
llvm.store %cf, %1 : !llvm<"float*">

// Load the value from this element.
%3 = llvm.load %1 : !llvm<"float*">



Operations on values of aggregate type.


	<value> = extractvalue <struct>[<index> (, <index>)+]

	<struct> = insertvalue <value>, <struct>[<index> (, <index>)+]



In these operations, <struct> must be a value of wrapped LLVM IR structure type and <value> must be a value that corresponds to one of the (nested) structure element types.

Note the use of integer literals to designate subscripts, which is made possible by extractvalue and insertvalue must have constant subscripts. Internally, they are modeled as array attributes.

Examples:

// Get the value third element of the second element of a structure.
%0 = llvm.extractvalue %s[1, 2] : !llvm<"{i32, {i1, i8, i16}">

// Insert the value to the third element of the second element of a structure.
// Note that this returns a new structure-typed value.
%1 = llvm.insertvalue %0, %s[1, 2] : !llvm<"{i32, {i1, i8, i16}">



Terminator operations.

Branch operations:


	br [<successor>(<operands>)]

	cond_br <condition> [<true-successor>(<true-operands>), <false-successor>(<false-operands>)]



In order to comply with MLIR design, branch operations in the LLVM IR dialect pass arguments to basic blocks. Successors must be valid block MLIR identifiers and operand lists for each of them must have the same types as the arguments of the respective blocks. <condition> must be a wrapped LLVM IR i1 type.

Since LLVM IR uses the name of the predecessor basic block to identify the sources of a PHI node, it is invalid for two entries of the PHI node to indicate different values coming from the same block. Therefore, cond_br in the LLVM IR dialect disallows its successors to be the same block if this block has arguments.

Examples:

// Branch without arguments.
^bb0:
  llvm.br ^bb0

// Branch and pass arguments.
^bb1(%arg: !llvm.i32):
  llvm.br ^bb1(%arg : !llvm.i32)

// Conditionally branch and pass arguments to one of the blocks.
llvm.cond_br %cond, ^bb0, %bb1(%arg : !llvm.i32)

// It's okay to use the same block without arguments, but probably useless.
llvm.cond_br %cond, ^bb0, ^bb0

// ERROR: Passing different arguments to the same block in a conditional branch.
llvm.cond_br %cond, ^bb1(%0 : !llvm.i32), ^bb1(%1 : !llvm.i32)


Call operations:


	<r> = call(<operands>)

	call(<operands>)



In LLVM IR, functions may return either 0 or 1 value. LLVM IR dialect implements this behavior by providing a variadic call operation for 0- and 1-result functions. Even though MLIR supports multi-result functions, LLVM IR dialect disallows them.

The call instruction supports both direct and indirect calls. Direct calls start with a function name (@-prefixed) and indirect calls start with an SSA value (%-prefixed). The direct callee, if present, is stored as a function attribute callee. The trailing type of the instruction is always the MLIR function type, which may be different from the indirect callee that has the wrapped LLVM IR function type.

Examples:

// Direct call without arguments and with one result.
%0 = llvm.call @foo() : () -> (!llvm.float)

// Direct call with arguments and without a result.
llvm.call @bar(%0) : (!llvm.float) -> ()

// Indirect call with an argument and without a result.
llvm.call %1(%0) : (!llvm.float) -> ()



Miscellaneous operations.

Integer comparisons: icmp "predicate" <lhs>, <rhs>. The following predicate values are supported:


	eq - equality comparison;

	ne - inequality comparison;

	slt - signed less-than comparison

	sle - signed less-than-or-equal comparison

	sgt - signed greater-than comparison

	sge - signed greater-than-or-equal comparison

	ult - unsigned less-than comparison

	ule - unsigned less-than-or-equal comparison

	ugt - unsigned greater-than comparison

	uge - unsigned greater-than-or-equal comparison



Bitwise reinterpretation: bitcast <value>.

Selection: select <condition>, <lhs>, <rhs>.




Auxiliary MLIR Operations for Constants and Globals

LLVM IR has broad support for first-class constants, which is not the case for MLIR. Instead, constants are defined in MLIR as regular SSA values produced by operations with specific traits. The LLVM dialect provides a set of operations that model LLVM IR constants. These operations do not correspond to LLVM IR instructions and are therefore prefixed with llvm.mlir.

Inline constants can be created by llvm.mlir.constant, which currently supports integer, float, string or elements attributes (constant structs are not currently supported). LLVM IR constant expressions are expected to be constructed as sequences of regular operations on SSA values produced by llvm.mlir.constant. Additionally, MLIR provides semantically-charged operations llvm.mlir.undef and llvm.mlir.null for the corresponding constants.

LLVM IR globals can be defined using llvm.mlir.global at the module level, except for functions that are defined with llvm.func. Globals, both variables and functions, can be accessed by taking their address with the llvm.mlir.addressof operation, which produces a pointer to the named global, unlike the llvm.mlir.constant that produces the value of the same type as the constant.


llvm.mlir.addressof

Creates an SSA value containing a pointer to a global variable or constant defined by llvm.mlir.global. The global value can be defined after its first referenced. If the global value is a constant, storing into it is not allowed.

Examples:

func @foo() {
  // Get the address of a global variable.
  %0 = llvm.mlir.addressof @const : !llvm<"i32*">

  // Use it as a regular pointer.
  %1 = llvm.load %0 : !llvm<"i32*">

  // Get the address of a function.
  %2 = llvm.mlir.addressof @foo : !llvm<"void ()*">

  // The function address can be used for indirect calls.
  llvm.call %2() : () -> ()
}

// Define the global.
llvm.mlir.global @const(42 : i32) : !llvm.i32



llvm.mlir.constant

Unlike LLVM IR, MLIR does not have first-class constant values. Therefore, all constants must be created as SSA values before being used in other operations. llvm.mlir.constant creates such values for scalars and vectors. It has a mandatory value attribute, which may be an integer, floating point attribute; dense or sparse attribute containing integers or floats. The type of the attribute is one of the corresponding MLIR standard types. It may be omitted for i64 and f64 types that are implied. The operation produces a new SSA value of the specified LLVM IR dialect type. The type of that value must correspond to the attribute type converted to LLVM IR.

Examples:

// Integer constant, internal i32 is mandatory
%0 = llvm.mlir.constant(42 : i32) : !llvm.i32

// It's okay to omit i64.
%1 = llvm.mlir.constant(42) : !llvm.i64

// Floating point constant.
%2 = llvm.mlir.constant(42.0 : f32) : !llvm.float

// Splat dense vector constant.
%3 = llvm.mlir.constant(dense<1.0> : vector<4xf32>) : !llvm<"<4 x float>">



llvm.mlir.global

Since MLIR allows for arbitrary operations to be present at the top level, global variables are defined using the llvm.mlir.global operation. Both global constants and variables can be defined, and the value may also be initialized in both cases.

There are two forms of initialization syntax. Simple constants that can be represented as MLIR attributes can be given in-line:

llvm.mlir.global @variable(32.0 : f32) : !llvm.float

This initialization and type syntax is similar to llvm.mlir.constant and may use two types: one for MLIR attribute and another for the LLVM value. These types must be compatible.

More complex constants that cannot be represented as MLIR attributes can be given in an initializer region:

// This global is initialized with the equivalent of:
//   i32* getelementptr (i32* @g2, i32 2)
llvm.mlir.global constant @int_gep() : !llvm<"i32*"> {
  %0 = llvm.mlir.addressof @g2 : !llvm<"i32*">
  %1 = llvm.mlir.constant(2 : i32) : !llvm.i32
  %2 = llvm.getelementptr %0[%1] : (!llvm<"i32*">, !llvm.i32) -> !llvm<"i32*">
  // The initializer region must end with `llvm.return`.
  llvm.return %2 : !llvm<"i32*">
}

Only one of the initializer attribute or initializer region may be provided.

llvm.mlir.global must appear at top-level of the enclosing module. It uses an @-identifier for its value, which will be uniqued by the module with respect to other @-identifiers in it.

Examples:

// Global values use @-identifiers.
llvm.mlir.global constant @cst(42 : i32) : !llvm.i32

// Non-constant values must also be initialized.
llvm.mlir.global @variable(32.0 : f32) : !llvm.float

// Strings are expected to be of wrapped LLVM i8 array type and do not
// automatically include the trailing zero.
llvm.mlir.global @string("abc") : !llvm<"[3 x i8]">

// For strings globals, the trailing type may be omitted.
llvm.mlir.global constant @no_trailing_type("foo bar")

// A complex initializer is constructed with an initializer region.
llvm.mlir.global constant @int_gep() : !llvm<"i32*"> {
  %0 = llvm.mlir.addressof @g2 : !llvm<"i32*">
  %1 = llvm.mlir.constant(2 : i32) : !llvm.i32
  %2 = llvm.getelementptr %0[%1] : (!llvm<"i32*">, !llvm.i32) -> !llvm<"i32*">
  llvm.return %2 : !llvm<"i32*">
}

Similarly to functions, globals have a linkage attribute. In the custom syntax, this attribute is placed between llvm.mlir.global and the optional constant keyword. If the attribute is omitted, external linkage is assumed by default.

Examples:

// A constant with internal linkage will not participate in linking.
llvm.mlir.global internal constant @cst(42 : i32) : !llvm.i32

// By default, "external" linkage is assumed and the global participates in
// symbol resolution at link-time.
llvm.mlir.global @glob(0 : f32) : !llvm.float



llvm.mlir.null

Unlike LLVM IR, MLIR does not have first-class null pointers. They must be explicitly created as SSA values using llvm.mlir.null. This operation has operands or attributes, and returns a null value of a wrapped LLVM IR pointer type.

Examples:

// Null pointer to i8 value.
%0 = llvm.mlir.null : !llvm<"i8*">

// Null pointer to a function with signature void() value.
%1 = llvm.mlir.null : !llvm<"void()*">



llvm.mlir.undef

Unlike LLVM IR, MLIR does not have first-class undefined values. Such values must be created as SSA values using llvm.mlir.undef. This operation has no operands or attributes. It creates an undefined value of the specified LLVM IR dialect type wrapping an LLVM IR structure type.

Example:

// Create a structure with a 32-bit integer followed by a float.
%0 = llvm.mlir.undef : !llvm<"{i32, float}">







‘linalg’ Dialect

[TOC]


Rationale
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‘gpu’ Dialect

Note: this dialect is more likely to change than others in the near future; use with caution.

This dialect provides middle-level abstractions for launching GPU kernels following a programming model similar to that of CUDA or OpenCL. It provides abstractions for kernel invocations (and may eventually provide those for device management) that are not present at the lower level (e.g., as LLVM IR intrinsics for GPUs). Its goal is to abstract away device- and driver-specific manipulations to launch a GPU kernel and provide a simple path towards GPU execution from MLIR. It may be targeted, for example, by DSLs using MLIR. The dialect uses gpu as its canonical prefix.


Memory attribution

Memory buffers are defined at the function level, either in “gpu.launch” or in “gpu.func” ops. This encoding makes it clear where the memory belongs and makes the lifetime of the memory visible. The memory is only accessible while the kernel is launched/the function is currently invoked. The latter is more strict than actual GPU implementations but using static memory at the function level is just for convenience. It is also always possible to pass pointers to the workgroup memory into other functions, provided they expect the correct memory space.

The buffers are considered live throughout the execution of the GPU function body. The absence of memory attribution syntax means that the function does not require special buffers. Rationale: although the underlying models declare memory buffers at the module level, we chose to do it at the function level to provide some structuring for the lifetime of those buffers; this avoids the incentive to use the buffers for communicating between different kernels or launches of the same kernel, which should be done through function arguments instead; we chose not to use alloca-style approach that would require more complex lifetime analysis following the principles of MLIR that promote structure and representing analysis results in the IR.



Operations

[include “Dialects/GPUOps.md”]
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‘spv’ Dialect

This document describes the design of the SPIR-V dialect in MLIR. It lists various design choices we made for modeling different SPIR-V mechanisms, and their rationale.

This document also explains in a high-level manner how different components are organized and implemented in the code and gives steps to follow for extending them.

This document assumes familiarity with SPIR-V. SPIR-V is the Khronos Group’s binary intermediate language for representing graphics shaders and compute kernels. It is adopted by multiple Khronos Group’s APIs, including Vulkan and OpenCL. It is fully defined in a human-readable specification; the syntax of various SPIR-V instructions are encoded in a machine-readable grammar.

[TOC]


Design Guidelines

SPIR-V is a binary intermediate language that serves dual purpose: on one side, it is an intermediate language to represent graphics shaders and compute kernels for high-level languages to target; on the other side, it defines a stable binary format for hardware driver consumption. As a result, SPIR-V has design principles pertain to not only intermediate language, but also binary format. For example, regularity is one of the design goals of SPIR-V. All concepts are represented as SPIR-V instructions, including declaring extensions and capabilities, defining types and constants, defining functions, attaching additional properties to computation results, etc. This way favors binary encoding and decoding for driver consumption but not necessarily compiler transformations.


Dialect design principles

The main objective of the SPIR-V dialect is to be a proper intermediate representation (IR) to facilitate compiler transformations. While we still aim to support serializing to and deserializing from the binary format for various good reasons, the binary format and its concerns play less a role in the design of the SPIR-V dialect: when there is a trade-off to be made between favoring IR and supporting binary format, we lean towards the former.

On the IR aspect, the SPIR-V dialect aims to model SPIR-V at the same semantic level. It is not intended to be a higher level or lower level abstraction than the SPIR-V specification. Those abstractions are easily outside the domain of SPIR-V and should be modeled with other proper dialects so they can be shared among various compilation paths. Because of the dual purpose of SPIR-V, SPIR-V dialect staying at the same semantic level as the SPIR-V specification also means we can still have straightforward serialization and deserialization for the majority of functionalities.

To summarize, the SPIR-V dialect follows the following design principles:


	Stay as the same semantic level as the SPIR-V specification by having one-to-one mapping for most concepts and entities.

	Adopt SPIR-V specification’s syntax if possible, but deviate intentionally to utilize MLIR mechanisms if it results in better representation and benefits transformation.

	Be straightforward to serialize into and deserialize from the SPIR-V binary format.



SPIR-V is designed to be consumed by hardware drivers, so its representation is quite clear, yet verbose for some cases. Allowing representational deviation gives us the flexibility to reduce the verbosity by using MLIR mechanisms.



Dialect scopes

SPIR-V supports multiple execution environments, specified by client APIs. Notable adopters include Vulkan and OpenCL. It follows that the SPIR-V dialect should support multiple execution environments if to be a proper proxy of SPIR-V in MLIR systems. The SPIR-V dialect is designed with these considerations: it has proper support for versions, extensions, and capabilities and is as extensible as SPIR-V specification.




Conventions

The SPIR-V dialect adopts the following conventions for IR:


	The prefix for all SPIR-V types and operations are spv..

	All instructions in an extended instruction set are further qualified with the extended instruction set’s prefix. For example, all operations in the GLSL extended instruction set have the prefix of spv.GLSL..

	Ops that directly mirror instructions in the specification have CamelCase names that are the same as the instruction opnames (without the Op prefix). For example, spv.FMul is a direct mirror of OpFMul in the specification. Such an op will be serialized into and deserialized from one SPIR-V instruction.

	Ops with snake_case names are those that have different representation from corresponding instructions (or concepts) in the specification. These ops are mostly for defining the SPIR-V structure. For example, spv.module and spv.constant. They may correspond to one or more instructions during (de)serialization.

	Ops with _snake_case names are those that have no corresponding instructions (or concepts) in the binary format. They are introduced to satisfy MLIR structural requirements. For example, spv._module_end and spv._merge. They map to no instructions during (de)serialization.



(TODO: consider merging the last two cases and adopting spv.mlir. prefix for them.)



Module

A SPIR-V module is defined via the spv.module op, which has one region that contains one block. Model-level instructions, including function definitions, are all placed inside the block. Functions are defined using the builtin func op.

We choose to model a SPIR-V module with a dedicated spv.module op based on the following considerations:


	It maps cleanly to a SPIR-V module in the specification.

	We can enforce SPIR-V specific verification that is suitable to be performed at the module-level.

	We can attach additional model-level attributes.

	We can control custom assembly form.



The spv.module op’s region cannot capture SSA values from outside, neither implicitly nor explicitly. The spv.module op’s region is closed as to what ops can appear inside: apart from the builtin func op, it can only contain ops from the SPIR-V dialect. The spv.module op’s verifier enforces this rule. This meaningfully guarantees that a spv.module can be the entry point and boundary for serialization.


Module-level operations

SPIR-V binary format defines the following sections:


	Capabilities required by the module.

	Extensions required by the module.

	Extended instructions sets required by the module.

	Addressing and memory model specification.

	Entry point specifications.

	Execution mode declarations.

	Debug instructions.

	Annotation/decoration instructions.

	Type, constant, global variables.

	Function declarations.

	Function definitions.



Basically, a SPIR-V binary module contains multiple module-level instructions followed by a list of functions. Those module-level instructions are essential and they can generate result ids referenced by functions, notably, declaring resource variables to interact with the execution environment.

Compared to the binary format, we adjust how these module-level SPIR-V instructions are represented in the SPIR-V dialect:


Use MLIR attributes for metadata


	Requirements for capabilities, extensions, extended instruction sets, addressing model, and memory model are conveyed using spv.module attributes. This is considered better because these information are for the execution environment. It’s easier to probe them if on the module op itself.

	Annotations/decoration instructions are “folded” into the instructions they decorate and represented as attributes on those ops. This eliminates potential forward references of SSA values, improves IR readability, and makes querying the annotations more direct. More discussions can be found in the Decorations section.





Model types with MLIR custom types


	Types are represented using MLIR standard types and SPIR-V dialect specific types. There are no type declaration ops in the SPIR-V dialect. More discussions can be found in the Types section later.





Unify and localize constants


	Various normal constant instructions are represented by the same spv.constant op. Those instructions are just for constants of different types; using one op to represent them reduces IR verbosity and makes transformations less tedious.

	Normal constants are not placed in spv.module’s region; they are localized into functions. This is to make functions in the SPIR-V dialect to be isolated and explicit capturing. Constants are cheap to duplicate given attributes are made unique in MLIRContext.





Adopt symbol-based global variables and specialization constant


	Global variables are defined with the spv.globalVariable op. They do not generate SSA values. Instead they have symbols and should be referenced via symbols. To use global variables in a function block, spv._address_of is needed to turn the symbol into an SSA value.

	Specialization constants are defined with the spv.specConstant op. Similar to global variables, they do not generate SSA values and have symbols for reference, too. spv._reference_of is needed to turn the symbol into an SSA value for use in a function block.



The above choices enables functions in the SPIR-V dialect to be isolated and explicit capturing.



Disallow implicit capturing in functions


	In SPIR-V specification, functions support implicit capturing: they can reference SSA values defined in modules. In the SPIR-V dialect functions are defined with func op, which disallows implicit capturing. This is more friendly to compiler analyses and transformations. More discussions can be found in the Function section later.





Model entry points and execution models as normal ops


	A SPIR-V module can have multiple entry points. And these entry points refer to the function and interface variables. It’s not suitable to model them as spv.module op attributes. We can model them as normal ops of using symbol references.

	Similarly for execution modes, which are coupled with entry points, we can model them as normal ops in spv.module’s region.







Decorations

Annotations/decorations provide additional information on result ids. In SPIR-V, all instructions can generate result ids, including value-computing and type-defining ones.

For decorations on value result ids, we can just have a corresponding attribute attached to the operation generating the SSA value. For example, for the following SPIR-V:

OpDecorate %v1 RelaxedPrecision
OpDecorate %v2 NoContraction
...
%v1 = OpFMul %float %0 %0
%v2 = OpFMul %float %1 %1

We can represent them in the SPIR-V dialect as:

%v1 = "spv.FMul"(%0, %0) {RelaxedPrecision: unit} : (f32, f32) -> (f32)
%v2 = "spv.FMul"(%1, %1) {NoContraction: unit} : (f32, f32) -> (f32)

This approach benefits transformations. Essentially those decorations are just additional properties of the result ids (and thus their defining instructions). In SPIR-V binary format, they are just represented as instructions. Literally following SPIR-V binary format means we need to through def-use chains to find the decoration instructions and query information from them.

For decorations on type result ids, notice that practically, only result ids generated from composite types (e.g., OpTypeArray, OpTypeStruct) need to be decorated for memory layouting purpose (e.g., ArrayStride, Offset, etc.); scalar/vector types are required to be uniqued in SPIR-V. Therefore, we can just encode them directly in the dialect-specific type.



Types

Theoretically we can define all SPIR-V types using MLIR extensible type system, but other than representational purity, it does not buy us more. Instead, we need to maintain the code and invest in pretty printing them. So we prefer to use builtin/standard types if possible.

The SPIR-V dialect reuses standard integer, float, and vector types:




	Specification
	Dialect





	OpTypeBool
	i1



	OpTypeFloat <bitwidth>
	f<bitwidth>



	OpTypeVector <scalar-type> <count>
	vector<<count> x <scalar-type>>





For integer types, the SPIR-V dialect supports all signedness semantics (signless, signed, unsigned) in order to ease transformations from higher level dialects. However, SPIR-V spec only defines two signedness semantics state: 0 indicates unsigned, or no signedness semantics, 1 indicates signed semantics. So both iN and uiN are serialized into the same OpTypeInt N 0. For deserialization, we always treat OpTypeInt N 0 as iN.

mlir::NoneType is used for SPIR-V OpTypeVoid; builtin function types are used for SPIR-V OpTypeFunction types.

The SPIR-V dialect and defines the following dialect-specific types:

spirv-type ::= array-type
             | image-type
             | pointer-type
             | runtime-array-type
             | struct-type


Array type

This corresponds to SPIR-V array type. Its syntax is

element-type ::= integer-type
               | floating-point-type
               | vector-type
               | spirv-type

array-type ::= `!spv.array` `<` integer-literal `x` element-type
               (`,` `stride` `=` integer-literal)? `>`

For example,

!spv.array<4 x i32>
!spv.array<4 x i32, stride = 4>
!spv.array<16 x vector<4 x f32>>



Image type

This corresponds to SPIR-V image type. Its syntax is

dim ::= `1D` | `2D` | `3D` | `Cube` | <and other SPIR-V Dim specifiers...>

depth-info ::= `NoDepth` | `IsDepth` | `DepthUnknown`

arrayed-info ::= `NonArrayed` | `Arrayed`

sampling-info ::= `SingleSampled` | `MultiSampled`

sampler-use-info ::= `SamplerUnknown` | `NeedSampler` | `NoSampler`

format ::= `Unknown` | `Rgba32f` | <and other SPIR-V Image Formats...>

image-type ::= `!spv.image<` element-type `,` dim `,` depth-info `,`
                           arrayed-info `,` sampling-info `,`
                           sampler-use-info `,` format `>`

For example,

!spv.image<f32, 1D, NoDepth, NonArrayed, SingleSampled, SamplerUnknown, Unknown>
!spv.image<f32, Cube, IsDepth, Arrayed, MultiSampled, NeedSampler, Rgba32f>



Pointer type

This corresponds to SPIR-V pointer type. Its syntax is

storage-class ::= `UniformConstant`
                | `Uniform`
                | `Workgroup`
                | <and other storage classes...>

pointer-type ::= `!spv.ptr<` element-type `,` storage-class `>`

For example,

!spv.ptr<i32, Function>
!spv.ptr<vector<4 x f32>, Uniform>



Runtime array type

This corresponds to SPIR-V runtime array type. Its syntax is

runtime-array-type ::= `!spv.rtarray` `<` element-type (`,` `stride` `=` integer-literal)? `>`

For example,

!spv.rtarray<i32>
!spv.rtarray<i32, stride=4>
!spv.rtarray<vector<4 x f32>>



Struct type

This corresponds to SPIR-V struct type. Its syntax is

struct-member-decoration ::= integer-literal? spirv-decoration*
struct-type ::= `!spv.struct<` spirv-type (`[` struct-member-decoration `]`)?
                     (`, ` spirv-type (`[` struct-member-decoration `]`)?

For Example,

!spv.struct<f32>
!spv.struct<f32 [0]>
!spv.struct<f32, !spv.image<f32, 1D, NoDepth, NonArrayed, SingleSampled, SamplerUnknown, Unknown>>
!spv.struct<f32 [0], i32 [4]>




Function

In SPIR-V, a function construct consists of multiple instructions involving OpFunction, OpFunctionParameter, OpLabel, OpFunctionEnd.

// int f(int v) { return v; }
%1 = OpTypeInt 32 0
%2 = OpTypeFunction %1 %1
%3 = OpFunction %1 %2
%4 = OpFunctionParameter %1
%5 = OpLabel
%6 = OpReturnValue %4
     OpFunctionEnd

This construct is very clear yet quite verbose. It is intended for driver consumption. There is little benefit to literally replicate this construct in the SPIR-V dialect. Instead, we reuse the builtin func op to express functions more concisely:

func @f(%arg: i32) -> i32 {
  "spv.ReturnValue"(%arg) : (i32) -> (i32)
}

A SPIR-V function can have at most one result. It cannot contain nested functions or non-SPIR-V operations. spv.module verifies these requirements.

A major difference between the SPIR-V dialect and the SPIR-V specification for functions is that the former are isolated and require explicit capturing, while the latter allows implicit capturing. In SPIR-V specification, functions can refer to SSA values (generated by constants, global variables, etc.) defined in modules. The SPIR-V dialect adjusted how constants and global variables are modeled to enable isolated functions. Isolated functions are more friendly to compiler analyses and transformations. This also enables the SPIR-V dialect to better utilize core infrastructure: many functionalities in the core infrastructure require ops to be isolated, e.g., the greedy pattern rewriter can only act on ops isolated from above.

(TODO: create a dedicated spv.fn op for SPIR-V functions.)



Operations

In SPIR-V, instruction is a generalized concept; a SPIR-V module is just a sequence of instructions. Declaring types, expressing computations, annotating result ids, expressing control flows and others are all in the form of instructions.

We only discuss instructions expressing computations here, which can be represented via SPIR-V dialect ops. Module-level instructions for declarations and definitions are represented differently in the SPIR-V dialect as explained earlier in the Module-level operations section.

An instruction computes zero or one result from zero or more operands. The result is a new result id. An operand can be a result id generated by a previous instruction, an immediate value, or a case of an enum type. We can model result id operands and results with MLIR SSA values; for immediate value and enum cases, we can model them with MLIR attributes.

For example,

%i32 = OpTypeInt 32 0
%c42 = OpConstant %i32 42
...
%3 = OpVariable %i32 Function 42
%4 = OpIAdd %i32 %c42 %c42

can be represented in the dialect as

%0 = "spv.constant"() { value = 42 : i32 } : () -> i32
%1 = "spv.Variable"(%0) { storage_class = "Function" } : (i32) -> !spv.ptr<i32, Function>
%2 = "spv.IAdd"(%0, %0) : (i32, i32) -> i32

Operation documentation is written in each op’s Op Definition Spec using TableGen. A markdown version of the doc can be generated using mlir-tblgen -gen-doc and is attached in the Operation definitions section.


Ops from extended instruction sets

Analogically extended instruction set is a mechanism to import SPIR-V instructions within another namespace. GLSL.std.450 is an extended instruction set that provides common mathematical routines that should be supported. Instead of modeling OpExtInstImport as a separate op and use a single op to model OpExtInst for all extended instructions, we model each SPIR-V instruction in an extended instruction set as a separate op with the proper name prefix. For example, for

%glsl = OpExtInstImport "GLSL.std.450"

%f32 = OpTypeFloat 32
%cst = OpConstant %f32 ...

%1 = OpExtInst %f32 %glsl 28 %cst
%2 = OpExtInst %f32 %glsl 31 %cst

we can have

%1 = "spv.GLSL.Log"(%cst) : (f32) -> (f32)
%2 = "spv.GLSL.Sqrt"(%cst) : (f32) -> (f32)




Control Flow

SPIR-V binary format uses merge instructions (OpSelectionMerge and OpLoopMerge) to declare structured control flow. They explicitly declare a header block before the control flow diverges and a merge block where control flow subsequently converges. These blocks delimit constructs that must nest, and can only be entered and exited in structured ways.

In the SPIR-V dialect, we use regions to mark the boundary of a structured control flow construct. With this approach, it’s easier to discover all blocks belonging to a structured control flow construct. It is also more idiomatic to MLIR system.

We introduce a spv.selection and spv.loop op for structured selections and loops, respectively. The merge targets are the next ops following them. Inside their regions, a special terminator, spv._merge is introduced for branching to the merge target.


Selection

spv.selection defines a selection construct. It contains one region. The region should contain at least two blocks: one selection header block and one merge block.


	The selection header block should be the first block. It should contain the spv.BranchConditional or spv.Switch op.

	The merge block should be the last block. The merge block should only contain a spv._merge op. Any block can branch to the merge block for early exit.



               +--------------+
               | header block |                 (may have multiple outgoing branches)
               +--------------+
                    / | \
                     ...


   +---------+   +---------+   +---------+
   | case #0 |   | case #1 |   | case #2 |  ... (may have branches between each other)
   +---------+   +---------+   +---------+


                     ...
                    \ | /
                      v
               +-------------+
               | merge block |                  (may have multiple incoming branches)
               +-------------+

For example, for the given function

void loop(bool cond) {
  int x = 0;
  if (cond) {
    x = 1;
  } else {
    x = 2;
  }
  // ...
}


It will be represented as

func @selection(%cond: i1) -> () {
  %zero = spv.constant 0: i32
  %one = spv.constant 1: i32
  %two = spv.constant 2: i32
  %x = spv.Variable init(%zero) : !spv.ptr<i32, Function>

  spv.selection {
    spv.BranchConditional %cond, ^then, ^else

  ^then:
    spv.Store "Function" %x, %one : i32
    spv.Branch ^merge

  ^else:
    spv.Store "Function" %x, %two : i32
    spv.Branch ^merge

  ^merge:
    spv._merge
  }

  // ...
}




Loop

spv.loop defines a loop construct. It contains one region. The region should contain at least four blocks: one entry block, one loop header block, one loop continue block, one merge block.


	The entry block should be the first block and it should jump to the loop header block, which is the second block.

	The merge block should be the last block. The merge block should only contain a spv._merge op. Any block except the entry block can branch to the merge block for early exit.

	The continue block should be the second to last block and it should have a branch to the loop header block.

	The loop continue block should be the only block, except the entry block, branching to the loop header block.



    +-------------+
    | entry block |           (one outgoing branch)
    +-------------+
           |
           v
    +-------------+           (two incoming branches)
    | loop header | <-----+   (may have one or two outgoing branches)
    +-------------+       |
                          |
          ...             |
         \ | /            |
           v              |
   +---------------+      |   (may have multiple incoming branches)
   | loop continue | -----+   (may have one or two outgoing branches)
   +---------------+

          ...
         \ | /
           v
    +-------------+           (may have multiple incoming branches)
    | merge block |
    +-------------+

The reason to have another entry block instead of directly using the loop header block as the entry block is to satisfy region’s requirement: entry block of region may not have predecessors. We have a merge block so that branch ops can reference it as successors. The loop continue block here corresponds to “continue construct” using SPIR-V spec’s term; it does not mean the “continue block” as defined in the SPIR-V spec, which is “a block containing a branch to an OpLoopMerge instruction’s Continue Target.”

For example, for the given function

void loop(int count) {
  for (int i = 0; i < count; ++i) {
    // ...
  }
}


It will be represented as

func @loop(%count : i32) -> () {
  %zero = spv.constant 0: i32
  %one = spv.constant 1: i32
  %var = spv.Variable init(%zero) : !spv.ptr<i32, Function>

  spv.loop {
    spv.Branch ^header

  ^header:
    %val0 = spv.Load "Function" %var : i32
    %cmp = spv.SLessThan %val0, %count : i32
    spv.BranchConditional %cmp, ^body, ^merge

  ^body:
    // ...
    spv.Branch ^continue

  ^continue:
    %val1 = spv.Load "Function" %var : i32
    %add = spv.IAdd %val1, %one : i32
    spv.Store "Function" %var, %add : i32
    spv.Branch ^header

  ^merge:
    spv._merge
  }
  return
}



Block argument for Phi

There are no direct Phi operations in the SPIR-V dialect; SPIR-V OpPhi instructions are modelled as block arguments in the SPIR-V dialect. (See the Rationale doc for “Block Arguments vs Phi nodes”.) Each block argument corresponds to one OpPhi instruction in the SPIR-V binary format. For example, for the following SPIR-V function foo:

  %foo = OpFunction %void None ...
%entry = OpLabel
  %var = OpVariable %_ptr_Function_int Function
         OpSelectionMerge %merge None
         OpBranchConditional %true %true %false
 %true = OpLabel
         OpBranch %phi
%false = OpLabel
         OpBranch %phi
  %phi = OpLabel
  %val = OpPhi %int %int_1 %false %int_0 %true
         OpStore %var %val
         OpReturn
%merge = OpLabel
         OpReturn
         OpFunctionEnd

It will be represented as:

func @foo() -> () {
  %var = spv.Variable : !spv.ptr<i32, Function>

  spv.selection {
    %true = spv.constant true
    spv.BranchConditional %true, ^true, ^false

  ^true:
    %zero = spv.constant 0 : i32
    spv.Branch ^phi(%zero: i32)

  ^false:
    %one = spv.constant 1 : i32
    spv.Branch ^phi(%one: i32)

  ^phi(%arg: i32):
    spv.Store "Function" %var, %arg : i32
    spv.Return

  ^merge:
    spv._merge
  }
  spv.Return
}




Version, extensions, capabilities

SPIR-V supports versions, extensions, and capabilities as ways to indicate the availability of various features (types, ops, enum cases) on target hardware. For example, non-uniform group operations were missing before v1.3, and they require special capabilities like GroupNonUniformArithmetic to be used. These availability information relates to target environment and affects the legality of patterns during dialect conversion.

SPIR-V ops’ availability requirements are modeled with op interfaces:


	QueryMinVersionInterface and QueryMaxVersionInterface for version requirements

	QueryExtensionInterface for extension requirements

	QueryCapabilityInterface for capability requirements



These interface declarations are auto-generated from TableGen definitions included in SPIRVBase.td. At the moment all SPIR-V ops implement the above interfaces.

SPIR-V ops’ availability implementation methods are automatically synthesized from the availability specification on each op and enum attribute in TableGen. An op needs to look into not only the opcode but also operands to derive its availability requirements. For example, spv.ControlBarrier requires no special capability if the execution scope is Subgroup, but it will require the VulkanMemoryModel capability if the scope is QueueFamily.

SPIR-V types’ availability implementation methods are manually written as overrides in the SPIR-V type hierarchy.

These availability requirements serve as the “ingredients” for the SPIRVConversionTarget and SPIRVTypeConverter to perform op and type conversions, by following the requirements in target environment.



Target environment

SPIR-V aims to support multiple execution environments as specified by client APIs. These execution environments affect the availability of certain SPIR-V features. For example, a Vulkan 1.1 implementation must support the 1.0, 1.1, 1.2, and 1.3 versions of SPIR-V and the 1.0 version of the SPIR-V extended instructions for GLSL. Further Vulkan extensions may enable more SPIR-V instructions.

SPIR-V compilation should also take into consideration of the execution environment, so we generate SPIR-V modules valid for the target environment. This is conveyed by the spv.target_env (spirv::TargetEnvAttr) attribute. It should be of #spv.target_env attribute kind, which is defined as:

spirv-version    ::= `v1.0` | `v1.1` | ...
spirv-extension  ::= `SPV_KHR_16bit_storage` | `SPV_EXT_physical_storage_buffer` | ...
spirv-capability ::= `Shader` | `Kernel` | `GroupNonUniform` | ...

spirv-extension-list     ::= `[` (spirv-extension-elements)? `]`
spirv-extension-elements ::= spirv-extension (`,` spirv-extension)*

spirv-capability-list     ::= `[` (spirv-capability-elements)? `]`
spirv-capability-elements ::= spirv-capability (`,` spirv-capability)*

spirv-resource-limits ::= dictionary-attribute

spirv-vce-attribute ::= `#` `spv.vce` `<`
                            spirv-version `,`
                            spirv-capability-list `,`
                            spirv-extensions-list `>`

spirv-vendor-id ::= `AMD` | `NVIDIA` | ...
spirv-device-type ::= `DiscreteGPU` | `IntegratedGPU` | `CPU` | ...
spirv-device-id ::= integer-literal
spirv-device-info ::= spirv-vendor-id (`:` spirv-device-type (`:` spirv-device-id)?)?

spirv-target-env-attribute ::= `#` `spv.target_env` `<`
                                  spirv-vce-attribute,
                                  (spirv-device-info `,`)?
                                  spirv-resource-limits `>`

The attribute has a few fields:


	A #spv.vce (spirv::VerCapExtAttr) attribute:

	The target SPIR-V version.

	A list of SPIR-V extensions for the target.

	A list of SPIR-V capabilities for the target.




	A dictionary of target resource limits (see the Vulkan spec for explanation):

	max_compute_workgroup_invocations

	max_compute_workgroup_size






For example,

module attributes {
spv.target_env = #spv.target_env<
    #spv.vce<v1.3, [Shader, GroupNonUniform], [SPV_KHR_8bit_storage]>,
    ARM:IntegratedGPU,
    {
      max_compute_workgroup_invocations = 128 : i32,
      max_compute_workgroup_size = dense<[128, 128, 64]> : vector<3xi32>
    }>
} { ... }

Dialect conversion framework will utilize the information in spv.target_env to properly filter out patterns and ops not available in the target execution environment. When targeting SPIR-V, one needs to create a SPIRVConversionTarget by providing such an attribute.



Shader interface (ABI)

SPIR-V itself is just expressing computation happening on GPU device. SPIR-V programs themselves are not enough for running workloads on GPU; a companion host application is needed to manage the resources referenced by SPIR-V programs and dispatch the workload. For the Vulkan execution environment, the host application will be written using Vulkan API. Unlike CUDA, the SPIR-V program and the Vulkan application are typically authored with different front-end languages, which isolates these two worlds. Yet they still need to match interfaces: the variables declared in a SPIR-V program for referencing resources need to match with the actual resources managed by the application regarding their parameters.

Still using Vulkan as an example execution environment, there are two primary resource types in Vulkan: buffers and images. They are used to back various uses that may differ regarding the classes of operations (load, store, atomic) to be performed. These uses are differentiated via descriptor types. (For example, uniform storage buffer descriptors can only support load operations while storage buffer descriptors can support load, store, and atomic operations.) Vulkan uses a binding model for resources. Resources are associated with descriptors and descriptors are further grouped into sets. Each descriptor thus has a set number and a binding number. Descriptors in the application corresponds to variables in the SPIR-V program. Their parameters must match, including but not limited to set and binding numbers.

Apart from buffers and images, there is other data that is set up by Vulkan and referenced inside the SPIR-V program, for example, push constants. They also have parameters that require matching between the two worlds.

The interface requirements are external information to the SPIR-V compilation path in MLIR. Besides, each Vulkan application may want to handle resources differently. To avoid duplication and to share common utilities, a SPIR-V shader interface specification needs to be defined to provide the external requirements to and guide the SPIR-V compilation path.


Shader interface attributes

The SPIR-V dialect defines a few attributes for specifying these interfaces:


	spv.entry_point_abi is a struct attribute that should be attached to the entry function. It contains:

	local_size for specifying the local work group size for the dispatch.




	spv.interface_var_abi is attribute that should be attached to each operand and result of the entry function. It should be of #spv.interface_var_abi attribute kind, which is defined as:



spv-storage-class     ::= `StorageBuffer` | ...
spv-descriptor-set    ::= integer-literal
spv-binding           ::= integer-literal
spv-interface-var-abi ::= `#` `spv.interface_var_abi` `<(` spv-descriptor-set
                          `,` spv-binding `)` (`,` spv-storage-class)? `>`

For example,

#spv.interface_var_abi<(0, 0), StorageBuffer>
#spv.interface_var_abi<(0, 1)>

The attribute has a few fields:


	Descriptor set number for the corresponding resource variable.

	Binding number for the corresponding resource variable.

	Storage class for the corresponding resource variable.



The SPIR-V dialect provides a LowerABIAttributesPass for consuming these attributes and create SPIR-V module complying with the interface.




Serialization and deserialization

Although the main objective of the SPIR-V dialect is to act as a proper IR for compiler transformations, being able to serialize to and deserialize from the binary format is still very valuable for many good reasons. Serialization enables the artifacts of SPIR-V compilation to be consumed by an execution environment; deserialization allows us to import SPIR-V binary modules and run transformations on them. So serialization and deserialization are supported from the very beginning of the development of the SPIR-V dialect.

The serialization library provides two entry points, mlir::spirv::serialize() and mlir::spirv::deserialize(), for converting a MLIR SPIR-V module to binary format and back. The Code organization explains more about this.

Given that the focus is transformations, which inevitably means changes to the binary module; so serialization is not designed to be a general tool for investigating the SPIR-V binary module and does not guarantee roundtrip equivalence (at least for now). For the latter, please use the assembler/disassembler in the SPIRV-Tools project.

A few transformations are performed in the process of serialization because of the representational differences between SPIR-V dialect and binary format:


	Attributes on spv.module are emitted as their corresponding SPIR-V instructions.

	Types are serialized into OpType* instructions in the SPIR-V binary module section for types, constants, and global variables.

	spv.constants are unified and placed in the SPIR-V binary module section for types, constants, and global variables.

	Attributes on ops, if not part of the op’s binary encoding, are emitted as OpDecorate* instructions in the SPIR-V binary module section for decorations.

	spv.selections and spv.loops are emitted as basic blocks with Op*Merge instructions in the header block as required by the binary format.

	Block arguments are materialized as OpPhi instructions at the beginning of the corresponding blocks.



Similarly, a few transformations are performed during deserialization:


	Instructions for execution environment requirements (extensions, capabilities, extended instruction sets, etc.) will be placed as attributes on spv.module.

	OpType* instructions will be converted into proper mlir::Types.

	OpConstant* instructions are materialized as spv.constant at each use site.

	OpVariable instructions will be converted to spv.globalVariable ops if in module-level; otherwise they will be converted into spv.Variable ops.

	Every use of a module-level OpVariable instruction will materialize a spv._address_of op to turn the symbol of the corresponding spv.globalVariable into an SSA value.

	Every use of a OpSpecConstant instruction will materialize a spv._reference_of op to turn the symbol of the corresponding spv.specConstant into an SSA value.

	OpPhi instructions are converted to block arguments.

	Structured control flow are placed inside spv.selection and spv.loop.





Conversions

One of the main features of MLIR is the ability to progressively lower from dialects that capture programmer abstraction into dialects that are closer to a machine representation, like SPIR-V dialect. This progressive lowering through multiple dialects is enabled through the use of the DialectConversion framework in MLIR. To simplify targeting SPIR-V dialect using the Dialect Conversion framework, two utility classes are provided.

(Note : While SPIR-V has some validation rules, additional rules are imposed by Vulkan execution environment. The lowering described below implements both these requirements.)


SPIRVConversionTarget

The mlir::spirv::SPIRVConversionTarget class derives from the mlir::ConversionTarget class and serves as a utility to define a conversion target satisfying a given spv.target_env. It registers proper hooks to check the dynamic legality of SPIR-V ops. Users can further register other legality constraints into the returned SPIRVConversionTarget.

spirv::lookupTargetEnvOrDefault() is a handy utility function to query an spv.target_env attached in the input IR or use the default to construct a SPIRVConversionTarget.



SPIRVTypeConverter

The mlir::SPIRVTypeConverter derives from mlir::TypeConverter and provides type conversion for standard types to SPIR-V types conforming to the target environment it is constructed with. If the required extension/capability for the resultant type is not available in the given target environment, convertType() will return a null type.

Standard scalar types are converted to their corresponding SPIR-V scalar types.

(TODO: Note that if the bitwidth is not available in the target environment, it will be unconditionally converted to 32-bit. This should be switched to properly emulating non-32-bit scalar types.)

Standard index type need special handling since they are not directly supported in SPIR-V. Currently the index type is converted to i32.

(TODO: Allow for configuring the integer width to use for index types in the SPIR-V dialect)

SPIR-V only supports vectors of 2/3/4 elements; so standard vector types of these lengths can be converted directly.

(TODO: Convert other vectors of lengths to scalars or arrays)

Standard memref types with static shape and stride are converted to spv.ptr<spv.struct<spv.array<...>>>s. The resultant SPIR-V array types have the same element type as the source memref and its number of elements is obtained from the layout specification of the memref. The storage class of the pointer type are derived from the memref’s memory space with SPIRVTypeConverter::getStorageClassForMemorySpace().



SPIRVOpLowering

mlir::SPIRVOpLowering is a base class that can be used to define the patterns used for implementing the lowering. For now this only provides derived classes access to an instance of mlir::SPIRVTypeLowering class.



Utility functions for lowering


Setting shader interface

The method mlir::spirv::setABIAttrs allows setting the shader interface attributes for a function that is to be an entry point function within the spv.module on lowering. A later pass mlir::spirv::LowerABIAttributesPass uses this information to lower the entry point function and its ABI consistent with the Vulkan validation rules. Specifically,


	Creates spv.globalVariables for the arguments, and replaces all uses of the argument with this variable. The SSA value used for replacement is obtained using the spv._address_of operation.

	Adds the spv.EntryPoint and spv.ExecutionMode operations into the spv.module for the entry function.





Setting layout for shader interface variables

SPIR-V validation rules for shaders require composite objects to be explicitly laid out. If a spv.globalVariable is not explicitly laid out, the utility method mlir::spirv::decorateType implements a layout consistent with the Vulkan shader requirements.



Creating builtin variables

In SPIR-V dialect, builtins are represented using spv.globalVariables, with spv._address_of used to get a handle to the builtin as an SSA value. The method mlir::spirv::getBuiltinVariableValue creates a spv.globalVariable for the builtin in the current spv.module if it does not exist already, and returns an SSA value generated from an spv._address_of operation.




Current conversions to SPIR-V

Using the above infrastructure, conversions are implemented from


	Standard Dialect : Only arithmetic and logical operations conversions are implemented.

	GPU Dialect : A gpu.module is converted to a spv.module. A gpu.function within this module is lowered as an entry function.






Code organization

We aim to provide multiple libraries with clear dependencies for SPIR-V related functionalities in MLIR so developers can just choose the needed components without pulling in the whole world.


The dialect

The code for the SPIR-V dialect resides in a few places:


	Public headers are placed in include/mlir/Dialect/SPIRV.

	Libraries are placed in lib/Dialect/SPIRV.

	IR tests are placed in test/Dialect/SPIRV.

	Unit tests are placed in unittests/Dialect/SPIRV.



The whole SPIR-V dialect is exposed via multiple headers for better organization:


	SPIRVDialect.h defines the SPIR-V dialect.

	SPIRVTypes.h defines all SPIR-V specific types.

	SPIRVOps.h defines all SPIR-V operations.

	Serialization.h defines the entry points for serialization and deserialization.



The dialect itself, including all types and ops, is in the MLIRSPIRV library. Serialization functionalities are in the MLIRSPIRVSerialization library.



Op definitions

We use Op Definition Spec to define all SPIR-V ops. They are written in TableGen syntax and placed in various *Ops.td files in the header directory. Those *Ops.td files are organized according to the instruction categories used in the SPIR-V specification, for example, an op belonging to the “Atomics Instructions” section is put in the SPIRVAtomicOps.td file.

SPIRVOps.td serves as the master op definition file that includes all files for specific categories.

SPIRVBase.td defines common classes and utilities used by various op definitions. It contains the TableGen SPIR-V dialect definition, SPIR-V versions, known extensions, various SPIR-V enums, TableGen SPIR-V types, and base op classes, etc.

Many of the contents in SPIRVBase.td, e.g., the opcodes and various enums, and all *Ops.td files can be automatically updated via a Python script, which queries the SPIR-V specification and grammar. This greatly reduces the burden of supporting new ops and keeping updated with the SPIR-V spec. More details on this automated development can be found in the Automated development flow section.



Dialect conversions

The code for conversions from other dialects to the SPIR-V dialect also resides in a few places:


	From GPU dialect: headers are at include/mlir/Conversion/GPUTOSPIRV; libraries are at lib/Conversion/GPUToSPIRV.

	From standard dialect: headers are at include/mlir/Conversion/StandardTOSPIRV; libraries are at lib/Conversion/StandardToSPIRV.



These dialect to dialect conversions have their dedicated libraries, MLIRGPUToSPIRVTransforms and MLIRStandardToSPIRVTransforms, respectively.

There are also common utilities when targeting SPIR-V from any dialect:


	include/mlir/Dialect/SPIRV/Passes.h contains SPIR-V specific analyses and transformations.

	include/mlir/Dialect/SPIRV/SPIRVLowering.h contains type converters and other utility functions.



These common utilities are implemented in the MLIRSPIRVTransforms library.




Rationale


Lowering memrefs to !spv.array<..> and !spv.rtarray<..>.

The LLVM dialect lowers memref types to a MemrefDescriptor:

struct MemrefDescriptor {
  void *allocated_ptr; // Pointer to the base allocation.
  void *aligned_ptr;   // Pointer within base allocation which is aligned to
                       // the value set in the memref.
  size_t offset;       // Offset from aligned_ptr from where to get values
                       // corresponding to the memref.
  size_t shape[rank];  // Shape of the memref.
  size_t stride[rank]; // Strides used while accessing elements of the memref.
};

In SPIR-V dialect, we chose not to use a MemrefDescriptor. Instead a memref is lowered directly to a !spv.ptr<!spv.array<nelts x elem_type>> when the memref is statically shaped, and !spv.ptr<!spv.rtarray<elem_type>> when the memref is dynamically shaped. The rationale behind this choice is described below.


	Inputs/output buffers to a SPIR-V kernel are specified using OpVariable inside interface storage classes (e.g., Uniform, StorageBuffer, etc.), while kernel private variables reside in non-interface storage classes (e.g., Function, Workgroup, etc.). By default, Vulkan-flavored SPIR-V requires logical addressing mode: one cannot load/store pointers from/to variables and cannot perform pointer arithmetic. Expressing a struct like MemrefDescriptor in interface storage class requires special addressing mode (PhysicalStorageBuffer) and manipulating such a struct in non-interface storage classes requires special capabilities (VariablePointers). Requiring these two extensions together will significantly limit the Vulkan-capable device we can target; basically ruling out mobile support..


	An alternative to having one level of indirection (as is the case with MemrefDescriptors), is to embed the !spv.array or !spv.rtarray directly in the MemrefDescriptor, Having such a descriptor at the ABI boundary implies that the first few bytes of the input/output buffers would need to be reserved for shape/stride information. This adds an unnecessary burden on the host side.


	A more performant approach would be to have the data be an OpVariable, with the shape and strides passed using a separate OpVariable. This has further advantages:


	All the dynamic shape/stride information of the memref can be combined into a single descriptor. Descriptors are limited resources on many Vulkan hardware. So combining them would help make the generated code more portable across devices.

	If the shape/stride information is small enough, they could be accessed using PushConstants that are faster to access and avoid buffer allocation overheads. These would be unnecessary if all shapes are static. In the dynamic shape cases, a few parameters are typically enough to compute the shape of all memrefs used/referenced within the kernel making the use of PushConstants possible.

	The shape/stride information (typically) needs to be update less frequently than the data stored in the buffers. They could be part of different descriptor sets.









Contribution

All kinds of contributions are highly appreciated! :) We have GitHub issues for tracking the dialect and lowering development. You can find todo tasks there. The Code organization section gives an overview of how SPIR-V related functionalities are implemented in MLIR. This section gives more concrete steps on how to contribute.


Automated development flow

One of the goals of SPIR-V dialect development is to leverage both the SPIR-V human-readable specification and machine-readable grammar to auto-generate as much contents as possible. Specifically, the following tasks can be automated (partially or fully):


	Adding support for a new operation.

	Adding support for a new SPIR-V enum.

	Serialization and deserialization of a new operation.



We achieve this using the Python script gen_spirv_dialect.py. It fetches the human-readable specification and machine-readable grammar directly from the Internet and updates various SPIR-V *.td files in place. The script gives us an automated flow for adding support for new ops or enums.

Afterwards, we have SPIR-V specific mlir-tblgen backends for reading the Op Definition Spec and generate various components, including (de)serialization logic for ops. Together with standard mlir-tblgen backends, we auto-generate all op classes, enum classes, etc.

In the following subsections, we list the detailed steps to follow for common tasks.



Add a new op

To add a new op, invoke the define_inst.sh script wrapper in utils/spirv. define_inst.sh requires a few parameters:

./define_inst.sh <filename> <base-class-name> <opname>


For example, to define the op for OpIAdd, invoke

./define_inst.sh SPIRVArithmeticOps.td ArithmeticBinaryOp OpIAdd


where SPIRVArithmeticOps.td is the filename for hosting the new op and ArithmeticBinaryOp is the direct base class the newly defined op will derive from.

Similarly, to define the op for OpAtomicAnd,

./define_inst.sh SPIRVAtomicOps.td AtomicUpdateWithValueOp OpAtomicAnd


Note that the generated SPIR-V op definition is just a best-effort template; it is still expected to be updated to have more accurate traits, arguments, and results.

It is also expected that a custom assembly form is defined for the new op, which will require providing the parser and printer. The EBNF form of the custom assembly should be described in the op’s description and the parser and printer should be placed in SPIRVOps.cpp with the following signatures:

static ParseResult parse<spirv-op-symbol>Op(OpAsmParser &parser,
                                            OperationState &state);
static void print(spirv::<spirv-op-symbol>Op op, OpAsmPrinter &printer);


See any existing op as an example.

Verification should be provided for the new op to cover all the rules described in the SPIR-V specification. Choosing the proper ODS types and attribute kinds, which can be found in SPIRVBase.td, can help here. Still sometimes we need to manually write additional verification logic in SPIRVOps.cpp in a function with the following signature:

static LogicalResult verify(spirv::<spirv-op-symbol>Op op);


See any such function in SPIRVOps.cpp as an example.

If no additional verification is needed, one needs to add the following to the op’s Op Definition Spec:

let verifier = [{ return success(); }];

To suppress the requirement of the above C++ verification function.

Tests for the op’s custom assembly form and verification should be added to the proper file in test/Dialect/SPIRV/.

The generated op will automatically gain the logic for (de)serialization. However, tests still need to be coupled with the change to make sure no surprises. Serialization tests live in test/Dialect/SPIRV/Serialization.



Add a new enum

To add a new enum, invoke the define_enum.sh script wrapper in utils/spirv. define_enum.sh expects the following parameters:

./define_enum.sh <enum-class-name>


For example, to add the definition for SPIR-V storage class in to SPIRVBase.td:

./define_enum.sh StorageClass




Add a new custom type

SPIR-V specific types are defined in SPIRVTypes.h. See examples there and the tutorial for defining new custom types.



Add a new conversion

To add conversion for a type update the mlir::spirv::SPIRVTypeConverter to return the converted type (must be a valid SPIR-V type). See Type Conversion for more details.

To lower an operation into SPIR-V dialect, implement a conversion pattern. If the conversion requires type conversion as well, the pattern must inherit from the mlir::spirv::SPIRVOpLowering class to get access to mlir::spirv::SPIRVTypeConverter. If the operation has a region, signature conversion might be needed as well.

Note: The current validation rules of spv.module require that all operations contained within its region are valid operations in the SPIR-V dialect.




Operation definitions

[include “Dialects/SPIRVOps.md”]
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‘vector’ Dialect

[TOC]

MLIR supports multi-dimensional vector types and custom operations on those types. A generic, retargetable, higher-order vector type (n-D with n > 1) is a structured type, that carries semantic information useful for transformations. This document discusses retargetable abstractions that exist in MLIR today and operate on ssa-values of type vector along with pattern rewrites and lowerings that enable targeting specific instructions on concrete targets. These abstractions serve to separate concerns between operations on memref (a.k.a buffers) and operations on vector values. This is not a new proposal but rather a textual documentation of existing MLIR components along with a rationale.


Positioning in the Codegen Infrastructure

The following diagram, recently presented with the StructuredOps abstractions, captures the current codegen paths implemented in MLIR in the various existing lowering paths. 

The following diagram seeks to isolate vector dialects from the complexity of the codegen paths and focus on the payload-carrying ops that operate on std and vector types. This diagram is not to be taken as set in stone and representative of what exists today but rather illustrates the layering of abstractions in MLIR.


[image: vector Abstractions in MLIR]vector Abstractions in MLIR

This  separates concerns related to (a) defining efficient operations on vector types from (b) program analyses + transformations on memref, loops and other types of structured ops (be they HLO, LHLO, Linalg or other ). Looking a bit forward in time, we can put a stake in the ground and venture that the higher level of vector-level primitives we build and target from codegen (or some user/language level), the simpler our task will be, the more complex patterns can be expressed and the better performance will be.



Components of a Generic Retargetable Vector-Level Dialect

The existing MLIR vector-level dialects are related to the following bottom-up abstractions:


	Representation in LLVMIR via data structures, instructions and intrinsics. This is referred to as the LLVM level.

	Set of machine-specific operations and types that are built to translate almost 1-1 with the HW ISA. This is referred to as the Hardware Vector level; a.k.a HWV. For instance, we have (a) the NVVM dialect (for CUDA) with tensor core ops, (b) accelerator-specific dialects (internal), a potential (future) CPU dialect to capture LLVM intrinsics more closely and other dialects for specific hardware. Ideally this should be auto-generated as much as possible from the LLVM level.

	Set of virtual, machine-agnostic, operations that are informed by costs at the HWV-level. This is referred to as the Virtual Vector level; a.k.a VV. This is the level that higher-level abstractions (codegen, automatic vectorization, potential vector language, …) targets.



The existing generic, retargetable, vector-level dialect is related to the following top-down rewrites and conversions:


	MLIR Rewrite Patterns applied by the MLIR PatternRewrite infrastructure to progressively lower to implementations that match closer and closer to the HWV. Some patterns are “in-dialect” VV -> VV and some are conversions VV -> HWV.

	Virtual Vector -> Hardware Vector lowering is specified as a set of MLIR lowering patterns that are specified manually for now.

	Hardware Vector -> LLVM lowering is a mechanical process that is written manually at the moment and that should be automated, following the LLVM -> Hardware Vector ops generation as closely as possible.





Short Description of the Existing Infrastructure


LLVM level

On CPU, the n-D vector type currently lowers to !llvm<array<vector>>. More concretely, vector<4x8x128xf32> lowers to !llvm<[4 x [ 8 x [ 128 x float ]]]>. There are tradeoffs involved related to how one can access subvectors and how one uses llvm.extractelement, llvm.insertelement and llvm.shufflevector. A deeper dive section discusses the current lowering choices and tradeoffs.



Hardware Vector Ops

Hardware Vector Ops are implemented as one dialect per target. For internal hardware, we are auto-generating the specific HW dialects. For GPU, the NVVM dialect adds operations such as mma.sync, shfl and tests. For CPU things are somewhat in-flight because the abstraction is close to LLVMIR. The jury is still out on  whether a generic CPU dialect is concretely needed, but it seems reasonable to have the same levels of abstraction for all targets and perform cost-based lowering decisions in MLIR even for LLVM. Specialized CPU dialects that would capture specific features not well captured by LLVM peephole optimizations of on different types that core MLIR supports (e.g. Scalable Vectors) are welcome future extensions.



Virtual Vector Ops

Some existing Standard and Vector Dialect on n-D vector types comprise:

%2 = std.addf %0, %1 : vector<3x7x8xf32>  // -> vector<3x7x8xf32>
%2 = std.mulf %0, %1 : vector<3x7x8xf32>  // -> vector<3x7x8xf32>
%2 = std.splat %1    : vector<3x7x8xf32>  // -> vector<3x7x8xf32>

%1 = vector.extract %0[1]: vector<3x7x8xf32>                 // -> vector<7x8xf32>
%1 = vector.extract %0[1, 5]: vector<3x7x8xf32>            // -> vector<8xf32>
%2 = vector.outerproduct %0, %1: vector<4xf32>, vector<8xf32>     // -> vector<4x8xf32>
%3 = vector.outerproduct %0, %1, %2: vector<4xf32>, vector<8xf32> // fma when adding %2
%3 = vector.strided_slice %0 {offsets = [2, 2], sizes = [2, 2], strides = [1, 1]}:
   vector<4x8x16xf32> // Returns a slice of type vector<2x2x16xf32>

%2 = vector.transfer_read %A[%0, %1]
  {permutation_map = (d0, d1) -> (d0)}: memref<7x?xf32>, vector<4xf32>

vector.transfer_write %f1, %A[%i0, %i1, %i2, %i3]
  {permutation_map = (d0, d1, d2, d3) -> (d3, d1, d0)} :
    vector<5x4x3xf32>, memref<?x?x?x?xf32>

The list of Vector is currently undergoing evolutions and is best kept track of by following the evolution of the VectorOps.td ODS file (markdown documentation is automatically generated locally when building and populates the Vector doc). Recent extensions are driven by concrete use cases of interest. A notable such use case is the vector.contract op which applies principles of the StructuredOps abstraction to vector types.



Virtual Vector Rewrite Patterns

The following rewrite patterns exist at the VV->VV level:


	The now retired MaterializeVector pass used to legalize ops on a coarse-grained virtual vector to a finer-grained virtual vector by unrolling. This has been rewritten as a retargetable unroll-and-jam pattern on vector ops and vector types.

	The lowering of vector_transfer ops legalizes vector load/store ops to permuted loops over scalar load/stores. This should evolve to loops over vector load/stores + mask operations as they become available vector ops at the VV level.



The general direction is to add more Virtual Vector level ops and implement more useful VV -> VV rewrites as composable patterns that the PatternRewrite infrastructure can apply iteratively.



Virtual Vector to Hardware Vector Lowering

For now, VV -> HWV are specified in C++ (see for instance the SplatOpLowering for n-D vectors or the VectorOuterProductOp lowering).

Simple conversion tests are available for the LLVM target starting from the Virtual Vector Level.




Rationale


Hardware as vector Machines of Minimum Granularity

Higher-dimensional vectors are ubiquitous in modern HPC hardware. One way to think about Generic Retargetable vector-Level Dialect is that it operates on vector types that are a multiples of a “good” vector size so the HW can efficiently implement a set of high-level primitives (e.g. vector<8x8x8x16xf32> when HW vector size is say vector<4x8xf32>).

Some notable vector sizes of interest include:


	CPU: vector<HW_vector_size * k>, vector<core_count * k’ x HW_vector_size * k> and vector<socket_count x core_count * k’ x HW_vector_size * k>

	GPU: vector<warp_size * k>, vector<warp_size * k  x float4> and vector<warp_size * k x 4 x 4 x 4> for tensor_core sizes,

	Other accelerators: n-D vector as first-class citizens in the HW.



Depending on the target, ops on sizes that are not multiples of the HW vector size may either produce slow code (e.g. by going through LLVM legalization) or may not legalize at all (e.g. some unsupported accelerator X combination of ops and types).



Transformations Problems Avoided

A vector<16x32x64xf32> virtual vector is a coarse-grained type that can be “unrolled” to HW-specific sizes. The multi-dimensional unrolling factors are carried in the IR by the vector type. After unrolling, traditional instruction-level scheduling can be run.

The following key transformations (along with the supporting analyses and structural constraints) are completely avoided by operating on a vector ssa-value abstraction:


	Loop unroll and unroll-and-jam.

	Loop and load-store restructuring for register reuse.

	Load to store forwarding and Mem2reg.

	Coarsening (raising) from finer-grained vector form.



Note that “unrolling” in the context of vectors corresponds to partial loop unroll-and-jam and not full unrolling. As a consequence this is expected to compose with SW pipelining where applicable and does not result in ICache blow up.



The Big Out-Of-Scope Piece: Automatic Vectorization

One important piece not discussed here is automatic vectorization (automatically raising from scalar to n-D vector ops and types). The TL;DR is that when the first “super-vectorization” prototype was implemented, MLIR was nowhere near as mature as it is today. As we continue building more abstractions in VV -> HWV, there is an opportunity to revisit vectorization in MLIR.

Since this topic touches on codegen abstractions, it is technically out of the scope of this survey document but there is a lot to discuss in light of structured op type representations and how a vectorization transformation can be reused across dialects. In particular, MLIR allows the definition of dialects at arbitrary levels of granularity and lends itself favorably to progressive lowering. The argument can be made that automatic vectorization on a loops + ops abstraction is akin to raising structural information that has been lost. Instead, it is possible to revisit vectorization as simple pattern rewrites, provided the IR is in a suitable form. For instance, vectorizing a linalg.generic op whose semantics match a matmul can be done quite easily with a pattern. In fact this pattern is trivial to generalize to any type of contraction when targeting the vector.contract op, as well as to any field (+/*, min/+, max/+, or/and, logsumexp/+ …) . In other words, by operating on a higher level of generic abstractions than affine loops, non-trivial transformations become significantly simpler and composable at a finer granularity.

Irrespective of the existence of an auto-vectorizer, one can build a notional vector language based on the VectorOps dialect and build end-to-end models with expressing vectors in the IR directly and simple pattern-rewrites. EDSCs provide a simple way of driving such a notional language directly in C++.




Bikeshed Naming Discussion

There are arguments against naming an n-D level of abstraction vector because most people associate it with 1-D vectors. On the other hand, vectors are first-class n-D values in MLIR. The alternative name Tile has been proposed, which conveys higher-D meaning. But it also is one of the most overloaded terms in compilers and hardware. For now, we generally use the n-D vector name and are open to better suggestions.



DeeperDive

This section describes the tradeoffs involved in lowering the MLIR n-D vector type and operations on it to LLVM-IR. Putting aside the LLVM Matrix proposal for now, this assumes LLVM only has built-in support for 1-D vector. The relationship with the LLVM Matrix proposal is discussed at the end of this document.

MLIR does not currently support dynamic vector sizes (i.e. SVE style) so the discussion is limited to static rank and static vector sizes (e.g. vector<4x8x16x32xf32>). This section discusses operations on vectors in LLVM and MLIR.

LLVM instructions are prefixed by the llvm. dialect prefix (e.g. llvm.insertvalue). Such ops operate exclusively on 1-D vectors and aggregates following the LLVM LangRef. MLIR operations are prefixed by the vector. dialect prefix (e.g. vector.insertelement). Such ops operate exclusively on MLIR n-D vector types.


Alternatives For Lowering an n-D Vector Type to LLVM

Consider a vector of rank n with static sizes {s_0, ... s_{n-1}} (i.e. an MLIR vector<s_0x...s_{n-1}xf32>). Lowering such an n-D MLIR vector type to an LLVM descriptor can be done by either:


	Flattening to a 1-D vector: !llvm<"(s_0*...*s_{n-1})xfloat"> in the MLIR LLVM dialect.

	Nested aggregate type of 1-D vector: !llvm<"[s_0x[s_1x[...<s_{n-1}xfloat>]]]"> in the MLIR LLVM dialect.

	A mix of both.



There are multiple tradeoffs involved in choosing one or the other that we discuss. It is important to note that “a mix of both” immediately reduces to “nested aggregate type of 1-D vector” with a vector.cast %0: vector<4x8x16x32xf32> to vector<4x4096xf32> operation, that flattens the most “k” minor dimensions.



Constraints Inherited from LLVM (see LangRef)

The first constraint was already mentioned: LLVM only supports 1-D vector types natively. Additional constraints are related to the difference in LLVM between vector and aggregate types:

 “Aggregate Types are a subset of derived types that can contain multiple
 member types. Arrays and structs are aggregate types. Vectors are not
 considered to be aggregate types.”.

This distinction is also reflected in some of the operations. For 1-D vectors, the operations llvm.extractelement, llvm.insertelement, and llvm.shufflevector apply, with direct support for dynamic indices. For n-D vectors with n>1, and thus aggregate types at LLVM level, the more restrictive operations llvm.extractvalue and llvm.insertvalue apply, which only accept static indices. There is no direct shuffling support for aggregate types.

The next sentence illustrates a recurrent tradeoff, also found in MLIR, between “value types” (subject to SSA use-def chains) and “memory types” (subject to aliasing and side-effects):

“Structures in memory are accessed using ‘load’ and ‘store’ by getting a
pointer to a field with the llvm.getelementptr instruction. Structures in
registers are accessed using the llvm.extractvalue and llvm.insertvalue
instructions.”

When transposing this to MLIR, llvm.getelementptr works on pointers to n-D vectors in memory. For n-D, vectors values that live in registers we can use vector.extract and vector.insert which do not accept dynamic indices. Note that this is consistent with hardware considerations as discussed below.

An alternative is to use an LLVM 1-D vector type for which one can use llvm.extractelement, llvm.insertelement and llvm.shufflevector. These operations accept dynamic indices. The implication is that one has to use a flattened lowering of an MLIR n-D vector to an LLVM 1-D vector.

There are multiple tradeoffs involved that mix implications on the programming model, execution on actual HW and what is visible or hidden from codegen. They are discussed in the following sections.



Nested Aggregate

Pros:


	Natural encoding n-D vector -> (n-1)-D aggregate over 1-D vector.

	No need for linearization / delinearization logic inserted everywhere.

	llvm.insertvalue, llvm.extractvalue of (n-k)-D aggregate is natural.

	llvm.insertelement, llvm.extractelement, llvm.shufflevector over 1-D vector type is natural.



Cons:


	llvm.insertvalue / llvm.extractvalue does not accept dynamic indices but only static ones.

	Dynamic indexing on the non-most-minor dimension requires roundtrips to memory.

	Special intrinsics and native instructions in LLVM operate on 1-D vectors. This is not expected to be a practical limitation thanks to a vector.cast %0: vector<4x8x16x32xf32> to vector<4x4096xf32> operation, that flattens the most minor dimensions (see the bigger picture in implications on codegen).





Flattened 1-D Vector Type

Pros:


	insertelement / extractelement / shufflevector with dynamic indexing is possible over the whole lowered n-D vector type.

	Supports special intrinsics and native operations.



Cons: 1. Requires linearization/delinearization logic everywhere, translations are complex. 2. Hides away the real HW structure behind dynamic indexing: at the end of the day, HW vector sizes are generally fixed and multiple vectors will be needed to hold a vector that is larger than the HW. 3. Unlikely peephole optimizations will result in good code: arbitrary dynamic accesses, especially at HW vector boundaries unlikely to result in regular patterns.



Discussion


HW Vectors and Implications on the SW and the Programming Model

As of today, the LLVM model only support 1-D vector types. This is unsurprising because historically, the vast majority of HW only supports 1-D vector registers. We note that multiple HW vendors are in the process of evolving to higher-dimensional physical vectors.

In the following discussion, let’s assume the HW vector size is 1-D and the SW vector size is n-D, with n >= 1. The same discussion would apply with 2-D HW vector size and n >= 2. In this context, most HW exhibit a vector register file. The number of such vectors is fixed. Depending on the rank and sizes of the SW vector abstraction and the HW vector sizes and number of registers, an n-D SW vector type may be materialized by a mix of multiple 1-D HW vector registers + memory locations at a given point in time.

The implication of the physical HW constraints on the programming model are that one cannot index dynamically across hardware registers: a register file can generally not be indexed dynamically. This is because the register number is fixed and one either needs to unroll explicitly to obtain fixed register numbers or go through memory. This is a constraint familiar to CUDA programmers: when declaring a private float a[4]; and subsequently indexing with a dynamic value results in so-called local memory usage (i.e. roundtripping to memory).



Implication on codegen

MLIR n-D vector types are currently represented as (n-1)-D arrays of 1-D vectors when lowered to LLVM. This introduces the consequences on static vs dynamic indexing discussed previously: extractelement, insertelement and shufflevector on n-D vectors in MLIR only support static indices. Dynamic indices are only supported on the most minor 1-D vector but not the outer (n-1)-D. For other cases, explicit load / stores are required.

The implications on codegen are as follows:


	Loops around vector values are indirect addressing of vector values, they must operate on explicit load / store operations over n-D vector types.

	Once an n-D vector type is loaded into an SSA value (that may or may not live in n registers, with or without spilling, when eventually lowered), it may be unrolled to smaller k-D vector types and operations that correspond to the HW. This level of MLIR codegen is related to register allocation and spilling that occur much later in the LLVM pipeline.

	HW may support >1-D vectors with intrinsics for indirect addressing within these vectors. These can be targeted thanks to explicit vector_cast operations from MLIR k-D vector types and operations to LLVM 1-D vectors + intrinsics.



Alternatively, we argue that directly lowering to a linearized abstraction hides away the codegen complexities related to memory accesses by giving a false impression of magical dynamic indexing across registers. Instead we prefer to make those very explicit in MLIR and allow codegen to explore tradeoffs. Different HW will require different tradeoffs in the sizes involved in steps 1., 2. and 3.

Decisions made at the MLIR level will have implications at a much later stage in LLVM (after register allocation). We do not envision to expose concerns related to modeling of register allocation and spilling to MLIR explicitly. Instead, each target will expose a set of “good” target operations and n-D vector types, associated with costs that PatterRewriters at the MLIR level will be able to target. Such costs at the MLIR level will be abstract and used for ranking, not for accurate performance modeling. In the future such costs will be learned.



Implication on Lowering to Accelerators

To target accelerators that support higher dimensional vectors natively, we can start from either 1-D or n-D vectors in MLIR and use vector.cast to flatten the most minor dimensions to 1-D vector<Kxf32> where K is an appropriate constant. Then, the existing lowering to LLVM-IR immediately applies, with extensions for accelerator-specific intrinsics.

It is the role of an Accelerator-specific vector dialect (see codegen flow in the figure above) to lower the vector.cast. Accelerator -> LLVM lowering would then consist of a bunch of Accelerator -> Accelerator rewrites to perform the casts composed with Accelerator -> LLVM conversions + intrinsics that operate on 1-D vector<Kxf32>.

Some of those rewrites may need extra handling, especially if a reduction is involved. For example, vector.cast %0: vector<K1x...xKnxf32> to vector<Kxf32> when K != K1 * … * Kn and some arbitrary irregular vector.cast %0: vector<4x4x17xf32> to vector<Kxf32> may introduce masking and intra-vector shuffling that may not be worthwhile or even feasible, i.e. infinite cost.

However vector.cast %0: vector<K1x...xKnxf32> to vector<Kxf32> when K = K1 * … * Kn should be close to a noop.

As we start building accelerator-specific abstractions, we hope to achieve retargetable codegen: the same infra is used for CPU, GPU and accelerators with extra MLIR patterns and costs.



Implication on calling external functions that operate on vectors

It is possible (likely) that we additionally need to linearize when calling an external function.




Relationship to LLVM matrix type proposal.

The LLVM matrix proposal was formulated 1 year ago but seemed to be somewhat stalled until recently. In its current form, it is limited to 2-D matrix types and operations are implemented with LLVM intrinsics. In contrast, MLIR sits at a higher level of abstraction and allows the lowering of generic operations on generic n-D vector types from MLIR to aggregates of 1-D LLVM vectors. In the future, it could make sense to lower to the LLVM matrix abstraction also for CPU even though MLIR will continue needing higher level abstractions.

On the other hand, one should note that as MLIR is moving to LLVM, this document could become the unifying abstraction that people should target for >1-D vectors and the LLVM matrix proposal can be viewed as a subset of this work.



Conclusion

The flattened 1-D vector design in the LLVM matrix proposal is good in a HW-specific world with special intrinsics. This is a good abstraction for register allocation, Instruction-Level-Parallelism and SoftWare-Pipelining/Modulo Scheduling optimizations at the register level. However MLIR codegen operates at a higher level of abstraction where we want to target operations on coarser-grained vectors than the HW size and on which unroll-and-jam is applied and patterns across multiple HW vectors can be matched.

This makes “nested aggregate type of 1-D vector” an appealing abstraction for lowering from MLIR because:


	it does not hide complexity related to the buffer vs value semantics and the memory subsystem and

	it does not rely on LLVM to magically make all the things work from a too low-level abstraction.



The use of special intrinsics in a 1-D LLVM world is still available thanks to an explicit vector.cast op.




Operations

[include “Dialects/VectorOps.md”]
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‘affine’ Dialect

This dialect provides a powerful abstraction for affine operations and analyses.

[TOC]


Polyhedral Structures

MLIR uses techniques from polyhedral compilation to make dependence analysis and loop transformations efficient and reliable. This section introduces some of the core concepts that are used throughout the document.


Dimensions and Symbols

Dimensions and symbols are the two kinds of identifiers that can appear in the polyhedral structures, and are always of index type. Dimensions are declared in parentheses and symbols are declared in square brackets.

Examples:

// A 2d to 3d affine mapping.
// d0/d1 are dimensions, s0 is a symbol
#affine_map2to3 = affine_map<(d0, d1)[s0] -> (d0, d1 + s0, d1 - s0)>

Dimensional identifiers correspond to the dimensions of the underlying structure being represented (a map, set, or more concretely a loop nest or a tensor); for example, a three-dimensional loop nest has three dimensional identifiers. Symbol identifiers represent an unknown quantity that can be treated as constant for a region of interest.

Dimensions and symbols are bound to SSA values by various operations in MLIR and use the same parenthesized vs square bracket list to distinguish the two.

Syntax:

// Uses of SSA values that are passed to dimensional identifiers.
dim-use-list ::= `(` ssa-use-list? `)`

// Uses of SSA values that are used to bind symbols.
symbol-use-list ::= `[` ssa-use-list? `]`

// Most things that bind SSA values bind dimensions and symbols.
dim-and-symbol-use-list ::= dim-use-list symbol-use-list?

SSA values bound to dimensions and symbols must always have ‘index’ type.

Example:

#affine_map2to3 = affine_map<(d0, d1)[s0] -> (d0, d1 + s0, d1 - s0)>
// Binds %N to the s0 symbol in affine_map2to3.
%x = alloc()[%N] : memref<40x50xf32, #affine_map2to3>



Restrictions on Dimensions and Symbols

The affine dialect imposes certain restrictions on dimension and symbolic identifiers to enable powerful analysis and transformation. An SSA value’s use can be bound to a symbolic identifier if that SSA value is either 1. a region argument for an op with trait AffineScope (eg. FuncOp), 2. a value defined at the top level of an AffineScope op (i.e., immediately enclosed by the latter), 3. a value that dominates the AffineScope op enclosing the value’s use, 4. the result of a constant operation, 5. the result of an affine.apply operation that recursively takes as arguments any valid symbolic identifiers, or 6. the result of a dim operation on either a memref that is an argument to a AffineScope op or a memref where the corresponding dimension is either static or a dynamic one in turn bound to a valid symbol. Note: if the use of an SSA value is not contained in any op with the AffineScope trait, only the rules 4-6 can be applied.

Note that as a result of rule (3) above, symbol validity is sensitive to the location of the SSA use. Dimensions may be bound not only to anything that a symbol is bound to, but also to induction variables of enclosing affine.for and affine.parallel operations, and the result of an affine.apply operation (which recursively may use other dimensions and symbols).



Affine Expressions

Syntax:

affine-expr ::= `(` affine-expr `)`
              | affine-expr `+` affine-expr
              | affine-expr `-` affine-expr
              | `-`? integer-literal `*` affine-expr
              | affine-expr `ceildiv` integer-literal
              | affine-expr `floordiv` integer-literal
              | affine-expr `mod` integer-literal
              | `-`affine-expr
              | bare-id
              | `-`? integer-literal

multi-dim-affine-expr ::= `(` `)`
                        | `(` affine-expr (`,` affine-expr)* `)`

ceildiv is the ceiling function which maps the result of the division of its first argument by its second argument to the smallest integer greater than or equal to that result. floordiv is a function which maps the result of the division of its first argument by its second argument to the largest integer less than or equal to that result. mod is the modulo operation: since its second argument is always positive, its results are always positive in our usage. The integer-literal operand for ceildiv, floordiv, and mod is always expected to be positive. bare-id is an identifier which must have type index. The precedence of operations in an affine expression are ordered from highest to lowest in the order: (1) parenthesization, (2) negation, (3) modulo, multiplication, floordiv, and ceildiv, and (4) addition and subtraction. All of these operators associate from left to right.

A multidimensional affine expression is a comma separated list of one-dimensional affine expressions, with the entire list enclosed in parentheses.

Context: An affine function, informally, is a linear function plus a constant. More formally, a function f defined on a vector v⃗∈ℤn\vec{v} \in
\mathbb{Z}^n is a multidimensional affine function of v⃗\vec{v} if f(v⃗)f(\vec{v}) can be expressed in the form Mv⃗+c⃗M \vec{v} + \vec{c} where MM is a constant matrix from ℤm×n\mathbb{Z}^{m \times n} and c⃗\vec{c} is a constant vector from ℤ\mathbb{Z}. mm is the dimensionality of such an affine function. MLIR further extends the definition of an affine function to allow ‘floordiv’, ‘ceildiv’, and ‘mod’ with respect to positive integer constants. Such extensions to affine functions have often been referred to as quasi-affine functions by the polyhedral compiler community. MLIR uses the term ‘affine map’ to refer to these multidimensional quasi-affine functions. As examples, (i+j+1,j)(i+j+1, j), (imod2,j+i)(i \mod 2, j+i), (j,i/4,imod4)(j, i/4, i \mod 4), (2i+1,j)(2i+1,
j) are two-dimensional affine functions of (i,j)(i, j), but (i⋅j,i2)(i \cdot j,
i^2), (imodj,i/j)(i \mod j, i/j) are not affine functions of (i,j)(i, j).



Affine Maps

Syntax:

affine-map-inline
   ::= dim-and-symbol-id-lists `->` multi-dim-affine-expr

The identifiers in the dimensions and symbols lists must be unique. These are the only identifiers that may appear in ‘multi-dim-affine-expr’. Affine maps with one or more symbols in its specification are known as “symbolic affine maps”, and those with no symbols as “non-symbolic affine maps”.

Context: Affine maps are mathematical functions that transform a list of dimension indices and symbols into a list of results, with affine expressions combining the indices and symbols. Affine maps distinguish between indices and symbols because indices are inputs to the affine map when the map is called (through an operation such as affine.apply), whereas symbols are bound when the map is established (e.g. when a memref is formed, establishing a memory layout map).

Affine maps are used for various core structures in MLIR. The restrictions we impose on their form allows powerful analysis and transformation, while keeping the representation closed with respect to several operations of interest.


Named affine mappings

Syntax:

affine-map-id ::= `#` suffix-id

// Definitions of affine maps are at the top of the file.
affine-map-def    ::= affine-map-id `=` affine-map-inline
module-header-def ::= affine-map-def

// Uses of affine maps may use the inline form or the named form.
affine-map ::= affine-map-id | affine-map-inline

Affine mappings may be defined inline at the point of use, or may be hoisted to the top of the file and given a name with an affine map definition, and used by name.

Examples:

// Affine map out-of-line definition and usage example.
#affine_map42 = affine_map<(d0, d1)[s0] -> (d0, d0 + d1 + s0 floordiv 2)>

// Use an affine mapping definition in an alloc operation, binding the
// SSA value %N to the symbol s0.
%a = alloc()[%N] : memref<4x4xf32, #affine_map42>

// Same thing with an inline affine mapping definition.
%b = alloc()[%N] : memref<4x4xf32, affine_map<(d0, d1)[s0] -> (d0, d0 + d1 + s0 floordiv 2)>>




Semi-affine maps

Semi-affine maps are extensions of affine maps to allow multiplication, floordiv, ceildiv, and mod with respect to symbolic identifiers. Semi-affine maps are thus a strict superset of affine maps.

Syntax of semi-affine expressions:

semi-affine-expr ::= `(` semi-affine-expr `)`
                   | semi-affine-expr `+` semi-affine-expr
                   | semi-affine-expr `-` semi-affine-expr
                   | symbol-or-const `*` semi-affine-expr
                   | semi-affine-expr `ceildiv` symbol-or-const
                   | semi-affine-expr `floordiv` symbol-or-const
                   | semi-affine-expr `mod` symbol-or-const
                   | bare-id
                   | `-`? integer-literal

symbol-or-const ::= `-`? integer-literal | symbol-id

multi-dim-semi-affine-expr ::= `(` semi-affine-expr (`,` semi-affine-expr)* `)`

The precedence and associativity of operations in the syntax above is the same as that for affine expressions.

Syntax of semi-affine maps:

semi-affine-map-inline
   ::= dim-and-symbol-id-lists `->` multi-dim-semi-affine-expr

Semi-affine maps may be defined inline at the point of use, or may be hoisted to the top of the file and given a name with a semi-affine map definition, and used by name.

semi-affine-map-id ::= `#` suffix-id

// Definitions of semi-affine maps are at the top of file.
semi-affine-map-def ::= semi-affine-map-id `=` semi-affine-map-inline
module-header-def ::= semi-affine-map-def

// Uses of semi-affine maps may use the inline form or the named form.
semi-affine-map ::= semi-affine-map-id | semi-affine-map-inline



Integer Sets

An integer set is a conjunction of affine constraints on a list of identifiers. The identifiers associated with the integer set are separated out into two classes: the set’s dimension identifiers, and the set’s symbolic identifiers. The set is viewed as being parametric on its symbolic identifiers. In the syntax, the list of set’s dimension identifiers are enclosed in parentheses while its symbols are enclosed in square brackets.

Syntax of affine constraints:

affine-constraint ::= affine-expr `>=` `0`
                    | affine-expr `==` `0`
affine-constraint-conjunction ::= affine-constraint (`,` affine-constraint)*

Integer sets may be defined inline at the point of use, or may be hoisted to the top of the file and given a name with an integer set definition, and used by name.

integer-set-id ::= `#` suffix-id

integer-set-inline
   ::= dim-and-symbol-id-lists `:` '(' affine-constraint-conjunction? ')'

// Declarations of integer sets are at the top of the file.
integer-set-decl ::= integer-set-id `=` integer-set-inline

// Uses of integer sets may use the inline form or the named form.
integer-set ::= integer-set-id | integer-set-inline

The dimensionality of an integer set is the number of identifiers appearing in dimension list of the set. The affine-constraint non-terminals appearing in the syntax above are only allowed to contain identifiers from dims and symbols. A set with no constraints is a set that is unbounded along all of the set’s dimensions.

Example:

// A example two-dimensional integer set with two symbols.
#set42 = affine_set<(d0, d1)[s0, s1]
   : (d0 >= 0, -d0 + s0 - 1 >= 0, d1 >= 0, -d1 + s1 - 1 >= 0)>

// Inside a Region
affine.if #set42(%i, %j)[%M, %N] {
  ...
}

d0 and d1 correspond to dimensional identifiers of the set, while s0 and s1 are symbol identifiers.




Operations

[include “Dialects/AffineOps.md”]


‘affine.load’ operation

Syntax:

operation ::= ssa-id `=` `affine.load` ssa-use `[` multi-dim-affine-map-of-ssa-ids `]` `:` memref-type

The affine.load op reads an element from a memref, where the index for each memref dimension is an affine expression of loop induction variables and symbols. The output of ‘affine.load’ is a new value with the same type as the elements of the memref. An affine expression of loop IVs and symbols must be specified for each dimension of the memref. The keyword ‘symbol’ can be used to indicate SSA identifiers which are symbolic.

Example:


  Example 1:

    %1 = affine.load %0[%i0 + 3, %i1 + 7] : memref<100x100xf32>

  Example 2: Uses 'symbol' keyword for symbols '%n' and '%m'.

    %1 = affine.load %0[%i0 + symbol(%n), %i1 + symbol(%m)]
      : memref<100x100xf32>




‘affine.store’ operation

Syntax:

operation ::= ssa-id `=` `affine.store` ssa-use, ssa-use `[` multi-dim-affine-map-of-ssa-ids `]` `:` memref-type

The affine.store op writes an element to a memref, where the index for each memref dimension is an affine expression of loop induction variables and symbols. The ‘affine.store’ op stores a new value which is the same type as the elements of the memref. An affine expression of loop IVs and symbols must be specified for each dimension of the memref. The keyword ‘symbol’ can be used to indicate SSA identifiers which are symbolic.

Example:


    Example 1:

      affine.store %v0, %0[%i0 + 3, %i1 + 7] : memref<100x100xf32>

    Example 2: Uses 'symbol' keyword for symbols '%n' and '%m'.

      affine.store %v0, %0[%i0 + symbol(%n), %i1 + symbol(%m)]
        : memref<100x100xf32>




‘affine.dma_start’ operation

Syntax:

operation ::= `affine.dma_Start` ssa-use `[` multi-dim-affine-map-of-ssa-ids `]`, `[` multi-dim-affine-map-of-ssa-ids `]`, `[` multi-dim-affine-map-of-ssa-ids `]`, ssa-use `:` memref-type

The affine.dma_start op starts a non-blocking DMA operation that transfers data from a source memref to a destination memref. The source and destination memref need not be of the same dimensionality, but need to have the same elemental type. The operands include the source and destination memref’s each followed by its indices, size of the data transfer in terms of the number of elements (of the elemental type of the memref), a tag memref with its indices, and optionally at the end, a stride and a number_of_elements_per_stride arguments. The tag location is used by an AffineDmaWaitOp to check for completion. The indices of the source memref, destination memref, and the tag memref have the same restrictions as any affine.load/store. In particular, index for each memref dimension must be an affine expression of loop induction variables and symbols. The optional stride arguments should be of ‘index’ type, and specify a stride for the slower memory space (memory space with a lower memory space id), transferring chunks of number_of_elements_per_stride every stride until %num_elements are transferred. Either both or no stride arguments should be specified. The value of ‘num_elements’ must be a multiple of ‘number_of_elements_per_stride’.

Example:

For example, a DmaStartOp operation that transfers 256 elements of a memref
'%src' in memory space 0 at indices [%i + 3, %j] to memref '%dst' in memory
space 1 at indices [%k + 7, %l], would be specified as follows:

  %num_elements = constant 256
  %idx = constant 0 : index
  %tag = alloc() : memref<1xi32, 4>
  affine.dma_start %src[%i + 3, %j], %dst[%k + 7, %l], %tag[%idx],
    %num_elements :
      memref<40x128xf32, 0>, memref<2x1024xf32, 1>, memref<1xi32, 2>

  If %stride and %num_elt_per_stride are specified, the DMA is expected to
  transfer %num_elt_per_stride elements every %stride elements apart from
  memory space 0 until %num_elements are transferred.

  affine.dma_start %src[%i, %j], %dst[%k, %l], %tag[%idx], %num_elements,
    %stride, %num_elt_per_stride : ...



‘affine.dma_wait’ operation

Syntax:

operation ::= `affine.dma_Start` ssa-use `[` multi-dim-affine-map-of-ssa-ids `]`, `[` multi-dim-affine-map-of-ssa-ids `]`, `[` multi-dim-affine-map-of-ssa-ids `]`, ssa-use `:` memref-type

The affine.dma_start op blocks until the completion of a DMA operation associated with the tag element ‘%tag[%index]’. %tag is a memref, and %index has to be an index with the same restrictions as any load/store index. In particular, index for each memref dimension must be an affine expression of loop induction variables and symbols. %num_elements is the number of elements associated with the DMA operation. For example:

Example:

affine.dma_start %src[%i, %j], %dst[%k, %l], %tag[%index], %num_elements :
  memref<2048xf32, 0>, memref<256xf32, 1>, memref<1xi32, 2>
...
...
affine.dma_wait %tag[%index], %num_elements : memref<1xi32, 2>
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‘std’ Dialect

This dialect provides documentation for operations within the Standard dialect.

Note: This dialect is a collection of operations for several different concepts, and should be split into multiple more-focused dialects accordingly.

Please post an RFC on the forum before adding or changing any operation in this dialect.

[TOC]


Operations

[include “Dialects/StandardOps.md”]


‘dma_start’ operation

Syntax:

operation ::= `dma_start` ssa-use`[`ssa-use-list`]` `,`
               ssa-use`[`ssa-use-list`]` `,` ssa-use `,`
               ssa-use`[`ssa-use-list`]` (`,` ssa-use `,` ssa-use)?
              `:` memref-type `,` memref-type `,` memref-type

Starts a non-blocking DMA operation that transfers data from a source memref to a destination memref. The operands include the source and destination memref’s each followed by its indices, size of the data transfer in terms of the number of elements (of the elemental type of the memref), a tag memref with its indices, and optionally two additional arguments corresponding to the stride (in terms of number of elements) and the number of elements to transfer per stride. The tag location is used by a dma_wait operation to check for completion. The indices of the source memref, destination memref, and the tag memref have the same restrictions as any load/store operation in an affine context (whenever DMA operations appear in an affine context). See restrictions on dimensions and symbols in affine contexts. This allows powerful static analysis and transformations in the presence of such DMAs including rescheduling, pipelining / overlap with computation, and checking for matching start/end operations. The source and destination memref need not be of the same dimensionality, but need to have the same elemental type.

For example, a dma_start operation that transfers 32 vector elements from a memref %src at location [%i, %j] to memref %dst at [%k, %l] would be specified as shown below.

Example:

%size = constant 32 : index
%tag = alloc() : memref<1 x i32, affine_map<(d0) -> (d0)>, 4>
%idx = constant 0 : index
dma_start %src[%i, %j], %dst[%k, %l], %size, %tag[%idx] :
     memref<40 x 8 x vector<16xf32>, affine_map<(d0, d1) -> (d0, d1)>, 0>,
     memref<2 x 4 x vector<16xf32>, affine_map<(d0, d1) -> (d0, d1)>, 2>,
     memref<1 x i32>, affine_map<(d0) -> (d0)>, 4>



‘dma_wait’ operation

Syntax:

operation ::= `dma_wait` ssa-use`[`ssa-use-list`]` `,` ssa-use `:` memref-type

Blocks until the completion of a DMA operation associated with the tag element specified with a tag memref and its indices. The operands include the tag memref followed by its indices and the number of elements associated with the DMA being waited on. The indices of the tag memref have the same restrictions as load/store indices.

Example:

dma_wait %tag[%idx], %size : memref<1 x i32, affine_map<(d0) -> (d0)>, 4>
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Operation Definition Specification (ODS)

In addition to specializing the mlir::Op C++ template, MLIR also supports defining operations and data types in a table-driven manner. This is achieved via TableGen, which is both a generic language and its tooling to maintain records of domain-specific information. Facts regarding an operation are specified concisely into a TableGen record, which will be expanded into an equivalent mlir::Op C++ template specialization at compiler build time.

This manual explains in detail all the available mechanisms for defining operations in such a table-driven manner. It aims to be a specification instead of a tutorial. Please refer to Quickstart tutorial to adding MLIR graph rewrite for the latter.

In addition to detailing each mechanism, this manual also tries to capture best practices. They are rendered as quoted bullet points.


Motivation

MLIR allows pluggable dialects, and dialects contain, among others, a list of operations. This open and extensible ecosystem leads to the “stringly” type IR problem, e.g., repetitive string comparisons during optimization and analysis passes, unintuitive accessor methods (e.g., generic/error prone getOperand(3) vs self-documenting getStride()) with more generic return types, verbose and generic constructors without default arguments, verbose textual IR dump, and so on. Furthermore, operation verification is:


	best case: a central string-to-verification-function map,

	middle case: duplication of verification across the code base, or

	worst case: no verification functions.



The fix is to support defining ops in a table-driven manner. Then for each dialect, we can have a central place that contains everything you need to know about each op, including its constraints, custom assembly form, etc. This description is also used to generate helper functions and classes to allow building, verification, parsing, printing, analysis, and many more.



Benefits

Compared to the C++ template, this table-driven approach has several benefits including but not limited to:


	Single source of truth: We strive to encode all facts regarding an operation into the record, so that readers don’t need to jump among code snippets to fully understand an operation.

	Removing boilerplate: We can automatically generate operand/attribute/result getter methods, operation build methods, operation verify methods, and many more utilities from the record. This greatly reduces the boilerplate needed for defining a new op.

	Facilitating auto-generation: The usage of these operation information records are by no means limited to op definition itself. We can use them to drive the auto-generation of many other components, like computation graph serialization.





TableGen Syntax

We use TableGen as the language for specifying operation information. TableGen itself just provides syntax for writing records; the syntax and constructs allowed in a TableGen file (typically with filename suffix .td) can be found here.


	TableGen class is similar to C++ class; it can be templated and subclassed.

	TableGen def is similar to C++ object; it can be declared by specializing a TableGen class (e.g., def MyDef : MyClass<...>;) or completely independently (e.g., def MyDef;). It cannot be further templated or subclassed.

	TableGen dag is a dedicated type for directed acyclic graph of elements. A dag has one operator and zero or more arguments. Its syntax is (operator     arg0, arg1, argN). The operator can be any TableGen def; an argument can be anything, including dag itself. We can have names attached to both the operator and the arguments like (MyOp:$op_name MyArg:$arg_name).



Please see the language reference to learn about all the types and expressions supported by TableGen.



Operation Definition

MLIR defines several common constructs to help operation definition and provide their semantics via a special TableGen backend: OpDefinitionsGen. These constructs are defined in OpBase.td. The main ones are


	The Op class: It is the main construct for defining operations. All facts regarding the operation are specified when specializing this class, with the help of the following constructs.

	The Dialect class: Operations belonging to one logical group are placed in the same dialect. The Dialect class contains dialect-level information.

	The OpTrait class hierarchy: They are used to specify special properties and constraints of the operation, including whether the operation has side effect or whether its output has the same shape as the input.

	The ins/outs marker: These are two special makers builtin to the OpDefinitionsGen backend. They lead the definitions of operands/attributes and results respectively.

	The TypeConstraint class hierarchy: They are used to specify the constraints over operands or results. A notable subclass hierarchy is Type, which stands for constraints for common C++ types.

	The AttrConstraint class hierarchy: They are used to specify the constraints over attributes. A notable subclass hierarchy is Attr, which stands for constraints for attributes whose values are of common types.



An operation is defined by specializing the Op class with concrete contents for all the fields it requires. For example, tf.AvgPool is defined as

def TF_AvgPoolOp : TF_Op<"AvgPool", [NoSideEffect]> {
  let summary = "Performs average pooling on the input.";

  let description = [{
Each entry in `output` is the mean of the corresponding size `ksize`
window in `value`.
  }];

  let arguments = (ins
    TF_FpTensor:$value,

    Confined<I64ArrayAttr, [ArrayMinCount<4>]>:$ksize,
    Confined<I64ArrayAttr, [ArrayMinCount<4>]>:$strides,
    TF_AnyStrAttrOf<["SAME", "VALID"]>:$padding,
    DefaultValuedAttr<TF_ConvertDataFormatAttr, "NHWC">:$data_format
  );

  let results = (outs
    TF_FpTensor:$output
  );

  TF_DerivedOperandTypeAttr T = TF_DerivedOperandTypeAttr<0>;
}

In the following we describe all the fields needed. Please see the definition of the Op class for the complete list of fields supported.


Operation name

The operation name is a unique identifier of the operation within MLIR, e.g., tf.Add for addition operation in the TensorFlow dialect. This is the equivalent of the mnemonic in assembly language. It is used for parsing and printing in the textual format. It is also used for pattern matching in graph rewrites.

The full operation name is composed of the dialect name and the op name, with the former provided via the dialect and the latter provided as the second template parameter to the Op class.



Operation documentation

This includes both a one-line summary and a longer human-readable description. They will be used to drive automatic generation of dialect documentation. They need to be provided in the operation’s definition body:

let summary = "...";

let description = [{
...
}];

description should be written in Markdown syntax.

Placing the documentation at the beginning is recommended since it helps in understanding the operation.



	Place documentation at the beginning of the operation definition

	The summary should be short and concise. It should be a one-liner without trailing punctuation. Put expanded explanation in description.







Operation arguments

There are two kinds of arguments: operands and attributes. Operands are runtime values produced by other ops; while attributes are compile-time known constant values, including two categories:


	Natural attributes: these attributes affect the behavior of the operations (e.g., padding for convolution);


	Derived attributes: these attributes are not needed to define the operation but are instead derived from information of the operation. E.g., the output shape of type. This is mostly used for convenience interface generation or interaction with other frameworks/translation.

All derived attributes should be materializable as an Attribute. That is, even though they are not materialized, it should be possible to store as an attribute.




Both operands and attributes are specified inside the dag-typed arguments, led by ins:

let arguments = (ins
  <type-constraint>:$<operand-name>,
  ...
  <attr-constraint>:$<attr-name>,
  ...
);

Here <type-constraint> is a TableGen def from the TypeConstraint class hierarchy. Similarly, <attr-constraint> is a TableGen def from the AttrConstraint class hierarchy. See Constraints for more information.

There is no requirements on the relative order of operands and attributes; they can mix freely. The relative order of operands themselves matters. From each named argument a named getter will be generated that returns the argument with the return type (in the case of attributes the return type will be constructed from the storage type, while for operands it will be Value). Each attribute’s raw value (e.g., as stored) can also be accessed via generated <name>Attr getters for use in transformation passes where the more user friendly return type is less suitable.

All the arguments should be named to 1) provide documentation, 2) drive auto-generation of getter methods, 3) provide a handle to reference for other places like constraints.


Variadic operands

To declare a variadic operand, wrap the TypeConstraint for the operand with Variadic<...>.

Normally operations have no variadic operands or just one variadic operand. For the latter case, it is easy to deduce which dynamic operands are for the static variadic operand definition. Though, if an operation has more than one variable length operands (either optional or variadic), it would be impossible to attribute dynamic operands to the corresponding static variadic operand definitions without further information from the operation. Therefore, either the SameVariadicOperandSize or AttrSizedOperandSegments trait is needed to indicate that all variable length operands have the same number of dynamic values.



Optional operands

To declare an optional operand, wrap the TypeConstraint for the operand with Optional<...>.

Normally operations have no optional operands or just one optional operand. For the latter case, it is easy to deduce which dynamic operands are for the static operand definition. Though, if an operation has more than one variable length operands (either optional or variadic), it would be impossible to attribute dynamic operands to the corresponding static variadic operand definitions without further information from the operation. Therefore, either the SameVariadicOperandSize or AttrSizedOperandSegments trait is needed to indicate that all variable length operands have the same number of dynamic values.



Optional attributes

To declare an optional attribute, wrap the AttrConstraint for the attribute with OptionalAttr<...>.



Attributes with default values

To declare an attribute with a default value, wrap the AttrConstraint for the attribute with DefaultValuedAttr<..., "...">.

The second parameter to DefaultValuedAttr should be a string containing the C++ default value. For example, a float default value should be specified as like "0.5f", and an integer array default value should be specified as like "{1, 2, 3}".



Confining attributes

Confined is provided as a general mechanism to help modelling further constraints on attributes beyond the ones brought by value types. You can use Confined to compose complex constraints out of more primitive ones. For example, a 32-bit integer attribute whose minimum value must be 10 can be expressed as Confined<I32Attr, [IntMinValue<10>]>.

Right now, the following primitive constraints are supported:


	IntMinValue<N>: Specifying an integer attribute to be greater than or equal to N

	IntMaxValue<N>: Specifying an integer attribute to be less than or equal to N

	ArrayMinCount<N>: Specifying an array attribute to have at least N elements

	IntArrayNthElemEq<I, N>: Specifying an integer array attribute’s I-th element to be equal to N

	IntArrayNthElemMinValue<I, N>: Specifying an integer array attribute’s I-th element to be greater than or equal to N



TODO: Design and implement more primitive constraints




Operation regions

The regions of an operation are specified inside of the dag-typed regions, led by region:

let regions = (region
  <region-constraint>:$<region-name>,
  ...
);


Variadic regions

Similar to the Variadic class used for variadic operands and results, VariadicRegion<...> can be used for regions. Variadic regions can currently only be specified as the last region in the regions list.




Operation results

Similar to operands, results are specified inside the dag-typed results, led by outs:

let results = (outs
  <type-constraint>:$<result-name>,
  ...
);


Variadic results

Similar to variadic operands, Variadic<...> can also be used for results. And similarly, SameVariadicResultSize for multiple variadic results in the same operation.




Operation successors

For terminator operations, the successors are specified inside of the dag-typed successors, led by successor:

let successors = (successor
  <successor-constraint>:$<successor-name>,
  ...
);


Variadic successors

Similar to the Variadic class used for variadic operands and results, VariadicSuccessor<...> can be used for successors. Variadic successors can currently only be specified as the last successor in the successor list.




Operation traits and constraints

Traits are operation properties that affect syntax or semantics. MLIR C++ models various traits in the mlir::OpTrait namespace.

Both operation traits, interfaces, and constraints involving multiple operands/attributes/results are provided as the second template parameter to the Op class. They should be deriving from the OpTrait class. See Constraints for more information.



Interfaces

Interfaces allow for attributes, operations, and types to expose method calls without the caller needing to know the derived type. Operation interfaces defined in C++ can be accessed in the ODS framework via the OpInterfaceTrait class. Aside from using pre-existing interfaces in the C++ API, the ODS framework also provides a simplified mechanism for defining such interfaces which removes much of the boilerplate necessary.

Providing a definition of the AttrInterface, OpInterface, or TypeInterface class will auto-generate the C++ classes for the interface. An interface includes a name, for the C++ class, a description, and a list of interface methods.

def MyInterface : OpInterface<"MyInterface"> {
  let description = ...;
  let methods = [...];
}

There are two types of methods that can be used with an interface, InterfaceMethod and StaticInterfaceMethod. They are both comprised of the same core components, with the distinction that StaticInterfaceMethod models a static method on the derived operation.

An InterfaceMethod is comprised of the following components:


	Description

	A string description of what this method does and its invariants.




	ReturnType

	A string corresponding to the C++ return type of the method.




	MethodName

	A string corresponding to the desired name of the method.




	Arguments (Optional)

	A dag of strings that correspond to a C++ type and variable name respectively.




	MethodBody (Optional)

	An optional explicit implementation of the interface method.

	ConcreteOp is an implicitly defined typename that can be used to refer to the type of the derived operation currently being operated on.

	In non-static methods, a variable ‘ConcreteOp op’ is defined and may be used to refer to an instance of the derived operation.




	DefaultImplementation (Optional)

	An optional explicit default implementation of the interface method.

	This method is placed within the Trait class that is attached to the operation. As such, this method has the same characteristics as any other Trait method.

	ConcreteOp is an implicitly defined typename that can be used to refer to the type of the derived operation currently being operated on.






ODS also allows generating the declarations for the InterfaceMethod of the op if one specifies the interface with DeclareOpInterfaceMethods (see example below).

Examples:

def MyInterface : OpInterface<"MyInterface"> {
  let description = [{
    My interface is very interesting. ...
  }];

  let methods = [
    // A simple non-static method with no inputs.
    InterfaceMethod<"'foo' is a non-static method with no inputs.",
      "unsigned", "foo"
    >,

    // A new non-static method accepting an input argument.
    InterfaceMethod<"/*insert doc here*/",
      "Value ", "bar", (ins "unsigned":$i)
    >,

    // Query a static property of the derived operation.
    StaticInterfaceMethod<"'fooStatic' is a static method with no inputs.",
      "unsigned", "fooStatic"
    >,

    // Provide the definition of a static interface method.
    // Note: `ConcreteOp` corresponds to the derived operation typename.
    StaticInterfaceMethod<"/*insert doc here*/",
      "Operation *", "create", (ins "OpBuilder &":$builder, "Location":$loc), [{
        return builder.create<ConcreteOp>(loc);
    }]>,

    // Provide a definition of the non-static method.
    // Note: `op` corresponds to the derived operation variable.
    InterfaceMethod<"/*insert doc here*/",
      "unsigned", "getNumInputsAndOutputs", (ins), [{
        return op.getNumInputs() + op.getNumOutputs();
    }]>,

    // Provide only a default definition of the method.
    // Note: `ConcreteOp` corresponds to the derived operation typename.
    InterfaceMethod<"/*insert doc here*/",
      "unsigned", "getNumWithDefault", (ins), /*methodBody=*/[{}], [{
        ConcreteOp op = cast<ConcreteOp>(this->getOperation());
        return op.getNumInputs() + op.getNumOutputs();
    }]>,
  ];
}

// Operation interfaces can optionally be wrapped inside
// DeclareOpInterfaceMethods. This would result in autogenerating declarations
// for members `foo`, `bar` and `fooStatic`. Methods with bodies are not
// declared inside the op declaration but instead handled by the op interface
// trait directly.
def OpWithInferTypeInterfaceOp : Op<...
    [DeclareOpInterfaceMethods<MyInterface>]> { ... }

// Methods that have a default implementation do not have declarations
// generated. If an operation wishes to override the default behavior, it can
// explicitly specify the method that it wishes to override. This will force
// the generation of a declaration for those methods.
def OpWithOverrideInferTypeInterfaceOp : Op<...
    [DeclareOpInterfaceMethods<MyInterface, ["getNumWithDefault"]>]> { ... }

Operation interfaces may also provide a verification method on OpInterface by setting verify. Setting verify results in the generated trait having a verifyTrait method that is applied to all operations implementing the trait.



Builder methods

For each operation, there are a few builders automatically generated based on the arguments and returns types. For example, given the following op definition:

def MyOp : ... {
  let arguments = (ins
    I32:$i32_operand,
    F32:$f32_operand,
    ...,

    I32Attr:$i32_attr,
    F32Attr:$f32_attr,
    ...
  );

  let results = (outs
    I32:$i32_result,
    F32:$f32_result,
    ...
  );
}

The following builders are generated:

// All result-types/operands/attributes have one aggregate parameter.
static void build(OpBuilder &odsBuilder, OperationState &odsState,
                  ArrayRef<Type> resultTypes,
                  ValueRange operands,
                  ArrayRef<NamedAttribute> attributes);

// Each result-type/operand/attribute has a separate parameter. The parameters
// for attributes are of mlir::Attribute types.
static void build(OpBuilder &odsBuilder, OperationState &odsState,
                  Type i32_result, Type f32_result, ...,
                  Value i32_operand, Value f32_operand, ...,
                  IntegerAttr i32_attr, FloatAttr f32_attr, ...);

// Each result-type/operand/attribute has a separate parameter. The parameters
// for attributes are raw values unwrapped with mlir::Attribute instances.
// (Note that this builder will not always be generated. See the following
// explanation for more details.)
static void build(OpBuilder &odsBuilder, OperationState &odsState,
                  Type i32_result, Type f32_result, ...,
                  Value i32_operand, Value f32_operand, ...,
                  APInt i32_attr, StringRef f32_attr, ...);

// Each operand/attribute has a separate parameter but result type is aggregate.
static void build(OpBuilder &odsBuilder, OperationState &odsState,
                  ArrayRef<Type> resultTypes,
                  Value i32_operand, Value f32_operand, ...,
                  IntegerAttr i32_attr, FloatAttr f32_attr, ...);

// All operands/attributes have aggregate parameters.
// Generated if return type can be inferred.
static void build(OpBuilder &odsBuilder, OperationState &odsState,
                  ValueRange operands, ArrayRef<NamedAttribute> attributes);

// (And manually specified builders depending on the specific op.)


The first form provides basic uniformity so that we can create ops using the same form regardless of the exact op. This is particularly useful for implementing declarative pattern rewrites.

The second and third forms are good for use in manually written code given that they provide better guarantee via signatures.

The third form will be generated if any of the op’s attribute has different Attr.returnType from Attr.storageType and we know how to build an attribute from an unwrapped value (i.e., Attr.constBuilderCall is defined.) Additionally, for the third form, if an attribute appearing later in the arguments list has a default value, the default value will be supplied in the declaration. This works for BoolAttr, StrAttr, EnumAttr for now and the list can grow in the future. So if possible, default valued attribute should be placed at the end of the arguments list to leverage this feature. (This behavior is essentially due to C++ function parameter default value placement restrictions.) Otherwise, the builder of the third form will still be generated but default values for the attributes not at the end of the arguments list will not be supplied in the builder’s signature.

ODS will generate a builder that doesn’t require return type specified if


	Op implements InferTypeOpInterface interface;

	All return types are either buildable types or are the same as a given operand (e.g., AllTypesMatch constraint between operand and result);



And there may potentially exist other builders depending on the specific op; please refer to the generated C++ file for the complete list.


Custom builder methods

However, if the above cases cannot satisfy all needs, you can define additional convenience build methods in the builders field as follows.

def MyOp : Op<"my_op", []> {
  let arguments = (ins F32Attr:$attr);

  let builders = [
    OpBuilderDAG<(ins "float":$val)>
  ];
}

The builders field is a list of custom builders that are added to the Op class. In this example, we provide a convenience builder that takes a floating point value instead of an attribute. The ins prefix is common to many function declarations in ODS, which use a TableGen dag. What follows is a comma-separated list of types (quoted string) and names prefixed with the $ sign. This will generate the declaration of a builder method that looks like:

class MyOp : /*...*/ {
  /*...*/
  static void build(::mlir::OpBuilder &builder, ::mlir::OperationState &state,
                    float val);
};


Note that the method has two additional leading arguments. These arguments are useful to construct the operation. In particular, the method must populate state with attributes, operands, regions and result types of the operation to be constructed. builder can be used to construct any IR objects that belong to the Op, such as types or nested operations. Since the type and name are generated as is in the C++ code, they should be valid C++ constructs for a type (in the namespace of the Op) and an identifier (e.g., class is not a valid identifier).

Implementations of the builder can be provided directly in ODS, using TableGen code block as follows.

def MyOp : Op<"my_op", []> {
  let arguments = (ins F32Attr:$attr);

  let builders = [
    OpBuilderDAG<(ins "float":$val), [{
      $_state.addAttribute("attr", $_builder.getF32FloatAttr(val));
    }]>
  ];
}

The equivalents of builder and state arguments are available as $_builder and $_state special variables. The named arguments listed in the ins part are available directly, e.g. val. The body of the builder will be generated by substituting special variables and should otherwise be valid C++. While there is no limitation on the code size, we encourage one to define only short builders inline in ODS and put definitions of longer builders in C++ files.

Finally, if some arguments need a default value, they can be defined using CArg to wrap the type and this value as follows.

def MyOp : Op<"my_op", []> {
  let arguments = (ins F32Attr:$attr);

  let builders = [
    OpBuilderDAG<(ins CArg<"float", "0.5f">:$val), [{
      $_state.addAttribute("attr", $_builder.getF32FloatAttr(val));
    }]>
  ];
}

The generated code will use default value in the declaration, but not in the definition, as required by C++.

/* Header file. */
class MyOp : /*...*/ {
  /*...*/
  static void build(::mlir::OpBuilder &builder, ::mlir::OperationState &state,
                    float val = 0.5f);
};

/* Source file. */
MyOp::build(::mlir::OpBuilder &builder, ::mlir::OperationState &state,
            float val) {
  state.addAttribute("attr", builder.getF32FloatAttr(val));
}


Deprecated: OpBuilder class allows one to specify the custom builder signature as a raw string, without separating parameters into different dag arguments. It also supports leading parameters of OpBuilder & and OperationState & types, which will be used instead of the autogenerated ones if present.




Custom parser and printer methods

Functions to parse and print the operation’s custom assembly form.



Custom verifier code

Verification code will be automatically generated for constraints specified on various entities of the op. To perform additional verification, you can use

let verifier = [{
  ...
}];

Code placed in verifier will be called after the auto-generated verification code. The order of trait verification excluding those of verifier should not be relied upon.



Declarative Assembly Format

The custom assembly form of the operation may be specified in a declarative string that matches the operations operands, attributes, etc. With the ability to express additional information that needs to be parsed to build the operation:

def CallOp : Std_Op<"call", ...> {
  let arguments = (ins FlatSymbolRefAttr:$callee, Variadic<AnyType>:$args);
  let results = (outs Variadic<AnyType>);

  let assemblyFormat = [{
    $callee `(` $args `)` attr-dict `:` functional-type($args, results)
  }];
}

The format is comprised of three components:


Directives

A directive is a type of builtin function, with an optional set of arguments. The available directives are as follows:


	attr-dict


	Represents the attribute dictionary of the operation.




	attr-dict-with-keyword


	Represents the attribute dictionary of the operation, but prefixes the dictionary with an attributes keyword.




	custom < UserDirective > ( Params )


	Represents a custom directive implemented by the user in C++.

	See the Custom Directives section below for more details.




	functional-type ( inputs , results )


	Formats the inputs and results arguments as a function type.

	The constraints on inputs and results are the same as the input of the type directive.




	operands


	Represents all of the operands of an operation.




	regions


	Represents all of the regions of an operation.




	results


	Represents all of the results of an operation.




	successors


	Represents all of the successors of an operation.




	type ( input )


	Represents the type of the given input.

	input must be either an operand or result variable, the operands directive, or the results directive.




	type_ref ( input )


	Represents a reference to the type of the given input that must have already been resolved.

	input must be either an operand or result variable, the operands directive, or the results directive.

	Used to pass previously parsed types to custom directives.








Literals

A literal is either a keyword or punctuation surrounded by ``.

The following are the set of valid punctuation:

:, ,, =, <, >, (, ), {, }, [, ], ->



Variables

A variable is an entity that has been registered on the operation itself, i.e. an argument(attribute or operand), region, result, successor, etc. In the CallOp example above, the variables would be $callee and $args.

Attribute variables are printed with their respective value type, unless that value type is buildable. In those cases, the type of the attribute is elided.



Custom Directives

The declarative assembly format specification allows for handling a large majority of the common cases when formatting an operation. For the operations that require or desire specifying parts of the operation in a form not supported by the declarative syntax, custom directives may be specified. A custom directive essentially allows for users to use C++ for printing and parsing subsections of an otherwise declaratively specified format. Looking at the specification of a custom directive above:

custom-directive ::= `custom` `<` UserDirective `>` `(` Params `)`

A custom directive has two main parts: The UserDirective and the Params. A custom directive is transformed into a call to a print* and a parse* method when generating the C++ code for the format. The UserDirective is an identifier used as a suffix to these two calls, i.e., custom<MyDirective>(...) would result in calls to parseMyDirective and printMyDirective wihtin the parser and printer respectively. Params may be any combination of variables (i.e. Attribute, Operand, Successor, etc.) and type directives. The type directives must refer to a variable, but that variable need not also be a parameter to the custom directive.

The arguments to the parse<UserDirective> method is firstly a reference to the OpAsmParser(OpAsmParser &), and secondly a set of output parameters corresponding to the parameters specified in the format. The mapping of declarative parameter to parse method argument is detailed below:


	Attribute Variables

	Single: <Attribute-Storage-Type>(e.g. Attribute) &

	Optional: <Attribute-Storage-Type>(e.g. Attribute) &




	Operand Variables

	Single: OpAsmParser::OperandType &

	Optional: Optional<OpAsmParser::OperandType> &

	Variadic: SmallVectorImpl<OpAsmParser::OperandType> &




	Region Variables

	Single: Region &

	Variadic: SmallVectorImpl<std::unique_ptr<Region>> &




	Successor Variables

	Single: Block *&

	Variadic: SmallVectorImpl<Block *> &




	Type Directives

	Single: Type &

	Optional: Type &

	Variadic: SmallVectorImpl<Type> &




	TypeRef Directives

	Single: Type

	Optional: Type

	Variadic: const SmallVectorImpl<Type> &






When a variable is optional, the value should only be specified if the variable is present. Otherwise, the value should remain None or null.

The arguments to the print<UserDirective> method is firstly a reference to the OpAsmPrinter(OpAsmPrinter &), and secondly a set of output parameters corresponding to the parameters specified in the format. The mapping of declarative parameter to print method argument is detailed below:


	Attribute Variables

	Single: <Attribute-Storage-Type>(e.g. Attribute)

	Optional: <Attribute-Storage-Type>(e.g. Attribute)




	Operand Variables

	Single: Value

	Optional: Value

	Variadic: OperandRange




	Region Variables

	Single: Region &

	Variadic: MutableArrayRef<Region>




	Successor Variables

	Single: Block *

	Variadic: SuccessorRange




	Type Directives

	Single: Type

	Optional: Type

	Variadic: TypeRange




	TypeRef Directives

	Single: Type

	Optional: Type

	Variadic: TypeRange






When a variable is optional, the provided value may be null.



Optional Groups

In certain situations operations may have “optional” information, e.g. attributes or an empty set of variadic operands. In these situations a section of the assembly format can be marked as optional based on the presence of this information. An optional group is defined by wrapping a set of elements within () followed by a ? and has the following requirements:


	The first element of the group must either be a attribute, literal, operand, or region.

	This is because the first element must be optionally parsable.




	Exactly one argument variable within the group must be marked as the anchor of the group.

	The anchor is the element whose presence controls whether the group should be printed/parsed.

	An element is marked as the anchor by adding a trailing ^.

	The first element is not required to be the anchor of the group.

	When a non-variadic region anchors a group, the detector for printing the group is if the region is empty.




	Literals, variables, custom directives, and type directives are the only valid elements within the group.

	Any attribute variable may be used, but only optional attributes can be marked as the anchor.

	Only variadic or optional operand arguments can be used.

	All region variables can be used. When a non-variable length region is used, if the group is not present the region is empty.

	The operands to a type directive must be defined within the optional group.






An example of an operation with an optional group is std.return, which has a variadic number of operands.

def ReturnOp : ... {
  let arguments = (ins Variadic<AnyType>:$operands);

  // We only print the operands and types if there are a non-zero number
  // of operands.
  let assemblyFormat = "attr-dict ($operands^ `:` type($operands))?";
}


Unit Attributes

In MLIR, the unit Attribute is special in that it only has one possible value, i.e. it derives meaning from its existence. When a unit attribute is used to anchor an optional group and is not the first element of the group, the presence of the unit attribute can be directly correlated with the presence of the optional group itself. As such, in these situations the unit attribute will not be printed or present in the output and will be automatically inferred when parsing by the presence of the optional group itself.

For example, the following operation:

def FooOp : ... {
  let arguments = (ins UnitAttr:$is_read_only);

  let assemblyFormat = "attr-dict (`is_read_only` $is_read_only^)?";
}

would be formatted as such:

// When the unit attribute is present:
foo.op is_read_only

// When the unit attribute is not present:
foo.op




Requirements

The format specification has a certain set of requirements that must be adhered to:


	The output and operation name are never shown as they are fixed and cannot be altered.

	All operands within the operation must appear within the format, either individually or with the operands directive.

	All regions within the operation must appear within the format, either individually or with the regions directive.

	All successors within the operation must appear within the format, either individually or with the successors directive.

	All operand and result types must appear within the format using the various type directives, either individually or with the operands or results directives.

	The attr-dict directive must always be present.

	Must not contain overlapping information; e.g. multiple instances of ‘attr-dict’, types, operands, etc.

	Note that attr-dict does not overlap with individual attributes. These attributes will simply be elided when printing the attribute dictionary.







Type Inference

One requirement of the format is that the types of operands and results must always be present. In certain instances, the type of a variable may be deduced via type constraints or other information available. In these cases, the type of that variable may be elided from the format.


	Buildable Types



Some type constraints may only have one representation, allowing for them to be directly buildable; for example the I32 or Index types. Types in ODS may mark themselves as buildable by setting the builderCall field or inheriting from the BuildableType class.


	Trait Equality Constraints



There are many operations that have known type equality constraints registered as traits on the operation; for example the true, false, and result values of a select operation often have the same type. The assembly format may inspect these equal constraints to discern the types of missing variables. The currently supported traits are: AllTypesMatch, TypesMatchWith, SameTypeOperands, and SameOperandsAndResultType.





hasCanonicalizer

This boolean field indicate whether canonicalization patterns have been defined for this operation. If it is 1, then ::getCanonicalizationPatterns() should be defined.



hasFolder

This boolean field indicate whether general folding rules have been defined for this operation. If it is 1, then ::fold() should be defined.



Extra declarations

One of the goals of table-driven op definition is to auto-generate as much logic and methods needed for each op as possible. With that said, there will always be long-tail cases that won’t be covered. For such cases, you can use extraClassDeclaration. Code in extraClassDeclaration will be copied literally to the generated C++ op class.

Note that extraClassDeclaration is a mechanism intended for long-tail cases by power users; for not-yet-implemented widely-applicable cases, improving the infrastructure is preferable.



Generated C++ code

OpDefinitionsGen processes the op definition spec file and generates two files containing the corresponding C++ code: one for declarations, the other for definitions. The former is generated via the -gen-op-decls command-line option, while the latter is via the -gen-op-defs option.

The definition file contains all the op method definitions, which can be included and enabled by defining GET_OP_CLASSES. For each operation, OpDefinitionsGen generates an operation class and an operand adaptor class. Besides, it also contains a comma-separated list of all defined ops, which can be included and enabled by defining GET_OP_LIST.


Class name and namespaces

For each operation, its generated C++ class name is the symbol defed with TableGen with dialect prefix removed. The first _ serves as the delimiter. For example, for def TF_AddOp, the C++ class name would be AddOp. We remove the TF prefix because it is for scoping ops; other dialects may as well define their own AddOps.

The namespaces of the generated C++ class will come from the dialect’s cppNamespace field. For example, if a dialect’s cppNamespace is A::B, then an op of that dialect will be placed in namespace A { namespace B { ... } }. If a dialect does not specify a cppNamespace, we then use the dialect’s name as the namespace.

This means the qualified name of the generated C++ class does not necessarily match exactly with the operation name as explained in Operation name. This is to allow flexible naming to satisfy coding style requirements.



Operand adaptors

For each operation, we automatically generate an operand adaptor. This class solves the problem of accessing operands provided as a list of Values without using “magic” constants. The operand adaptor takes a reference to an array of Value and provides methods with the same names as those in the operation class to access them. For example, for a binary arithmetic operation, it may provide .lhs() to access the first operand and .rhs() to access the second operand.

The operand adaptor class lives in the same namespace as the operation class, and has the name of the operation followed by Adaptor as well as an alias Adaptor inside the op class.

Operand adaptors can be used in function templates that also process operations:

template <typename BinaryOpTy>
std::pair<Value, Value> zip(BinaryOpTy &&op) {
  return std::make_pair(op.lhs(), op.rhs());;
}

void process(AddOp op, ArrayRef<Value> newOperands) {
  zip(op);
  zip(Adaptor<AddOp>(newOperands));
  /*...*/
}






Constraints

Constraint is a core concept in table-driven operation definition: operation verification and graph operation matching are all based on satisfying constraints. So both the operation definition and rewrite rules specification significantly involve writing constraints. We have the Constraint class in OpBase.td has the common base class for all constraints.

An operation’s constraint can cover different range; it may


	Only concern a single attribute (e.g. being a 32-bit integer greater than 5),

	Multiple operands and results (e.g., the 1st result’s shape must be the same as the 1st operand), or

	Intrinsic to the operation itself (e.g., having no side effect).



We call them as single-entity constraint, multi-entity constraint, and traits, respectively.


Single-entity constraint

Constraints scoped to a single operand, attribute, or result are specified at the entity’s declaration place as described in Operation arguments and Operation results.

To help modelling constraints of common types, a set of TypeConstraints are created; they are the Type subclass hierarchy. It includes F32 for the constraints of being a float, TensorOf<[F32]> for the constraints of being a float tensor, and so on.

Similarly, a set of AttrConstraints are created for helping modelling constraints of common attribute kinds. They are the Attr subclass hierarchy. It includes F32Attr for the constraints of being a float attribute, F32ArrayAttr for the constraints of being a float array attribute, and so on.



Multi-entity constraint

Constraints involving more than one operand/attribute/result are quite common on operations, like the element type and shape relation between operands and results. These constraints should be specified as the Op class template parameter as described in Operation traits and constraints.

Multi-entity constraints are modeled as PredOpTrait (a subclass of OpTrait) in OpBase.td.A bunch of constraint primitives are provided to help specification. See OpBase.td for the complete list.



Trait

Traits are intrinsic properties of the operation like having side effect or not, commutative or not, whether is a terminator, etc. These constraints should be specified as the Op class template parameter as described in Operation traits and constraints.

Traits are modeled as NativeOpTrait (a subclass of OpTrait) in OpBase.td. They are backed and will be translated into the corresponding C++ mlir::OpTrait classes.



How to specify new constraint

To write a constraint, you need to provide its predicates and give it a descriptive name. Predicates, modeled with the Pred class, are the workhorse for composing constraints. The predicate for a constraint is typically built up in a nested manner, using the two categories of predicates:


	CPred: the primitive leaf predicate.

	Compound predicate: a predicate composed from child predicates using predicate combiners (conjunction: And, disjunction: Or, negation: Neg, substitution: SubstLeaves, concatenation: Concat).



CPred is the basis for composing more complex predicates. It is the “atom” predicate from the perspective of TableGen and the “interface” between TableGen and C++. What is inside is already C++ code, which will be treated as opaque strings with special placeholders to be substituted.

You can put any C++ code that returns a boolean value inside a CPred, including evaluating expressions, calling functions, calling class methods, and so on.

To help interaction with the C++ environment, there are a few special placeholders provided to refer to entities in the context where this predicate is used. They serve as “hooks” to the enclosing environment. This includes $_builder, $_op, and $_self:


	$_builder will be replaced by a mlir::Builder instance so that you can access common build methods.

	$_op will be replaced by the current operation so that you can access information of the current operation.

	$_self will be replaced with the entity this predicate is attached to. E.g., BoolAttr is an attribute constraint that wraps a CPred<"$_self.isa<BoolAttr>()">. Then for F32:$attr,$_self will be replaced by $attr. For type constraints, it’s a little bit special since we want the constraints on each type definition reads naturally and we want to attach type constraints directly to an operand/result, $_self will be replaced by the operand/result’s type. E.g., for F32 in F32:$operand, its $_self will be expanded as getOperand(...).getType().



TODO: Reconsider the leading symbol for special placeholders. Eventually we want to allow referencing operand/result $-names; such $-names can start with underscore.

For example, to write an attribute attr is an IntegerAttr, in C++ you can just call attr.isa<IntegerAttr>(). The code can be wrapped in a CPred as $_self.isa<IntegerAttr>(), with $_self as the special placeholder to be replaced by the current attribute attr at expansion time.

For more complicated predicates, you can wrap it in a single CPred, or you can use predicate combiners to combine them. For example, to write the constraint that an attribute attr is a 32-bit or 64-bit integer, you can write it as

And<[
  CPred<"$_self.isa<IntegerAttr>()">,
  Or<[
    CPred<"$_self.cast<IntegerAttr>().getType().isInteger(32)">,
    CPred<"$_self.cast<IntegerAttr>().getType().isInteger(64)">
  ]>
]>

(Note that the above is just to show with a familiar example how you can use CPred and predicate combiners to write complicated predicates. For integer attributes specifically, OpBase.td already defines I32Attr and I64Attr. So you can actually reuse them to write it as Or<[I32Attr.predicate, I64Attr.predicate]>.)

TODO: Build up a library of reusable primitive constraints

If the predicate is very complex to write with CPred together with predicate combiners, you can also write it as a normal C++ function and use the CPred as a way to “invoke” the function. For example, to verify an attribute attr has some property, you can write a C++ function like

bool HasSomeProperty(Attribute attr) { ... }


and then define the op as:

def HasSomeProperty : AttrConstraint<CPred<"HasSomeProperty($_self)">,
                                     "has some property">;

def MyOp : Op<...> {
  let arguments = (ins
    ...
    HasSomeProperty:$attr
  );
}

As to whether we should define the predicate using a single CPred wrapping the whole expression, multiple CPreds with predicate combiners, or a single CPred “invoking” a function, there are no clear-cut criteria. Defining using CPred and predicate combiners is preferable since it exposes more information (instead hiding all the logic behind a C++ function) into the op definition spec so that it can potentially drive more auto-generation cases. But it will require a nice library of common predicates as the building blocks to avoid the duplication, which is being worked on right now.




Attribute Definition

An attribute is a compile-time known constant of an operation.

ODS provides attribute wrappers over C++ attribute classes. There are a few common C++ attribute classes defined in MLIR’s core IR library and one is free to define dialect-specific attribute classes. ODS allows one to use these attributes in TableGen to define operations, potentially with more fine-grained constraints. For example, StrAttr directly maps to StringAttr; F32Attr/F64Attr requires the FloatAttr to additionally be of a certain bitwidth.

ODS attributes are defined as having a storage type (corresponding to a backing mlir::Attribute that stores the attribute), a return type (corresponding to the C++ return type of the generated of the helper getters) as well as method to convert between the internal storage and the helper method.


Attribute decorators

There are a few important attribute adapters/decorators/modifiers that can be applied to ODS attributes to specify common additional properties like optionality, default values, etc.:


	DefaultValuedAttr: specifies the default value for an attribute.

	OptionalAttr: specifies an attribute as optional.

	Confined: adapts an attribute with further constraints.





Enum attributes

Some attributes can only take values from a predefined enum, e.g., the comparison kind of a comparison op. To define such attributes, ODS provides several mechanisms: StrEnumAttr, IntEnumAttr, and BitEnumAttr.


	StrEnumAttr: each enum case is a string, the attribute is stored as a StringAttr in the op.

	IntEnumAttr: each enum case is an integer, the attribute is stored as a IntegerAttr in the op.

	BitEnumAttr: each enum case is a bit, the attribute is stored as a IntegerAttr in the op.



All these *EnumAttr attributes require fully specifying all of the allowed cases via their corresponding *EnumAttrCase. With this, ODS is able to generate additional verification to only accept allowed cases. To facilitate the interaction between *EnumAttrs and their C++ consumers, the EnumsGen TableGen backend can generate a few common utilities: a C++ enum class, llvm::DenseMapInfo for the enum class, conversion functions from/to strings. This is controlled via the -gen-enum-decls and -gen-enum-defs command-line options of mlir-tblgen.

For example, given the following EnumAttr:

def Case15: I32EnumAttrCase<"Case15", 15>;
def Case20: I32EnumAttrCase<"Case20", 20>;

def MyIntEnum: I32EnumAttr<"MyIntEnum", "An example int enum",
                           [Case15, Case20]> {
  let cppNamespace = "Outer::Inner";
  let stringToSymbolFnName = "ConvertToEnum";
  let symbolToStringFnName = "ConvertToString";
}

The following will be generated via mlir-tblgen -gen-enum-decls:

namespace Outer {
namespace Inner {
// An example int enum
enum class MyIntEnum : uint32_t {
  Case15 = 15,
  Case20 = 20,
};

llvm::Optional<MyIntEnum> symbolizeMyIntEnum(uint32_t);
llvm::StringRef ConvertToString(MyIntEnum);
llvm::Optional<MyIntEnum> ConvertToEnum(llvm::StringRef);
inline constexpr unsigned getMaxEnumValForMyIntEnum() {
  return 20;
}

} // namespace Inner
} // namespace Outer

namespace llvm {
template<> struct DenseMapInfo<Outer::Inner::MyIntEnum> {
  using StorageInfo = llvm::DenseMapInfo<uint32_t>;

  static inline Outer::Inner::MyIntEnum getEmptyKey() {
    return static_cast<Outer::Inner::MyIntEnum>(StorageInfo::getEmptyKey());
  }

  static inline Outer::Inner::MyIntEnum getTombstoneKey() {
    return static_cast<Outer::Inner::MyIntEnum>(StorageInfo::getTombstoneKey());
  }

  static unsigned getHashValue(const Outer::Inner::MyIntEnum &val) {
    return StorageInfo::getHashValue(static_cast<uint32_t>(val));
  }

  static bool isEqual(const Outer::Inner::MyIntEnum &lhs, const Outer::Inner::MyIntEnum &rhs) {
    return lhs == rhs;
  }
};
}


The following will be generated via mlir-tblgen -gen-enum-defs:

namespace Outer {
namespace Inner {
llvm::StringRef ConvertToString(MyIntEnum val) {
  switch (val) {
    case MyIntEnum::Case15: return "Case15";
    case MyIntEnum::Case20: return "Case20";
  }
  return "";
}

llvm::Optional<MyIntEnum> ConvertToEnum(llvm::StringRef str) {
  return llvm::StringSwitch<llvm::Optional<MyIntEnum>>(str)
      .Case("Case15", MyIntEnum::Case15)
      .Case("Case20", MyIntEnum::Case20)
      .Default(llvm::None);
}
llvm::Optional<MyIntEnum> symbolizeMyIntEnum(uint32_t value) {
  switch (value) {
  case 15: return MyIntEnum::Case15;
  case 20: return MyIntEnum::Case20;
  default: return llvm::None;
  }
}

} // namespace Inner
} // namespace Outer


Similarly for the following BitEnumAttr definition:

def None: BitEnumAttrCase<"None", 0x0000>;
def Bit1: BitEnumAttrCase<"Bit1", 0x0001>;
def Bit2: BitEnumAttrCase<"Bit2", 0x0002>;
def Bit3: BitEnumAttrCase<"Bit3", 0x0004>;

def MyBitEnum: BitEnumAttr<"MyBitEnum", "An example bit enum",
                           [None, Bit1, Bit2, Bit3]>;

We can have:

// An example bit enum
enum class MyBitEnum : uint32_t {
  None = 0,
  Bit1 = 1,
  Bit2 = 2,
  Bit3 = 4,
};

llvm::Optional<MyBitEnum> symbolizeMyBitEnum(uint32_t);
std::string stringifyMyBitEnum(MyBitEnum);
llvm::Optional<MyBitEnum> symbolizeMyBitEnum(llvm::StringRef);
inline MyBitEnum operator|(MyBitEnum lhs, MyBitEnum rhs) {
  return static_cast<MyBitEnum>(static_cast<uint32_t>(lhs) | static_cast<uint32_t>(rhs));
}
inline MyBitEnum operator&(MyBitEnum lhs, MyBitEnum rhs) {
  return static_cast<MyBitEnum>(static_cast<uint32_t>(lhs) & static_cast<uint32_t>(rhs));
}
inline bool bitEnumContains(MyBitEnum bits, MyBitEnum bit) {
  return (static_cast<uint32_t>(bits) & static_cast<uint32_t>(bit)) != 0;
}

namespace llvm {
template<> struct DenseMapInfo<::MyBitEnum> {
  using StorageInfo = llvm::DenseMapInfo<uint32_t>;

  static inline ::MyBitEnum getEmptyKey() {
    return static_cast<::MyBitEnum>(StorageInfo::getEmptyKey());
  }

  static inline ::MyBitEnum getTombstoneKey() {
    return static_cast<::MyBitEnum>(StorageInfo::getTombstoneKey());
  }

  static unsigned getHashValue(const ::MyBitEnum &val) {
    return StorageInfo::getHashValue(static_cast<uint32_t>(val));
  }

  static bool isEqual(const ::MyBitEnum &lhs, const ::MyBitEnum &rhs) {
    return lhs == rhs;
  }
};


std::string stringifyMyBitEnum(MyBitEnum symbol) {
  auto val = static_cast<uint32_t>(symbol);
  // Special case for all bits unset.
  if (val == 0) return "None";

  llvm::SmallVector<llvm::StringRef, 2> strs;
  if (1u & val) { strs.push_back("Bit1"); val &= ~1u; }
  if (2u & val) { strs.push_back("Bit2"); val &= ~2u; }
  if (4u & val) { strs.push_back("Bit3"); val &= ~4u; }

  if (val) return "";
  return llvm::join(strs, "|");
}

llvm::Optional<MyBitEnum> symbolizeMyBitEnum(llvm::StringRef str) {
  // Special case for all bits unset.
  if (str == "None") return MyBitEnum::None;

  llvm::SmallVector<llvm::StringRef, 2> symbols;
  str.split(symbols, "|");

  uint32_t val = 0;
  for (auto symbol : symbols) {
    auto bit = llvm::StringSwitch<llvm::Optional<uint32_t>>(symbol)
      .Case("Bit1", 1)
      .Case("Bit2", 2)
      .Case("Bit3", 4)
      .Default(llvm::None);
    if (bit) { val |= *bit; } else { return llvm::None; }
  }
  return static_cast<MyBitEnum>(val);
}

llvm::Optional<MyBitEnum> symbolizeMyBitEnum(uint32_t value) {
  // Special case for all bits unset.
  if (value == 0) return MyBitEnum::None;

  if (value & ~(1u | 2u | 4u)) return llvm::None;
  return static_cast<MyBitEnum>(value);
}





Type Definitions

MLIR defines the TypeDef class hierarchy to enable generation of data types from their specifications. A type is defined by specializing the TypeDef class with concrete contents for all the fields it requires. For example, an integer type could be defined as:

// All of the types will extend this class.
class Test_Type<string name> : TypeDef<Test_Dialect, name> { }

// An alternate int type.
def IntegerType : Test_Type<"TestInteger"> {
  let mnemonic = "int";

  let summary = "An integer type with special semantics";

  let description = [{
    An alternate integer type. This type differentiates itself from the
    standard integer type by not having a SignednessSemantics parameter, just
    a width.
  }];

  let parameters = (ins "unsigned":$width);

  // We define the printer inline.
  let printer = [{
    $_printer << "int<" << getImpl()->width << ">";
  }];

  // The parser is defined here also.
  let parser = [{
    if (parser.parseLess())
      return Type();
    int width;
    if ($_parser.parseInteger(width))
      return Type();
    if ($_parser.parseGreater())
      return Type();
    return get(ctxt, width);
  }];


Type name

The name of the C++ class which gets generated defaults to <classParamName>Type (e.g. TestIntegerType in the above example). This can be overridden via the the cppClassName field. The field mnemonic is to specify the asm name for parsing. It is optional and not specifying it will imply that no parser or printer methods are attached to this class.



Type documentation

The summary and description fields exist and are to be used the same way as in Operations. Namely, the summary should be a one-liner and description should be a longer explanation.



Type parameters

The parameters field is a list of the types parameters. If no parameters are specified (the default), this type is considered a singleton type. Parameters are in the "c++Type":$paramName format. To use C++ types as parameters which need allocation in the storage constructor, there are two options:


	Set hasCustomStorageConstructor to generate the TypeStorage class with a constructor which is just declared – no definition – so you can write it yourself.

	Use the TypeParameter tablegen class instead of the “c++Type” string.





TypeParameter tablegen class

This is used to further specify attributes about each of the types parameters. It includes documentation (description and syntax), the C++ type to use, and a custom allocator to use in the storage constructor method.

// DO NOT DO THIS!
let parameters = (ins
  "ArrayRef<int>":$dims);

The default storage constructor blindly copies fields by value. It does not know anything about the types. In this case, the ArrayRef requires allocation with dims = allocator.copyInto(dims).
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Symbols and Symbol Tables

[TOC]

With Regions, the multi-level aspect of MLIR is structural in the IR. A lot of infrastructure within the compiler is built around this nesting structure; including the processing of operations within the pass manager. One advantage of the MLIR design is that it is able to process operations in parallel, utilizing multiple threads. This is possible due to a property of the IR known as IsolatedFromAbove.

Without this property, any operation could affect or mutate the use-list of operations defined above. Making this thread-safe requires expensive locking in some of the core IR data structures, which becomes quite inefficient. To enable multi-threaded compilation without this locking, MLIR uses local pools for constant values as well as Symbol accesses for global values and variables. This document details the design of Symbols, what they are and how they fit into the system.

The Symbol infrastructure essentially provides a non-SSA mechanism in which to refer to an operation symbolically with a name. This allows for referring to operations defined above regions that were defined as IsolatedFromAbove in a safe way. It also allows for symbolically referencing operations define below other regions as well.


Symbol

A Symbol is a named operation that resides immediately within a region that defines a SymbolTable. The name of a symbol must be unique within the parent SymbolTable. This name is semantically similarly to an SSA result value, and may be referred to by other operations to provide a symbolic link, or use, to the symbol. An example of a Symbol operation is func. func defines a symbol name, which is referred to by operations like std.call.


Defining a Symbol

A Symbol operation should use the SymbolOpInterface interface to provide the necessary verification and accessors; it also supports operations, such as module, that conditionally define a symbol. Symbols must have the following properties:


	A StringAttr attribute named ‘SymbolTable::getSymbolAttrName()’(sym_name).

	This attribute defines the symbolic ‘name’ of the operation.




	An optional StringAttr attribute named ‘SymbolTable::getVisibilityAttrName()’(sym_visibility)

	This attribute defines the visibility of the symbol, or more specifically in-which scopes it may be accessed.




	No SSA results

	Intermixing the different ways to use an operation quickly becomes unwieldy and difficult to analyze.









Symbol Table

Described above are Symbols, which reside within a region of an operation defining a SymbolTable. A SymbolTable operation provides the container for the Symbol operations. It verifies that all Symbol operations have a unique name, and provides facilities for looking up symbols by name. Operations defining a SymbolTable must use the OpTrait::SymbolTable trait.


Referencing a Symbol

Symbols are referenced symbolically by name via the SymbolRefAttr attribute. A symbol reference attribute contains a named reference to an operation that is nested within a symbol table. It may optionally contain a set of nested references that further resolve to a symbol nested within a different symbol table. When resolving a nested reference, each non-leaf reference must refer to a symbol operation that is also a symbol table.

Below is an example of how an operation can reference a symbol operation:

// This `func` operation defines a symbol named `symbol`.
func @symbol()

// Our `foo.user` operation contains a SymbolRefAttr with the name of the
// `symbol` func.
"foo.user"() {uses = [@symbol]} : () -> ()

// Symbol references resolve to the nearest parent operation that defines a
// symbol table, so we can have references with arbitrary nesting levels.
func @other_symbol() {
  affine.for %i0 = 0 to 10 {
    // Our `foo.user` operation resolves to the same `symbol` func as defined
    // above.
    "foo.user"() {uses = [@symbol]} : () -> ()
  }
  return
}

// Here we define a nested symbol table. References within this operation will
// not resolve to any symbols defined above.
module {
  // Error. We resolve references with respect to the closest parent operation
  // that defines a symbol table, so this reference can't be resolved.
  "foo.user"() {uses = [@symbol]} : () -> ()
}

// Here we define another nested symbol table, except this time it also defines
// a symbol.
module @module_symbol {
  // This `func` operation defines a symbol named `nested_symbol`.
  func @nested_symbol()
}

// Our `foo.user` operation may refer to the nested symbol, by resolving through
// the parent.
"foo.user"() {uses = [@module_symbol::@nested_symbol]} : () -> ()

Using an attribute, as opposed to an SSA value, has several benefits:


	References may appear in more places than the operand list; including nested attribute dictionaries, array attributes, etc.


	Handling of SSA dominance remains unchanged.


	If we were to use SSA values, we would need to create some mechanism in which to opt-out of certain properties of it such as dominance. Attributes allow for referencing the operations irregardless of the order in which they were defined.

	Attributes simplify referencing operations within nested symbol tables, which are traditionally not visible outside of the parent region.






The impact of this choice to use attributes as opposed to SSA values is that we now have two mechanisms with reference operations. This means that some dialects must either support both SymbolRefs and SSA value references, or provide operations that materialize SSA values from a symbol reference. Each has different trade offs depending on the situation. A function call may directly use a SymbolRef as the callee, whereas a reference to a global variable might use a materialization operation so that the variable can be used in other operations like std.addi. llvm.mlir.addressof is one example of such an operation.

See the LangRef definition of the SymbolRefAttr for more information about the structure of this attribute.

Operations that reference a Symbol and want to perform verification and general mutation of the symbol should implement the SymbolUserOpInterface to ensure that symbol accesses are legal and efficient.



Manipulating a Symbol

As described above, SymbolRefs act as an auxiliary way of defining uses of operations to the traditional SSA use-list. As such, it is imperative to provide similar functionality to manipulate and inspect the list of uses and the users. The following are a few of the utilities provided by the SymbolTable:


	SymbolTable::getSymbolUses


	Access an iterator range over all of the uses on and nested within a particular operation.




	SymbolTable::symbolKnownUseEmpty


	Check if a particular symbol is known to be unused within a specific section of the IR.




	SymbolTable::replaceAllSymbolUses


	Replace all of the uses of one symbol with a new one within a specific section of the IR.




	SymbolTable::lookupNearestSymbolFrom


	Lookup the definition of a symbol in the nearest symbol table from some anchor operation.









Symbol Visibility

Along with a name, a Symbol also has a visibility attached to it. The visibility of a symbol defines its structural reachability within the IR. A symbol has one of the following visibilities:


	Public (Default)


	The symbol may be referenced from outside of the visible IR. We cannot assume that all of the uses of this symbol are observable.




	Private


	The symbol may only be referenced from within the current symbol table.




	Nested


	The symbol may be referenced by operations outside of the current symbol table, but not outside of the visible IR, as long as each symbol table parent also defines a non-private symbol.






A few examples of what this looks like in the IR are shown below:

module @public_module {
  // This function can be accessed by 'live.user', but cannot be referenced
  // externally; all uses are known to reside within parent regions.
  func @nested_function() attributes { sym_visibility = "nested" }

  // This function cannot be accessed outside of 'public_module'.
  func @private_function() attributes { sym_visibility = "private" }
}

// This function can only be accessed from within the top-level module.
func @private_function() attributes { sym_visibility = "private" }

// This function may be referenced externally.
func @public_function()

"live.user"() {uses = [
  @public_module::@nested_function,
  @private_function,
  @public_function
]} : () -> ()
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Chapter 7: Adding a Composite Type to Toy

[TOC]

In the previous chapter, we demonstrated an end-to-end compilation flow from our Toy front-end to LLVM IR. In this chapter, we will extend the Toy language to support a new composite struct type.


Defining a struct in Toy

The first thing we need to define is the interface of this type in our toy source language. The general syntax of a struct type in Toy is as follows:

# A struct is defined by using the `struct` keyword followed by a name.
struct MyStruct {
  # Inside of the struct is a list of variable declarations without initializers
  # or shapes, which may also be other previously defined structs.
  var a;
  var b;
}

Structs may now be used in functions as variables or parameters by using the name of the struct instead of var. The members of the struct are accessed via a . access operator. Values of struct type may be initialized with a composite initializer, or a comma-separated list of other initializers surrounded by {}. An example is shown below:

struct Struct {
  var a;
  var b;
}

# User defined generic function may operate on struct types as well.
def multiply_transpose(Struct value) {
  # We can access the elements of a struct via the '.' operator.
  return transpose(value.a) * transpose(value.b);
}

def main() {
  # We initialize struct values using a composite initializer.
  Struct value = {[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]};

  # We pass these arguments to functions like we do with variables.
  var c = multiply_transpose(value);
  print(c);
}



Defining a struct in MLIR

In MLIR, we will also need a representation for our struct types. MLIR does not provide a type that does exactly what we need, so we will need to define our own. We will simply define our struct as an unnamed container of a set of element types. The name of the struct and its elements are only useful for the AST of our toy compiler, so we don’t need to encode it in the MLIR representation.


Defining the Type Class


Defining the Type Class

As mentioned in chapter 2, Type objects in MLIR are value-typed and rely on having an internal storage object that holds the actual data for the type. The Type class in itself acts as a simple wrapper around an internal TypeStorage object that is uniqued within an instance of an MLIRContext. When constructing a Type, we are internally just constructing and uniquing an instance of a storage class.

When defining a new Type that contains parametric data (e.g. the struct type, which requires additional information to hold the element types), we will need to provide a derived storage class. The singleton types that don’t have any additional data (e.g. the index type) don’t require a storage class and use the default TypeStorage.


Defining the Storage Class

Type storage objects contain all of the data necessary to construct and unique a type instance. Derived storage classes must inherit from the base mlir::TypeStorage and provide a set of aliases and hooks that will be used by the MLIRContext for uniquing. Below is the definition of the storage instance for our struct type, with each of the necessary requirements detailed inline:

/// This class represents the internal storage of the Toy `StructType`.
struct StructTypeStorage : public mlir::TypeStorage {
  /// The `KeyTy` is a required type that provides an interface for the storage
  /// instance. This type will be used when uniquing an instance of the type
  /// storage. For our struct type, we will unique each instance structurally on
  /// the elements that it contains.
  using KeyTy = llvm::ArrayRef<mlir::Type>;

  /// A constructor for the type storage instance.
  StructTypeStorage(llvm::ArrayRef<mlir::Type> elementTypes)
      : elementTypes(elementTypes) {}

  /// Define the comparison function for the key type with the current storage
  /// instance. This is used when constructing a new instance to ensure that we
  /// haven't already uniqued an instance of the given key.
  bool operator==(const KeyTy &key) const { return key == elementTypes; }

  /// Define a hash function for the key type. This is used when uniquing
  /// instances of the storage.
  /// Note: This method isn't necessary as both llvm::ArrayRef and mlir::Type
  /// have hash functions available, so we could just omit this entirely.
  static llvm::hash_code hashKey(const KeyTy &key) {
    return llvm::hash_value(key);
  }

  /// Define a construction function for the key type from a set of parameters.
  /// These parameters will be provided when constructing the storage instance
  /// itself, see the `StructType::get` method further below.
  /// Note: This method isn't necessary because KeyTy can be directly
  /// constructed with the given parameters.
  static KeyTy getKey(llvm::ArrayRef<mlir::Type> elementTypes) {
    return KeyTy(elementTypes);
  }

  /// Define a construction method for creating a new instance of this storage.
  /// This method takes an instance of a storage allocator, and an instance of a
  /// `KeyTy`. The given allocator must be used for *all* necessary dynamic
  /// allocations used to create the type storage and its internal.
  static StructTypeStorage *construct(mlir::TypeStorageAllocator &allocator,
                                      const KeyTy &key) {
    // Copy the elements from the provided `KeyTy` into the allocator.
    llvm::ArrayRef<mlir::Type> elementTypes = allocator.copyInto(key);

    // Allocate the storage instance and construct it.
    return new (allocator.allocate<StructTypeStorage>())
        StructTypeStorage(elementTypes);
  }

  /// The following field contains the element types of the struct.
  llvm::ArrayRef<mlir::Type> elementTypes;
};




Defining the Type Class

With the storage class defined, we can add the definition for the user-visible StructType class. This is the class that we will actually interface with.

/// This class defines the Toy struct type. It represents a collection of
/// element types. All derived types in MLIR must inherit from the CRTP class
/// 'Type::TypeBase'. It takes as template parameters the concrete type
/// (StructType), the base class to use (Type), and the storage class
/// (StructTypeStorage).
class StructType : public mlir::Type::TypeBase<StructType, mlir::Type,
                                               StructTypeStorage> {
public:
  /// Inherit some necessary constructors from 'TypeBase'.
  using Base::Base;

  /// Create an instance of a `StructType` with the given element types. There
  /// *must* be at least one element type.
  static StructType get(llvm::ArrayRef<mlir::Type> elementTypes) {
    assert(!elementTypes.empty() && "expected at least 1 element type");

    // Call into a helper 'get' method in 'TypeBase' to get a uniqued instance
    // of this type. The first parameter is the context to unique in. The
    // parameters after are forwarded to the storage instance.
    mlir::MLIRContext *ctx = elementTypes.front().getContext();
    return Base::get(ctx, elementTypes);
  }

  /// Returns the element types of this struct type.
  llvm::ArrayRef<mlir::Type> getElementTypes() {
    // 'getImpl' returns a pointer to the internal storage instance.
    return getImpl()->elementTypes;
  }

  /// Returns the number of element type held by this struct.
  size_t getNumElementTypes() { return getElementTypes().size(); }
};


We register this type in the ToyDialect constructor in a similar way to how we did with operations:

ToyDialect::ToyDialect(mlir::MLIRContext *ctx)
    : mlir::Dialect(getDialectNamespace(), ctx) {
  addTypes<StructType>();
}


With this we can now use our StructType when generating MLIR from Toy. See examples/toy/Ch7/mlir/MLIRGen.cpp for more details.





Parsing and Printing

At this point we can use our StructType during MLIR generation and transformation, but we can’t output or parse .mlir. For this we need to add support for parsing and printing instances of the StructType. This can be done by overriding the parseType and printType methods on the ToyDialect.

class ToyDialect : public mlir::Dialect {
public:
  /// Parse an instance of a type registered to the toy dialect.
  mlir::Type parseType(mlir::DialectAsmParser &parser) const override;

  /// Print an instance of a type registered to the toy dialect.
  void printType(mlir::Type type,
                 mlir::DialectAsmPrinter &printer) const override;
};


These methods take an instance of a high-level parser or printer that allows for easily implementing the necessary functionality. Before going into the implementation, let’s think about the syntax that we want for the struct type in the printed IR. As described in the MLIR language reference, dialect types are generally represented as: ! dialect-namespace < type-data >, with a pretty form available under certain circumstances. The responsibility of our Toy parser and printer is to provide the type-data bits. We will define our StructType as having the following form:

  struct-type ::= `struct` `<` type (`,` type)* `>`


Parsing

An implementation of the parser is shown below:

/// Parse an instance of a type registered to the toy dialect.
mlir::Type ToyDialect::parseType(mlir::DialectAsmParser &parser) const {
  // Parse a struct type in the following form:
  //   struct-type ::= `struct` `<` type (`,` type)* `>`

  // NOTE: All MLIR parser function return a ParseResult. This is a
  // specialization of LogicalResult that auto-converts to a `true` boolean
  // value on failure to allow for chaining, but may be used with explicit
  // `mlir::failed/mlir::succeeded` as desired.

  // Parse: `struct` `<`
  if (parser.parseKeyword("struct") || parser.parseLess())
    return Type();

  // Parse the element types of the struct.
  SmallVector<mlir::Type, 1> elementTypes;
  do {
    // Parse the current element type.
    llvm::SMLoc typeLoc = parser.getCurrentLocation();
    mlir::Type elementType;
    if (parser.parseType(elementType))
      return nullptr;

    // Check that the type is either a TensorType or another StructType.
    if (!elementType.isa<mlir::TensorType, StructType>()) {
      parser.emitError(typeLoc, "element type for a struct must either "
                                "be a TensorType or a StructType, got: ")
          << elementType;
      return Type();
    }
    elementTypes.push_back(elementType);

    // Parse the optional: `,`
  } while (succeeded(parser.parseOptionalComma()));

  // Parse: `>`
  if (parser.parseGreater())
    return Type();
  return StructType::get(elementTypes);
}




Printing

An implementation of the printer is shown below:

/// Print an instance of a type registered to the toy dialect.
void ToyDialect::printType(mlir::Type type,
                           mlir::DialectAsmPrinter &printer) const {
  // Currently the only toy type is a struct type.
  StructType structType = type.cast<StructType>();

  // Print the struct type according to the parser format.
  printer << "struct<";
  llvm::interleaveComma(structType.getElementTypes(), printer);
  printer << '>';
}


Before moving on, let’s look at a quick of example showcasing the functionality we have now:

struct Struct {
  var a;
  var b;
}

def multiply_transpose(Struct value) {
}

Which generates the following:

module {
  func @multiply_transpose(%arg0: !toy.struct<tensor<*xf64>, tensor<*xf64>>) {
    toy.return
  }
}




Operating on StructType

Now that the struct type has been defined, and we can round-trip it through the IR. The next step is to add support for using it within our operations.


Updating Existing Operations

A few of our existing operations will need to be updated to handle StructType. The first step is to make the ODS framework aware of our Type so that we can use it in the operation definitions. A simple example is shown below:

// Provide a definition for the Toy StructType for use in ODS. This allows for
// using StructType in a similar way to Tensor or MemRef.
def Toy_StructType :
    Type<CPred<"$_self.isa<StructType>()">, "Toy struct type">;

// Provide a definition of the types that are used within the Toy dialect.
def Toy_Type : AnyTypeOf<[F64Tensor, Toy_StructType]>;

We can then update our operations, e.g. ReturnOp, to also accept the Toy_StructType:

def ReturnOp : Toy_Op<"return", [Terminator, HasParent<"FuncOp">]> {
  ...
  let arguments = (ins Variadic<Toy_Type>:$input);
  ...
}



Adding New Toy Operations

In addition to the existing operations, we will be adding a few new operations that will provide more specific handling of structs.


toy.struct_constant

This new operation materializes a constant value for a struct. In our current modeling, we just use an array attribute that contains a set of constant values for each of the struct elements.

  %0 = toy.struct_constant [
    dense<[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]> : tensor<2x3xf64>
  ] : !toy.struct<tensor<*xf64>>



toy.struct_access

This new operation materializes the Nth element of a struct value.

  // Using %0 from above
  %1 = toy.struct_access %0[0] : !toy.struct<tensor<*xf64>> -> tensor<*xf64>

With these operations, we can revisit our original example:

struct Struct {
  var a;
  var b;
}

# User defined generic function may operate on struct types as well.
def multiply_transpose(Struct value) {
  # We can access the elements of a struct via the '.' operator.
  return transpose(value.a) * transpose(value.b);
}

def main() {
  # We initialize struct values using a composite initializer.
  Struct value = {[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]};

  # We pass these arguments to functions like we do with variables.
  var c = multiply_transpose(value);
  print(c);
}

and finally get a full MLIR module:

module {
  func @multiply_transpose(%arg0: !toy.struct<tensor<*xf64>, tensor<*xf64>>) -> tensor<*xf64> {
    %0 = toy.struct_access %arg0[0] : !toy.struct<tensor<*xf64>, tensor<*xf64>> -> tensor<*xf64>
    %1 = toy.transpose(%0 : tensor<*xf64>) to tensor<*xf64>
    %2 = toy.struct_access %arg0[1] : !toy.struct<tensor<*xf64>, tensor<*xf64>> -> tensor<*xf64>
    %3 = toy.transpose(%2 : tensor<*xf64>) to tensor<*xf64>
    %4 = toy.mul %1, %3 : tensor<*xf64>
    toy.return %4 : tensor<*xf64>
  }
  func @main() {
    %0 = toy.struct_constant [
      dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>,
      dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>
    ] : !toy.struct<tensor<*xf64>, tensor<*xf64>>
    %1 = toy.generic_call @multiply_transpose(%0) : (!toy.struct<tensor<*xf64>, tensor<*xf64>>) -> tensor<*xf64>
    toy.print %1 : tensor<*xf64>
    toy.return
  }
}




Optimizing Operations on StructType

Now that we have a few operations operating on StructType, we also have many new constant folding opportunities.

After inlining, the MLIR module in the previous section looks something like:

module {
  func @main() {
    %0 = toy.struct_constant [
      dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>,
      dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>
    ] : !toy.struct<tensor<*xf64>, tensor<*xf64>>
    %1 = toy.struct_access %0[0] : !toy.struct<tensor<*xf64>, tensor<*xf64>> -> tensor<*xf64>
    %2 = toy.transpose(%1 : tensor<*xf64>) to tensor<*xf64>
    %3 = toy.struct_access %0[1] : !toy.struct<tensor<*xf64>, tensor<*xf64>> -> tensor<*xf64>
    %4 = toy.transpose(%3 : tensor<*xf64>) to tensor<*xf64>
    %5 = toy.mul %2, %4 : tensor<*xf64>
    toy.print %5 : tensor<*xf64>
    toy.return
  }
}

We have several toy.struct_access operations that access into a toy.struct_constant. As detailed in chapter 3 (FoldConstantReshape), we can add folders for these toy operations by setting the hasFolder bit on the operation definition and providing a definition of the *Op::fold method.

/// Fold constants.
OpFoldResult ConstantOp::fold(ArrayRef<Attribute> operands) { return value(); }

/// Fold struct constants.
OpFoldResult StructConstantOp::fold(ArrayRef<Attribute> operands) {
  return value();
}

/// Fold simple struct access operations that access into a constant.
OpFoldResult StructAccessOp::fold(ArrayRef<Attribute> operands) {
  auto structAttr = operands.front().dyn_cast_or_null<mlir::ArrayAttr>();
  if (!structAttr)
    return nullptr;

  size_t elementIndex = index().getZExtValue();
  return structAttr[elementIndex];
}


To ensure that MLIR generates the proper constant operations when folding our Toy operations, i.e. ConstantOp for TensorType and StructConstant for StructType, we will need to provide an override for the dialect hook materializeConstant. This allows for generic MLIR operations to create constants for the Toy dialect when necessary.

mlir::Operation *ToyDialect::materializeConstant(mlir::OpBuilder &builder,
                                                 mlir::Attribute value,
                                                 mlir::Type type,
                                                 mlir::Location loc) {
  if (type.isa<StructType>())
    return builder.create<StructConstantOp>(loc, type,
                                            value.cast<mlir::ArrayAttr>());
  return builder.create<ConstantOp>(loc, type,
                                    value.cast<mlir::DenseElementsAttr>());
}


With this, we can now generate code that can be generated to LLVM without any changes to our pipeline.

module {
  func @main() {
    %0 = toy.constant dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>
    %1 = toy.transpose(%0 : tensor<2x3xf64>) to tensor<3x2xf64>
    %2 = toy.mul %1, %1 : tensor<3x2xf64>
    toy.print %2 : tensor<3x2xf64>
    toy.return
  }
}

You can build toyc-ch7 and try yourself: toyc-ch7 test/Examples/Toy/Ch7/struct-codegen.toy -emit=mlir. More details on defining custom types can be found in DefiningAttributesAndTypes.








  
  
  ch022.xhtml
  
  




Chapter 3: High-level Language-Specific Analysis and Transformation

[TOC]

Creating a dialect that closely represents the semantics of an input language enables analyses, transformations and optimizations in MLIR that require high-level language information and are generally performed on the language AST. For example, clang has a fairly heavy mechanism for performing template instantiation in C++.

We divide compiler transformations into two categories: local and global. In this chapter, we focus on how to leverage the Toy Dialect and its high-level semantics to perform local pattern-match transformations that would be difficult in LLVM. For this, we use MLIR’s Generic DAG Rewriter.

There are two methods that can be used to implement pattern-match transformations: 1. Imperative, C++ pattern-match and rewrite 2. Declarative, rule-based pattern-match and rewrite using table-driven Declarative Rewrite Rules (DRR). Note that the use of DRR requires that the operations be defined using ODS, as described in Chapter 2.


Optimize Transpose using C++ style pattern-match and rewrite

Let’s start with a simple pattern and try to eliminate a sequence of two transposes that cancel out: transpose(transpose(X)) -> X. Here is the corresponding Toy example:

def transpose_transpose(x) {
  return transpose(transpose(x));
}

Which corresponds to the following IR:

func @transpose_transpose(%arg0: tensor<*xf64>) -> tensor<*xf64> {
  %0 = toy.transpose(%arg0 : tensor<*xf64>) to tensor<*xf64>
  %1 = toy.transpose(%0 : tensor<*xf64>) to tensor<*xf64>
  toy.return %1 : tensor<*xf64>
}

This is a good example of a transformation that is trivial to match on the Toy IR but that would be quite hard for LLVM to figure. For example, today Clang can’t optimize away the temporary array, and the computation with the naive transpose is expressed with these loops:

#define N 100
#define M 100

void sink(void *);
void double_transpose(int A[N][M]) {
  int B[M][N];
  for(int i = 0; i < N; ++i) {
    for(int j = 0; j < M; ++j) {
       B[j][i] = A[i][j];
    }
  }
  for(int i = 0; i < N; ++i) {
    for(int j = 0; j < M; ++j) {
       A[i][j] = B[j][i];
    }
  }
  sink(A);
}


For a simple C++ approach to rewrite, involving matching a tree-like pattern in the IR and replacing it with a different set of operations, we can plug into the MLIR Canonicalizer pass by implementing a RewritePattern:

/// Fold transpose(transpose(x)) -> x
struct SimplifyRedundantTranspose : public mlir::OpRewritePattern<TransposeOp> {
  /// We register this pattern to match every toy.transpose in the IR.
  /// The "benefit" is used by the framework to order the patterns and process
  /// them in order of profitability.
  SimplifyRedundantTranspose(mlir::MLIRContext *context)
      : OpRewritePattern<TransposeOp>(context, /*benefit=*/1) {}

  /// This method is attempting to match a pattern and rewrite it. The rewriter
  /// argument is the orchestrator of the sequence of rewrites. It is expected
  /// to interact with it to perform any changes to the IR from here.
  mlir::LogicalResult
  matchAndRewrite(TransposeOp op,
                  mlir::PatternRewriter &rewriter) const override {
    // Look through the input of the current transpose.
    mlir::Value transposeInput = op.getOperand();
    TransposeOp transposeInputOp = transposeInput.getDefiningOp<TransposeOp>();

    // Input defined by another transpose? If not, no match.
    if (!transposeInputOp)
      return failure();

    // Otherwise, we have a redundant transpose. Use the rewriter.
    rewriter.replaceOp(op, {transposeInputOp.getOperand()});
    return success();
  }
};


The implementation of this rewriter is in ToyCombine.cpp. The canonicalization pass applies transformations defined by operations in a greedy, iterative manner. To ensure that the canonicalization pass applies our new transform, we set hasCanonicalizer = 1 and register the pattern with the canonicalization framework.

// Register our patterns for rewrite by the Canonicalization framework.
void TransposeOp::getCanonicalizationPatterns(
    OwningRewritePatternList &results, MLIRContext *context) {
  results.insert<SimplifyRedundantTranspose>(context);
}


We also need to update our main file, toyc.cpp, to add an optimization pipeline. In MLIR, the optimizations are run through a PassManager in a similar way to LLVM:

  mlir::PassManager pm(module.getContext());
  pm.addNestedPass<mlir::FuncOp>(mlir::createCanonicalizerPass());


Finally, we can run toyc-ch3 test/Examples/Toy/Ch3/transpose_transpose.toy  -emit=mlir -opt and observe our pattern in action:

func @transpose_transpose(%arg0: tensor<*xf64>) -> tensor<*xf64> {
  %0 = toy.transpose(%arg0 : tensor<*xf64>) to tensor<*xf64>
  toy.return %arg0 : tensor<*xf64>
}

As expected, we now directly return the function argument, bypassing any transpose operation. However, one of the transposes still hasn’t been eliminated. That is not ideal! What happened is that our pattern replaced the last transform with the function input and left behind the now dead transpose input. The Canonicalizer knows to clean up dead operations; however, MLIR conservatively assumes that operations may have side-effects. We can fix this by adding a new trait, NoSideEffect, to our TransposeOp:

def TransposeOp : Toy_Op<"transpose", [NoSideEffect]> {...}

Let’s retry now toyc-ch3 test/transpose_transpose.toy -emit=mlir -opt:

func @transpose_transpose(%arg0: tensor<*xf64>) -> tensor<*xf64> {
  toy.return %arg0 : tensor<*xf64>
}

Perfect! No transpose operation is left - the code is optimal.

In the next section, we use DRR for pattern match optimizations associated with the Reshape op.



Optimize Reshapes using DRR

Declarative, rule-based pattern-match and rewrite (DRR) is an operation DAG-based declarative rewriter that provides a table-based syntax for pattern-match and rewrite rules:

class Pattern<
    dag sourcePattern, list<dag> resultPatterns,
    list<dag> additionalConstraints = [],
    dag benefitsAdded = (addBenefit 0)>;

A redundant reshape optimization similar to SimplifyRedundantTranspose can be expressed more simply using DRR as follows:

// Reshape(Reshape(x)) = Reshape(x)
def ReshapeReshapeOptPattern : Pat<(ReshapeOp(ReshapeOp $arg)),
                                   (ReshapeOp $arg)>;

The automatically generated C++ code corresponding to each of the DRR patterns can be found under path/to/BUILD/tools/mlir/examples/toy/Ch3/ToyCombine.inc.

DRR also provides a method for adding argument constraints when the transformation is conditional on some properties of the arguments and results. An example is a transformation that eliminates reshapes when they are redundant, i.e. when the input and output shapes are identical.

def TypesAreIdentical : Constraint<CPred<"$0.getType() == $1.getType()">>;
def RedundantReshapeOptPattern : Pat<
  (ReshapeOp:$res $arg), (replaceWithValue $arg),
  [(TypesAreIdentical $res, $arg)]>;

Some optimizations may require additional transformations on instruction arguments. This is achieved using NativeCodeCall, which allows for more complex transformations either by calling into a C++ helper function or by using inline C++. An example of such an optimization is FoldConstantReshape, where we optimize Reshape of a constant value by reshaping the constant in place and eliminating the reshape operation.

def ReshapeConstant : NativeCodeCall<"$0.reshape(($1.getType()).cast<ShapedType>())">;
def FoldConstantReshapeOptPattern : Pat<
  (ReshapeOp:$res (ConstantOp $arg)),
  (ConstantOp (ReshapeConstant $arg, $res))>;

We demonstrate these reshape optimizations using the following trivial_reshape.toy program:

def main() {
  var a<2,1> = [1, 2];
  var b<2,1> = a;
  var c<2,1> = b;
  print(c);
}


module {
  func @main() {
    %0 = toy.constant dense<[1.000000e+00, 2.000000e+00]> : tensor<2xf64>
    %1 = toy.reshape(%0 : tensor<2xf64>) to tensor<2x1xf64>
    %2 = toy.reshape(%1 : tensor<2x1xf64>) to tensor<2x1xf64>
    %3 = toy.reshape(%2 : tensor<2x1xf64>) to tensor<2x1xf64>
    toy.print %3 : tensor<2x1xf64>
    toy.return
  }
}

We can try to run toyc-ch3 test/Examples/Toy/Ch3/trivial_reshape.toy -emit=mlir  -opt and observe our pattern in action:

module {
  func @main() {
    %0 = toy.constant dense<[[1.000000e+00], [2.000000e+00]]> : tensor<2x1xf64>
    toy.print %0 : tensor<2x1xf64>
    toy.return
  }
}

As expected, no reshape operations remain after canonicalization.

Further details on the declarative rewrite method can be found at Table-driven Declarative Rewrite Rule (DRR).

In this chapter, we saw how to use certain core transformations through always available hooks. In the next chapter, we will see how to use generic solutions that scale better through Interfaces.
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Chapter 2: Emitting Basic MLIR

[TOC]

Now that we’re familiar with our language and the AST, let’s see how MLIR can help to compile Toy.


Introduction: Multi-Level Intermediate Representation

Other compilers, like LLVM (see the Kaleidoscope tutorial), offer a fixed set of predefined types and (usually low-level / RISC-like) instructions. It is up to the frontend for a given language to perform any language-specific type-checking, analysis, or transformation before emitting LLVM IR. For example, Clang will use its AST to perform not only static analysis but also transformations, such as C++ template instantiation through AST cloning and rewrite. Finally, languages with construction at a higher-level than C/C++ may require non-trivial lowering from their AST to generate LLVM IR.

As a consequence, multiple frontends end up reimplementing significant pieces of infrastructure to support the need for these analyses and transformation. MLIR addresses this issue by being designed for extensibility. As such, there are few pre-defined instructions (operations in MLIR terminology) or types.



Interfacing with MLIR

Language reference

MLIR is designed to be a completely extensible infrastructure; there is no closed set of attributes (think: constant metadata), operations, or types. MLIR supports this extensibility with the concept of Dialects. Dialects provide a grouping mechanism for abstraction under a unique namespace.

In MLIR, Operations are the core unit of abstraction and computation, similar in many ways to LLVM instructions. Operations can have application-specific semantics and can be used to represent all of the core IR structures in LLVM: instructions, globals (like functions), modules, etc.

Here is the MLIR assembly for the Toy transpose operations:

%t_tensor = "toy.transpose"(%tensor) {inplace = true} : (tensor<2x3xf64>) -> tensor<3x2xf64> loc("example/file/path":12:1)

Let’s break down the anatomy of this MLIR operation:


	%t_tensor


	The name given to the result defined by this operation (which includes a prefixed sigil to avoid collisions). An operation may define zero or more results (in the context of Toy, we will limit ourselves to single-result operations), which are SSA values. The name is used during parsing but is not persistent (e.g., it is not tracked in the in-memory representation of the SSA value).




	"toy.transpose"


	The name of the operation. It is expected to be a unique string, with the namespace of the dialect prefixed before the “.”. This can be read as the transpose operation in the toy dialect.




	(%tensor)


	A list of zero or more input operands (or arguments), which are SSA values defined by other operations or referring to block arguments.




	{ inplace = true }


	A dictionary of zero or more attributes, which are special operands that are always constant. Here we define a boolean attribute named ‘inplace’ that has a constant value of true.




	(tensor<2x3xf64>) -> tensor<3x2xf64>


	This refers to the type of the operation in a functional form, spelling the types of the arguments in parentheses and the type of the return values afterward.




	loc("example/file/path":12:1)


	This is the location in the source code from which this operation originated.






Shown here is the general form of an operation. As described above, the set of operations in MLIR is extensible. Operations are modeled using a small set of concepts, enabling operations to be reasoned about and manipulated generically. These concepts are:


	A name for the operation.

	A list of SSA operand values.

	A list of attributes.

	A list of types for result values.

	A source location for debugging purposes.

	A list of successors blocks (for branches, mostly).

	A list of regions (for structural operations like functions).



In MLIR, every operation has a mandatory source location associated with it. Contrary to LLVM, where debug info locations are metadata and can be dropped, in MLIR, the location is a core requirement, and APIs depend on and manipulate it. Dropping a location is thus an explicit choice which cannot happen by mistake.

To provide an illustration: If a transformation replaces an operation by another, that new operation must still have a location attached. This makes it possible to track where that operation came from.

It’s worth noting that the mlir-opt tool - a tool for testing compiler passes - does not include locations in the output by default. The -mlir-print-debuginfo flag specifies to include locations. (Run mlir-opt --help for more options.)


Opaque API

MLIR is designed to allow most IR elements, such as attributes, operations, and types, to be customized. At the same time, IR elements can always be reduced to the above fundamental concepts. This allows MLIR to parse, represent, and round-trip IR for any operation. For example, we could place our Toy operation from above into an .mlir file and round-trip through mlir-opt without registering any dialect:

func @toy_func(%tensor: tensor<2x3xf64>) -> tensor<3x2xf64> {
  %t_tensor = "toy.transpose"(%tensor) { inplace = true } : (tensor<2x3xf64>) -> tensor<3x2xf64>
  return %t_tensor : tensor<3x2xf64>
}

In the cases of unregistered attributes, operations, and types, MLIR will enforce some structural constraints (SSA, block termination, etc.), but otherwise they are completely opaque. For instance, MLIR has little information about whether an unregistered operation can operate on particular datatypes, how many operands it can take, or how many results it produces. This flexibility can be useful for bootstrapping purposes, but it is generally advised against in mature systems. Unregistered operations must be treated conservatively by transformations and analyses, and they are much harder to construct and manipulate.

This handling can be observed by crafting what should be an invalid IR for Toy and seeing it round-trip without tripping the verifier:

func @main() {
  %0 = "toy.print"() : () -> tensor<2x3xf64>
}

There are multiple problems here: the toy.print operation is not a terminator; it should take an operand; and it shouldn’t return any values. In the next section, we will register our dialect and operations with MLIR, plug into the verifier, and add nicer APIs to manipulate our operations.




Defining a Toy Dialect

To effectively interface with MLIR, we will define a new Toy dialect. This dialect will model the structure of the Toy language, as well as provide an easy avenue for high-level analysis and transformation.

/// This is the definition of the Toy dialect. A dialect inherits from
/// mlir::Dialect and registers custom attributes, operations, and types (in its
/// constructor). It can also override virtual methods to change some general
/// behavior, which will be demonstrated in later chapters of the tutorial.
class ToyDialect : public mlir::Dialect {
 public:
  explicit ToyDialect(mlir::MLIRContext *ctx);

  /// Provide a utility accessor to the dialect namespace. This is used by
  /// several utilities.
  static llvm::StringRef getDialectNamespace() { return "toy"; }
};


The dialect can now be registered in the global registry:

  mlir::registerDialect<ToyDialect>();


Any new MLIRContext created from now on will contain an instance of the Toy dialect and invoke specific hooks for things like parsing attributes and types.



Defining Toy Operations

Now that we have a Toy dialect, we can start registering operations. This will allow for providing semantic information that the rest of the system can hook into. Let’s walk through the creation of the toy.constant operation:

 %4 = "toy.constant"() {value = dense<1.0> : tensor<2x3xf64>} : () -> tensor<2x3xf64>

This operation takes zero operands, a dense elements attribute named value, and returns a single result of TensorType. An operation inherits from the CRTP mlir::Op class which also takes some optional traits to customize its behavior. These traits may provide additional accessors, verification, etc.

class ConstantOp : public mlir::Op<ConstantOp,
                     /// The ConstantOp takes no inputs.
                     mlir::OpTrait::ZeroOperands,
                     /// The ConstantOp returns a single result.
                     mlir::OpTrait::OneResult> {

 public:
  /// Inherit the constructors from the base Op class.
  using Op::Op;

  /// Provide the unique name for this operation. MLIR will use this to register
  /// the operation and uniquely identify it throughout the system.
  static llvm::StringRef getOperationName() { return "toy.constant"; }

  /// Return the value of the constant by fetching it from the attribute.
  mlir::DenseElementsAttr getValue();

  /// Operations can provide additional verification beyond the traits they
  /// define. Here we will ensure that the specific invariants of the constant
  /// operation are upheld, for example the result type must be of TensorType.
  LogicalResult verify();

  /// Provide an interface to build this operation from a set of input values.
  /// This interface is used by the builder to allow for easily generating
  /// instances of this operation:
  ///   mlir::OpBuilder::create<ConstantOp>(...)
  /// This method populates the given `state` that MLIR uses to create
  /// operations. This state is a collection of all of the discrete elements
  /// that an operation may contain.
  /// Build a constant with the given return type and `value` attribute.
  static void build(mlir::OpBuilder &builder, mlir::OperationState &state,
                    mlir::Type result, mlir::DenseElementsAttr value);
  /// Build a constant and reuse the type from the given 'value'.
  static void build(mlir::OpBuilder &builder, mlir::OperationState &state,
                    mlir::DenseElementsAttr value);
  /// Build a constant by broadcasting the given 'value'.
  static void build(mlir::OpBuilder &builder, mlir::OperationState &state,
                    double value);
};


and we register this operation in the ToyDialect constructor:

ToyDialect::ToyDialect(mlir::MLIRContext *ctx)
    : mlir::Dialect(getDialectNamespace(), ctx) {
  addOperations<ConstantOp>();
}



Op vs Operation: Using MLIR Operations

Now that we have defined an operation, we will want to access and transform it. In MLIR, there are two main classes related to operations: Operation and Op. The Operation class is used to generically model all operations. It is ‘opaque’, in the sense that it does not describe the properties of particular operations or types of operations. Instead, the ‘Operation’ class provides a general API into an operation instance. On the other hand, each specific type of operation is represented by an Op derived class. For instance ConstantOp represents a operation with zero inputs, and one output, which is always set to the same value. Op derived classes act as smart pointer wrapper around a Operation*, provide operation-specific accessor methods, and type-safe properties of operations. This means that when we define our Toy operations, we are simply defining a clean, semantically useful interface for building and interfacing with the Operation class. This is why our ConstantOp defines no class fields; all the data structures are stored in the referenced Operation. A side effect is that we always pass around Op derived classes by value, instead of by reference or pointer (passing by value is a common idiom and applies similarly to attributes, types, etc). Given a generic Operation* instance, we can always get a specific Op instance using LLVM’s casting infrastructure:

void processConstantOp(mlir::Operation *operation) {
  ConstantOp op = llvm::dyn_cast<ConstantOp>(operation);

  // This operation is not an instance of `ConstantOp`.
  if (!op)
    return;

  // Get the internal operation instance wrapped by the smart pointer.
  mlir::Operation *internalOperation = op.getOperation();
  assert(internalOperation == operation &&
         "these operation instances are the same");
}




Using the Operation Definition Specification (ODS) Framework

In addition to specializing the mlir::Op C++ template, MLIR also supports defining operations in a declarative manner. This is achieved via the Operation Definition Specification framework. Facts regarding an operation are specified concisely into a TableGen record, which will be expanded into an equivalent mlir::Op C++ template specialization at compile time. Using the ODS framework is the desired way for defining operations in MLIR given the simplicity, conciseness, and general stability in the face of C++ API changes.

Lets see how to define the ODS equivalent of our ConstantOp:

The first thing to do is to define a link to the Toy dialect that we defined in C++. This is used to link all of the operations that we will define to our dialect:

// Provide a definition of the 'toy' dialect in the ODS framework so that we
// can define our operations.
def Toy_Dialect : Dialect {
  // The namespace of our dialect, this corresponds 1-1 with the string we
  // provided in `ToyDialect::getDialectNamespace`.
  let name = "toy";

  // The C++ namespace that the dialect class definition resides in.
  let cppNamespace = "toy";
}

Now that we have defined a link to the Toy dialect, we can start defining operations. Operations in ODS are defined by inheriting from the Op class. To simplify our operation definitions, we will define a base class for operations in the Toy dialect.

// Base class for toy dialect operations. This operation inherits from the base
// `Op` class in OpBase.td, and provides:
//   * The parent dialect of the operation.
//   * The mnemonic for the operation, or the name without the dialect prefix.
//   * A list of traits for the operation.
class Toy_Op<string mnemonic, list<OpTrait> traits = []> :
    Op<Toy_Dialect, mnemonic, traits>;

With all of the preliminary pieces defined, we can begin to define the constant operation.

We define a toy operation by inheriting from our base ‘Toy_Op’ class above. Here we provide the mnemonic and a list of traits for the operation. The mnemonic here matches the one given in ConstantOp::getOperationName without the dialect prefix; toy.. Missing here from our C++ definition are the ZeroOperands and OneResult traits; these will be automatically inferred based upon the arguments and results fields we define later.

def ConstantOp : Toy_Op<"constant"> {
}

At this point you probably might want to know what the C++ code generated by TableGen looks like. Simply run the mlir-tblgen command with the gen-op-decls or the gen-op-defs action like so:

${build_root}/bin/mlir-tblgen -gen-op-defs ${mlir_src_root}/examples/toy/Ch2/include/toy/Ops.td -I ${mlir_src_root}/include/

Depending on the selected action, this will print either the ConstantOp class declaration or its implementation. Comparing this output to the hand-crafted implementation is incredibly useful when getting started with TableGen.


Defining Arguments and Results

With the shell of the operation defined, we can now provide the inputs and outputs to our operation. The inputs, or arguments, to an operation may be attributes or types for SSA operand values. The results correspond to a set of types for the values produced by the operation:

def ConstantOp : Toy_Op<"constant"> {
  // The constant operation takes an attribute as the only input.
  // `F64ElementsAttr` corresponds to a 64-bit floating-point ElementsAttr.
  let arguments = (ins F64ElementsAttr:$value);

  // The constant operation returns a single value of TensorType.
  // F64Tensor corresponds to a 64-bit floating-point TensorType.
  let results = (outs F64Tensor);
}

By providing a name to the arguments or results, e.g. $value, ODS will automatically generate a matching accessor: DenseElementsAttr ConstantOp::value().



Adding Documentation

The next step after defining the operation is to document it. Operations may provide summary and description fields to describe the semantics of the operation. This information is useful for users of the dialect and can even be used to auto-generate Markdown documents.

def ConstantOp : Toy_Op<"constant"> {
  // Provide a summary and description for this operation. This can be used to
  // auto-generate documentation of the operations within our dialect.
  let summary = "constant operation";
  let description = [{
    Constant operation turns a literal into an SSA value. The data is attached
    to the operation as an attribute. For example:

      %0 = "toy.constant"()
         { value = dense<[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]> : tensor<2x3xf64> }
        : () -> tensor<2x3xf64>
  }];

  // The constant operation takes an attribute as the only input.
  // `F64ElementsAttr` corresponds to a 64-bit floating-point ElementsAttr.
  let arguments = (ins F64ElementsAttr:$value);

  // The generic call operation returns a single value of TensorType.
  // F64Tensor corresponds to a 64-bit floating-point TensorType.
  let results = (outs F64Tensor);
}



Verifying Operation Semantics

At this point we’ve already covered a majority of the original C++ operation definition. The next piece to define is the verifier. Luckily, much like the named accessor, the ODS framework will automatically generate a lot of the necessary verification logic based upon the constraints we have given. This means that we don’t need to verify the structure of the return type, or even the input attribute value. In many cases, additional verification is not even necessary for ODS operations. To add additional verification logic, an operation can override the verifier field. The verifier field allows for defining a C++ code blob that will be run as part of ConstantOp::verify. This blob can assume that all of the other invariants of the operation have already been verified:

def ConstantOp : Toy_Op<"constant"> {
  // Provide a summary and description for this operation. This can be used to
  // auto-generate documentation of the operations within our dialect.
  let summary = "constant operation";
  let description = [{
    Constant operation turns a literal into an SSA value. The data is attached
    to the operation as an attribute. For example:

      %0 = "toy.constant"()
         { value = dense<[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]> : tensor<2x3xf64> }
        : () -> tensor<2x3xf64>
  }];

  // The constant operation takes an attribute as the only input.
  // `F64ElementsAttr` corresponds to a 64-bit floating-point ElementsAttr.
  let arguments = (ins F64ElementsAttr:$value);

  // The generic call operation returns a single value of TensorType.
  // F64Tensor corresponds to a 64-bit floating-point TensorType.
  let results = (outs F64Tensor);

  // Add additional verification logic to the constant operation. Here we invoke
  // a static `verify` method in a C++ source file. This codeblock is executed
  // inside of ConstantOp::verify, so we can use `this` to refer to the current
  // operation instance.
  let verifier = [{ return ::verify(*this); }];
}



Attaching build Methods

The final missing component here from our original C++ example are the build methods. ODS can generate some simple build methods automatically, and in this case it will generate our first build method for us. For the rest, we define the builders field. This field takes a list of OpBuilder objects that take a string corresponding to a list of C++ parameters, as well as an optional code block that can be used to specify the implementation inline.

def ConstantOp : Toy_Op<"constant"> {
  ...

  // Add custom build methods for the constant operation. These methods populate
  // the `state` that MLIR uses to create operations, i.e. these are used when
  // using `builder.create<ConstantOp>(...)`.
  let builders = [
    // Build a constant with a given constant tensor value.
    OpBuilder<"DenseElementsAttr value", [{
      // Call into an autogenerated `build` method.
      build(builder, result, value.getType(), value);
    }]>,

    // Build a constant with a given constant floating-point value. This builder
    // creates a declaration for `ConstantOp::build` with the given parameters.
    OpBuilder<"double value">
  ];
}



Specifying a Custom Assembly Format

At this point we can generate our “Toy IR”. For example, the following:

# User defined generic function that operates on unknown shaped arguments.
def multiply_transpose(a, b) {
  return transpose(a) * transpose(b);
}

def main() {
  var a<2, 3> = [[1, 2, 3], [4, 5, 6]];
  var b<2, 3> = [1, 2, 3, 4, 5, 6];
  var c = multiply_transpose(a, b);
  var d = multiply_transpose(b, a);
  print(d);
}

Results in the following IR:

module {
  func @multiply_transpose(%arg0: tensor<*xf64>, %arg1: tensor<*xf64>) -> tensor<*xf64> {
    %0 = "toy.transpose"(%arg0) : (tensor<*xf64>) -> tensor<*xf64> loc("test/Examples/Toy/Ch2/codegen.toy":5:10)
    %1 = "toy.transpose"(%arg1) : (tensor<*xf64>) -> tensor<*xf64> loc("test/Examples/Toy/Ch2/codegen.toy":5:25)
    %2 = "toy.mul"(%0, %1) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64> loc("test/Examples/Toy/Ch2/codegen.toy":5:25)
    "toy.return"(%2) : (tensor<*xf64>) -> () loc("test/Examples/Toy/Ch2/codegen.toy":5:3)
  } loc("test/Examples/Toy/Ch2/codegen.toy":4:1)
  func @main() {
    %0 = "toy.constant"() {value = dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64> loc("test/Examples/Toy/Ch2/codegen.toy":9:17)
    %1 = "toy.reshape"(%0) : (tensor<2x3xf64>) -> tensor<2x3xf64> loc("test/Examples/Toy/Ch2/codegen.toy":9:3)
    %2 = "toy.constant"() {value = dense<[1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00, 5.000000e+00, 6.000000e+00]> : tensor<6xf64>} : () -> tensor<6xf64> loc("test/Examples/Toy/Ch2/codegen.toy":10:17)
    %3 = "toy.reshape"(%2) : (tensor<6xf64>) -> tensor<2x3xf64> loc("test/Examples/Toy/Ch2/codegen.toy":10:3)
    %4 = "toy.generic_call"(%1, %3) {callee = @multiply_transpose} : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64> loc("test/Examples/Toy/Ch2/codegen.toy":11:11)
    %5 = "toy.generic_call"(%3, %1) {callee = @multiply_transpose} : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64> loc("test/Examples/Toy/Ch2/codegen.toy":12:11)
    "toy.print"(%5) : (tensor<*xf64>) -> () loc("test/Examples/Toy/Ch2/codegen.toy":13:3)
    "toy.return"() : () -> () loc("test/Examples/Toy/Ch2/codegen.toy":8:1)
  } loc("test/Examples/Toy/Ch2/codegen.toy":8:1)
} loc(unknown)

One thing to notice here is that all of our Toy operations are printed using the generic assembly format. This format is the one shown when breaking down toy.transpose at the beginning of this chapter. MLIR allows for operations to define their own custom assembly format, either declaratively or imperatively via C++. Defining a custom assembly format allows for tailoring the generated IR into something a bit more readable by removing a lot of the fluff that is required by the generic format. Let’s walk through an example of an operation format that we would like to simplify.


toy.print

The current form of toy.print is a little verbose. There are a lot of additional characters that we would like to strip away. Let’s begin by thinking of what a good format of toy.print would be, and see how we can implement it. Looking at the basics of toy.print we get:

toy.print %5 : tensor<*xf64> loc(...)

Here we have stripped much of the format down to the bare essentials, and it has become much more readable. To provide a custom assembly format, an operation can either override the parser and printer fields for a C++ format, or the assemblyFormat field for the declarative format. Let’s look at the C++ variant first, as this is what the declarative format maps to internally.

/// Consider a stripped definition of `toy.print` here.
def PrintOp : Toy_Op<"print"> {
  let arguments = (ins F64Tensor:$input);

  // Divert the printer and parser to static functions in our .cpp
  // file that correspond to 'print' and 'printPrintOp'. 'printer' and 'parser'
  // here correspond to an instance of a 'OpAsmParser' and 'OpAsmPrinter'. More
  // details on these classes is shown below.
  let printer = [{ return ::print(printer, *this); }];
  let parser = [{ return ::parse$cppClass(parser, result); }];
}

A C++ implementation for the printer and parser is shown below:

/// The 'OpAsmPrinter' class is a stream that will allows for formatting
/// strings, attributes, operands, types, etc.
static void print(mlir::OpAsmPrinter &printer, PrintOp op) {
  printer << "toy.print " << op.input();
  printer.printOptionalAttrDict(op.getAttrs());
  printer << " : " << op.input().getType();
}

/// The 'OpAsmParser' class provides a collection of methods for parsing
/// various punctuation, as well as attributes, operands, types, etc. Each of
/// these methods returns a `ParseResult`. This class is a wrapper around
/// `LogicalResult` that can be converted to a boolean `true` value on failure,
/// or `false` on success. This allows for easily chaining together a set of
/// parser rules. These rules are used to populate an `mlir::OperationState`
/// similarly to the `build` methods described above.
static mlir::ParseResult parsePrintOp(mlir::OpAsmParser &parser,
                                      mlir::OperationState &result) {
  // Parse the input operand, the attribute dictionary, and the type of the
  // input.
  mlir::OpAsmParser::OperandType inputOperand;
  mlir::Type inputType;
  if (parser.parseOperand(inputOperand) ||
      parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() ||
      parser.parseType(inputType))
    return mlir::failure();

  // Resolve the input operand to the type we parsed in.
  if (parser.resolveOperand(inputOperand, inputType, result.operands))
    return mlir::failure();

  return mlir::success();
}


With the C++ implementation defined, let’s see how this can be mapped to the declarative format. The declarative format is largely composed of three different components:


	Directives

	A type of builtin function, with an optional set of arguments.




	Literals

	A keyword or punctuation surrounded by ``.




	Variables

	An entity that has been registered on the operation itself, i.e. an argument(attribute or operand), result, successor, etc. In the PrintOp example above, a variable would be $input.






A direct mapping of our C++ format looks something like:

/// Consider a stripped definition of `toy.print` here.
def PrintOp : Toy_Op<"print"> {
  let arguments = (ins F64Tensor:$input);

  // In the following format we have two directives, `attr-dict` and `type`.
  // These correspond to the attribute dictionary and the type of a given
  // variable represectively.
  let assemblyFormat = "$input attr-dict `:` type($input)";
}

The declarative format has many more interesting features, so be sure to check it out before implementing a custom format in C++. After beautifying the format of a few of our operations we now get a much more readable:

module {
  func @multiply_transpose(%arg0: tensor<*xf64>, %arg1: tensor<*xf64>) -> tensor<*xf64> {
    %0 = toy.transpose(%arg0 : tensor<*xf64>) to tensor<*xf64> loc("test/Examples/Toy/Ch2/codegen.toy":5:10)
    %1 = toy.transpose(%arg1 : tensor<*xf64>) to tensor<*xf64> loc("test/Examples/Toy/Ch2/codegen.toy":5:25)
    %2 = toy.mul %0, %1 : tensor<*xf64> loc("test/Examples/Toy/Ch2/codegen.toy":5:25)
    toy.return %2 : tensor<*xf64> loc("test/Examples/Toy/Ch2/codegen.toy":5:3)
  } loc("test/Examples/Toy/Ch2/codegen.toy":4:1)
  func @main() {
    %0 = toy.constant dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64> loc("test/Examples/Toy/Ch2/codegen.toy":9:17)
    %1 = toy.reshape(%0 : tensor<2x3xf64>) to tensor<2x3xf64> loc("test/Examples/Toy/Ch2/codegen.toy":9:3)
    %2 = toy.constant dense<[1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00, 5.000000e+00, 6.000000e+00]> : tensor<6xf64> loc("test/Examples/Toy/Ch2/codegen.toy":10:17)
    %3 = toy.reshape(%2 : tensor<6xf64>) to tensor<2x3xf64> loc("test/Examples/Toy/Ch2/codegen.toy":10:3)
    %4 = toy.generic_call @multiply_transpose(%1, %3) : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64> loc("test/Examples/Toy/Ch2/codegen.toy":11:11)
    %5 = toy.generic_call @multiply_transpose(%3, %1) : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64> loc("test/Examples/Toy/Ch2/codegen.toy":12:11)
    toy.print %5 : tensor<*xf64> loc("test/Examples/Toy/Ch2/codegen.toy":13:3)
    toy.return loc("test/Examples/Toy/Ch2/codegen.toy":8:1)
  } loc("test/Examples/Toy/Ch2/codegen.toy":8:1)
} loc(unknown)

Above we introduce several of the concepts for defining operations in the ODS framework, but there are many more that we haven’t had a chance to: regions, variadic operands, etc. Check out the full specification for more details.






Complete Toy Example

We can now generate our “Toy IR”. You can build toyc-ch2 and try yourself on the above example: toyc-ch2 test/Examples/Toy/Ch2/codegen.toy -emit=mlir -mlir-print-debuginfo. We can also check our RoundTrip: toyc-ch2 test/Examples/Toy/Ch2/codegen.toy -emit=mlir -mlir-print-debuginfo 2> codegen.mlir followed by toyc-ch2 codegen.mlir -emit=mlir. You should also use mlir-tblgen on the final definition file and study the generated C++ code.

At this point, MLIR knows about our Toy dialect and operations. In the next chapter, we will leverage our new dialect to implement some high-level language-specific analyses and transformations for the Toy language.
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Chapter 6: Lowering to LLVM and CodeGeneration

[TOC]

In the previous chapter, we introduced the dialect conversion framework and partially lowered many of the Toy operations to affine loop nests for optimization. In this chapter, we will finally lower to LLVM for code generation.


Lowering to LLVM

For this lowering, we will again use the dialect conversion framework to perform the heavy lifting. However, this time, we will be performing a full conversion to the LLVM dialect. Thankfully, we have already lowered all but one of the toy operations, with the last being toy.print. Before going over the conversion to LLVM, let’s lower the toy.print operation. We will lower this operation to a non-affine loop nest that invokes printf for each element. Note that, because the dialect conversion framework supports transitive lowering, we don’t need to directly emit operations in the LLVM dialect. By transitive lowering, we mean that the conversion framework may apply multiple patterns to fully legalize an operation. In this example, we are generating a structured loop nest instead of the branch-form in the LLVM dialect. As long as we then have a lowering from the loop operations to LLVM, the lowering will still succeed.

During lowering we can get, or build, the declaration for printf as so:

/// Return a symbol reference to the printf function, inserting it into the
/// module if necessary.
static FlatSymbolRefAttr getOrInsertPrintf(PatternRewriter &rewriter,
                                           ModuleOp module,
                                           LLVM::LLVMDialect *llvmDialect) {
  auto *context = module.getContext();
  if (module.lookupSymbol<LLVM::LLVMFuncOp>("printf"))
    return SymbolRefAttr::get("printf", context);

  // Create a function declaration for printf, the signature is:
  //   * `i32 (i8*, ...)`
  auto llvmI32Ty = LLVM::LLVMType::getInt32Ty(llvmDialect);
  auto llvmI8PtrTy = LLVM::LLVMType::getInt8PtrTy(llvmDialect);
  auto llvmFnType = LLVM::LLVMType::getFunctionTy(llvmI32Ty, llvmI8PtrTy,
                                                  /*isVarArg=*/true);

  // Insert the printf function into the body of the parent module.
  PatternRewriter::InsertionGuard insertGuard(rewriter);
  rewriter.setInsertionPointToStart(module.getBody());
  rewriter.create<LLVM::LLVMFuncOp>(module.getLoc(), "printf", llvmFnType);
  return SymbolRefAttr::get("printf", context);
}


Now that the lowering for the printf operation has been defined, we can specify the components necessary for the lowering. These are largely the same as the components defined in the previous chapter.


Conversion Target

For this conversion, aside from the top-level module, we will be lowering everything to the LLVM dialect.

  mlir::ConversionTarget target(getContext());
  target.addLegalDialect<mlir::LLVMDialect>();
  target.addLegalOp<mlir::ModuleOp, mlir::ModuleTerminatorOp>();




Type Converter

This lowering will also transform the MemRef types which are currently being operated on into a representation in LLVM. To perform this conversion, we use a TypeConverter as part of the lowering. This converter specifies how one type maps to another. This is necessary now that we are performing more complicated lowerings involving block arguments. Given that we don’t have any Toy-dialect-specific types that need to be lowered, the default converter is enough for our use case.

  LLVMTypeConverter typeConverter(&getContext());




Conversion Patterns

Now that the conversion target has been defined, we need to provide the patterns used for lowering. At this point in the compilation process, we have a combination of toy, affine, and std operations. Luckily, the std and affine dialects already provide the set of patterns needed to transform them into LLVM dialect. These patterns allow for lowering the IR in multiple stages by relying on transitive lowering.

  mlir::OwningRewritePatternList patterns;
  mlir::populateAffineToStdConversionPatterns(patterns, &getContext());
  mlir::populateLoopToStdConversionPatterns(patterns, &getContext());
  mlir::populateStdToLLVMConversionPatterns(typeConverter, patterns);

  // The only remaining operation, to lower from the `toy` dialect, is the
  // PrintOp.
  patterns.insert<PrintOpLowering>(&getContext());




Full Lowering

We want to completely lower to LLVM, so we use a FullConversion. This ensures that only legal operations will remain after the conversion.

  mlir::ModuleOp module = getOperation();
  if (mlir::failed(mlir::applyFullConversion(module, target, patterns)))
    signalPassFailure();


Looking back at our current working example:

func @main() {
  %0 = toy.constant dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>
  %2 = toy.transpose(%0 : tensor<2x3xf64>) to tensor<3x2xf64>
  %3 = toy.mul %2, %2 : tensor<3x2xf64>
  toy.print %3 : tensor<3x2xf64>
  toy.return
}

We can now lower down to the LLVM dialect, which produces the following code:

llvm.func @free(!llvm<"i8*">)
llvm.func @printf(!llvm<"i8*">, ...) -> !llvm.i32
llvm.func @malloc(!llvm.i64) -> !llvm<"i8*">
llvm.func @main() {
  %0 = llvm.mlir.constant(1.000000e+00 : f64) : !llvm.double
  %1 = llvm.mlir.constant(2.000000e+00 : f64) : !llvm.double

  ...

^bb16:
  %221 = llvm.extractvalue %25[0 : index] : !llvm<"{ double*, i64, [2 x i64], [2 x i64] }">
  %222 = llvm.mlir.constant(0 : index) : !llvm.i64
  %223 = llvm.mlir.constant(2 : index) : !llvm.i64
  %224 = llvm.mul %214, %223 : !llvm.i64
  %225 = llvm.add %222, %224 : !llvm.i64
  %226 = llvm.mlir.constant(1 : index) : !llvm.i64
  %227 = llvm.mul %219, %226 : !llvm.i64
  %228 = llvm.add %225, %227 : !llvm.i64
  %229 = llvm.getelementptr %221[%228] : (!llvm<"double*">, !llvm.i64) -> !llvm<"double*">
  %230 = llvm.load %229 : !llvm<"double*">
  %231 = llvm.call @printf(%207, %230) : (!llvm<"i8*">, !llvm.double) -> !llvm.i32
  %232 = llvm.add %219, %218 : !llvm.i64
  llvm.br ^bb15(%232 : !llvm.i64)

  ...

^bb18:
  %235 = llvm.extractvalue %65[0 : index] : !llvm<"{ double*, i64, [2 x i64], [2 x i64] }">
  %236 = llvm.bitcast %235 : !llvm<"double*"> to !llvm<"i8*">
  llvm.call @free(%236) : (!llvm<"i8*">) -> ()
  %237 = llvm.extractvalue %45[0 : index] : !llvm<"{ double*, i64, [2 x i64], [2 x i64] }">
  %238 = llvm.bitcast %237 : !llvm<"double*"> to !llvm<"i8*">
  llvm.call @free(%238) : (!llvm<"i8*">) -> ()
  %239 = llvm.extractvalue %25[0 : index] : !llvm<"{ double*, i64, [2 x i64], [2 x i64] }">
  %240 = llvm.bitcast %239 : !llvm<"double*"> to !llvm<"i8*">
  llvm.call @free(%240) : (!llvm<"i8*">) -> ()
  llvm.return
}

See Conversion to the LLVM IR Dialect for more in-depth details on lowering to the LLVM dialect.




CodeGen: Getting Out of MLIR

At this point we are right at the cusp of code generation. We can generate code in the LLVM dialect, so now we just need to export to LLVM IR and setup a JIT to run it.


Emitting LLVM IR

Now that our module is comprised only of operations in the LLVM dialect, we can export to LLVM IR. To do this programmatically, we can invoke the following utility:

  std::unique_ptr<llvm::Module> llvmModule = mlir::translateModuleToLLVMIR(module);
  if (!llvmModule)
    /* ... an error was encountered ... */


Exporting our module to LLVM IR generates:

define void @main() {
  ...

102:
  %103 = extractvalue { double*, i64, [2 x i64], [2 x i64] } %8, 0
  %104 = mul i64 %96, 2
  %105 = add i64 0, %104
  %106 = mul i64 %100, 1
  %107 = add i64 %105, %106
  %108 = getelementptr double, double* %103, i64 %107
  %109 = load double, double* %108
  %110 = call i32 (i8*, ...) @printf(i8* getelementptr inbounds ([4 x i8], [4 x i8]* @frmt_spec, i64 0, i64 0), double %109)
  %111 = add i64 %100, 1
  br label %99

  ...

115:
  %116 = extractvalue { double*, i64, [2 x i64], [2 x i64] } %24, 0
  %117 = bitcast double* %116 to i8*
  call void @free(i8* %117)
  %118 = extractvalue { double*, i64, [2 x i64], [2 x i64] } %16, 0
  %119 = bitcast double* %118 to i8*
  call void @free(i8* %119)
  %120 = extractvalue { double*, i64, [2 x i64], [2 x i64] } %8, 0
  %121 = bitcast double* %120 to i8*
  call void @free(i8* %121)
  ret void
}


If we enable optimization on the generated LLVM IR, we can trim this down quite a bit:

define void @main()
  %0 = tail call i32 (i8*, ...) @printf(i8* nonnull dereferenceable(1) getelementptr inbounds ([4 x i8], [4 x i8]* @frmt_spec, i64 0, i64 0), double 1.000000e+00)
  %1 = tail call i32 (i8*, ...) @printf(i8* nonnull dereferenceable(1) getelementptr inbounds ([4 x i8], [4 x i8]* @frmt_spec, i64 0, i64 0), double 1.600000e+01)
  %putchar = tail call i32 @putchar(i32 10)
  %2 = tail call i32 (i8*, ...) @printf(i8* nonnull dereferenceable(1) getelementptr inbounds ([4 x i8], [4 x i8]* @frmt_spec, i64 0, i64 0), double 4.000000e+00)
  %3 = tail call i32 (i8*, ...) @printf(i8* nonnull dereferenceable(1) getelementptr inbounds ([4 x i8], [4 x i8]* @frmt_spec, i64 0, i64 0), double 2.500000e+01)
  %putchar.1 = tail call i32 @putchar(i32 10)
  %4 = tail call i32 (i8*, ...) @printf(i8* nonnull dereferenceable(1) getelementptr inbounds ([4 x i8], [4 x i8]* @frmt_spec, i64 0, i64 0), double 9.000000e+00)
  %5 = tail call i32 (i8*, ...) @printf(i8* nonnull dereferenceable(1) getelementptr inbounds ([4 x i8], [4 x i8]* @frmt_spec, i64 0, i64 0), double 3.600000e+01)
  %putchar.2 = tail call i32 @putchar(i32 10)
  ret void
}


The full code listing for dumping LLVM IR can be found in examples/toy/Ch6/toy.cpp in the dumpLLVMIR() function:


int dumpLLVMIR(mlir::ModuleOp module) {
  // Translate the module, that contains the LLVM dialect, to LLVM IR. Use a
  // fresh LLVM IR context. (Note that LLVM is not thread-safe and any
  // concurrent use of a context requires external locking.)
  llvm::LLVMContext llvmContext;
  auto llvmModule = mlir::translateModuleToLLVMIR(module, llvmContext);
  if (!llvmModule) {
    llvm::errs() << "Failed to emit LLVM IR\n";
    return -1;
  }

  // Initialize LLVM targets.
  llvm::InitializeNativeTarget();
  llvm::InitializeNativeTargetAsmPrinter();
  mlir::ExecutionEngine::setupTargetTriple(llvmModule.get());

  /// Optionally run an optimization pipeline over the llvm module.
  auto optPipeline = mlir::makeOptimizingTransformer(
      /*optLevel=*/EnableOpt ? 3 : 0, /*sizeLevel=*/0,
      /*targetMachine=*/nullptr);
  if (auto err = optPipeline(llvmModule.get())) {
    llvm::errs() << "Failed to optimize LLVM IR " << err << "\n";
    return -1;
  }
  llvm::errs() << *llvmModule << "\n";
  return 0;
}




Setting up a JIT

Setting up a JIT to run the module containing the LLVM dialect can be done using the mlir::ExecutionEngine infrastructure. This is a utility wrapper around LLVM’s JIT that accepts .mlir as input. The full code listing for setting up the JIT can be found in Ch6/toyc.cpp in the runJit() function:

int runJit(mlir::ModuleOp module) {
  // Initialize LLVM targets.
  llvm::InitializeNativeTarget();
  llvm::InitializeNativeTargetAsmPrinter();

  // An optimization pipeline to use within the execution engine.
  auto optPipeline = mlir::makeOptimizingTransformer(
      /*optLevel=*/EnableOpt ? 3 : 0, /*sizeLevel=*/0,
      /*targetMachine=*/nullptr);

  // Create an MLIR execution engine. The execution engine eagerly JIT-compiles
  // the module.
  auto maybeEngine = mlir::ExecutionEngine::create(module, optPipeline);
  assert(maybeEngine && "failed to construct an execution engine");
  auto &engine = maybeEngine.get();

  // Invoke the JIT-compiled function.
  auto invocationResult = engine->invoke("main");
  if (invocationResult) {
    llvm::errs() << "JIT invocation failed\n";
    return -1;
  }

  return 0;
}


You can play around with it from the build directory:

$ echo 'def main() { print([[1, 2], [3, 4]]); }' | ./bin/toyc-ch6 -emit=jit
1.000000 2.000000
3.000000 4.000000

You can also play with -emit=mlir, -emit=mlir-affine, -emit=mlir-llvm, and -emit=llvm to compare the various levels of IR involved. Also try options like --print-ir-after-all to track the evolution of the IR throughout the pipeline.

The example code used throughout this section can be found in test/Examples/Toy/Ch6/llvm-lowering.mlir.

So far, we have worked with primitive data types. In the next chapter, we will add a composite struct type.
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Chapter 1: Toy Language and AST

[TOC]


The Language

This tutorial will be illustrated with a toy language that we’ll call “Toy” (naming is hard…). Toy is a tensor-based language that allows you to define functions, perform some math computation, and print results.

Given that we want to keep things simple, the codegen will be limited to tensors of rank <= 2, and the only datatype in Toy is a 64-bit floating point type (aka ‘double’ in C parlance). As such, all values are implicitly double precision, Values are immutable (i.e. every operation returns a newly allocated value), and deallocation is automatically managed. But enough with the long description; nothing is better than walking through an example to get a better understanding:

def main() {
  # Define a variable `a` with shape <2, 3>, initialized with the literal value.
  # The shape is inferred from the supplied literal.
  var a = [[1, 2, 3], [4, 5, 6]];

  # b is identical to a, the literal tensor is implicitly reshaped: defining new
  # variables is the way to reshape tensors (element count must match).
  var b<2, 3> = [1, 2, 3, 4, 5, 6];

  # transpose() and print() are the only builtin, the following will transpose
  # a and b and perform an element-wise multiplication before printing the result.
  print(transpose(a) * transpose(b));
}

Type checking is statically performed through type inference; the language only requires type declarations to specify tensor shapes when needed. Functions are generic: their parameters are unranked (in other words, we know these are tensors, but we don’t know their dimensions). They are specialized for every newly discovered signature at call sites. Let’s revisit the previous example by adding a user-defined function:

# User defined generic function that operates on unknown shaped arguments.
def multiply_transpose(a, b) {
  return transpose(a) * transpose(b);
}

def main() {
  # Define a variable `a` with shape <2, 3>, initialized with the literal value.
  var a = [[1, 2, 3], [4, 5, 6]];
  var b<2, 3> = [1, 2, 3, 4, 5, 6];

  # This call will specialize `multiply_transpose` with <2, 3> for both
  # arguments and deduce a return type of <3, 2> in initialization of `c`.
  var c = multiply_transpose(a, b);

  # A second call to `multiply_transpose` with <2, 3> for both arguments will
  # reuse the previously specialized and inferred version and return <3, 2>.
  var d = multiply_transpose(b, a);

  # A new call with <3, 2> (instead of <2, 3>) for both dimensions will
  # trigger another specialization of `multiply_transpose`.
  var e = multiply_transpose(c, d);

  # Finally, calling into `multiply_transpose` with incompatible shape will
  # trigger a shape inference error.
  var f = multiply_transpose(transpose(a), c);
}



The AST

The AST from the above code is fairly straightforward; here is a dump of it:

Module:
  Function 
    Proto 'multiply_transpose' @test/Examples/Toy/Ch1/ast.toy:4:1'
    Params: [a, b]
    Block {
      Return
        BinOp: * @test/Examples/Toy/Ch1/ast.toy:5:25
          Call 'transpose' [ @test/Examples/Toy/Ch1/ast.toy:5:10
            var: a @test/Examples/Toy/Ch1/ast.toy:5:20
          ]
          Call 'transpose' [ @test/Examples/Toy/Ch1/ast.toy:5:25
            var: b @test/Examples/Toy/Ch1/ast.toy:5:35
          ]
    } // Block
  Function 
    Proto 'main' @test/Examples/Toy/Ch1/ast.toy:8:1'
    Params: []
    Block {
      VarDecl a<> @test/Examples/Toy/Ch1/ast.toy:11:3
        Literal: <2, 3>[ <3>[ 1.000000e+00, 2.000000e+00, 3.000000e+00], <3>[ 4.000000e+00, 5.000000e+00, 6.000000e+00]] @test/Examples/Toy/Ch1/ast.toy:11:11
      VarDecl b<2, 3> @test/Examples/Toy/Ch1/ast.toy:15:3
        Literal: <6>[ 1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00, 5.000000e+00, 6.000000e+00] @test/Examples/Toy/Ch1/ast.toy:15:17
      VarDecl c<> @test/Examples/Toy/Ch1/ast.toy:19:3
        Call 'multiply_transpose' [ @test/Examples/Toy/Ch1/ast.toy:19:11
          var: a @test/Examples/Toy/Ch1/ast.toy:19:30
          var: b @test/Examples/Toy/Ch1/ast.toy:19:33
        ]
      VarDecl d<> @test/Examples/Toy/Ch1/ast.toy:22:3
        Call 'multiply_transpose' [ @test/Examples/Toy/Ch1/ast.toy:22:11
          var: b @test/Examples/Toy/Ch1/ast.toy:22:30
          var: a @test/Examples/Toy/Ch1/ast.toy:22:33
        ]
      VarDecl e<> @test/Examples/Toy/Ch1/ast.toy:25:3
        Call 'multiply_transpose' [ @test/Examples/Toy/Ch1/ast.toy:25:11
          var: b @test/Examples/Toy/Ch1/ast.toy:25:30
          var: c @test/Examples/Toy/Ch1/ast.toy:25:33
        ]
      VarDecl f<> @test/Examples/Toy/Ch1/ast.toy:28:3
        Call 'multiply_transpose' [ @test/Examples/Toy/Ch1/ast.toy:28:11
          Call 'transpose' [ @test/Examples/Toy/Ch1/ast.toy:28:30
            var: a @test/Examples/Toy/Ch1/ast.toy:28:40
          ]
          var: c @test/Examples/Toy/Ch1/ast.toy:28:44
        ]
    } // Block

You can reproduce this result and play with the example in the examples/toy/Ch1/ directory; try running path/to/BUILD/bin/toyc-ch1 test/Examples/Toy/Ch1/ast.toy -emit=ast.

The code for the lexer is fairly straightforward; it is all in a single header: examples/toy/Ch1/include/toy/Lexer.h. The parser can be found in examples/toy/Ch1/include/toy/Parser.h; it is a recursive descent parser. If you are not familiar with such a Lexer/Parser, these are very similar to the LLVM Kaleidoscope equivalent that are detailed in the first two chapters of the Kaleidoscope Tutorial.

The next chapter will demonstrate how to convert this AST into MLIR.
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Chapter 5: Partial Lowering to Lower-Level Dialects for Optimization

[TOC]

At this point, we are eager to generate actual code and see our Toy language take life. We will use LLVM to generate code, but just showing the LLVM builder interface here wouldn’t be very exciting. Instead, we will show how to perform progressive lowering through a mix of dialects coexisting in the same function.

To make it more interesting, in this chapter we will consider that we want to reuse existing optimizations implemented in a dialect optimizing affine transformations: Affine. This dialect is tailored to the computation-heavy part of the program and is limited: it doesn’t support representing our toy.print builtin, for instance, neither should it! Instead, we can target Affine for the computation heavy part of Toy, and in the next chapter directly target the LLVM IR dialect for lowering print. As part of this lowering, we will be lowering from the TensorType that Toy operates on to the MemRefType that is indexed via an affine loop-nest. Tensors represent an abstract value-typed sequence of data, meaning that they don’t live in any memory. MemRefs, on the other hand, represent lower level buffer access, as they are concrete references to a region of memory.
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Dialect Conversions

MLIR has many different dialects, so it is important to have a unified framework for converting between them. This is where the DialectConversion framework comes into play. This framework allows for transforming a set of illegal operations to a set of legal ones. To use this framework, we need to provide two things (and an optional third):


	A Conversion Target


	This is the formal specification of what operations or dialects are legal for the conversion. Operations that aren’t legal will require rewrite patterns to perform legalization.




	A set of Rewrite Patterns


	This is the set of patterns used to convert illegal operations into a set of zero or more legal ones.




	Optionally, a Type Converter.


	If provided, this is used to convert the types of block arguments. We won’t be needing this for our conversion.







Conversion Target

For our purposes, we want to convert the compute-intensive Toy operations into a combination of operations from the Affine Standard dialects for further optimization. To start off the lowering, we first define our conversion target:

void ToyToAffineLoweringPass::runOnFunction() {
  // The first thing to define is the conversion target. This will define the
  // final target for this lowering.
  mlir::ConversionTarget target(getContext());

  // We define the specific operations, or dialects, that are legal targets for
  // this lowering. In our case, we are lowering to a combination of the
  // `Affine` and `Standard` dialects.
  target.addLegalDialect<mlir::AffineDialect, mlir::StandardOpsDialect>();

  // We also define the Toy dialect as Illegal so that the conversion will fail
  // if any of these operations are *not* converted. Given that we actually want
  // a partial lowering, we explicitly mark the Toy operations that don't want
  // to lower, `toy.print`, as *legal*.
  target.addIllegalDialect<ToyDialect>();
  target.addLegalOp<PrintOp>();
  ...
}


Above, we first set the toy dialect to illegal, and then the print operation as legal. We could have done this the other way around. Individual operations always take precedence over the (more generic) dialect definitions, so the order doesn’t matter. See ConversionTarget::getOpInfo for the details.



Conversion Patterns

After the conversion target has been defined, we can define how to convert the illegal operations into legal ones. Similarly to the canonicalization framework introduced in chapter 3, the DialectConversion framework also uses RewritePatterns to perform the conversion logic. These patterns may be the RewritePatterns seen before or a new type of pattern specific to the conversion framework ConversionPattern. ConversionPatterns are different from traditional RewritePatterns in that they accept an additional operands parameter containing operands that have been remapped/replaced. This is used when dealing with type conversions, as the pattern will want to operate on values of the new type but match against the old. For our lowering, this invariant will be useful as it translates from the TensorType currently being operated on to the MemRefType. Let’s look at a snippet of lowering the toy.transpose operation:

/// Lower the `toy.transpose` operation to an affine loop nest.
struct TransposeOpLowering : public mlir::ConversionPattern {
  TransposeOpLowering(mlir::MLIRContext *ctx)
      : mlir::ConversionPattern(TransposeOp::getOperationName(), 1, ctx) {}

  /// Match and rewrite the given `toy.transpose` operation, with the given
  /// operands that have been remapped from `tensor<...>` to `memref<...>`.
  mlir::LogicalResult
  matchAndRewrite(mlir::Operation *op, ArrayRef<mlir::Value> operands,
                  mlir::ConversionPatternRewriter &rewriter) const final {
    auto loc = op->getLoc();

    // Call to a helper function that will lower the current operation to a set
    // of affine loops. We provide a functor that operates on the remapped
    // operands, as well as the loop induction variables for the inner most
    // loop body.
    lowerOpToLoops(
        op, operands, rewriter,
        [loc](mlir::PatternRewriter &rewriter,
              ArrayRef<mlir::Value> memRefOperands,
              ArrayRef<mlir::Value> loopIvs) {
          // Generate an adaptor for the remapped operands of the TransposeOp.
          // This allows for using the nice named accessors that are generated
          // by the ODS. This adaptor is automatically provided by the ODS
          // framework.
          TransposeOpAdaptor transposeAdaptor(memRefOperands);
          mlir::Value input = transposeAdaptor.input();

          // Transpose the elements by generating a load from the reverse
          // indices.
          SmallVector<mlir::Value, 2> reverseIvs(llvm::reverse(loopIvs));
          return rewriter.create<mlir::AffineLoadOp>(loc, input, reverseIvs);
        });
    return success();
  }
};


Now we can prepare the list of patterns to use during the lowering process:

void ToyToAffineLoweringPass::runOnFunction() {
  ...

  // Now that the conversion target has been defined, we just need to provide
  // the set of patterns that will lower the Toy operations.
  mlir::OwningRewritePatternList patterns;
  patterns.insert<..., TransposeOpLowering>(&getContext());

  ...




Partial Lowering

Once the patterns have been defined, we can perform the actual lowering. The DialectConversion framework provides several different modes of lowering, but, for our purposes, we will perform a partial lowering, as we will not convert toy.print at this time.

void ToyToAffineLoweringPass::runOnFunction() {
  ...

  // With the target and rewrite patterns defined, we can now attempt the
  // conversion. The conversion will signal failure if any of our *illegal*
  // operations were not converted successfully.
  auto function = getFunction();
  if (mlir::failed(mlir::applyPartialConversion(function, target, patterns)))
    signalPassFailure();
}



Design Considerations With Partial Lowering

Before diving into the result of our lowering, this is a good time to discuss potential design considerations when it comes to partial lowering. In our lowering, we transform from a value-type, TensorType, to an allocated (buffer-like) type, MemRefType. However, given that we do not lower the toy.print operation, we need to temporarily bridge these two worlds. There are many ways to go about this, each with their own tradeoffs:


	Generate load operations from the buffer

One option is to generate load operations from the buffer type to materialize an instance of the value type. This allows for the definition of the toy.print operation to remain unchanged. The downside to this approach is that the optimizations on the affine dialect are limited, because the load will actually involve a full copy that is only visible after our optimizations have been performed.


	Generate a new version of toy.print that operates on the lowered type

Another option would be to have another, lowered, variant of toy.print that operates on the lowered type. The benefit of this option is that there is no hidden, unnecessary copy to the optimizer. The downside is that another operation definition is needed that may duplicate many aspects of the first. Defining a base class in ODS may simplify this, but you still need to treat these operations separately.


	Update toy.print to allow for operating on the lowered type

A third option is to update the current definition of toy.print to allow for operating the on the lowered type. The benefit of this approach is that it is simple, does not introduce an additional hidden copy, and does not require another operation definition. The downside to this option is that it requires mixing abstraction levels in the Toy dialect.




For the sake of simplicity, we will use the third option for this lowering. This involves updating the type constraints on the PrintOp in the operation definition file:

def PrintOp : Toy_Op<"print"> {
  ...

  // The print operation takes an input tensor to print.
  // We also allow a F64MemRef to enable interop during partial lowering.
  let arguments = (ins AnyTypeOf<[F64Tensor, F64MemRef]>:$input);
}




Complete Toy Example

Let’s take a concrete example:

func @main() {
  %0 = toy.constant dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>
  %2 = toy.transpose(%0 : tensor<2x3xf64>) to tensor<3x2xf64>
  %3 = toy.mul %2, %2 : tensor<3x2xf64>
  toy.print %3 : tensor<3x2xf64>
  toy.return
}

With affine lowering added to our pipeline, we can now generate:

func @main() {
  %cst = constant 1.000000e+00 : f64
  %cst_0 = constant 2.000000e+00 : f64
  %cst_1 = constant 3.000000e+00 : f64
  %cst_2 = constant 4.000000e+00 : f64
  %cst_3 = constant 5.000000e+00 : f64
  %cst_4 = constant 6.000000e+00 : f64

  // Allocating buffers for the inputs and outputs.
  %0 = alloc() : memref<3x2xf64>
  %1 = alloc() : memref<3x2xf64>
  %2 = alloc() : memref<2x3xf64>

  // Initialize the input buffer with the constant values.
  affine.store %cst, %2[0, 0] : memref<2x3xf64>
  affine.store %cst_0, %2[0, 1] : memref<2x3xf64>
  affine.store %cst_1, %2[0, 2] : memref<2x3xf64>
  affine.store %cst_2, %2[1, 0] : memref<2x3xf64>
  affine.store %cst_3, %2[1, 1] : memref<2x3xf64>
  affine.store %cst_4, %2[1, 2] : memref<2x3xf64>

  // Load the transpose value from the input buffer and store it into the
  // next input buffer.
  affine.for %arg0 = 0 to 3 {
    affine.for %arg1 = 0 to 2 {
      %3 = affine.load %2[%arg1, %arg0] : memref<2x3xf64>
      affine.store %3, %1[%arg0, %arg1] : memref<3x2xf64>
    }
  }

  // Multiply and store into the output buffer.
  affine.for %arg0 = 0 to 3 {
    affine.for %arg1 = 0 to 2 {
      %3 = affine.load %1[%arg0, %arg1] : memref<3x2xf64>
      %4 = affine.load %1[%arg0, %arg1] : memref<3x2xf64>
      %5 = mulf %3, %4 : f64
      affine.store %5, %0[%arg0, %arg1] : memref<3x2xf64>
    }
  }

  // Print the value held by the buffer.
  toy.print %0 : memref<3x2xf64>
  dealloc %2 : memref<2x3xf64>
  dealloc %1 : memref<3x2xf64>
  dealloc %0 : memref<3x2xf64>
  return
}



Taking Advantage of Affine Optimization

Our naive lowering is correct, but it leaves a lot to be desired with regards to efficiency. For example, the lowering of toy.mul has generated some redundant loads. Let’s look at how adding a few existing optimizations to the pipeline can help clean this up. Adding the LoopFusion and MemRefDataFlowOpt passes to the pipeline gives the following result:

func @main() {
  %cst = constant 1.000000e+00 : f64
  %cst_0 = constant 2.000000e+00 : f64
  %cst_1 = constant 3.000000e+00 : f64
  %cst_2 = constant 4.000000e+00 : f64
  %cst_3 = constant 5.000000e+00 : f64
  %cst_4 = constant 6.000000e+00 : f64

  // Allocating buffers for the inputs and outputs.
  %0 = alloc() : memref<3x2xf64>
  %1 = alloc() : memref<2x3xf64>

  // Initialize the input buffer with the constant values.
  affine.store %cst, %1[0, 0] : memref<2x3xf64>
  affine.store %cst_0, %1[0, 1] : memref<2x3xf64>
  affine.store %cst_1, %1[0, 2] : memref<2x3xf64>
  affine.store %cst_2, %1[1, 0] : memref<2x3xf64>
  affine.store %cst_3, %1[1, 1] : memref<2x3xf64>
  affine.store %cst_4, %1[1, 2] : memref<2x3xf64>

  affine.for %arg0 = 0 to 3 {
    affine.for %arg1 = 0 to 2 {
      // Load the transpose value from the input buffer.
      %2 = affine.load %1[%arg1, %arg0] : memref<2x3xf64>

      // Multiply and store into the output buffer.
      %3 = mulf %2, %2 : f64
      affine.store %3, %0[%arg0, %arg1] : memref<3x2xf64>
    }
  }

  // Print the value held by the buffer.
  toy.print %0 : memref<3x2xf64>
  dealloc %1 : memref<2x3xf64>
  dealloc %0 : memref<3x2xf64>
  return
}

Here, we can see that a redundant allocation was removed, the two loop nests were fused, and some unnecessary loads were removed. You can build toyc-ch5 and try yourself: toyc-ch5 test/Examples/Toy/Ch5/affine-lowering.mlir -emit=mlir-affine. We can also check our optimizations by adding -opt.

In this chapter we explored some aspects of partial lowering, with the intent to optimize. In the next chapter we will continue the discussion about dialect conversion by targeting LLVM for code generation.






  
  
  ch028.xhtml
  
  




Chapter 4: Enabling Generic Transformation with Interfaces

[TOC]


Background: Grappling with an Extensible IR

Through dialects, MLIR allows for the representation of many different levels of abstraction; the Toy dialect that we have previously defined is one such example. Though these different dialects may represent different abstractions, there is often a set of common transformations and analyses that we would like to perform. The problem that arises is that naively implementing each transformation for each dialect leads to large amounts of code duplication, as the internal algorithms are generally very similar, if not the same. We would like to provide the ability for transformations to opaquely hook into dialects like Toy to get the information they need.

MLIR provides a set of always available-hooks for certain core transformations, as seen in the previous chapter, where we registered some canonicalizations via a hook on our operations (getCanonicalizationPatterns). However, these types of hooks don’t really scale well. Therefore, a more generic solution was designed, in the form of interfaces, to make the MLIR infrastructure as extensible as the representation. Interfaces provide a generic mechanism for dialects and operations to provide information to a transformation or analysis.



Shape Inference: Preparing for Code Generation

Our Toy IR currently operates on generic tensors, meaning that we don’t know the shape of tensors other than during the initialization of constants. This complicates optimizations, as well as code generation. Fortunately, we can simply propagate the shapes through the computation until they are all known. The issue is how to handle calls to user-defined generic functions: every call site could deduce different shapes. One possibility would be to perform symbolic inference based on the argument types, but this would be hard to generalize if we were to introduce more control flow in the language. Another approach would be function specialization, where every call site with new argument shapes duplicates the called function and specializes it. The approach we take for Toy is to inline all of the function calls, then perform intraprocedural shape propagation.


Inlining

Here we could write an inlining algorithm specifically designed for the Toy dialect, but that can become quite complicated depending on the level of complexity that we want. Disregarding cost modeling, the pure structural transformation is already complex to implement from scratch. Thankfully, MLIR provides a generic inliner algorithm that dialects can plug into. All we need to do in Toy is to provide the interfaces for the inliner to hook into.

The first thing we need to do is to define the constraints on inlining operations in the Toy dialect. This information is provided through a dialect interface. This is essentially a class containing a set of virtual hooks which the dialect can override. In this case, the interface is DialectInlinerInterface.

/// This class defines the interface for handling inlining with Toy operations.
/// We simplify inherit from the base interface class and override
/// the necessary methods.
struct ToyInlinerInterface : public DialectInlinerInterface {
  using DialectInlinerInterface::DialectInlinerInterface;

  /// This hook checks to see if the given operation is legal to inline into the
  /// given region. For Toy this hook can simply return true, as all Toy
  /// operations are inlinable.
  bool isLegalToInline(Operation *, Region *,
                       BlockAndValueMapping &) const final {
    return true;
  }

  /// This hook is called when a terminator operation has been inlined. The only
  /// terminator that we have in the Toy dialect is the return
  /// operation(toy.return). We handle the return by replacing the values
  /// previously returned by the call operation with the operands of the
  /// return.
  void handleTerminator(Operation *op,
                        ArrayRef<Value> valuesToRepl) const final {
    // Only "toy.return" needs to be handled here.
    auto returnOp = cast<ReturnOp>(op);

    // Replace the values directly with the return operands.
    assert(returnOp.getNumOperands() == valuesToRepl.size());
    for (const auto &it : llvm::enumerate(returnOp.getOperands()))
      valuesToRepl[it.index()].replaceAllUsesWith(it.value());
  }
};


We then register our dialect interface directly on the Toy dialect, similarly to how we did for operations.

ToyDialect::ToyDialect(mlir::MLIRContext *ctx) : mlir::Dialect("toy", ctx) {
  addInterfaces<ToyInlinerInterface>();
}


Next, we need to provide a way for the inliner to know that toy.generic_call represents a call to a function. MLIR provides an operation interface that can be used to mark an operation as being “call-like”. Unlike dialect interfaces, operation interfaces provide a more refined granularity of information that is specific and core to a single operation. The interface that we will be adding here is the CallOpInterface.

To add this interface we just need to include the definition into our operation specification file (Ops.td):

include "mlir/Interfaces/CallInterfaces.td"

and add it to the traits list of GenericCallOp:

def GenericCallOp : Toy_Op<"generic_call",
    [DeclareOpInterfaceMethods<CallOpInterface>]> {
  ...
}

In the above we also use the DeclareOpInterfaceMethods directive to auto-declare all of the interface methods in the class declaration of GenericCallOp. This means that we just need to provide a definition:

/// Return the callee of the generic call operation, this is required by the
/// call interface.
CallInterfaceCallable GenericCallOp::getCallableForCallee() {
  return getAttrOfType<SymbolRefAttr>("callee");
}

/// Get the argument operands to the called function, this is required by the
/// call interface.
Operation::operand_range GenericCallOp::getArgOperands() { return inputs(); }


Now that the inliner has been informed about the Toy dialect, we can add the inliner pass to the pass manager for Toy:

  pm.addPass(mlir::createInlinerPass());


Now let’s look at a working example:

func @multiply_transpose(%arg0: tensor<*xf64>, %arg1: tensor<*xf64>) -> tensor<*xf64> {
  %0 = toy.transpose(%arg0 : tensor<*xf64>) to tensor<*xf64>
  %1 = toy.transpose(%arg1 : tensor<*xf64>) to tensor<*xf64>
  %2 = toy.mul %0, %1 : tensor<*xf64>
  toy.return %2 : tensor<*xf64>
}
func @main() {
  %0 = toy.constant dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>
  %1 = toy.reshape(%0 : tensor<2x3xf64>) to tensor<2x3xf64>
  %2 = toy.constant dense<[1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00, 5.000000e+00, 6.000000e+00]> : tensor<6xf64>
  %3 = toy.reshape(%2 : tensor<6xf64>) to tensor<2x3xf64>
  %4 = toy.generic_call @multiply_transpose(%1, %3) : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64>
  %5 = toy.generic_call @multiply_transpose(%3, %1) : (tensor<2x3xf64>, tensor<2x3xf64>) -> tensor<*xf64>
  toy.print %5 : tensor<*xf64>
  toy.return
}

We have two calls to multiple_transpose that we would like to inline into main, but if we look at the output nothing has changed. We are missing one last subtle piece: there is a hidden type conversion on the edge of the call. If we look at the above, the operands to the generic_call are of type tensor<2x3xf64>, while the inputs to the function expect tensor<*xf64>. To resolve this difference, the inliner expects an explicit cast operation to be inserted. For this, we need to add a new operation to the Toy dialect, ToyCastOp(toy.cast), to represent casts between two different shapes.

def CastOp : Toy_Op<"cast", [NoSideEffect, SameOperandsAndResultShape]> {
  let summary = "shape cast operation";
  let description = [{
    The "cast" operation converts a tensor from one type to an equivalent type
    without changing any data elements. The source and destination types
    must both be tensor types with the same element type. If both are ranked
    then the rank should be the same and static dimensions should match. The
    operation is invalid if converting to a mismatching constant dimension.
  }];

  let arguments = (ins F64Tensor:$input);
  let results = (outs F64Tensor:$output);

  // Set the folder bit so that we can fold redundant cast operations.
  let hasFolder = 1;
}

We can then override the necessary hook on the ToyInlinerInterface to insert this for us when necessary:

struct ToyInlinerInterface : public DialectInlinerInterface {
  ...

  /// Attempts to materialize a conversion for a type mismatch between a call
  /// from this dialect, and a callable region. This method should generate an
  /// operation that takes 'input' as the only operand, and produces a single
  /// result of 'resultType'. If a conversion can not be generated, nullptr
  /// should be returned.
  Operation *materializeCallConversion(OpBuilder &builder, Value input,
                                       Type resultType,
                                       Location conversionLoc) const final {
    return builder.create<CastOp>(conversionLoc, resultType, input);
  }
};


If we run the working example through the pipeline again, we get the expected:

func @main() {
  %0 = "toy.constant"() {value = dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64>
  %1 = "toy.constant"() {value = dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64>
  %2 = "toy.cast"(%1) : (tensor<2x3xf64>) -> tensor<*xf64>
  %3 = "toy.cast"(%0) : (tensor<2x3xf64>) -> tensor<*xf64>
  %4 = "toy.transpose"(%2) : (tensor<*xf64>) -> tensor<*xf64>
  %5 = "toy.transpose"(%3) : (tensor<*xf64>) -> tensor<*xf64>
  %6 = "toy.mul"(%4, %5) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64>
  toy.print %6 : tensor<*xf64>
  toy.return
}

NOTE: The generic inliner will also perform simplifications, so the output may be a bit cleaner than expected.



Intraprocedural Shape Inference

Now that we have inlined all of the functions, we are left with a main function containing a mix of static and dynamically shaped operations. We can now write a simple shape inference pass to propagate shapes intraprocedurally (within a single function). We could write this as a pass that directly encodes the constraints of the operations within the Toy dialect, but this seems like a good candidate for a transformation that could be written generically. As a good rule of thumb, it is best to express a transformation as generically as possible, such that it can be extended to other dialects in the future. There is no telling how many other dialects may have similar needs or encounter the same problems.

For shape inference, if we break down the problem to its core, we really just want operations to tell us the expected outputs given a set of statically known inputs. (We can definitely get more complex than that, but for our needs we can keep it simple.) Given that this property is core to a specific operation, we can define an operation interface that can be specified on operations that need to have their result shapes inferred.

Similarly to operations, we can also define operation interfaces using the operation definition specification (ODS) framework.

The interface is defined by inheriting from OpInterface, which takes the name to be given to the generated C++ interface class as a template argument. For our purposes, we will simply name the generated class ShapeInference. We also provide a description for the interface.

def ShapeInferenceOpInterface : OpInterface<"ShapeInference"> {
  let description = [{
    Interface to access a registered method to infer the return types for an
    operation that can be used during type inference.
  }];
}

Next, we define the interface methods that the operations will need to provide. An interface method is comprised of: a description; a C++ return type in string form; a method name in string form; and a few optional components, depending on the need. See the ODS documentation for more information.

def ShapeInferenceOpInterface : OpInterface<"ShapeInference"> {
  ...

  let methods = [
    InterfaceMethod<"Infer and set the output shape for the current operation.",
                    "void", "inferShapes">
  ];
}

Now that the interface is defined, we can add it to the necessary Toy operations in a similar way to how we added the CallOpInterface to the GenericCallOp:

def MulOp : Toy_Op<"mul",
    [..., DeclareOpInterfaceMethods<ShapeInferenceOpInterface>]> {
  ...
}

Each of these operations will then need to provide a definition for the inferShapes() method. As an example, for the mul op, the result shape is inferred as the shape of the inputs.

/// Infer the output shape of the MulOp, this is required by the shape inference
/// interface.
void MulOp::inferShapes() { getResult().setType(getOperand(0).getType()); }


At this point, each of the necessary Toy operations provide a mechanism by which to infer their output shapes. The ShapeInferencePass is a FunctionPass: it will run on each Function in isolation. MLIR also supports general OperationPasses that run on any isolated operation (i.e. other function-like operations), but here our module only contains functions, so there is no need to generalize to all operations.

Implementing such a pass is done by creating a class inheriting from mlir::FunctionPass and overriding the runOnFunction() method.

class ShapeInferencePass
    : public mlir::PassWrapper<ShapeInferencePass, FunctionPass> {
  void runOnFunction() override {
    FuncOp function = getFunction();
    ...
  }
};


While at it, let’s also create a helper method for instantiating the pass:

std::unique_ptr<mlir::Pass> mlir::toy::createShapeInferencePass() {
  return std::make_unique<ShapeInferencePass>();
}


The shape inference algorithm operates as follows:


	Build a worklist containing all the operations that return a dynamically shaped tensor: these are the operations that need shape inference.

	Iterate on the worklist:

	find an operation to process: the next ready operation in the worklist has all of its arguments non-generic,

	if no operation is found, break out of the loop,

	remove the operation from the worklist,

	infer the shape of its output from the argument types.




	If the worklist is empty, the algorithm succeeded.



When processing an operation like described, we query if it registered the ShapeInference interface, using this code snippet:

  // Ask the operation to infer its output shapes.
  LLVM_DEBUG(llvm::dbgs() << "Inferring shape for: " << *op << "\n");

  /// We check if an operation has a particular interface by casting.
  if (ShapeInference shapeOp = dyn_cast<ShapeInference>(op)) {
    shapeOp.inferShapes();
  } else {
    op->emitError("unable to infer shape of operation without shape "
                  "inference interface");
    return signalPassFailure();
  }


We can then add our pass to the pass manager:

  pm.addPass(mlir::createShapeInferencePass());


If we rerun our original example, we now get the following:

func @main() {
  %0 = "toy.constant"() {value = dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64>
  %1 = "toy.transpose"(%0) : (tensor<2x3xf64>) -> tensor<3x2xf64>
  %2 = "toy.mul"(%1, %1) : (tensor<3x2xf64>, tensor<3x2xf64>) -> tensor<3x2xf64>
  toy.print %2 : tensor<3x2xf64>
  toy.return
}

You can build toyc-ch4 and try yourself: toyc-ch4 test/Examples/Toy/Ch4/codegen.toy -emit=mlir -opt.

In the next chapter, we will start the process of code generation by targeting a lower level dialect for optimizing some of the more compute-heavy Toy operations.
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Toy Tutorial

This tutorial runs through the implementation of a basic toy language on top of MLIR. The goal of this tutorial is to introduce the concepts of MLIR; in particular, how dialects can help easily support language specific constructs and transformations while still offering an easy path to lower to LLVM or other codegen infrastructure. This tutorial is based on the model of the LLVM Kaleidoscope Tutorial.

This tutorial assumes you have cloned and built MLIR; if you have not yet done so, see Getting started with MLIR.

This tutorial is divided in the following chapters:


	Chapter #1: Introduction to the Toy language and the definition of its AST.

	Chapter #2: Traversing the AST to emit a dialect in MLIR, introducing base MLIR concepts. Here we show how to start attaching semantics to our custom operations in MLIR.

	Chapter #3: High-level language-specific optimization using pattern rewriting system.

	Chapter #4: Writing generic dialect-independent transformations with Interfaces. Here we will show how to plug dialect specific information into generic transformations like shape inference and inlining.

	Chapter #5: Partially lowering to lower-level dialects. We’ll convert some of our high level language specific semantics towards a generic affine oriented dialect for optimization.

	Chapter #6: Lowering to LLVM and code generation. Here we’ll target LLVM IR for code generation, and detail more of the lowering framework.

	Chapter #7: Extending Toy: Adding support for a composite type. We’ll demonstrate how to add a custom type to MLIR, and how it fits in the existing pipeline.



The first chapter will introduce the Toy language and AST.
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Quickstart tutorial to adding MLIR graph rewrite

This document will present a quickstart to adding graph rewrites. We shall start by defining an operation, showing multiple ways to define the rewrite using patterns, as well as defining the rewrite using a graph walker (note: using patterns and the rewrite engine is preferred, showing the walker is for demonstration purposes).

See MLIR specification for more information about MLIR, the structure of the IR, operations, etc. See Table-driven Operation Definition and Declarative Rewrite Rule for the detailed explanation of all available mechanisms for defining operations and rewrites in a table-driven manner.


Adding operation

An operation in MLIR is specified using a definition in TableGen file. TableGen is a modeling tool to specify the ops and the C++ code to interact with these operations are generated from. To define an operation one needs to specify:


	The operation name. This name is a unique identifier of the operation within MLIR. Most operations are within a dialect, so for example one could have tfl.add to represent the add operation in the TensorFlow Lite dialect. Instead of repeating the dialect in the op definition, a base class for the op dialect is commonly created that prepends the dialect namespace given an op name.

	The traits of the operation. These allow you to specify traits of the operation, such as whether it has side effects or whether it should be verified that the operands and result types are the same. These are backed by C++ traits that perform the verification.

	The arguments of the operation. These are the input operands (values at runtime produced by other ops) and attributes (compile time known constant values that affect the behavior of the op) that are the inputs of/define the behavior of the operation. The input operands may be named, the attributes must be named.

	The result(s) of the operation. These may again named or not.

	Documentation of the operation. This includes a one-line summary as well as a longer human-readable description of the operation.

	Dialect specific information. Additional information could be added to the operation definition that are only used by dialect specific drivers. These are ignored by the main op and doc generators, but could be used in, say, the translation from a dialect to another representation.



def TFL_LeakyReluOp: TFL_Op<TFL_Dialect, "leaky_relu",
                            [NoSideEffect, SameValueType]>,
                     Results<(outs Tensor)> {
  let arguments = (ins
    F32Tensor:$x,
    // Slope of the activation function at x < 0.
    F32Attr:$alpha
  );

  let summary = "Leaky ReLU operator";
  let description = [{
    Element-wise Leaky ReLU operator
      x -> x >= 0 ? x : (alpha * x)
  }];

  // TFLite specific attribute that is used when generating the output
  // flatbuffer.
  let hasOptions = 1;
}

Note in the above the result types and inputs are specified in different ways, one by way of trait and the other by way of let. It is possible to specify both in either way.


Operations can also have custom parser, printer, builder, verifier, constant folder, or canonicalizer. These require specifying additional C++ methods to invoke for additional functionality. For example, if an operation is marked to have a folder, the constant folder also needs to be added, e.g.,:

OpFoldResult SpecificOp::fold(ArrayRef<Attribute> constOperands) {
  if (unable_to_fold)
    return {};
  ....
  return val;
}




Adding patterns

There are multiple forms of graph rewrite that can be performed in MLIR. One of the most common is DAG tile to DAG tile rewrite. Patterns provide a concise way to express this transformation as a pair of source pattern to match and resultant pattern. There are both the C++ classes to represent this transformation, as well as the patterns in TableGen from which these can be generated.


TableGen patterns

Let us continue with LeakyRelu. To map from TensorFlow’s LeakyRelu to TensorFlow Lite’s LeakyRelu:

def : Pat<(TF_LeakyReluOp $arg, F32Attr:$a), (TFL_LeakyReluOp $arg, $a)>

The pattern is specified by instantiating a Pat with a source and result DAG. The arguments in the source pattern is captured and can be used in the result pattern. This is a simple pattern as we have a 1:1 mapping and the attribute does not need to be transformed (e.g., both have a floating point attribute for alpha). The names of the attributes specified in the pattern is for matching/referencing and need not match the original attribute name in the op definition but the order of arguments of the dags do need to match.

To specify a pattern, both the source and resultant ops need to be defined using TableGen.

If this were a more advance pattern that the current framework could not express as destination then one could use a general native code fallback method. This consists of defining a pattern as well as adding a C++ function to perform the replacement:

def createTFLLeakyRelu : NativeCodeCall<
    "createTFLLeakyRelu($_builder, $0.getDefiningOp(), $1, $2)">;

def : Pat<(TF_LeakyReluOp:$old_value, $arg, F32Attr:$a),
          (createTFLLeakyRelu $old_value, $arg, $a)>;

static Value createTFLLeakyRelu(PatternRewriter &rewriter, Operation *op,
                                Value operand, Attribute attr) {
  return rewriter.create<mlir::TFL::LeakyReluOp>(
      op->getLoc(), operands[0].getType(), /*arg=*/operands[0],
      /*alpha=*/attrs[0].cast<FloatAttr>());
}


This allows for arbitrarily complex builders. Input pattern side one can express multi-op patterns with constraints on input operands and attributes. But input patterns cannot yet express constraints across multiple operands/attributes.



Register the pattern

The file containing the patterns need to be processed using mlir-tblgen -gen-rewriters during compilation time. It can be invoked with the following configuration in CMake:

set(LLVM_TARGET_DEFINITIONS <name-of-the-td-file>)
mlir_tablegen(<name-of-the-generated-inc-file> -gen-rewriters)
add_public_tablegen_target(<name-of-the-cmake-target>)


Then you can #include the generated file in any C++ implementation file you like. (You will also need to make sure the library depends on the CMake target defined in the above.) The generated file will have a populateWithGenerated( MLIRContext *context, OwningRewritePatternList &patterns) function that you can use to collect all the generated patterns inside patterns and then use patterns in any pass you would like.



C++ rewrite specification

In case patterns are not sufficient there is also the fully C++ way of expressing a rewrite:

/// Multi-step rewrite using "match" and "rewrite". This allows for separating
/// the concerns of matching and rewriting.
struct ConvertTFLeakyRelu : public RewritePattern {
  ConvertTFLeakyRelu(MLIRContext *context)
      : RewritePattern("tf.LeakyRelu", 1, context) {}

  LogicalResult match(Operation *op) const override {
    return success();
  }

  void rewrite(Operation *op, PatternRewriter &rewriter) const override {
    rewriter.replaceOpWithNewOp<TFL::LeakyReluOp>(
        op, op->getResult(0).getType(), op->getOperand(0),
        /*alpha=*/op->getAttrOfType<FloatAttr>("alpha"));
  }
};

/// Single-step rewrite with "matchAndRewrite". This allows for performing the
/// rewrite immediately upon a successful match.
struct ConvertTFLeakyRelu : public RewritePattern {
  ConvertTFLeakyRelu(MLIRContext *context)
      : RewritePattern("tf.LeakyRelu", 1, context) {}

  LogicalResult matchAndRewrite(Operation *op,
                                     PatternRewriter &rewriter) const override {
    rewriter.replaceOpWithNewOp<TFL::LeakyReluOp>(
        op, op->getResult(0).getType(), op->getOperand(0),
        /*alpha=*/op->getAttrOfType<FloatAttr>("alpha"));
    return success();
  }
};


In the C++ rewrite the static benefit of the rewrite pattern is specified at construction. While in the pattern generator a simple heuristic is currently employed based around the number of ops matched and replaced.

The above rule did not capture the matching operands/attributes, but in general the match function in a multi-step rewrite may populate and return a PatternState (or class derived from one) to pass information extracted during matching to the rewrite. A single-step rewrite with the matchAndRewrite function has the benefit of being able to directly use any values created when matching; removing the need for PatternState.




Testing

MLIR uses lit (LLVM Integrated Testing) tool for performing testing. Testing is performed by way of creating the input IR file, running a transformation and then verifying the output IR. C++ unit tests are the exception, with the IR transformation serving as the core testing mechanism. This results in fewer binaries that need to be built (and linked) and forces to focus on the representation as an important piece.

For the legalization transform above we would have a test (probably as part of the legalization pass test in TensorFlow Lite) such as:

// RUN: mlir-opt -tfl-legalize-tf %s | FileCheck %s

func @LeakyRelu(%arg0: tensor<1xf32>) -> tensor<1xf32> {
  %2 = "tf.LeakyRelu"(%arg0) {alpha: 0.1} : (tensor<1xf32>) -> tensor<1xf32>
  return %2: tensor<1xf32>

// CHECK-LABEL: LeakyRelu
// CHECK:  %0 = "tfl.leaky_relu"(%arg0) {alpha: 1.000000e-01} : (tensor<1xf32>) -> tensor<1xf32>
}

The RUN command at the top results in running the mlir-opt binary (which is compiler writer tool to exercise different registered passes) to invoke the optimization pass this transform was added as part of on the current file and to verify its output using FileCheck. FileCheck is textual output verifier. In particular it uses the CHECK expressions to verify the given output is produced.

There can be multiple RUN commands with different corresponding CHECK prefixes. And in addition multiple independent tests separated by // ----- and mlir-opt invoked with -split-input-file flag. This is especially useful for error testing.

This results in very simple, directed testing without need to work around constant propagation or other, unrelated, optimization passes.



Adding optimization pass

Optimization passes that do not fit/are difficult to specify in the above structure can be specified as general iterations across modules/functions. See Writing a Pass for a general overview and introduction to optimization passes in MLIR.
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Understanding the IR Structure

The MLIR Language Reference describes the High Level Structure, this document illustrates this structure through examples, and introduces at the same time the C++ APIs involved in manipulating it.

We will implement a pass that traverses any MLIR input and prints the entity inside the IR. A pass (or in general almost any piece of IR) is always rooted with an operation. Most of the time the top-level operation is a ModuleOp, the MLIR PassManager is actually limited to operation on a top-level ModuleOp. As such a pass starts with an operation, and so will our traversal:

  void runOnOperation() override {
    Operation *op = getOperation();
    resetIndent();
    printOperation(op);
  }


Traversing the IR Nesting

The IR is recursively nested, an Operation can have one or multiple nested Regions, each of which is actually a list of Blocks, each of which itself wraps a list of Operations. Our traversal will follow this structure with three methods: printOperation(), printRegion(), and printBlock().

The first method inspects the properties of an operation, before iterating on the nested regions and print them individually:

  void printOperation(Operation *op) {
    // Print the operation itself and some of its properties
    printIndent() << "visiting op: '" << op->getName() << "' with "
                  << op->getNumOperands() << " operands and "
                  << op->getNumResults() << " results\n";
    // Print the operation attributes
    if (!op->getAttrs().empty()) {
      printIndent() << op->getAttrs().size() << " attributes:\n";
      for (NamedAttribute attr : op->getAttrs())
        printIndent() << " - '" << attr.first << "' : '" << attr.second
                      << "'\n";
    }

    // Recurse into each of the regions attached to the operation.
    printIndent() << " " << op->getNumRegions() << " nested regions:\n";
    auto indent = pushIndent();
    for (Region &region : op->getRegions())
      printRegion(region);
  }


A Region does not hold anything other than a list of Blocks:

  void printRegion(Region &region) {
    // A region does not hold anything by itself other than a list of blocks.
    printIndent() << "Region with " << region.getBlocks().size()
                  << " blocks:\n";
    auto indent = pushIndent();
    for (Block &block : region.getBlocks())
      printBlock(block);
  }


Finally, a Block has a list of arguments, and holds a list of Operations:

  void printBlock(Block &block) {
    // Print the block intrinsics properties (basically: argument list)
    printIndent()
        << "Block with " << block.getNumArguments() << " arguments, "
        << block.getNumSuccessors()
        << " successors, and "
        // Note, this `.size()` is traversing a linked-list and is O(n).
        << block.getOperations().size() << " operations\n";

    // A block main role is to hold a list of Operations: let's recurse into
    // printing each operation.
    auto indent = pushIndent();
    for (Operation &op : block.getOperations())
      printOperation(&op);
  }


The code for the pass is available here in the repo and can be exercised with mlir-opt -test-print-nesting.


Example

The Pass introduced in the previous section can be applied on the following IR with mlir-opt -test-print-nesting -allow-unregistered-dialect llvm-project/mlir/test/IR/print-ir-nesting.mlir:

"module"() ( {
  %0:4 = "dialect.op1"() {"attribute name" = 42 : i32} : () -> (i1, i16, i32, i64)
  "dialect.op2"() ( {
    "dialect.innerop1"(%0#0, %0#1) : (i1, i16) -> ()
  },  {
    "dialect.innerop2"() : () -> ()
    "dialect.innerop3"(%0#0, %0#2, %0#3)[^bb1, ^bb2] : (i1, i32, i64) -> ()
  ^bb1(%1: i32):  // pred: ^bb0
    "dialect.innerop4"() : () -> ()
    "dialect.innerop5"() : () -> ()
  ^bb2(%2: i64):  // pred: ^bb0
    "dialect.innerop6"() : () -> ()
    "dialect.innerop7"() : () -> ()
  }) {"other attribute" = 42 : i64} : () -> ()
  "module_terminator"() : () -> ()
}) : () -> ()

And will yield the following output:

visiting op: 'module' with 0 operands and 0 results
 1 nested regions:
  Region with 1 blocks:
    Block with 0 arguments, 0 successors, and 3 operations
      visiting op: 'dialect.op1' with 0 operands and 4 results
      1 attributes:
       - 'attribute name' : '42 : i32'
       0 nested regions:
      visiting op: 'dialect.op2' with 0 operands and 0 results
       2 nested regions:
        Region with 1 blocks:
          Block with 0 arguments, 0 successors, and 1 operations
            visiting op: 'dialect.innerop1' with 2 operands and 0 results
             0 nested regions:
        Region with 3 blocks:
          Block with 0 arguments, 2 successors, and 2 operations
            visiting op: 'dialect.innerop2' with 0 operands and 0 results
             0 nested regions:
            visiting op: 'dialect.innerop3' with 3 operands and 0 results
             0 nested regions:
          Block with 1 arguments, 0 successors, and 2 operations
            visiting op: 'dialect.innerop4' with 0 operands and 0 results
             0 nested regions:
            visiting op: 'dialect.innerop5' with 0 operands and 0 results
             0 nested regions:
          Block with 1 arguments, 0 successors, and 2 operations
            visiting op: 'dialect.innerop6' with 0 operands and 0 results
             0 nested regions:
            visiting op: 'dialect.innerop7' with 0 operands and 0 results
             0 nested regions:
      visiting op: 'module_terminator' with 0 operands and 0 results
       0 nested regions:




Other IR Traversal Methods.

In many cases, unwrapping the recursive structure of the IR is cumbersome and you may be interested in using other helpers.


Filtered iterator: getOps<OpTy>()

For example the Block class exposes a convenient templated method getOps<OpTy>() that provided a filtered iterator. Here is an example:

  auto varOps = entryBlock.getOps<spirv::GlobalVariableOp>();
  for (spirv::GlobalVariableOp gvOp : varOps) {
     // process each GlobalVariable Operation in the block.
     ...
  }


Similarly, the Region class exposes the same getOps method that will iterate on all the blocks in the region.



Walkers

The getOps<OpTy>() is useful to iterate on some Operations immediately listed inside a single block (or a single region), however it is frequently interesting to traverse the IR in a nested fashion. To this end MLIR exposes the walk() helper on Operation, Block, and Region. This helper takes a single argument: a callback method that will be invoked for every operation recursively nested under the provided entity.

  // Recursively traverse all the regions and blocks nested inside the function
  // and apply the callback on every single operation in post-order.
  getFunction().walk([&](mlir::Operation *op) {
    // process Operation `op`.
  });


The provided callback can be specialized to filter on a particular type of Operation, for example the following will apply the callback only on LinalgOp operations nested inside the function:

  getFunction.walk([](LinalgOp linalgOp) {
    // process LinalgOp `linalgOp`.
  });


Finally, the callback can optionally stop the walk by returning a WalkResult::interrupt() value. For example the following walk will find all AllocOp nested inside the function and interrupt the traversal if one of them does not satisfy a criteria:

  WalkResult result = getFunction().walk([&](AllocOp allocOp) {
    if (!isValid(allocOp))
      return WalkResult::interrupt();
    return WalkResult::advance();
  });
  if (result.wasInterrupted())
    // One alloc wasn't matching.
    ...





Traversing the def-use chains

Another relationship in the IR is the one that links a Value with its users. As defined in the language reference, each Value is either a BlockArgument or the result of exactly one Operation (an Operation can have multiple results, each of them is a separate Value). The users of a Value are Operations, through their arguments: each Operation argument references a single Value.

Here is a code sample that inspects the operands of an Operation and prints some information about them:

  // Print information about the producer of each of the operands.
  for (Value operand : op->getOperands()) {
    if (Operation *producer = operand.getDefiningOp()) {
      llvm::outs() << "  - Operand produced by operation '"
                   << producer->getName() << "'\n";
    } else {
      // If there is no defining op, the Value is necessarily a Block
      // argument.
      auto blockArg = operand.cast<BlockArgument>();
      llvm::outs() << "  - Operand produced by Block argument, number "
                   << blockArg.getArgNumber() << "\n";
    }
  }


Similarly, the following code sample iterates through the result Values produced by an Operation and for each result will iterate the users of these results and print informations about them:

  // Print information about the user of each of the result.
  llvm::outs() << "Has " << op->getNumResults() << " results:\n";
  for (auto indexedResult : llvm::enumerate(op->getResults())) {
    Value result = indexedResult.value();
    llvm::outs() << "  - Result " << indexedResult.index();
    if (result.use_empty()) {
      llvm::outs() << " has no uses\n";
      continue;
    }
    if (result.hasOneUse()) {
      llvm::outs() << " has a single use: ";
    } else {
      llvm::outs() << " has "
                   << std::distance(result.getUses().begin(),
                                    result.getUses().end())
                   << " uses:\n";
    }
    for (Operation *userOp : result.getUsers()) {
      llvm::outs() << "    - " << userOp->getName() << "\n";
    }
  }


The illustrating code for this pass is available here in the repo and can be exercised with mlir-opt -test-print-defuse.

The chaining of Values and their uses can be viewed as following:


[image: Index Map Example]Index Map Example

The uses of a Value (OpOperand or BlockOperand) are also chained in a doubly linked-list, which is particularly useful when replacing all uses of a Value with a new one (“RAUW”):


[image: Index Map Example]Index Map Example
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Defining Dialect Attributes and Types

This document is a quickstart to defining dialect specific extensions to the attribute and type systems in MLIR. The main part of this tutorial focuses on defining types, but the instructions are nearly identical for defining attributes.

See MLIR specification for more information about MLIR, the structure of the IR, operations, etc.


Types

Types in MLIR (like attributes, locations, and many other things) are value-typed. This means that instances of Type are passed around by-value, as opposed to by-pointer or by-reference. The Type class in itself acts as a wrapper around an internal storage object that is uniqued within an instance of an MLIRContext.


Defining the type class

As described above, Type objects in MLIR are value-typed and rely on having an implicit internal storage object that holds the actual data for the type. When defining a new Type it isn’t always necessary to define a new storage class. So before defining the derived Type, it’s important to know which of the two classes of Type we are defining:

Some types are singleton in nature, meaning they have no parameters and only ever have one instance, like the index type.

Other types are parametric, and contain additional information that differentiates different instances of the same Type. For example the integer type contains a bitwidth, with i8 and i16 representing different instances of integer type. Parametric may also contain a mutable component, which can be used, for example, to construct self-referring recursive types. The mutable component cannot be used to differentiate instances of a type class, so usually such types contain other parametric components that serve to identify them.


Singleton types

For singleton types, we can jump straight into defining the derived type class. Given that only one instance of such types may exist, there is no need to provide our own storage class.

/// This class defines a simple parameterless singleton type. All derived types
/// must inherit from the CRTP class 'Type::TypeBase'. It takes as template
/// parameters the concrete type (SimpleType), the base class to use (Type),
/// the internal storage class (the default TypeStorage here), and an optional
/// set of type traits and interfaces(detailed below).
class SimpleType : public Type::TypeBase<SimpleType, Type, TypeStorage> {
public:
  /// Inherit some necessary constructors from 'TypeBase'.
  using Base::Base;

  /// The `TypeBase` class provides the following utility methods for
  /// constructing instances of this type:
  /// static SimpleType get(MLIRContext *ctx);
};




Parametric types

Parametric types are those with additional construction or uniquing constraints, that allow for representing multiple different instances of a single class. As such, these types require defining a type storage class to contain the parametric data.


Defining a type storage

Type storage objects contain all of the data necessary to construct and unique a parametric type instance. The storage classes must obey the following:


	Inherit from the base type storage class TypeStorage.

	Define a type alias, KeyTy, that maps to a type that uniquely identifies an instance of the derived type.

	Provide a construction method that is used to allocate a new instance of the storage class.

	static Storage *construct(TypeStorageAllocator &, const KeyTy &key)




	Provide a comparison method between the storage and KeyTy.

	bool operator==(const KeyTy &) const




	Provide a method to generate the KeyTy from a list of arguments passed to the uniquer. (Note: This is only necessary if the KeyTy cannot be default constructed from these arguments).

	static KeyTy getKey(Args...&& args)




	Provide a method to hash an instance of the KeyTy. (Note: This is not necessary if an llvm::DenseMapInfo<KeyTy> specialization exists)

	static llvm::hash_code hashKey(const KeyTy &)






Let’s look at an example:

/// Here we define a storage class for a ComplexType, that holds a non-zero
/// integer and an integer type.
struct ComplexTypeStorage : public TypeStorage {
  ComplexTypeStorage(unsigned nonZeroParam, Type integerType)
      : nonZeroParam(nonZeroParam), integerType(integerType) {}

  /// The hash key for this storage is a pair of the integer and type params.
  using KeyTy = std::pair<unsigned, Type>;

  /// Define the comparison function for the key type.
  bool operator==(const KeyTy &key) const {
    return key == KeyTy(nonZeroParam, integerType);
  }

  /// Define a hash function for the key type.
  /// Note: This isn't necessary because std::pair, unsigned, and Type all have
  /// hash functions already available.
  static llvm::hash_code hashKey(const KeyTy &key) {
    return llvm::hash_combine(key.first, key.second);
  }

  /// Define a construction function for the key type.
  /// Note: This isn't necessary because KeyTy can be directly constructed with
  /// the given parameters.
  static KeyTy getKey(unsigned nonZeroParam, Type integerType) {
    return KeyTy(nonZeroParam, integerType);
  }

  /// Define a construction method for creating a new instance of this storage.
  static ComplexTypeStorage *construct(TypeStorageAllocator &allocator,
                                       const KeyTy &key) {
    return new (allocator.allocate<ComplexTypeStorage>())
        ComplexTypeStorage(key.first, key.second);
  }

  /// The parametric data held by the storage class.
  unsigned nonZeroParam;
  Type integerType;
};




Type class definition

Now that the storage class has been created, the derived type class can be defined. This structure is similar to singleton types, except that a bit more of the functionality provided by Type::TypeBase is put to use.

/// This class defines a parametric type. All derived types must inherit from
/// the CRTP class 'Type::TypeBase'. It takes as template parameters the
/// concrete type (ComplexType), the base class to use (Type), the storage
/// class (ComplexTypeStorage), and an optional set of traits and
/// interfaces(detailed below).
class ComplexType : public Type::TypeBase<ComplexType, Type,
                                          ComplexTypeStorage> {
public:
  /// Inherit some necessary constructors from 'TypeBase'.
  using Base::Base;

  /// This method is used to get an instance of the 'ComplexType'. This method
  /// asserts that all of the construction invariants were satisfied. To
  /// gracefully handle failed construction, getChecked should be used instead.
  static ComplexType get(unsigned param, Type type) {
    // Call into a helper 'get' method in 'TypeBase' to get a uniqued instance
    // of this type. All parameters to the storage class are passed after the
    // context.
    return Base::get(type.getContext(), param, type);
  }

  /// This method is used to get an instance of the 'ComplexType', defined at
  /// the given location. If any of the construction invariants are invalid,
  /// errors are emitted with the provided location and a null type is returned.
  /// Note: This method is completely optional.
  static ComplexType getChecked(unsigned param, Type type, Location location) {
    // Call into a helper 'getChecked' method in 'TypeBase' to get a uniqued
    // instance of this type. All parameters to the storage class are passed
    // after the location.
    return Base::getChecked(location, param, type);
  }

  /// This method is used to verify the construction invariants passed into the
  /// 'get' and 'getChecked' methods. Note: This method is completely optional.
  static LogicalResult verifyConstructionInvariants(
      Location loc, unsigned param, Type type) {
    // Our type only allows non-zero parameters.
    if (param == 0)
      return emitError(loc) << "non-zero parameter passed to 'ComplexType'";
    // Our type also expects an integer type.
    if (!type.isa<IntegerType>())
      return emitError(loc) << "non integer-type passed to 'ComplexType'";
    return success();
  }

  /// Return the parameter value.
  unsigned getParameter() {
    // 'getImpl' returns a pointer to our internal storage instance.
    return getImpl()->nonZeroParam;
  }

  /// Return the integer parameter type.
  IntegerType getParameterType() {
    // 'getImpl' returns a pointer to our internal storage instance.
    return getImpl()->integerType;
  }
};





Mutable types

Types with a mutable component are special instances of parametric types that allow for mutating certain parameters after construction.


Defining a type storage

In addition to the requirements for the type storage class for parametric types, the storage class for types with a mutable component must additionally obey the following.


	The mutable component must not participate in the storage KeyTy.

	Provide a mutation method that is used to modify an existing instance of the storage. This method modifies the mutable component based on arguments, using allocator for any newly dynamically-allocated storage, and indicates whether the modification was successful.

	LogicalResult mutate(StorageAllocator &allocator, Args ...&& args)






Let’s define a simple storage for recursive types, where a type is identified by its name and may contain another type including itself.

/// Here we define a storage class for a RecursiveType that is identified by its
/// name and contains another type.
struct RecursiveTypeStorage : public TypeStorage {
  /// The type is uniquely identified by its name. Note that the contained type
  /// is _not_ a part of the key.
  using KeyTy = StringRef;

  /// Construct the storage from the type name. Explicitly initialize the
  /// containedType to nullptr, which is used as marker for the mutable
  /// component being not yet initialized.
  RecursiveTypeStorage(StringRef name) : name(name), containedType(nullptr) {}

  /// Define the comparison function.
  bool operator==(const KeyTy &key) const { return key == name; }

  /// Define a construction method for creating a new instance of the storage.
  static RecursiveTypeStorage *construct(StorageAllocator &allocator,
                                         const KeyTy &key) {
    // Note that the key string is copied into the allocator to ensure it
    // remains live as long as the storage itself.
    return new (allocator.allocate<RecursiveTypeStorage>())
        RecursiveTypeStorage(allocator.copyInto(key));
  }

  /// Define a mutation method for changing the type after it is created. In
  /// many cases, we only want to set the mutable component once and reject
  /// any further modification, which can be achieved by returning failure from
  /// this function.
  LogicalResult mutate(StorageAllocator &, Type body) {
    // If the contained type has been initialized already, and the call tries
    // to change it, reject the change.
    if (containedType && containedType != body)
      return failure();

    // Change the body successfully.
    containedType = body;
    return success();
  }

  StringRef name;
  Type containedType;
};




Type class definition

Having defined the storage class, we can define the type class itself. Type::TypeBase provides a mutate method that forwards its arguments to the mutate method of the storage and ensures the mutation happens safely.

class RecursiveType : public Type::TypeBase<RecursiveType, Type,
                                            RecursiveTypeStorage> {
public:
  /// Inherit parent constructors.
  using Base::Base;

  /// Creates an instance of the Recursive type. This only takes the type name
  /// and returns the type with uninitialized body.
  static RecursiveType get(MLIRContext *ctx, StringRef name) {
    // Call into the base to get a uniqued instance of this type. The parameter
    // (name) is passed after the context.
    return Base::get(ctx, name);
  }

  /// Now we can change the mutable component of the type. This is an instance
  /// method callable on an already existing RecursiveType.
  void setBody(Type body) {
    // Call into the base to mutate the type.
    LogicalResult result = Base::mutate(body);

    // Most types expect the mutation to always succeed, but types can implement
    // custom logic for handling mutation failures.
    assert(succeeded(result) &&
           "attempting to change the body of an already-initialized type");

    // Avoid unused-variable warning when building without assertions.
    (void) result;
  }

  /// Returns the contained type, which may be null if it has not been
  /// initialized yet.
  Type getBody() {
    return getImpl()->containedType;
  }

  /// Returns the name.
  StringRef getName() {
    return getImpl()->name;
  }
};






Registering types with a Dialect

Once the dialect types have been defined, they must then be registered with a Dialect. This is done via a similar mechanism to operations, with the addTypes method.

struct MyDialect : public Dialect {
  MyDialect(MLIRContext *context) : Dialect(/*name=*/"mydialect", context) {
    /// Add these defined types to the dialect.
    addTypes<SimpleType, ComplexType, RecursiveType>();
  }
};




Parsing and Printing

As a final step after registration, a dialect must override the printType and parseType hooks. These enable native support for round-tripping the type in the textual .mlir.

class MyDialect : public Dialect {
public:
  /// Parse an instance of a type registered to the dialect.
  Type parseType(DialectAsmParser &parser) const override;

  /// Print an instance of a type registered to the dialect.
  void printType(Type type, DialectAsmPrinter &printer) const override;
};


These methods take an instance of a high-level parser or printer that allows for easily implementing the necessary functionality. As described in the MLIR language reference, dialect types are generally represented as: ! dialect-namespace < type-data >, with a pretty form available under certain circumstances. The responsibility of our parser and printer is to provide the type-data bits.



Traits

Similarly to operations, Type classes may attach Traits that provide additional mixin methods and other data. Trait classes may be specified via the trailing template argument of the Type::TypeBase class. See the main Trait documentation for more information on defining and using traits.



Interfaces

Similarly to operations, Type classes may attach Interfaces to provide an abstract interface into the type. See the main Interface documentation for more information on defining and using interfaces.




Attributes

As stated in the introduction, the process for defining dialect attributes is nearly identical to that of defining dialect types. That key difference is that the things named *Type are generally now named *Attr.


	Type::TypeBase -> Attribute::AttrBase

	TypeStorageAllocator -> AttributeStorageAllocator

	addTypes -> addAttributes



Aside from that, all of the interfaces for uniquing and storage construction are all the same.
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Creating a Dialect

[TOC]

Public dialects are typically separated into at least 3 directories: * mlir/include/mlir/Dialect/Foo (for public include files) * mlir/lib/Dialect/Foo (for sources) * mlir/lib/Dialect/Foo/IR (for operations) * mlir/lib/Dialect/Foo/Transforms (for transforms) * mlir/test/Dialect/Foo (for tests)

Along with other public headers, the ‘include’ directory contains a TableGen file in the ODS format, describing the operations in the dialect. This is used to generate operation declarations (FooOps.h.inc) and definitions (FooOps.cpp.inc) and operation interface declarations (FooOpsInterfaces.h.inc) and definitions (FooOpsInterfaces.cpp.inc).

The ‘IR’ directory typically contains implementations of functions for the dialect which are not automatically generated by ODS. These are typically defined in FooDialect.cpp, which includes FooOps.cpp.inc and FooOpsInterfaces.h.inc.

The ‘Transforms’ directory contains rewrite rules for the dialect, typically described in TableGen file using the DDR format.

Note that dialect names should not generally be suffixed with “Ops”, although some files pertaining only to the operations of a dialect (e.g. FooOps.cpp) might be.


CMake best practices


TableGen Targets

Operations in dialects are typically declared using the ODS format in tablegen in a file FooOps.td. This file forms the core of a dialect and is declared using add_mlir_dialect().

add_mlir_dialect(FooOps foo)
add_mlir_doc(FooOps -gen-dialect-doc FooDialect Dialects/)


This generates the correct rules to run mlir-tblgen, along with a ‘MLIRFooOpsIncGen’ target which can be used to declare dependencies.

Dialect transformations are typically declared in a file FooTransforms.td. Targets for TableGen are described in typical llvm fashion.

set(LLVM_TARGET_DEFINITIONS FooTransforms.td)
mlir_tablegen(FooTransforms.h.inc -gen-rewriters)
add_public_tablegen_target(MLIRFooTransformIncGen)


The result is another ‘IncGen’ target, which runs mlir-tblgen.



Library Targets

Dialects may have multiple libraries. Each library is typically declared with add_mlir_dialect_library(). Dialect libraries often depend on the generation of header files from TableGen (specified using the DEPENDS keyword). Dialect libraries may also depend on other dialect libraries. Typically this dependence is declared using target_link_libraries() and the PUBLIC keyword. For instance:

add_mlir_dialect_library(MLIRFoo
  DEPENDS
  MLIRFooOpsIncGen
  MLIRFooTransformsIncGen

  LINK_COMPONENTS
  Core

  LINK_LIBS PUBLIC
  MLIRBar
  <some-other-library>
  )


add_mlir_dialect_library() is a thin wrapper around add_llvm_library() which collects a list of all the dialect libraries. This list is often useful for linking tools (e.g. mlir-opt) which should have access to all dialects. This list is also linked into libMLIR.so. The list can be retrieved from the MLIR_DIALECT_LIBS global property:

get_property(dialect_libs GLOBAL PROPERTY MLIR_DIALECT_LIBS)


Note that although the Bar dialect also uses TableGen to declare its operations, it is not necessary to explicitly depend on the corresponding IncGen targets. The PUBLIC link dependency is sufficient. Also note that we avoid using add_dependencies explicitly, since the dependencies need to be available to the underlying add_llvm_library() call, allowing it to correctly create new targets with the same sources. However, dialects that depend on LLVM IR may need to depend on the LLVM ‘intrinsics_gen’ target to ensure that tablegen’d LLVM header files have been generated.

In addition, linkage to MLIR libraries is specified using the LINK_LIBS descriptor and linkage to LLVM libraries is specified using the LINK_COMPONENTS descriptor. This allows cmake infrastructure to generate new library targets with correct linkage, in particular, when BUILD_SHARED_LIBS=on or LLVM_LINK_LLVM_DYLIB=on are specified.
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Dialect Conversions

Conversions from “X” to “Y” live in mlir/include/mlir/Conversion/XToY, mlir/lib/Conversion/XToY and mlir/test/Conversion/XToY, respectively.

Default file names for conversion should omit “Convert” from their name, e.g. lib/VectorToLLVM/VectorToLLVM.cpp.

Conversion passes should live separately from conversions themselves for convenience of users that only care about a pass and not about its implementation with patterns or other infrastructure. For example include/mlir/VectorToLLVM/VectorToLLVMPass.h.

Common conversion functionality from or to dialect “X” that does not belong to the dialect definition can be located in mlir/lib/Conversion/XCommon, for example mlir/lib/Conversion/GPUCommon.


CMake best practices

Each conversion typically exists in a separate library, declared with add_mlir_conversion_library(). Conversion libraries typically depend on their source and target dialects, but may also depend on other dialects (e.g. MLIRStandard). Typically this dependence is specified using target_link_libraries() and the PUBLIC keyword. For instance:

add_mlir_conversion_library(MLIRBarToFoo
  BarToFoo.cpp

  ADDITIONAL_HEADER_DIRS
  ${MLIR_MAIN_INCLUDE_DIR}/mlir/Conversion/BarToFoo

  LINK_LIBS PUBLIC
  MLIRBar
  MLIRFoo
  )


add_mlir_conversion_library() is a thin wrapper around add_llvm_library() which collects a list of all the conversion libraries. This list is often useful for linking tools (e.g. mlir-opt) which should have access to all dialects. This list is also linked in libMLIR.so. The list can be retrieved from the MLIR_CONVERSION_LIBS global property:

get_property(dialect_libs GLOBAL PROPERTY MLIR_CONVERSION_LIBS)


Note that it is only necessary to specify a PUBLIC dependence against dialects to generate compile-time and link-time dependencies, and it is not necessary to explicitly depend on the dialects’ IncGen targets. However, conversions that directly include LLVM IR header files may need to depend on the LLVM ‘intrinsics_gen’ target to ensure that tablegen’d LLVM header files have been generated.
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Tutorials

This section contains multiple MLIR tutorials. See Toy tutorial for an introduction to using MLIR infrastructure.
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SPIR-V Dialect to LLVM Dialect conversion manual

This manual describes the conversion from SPIR-V Dialect to LLVM Dialect. It assumes familiarity with both, and describes the design choices behind the modelling of SPIR-V concepts in LLVM Dialect. The conversion is an ongoing work, and is expected to grow as more features are implemented.

Conversion can be performed by invoking an appropriate conversion pass:

mlir-opt -convert-spirv-to-llvm <filename.mlir>

This pass performs type and operation conversions for SPIR-V operations as described in this document.

[TOC]


Type Conversion

This section describes how SPIR-V Dialect types are mapped to LLVM Dialect.


Scalar types




	SPIR-V Dialect
	LLVM Dialect





	i<bitwidth>
	!llvm.i<bitwidth>



	si<bitwidth>
	!llvm.i<bitwidth>



	ui<bitwidth>
	!llvm.i<bitwidth>



	f16
	!llvm.half



	f32
	!llvm.float



	f64
	!llvm.double







Vector types




	SPIR-V Dialect
	LLVM Dialect





	vector<<count> x <scalar-type>>
	!llvm.vec<<count> x <scalar-type>>







Pointer types

A SPIR-V pointer also takes a Storage Class. At the moment, conversion does not take it into account.




	SPIR-V Dialect
	LLVM Dialect





	!spv.ptr< <element-type>, <storage-class> >
	!llvm.ptr<<element-type>>







Array types

SPIR-V distinguishes between array type and run-time array type, the length of which is not known at compile time. In LLVM, it is possible to index beyond the end of the array. Therefore, runtime array can be implemented as a zero length array type.

Moreover, SPIR-V supports the notion of array stride. Currently only natural strides (based on VulkanLayoutUtils) are supported. They are also mapped to LLVM array.








	SPIR-V Dialect
	LLVM Dialect





	!spv.array<<count> x <element-type>>
	!llvm.array<<count> x <element-type>>



	!spv.rtarray< <element-type> >
	!llvm.array<0 x <element-type>>







Struct types

Members of SPIR-V struct types may have decorations and offset information. Currently, there is no support of member decorations conversion for structs. For more information see section on Decorations.

Usually we expect that each struct member has a natural size and alignment. However, there are cases (e.g. in graphics) where one would place struct members explicitly at particular offsets. This case is not supported at the moment. Hence, we adhere to the following mapping:


	Structs with no offset are modelled as LLVM packed structures.


	Structs with natural offset (i.e. offset that equals to cumulative size of the previous struct elements or is a natural alignment) are mapped to naturally padded structs.


	Structs with unnatural offset (i.e. offset that is not equal to cumulative size of the previous struct elements) are not supported. In this case, offsets can be emulated with padding fields (e.g. integers). However, such a design would require index recalculation in the conversion of ops that involve memory addressing.




Examples of SPIR-V struct conversion are:

!spv.struct<i8, i32>          =>  !llvm.struct<packed (i8, i32)>
!spv.struct<i8 [0], i32 [4]>  =>  !llvm.struct<(i8, i32)>

// error
!spv.struct<i8 [0], i32 [8]>



Not implemented types

The rest of the types not mentioned explicitly above are not supported by the conversion. This includes ImageType and MatrixType.




Operation Conversion

This section describes how SPIR-V Dialect operations are converted to LLVM Dialect. It lists already working conversion patterns, as well as those that are an ongoing work.

There are also multiple ops for which there is no clear mapping in LLVM. Conversion for those have to be discussed within the community on the case-by-case basis.


Arithmetic ops

SPIR-V arithmetic ops mostly have a direct equivalent in LLVM Dialect. Such exceptions as spv.SMod and spv.FMod are rare.




	SPIR-V Dialect op
	LLVM Dialect op





	spv.FAdd
	llvm.fadd



	spv.FDiv
	llvm.fdiv



	spv.FNegate
	llvm.fneg



	spv.FMul
	llvm.fmul



	spv.FRem
	llvm.frem



	spv.FSub
	llvm.fsub



	spv.IAdd
	llvm.add



	spv.IMul
	llvm.mul



	spv.ISub
	llvm.sub



	spv.SDiv
	llvm.sdiv



	spv.SRem
	llvm.srem



	spv.UDiv
	llvm.udiv



	spv.UMod
	llvm.urem







Bitwise ops

SPIR-V has a range of bit ops that are mapped to LLVM dialect ops, intrinsics or may have a specific conversion pattern.


Direct conversion

As with arithmetic ops, most of bitwise ops have a semantically equivalent op in LLVM:




	SPIR-V Dialect op
	LLVM Dialect op





	spv.BitwiseAnd
	llvm.and



	spv.BitwiseOr
	llvm.or



	spv.BitwiseXor
	llvm.xor





Also, some of bitwise ops can be modelled with LLVM intrinsics:




	SPIR-V Dialect op
	LLVM Dialect intrinsic





	spv.BitCount
	llvm.intr.ctpop



	spv.BitReverse
	llvm.intr.bitreverse







spv.Not

spv.Not is modelled with a xor operation with a mask with all bits set.

                            %mask = llvm.mlir.constant(-1 : i32) : !llvm.i32
%0 = spv.Not %op : i32  =>  %0  = llvm.xor %op, %mask : !llvm.i32



Bitfield ops

SPIR-V dialect has three bitfield ops: spv.BitFieldInsert, spv.BitFieldSExtract and spv.BitFieldUExtract. This section will first outline the general design of conversion patterns for this ops, and then describe each of them.

All of these ops take base, offset and count (insert for spv.BitFieldInsert) as arguments. There are two important things to note:


	offset and count are always scalar. This means that we can have the following case:

%0 = spv.BitFieldSExtract %base, %offset, %count : vector<2xi32>, i8, i8

To be able to proceed with conversion algorithms described below, all operands have to be of the same type and bitwidth. This requires broadcasting of offset and count to vectors, for example for the case above it gives:

// Broadcasting offset
%offset0 = llvm.mlir.undef : !llvm.vec<2 x i8>
%zero = llvm.mlir.constant(0 : i32) : !llvm.i32
%offset1 = llvm.insertelement %offset, %offset0[%zero : !llvm.i32] : !llvm.vec<2 x i8>
%one = llvm.mlir.constant(1 : i32) : !llvm.i32
%vec_offset = llvm.insertelement  %offset, %offset1[%one : !llvm.i32] : !llvm.vec<2 x i8>

// Broadcasting count
// ...


	offset and count may have different bitwidths from base. In this case, both of these operands have to be zero extended (since they are treated as unsigned by the specification) or truncated. For the above example it would be:

// Zero extending offset after broadcasting
%res_offset = llvm.zext %vec_offset: !llvm.vec<2 x i8> to !llvm.vec<2 x i32>

Also, note that if the bitwidth of offset or count is greater than the bitwidth of base, truncation is still permitted. This is because the ops have a defined behaviour with offset and count being less than the size of base. It creates a natural upper bound on what values offset and count can take, which is 64. This can be expressed in less than 8 bits.




Now, having these two cases in mind, we can proceed with conversion for the ops and their operands.


spv.BitFieldInsert

This operation is implemented as a series of LLVM Dialect operations. First step would be to create a mask with bits set outside [offset, offset + count - 1]. Then, unchanged bits are extracted from base that are outside of [offset, offset + count - 1]. The result is ored with shifted insert.

// Create mask
// %minus_one = llvm.mlir.constant(-1 : i32) : !llvm.i32
// %t0        = llvm.shl %minus_one, %count : !llvm.i32
// %t1        = llvm.xor %t0, %minus_one : !llvm.i32
// %t2        = llvm.shl %t1, %offset : !llvm.i32
// %mask      = llvm.xor %t2, %minus_one : !llvm.i32

// Extract unchanged bits from the Base
// %new_base  = llvm.and %base, %mask : !llvm.i32

// Insert new bits
// %sh_insert = llvm.shl %insert, %offset : !llvm.i32
// %res       = llvm.or %new_base, %sh_insert : !llvm.i32
%res = spv.BitFieldInsert %base, %insert, %offset, %count : i32, i32, i32



spv.BitFieldSExtract

To implement spv.BitFieldSExtract, base is shifted left by [sizeof(base) - (count + offset)], so that the bit at offset + count - 1 is the most significant bit. After, the result is shifted right, filling the bits with the sign bit.

// Calculate the amount to shift left.
// %size    = llvm.mlir.constant(32 : i32) : !llvm.i32
// %t0      = llvm.add %count, %offset : !llvm.i32
// %t1      = llvm.sub %size, %t0 : !llvm.i32

// Shift left and then right to extract the bits
// %sh_left = llvm.shl %base, %t1 : !llvm.i32
// %t2      = llvm.add %offset, %t1 : !llvm.i32
// %res     = llvm.ashr %sh_left, %t2 : !llvm.i32
%res = spv.BitFieldSExtract %base, %offset, %count : i32, i32, i32



spv.BitFieldUExtract

For this op a similar pattern as for spv.BitFieldInsert is used. First, a mask with bits set at [0, count - 1] is created. Then base is shifted by offset and the mask is applied.

// Create a mask
// %minus_one = llvm.mlir.constant(-1 : i32) : !llvm.i32
// %t0        = llvm.shl %minus_one, %count : !llvm.i32
// mask       = llvm.xor  %t0, %minus_one : !llvm.i32

// Shift Base and apply mask
// %sh_base   = llvm.lshr %base, %offset : !llvm.i32
// %res       = llvm.and %sh_base, %mask : !llvm.i32
%res = spv.BitFieldUExtract %base, %offset, %count : i32, i32, i32





Cast ops


Direct conversions




	SPIR-V Dialect op
	LLVM Dialect op





	spv.ConvertFToS
	llvm.fptosi



	spv.ConvertFToU
	llvm.fptoui



	spv.ConvertSToF
	llvm.sitofp



	spv.ConvertUToF
	llvm.uitofp







spv.Bitcast

This operation has a direct counterpart in LLVM: llvm.bitcast. It is treated separately since it also supports pointer to pointer bit pattern-preserving type conversion, apart from regular scalar or vector of numerical type.



Special cases

Special cases include spv.FConvert, spv.SConvert and spv.UConvert. These operations are either a truncate or extend. Let’s denote the operand component width as A, and result component width as R. Then, the following mappings are used:


spv.FConvert




	Case
	LLVM Dialect op





	A < R
	llvm.fpext



	A > R
	llvm.fptrunc







spv.SConvert




	Case
	LLVM Dialect op





	A < R
	llvm.sext



	A > R
	llvm.trunc







spv.UConvert




	Case
	LLVM Dialect op





	A < R
	llvm.zext



	A > R
	llvm.trunc





The case when A = R is not possible, based on SPIR-V Dialect specification: > The component width cannot equal the component width in Result Type.





Comparison ops

SPIR-V comparison ops are mapped to LLVM icmp and fcmp operations.




	SPIR-V Dialect op
	LLVM Dialect op





	spv.IEqual
	llvm.icmp "eq"



	spv.INotEqual
	llvm.icmp "ne"



	spv.FOrdEqual
	llvm.fcmp "oeq"



	spv.FOrdGreaterThan
	llvm.fcmp "ogt"



	spv.FOrdGreaterThanEqual
	llvm.fcmp "oge"



	spv.FOrdLessThan
	llvm.fcmp "olt"



	spv.FOrdLessThanEqual
	llvm.fcmp "ole"



	spv.FOrdNotEqual
	llvm.fcmp "one"



	spv.FUnordEqual
	llvm.fcmp "ueq"



	spv.FUnordGreaterThan
	llvm.fcmp "ugt"



	spv.FUnordGreaterThanEqual
	llvm.fcmp "uge"



	spv.FUnordLessThan
	llvm.fcmp "ult"



	spv.FUnordLessThanEqual
	llvm.fcmp "ule"



	spv.FUnordNotEqual
	llvm.fcmp "une"



	spv.SGreaterThan
	llvm.icmp "sgt"



	spv.SGreaterThanEqual
	llvm.icmp "sge"



	spv.SLessThan
	llvm.icmp "slt"



	spv.SLessThanEqual
	llvm.icmp "sle"



	spv.UGreaterThan
	llvm.icmp "ugt"



	spv.UGreaterThanEqual
	llvm.icmp "uge"



	spv.ULessThan
	llvm.icmp "ult"



	spv.ULessThanEqual
	llvm.icmp "ule"







Composite ops

Currently, conversion supports rewrite patterns for spv.CompositeExtract and spv.CompositeInsert. We distinguish two cases for these operations: when the composite object is a vector, and when the composite object is of a non-vector type (i.e. struct, array or runtime array).




	Composite type
	SPIR-V Dialect op
	LLVM Dialect op





	vector
	spv.CompositeExtract
	llvm.extractelement



	vector
	spv.CompositeInsert
	llvm.insertelement



	non-vector
	spv.CompositeExtract
	llvm.extractvalue



	non-vector
	spv.CompositeInsert
	llvm.insertvalue







spv.EntryPoint and spv.ExecutionMode

Note: these conversions are likely to be changed in the future

First of all, it is important to note that there is no direct representation of entry points in LLVM. At the moment, we choose to remove these ops, assuming that the module generated from SPIR-V has no other internal functions (This assumption is actually made in mlir-spirv-cpu-runner).

However, these ops can be used to see which functions in the module are entry point functions. spv.ExecutionMode also carries the metadata associated with the entry point such as LocalSize, which indicates the workgroup size in the x, y, and z dimensions. It will be useful to represent this on the LLVM side (TODO).



Logical ops

Logical ops follow a similar pattern as bitwise ops, with the difference that they operate on i1 or vector of i1 values. The following mapping is used to emulate SPIR-V ops behaviour:




	SPIR-V Dialect op
	LLVM Dialect op





	spv.LogicalAnd
	llvm.and



	spv.LogicalOr
	llvm.or



	spv.LogicalEqual
	llvm.icmp "eq"



	spv.LogicalNotEqual
	llvm.icmp "ne"





spv.LogicalNot has the same conversion pattern as bitwise spv.Not. It is modelled with xor operation with a mask with all bits set.

                                  %mask = llvm.mlir.constant(-1 : i1) : !llvm.i1
%0 = spv.LogicalNot %op : i1  =>  %0    = llvm.xor %op, %mask : !llvm.i1



Memory ops

This section describes the conversion patterns for SPIR-V dialect operations that concern memory.


spv.AccessChain

spv.AccessChain is mapped to llvm.getelementptr op. In order to create a valid LLVM op, we also add a 0 index to the spv.AccessChain’s indices list in order to go through the pointer.

// Access the 1st element of the array
%i   = spv.constant 1: i32
%var = spv.Variable : !spv.ptr<!spv.struct<f32, !spv.array<4xf32>>, Function>
%el  = spv.AccessChain %var[%i, %i] : !spv.ptr<!spv.struct<f32, !spv.array<4xf32>>, Function>, i32, i32

// Corresponding LLVM dialect code
%i   = ...
%var = ...
%0   = llvm.mlir.constant(0 : i32) : !llvm.i32
%el  = llvm.getelementptr %var[%0, %i, %i] : (!llvm.ptr<struct<packed (float, array<4 x float>)>>, !llvm.i32, !llvm.i32, !llvm.i32)



spv.Load and spv.Store

These ops are converted to their LLVM counterparts: llvm.load and llvm.store. If the op has a memory access attribute, then there are the following cases, based on the value of the attribute:


	Aligned: alignment is passed on to LLVM op builder, for example:

// llvm.store %ptr, %val {alignment = 4 : i64} : !llvm.ptr<float>
spv.Store "Function" %ptr, %val ["Aligned", 4] : f32


	None: same case as if there is no memory access attribute.


	Nontemporal: set nontemporal flag, for example:

// %res = llvm.load %ptr {nontemporal} : !llvm.ptr<float>
%res = spv.Load "Function" %ptr ["Nontemporal"] : f32


	Volatile: mark the op as volatile, for example:

// %res = llvm.load volatile %ptr : !llvm.ptr<float>
%res = spv.Load "Function" %ptr ["Volatile"] : f32

Otherwise the conversion fails as other cases (MakePointerAvailable, MakePointerVisible, NonPrivatePointer) are not supported yet.






spv.globalVariable and spv._address_of

spv.globalVariable is modelled with llvm.mlir.global op. However, there is a difference that has to be pointed out.

In SPIR-V dialect, the global variable returns a pointer, whereas in LLVM dialect the global holds an actual value. This difference is handled by spv._address_of and llvm.mlir.addressof ops that both return a pointer and are used to reference the global.

// Original SPIR-V module
spv.module Logical GLSL450 {
  spv.globalVariable @struct : !spv.ptr<!spv.struct<f32, !spv.array<10xf32>>, Private>
  spv.func @func() -> () "None" {
    %0 = spv._address_of @struct : !spv.ptr<!spv.struct<f32, !spv.array<10xf32>>, Private>
    spv.Return
  }
}

// Converted result
module {
  llvm.mlir.global private @struct() : !llvm.struct<packed (float, [10 x float])>
  llvm.func @func() {
    %0 = llvm.mlir.addressof @struct : !llvm.ptr<struct<packed (float, [10 x float])>>
    llvm.return
  }
}

The SPIR-V to LLVM conversion does not involve modelling of workgroups. Hence, we say that only current invocation is in conversion’s scope. This means that global variables with pointers of Input, Output, and Private storage classes are supported. Also, StorageBuffer storage class is allowed for executing mlir-spirv-cpu-runner.

Moreover, bind that specifies the descriptor set and the binding number and built_in that specifies SPIR-V BuiltIn decoration have no conversion into LLVM dialect.

Currently llvm.mlir.globals are created with private linkage for Private storage class and External for other storage classes, based on SPIR-V spec:


By default, functions and global variables are private to a module and cannot be accessed by other modules. However, a module may be written to export or import functions and global (module scope) variables.



If the global variable’s pointer has Input storage class, then a constant flag is added to LLVM op:

spv.globalVariable @var : !spv.ptr<f32, Input>    =>    llvm.mlir.global external constant @var() : !llvm.float



spv.Variable

Per SPIR-V dialect spec, spv.Variable allocates an object in memory, resulting in a pointer to it, which can be used with spv.Load and spv.Store. It is also a function-level variable.

spv.Variable is modelled as llvm.alloca op. If initialized, an additional store instruction is used. Note that there is no initialization for arrays and structs since constants of these types are not supported in LLVM dialect (TODO). Also, at the moment initialization is only possible via spv.constant.

// Conversion of VariableOp without initialization
                                                               %size = llvm.mlir.constant(1 : i32) : !llvm.i32
%res = spv.Variable : !spv.ptr<vector<3xf32>, Function>   =>   %res  = llvm.alloca  %size x !llvm.vec<3 x float> : (!llvm.i32) -> !llvm.ptr<vec<3 x float>>

// Conversion of VariableOp with initialization
                                                               %c    = llvm.mlir.constant(0 : i64) : !llvm.i64
%c   = spv.constant 0 : i64                                    %size = llvm.mlir.constant(1 : i32) : !llvm.i32
%res = spv.Variable init(%c) : !spv.ptr<i64, Function>    =>   %res  = llvm.alloca %[[SIZE]] x !llvm.i64 : (!llvm.i32) -> !llvm.ptr<i64>
                                                               llvm.store %c, %res : !llvm.ptr<i64>

Note that simple conversion to alloca may not be sufficient if the code has some scoping. For example, if converting ops executed in a loop into allocas, a stack overflow may occur. For this case, stacksave/stackrestore pair can be used (TODO).




Miscellaneous ops with direct conversions

There are multiple SPIR-V ops that do not fit in a particular group but can be converted directly to LLVM dialect. Their conversion is addressed in this section.




	SPIR-V Dialect op
	LLVM Dialect op





	spv.Select
	llvm.select



	spv.Undef
	llvm.mlir.undef







Shift ops

Shift operates on two operands: shift and base.

In SPIR-V dialect, shift and base may have different bit width. On the contrary, in LLVM Dialect both base and shift have to be of the same bitwidth. This leads to the following conversions:


	if base has the same bitwidth as shift, the conversion is straightforward.


	if base has a greater bit width than shift, shift is sign or zero extended first. Then the extended value is passed to the shift.


	otherwise, the conversion is considered to be illegal.




// Shift without extension
%res0 = spv.ShiftRightArithmetic %0, %2 : i32, i32  =>  %res0 = llvm.ashr %0, %2 : !llvm.i32

// Shift with extension
                                                        %ext  = llvm.sext %1 : !llvm.i16 to !llvm.i32
%res1 = spv.ShiftRightArithmetic %0, %1 : i32, i16  =>  %res1 = llvm.ashr %0, %ext: !llvm.i32



spv.constant

At the moment spv.constant conversion supports scalar and vector constants only.


Mapping

spv.constant is mapped to llvm.mlir.constant. This is a straightforward conversion pattern with a special case when the argument is signed or unsigned.



Special case

SPIR-V constant can be a signed or unsigned integer. Since LLVM Dialect does not have signedness semantics, this case should be handled separately.

The conversion casts constant value attribute to a signless integer or a vector of signless integers. This is correct because in SPIR-V, like in LLVM, how to interpret an integer number is also dictated by the opcode. However, in reality hardware implementation might show unexpected behavior. Therefore, it is better to handle it case-by-case, given that the purpose of the conversion is not to cover all possible corner cases.

// %0 = llvm.mlir.constant(0 : i8) : !llvm.i8
%0 = spv.constant  0 : i8

// %1 = llvm.mlir.constant(dense<[2, 3, 4]> : vector<3xi32>) : !llvm.vec<3 x i32>
%1 = spv.constant dense<[2, 3, 4]> : vector<3xui32>




Not implemented ops

There is no support of the following ops:


	All Atomic ops

	All matrix ops

	All GroupNonUniform ops



As well as:


	spv.CompositeConstruct

	spv.ControlBarrier

	spv.CopyMemory

	spv.FMod

	spv.GLSL.SAbs

	spv.GLSL.SSign

	spv.GLSL.FSign

	spv.MemoryBarrier

	spv._reference_of

	spv.SMod

	spv.specConstant

	spv.SubgroupBallotKHR

	spv.Unreachable






Control flow conversion


Branch ops

spv.Branch and spv.BranchConditional are mapped to llvm.br and llvm.cond_br. Branch weights for spv.BranchConditional are mapped to corresponding branch_weights attribute of llvm.cond_br. When translated to proper LLVM, branch_weights are converted into LLVM metadata associated with the conditional branch.



spv.FunctionCall

spv.FunctionCall maps to llvm.call. For example:

%0 = spv.FunctionCall @foo() : () -> i32    =>    %0 = llvm.call @foo() : () -> !llvm.float
spv.FunctionCall @bar(%0) : (i32) -> ()     =>    llvm.call @bar(%0) : (!llvm.float) -> ()



spv.selection and spv.loop

Control flow within spv.selection and spv.loop is lowered directly to LLVM via branch ops. The conversion can only be applied to selection or loop with all blocks being reachable. Moreover, selection and loop control attributes (such as Flatten or Unroll) are not supported at the moment.

// Conversion of selection
%cond = spv.constant true                               %cond = llvm.mlir.constant(true) : !llvm.i1
spv.selection {
  spv.BranchConditional %cond, ^true, ^false            llvm.cond_br %cond, ^true, ^false

^true:                                                                                              ^true:
  // True block code                                    // True block code
  spv.Branch ^merge                             =>      llvm.br ^merge

^false:                                               ^false:
  // False block code                                   // False block code
  spv.Branch ^merge                                     llvm.br ^merge

^merge:                                               ^merge:
  spv._merge                                            llvm.br ^continue
}
// Remaining code                                                                           ^continue:
                                                        // Remaining code

// Conversion of loop
%cond = spv.constant true                               %cond = llvm.mlir.constant(true) : !llvm.i1
spv.loop {
  spv.Branch ^header                                    llvm.br ^header

^header:                                              ^header:
  // Header code                                        // Header code
  spv.BranchConditional %cond, ^body, ^merge    =>      llvm.cond_br %cond, ^body, ^merge

^body:                                                ^body:
  // Body code                                          // Body code
  spv.Branch ^continue                                  llvm.br ^continue

^continue:                                            ^continue:
  // Continue code                                      // Continue code
  spv.Branch ^header                                    llvm.br ^header

^merge:                                               ^merge:
  spv._merge                                            llvm.br ^remaining
}
// Remaining code                                     ^remaining:
                                                        // Remaining code




Decorations conversion

Note: these conversions have not been implemented yet



GLSL extended instruction set

This section describes how SPIR-V ops from GLSL extended instructions set are mapped to LLVM Dialect.


Direct conversions




	SPIR-V Dialect op
	LLVM Dialect op





	spv.GLSL.Ceil
	llvm.intr.ceil



	spv.GLSL.Cos
	llvm.intr.cos



	spv.GLSL.Exp
	llvm.intr.exp



	spv.GLSL.FAbs
	llvm.intr.fabs



	spv.GLSL.Floor
	llvm.intr.floor



	spv.GLSL.FMax
	llvm.intr.maxnum



	spv.GLSL.FMin
	llvm.intr.minnum



	spv.GLSL.Log
	llvm.intr.log



	spv.GLSL.Sin
	llvm.intr.sin



	spv.GLSL.Sqrt
	llvm.intr.sqrt



	spv.GLSL.SMax
	llvm.intr.smax



	spv.GLSL.SMin
	llvm.intr.smin







Special cases

spv.InverseSqrt is mapped to:

                                           %one  = llvm.mlir.constant(1.0 : f32) : !llvm.float
%res = spv.InverseSqrt %arg : f32    =>    %sqrt = "llvm.intr.sqrt"(%arg) : (!llvm.float) -> !llvm.float
                                           %res  = fdiv %one, %sqrt : !llvm.float

spv.Tan is mapped to:

                                   %sin = "llvm.intr.sin"(%arg) : (!llvm.float) -> !llvm.float
%res = spv.Tan %arg : f32    =>    %cos = "llvm.intr.cos"(%arg) : (!llvm.float) -> !llvm.float
                                   %res = fdiv %sin, %cos : !llvm.float

spv.Tanh is modelled using the equality tanh(x) = {exp(2x) - 1}/{exp(2x) + 1}:

                                     %two   = llvm.mlir.constant(2.0: f32) : !llvm.float
                                     %2xArg = llvm.fmul %two, %arg : !llvm.float
                                     %exp   = "llvm.intr.exp"(%2xArg) : (!llvm.float) -> !llvm.float
%res = spv.Tanh %arg : f32     =>    %one   = llvm.mlir.constant(1.0 : f32) : !llvm.float
                                     %num   = llvm.fsub %exp, %one : !llvm.float
                                     %den   = llvm.fadd %exp, %one : !llvm.float
                                     %res   = llvm.fdiv %num, %den : !llvm.float




Function conversion and related ops

This section describes the conversion of function-related operations from SPIR-V to LLVM dialect.


spv.func

This op declares or defines a SPIR-V function and it is converted to llvm.func. This conversion handles signature conversion, and function control attributes remapping to LLVM dialect function passthrough attribute.

The following mapping is used to map SPIR-V function control to LLVM function attributes:




	SPIR-V Function Control Attributes
	LLVM Function Attributes





	None
	No function attributes passed



	Inline
	alwaysinline



	DontInline
	noinline



	Pure
	readonly



	Const
	readnone







spv.Return and spv.ReturnValue

In LLVM IR, functions may return either 1 or 0 value. Hence, we map both ops to llvm.return with or without a return value.




Module ops

Module in SPIR-V has one region that contains one block. It is defined via spv.module op that also takes a range of attributes:


	Addressing model

	Memory model

	Version-Capability-Extension attribute



spv.module is converted into ModuleOp. This plays a role of enclosing scope to LLVM ops. At the moment, SPIR-V module attributes are ignored.

spv._module_end is mapped to an equivalent terminator ModuleTerminatorOp.



mlir-spirv-cpu-runner

Note: this is a section in progress, more information will appear soon
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MLIR Python Bindings

Current status: Under development and not enabled by default


Building


Pre-requisites


	pybind11 must be installed and able to be located by CMake.

	A relatively recent Python3 installation





CMake variables


	MLIR_BINDINGS_PYTHON_ENABLED:BOOL

Enables building the Python bindings. Defaults to OFF.


	MLIR_PYTHON_BINDINGS_VERSION_LOCKED:BOOL

Links the native extension against the Python runtime library, which is optional on some platforms. While setting this to OFF can yield some greater deployment flexibility, linking in this way allows the linker to report compile time errors for unresolved symbols on all platforms, which makes for a smoother development workflow. Defaults to ON.


	PYTHON_EXECUTABLE:STRING

Specifies the python executable used for the LLVM build, including for determining header/link flags for the Python bindings. On systems with multiple Python implementations, setting this explicitly to the preferred python3 executable is strongly recommended.







Design


Use cases

There are likely two primary use cases for the MLIR python bindings:


	Support users who expect that an installed version of LLVM/MLIR will yield the ability to import mlir and use the API in a pure way out of the box.


	Downstream integrations will likely want to include parts of the API in their private namespace or specially built libraries, probably mixing it with other python native bits.






Composable modules

In order to support use case #2, the Python bindings are organized into composable modules that downstream integrators can include and re-export into their own namespace if desired. This forces several design points:


	Separate the construction/populating of a py::module from PYBIND11_MODULE global constructor.


	Introduce headers for C++-only wrapper classes as other related C++ modules will need to interop with it.


	Separate any initialization routines that depend on optional components into its own module/dependency (currently, things like registerAllDialects fall into this category).




There are a lot of co-related issues of shared library linkage, distribution concerns, etc that affect such things. Organizing the code into composable modules (versus a monolithic cpp file) allows the flexibility to address many of these as needed over time. Also, compilation time for all of the template meta-programming in pybind scales with the number of things you define in a translation unit. Breaking into multiple translation units can significantly aid compile times for APIs with a large surface area.



Submodules

Generally, the C++ codebase namespaces most things into the mlir namespace. However, in order to modularize and make the Python bindings easier to understand, sub-packages are defined that map roughly to the directory structure of functional units in MLIR.

Examples:


	mlir.ir

	mlir.passes (pass is a reserved word :( )

	mlir.dialect

	mlir.execution_engine (aside from namespacing, it is important that “bulky”/optional parts like this are isolated)



In addition, initialization functions that imply optional dependencies should be in underscored (notionally private) modules such as _init and linked separately. This allows downstream integrators to completely customize what is included “in the box” and covers things like dialect registration, pass registration, etc.



Loader

LLVM/MLIR is a non-trivial python-native project that is likely to co-exist with other non-trivial native extensions. As such, the native extension (i.e. the .so/.pyd/.dylib) is exported as a notionally private top-level symbol (_mlir), while a small set of Python code is provided in mlir/__init__.py and siblings which loads and re-exports it. This split provides a place to stage code that needs to prepare the environment before the shared library is loaded into the Python runtime, and also provides a place that one-time initialization code can be invoked apart from module constructors.

To start with the mlir/__init__.py loader shim can be very simple and scale to future need:

from _mlir import *




Limited use of globals

For normal operations, parent-child constructor relationships are realized with constructor methods on a parent class as opposed to requiring invocation/creation from a global symbol.

For example, consider two code fragments:


op = build_my_op()

region = mlir.Region(op)


vs


op = build_my_op()

region = op.new_region()


For tightly coupled data structures like Operation, the latter is generally preferred because:


	It is syntactically less possible to create something that is going to access illegal memory (less error handling in the bindings, less testing, etc).


	It reduces the global-API surface area for creating related entities. This makes it more likely that if constructing IR based on an Operation instance of unknown providence, receiving code can just call methods on it to do what they want versus needing to reach back into the global namespace and find the right Region class.


	It leaks fewer things that are in place for C++ convenience (i.e. default constructors to invalid instances).






Use the C-API

The Python APIs should seek to layer on top of the C-API to the degree possible. Especially for the core, dialect-independent parts, such a binding enables packaging decisions that would be difficult or impossible if spanning a C++ ABI boundary. In addition, factoring in this way side-steps some very difficult issues that arise when combining RTTI-based modules (which pybind derived things are) with non-RTTI polymorphic C++ code (the default compilation mode of LLVM).



Ownership in the Core IR

There are several top-level types in the core IR that are strongly owned by their python-side reference:


	PyContext (mlir.ir.Context)

	PyModule (mlir.ir.Module)

	PyOperation (mlir.ir.Operation) - but with caveats



All other objects are dependent. All objects maintain a back-reference (keep-alive) to their closest containing top-level object. Further, dependent objects fall into two categories: a) uniqued (which live for the life-time of the context) and b) mutable. Mutable objects need additional machinery for keeping track of when the C++ instance that backs their Python object is no longer valid (typically due to some specific mutation of the IR, deletion, or bulk operation).


Operation hierarchy

As mentioned above, PyOperation is special because it can exist in either a top-level or dependent state. The life-cycle is unidirectional: operations can be created detached (top-level) and once added to another operation, they are then dependent for the remainder of their lifetime. The situation is more complicated when considering construction scenarios where an operation is added to a transitive parent that is still detached, necessitating further accounting at such transition points (i.e. all such added children are initially added to the IR with a parent of their outer-most detached operation, but then once it is added to an attached operation, they need to be re-parented to the containing module).

Due to the validity and parenting accounting needs, PyOperation is the owner for regions and blocks and needs to be a top-level type that we can count on not aliasing. This let’s us do things like selectively invalidating instances when mutations occur without worrying that there is some alias to the same operation in the hierarchy. Operations are also the only entity that are allowed to be in a detached state, and they are interned at the context level so that there is never more than one Python mlir.ir.Operation object for a unique MlirOperation, regardless of how it is obtained.

The C/C++ API allows for Region/Block to also be detached, but it simplifies the ownership model a lot to eliminate that possibility in this API, allowing the Region/Block to be completely dependent on its owning operation for accounting. The aliasing of Python Region/Block instances to underlying MlirRegion/MlirBlock is considered benign and these objects are not interned in the context (unlike operations).

If we ever want to re-introduce detached regions/blocks, we could do so with new “DetachedRegion” class or similar and also avoid the complexity of accounting. With the way it is now, we can avoid having a global live list for regions and blocks. We may end up needing an op-local one at some point TBD, depending on how hard it is to guarantee how mutations interact with their Python peer objects. We can cross that bridge easily when we get there.

Module, when used purely from the Python API, can’t alias anyway, so we can use it as a top-level ref type without a live-list for interning. If the API ever changes such that this cannot be guaranteed (i.e. by letting you marshal a native-defined Module in), then there would need to be a live table for it too.





Style

In general, for the core parts of MLIR, the Python bindings should be largely isomorphic with the underlying C++ structures. However, concessions are made either for practicality or to give the resulting library an appropriately “Pythonic” flavor.


Properties vs get*() methods

Generally favor converting trivial methods like getContext(), getName(), isEntryBlock(), etc to read-only Python properties (i.e. context). It is primarily a matter of calling def_property_readonly vs def in binding code, and makes things feel much nicer to the Python side.

For example, prefer:

m.def_property_readonly("context", ...)


Over:

m.def("getContext", ...)




repr methods

Things that have nice printed representations are really great :) If there is a reasonable printed form, it can be a significant productivity boost to wire that to the __repr__ method (and verify it with a doctest).



CamelCase vs snake_case

Name functions/methods/properties in snake_case and classes in CamelCase. As a mechanical concession to Python style, this can go a long way to making the API feel like it fits in with its peers in the Python landscape.

If in doubt, choose names that will flow properly with other PEP 8 style names.



Prefer pseudo-containers

Many core IR constructs provide methods directly on the instance to query count and begin/end iterators. Prefer hoisting these to dedicated pseudo containers.

For example, a direct mapping of blocks within regions could be done this way:

region = ...

for block in region:

  pass


However, this way is preferred:

region = ...

for block in region.blocks:

  pass

print(len(region.blocks))
print(region.blocks[0])
print(region.blocks[-1])


Instead of leaking STL-derived identifiers (front, back, etc), translate them to appropriate __dunder__ methods and iterator wrappers in the bindings.

Note that this can be taken too far, so use good judgment. For example, block arguments may appear container-like but have defined methods for lookup and mutation that would be hard to model properly without making semantics complicated. If running into these, just mirror the C/C++ API.



Provide one stop helpers for common things

One stop helpers that aggregate over multiple low level entities can be incredibly helpful and are encouraged within reason. For example, making Context have a parse_asm or equivalent that avoids needing to explicitly construct a SourceMgr can be quite nice. One stop helpers do not have to be mutually exclusive with a more complete mapping of the backing constructs.




Testing

Tests should be added in the test/Bindings/Python directory and should typically be .py files that have a lit run line.

While lit can run any python module, prefer to lay tests out according to these rules:


	For tests of the API surface area, prefer doctest.

	For generative tests (those that produce IR), define a Python module that constructs/prints the IR and pipe it through FileCheck.

	Parsing should be kept self-contained within the module under test by use of raw constants and an appropriate parse_asm call.

	Any file I/O code should be staged through a tempfile vs relying on file artifacts/paths outside of the test module.




Sample Doctest

# RUN: %PYTHON %s

"""
  >>> m = load_test_module()
Test basics:
  >>> m.operation.name
  "module"
  >>> m.operation.is_registered
  True
  >>> ... etc ...

Verify that repr prints:
  >>> m.operation
  <operation 'module'>
"""

import mlir

TEST_MLIR_ASM = r"""
func @test_operation_correct_regions() {
  // ...
}
"""

# TODO: Move to a test utility class once any of this actually exists.
def load_test_module():
  ctx = mlir.ir.Context()
  ctx.allow_unregistered_dialects = True
  module = ctx.parse_asm(TEST_MLIR_ASM)
  return module


if __name__ == "__main__":
  import doctest
  doctest.testmod()




Sample FileCheck test

# RUN: %PYTHON %s | mlir-opt -split-input-file | FileCheck

# TODO: Move to a test utility class once any of this actually exists.
def print_module(f):
  m = f()
  print("// -----")
  print("// TEST_FUNCTION:", f.__name__)
  print(m.to_asm())
  return f

# CHECK-LABEL: TEST_FUNCTION: create_my_op
@print_module
def create_my_op():
  m = mlir.ir.Module()
  builder = m.new_op_builder()
  # CHECK: mydialect.my_operation ...
  builder.my_op()
  return m
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Quantization

This document outlines the design of the MLIR quantization system. While the term “quantization” is highly overloaded, in this case, it refers to a fairly narrow scope of techniques in use to enable conversion of floating-point computations to corresponding and plausible variants expressed in integer math for inference, as has historically been supported by low-bit depth inference engines such as TFLite, various accelerator hardware, and many DSPs.

Much of this is inspired by the approach taken in this paper with many extensions and adaptations folded in. It specifically documents the positions that MLIR has taken on the topic, and is not a general reference.

[TOC]


Uniform quantization

The primary quantization mechanism supported by MLIR is a scheme which can express fixed point and affine transformations via uniformly spaced point on the Real number line.

Further, the scheme can be applied:


	per-layer : Applying to every value within the target type.

	per-axis (also called per-channel) : Applying individually to each index along a specific axis of a tensor type.




Fixed point values

Fixed point values are a Real number divided by a scale. We will call the result of the divided real the scaled value.

real_value=scaled_value*scale real\_value = scaled\_value * scale 

The scale can be interpreted as the distance, in real units, between neighboring scaled values. For example, if the scale is π \pi , then fixed point values with this scale can only represent multiples of π \pi , and nothing in between. The maximum rounding error to convert an arbitrary Real to a fixed point value with a given scale scale  is scale2 \frac{scale}{2} . Continuing the previous example, when scale=π scale = \pi , the maximum rounding error will be π2
\frac{\pi}{2} .

Multiplication can be performed on scaled values with different scales, using the same algorithm as multiplication of real values (note that product scaled value has scaleproduct=scaleleft operand*scaleright operand scale_{product} = scale_{left \mbox{ } operand} * scale_{right
\mbox{ } operand} ). Addition can be performed on scaled values, so long as they have the same scale, using the same algorithm for addition of real values. This makes it convenient to represent scaled values on a computer as signed integers, and perform arithmetic on those signed integers, because the results will be correct scaled values.



Affine values

Mathematically speaking, affine values are the result of adding a Real-valued zero point, to a scaled value. Alternatively (and equivalently), subtracting a zero point from an affine value results in a scaled value:

real_value=scaled_value*scale=(affine_value−zero_point)*scale real\_value = scaled\_value * scale = (affine\_value - zero\_point) * scale 

Essentially, affine values are a shift of the scaled values by some constant amount. Arithmetic (i.e., addition, subtraction, multiplication, division) cannot, in general, be directly performed on affine values; they must first be converted to the equivalent scaled values.

As alluded to above, the motivation for using affine values is to more efficiently represent real values that will actually be encountered during computation. Frequently, real values that will be encountered are not symmetric around the real zero. We also make the assumption that the real zero is encountered during computation, and should thus be represented.

In this case, it is inefficient to store scaled values represented by signed integers, as some of the signed integers will never be used. In effect, the bit patterns corresponding to those signed integers are going to waste.

In order to exactly represent the real zero with an integral-valued affine value, the zero point must be an integer between the minimum and maximum affine value (inclusive). For example, given an affine value represented by an 8 bit unsigned integer, we have: 0≤zero_point≤255 0 \leq zero\_point \leq 255. This is important, because in convolution-like operations of deep neural networks, we frequently need to zero-pad inputs and outputs, so zero must be exactly representable, or the result will be biased.



Relation

Real values, fixed point values, and affine values relate through the following equation, which demonstrates how to convert one type of number to another:

real_value=scaled_value*scale=(affine_value−zero_point)*scale real\_value = scaled\_value * scale = (affine\_value - zero\_point) * scale 

Note that computers generally store mathematical values using a finite number of bits. Thus, while the above conversions are exact, to store the result in a finite number of bits, we must, in general, round the result of the conversion (this applies to both cases: storing using floating point and storing using fixed point). Note that a full discussion of rounding behavior is outside the scope of this document, and it is safe to assume unless otherwise stated that rounding should be according to the IEEE754 default of RNE (where hardware permits).



Converting between real and fixed point or affine

To convert a real value to a fixed point value, we must know the scale. To convert a real value to an affine value, we must know the scale and the zero point.


Real to affine

To convert an input tensor of real-valued elements (usually represented by a floating point format, frequently Single precision) to a tensor of affine elements represented by an integral type (e.g. 8-bit unsigned integer), the following conversion can be performed (note that it is not required that all representable values of the integral type are used):

affine_valueuint8oruint16=clampToTargetSize(roundToNearestInteger(real_valueSinglescaleSingle)sint32+zero_pointuint8oruint16)
\begin{align*}
af&fine\_value_{uint8 \, or \, uint16} \\
      &= clampToTargetSize(roundToNearestInteger( \frac{real\_value_{Single}}{scale_{Single}})_{sint32} + zero\_point_{uint8 \, or \, uint16})
\end{align*}


In the above, we assume that real_valuereal\_value is a Single, scalescale is a Single, roundToNearestIntegerroundToNearestInteger returns a signed 32-bit integer, and zero_pointzero\_point is an unsigned 8-bit or 16-bit integer. Note that bit depth and number of fixed point values are indicative of common types on typical hardware but is not constrained to particular bit depths or a requirement that the entire range of an N-bit integer is used.



Affine to real

To convert an output tensor of affine elements represented by uint8 or uint16 to a tensor of real-valued elements (usually represented with a floating point format, frequently Single precision), the following conversion can be performed:

real_valueSingle=roundToNearestFloat((affine_valueuint8oruint16−zero_pointuint8oruint16)sint32)Single*scaleSingle
\begin{align*}
re&al\_value_{Single} \\
      &= roundToNearestFloat((affine\_value_{uint8 \, or \, uint16} - zero\_point_{uint8 \, or \, uint16})_{sint32})_{Single} * scale_{Single}
\end{align*}


In the above, we assume that the result of subtraction is in 32-bit signed integer format, and that roundToNearestFloatroundToNearestFloat returns a Single.



Affine to fixed point

When the affine and fixed point scales are the same, subtract the zero point from the affine value to get the equivalent fixed point value.

scaled_value=affine_valuenon-negative−zero_pointnon-negative
scaled\_value = affine\_value_{non\mbox{-}negative} - zero\_point_{non\mbox{-}negative}




Fixed point to affine

When the affine and fixed point scales are the same, add the zero point to the fixed point value to get the equivalent affine value.

affine_valuenon-negative=scaled_value+zero_pointnon-negative
affine\_value_{non\mbox{-}negative} = scaled\_value + zero\_point_{non\mbox{-}negative}






Usage within MLIR

There are several components to the quantization system being developed within MLIR:


	Quantization dialect containing:


	A family of QuantizedTypes which represent the mapping between expressed values (typically of a floating point computer type) and storage values (typically of an integral computer type).

	Type conversion ops for converting between types based on a QuantizedType and its expressed and storage sub-types.

	Instrumentation ops for assigning instrumentation points within the computation where runtime statistics may help guide the quantization process.




	Integration with simulated quantization at training time


	TFLite native quantization


	The TFLite op-set natively supports uniform-quantized variants.

	Passes and tools exist to convert directly from the TensorFlow dialect to the TFLite quantized operation set.






Not every application of quantization will use all of these facilities. Specifically, the TensorFlow to TensorFlow Lite conversion uses the QuantizedTypes but has its own operations for type conversion and expression of the supporting math.



Quantization Dialect


Quantized type

TODO: Flesh this section out.


	QuantizedType base class

	UniformQuantizedType





Quantized type conversion operations


	qcast : Convert from an expressed type to QuantizedType

	dcast : Convert from a QuantizedType to its expressed type

	scast : Convert between a QuantizedType and its storage type





Instrumentation and constraint operations


	const_fake_quant : Emulates the logic of the historic TensorFlow fake_quant_with_min_max_args operation.

	stats_ref : Declares that statistics should be gathered at this point with a unique key and made available to future passes of the solver.

	stats : Declares inline statistics (per layer and per axis) for the point in the computation. stats_ref ops are generally converted to statistical operations once trial runs have been performed.

	coupled_ref : Declares points in the computation to be coupled from a type inference perspective based on a unique key.






Integration with simulated quantization at training time

TensorFlow has historically used the tf.quantization.fake_quant_* family of operations to simulate the effect of quantization at training time.

As originally implemented, TensorFlow Lite was the primary user of such operations at inference time. When quantized inference was enabled, if every eligible tensor passed through an appropriate fake_quant node (the rules of which tensors can have fake_quant applied are somewhat involved), then TensorFlow Lite would use the attributes of the fake_quant operations to make a judgment about how to convert to use kernels from its quantized operations subset.

In MLIR-based quantization, fake_quant_* operations are handled by converting them to a sequence of qcast (quantize) followed by dcast (dequantize) with an appropriate UniformQuantizedType as the target of the qcast operation.

This allows subsequent compiler passes to preserve the knowledge that quantization was simulated in a certain way, while giving the compiler flexibility to move the casts as it simplifies the computation and converts it to a form based on integral arithmetic.

This scheme also naturally allows computations that are partially quantized where the parts which could not be reduced to integral operations are still carried out in floating point with appropriate conversions at the boundaries.



TFLite native quantization

TODO: Flesh this out


General algorithm


	Take input min/max information and set the ArrayInfo (which really is InputOrOutputArrayInfo.

	In LegalizeTF, convert ArrayInfo min/max to tf.Quantize and tf.Dequantize nodes. (or tf.FakeQuant) Convert all constant FakeQuants to (tf.FQ -> tfl.Q -> tfl.DQ).

	Hardcode logic/propagation needs to happen here.

	Run TF constant folding.

	In PrepareTFL, convert all tf.FQ to (tfl.Q -> tfl.DQ).

	Run quantization pass that take (tfl.DQ (for both input and weights) -> op -> tfl.Q) and replaces with (op). Also replace (constant_float -> tfl.Q) with (constant_quant).
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MLIR Language Reference

MLIR (Multi-Level IR) is a compiler intermediate representation with similarities to traditional three-address SSA representations (like LLVM IR or SIL), but which introduces notions from polyhedral loop optimization as first-class concepts. This hybrid design is optimized to represent, analyze, and transform high level dataflow graphs as well as target-specific code generated for high performance data parallel systems. Beyond its representational capabilities, its single continuous design provides a framework to lower from dataflow graphs to high-performance target-specific code.

This document defines and describes the key concepts in MLIR, and is intended to be a dry reference document - the rationale documentation, glossary, and other content are hosted elsewhere.

MLIR is designed to be used in three different forms: a human-readable textual form suitable for debugging, an in-memory form suitable for programmatic transformations and analysis, and a compact serialized form suitable for storage and transport. The different forms all describe the same semantic content. This document describes the human-readable textual form.

[TOC]


High-Level Structure

MLIR is fundamentally based on a graph-like data structure of nodes, called Operations, and edges, called Values. Each Value is the result of exactly one Operation or Block Argument, and has a Value Type defined by the type system. Operations are contained in Blocks and Blocks are contained in Regions. Operations are also ordered within their containing block and Blocks are ordered in their containing region, although this order may or may not be semantically meaningful in a given kind of region). Operations may also contain regions, enabling hierarchical structures to be represented.

Operations can represent many different concepts, from higher-level concepts like function definitions, function calls, buffer allocations, view or slices of buffers, and process creation, to lower-level concepts like target-independent arithmetic, target-specific instructions, configuration registers, and logic gates. These different concepts are represented by different operations in MLIR and the set of operations usable in MLIR can be arbitrarily extended.

MLIR also provides an extensible framework for transformations on operations, using familiar concepts of compiler Passes. Enabling an arbitrary set of passes on an arbitrary set of operations results in a significant scaling challenge, since each transformation must potentially take into account the semantics of any operation. MLIR addresses this complexity by allowing operation semantics to be described abstractly using Traits and Interfaces, enabling transformations to operate on operations more generically. Traits often describe verification constraints on valid IR, enabling complex invariants to be captured and checked. (see [docs/Tutorials/Toy/Ch-2/#op-vs-operation-using-mlir-operations])

One obvious application of MLIR is to represent an SSA-based IR, like the LLVM core IR, with appropriate choice of Operation Types to define Modules, Functions, Branches, Allocations, and verification constraints to ensure the SSA Dominance property. MLIR includes a ‘standard’ dialect which defines just such structures. However, MLIR is intended to be general enough to represent other compiler-like data structures, such as Abstract Syntax Trees in a language frontend, generated instructions in a target-specific backend, or circuits in a High-Level Synthesis tool.

Here’s an example of an MLIR module:

// Compute A*B using an implementation of multiply kernel and print the
// result using a TensorFlow op. The dimensions of A and B are partially
// known. The shapes are assumed to match.
func @mul(%A: tensor<100x?xf32>, %B: tensor<?x50xf32>) -> (tensor<100x50xf32>) {
  // Compute the inner dimension of %A using the dim operation.
  %n = dim %A, 1 : tensor<100x?xf32>

  // Allocate addressable "buffers" and copy tensors %A and %B into them.
  %A_m = alloc(%n) : memref<100x?xf32>
  tensor_store %A to %A_m : memref<100x?xf32>

  %B_m = alloc(%n) : memref<?x50xf32>
  tensor_store %B to %B_m : memref<?x50xf32>

  // Call function @multiply passing memrefs as arguments,
  // and getting returned the result of the multiplication.
  %C_m = call @multiply(%A_m, %B_m)
          : (memref<100x?xf32>, memref<?x50xf32>) -> (memref<100x50xf32>)

  dealloc %A_m : memref<100x?xf32>
  dealloc %B_m : memref<?x50xf32>

  // Load the buffer data into a higher level "tensor" value.
  %C = tensor_load %C_m : memref<100x50xf32>
  dealloc %C_m : memref<100x50xf32>

  // Call TensorFlow built-in function to print the result tensor.
  "tf.Print"(%C){message: "mul result"}
                  : (tensor<100x50xf32) -> (tensor<100x50xf32>)

  return %C : tensor<100x50xf32>
}

// A function that multiplies two memrefs and returns the result.
func @multiply(%A: memref<100x?xf32>, %B: memref<?x50xf32>)
          -> (memref<100x50xf32>)  {
  // Compute the inner dimension of %A.
  %n = dim %A, 1 : memref<100x?xf32>

  // Allocate memory for the multiplication result.
  %C = alloc() : memref<100x50xf32>

  // Multiplication loop nest.
  affine.for %i = 0 to 100 {
     affine.for %j = 0 to 50 {
        store 0 to %C[%i, %j] : memref<100x50xf32>
        affine.for %k = 0 to %n {
           %a_v  = load %A[%i, %k] : memref<100x?xf32>
           %b_v  = load %B[%k, %j] : memref<?x50xf32>
           %prod = mulf %a_v, %b_v : f32
           %c_v  = load %C[%i, %j] : memref<100x50xf32>
           %sum  = addf %c_v, %prod : f32
           store %sum, %C[%i, %j] : memref<100x50xf32>
        }
     }
  }
  return %C : memref<100x50xf32>
}



Notation

MLIR has a simple and unambiguous grammar, allowing it to reliably round-trip through a textual form. This is important for development of the compiler - e.g. for understanding the state of code as it is being transformed and writing test cases.

This document describes the grammar using Extended Backus-Naur Form (EBNF).

This is the EBNF grammar used in this document, presented in yellow boxes.

alternation ::= expr0 | expr1 | expr2  // Either expr0 or expr1 or expr2.
sequence    ::= expr0 expr1 expr2      // Sequence of expr0 expr1 expr2.
repetition0 ::= expr*  // 0 or more occurrences.
repetition1 ::= expr+  // 1 or more occurrences.
optionality ::= expr?  // 0 or 1 occurrence.
grouping    ::= (expr) // Everything inside parens is grouped together.
literal     ::= `abcd` // Matches the literal `abcd`.

Code examples are presented in blue boxes.

// This is an example use of the grammar above:
// This matches things like: ba, bana, boma, banana, banoma, bomana...
example ::= `b` (`an` | `om`)* `a`


Common syntax

The following core grammar productions are used in this document:

// TODO: Clarify the split between lexing (tokens) and parsing (grammar).
digit     ::= [0-9]
hex_digit ::= [0-9a-fA-F]
letter    ::= [a-zA-Z]
id-punct  ::= [$._-]

integer-literal ::= decimal-literal | hexadecimal-literal
decimal-literal ::= digit+
hexadecimal-literal ::= `0x` hex_digit+
float-literal ::= [-+]?[0-9]+[.][0-9]*([eE][-+]?[0-9]+)?
string-literal  ::= `"` [^"\n\f\v\r]* `"`   TODO: define escaping rules

Not listed here, but MLIR does support comments. They use standard BCPL syntax, starting with a // and going until the end of the line.



Identifiers and keywords

Syntax:

// Identifiers
bare-id ::= (letter|[_]) (letter|digit|[_$.])*
bare-id-list ::= bare-id (`,` bare-id)*
value-id ::= `%` suffix-id
suffix-id ::= (digit+ | ((letter|id-punct) (letter|id-punct|digit)*))

symbol-ref-id ::= `@` (suffix-id | string-literal)
value-id-list ::= value-id (`,` value-id)*

// Uses of value, e.g. in an operand list to an operation.
value-use ::= value-id
value-use-list ::= value-use (`,` value-use)*

Identifiers name entities such as values, types and functions, and are chosen by the writer of MLIR code. Identifiers may be descriptive (e.g. %batch_size, @matmul), or may be non-descriptive when they are auto-generated (e.g. %23, @func42). Identifier names for values may be used in an MLIR text file but are not persisted as part of the IR - the printer will give them anonymous names like %42.

MLIR guarantees identifiers never collide with keywords by prefixing identifiers with a sigil (e.g. %, #, @, ^, !). In certain unambiguous contexts (e.g. affine expressions), identifiers are not prefixed, for brevity. New keywords may be added to future versions of MLIR without danger of collision with existing identifiers.

Value identifiers are only in scope for the (nested) region in which they are defined and cannot be accessed or referenced outside of that region. Argument identifiers in mapping functions are in scope for the mapping body. Particular operations may further limit which identifiers are in scope in their regions. For instance, the scope of values in a region with SSA control flow semantics is constrained according to the standard definition of SSA dominance. Another example is the IsolatedFromAbove trait, which restricts directly accessing values defined in containing regions.

Function identifiers and mapping identifiers are associated with Symbols and have scoping rules dependent on symbol attributes.




Dialects

Dialects are the mechanism by which to engage with and extend the MLIR ecosystem. They allow for defining new operations, as well as attributes and types. Each dialect is given a unique namespace that is prefixed to each defined attribute/operation/type. For example, the Affine dialect defines the namespace: affine.

MLIR allows for multiple dialects, even those outside of the main tree, to co-exist together within one module. Dialects are produced and consumed by certain passes. MLIR provides a framework to convert between, and within, different dialects.

A few of the dialects supported by MLIR:


	Affine dialect

	GPU dialect

	LLVM dialect

	SPIR-V dialect

	Standard dialect

	Vector dialect




Target specific operations

Dialects provide a modular way in which targets can expose target-specific operations directly through to MLIR. As an example, some targets go through LLVM. LLVM has a rich set of intrinsics for certain target-independent operations (e.g. addition with overflow check) as well as providing access to target-specific operations for the targets it supports (e.g. vector permutation operations). LLVM intrinsics in MLIR are represented via operations that start with an “llvm.” name.

Example:

// LLVM: %x = call {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
%x:2 = "llvm.sadd.with.overflow.i16"(%a, %b) : (i16, i16) -> (i16, i1)

These operations only work when targeting LLVM as a backend (e.g. for CPUs and GPUs), and are required to align with the LLVM definition of these intrinsics.




Operations

Syntax:

operation         ::= op-result-list? (generic-operation | custom-operation)
                      trailing-location?
generic-operation ::= string-literal `(` value-use-list? `)`  successor-list?
                      (`(` region-list `)`)? attribute-dict? `:` function-type
custom-operation  ::= bare-id custom-operation-format
op-result-list    ::= op-result (`,` op-result)* `=`
op-result         ::= value-id (`:` integer-literal)
successor-list    ::= successor (`,` successor)*
successor         ::= caret-id (`:` bb-arg-list)?
region-list       ::= region (`,` region)*
trailing-location ::= (`loc` `(` location `)`)?

MLIR introduces a uniform concept called operations to enable describing many different levels of abstractions and computations. Operations in MLIR are fully extensible (there is no fixed list of operations) and have application-specific semantics. For example, MLIR supports target-independent operations, affine operations, and target-specific machine operations.

The internal representation of an operation is simple: an operation is identified by a unique string (e.g. dim, tf.Conv2d, x86.repmovsb, ppc.eieio, etc), can return zero or more results, take zero or more operands, may have zero or more attributes, may have zero or more successors, and zero or more enclosed regions. The generic printing form includes all these elements literally, with a function type to indicate the types of the results and operands.

Example:

// An operation that produces two results.
// The results of %result can be accessed via the <name> `#` <opNo> syntax.
%result:2 = "foo_div"() : () -> (f32, i32)

// Pretty form that defines a unique name for each result.
%foo, %bar = "foo_div"() : () -> (f32, i32)

// Invoke a TensorFlow function called tf.scramble with two inputs
// and an attribute "fruit".
%2 = "tf.scramble"(%result#0, %bar) {fruit: "banana"} : (f32, i32) -> f32

In addition to the basic syntax above, dialects may register known operations. This allows those dialects to support custom assembly form for parsing and printing operations. In the operation sets listed below, we show both forms.


Terminator Operations

These are a special category of operations that must terminate a block, e.g. branches. These operations may also have a list of successors (blocks and their arguments).

Example:

// Branch to ^bb1 or ^bb2 depending on the condition %cond.
// Pass value %v to ^bb2, but not to ^bb1.
"cond_br"(%cond)[^bb1, ^bb2(%v : index)] : (i1) -> ()



Module

module ::= `module` symbol-ref-id? (`attributes` attribute-dict)? region

An MLIR Module represents a top-level container operation. It contains a single SSACFG region containing a single block which can contain any operations. Operations within this region cannot implicitly capture values defined outside the module, i.e. Modules are IsolatedFromAbove. Modules have an optional symbol name which can be used to refer to them in operations.



Functions

An MLIR Function is an operation with a name containing a single SSACFG region. Operations within this region cannot implicitly capture values defined outside of the function, i.e. Functions are IsolatedFromAbove. All external references must use function arguments or attributes that establish a symbolic connection (e.g. symbols referenced by name via a string attribute like SymbolRefAttr):

function ::= `func` function-signature function-attributes? function-body?

function-signature ::= symbol-ref-id `(` argument-list `)`
                       (`->` function-result-list)?

argument-list ::= (named-argument (`,` named-argument)*) | /*empty*/
argument-list ::= (type attribute-dict? (`,` type attribute-dict?)*) | /*empty*/
named-argument ::= value-id `:` type attribute-dict?

function-result-list ::= function-result-list-parens
                       | non-function-type
function-result-list-parens ::= `(` `)`
                              | `(` function-result-list-no-parens `)`
function-result-list-no-parens ::= function-result (`,` function-result)*
function-result ::= type attribute-dict?

function-attributes ::= `attributes` attribute-dict
function-body ::= region

An external function declaration (used when referring to a function declared in some other module) has no body. While the MLIR textual form provides a nice inline syntax for function arguments, they are internally represented as “block arguments” to the first block in the region.

Only dialect attribute names may be specified in the attribute dictionaries for function arguments, results, or the function itself.

Examples:

// External function definitions.
func @abort()
func @scribble(i32, i64, memref<? x 128 x f32, #layout_map0>) -> f64

// A function that returns its argument twice:
func @count(%x: i64) -> (i64, i64)
  attributes {fruit: "banana"} {
  return %x, %x: i64, i64
}

// A function with an argument attribute
func @example_fn_arg(%x: i32 {swift.self = unit})

// A function with a result attribute
func @example_fn_result() -> (f64 {dialectName.attrName = 0 : i64})

// A function with an attribute
func @example_fn_attr() attributes {dialectName.attrName = false}




Blocks

Syntax:

block           ::= block-label operation+
block-label     ::= block-id block-arg-list? `:`
block-id        ::= caret-id
caret-id        ::= `^` suffix-id
value-id-and-type ::= value-id `:` type

// Non-empty list of names and types.
value-id-and-type-list ::= value-id-and-type (`,` value-id-and-type)*

block-arg-list ::= `(` value-id-and-type-list? `)`

A Block is an ordered list of operations, concluding with a single terminator operation. In SSACFG regions, each block represents a compiler [basic block] (https://en.wikipedia.org/wiki/Basic_block) where instructions inside the block are executed in order and terminator operations implement control flow branches between basic blocks.

Blocks in MLIR take a list of block arguments, notated in a function-like way. Block arguments are bound to values specified by the semantics of individual operations. Block arguments of the entry block of a region are also arguments to the region and the values bound to these arguments are determined by the semantics of the containing operation. Block arguments of other blocks are determined by the semantics of terminator operations, e.g. Branches, which have the block as a successor. In regions with control flow, MLIR leverages this structure to implicitly represent the passage of control-flow dependent values without the complex nuances of PHI nodes in traditional SSA representations. Note that values which are not control-flow dependent can be referenced directly and do not need to be passed through block arguments.

Here is a simple example function showing branches, returns, and block arguments:

func @simple(i64, i1) -> i64 {
^bb0(%a: i64, %cond: i1): // Code dominated by ^bb0 may refer to %a
  cond_br %cond, ^bb1, ^bb2

^bb1:
  br ^bb3(%a: i64)    // Branch passes %a as the argument

^bb2:
  %b = addi %a, %a : i64
  br ^bb3(%b: i64)    // Branch passes %b as the argument

// ^bb3 receives an argument, named %c, from predecessors
// and passes it on to bb4 along with %a. %a is referenced
// directly from its defining operation and is not passed through
// an argument of ^bb3.
^bb3(%c: i64):
  br ^bb4(%c, %a : i64, i64)

^bb4(%d : i64, %e : i64):
  %0 = addi %d, %e : i64
  return %0 : i64   // Return is also a terminator.
}

Context: The “block argument” representation eliminates a number of special cases from the IR compared to traditional “PHI nodes are operations” SSA IRs (like LLVM). For example, the parallel copy semantics of SSA is immediately apparent, and function arguments are no longer a special case: they become arguments to the entry block [more rationale]. Blocks are also a fundamental concept that cannot be represented by operations because values defined in an operation cannot be accessed outside the operation.



Regions


Definition

A region is an ordered list of MLIR Blocks. The semantics within a region is not imposed by the IR. Instead, the containing operation defines the semantics of the regions it contains. MLIR currently defines two kinds of regions: SSACFG regions, which describe control flow between blocks, and Graph regions, which do not require control flow between block. The kinds of regions within an operation are described using the RegionKindInterface.

Regions do not have a name or an address, only the blocks contained in a region do. Regions must be contained within operations and have no type or attributes. The first block in the region is a special block called the ‘entry block’. The arguments to the entry block are also the arguments of the region itself. The entry block cannot be listed as a successor of any other block. The syntax for a region is as follows:

region ::= `{` block* `}`

A function body is an example of a region: it consists of a CFG of blocks and has additional semantic restrictions that other types of regions may not have. For example, in a function body, block terminators must either branch to a different block, or return from a function where the types of the return arguments must match the result types of the function signature. Similarly, the function arguments must match the types and count of the region arguments. In general, operations with regions can define these correspondances arbitrarily.



Value Scoping

Regions provide hierarchical encapsulation of programs: it is impossible to reference, i.e. branch to, a block which is not in the same region as the source of the reference, i.e. a terminator operation. Similarly, regions provides a natural scoping for value visibility: values defined in a region don’t escape to the enclosing region, if any. By default, operations inside a region can reference values defined outside of the region whenever it would have been legal for operands of the enclosing operation to reference those values, but this can be restricted using traits, such as OpTrait::IsolatedFromAbove, or a custom verifier.

Example:

  "any_op"(%a) ({ // if %a is in-scope in the containing region...
     // then %a is in-scope here too.
    %new_value = "another_op"(%a) : (i64) -> (i64)
  }) : (i64) -> (i64)

MLIR defines a generalized ‘hierarchical dominance’ concept that operates across hierarchy and defines whether a value is ‘in scope’ and can be used by a particular operation. Whether a value can be used by another operation in the same region is defined by the kind of region. A value defined in a region can be used by an operation which has a parent in the same region, if and only if the parent could use the value. A value defined by an argument to a region can always be used by any operation deeply contained in the region. A value defined in a region can never be used outside of the region.



Control Flow and SSACFG Regions

In MLIR, control flow semantics of a region is indicated by RegionKind::SSACFG. Informally, these regions support semantics where operations in a region ‘execute sequentially’. Before an operation executes, its operands have well-defined values. After an operation executes, the operands have the same values and results also have well-defined values. After an operation executes, the next operation in the block executes until the operation is the terminator operation at the end of a block, in which case some other operation will execute. The determination of the next instruction to execute is the ‘passing of control flow’.

In general, when control flow is passed to an operation, MLIR does not restrict when control flow enters or exits the regions contained in that operation. However, when control flow enters a region, it always begins in the first block of the region, called the entry block. Terminator operations ending each block represent control flow by explicitly specifying the successor blocks of the block. Control flow can only pass to one of the specified successor blocks as in a branch operation, or back to the containing operation as in a return operation. Terminator operations without successors can only pass control back to the containing operation. Within these restrictions, the particular semantics of terminator operations is determined by the specific dialect operations involved. Blocks (other than the entry block) that are not listed as a successor of a terminator operation are defined to be unreachable and can be removed without affecting the semantics of the containing operation.

Although control flow always enters a region through the entry block, control flow may exit a region through any block with an appropriate terminator. The standard dialect leverages this capability to define operations with Single-Entry-Multiple-Exit (SEME) regions, possibly flowing through different blocks in the region and exiting through any block with a return operation. This behavior is similar to that of a function body in most programming languages. In addition, control flow may also not reach the end of a block or region, for example if a function call does not return.

Example:

func @accelerator_compute(i64, i1) -> i64 { // An SSACFG region
^bb0(%a: i64, %cond: i1): // Code dominated by ^bb0 may refer to %a
  cond_br %cond, ^bb1, ^bb2

^bb1:
  // This def for %value does not dominate ^bb2
  %value = "op.convert"(%a) : (i64) -> i64
  br ^bb3(%a: i64)    // Branch passes %a as the argument

^bb2:
  accelerator.launch() { // An SSACFG region
    ^bb0:
      // Region of code nested under "accelerator.launch", it can reference %a but
      // not %value.
      %new_value = "accelerator.do_something"(%a) : (i64) -> ()
  }
  // %new_value cannot be referenced outside of the region

^bb3:
  ...
}


Operations with Multiple Regions

An operation containing multiple regions also completely determines the semantics of those regions. In particular, when control flow is passed to an operation, it may transfer control flow to any contained region. When control flow exits a region and is returned to the containing operation, the containing operation may pass control flow to any region in the same operation. An operation may also pass control flow to multiple contained regions concurrently. An operation may also pass control flow into regions that were specified in other operations, in particular those that defined the values or symbols the given operation uses as in a call operation. This passage of control is generally independent of passage of control flow through the basic blocks of the containing region.



Closure

Regions allow defining an operation that creates a closure, for example by “boxing” the body of the region into a value they produce. It remains up to the operation to define its semantics. Note that if an operation triggers asynchronous execution of the region, it is under the responsibility of the operation caller to wait for the region to be executed guaranteeing that any directly used values remain live.




Graph Regions

In MLIR, graph-like semantics in a region is indicated by RegionKind::Graph. Graph regions are appropriate for concurrent semantics without control flow, or for modeling generic directed graph data structures. Graph regions are appropriate for representing cyclic relationships between coupled values where there is no fundamental order to the relationships. For instance, operations in a graph region may represent independent threads of control with values representing streams of data. As usual in MLIR, the particular semantics of a region is completely determined by its containing operation. Graph regions may only contain a single basic block (the entry block).

Rationale: Currently graph regions are arbitrarily limited to a single basic block, although there is no particular semantic reason for this limitation. This limitation has been added to make it easier to stabilize the pass infrastructure and commonly used passes for processing graph regions to properly handle feedback loops. Multi-block regions may be allowed in the future if use cases that require it arise.

In graph regions, MLIR operations naturally represent nodes, while each MLIR value represents a multi-edge connecting a single source node and multiple destination nodes. All values defined in the region as results of operations are in scope within the region and can be accessed by any other operation in the region. In graph regions, the order of operations within a block and the order of blocks in a region is not semantically meaningful and non-terminator operations may be freely reordered, for instance, by canonicalization. Other kinds of graphs, such as graphs with multiple source nodes and multiple destination nodes, can also be represented by representing graph edges as MLIR operations.

Note that cycles can occur within a single block in a graph region, or between basic blocks.

"test.graph_region"() ({ // A Graph region
  %1 = "op1"(%1, %3) : (i32, i32) -> (i32)  // OK: %1, %3 allowed here
  %2 = "test.ssacfg_region"() ({
     %5 = "op2"(%1, %2, %3, %4) : (i32, i32, i32, i32) -> (i32) // OK: %1, %2, %3, %4 all defined in the containing region
  }) : () -> (i32)
  %3 = "op2"(%1, %4) : (i32, i32) -> (i32)  // OK: %4 allowed here
  %4 = "op3"(%1) : (i32) -> (i32)
}) : () -> ()



Arguments and Results

The arguments of the first block of a region are treated as arguments of the region. The source of these arguments is defined by the semantics of the parent operation. They may correspond to some of the values the operation itself uses.

Regions produce a (possibly empty) list of values. The operation semantics defines the relation between the region results and the operation results.




Type System

Each value in MLIR has a type defined by the type system below. There are a number of primitive types (like integers) and also aggregate types for tensors and memory buffers. MLIR standard types do not include structures, arrays, or dictionaries.

MLIR has an open type system (i.e. there is no fixed list of types), and types may have application-specific semantics. For example, MLIR supports a set of dialect types.

type ::= type-alias | dialect-type | standard-type

type-list-no-parens ::=  type (`,` type)*
type-list-parens ::= `(` `)`
                   | `(` type-list-no-parens `)`

// This is a common way to refer to a value with a specified type.
ssa-use-and-type ::= ssa-use `:` type

// Non-empty list of names and types.
ssa-use-and-type-list ::= ssa-use-and-type (`,` ssa-use-and-type)*


Type Aliases

type-alias-def ::= '!' alias-name '=' 'type' type
type-alias ::= '!' alias-name

MLIR supports defining named aliases for types. A type alias is an identifier that can be used in the place of the type that it defines. These aliases must be defined before their uses. Alias names may not contain a ‘.’, since those names are reserved for dialect types.

Example:

!avx_m128 = type vector<4 x f32>

// Using the original type.
"foo"(%x) : vector<4 x f32> -> ()

// Using the type alias.
"foo"(%x) : !avx_m128 -> ()



Dialect Types

Similarly to operations, dialects may define custom extensions to the type system.

dialect-namespace ::= bare-id

opaque-dialect-item ::= dialect-namespace '<' string-literal '>'

pretty-dialect-item ::= dialect-namespace '.' pretty-dialect-item-lead-ident
                                              pretty-dialect-item-body?

pretty-dialect-item-lead-ident ::= '[A-Za-z][A-Za-z0-9._]*'
pretty-dialect-item-body ::= '<' pretty-dialect-item-contents+ '>'
pretty-dialect-item-contents ::= pretty-dialect-item-body
                              | '(' pretty-dialect-item-contents+ ')'
                              | '[' pretty-dialect-item-contents+ ']'
                              | '{' pretty-dialect-item-contents+ '}'
                              | '[^[<({>\])}\0]+'

dialect-type ::= '!' opaque-dialect-item
dialect-type ::= '!' pretty-dialect-item

Dialect types can be specified in a verbose form, e.g. like this:

// LLVM type that wraps around llvm IR types.
!llvm<"i32*">

// Tensor flow string type.
!tf.string

// Complex type
!foo<"something<abcd>">

// Even more complex type
!foo<"something<a%%123^^^>>>">

Dialect types that are simple enough can use the pretty format, which is a lighter weight syntax that is equivalent to the above forms:

// Tensor flow string type.
!tf.string

// Complex type
!foo.something<abcd>

Sufficiently complex dialect types are required to use the verbose form for generality. For example, the more complex type shown above wouldn’t be valid in the lighter syntax: !foo.something<a%%123^^^>>> because it contains characters that are not allowed in the lighter syntax, as well as unbalanced <> characters.

See here to learn how to define dialect types.



Standard Types

Standard types are a core set of dialect types that are defined in a builtin dialect and thus available to all users of MLIR.

standard-type ::=     complex-type
                    | float-type
                    | function-type
                    | index-type
                    | integer-type
                    | memref-type
                    | none-type
                    | tensor-type
                    | tuple-type
                    | vector-type


Complex Type

Syntax:

complex-type ::= `complex` `<` type `>`

The value of complex type represents a complex number with a parameterized element type, which is composed of a real and imaginary value of that element type. The element must be a floating point or integer scalar type.

Examples:

complex<f32>
complex<i32>



Floating Point Types

Syntax:

// Floating point.
float-type ::= `f16` | `bf16` | `f32` | `f64`

MLIR supports float types of certain widths that are widely used as indicated above.



Function Type

Syntax:

// MLIR functions can return multiple values.
function-result-type ::= type-list-parens
                       | non-function-type

function-type ::= type-list-parens `->` function-result-type

MLIR supports first-class functions: for example, the constant operation produces the address of a function as a value. This value may be passed to and returned from functions, merged across control flow boundaries with block arguments, and called with the call_indirect operation.

Function types are also used to indicate the arguments and results of operations.



Index Type

Syntax:

// Target word-sized integer.
index-type ::= `index`

The index type is a signless integer whose size is equal to the natural machine word of the target (rationale) and is used by the affine constructs in MLIR. Unlike fixed-size integers, it cannot be used as an element of vector, tensor or memref type (rationale).

Rationale: integers of platform-specific bit widths are practical to express sizes, dimensionalities and subscripts.



Integer Type

Syntax:

// Sized integers like i1, i4, i8, i16, i32.
signed-integer-type ::= `si` [1-9][0-9]*
unsigned-integer-type ::= `ui` [1-9][0-9]*
signless-integer-type ::= `i` [1-9][0-9]*
integer-type ::= signed-integer-type |
                 unsigned-integer-type |
                 signless-integer-type

MLIR supports arbitrary precision integer types. Integer types have a designated width and may have signedness semantics.

Rationale: low precision integers (like i2, i4 etc) are useful for low-precision inference chips, and arbitrary precision integers are useful for hardware synthesis (where a 13 bit multiplier is a lot cheaper/smaller than a 16 bit one).

TODO: Need to decide on a representation for quantized integers (initial thoughts).



Memref Type

Syntax:

memref-type ::= ranked-memref-type | unranked-memref-type

ranked-memref-type ::= `memref` `<` dimension-list-ranked tensor-memref-element-type
                      (`,` layout-specification)? (`,` memory-space)? `>`

unranked-memref-type ::= `memref` `<*x` tensor-memref-element-type
                         (`,` memory-space)? `>`

stride-list ::= `[` (dimension (`,` dimension)*)? `]`
strided-layout ::= `offset:` dimension `,` `strides: ` stride-list
layout-specification ::= semi-affine-map | strided-layout
memory-space ::= integer-literal /* | TODO: address-space-id */

A memref type is a reference to a region of memory (similar to a buffer pointer, but more powerful). The buffer pointed to by a memref can be allocated, aliased and deallocated. A memref can be used to read and write data from/to the memory region which it references. Memref types use the same shape specifier as tensor types. Note that memref<f32>, memref<0 x f32>, memref<1 x 0 x f32>, and memref<0 x 1 x f32> are all different types.

A memref is allowed to have an unknown rank (e.g. memref<*xf32>). The purpose of unranked memrefs is to allow external library functions to receive memref arguments of any rank without versioning the functions based on the rank. Other uses of this type are disallowed or will have undefined behavior.


Codegen of Unranked Memref

Using unranked memref in codegen besides the case mentioned above is highly discouraged. Codegen is concerned with generating loop nests and specialized instructions for high-performance, unranked memref is concerned with hiding the rank and thus, the number of enclosing loops required to iterate over the data. However, if there is a need to code-gen unranked memref, one possible path is to cast into a static ranked type based on the dynamic rank. Another possible path is to emit a single while loop conditioned on a linear index and perform delinearization of the linear index to a dynamic array containing the (unranked) indices. While this is possible, it is expected to not be a good idea to perform this during codegen as the cost of the translations is expected to be prohibitive and optimizations at this level are not expected to be worthwhile. If expressiveness is the main concern, irrespective of performance, passing unranked memrefs to an external C++ library and implementing rank-agnostic logic there is expected to be significantly simpler.

Unranked memrefs may provide expressiveness gains in the future and help bridge the gap with unranked tensors. Unranked memrefs will not be expected to be exposed to codegen but one may query the rank of an unranked memref (a special op will be needed for this purpose) and perform a switch and cast to a ranked memref as a prerequisite to codegen.

Example:

// With static ranks, we need a function for each possible argument type
%A = alloc() : memref<16x32xf32>
%B = alloc() : memref<16x32x64xf32>
call @helper_2D(%A) : (memref<16x32xf32>)->()
call @helper_3D(%B) : (memref<16x32x64xf32>)->()

// With unknown rank, the functions can be unified under one unranked type
%A = alloc() : memref<16x32xf32>
%B = alloc() : memref<16x32x64xf32>
// Remove rank info
%A_u = memref_cast %A : memref<16x32xf32> -> memref<*xf32>
%B_u = memref_cast %B : memref<16x32x64xf32> -> memref<*xf32>
// call same function with dynamic ranks
call @helper(%A_u) : (memref<*xf32>)->()
call @helper(%B_u) : (memref<*xf32>)->()

The core syntax and representation of a layout specification is a semi-affine map. Additionally, syntactic sugar is supported to make certain layout specifications more intuitive to read. For the moment, a memref supports parsing a strided form which is converted to a semi-affine map automatically.

The memory space of a memref is specified by a target-specific integer index. If no memory space is specified, then the default memory space (0) is used. The default space is target specific but always at index 0.

TODO: MLIR will eventually have target-dialects which allow symbolic use of memory hierarchy names (e.g. L3, L2, L1, …) but we have not spec’d the details of that mechanism yet. Until then, this document pretends that it is valid to refer to these memories by bare-id.

The notionally dynamic value of a memref value includes the address of the buffer allocated, as well as the symbols referred to by the shape, layout map, and index maps.

Examples of memref static type

// Identity index/layout map
#identity = affine_map<(d0, d1) -> (d0, d1)>

// Column major layout.
#col_major = affine_map<(d0, d1, d2) -> (d2, d1, d0)>

// A 2-d tiled layout with tiles of size 128 x 256.
#tiled_2d_128x256 = affine_map<(d0, d1) -> (d0 div 128, d1 div 256, d0 mod 128, d1 mod 256)>

// A tiled data layout with non-constant tile sizes.
#tiled_dynamic = affine_map<(d0, d1)[s0, s1] -> (d0 floordiv s0, d1 floordiv s1,
                             d0 mod s0, d1 mod s1)>

// A layout that yields a padding on two at either end of the minor dimension.
#padded = affine_map<(d0, d1) -> (d0, (d1 + 2) floordiv 2, (d1 + 2) mod 2)>


// The dimension list "16x32" defines the following 2D index space:
//
//   { (i, j) : 0 <= i < 16, 0 <= j < 32 }
//
memref<16x32xf32, #identity>

// The dimension list "16x4x?" defines the following 3D index space:
//
//   { (i, j, k) : 0 <= i < 16, 0 <= j < 4, 0 <= k < N }
//
// where N is a symbol which represents the runtime value of the size of
// the third dimension.
//
// %N here binds to the size of the third dimension.
%A = alloc(%N) : memref<16x4x?xf32, #col_major>

// A 2-d dynamic shaped memref that also has a dynamically sized tiled layout.
// The memref index space is of size %M x %N, while %B1 and %B2 bind to the
// symbols s0, s1 respectively of the layout map #tiled_dynamic. Data tiles of
// size %B1 x %B2 in the logical space will be stored contiguously in memory.
// The allocation size will be (%M ceildiv %B1) * %B1 * (%N ceildiv %B2) * %B2
// f32 elements.
%T = alloc(%M, %N) [%B1, %B2] : memref<?x?xf32, #tiled_dynamic>

// A memref that has a two-element padding at either end. The allocation size
// will fit 16 * 64 float elements of data.
%P = alloc() : memref<16x64xf32, #padded>

// Affine map with symbol 's0' used as offset for the first dimension.
#imapS = affine_map<(d0, d1) [s0] -> (d0 + s0, d1)>
// Allocate memref and bind the following symbols:
// '%n' is bound to the dynamic second dimension of the memref type.
// '%o' is bound to the symbol 's0' in the affine map of the memref type.
%n = ...
%o = ...
%A = alloc (%n)[%o] : <16x?xf32, #imapS>



Index Space

A memref dimension list defines an index space within which the memref can be indexed to access data.



Index

Data is accessed through a memref type using a multidimensional index into the multidimensional index space defined by the memref’s dimension list.

Examples

// Allocates a memref with 2D index space:
//   { (i, j) : 0 <= i < 16, 0 <= j < 32 }
%A = alloc() : memref<16x32xf32, #imapA>

// Loads data from memref '%A' using a 2D index: (%i, %j)
%v = load %A[%i, %j] : memref<16x32xf32, #imapA>



Index Map

An index map is a one-to-one semi-affine map that transforms a multidimensional index from one index space to another. For example, the following figure shows an index map which maps a 2-dimensional index from a 2x2 index space to a 3x3 index space, using symbols S0 and S1 as offsets.


[image: Index Map Example]Index Map Example

The number of domain dimensions and range dimensions of an index map can be different, but must match the number of dimensions of the input and output index spaces on which the map operates. The index space is always non-negative and integral. In addition, an index map must specify the size of each of its range dimensions onto which it maps. Index map symbols must be listed in order with symbols for dynamic dimension sizes first, followed by other required symbols.



Layout Map

A layout map is a semi-affine map which encodes logical to physical index space mapping, by mapping input dimensions to their ordering from most-major (slowest varying) to most-minor (fastest varying). Therefore, an identity layout map corresponds to a row-major layout. Identity layout maps do not contribute to the MemRef type identification and are discarded on construction. That is, a type with an explicit identity map is memref<?x?xf32, (i,j)->(i,j)> is strictly the same as the one without layout maps, memref<?x?xf32>.

Layout map examples:

// MxN matrix stored in row major layout in memory:
#layout_map_row_major = (i, j) -> (i, j)

// MxN matrix stored in column major layout in memory:
#layout_map_col_major = (i, j) -> (j, i)

// MxN matrix stored in a 2-d blocked/tiled layout with 64x64 tiles.
#layout_tiled = (i, j) -> (i floordiv 64, j floordiv 64, i mod 64, j mod 64)



Affine Map Composition

A memref specifies a semi-affine map composition as part of its type. A semi-affine map composition is a composition of semi-affine maps beginning with zero or more index maps, and ending with a layout map. The composition must be conformant: the number of dimensions of the range of one map, must match the number of dimensions of the domain of the next map in the composition.

The semi-affine map composition specified in the memref type, maps from accesses used to index the memref in load/store operations to other index spaces (i.e. logical to physical index mapping). Each of the semi-affine maps and thus its composition is required to be one-to-one.

The semi-affine map composition can be used in dependence analysis, memory access pattern analysis, and for performance optimizations like vectorization, copy elision and in-place updates. If an affine map composition is not specified for the memref, the identity affine map is assumed.



Strided MemRef

A memref may specify strides as part of its type. A stride specification is a list of integer values that are either static or ? (dynamic case). Strides encode the distance, in number of elements, in (linear) memory between successive entries along a particular dimension. A stride specification is syntactic sugar for an equivalent strided memref representation using semi-affine maps. For example, memref<42x16xf32, offset: 33, strides: [1, 64]> specifies a non-contiguous memory region of 42 by 16 f32 elements such that:


	the minimal size of the enclosing memory region must be 33 + 42 * 1 + 16 *     64 = 1066 elements;

	the address calculation for accessing element (i, j) computes 33 + i +     64 * j

	the distance between two consecutive elements along the outer dimension is 1 element and the distance between two consecutive elements along the outer dimension is 64 elements.



This corresponds to a column major view of the memory region and is internally represented as the type memref<42x16xf32, (i, j) -> (33 + i + 64 * j)>.

The specification of strides must not alias: given an n-D strided memref, indices (i1, ..., in) and (j1, ..., jn) may not refer to the same memory address unless i1 == j1, ..., in == jn.

Strided memrefs represent a view abstraction over preallocated data. They are constructed with special ops, yet to be introduced. Strided memrefs are a special subclass of memrefs with generic semi-affine map and correspond to a normalized memref descriptor when lowering to LLVM.




None Type

Syntax:

none-type ::= `none`

The none type is a unit type, i.e. a type with exactly one possible value, where its value does not have a defined dynamic representation.



Tensor Type

Syntax:

tensor-type ::= `tensor` `<` dimension-list tensor-memref-element-type `>`
tensor-memref-element-type ::= vector-element-type | vector-type | complex-type

// memref requires a known rank, but tensor does not.
dimension-list ::= dimension-list-ranked | (`*` `x`)
dimension-list-ranked ::= (dimension `x`)*
dimension ::= `?` | decimal-literal

Values with tensor type represents aggregate N-dimensional data values, and have a known element type. It may have an unknown rank (indicated by *) or may have a fixed rank with a list of dimensions. Each dimension may be a static non-negative decimal constant or be dynamically determined (indicated by ?).

The runtime representation of the MLIR tensor type is intentionally abstracted - you cannot control layout or get a pointer to the data. For low level buffer access, MLIR has a memref type. This abstracted runtime representation holds both the tensor data values as well as information about the (potentially dynamic) shape of the tensor. The dim operation returns the size of a dimension from a value of tensor type.

Note: hexadecimal integer literals are not allowed in tensor type declarations to avoid confusion between 0xf32 and 0 x f32. Zero sizes are allowed in tensors and treated as other sizes, e.g., tensor<0 x 1 x i32> and tensor<1 x 0 x i32> are different types. Since zero sizes are not allowed in some other types, such tensors should be optimized away before lowering tensors to vectors.

Examples:

// Tensor with unknown rank.
tensor<* x f32>

// Known rank but unknown dimensions.
tensor<? x ? x ? x ? x f32>

// Partially known dimensions.
tensor<? x ? x 13 x ? x f32>

// Full static shape.
tensor<17 x 4 x 13 x 4 x f32>

// Tensor with rank zero. Represents a scalar.
tensor<f32>

// Zero-element dimensions are allowed.
tensor<0 x 42 x f32>

// Zero-element tensor of f32 type (hexadecimal literals not allowed here).
tensor<0xf32>



Tuple Type

Syntax:

tuple-type ::= `tuple` `<` (type ( `,` type)*)? `>`

The value of tuple type represents a fixed-size collection of elements, where each element may be of a different type.

Rationale: Though this type is first class in the type system, MLIR provides no standard operations for operating on tuple types (rationale).

Examples:

// Empty tuple.
tuple<>

// Single element
tuple<f32>

// Many elements.
tuple<i32, f32, tensor<i1>, i5>



Vector Type

Syntax:

vector-type ::= `vector` `<` static-dimension-list vector-element-type `>`
vector-element-type ::= float-type | integer-type

static-dimension-list ::= (decimal-literal `x`)+

The vector type represents a SIMD style vector, used by target-specific operation sets like AVX. While the most common use is for 1D vectors (e.g. vector<16 x f32>) we also support multidimensional registers on targets that support them (like TPUs).

Vector shapes must be positive decimal integers.

Note: hexadecimal integer literals are not allowed in vector type declarations, vector<0x42xi32> is invalid because it is interpreted as a 2D vector with shape (0, 42) and zero shapes are not allowed.





Attributes

Syntax:

attribute-dict ::= `{` `}`
                 | `{` attribute-entry (`,` attribute-entry)* `}`
attribute-entry ::= dialect-attribute-entry | dependent-attribute-entry
dialect-attribute-entry ::= dialect-namespace `.` bare-id `=` attribute-value
dependent-attribute-entry ::= dependent-attribute-name `=` attribute-value
dependent-attribute-name ::= ((letter|[_]) (letter|digit|[_$])*)
                           | string-literal

Attributes are the mechanism for specifying constant data on operations in places where a variable is never allowed - e.g. the index of a dim operation, or the stride of a convolution. They consist of a name and a concrete attribute value. The set of expected attributes, their structure, and their interpretation are all contextually dependent on what they are attached to.

There are two main classes of attributes: dependent and dialect. Dependent attributes derive their structure and meaning from what they are attached to; e.g., the meaning of the index attribute on a dim operation is defined by the dim operation. Dialect attributes, on the other hand, derive their context and meaning from a specific dialect. An example of a dialect attribute may be a swift.self function argument attribute that indicates an argument is the self/context parameter. The context of this attribute is defined by the swift dialect and not the function argument.

Attribute values are represented by the following forms:

attribute-value ::= attribute-alias | dialect-attribute | standard-attribute


Attribute Value Aliases

attribute-alias ::= '#' alias-name '=' attribute-value
attribute-alias ::= '#' alias-name

MLIR supports defining named aliases for attribute values. An attribute alias is an identifier that can be used in the place of the attribute that it defines. These aliases must be defined before their uses. Alias names may not contain a ‘.’, since those names are reserved for dialect attributes.

Example:

#map = affine_map<(d0) -> (d0 + 10)>

// Using the original attribute.
%b = affine.apply affine_map<(d0) -> (d0 + 10)> (%a)

// Using the attribute alias.
%b = affine.apply #map(%a)



Dialect Attribute Values

Similarly to operations, dialects may define custom attribute values. The syntactic structure of these values is identical to custom dialect type values, except that dialect attributes values are distinguished with a leading ‘#’, while dialect types are distinguished with a leading ‘!’.

dialect-attribute ::= '#' opaque-dialect-item
dialect-attribute ::= '#' pretty-dialect-item

Dialect attributes can be specified in a verbose form, e.g. like this:

// Complex attribute
#foo<"something<abcd>">

// Even more complex attribute
#foo<"something<a%%123^^^>>>">

Dialect attributes that are simple enough can use the pretty format, which is a lighter weight syntax that is equivalent to the above forms:

// Complex attribute
#foo.something<abcd>

Sufficiently complex dialect attributes are required to use the verbose form for generality. For example, the more complex type shown above wouldn’t be valid in the lighter syntax: #foo.something<a%%123^^^>>> because it contains characters that are not allowed in the lighter syntax, as well as unbalanced <> characters.

See here to learn how to define dialect attribute values.



Standard Attribute Values

Standard attributes are a core set of dialect attributes that are defined in a builtin dialect and thus available to all users of MLIR.

standard-attribute ::=   affine-map-attribute
                       | array-attribute
                       | bool-attribute
                       | dictionary-attribute
                       | elements-attribute
                       | float-attribute
                       | integer-attribute
                       | integer-set-attribute
                       | string-attribute
                       | symbol-ref-attribute
                       | type-attribute
                       | unit-attribute


AffineMap Attribute

Syntax:

affine-map-attribute ::= `affine_map` `<` affine-map `>`

An affine-map attribute is an attribute that represents an affine-map object.



Array Attribute

Syntax:

array-attribute ::= `[` (attribute-value (`,` attribute-value)*)? `]`

An array attribute is an attribute that represents a collection of attribute values.



Boolean Attribute

Syntax:

bool-attribute ::= bool-literal

A boolean attribute is a literal attribute that represents a one-bit boolean value, true or false.



Dictionary Attribute

Syntax:

dictionary-attribute ::= `{` (attribute-entry (`,` attribute-entry)*)? `}`

A dictionary attribute is an attribute that represents a sorted collection of named attribute values. The elements are sorted by name, and each name must be unique within the collection.



Elements Attributes

Syntax:

elements-attribute ::= dense-elements-attribute
                     | opaque-elements-attribute
                     | sparse-elements-attribute

An elements attribute is a literal attribute that represents a constant vector or tensor value.


Dense Elements Attribute

Syntax:

dense-elements-attribute ::= `dense` `<` attribute-value `>` `:`
                             ( tensor-type | vector-type )

A dense elements attribute is an elements attribute where the storage for the constant vector or tensor value has been densely packed. The attribute supports storing integer or floating point elements, with integer/index/floating element types. It also support storing string elements with a custom dialect string element type.



Opaque Elements Attribute

Syntax:

opaque-elements-attribute ::= `opaque` `<` dialect-namespace  `,`
                              hex-string-literal `>` `:`
                              ( tensor-type | vector-type )

An opaque elements attribute is an elements attribute where the content of the value is opaque. The representation of the constant stored by this elements attribute is only understood, and thus decodable, by the dialect that created it.

Note: The parsed string literal must be in hexadecimal form.



Sparse Elements Attribute

Syntax:

sparse-elements-attribute ::= `sparse` `<` attribute-value `,` attribute-value
                              `>` `:` ( tensor-type | vector-type )

A sparse elements attribute is an elements attribute that represents a sparse vector or tensor object. This is where very few of the elements are non-zero.

The attribute uses COO (coordinate list) encoding to represent the sparse elements of the elements attribute. The indices are stored via a 2-D tensor of 64-bit integer elements with shape [N, ndims], which specifies the indices of the elements in the sparse tensor that contains non-zero values. The element values are stored via a 1-D tensor with shape [N], that supplies the corresponding values for the indices.

Example:

  sparse<[[0, 0], [1, 2]], [1, 5]> : tensor<3x4xi32>

// This represents the following tensor:
///  [[1, 0, 0, 0],
///   [0, 0, 5, 0],
///   [0, 0, 0, 0]]




Float Attribute

Syntax:

float-attribute ::= (float-literal (`:` float-type)?)
                  | (hexadecimal-literal `:` float-type)

A float attribute is a literal attribute that represents a floating point value of the specified float type. It can be represented in the hexadecimal form where the hexadecimal value is interpreted as bits of the underlying binary representation. This form is useful for representing infinity and NaN floating point values. To avoid confusion with integer attributes, hexadecimal literals must be followed by a float type to define a float attribute.

Examples:

42.0         // float attribute defaults to f64 type
42.0 : f32   // float attribute of f32 type
0x7C00 : f16 // positive infinity
0x7CFF : f16 // NaN (one of possible values)
42 : f32     // Error: expected integer type



Integer Attribute

Syntax:

integer-attribute ::= integer-literal ( `:` (index-type | integer-type) )?

An integer attribute is a literal attribute that represents an integral value of the specified integer or index type. The default type for this attribute, if one is not specified, is a 64-bit integer.


Integer Set Attribute

Syntax:

integer-set-attribute ::= `affine_set` `<` integer-set `>`

An integer-set attribute is an attribute that represents an integer-set object.




String Attribute

Syntax:

string-attribute ::= string-literal (`:` type)?

A string attribute is an attribute that represents a string literal value.



Symbol Reference Attribute

Syntax:

symbol-ref-attribute ::= symbol-ref-id (`::` symbol-ref-id)*

A symbol reference attribute is a literal attribute that represents a named reference to an operation that is nested within an operation with the OpTrait::SymbolTable trait. As such, this reference is given meaning by the nearest parent operation containing the OpTrait::SymbolTable trait. It may optionally contain a set of nested references that further resolve to a symbol nested within a different symbol table.

This attribute can only be held internally by array attributes and dictionary attributes(including the top-level operation attribute dictionary), i.e. no other attribute kinds such as Locations or extended attribute kinds.

Rationale: Identifying accesses to global data is critical to enabling efficient multi-threaded compilation. Restricting global data access to occur through symbols and limiting the places that can legally hold a symbol reference simplifies reasoning about these data accesses.

See Symbols And SymbolTables for more information.



Type Attribute

Syntax:

type-attribute ::= type

A type attribute is an attribute that represents a type object.



Unit Attribute

unit-attribute ::= `unit`

A unit attribute is an attribute that represents a value of unit type. The unit type allows only one value forming a singleton set. This attribute value is used to represent attributes that only have meaning from their existence.

One example of such an attribute could be the swift.self attribute. This attribute indicates that a function parameter is the self/context parameter. It could be represented as a boolean attribute(true or false), but a value of false doesn’t really bring any value. The parameter either is the self/context or it isn’t.

// A unit attribute defined with the `unit` value specifier.
func @verbose_form(i1) attributes {dialectName.unitAttr = unit}

// A unit attribute can also be defined without the value specifier.
func @simple_form(i1) attributes {dialectName.unitAttr}
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Diagnostic Infrastructure

[TOC]

This document presents an introduction to using and interfacing with MLIR’s diagnostics infrastructure.

See MLIR specification for more information about MLIR, the structure of the IR, operations, etc.


Source Locations

Source location information is extremely important for any compiler, because it provides a baseline for debuggability and error-reporting. MLIR provides several different location types depending on the situational need.


CallSite Location

callsite-location ::= 'callsite' '(' location 'at' location ')'

An instance of this location allows for representing a directed stack of location usages. This connects a location of a callee with the location of a caller.



FileLineCol Location

filelinecol-location ::= string-literal ':' integer-literal ':' integer-literal

An instance of this location represents a tuple of file, line number, and column number. This is similar to the type of location that you get from most source languages.



Fused Location

fused-location ::= `fused` fusion-metadata? '[' location (location ',')* ']'
fusion-metadata ::= '<' attribute-value '>'

An instance of a fused location represents a grouping of several other source locations, with optional metadata that describes the context of the fusion. There are many places within a compiler in which several constructs may be fused together, e.g. pattern rewriting, that normally result partial or even total loss of location information. With fused locations, this is a non-issue.



Name Location

name-location ::= string-literal ('(' location ')')?

An instance of this location allows for attaching a name to a child location. This can be useful for representing the locations of variable, or node, definitions.



Opaque Location

An instance of this location essentially contains a pointer to some data structure that is external to MLIR and an optional location that can be used if the first one is not suitable. Since it contains an external structure, only the optional location is used during serialization.



Unknown Location

unknown-location ::= `unknown`

Source location information is an extremely integral part of the MLIR infrastructure. As such, location information is always present in the IR, and must explicitly be set to unknown. Thus an instance of the unknown location, represents an unspecified source location.




Diagnostic Engine

The DiagnosticEngine acts as the main interface for diagnostics in MLIR. It manages the registration of diagnostic handlers, as well as the core API for diagnostic emission. Handlers generally take the form of LogicalResult(Diagnostic &). If the result is success, it signals that the diagnostic has been fully processed and consumed. If failure, it signals that the diagnostic should be propagated to any previously registered handlers. It can be interfaced with via an MLIRContext instance.

DiagnosticEngine engine = ctx->getDiagEngine();

/// Handle the reported diagnostic.
// Return success to signal that the diagnostic has either been fully processed,
// or failure if the diagnostic should be propagated to the previous handlers.
DiagnosticEngine::HandlerID id = engine.registerHandler(
    [](Diagnostic &diag) -> LogicalResult {
  bool should_propagate_diagnostic = ...;
  return failure(should_propagate_diagnostic);
});


// We can also elide the return value completely, in which the engine assumes
// that all diagnostics are consumed(i.e. a success() result).
DiagnosticEngine::HandlerID id = engine.registerHandler([](Diagnostic &diag) {
  return;
});

// Unregister this handler when we are done.
engine.eraseHandler(id);



Constructing a Diagnostic

As stated above, the DiagnosticEngine holds the core API for diagnostic emission. A new diagnostic can be emitted with the engine via emit. This method returns an InFlightDiagnostic that can be modified further.

InFlightDiagnostic emit(Location loc, DiagnosticSeverity severity);


Using the DiagnosticEngine, though, is generally not the preferred way to emit diagnostics in MLIR. operation provides utility methods for emitting diagnostics:

// `emit` methods available in the mlir namespace.
InFlightDiagnostic emitError/Remark/Warning(Location);

// These methods use the location attached to the operation.
InFlightDiagnostic Operation::emitError/Remark/Warning();

// This method creates a diagnostic prefixed with "'op-name' op ".
InFlightDiagnostic Operation::emitOpError();





Diagnostic

A Diagnostic in MLIR contains all of the necessary information for reporting a message to the user. A Diagnostic essentially boils down to three main components:


	Source Location

	Severity Level

	Error, Note, Remark, Warning




	Diagnostic Arguments

	The diagnostic arguments are used when constructing the output message.







Appending arguments

One a diagnostic has been constructed, the user can start composing it. The output message of a diagnostic is composed of a set of diagnostic arguments that have been attached to it. New arguments can be attached to a diagnostic in a few different ways:

// A few interesting things to use when composing a diagnostic.
Attribute fooAttr;
Type fooType;
SmallVector<int> fooInts;

// Diagnostics can be composed via the streaming operators.
op->emitError() << "Compose an interesting error: " << fooAttr << ", " << fooType
                << ", (" << fooInts << ')';

// This could generate something like (FuncAttr:@foo, IntegerType:i32, {0,1,2}):
"Compose an interesting error: @foo, i32, (0, 1, 2)"




Attaching notes

Unlike many other compiler frameworks, notes in MLIR cannot be emitted directly. They must be explicitly attached to another diagnostic non-note diagnostic. When emitting a diagnostic, notes can be directly attached via attachNote. When attaching a note, if the user does not provide an explicit source location the note will inherit the location of the parent diagnostic.

// Emit a note with an explicit source location.
op->emitError("...").attachNote(noteLoc) << "...";

// Emit a note that inherits the parent location.
op->emitError("...").attachNote() << "...";





InFlight Diagnostic

Now that Diagnostics have been explained, we introduce the InFlightDiagnostic, an RAII wrapper around a diagnostic that is set to be reported. This allows for modifying a diagnostic while it is still in flight. If it is not reported directly by the user it will automatically report when destroyed.

{
  InFlightDiagnostic diag = op->emitError() << "...";
}  // The diagnostic is automatically reported here.




Diagnostic Configuration Options

Several options are provided to help control and enhance the behavior of diagnostics. These options can be configured via the MLIRContext, and registered to the command line with the registerMLIRContextCLOptions method. These options are listed below:


Print Operation On Diagnostic

Command Line Flag: -mlir-print-op-on-diagnostic

When a diagnostic is emitted on an operation, via Operation::emitError/..., the textual form of that operation is printed and attached as a note to the diagnostic. This option is useful for understanding the current form of an operation that may be invalid, especially when debugging verifier failures. An example output is shown below:

test.mlir:3:3: error: 'module_terminator' op expects parent op 'module'
  "module_terminator"() : () -> ()
  ^
test.mlir:3:3: note: see current operation: "module_terminator"() : () -> ()
  "module_terminator"() : () -> ()
  ^



Print StackTrace On Diagnostic

Command Line Flag: -mlir-print-stacktrace-on-diagnostic

When a diagnostic is emitted, attach the current stack trace as a note to the diagnostic. This option is useful for understanding which part of the compiler generated certain diagnostics. An example output is shown below:

test.mlir:3:3: error: 'module_terminator' op expects parent op 'module'
  "module_terminator"() : () -> ()
  ^
test.mlir:3:3: note: diagnostic emitted with trace:
 #0 0x000055dd40543805 llvm::sys::PrintStackTrace(llvm::raw_ostream&) llvm/lib/Support/Unix/Signals.inc:553:11
 #1 0x000055dd3f8ac162 emitDiag(mlir::Location, mlir::DiagnosticSeverity, llvm::Twine const&) /lib/IR/Diagnostics.cpp:292:7
 #2 0x000055dd3f8abe8e mlir::emitError(mlir::Location, llvm::Twine const&) /lib/IR/Diagnostics.cpp:304:10
 #3 0x000055dd3f998e87 mlir::Operation::emitError(llvm::Twine const&) /lib/IR/Operation.cpp:324:29
 #4 0x000055dd3f99d21c mlir::Operation::emitOpError(llvm::Twine const&) /lib/IR/Operation.cpp:652:10
 #5 0x000055dd3f96b01c mlir::OpTrait::HasParent<mlir::ModuleOp>::Impl<mlir::ModuleTerminatorOp>::verifyTrait(mlir::Operation*) /mlir/IR/OpDefinition.h:897:18
 #6 0x000055dd3f96ab38 mlir::Op<mlir::ModuleTerminatorOp, mlir::OpTrait::ZeroOperands, mlir::OpTrait::ZeroResult, mlir::OpTrait::HasParent<mlir::ModuleOp>::Impl, mlir::OpTrait::IsTerminator>::BaseVerifier<mlir::OpTrait::HasParent<mlir::ModuleOp>::Impl<mlir::ModuleTerminatorOp>, mlir::OpTrait::IsTerminator<mlir::ModuleTerminatorOp> >::verifyTrait(mlir::Operation*) /mlir/IR/OpDefinition.h:1052:29
 #  ...
  "module_terminator"() : () -> ()
  ^




Common Diagnostic Handlers

To interface with the diagnostics infrastructure, users will need to register a diagnostic handler with the DiagnosticEngine. Recognizing the many users will want the same handler functionality, MLIR provides several common diagnostic handlers for immediate use.


Scoped Diagnostic Handler

This diagnostic handler is a simple RAII class that registers and unregisters a given diagnostic handler. This class can be either be used directly, or in conjunction with a derived diagnostic handler.

// Construct the handler directly.
MLIRContext context;
ScopedDiagnosticHandler scopedHandler(&context, [](Diagnostic &diag) {
  ...
});

// Use this handler in conjunction with another.
class MyDerivedHandler : public ScopedDiagnosticHandler {
  MyDerivedHandler(MLIRContext *ctx) : ScopedDiagnosticHandler(ctx) {
    // Set the handler that should be RAII managed.
    setHandler([&](Diagnostic diag) {
      ...
    });
  }
};




SourceMgr Diagnostic Handler

This diagnostic handler is a wrapper around an llvm::SourceMgr instance. It provides support for displaying diagnostic messages inline with a line of a respective source file. This handler will also automatically load newly seen source files into the SourceMgr when attempting to display the source line of a diagnostic. Example usage of this handler can be seen in the mlir-opt tool.

$ mlir-opt foo.mlir

/tmp/test.mlir:6:24: error: expected non-function type
func @foo() -> (index, ind) {
                       ^

To use this handler in your tool, add the following:

SourceMgr sourceMgr;
MLIRContext context;
SourceMgrDiagnosticHandler sourceMgrHandler(sourceMgr, &context);




SourceMgr Diagnostic Verifier Handler

This handler is a wrapper around a llvm::SourceMgr that is used to verify that certain diagnostics have been emitted to the context. To use this handler, annotate your source file with expected diagnostics in the form of:


	expected-(error|note|remark|warning) {{ message }}



A few examples are shown below:

// Expect an error on the same line.
func @bad_branch() {
  br ^missing  // expected-error {{reference to an undefined block}}
}

// Expect an error on an adjacent line.
func @foo(%a : f32) {
  // expected-error@+1 {{unknown comparison predicate "foo"}}
  %result = cmpf "foo", %a, %a : f32
  return
}

// Expect an error on the next line that does not contain a designator.
// expected-remark@below {{remark on function below}}
// expected-remark@below {{another remark on function below}}
func @bar(%a : f32)

// Expect an error on the previous line that does not contain a designator.
func @baz(%a : f32)
// expected-remark@above {{remark on function above}}
// expected-remark@above {{another remark on function above}}


The handler will report an error if any unexpected diagnostics were seen, or if any expected diagnostics weren’t.

$ mlir-opt foo.mlir

/tmp/test.mlir:6:24: error: unexpected error: expected non-function type
func @foo() -> (index, ind) {
                       ^

/tmp/test.mlir:15:4: error: expected remark "expected some remark" was not produced
// expected-remark {{expected some remark}}
   ^~~~~~~~~~~~~~~~~~~~~~~~~~

Similarly to the SourceMgr Diagnostic Handler, this handler can be added to any tool via the following:

SourceMgr sourceMgr;
MLIRContext context;
SourceMgrDiagnosticVerifierHandler sourceMgrHandler(sourceMgr, &context);




Parallel Diagnostic Handler

MLIR is designed from the ground up to be multi-threaded. One important to thing to keep in mind when multi-threading is determinism. This means that the behavior seen when operating on multiple threads is the same as when operating on a single thread. For diagnostics, this means that the ordering of the diagnostics is the same regardless of the amount of threads being operated on. The ParallelDiagnosticHandler is introduced to solve this problem.

After creating a handler of this type, the only remaining step is to ensure that each thread that will be emitting diagnostics to the handler sets a respective ‘orderID’. The orderID corresponds to the order in which diagnostics would be emitted when executing synchronously. For example, if we were processing a list of operations [a, b, c] on a single-thread. Diagnostics emitted while processing operation ‘a’ would be emitted before those for ‘b’ or ‘c’. This corresponds 1-1 with the ‘orderID’. The thread that is processing ‘a’ should set the orderID to ‘0’; the thread processing ‘b’ should set it to ‘1’; and so on and so forth. This provides a way for the handler to deterministically order the diagnostics that it receives given the thread that it is receiving on.

A simple example is shown below:

MLIRContext *context = ...;
ParallelDiagnosticHandler handler(context);

// Process a list of operations in parallel.
std::vector<Operation *> opsToProcess = ...;
llvm::parallelForEachN(0, opsToProcess.size(), [&](size_t i) {
  // Notify the handler that we are processing the i'th operation.
  handler.setOrderIDForThread(i);
  auto *op = opsToProcess[i];
  ...

  // Notify the handler that we are finished processing diagnostics on this
  // thread.
  handler.eraseOrderIDForThread();
});
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MLIR: The case for a simplified polyhedral form

MLIR embraces polyhedral compiler techniques for their many advantages representing and transforming dense numerical kernels, but it uses a form that differs significantly from other polyhedral frameworks.

Disclaimer / Warning

This document is a very early design proposal (which has since been accepted) that explored the tradeoffs of using this simplified form vs the traditional polyhedral schedule list form. At some point, this document could be dusted off and written as a proper academic paper, but until now, it is better to included it in this crafty form than not to. Beware that this document uses archaic syntax and should not be considered a canonical reference to modern MLIR.


Introduction

This document discusses general goals of the project, introduces context and the two alternatives, then talks about the tradeoffs of these designs. Written by Chris Lattner.



General goals of an IR, and goals of mlfunc’s specifically

Our currently planned representation for MLIR consists of two kinds of functions: an LLVM-like “CFG Function” and an “ML Function”: a function represented in multidimensional loop form. The idea is that a CFG function is capable of full generality for expressing arbitrary computation, but is awkward for loop transformations. In contrast, mlfunc’s are limited (e.g. to control flow involving loop nests over affine spaces) but these limitations make it much easier to transform and analyze, particularly for the set of computations in a machine learning kernel.

The design of an intermediate representations is an optimization problem, which makes intentional tradeoffs that aim to make certain kinds of compiler transformations simple. After all, it is “possible” to do almost any transformation on any IR: we could theoretically do loop transformations on assembly language. OTOH, such transformations would take too long to write, would be fragile due to irrelevant changes, would be difficult to maintain, and difficult to make target independent. Performing transformations on the “right level” of IR makes it much easier to do analysis and transformation of code, and can make them faster by reducing the size of the IR, and eliminating possibilities that would have otherwise have to be considered.

This is the reason we’re interested in adding polyhedral techniques to an IR in the first place: though our base “CFG function” representation is fully capable of expressing any computation, it is “too” expressive. The limitations imposed by polyhedral techniques (e.g. on affine loop bounds and array subscripts) define a closed algebra that can represent an interesting range of transformations and their compositions, and because of their simplicity, we can perform (e.g.) dependence analysis more efficiently and more reliably.

This raises an important question that this document examines: given we are introducing a redundant and limited way to express code and transformations, exactly what form is best to perform the analyses and transformations we want?

We explore two different design points that are capable of expressing the same class of affine loop computations, but which use different representational forms. These forms trade off verbosity, ease of transformation, and ease of analysis in interesting ways.



Context: Traditional Polyhedral Form

We started by discussing a representation that uses the traditional polyhedral schedule set + domain representation, e.g. consider C-like code like:

  void simple_example(...) {
    for (int i = 0; i < N; ++i) {
      for (int j = 0; j < N; ++j) {
         float tmp = X[i,j]    // S1
         A[i,j] = tmp + 1      // S2
         B[i,j] = tmp * 42     // S3
       }
    }
  }


The polyhedral representation doesn’t care about the actual computation, so we will abstract them into S1/S2/S3 in the discussion below. Originally, we planned to represent this with a classical form like (syntax details are not important and probably slightly incorrect below):

  mlfunc @simple_example(... %N) {
    %tmp = call @S1(%X, %i, %j)
      domain: (0 <= %i < %N), (0 <= %j < %N)
      schedule: (i, j, 0)

    call @S2(%tmp, %A, %i, %j)
      domain: (0 <= %i < %N), (0 <= %j < %N)
      schedule: (i, j, 1)

    call @S3(%tmp, %B, %i, %j)
      domain: (0 <= %i < %N), (0 <= %j < %N)
      schedule: (i, j, 2)
  }

In this design, an mlfunc is an unordered bag of instructions whose execution order is fully controlled by their schedule.

However, we recently agreed that a more explicit schedule tree representation is a better fit for our needs, because it exposes important structure that will make analyses and optimizations more efficient, and also makes the scoping of SSA values more explicit. This leads us to a representation along the lines of:

  mlfunc @simple_example(... %N) {
    d0/d1 = mlspace
    for S1(d0), S2(d0), S3(d0) {
      for S1(d1), S2(d1), S3(d1) {

        %tmp = call @S1(%X, d0, d1)      ;; S1
          domain: (0 <= d0 < %N), (0 <= d1 < %N)

        call @S2(%tmp, %A, d0, d1)      ;; S2
          domain: (0 <= d0 < %N), (0 <= d1 < %N)

        call @S3(%tmp, %B, d0, d1)      ;; S3
          domain: (0 <= d0 < %N), (0 <= d1 < %N)
      }
    }
  }

This change makes the nesting structure of the loops an explicit part of the representation, and makes lexical ordering within a loop significant (eliminating the constant 0/1/2 of schedules).

It isn’t obvious in the example above, but the representation allows for some interesting features, including the ability for instructions within a loop nest to have non-equal domains, like this - the second instruction ignores the outer 10 points inside the loop:

  mlfunc @reduced_domain_example(... %N) {
    d0/d1 = mlspace
    for S1(d0), S2(d0) {
      for S1(d1), S2(d1) {
        %tmp = call @S1(%X, d0, d1)    ;; S1
          domain: (0 <= d0 < %N), (0 <= d1 < %N)

        call @S2(%tmp, %A, d0, d1)      ;; S2
          domain: (10 <= d0 < %N-10), (10 <= d1 < %N-10)
      }
    }
  }

It also allows schedule remapping within the instruction, like this example that introduces a diagonal skew through a simple change to the schedules of the two instructions:

  mlfunc @skewed_domain_example(... %N) {
    d0/d1 = mlspace
    for S1(d0), S2(d0+d1) {
      for S1(d0+d1), S2(d1) {
        %tmp = call @S1(%X, d0, d1)    ;; S1
          domain: (0 <= d0 < %N), (0 <= d1 < %N)

        call @S2(%tmp, %A, d0, d1)      ;; S2
          domain: (0 <= d0 < %N), (0 <= d1 < %N)
      }
    }
  }

This form has great power, and the polyhedral code generator (which lowers from an mlfunc to a cfgfunc representation) handles this power so things that introduce loop transformations don’t have to explicitly manipulate the looping structure.



Proposal: Simplified Polyhedral Form

This document proposes and explores the idea of going one step further, moving all of the domain and schedule information into the “schedule tree”. In this form, we would have a representation where all instructions inside of a given for-loop are known to have the same domain, which is maintained by the loop. In the simplified form, we also have an “if” instruction that takes an affine condition.

Our simple example above would be represented as:

  mlfunc @simple_example(... %N) {
    affine.for %i = 0 ... %N step 1 {
      affine.for %j = 0 ... %N step 1 {
        // identity noop in this case, but can exist in general.
        %0,%1 = affine.apply #57(%i, %j)

        %tmp = call @S1(%X, %0, %1)

        call @S2(%tmp, %A, %0, %1)

        call @S3(%tmp, %B, %0, %1)
      }
    }
  }

The example with the reduced domain would be represented with an if instruction:

  mlfunc @reduced_domain_example(... %N) {
    affine.for %i = 0 ... %N step 1 {
      affine.for %j = 0 ... %N step 1 {
        // identity noop in this case, but can exist in general.
        %0,%1 = affinecall #57(%i, %j)

        %tmp = call @S1(%X, %0, %1)

        if (10 <= %i < %N-10), (10 <= %j < %N-10) {

          %2,%3 = affine.apply(%i, %j)    // identity noop in this case

          call @S2(%tmp, %A, %2, %3)
        }
      }
    }
  }

These IRs represent exactly the same information, and use a similar information density. The ‘traditional’ form introduces an extra level of abstraction (schedules and domains) that make it easy to transform instructions at the expense of making it difficult to reason about how those instructions will come out after code generation. With the simplified form, transformations have to do parts of code generation inline with their transformation: instead of simply changing a schedule to (i+j, j) to get skewing, you’d have to generate this code explicitly (potentially implemented by making polyhedral codegen a library that transformations call into):

mlfunc @skewed_domain_example(... %N) {
  affine.for %t1 = 0 ... 2*N-2 step 1 {
    affine.for %t2 = max(0, t1-N+1) ... min(N, t1) step 1 {
      (%i, %j) = (%t1-%t2, %t2)
      ...
    }
  }
}



Evaluation

Both of these forms are capable of expressing the same class of computation: multidimensional loop nests with affine loop bounds and affine memory references. That said, they pose very different tradeoffs in other ways.


Commonality: can express same computation

Both of these can express the same sorts of computation, e.g. kernels written in one form are representable in the other form in all cases.



Commonality: dependence analysis

These representations both use affine functions for data layout mapping and access subscripts, and dependence analysis works the same way.



Commonality: difficulty of determining optimal transformation series

One major challenge in performance of optimization of this sort of code is choosing the ordering and behavior of various loop transformations that get applied. There are non-local effects of every decision, and neither representation helps solve this inherently hard problem.



Commonality: compactness of IR

In the cases that are most relevant to us (hyper rectangular spaces) these forms are directly equivalent: a traditional instruction with a limited domain (e.g. the “reduced_domain_example” above) ends up having one level of ML ‘if’ inside its loops. The simplified form pays for this by eliminating schedules and domains from the IR. Both forms allow code duplication to reduce dynamic branches in the IR: the traditional approach allows instruction splitting, the simplified form supports instruction duplication.

It is important to point out that the traditional form wins on compactness in the extreme cases: e.g. the loop skewing case. These cases will be rare in practice for our workloads, and are exactly the cases that downstream transformations want to be explicit about what they are doing.



Simplicity of code generation

A key final stage of an mlfunc is its conversion to a CFG function, which is required as part of lowering to the target machine. The simplified form has a clear advantage here: the IR has a direct correspondence to the structure of the generated code.

In contrast, the traditional form has significant complexity in the lowering process to a CFG function, because the verbosity not imbued in the IR needs to come out during code generation. Code generation from ISL shows that it is possible to do this, but it is a non-trivial transformation.



Ease of transformation

An advantage for the traditional form is that it is easier to perform certain transformations on it: skewing and tiling are just transformations on the schedule of the instructions in question, it doesn’t require changing the loop structure.

In practice, the simplified form requires moving the complexity of code generation into the transformations themselves - this is sometimes trivial, sometimes involved. The author believes that this should be possible by making the code generation algorithms themselves be library functions that transformations call into, instead of an opaque block that happens at the end of the mlfunc processing.

Also, the sorts of transformations performed today by XLA (including tiling, padding, unrolling, and other rectangular transformations) should be easy enough to implement on either representation. The only cases that are a challenge are more advanced cases like skewing, e.g. for DMA data movement generation.



Ease of analysis: Cost models

The simplified form is much easier for analyses and transformations to build cost models for (e.g. answering the question of “how much code bloat will be caused by unrolling a loop at this level?”), because it is easier to predict what target code will be generated. With the traditional form, these analyses will have to anticipate what polyhedral codegen will do to a set of instructions under consideration: something that is non-trivial in the interesting cases in question (see “Cost of code generation”).



Cost of code generation

State of the art polyhedral code generation is expensive and complicated, sometimes exponential time complexity. We expect that most machine learning workloads will be hyper-rectangular, and thus it should be easy to specialize in important cases. That said, the traditional polyhedral representation makes it very easy to introduce complicated and expensive schedules, and provides no way to understand and project a cost model for using them. All downstream clients of the IR need to be prepared to handle the full generality of IR that may come to them.

The simplified form defines this away: the concepts in the IR remain simple, and the code much more directly reflects the cost model for lowering to CFG functions and machine code. This is expected to be very important in the late stages of a code generator for an accelerator.



SSA in ML Functions

We agree already that values defined in an mlfunc can include scalar values and they are defined based on traditional dominance. In the simplified form, this is very simple: arguments and induction variables defined in for-loops are live inside their lexical body, and linear series of instructions have the same “top down” dominance relation that a basic block does.

In the traditional form though, this is not the case: it seems that a lot of knowledge about how codegen will emit the code is necessary to determine if SSA form is correct or not. For example, this is invalid code:

  %tmp = call @S1(%X, %0, %1)
    domain: (10 <= %i < %N), (0 <= %j < %N)
    schedule: (i, j)

  call @S2(%tmp, %A, %0, %1)
    domain: (0 <= %i < %N), (0 <= %j < %N)
    schedule: (i, j)

Because %tmp isn’t defined on some iterations of the %i loop.

This matters because it makes the verifier more complicated, but more significantly, it means that load promotion and other optimizations that will produce SSA form will need to be aware of this and be able to model what codegen does.

An emergent property of this that we discussed recently is that PHI nodes in mlfunc’s (if we support them) will also have to have domains.



Lack of redundancy in IR

The traditional form has multiple encodings for the same sorts of behavior: you end up having bits on affine.for loops to specify whether codegen should use “atomic/separate” policies, unroll loops, etc. Instructions can be split or can generate multiple copies of their instruction because of overlapping domains, etc.

This is a problem for analyses and cost models, because they each have to reason about these additional forms in the IR.



Suitability to purpose: lowering to machine code

One of the main drivers for this work is lowering to low-level accelerator code, including two-dimensional vectorization, insertion of DMAs, and other utilization of the matrix accelerator units. In the author’s opinion, the extra compactness of the traditional form is a negative for this purpose: reasoning about the generated machine code will require understanding the mapping from mlfunc to lowered code, which means that it must understand what code generation will do.

In the simplified form, the effect of “code generation” is always obvious from the IR itself, which should make it easier to perform vectorization to target instructions and other analyses we need to perform.




Third Alternative: two different levels of mlfunc

One hybrid alternative is to support both the traditional and simplified forms of mlfunc in our IR.

The stages could look like this, for example:


	Early performance transformations could be done on the traditional form.

	Partial code generation lowers to the simplified form

	Target specific lowering phases for tiling, and vectorization and other 2D transforms that don’t benefit much from the traditional form could be run.

	Final codegen to a cfg func can be done when all of the instructions are replaced with ones valid on the target.



While this is possible, it isn’t clear what would justify the complexity of this approach. Unless there is a super compelling reason for this, it would be nice to not do this. Update: we discussed this as a design team and agreed that this wouldn’t be a good way to go.
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MLIR Rationale

This document is intended to capture some of the alternatives considered and open debates in the design of MLIR, along with the rationale for certain decisions we made. This is not intended to be a “finely groomed” document - we prefer the ability to dump in interesting tidbits without worrying too much about their consistency or readability.

[TOC]


Abstract

MLIR is a compiler intermediate representation with similarities to traditional three-address SSA representations (like LLVM IR or SIL), but which introduces notions from the polyhedral loop optimization works as first class concepts. This hybrid design is optimized to represent, analyze, and transform high level dataflow graphs as well as target-specific code generated for high performance data parallel systems. Beyond its representational capabilities, its single continuous design provides a framework to lower from dataflow graphs to high performance target specific code.

MLIR stands for one of “Multi-Level IR” or “Multi-dimensional Loop IR” or “Machine Learning IR” or “Mid Level IR”, we prefer the first. This document only provides the rationale behind MLIR – its actual specification document and other content is hosted elsewhere.



Introduction and Motivation

The Multi-Level Intermediate Representation (MLIR) is intended for easy expression and optimization of computations involving deep loop nests and dense matrices of high dimensionality. It is thus well-suited to deep learning computations in particular. Yet it is general enough to also represent arbitrary sequential computation. The representation allows high-level optimization and parallelization for a wide range of parallel architectures including those with deep memory hierarchies — general-purpose multicores, GPUs, and specialized neural network accelerators.

MLIR uses ideas drawn from IRs of LLVM and Swift for lower level constructs while combining them with ideas from the polyhedral abstraction to represent loop nests, multidimensional data (tensors), and transformations on these entities as first class concepts in the IR.

MLIR is a multi-level IR, i.e., it represents code at a domain-specific representation such as HLO or TensorFlow graphs, all the way down to the machine level. MLIR is able to represent arbitrary control flow and arbitrary data accesses, and is general enough to represent nearly all sequential computation. This is a key distinction from existing polyhedral representation implementations (such as LLVM Polly) that are able to use the polyhedral abstraction in a way isolated from the LLVM IR and only for affine loop nests, i.e., portions of the code where array accesses, loop bounds, and conditionals are regular (involve linear functions of loop iterators and constant symbols). The presence of statically unpredictable data accesses or control flow does not preclude representation in MLIR, but only limits to a certain extent the ability to reason about and apply transformations using the polyhedral abstraction.

Maps, sets, and relations with affine constraints are the core structures underlying a polyhedral representation of high-dimensional loop nests and multidimensional arrays. These structures are represented as textual expressions in a form close to their mathematical form. These structures are used to capture loop nests, tensor data structures, and how they are reordered and mapped for a target architecture. All structured or “conforming” loops are captured as part of the polyhedral information, and so are tensor variables, their layouts, and subscripted accesses to these tensors in memory.

The information captured in the IR allows a compact expression of all loop transformations, data remappings, explicit copying necessary for explicitly addressed memory in accelerators, mapping to pre-tuned expert-written primitives, and mapping to specialized vector instructions. Loop transformations that can be easily implemented include the body of affine transformations: these subsume all traditional loop transformations (unimodular and non-unimodular) such as loop tiling, interchange, permutation, skewing, scaling, relative shifting, reversal, fusion, and distribution/fission. Transformations on data layout such as padding and transforming to blocked layouts are also represented well via affine layout maps.

MLIR’s design allows a progressive lowering to target-specific forms. Besides high-level transformations for loop nests and data layouts that a typical mid-level optimizer is expected to deal with, MLIR is also designed to perform certain low-level scheduling and mapping decisions that a typical backend IR is entrusted with: these include mapping to specialized vector instructions, auto-vectorization, and software pipelining. The need to support these transformations stems from the fact that neural network accelerators have specialized units that deal with large chunks of data whose computation maps back to chunks of more than one loop of the loop nests as viewed by a program at a level closer to the original specification. Such specialized units or instructions operate on multidimensional data chunks from a programmer’s viewpoint. It thus makes it hard or infeasible for a backend operating on a very low-level IR close to assembly to lift and reconstruct loops and perform such a mapping. This is in contrast to classic instruction selection and scheduling in today’s compilers that primarily only deals with the body of the innermost loop. MLIR also facilitates automatic mapping to expert pre-tuned primitives or vendor libraries operating on data at higher levels (or at the highest level) of the memory hierarchy.

In summary, MLIR is convenient for and closed under the kind of transformations needed to lower to general-purpose as well as specialized accelerators. It also allows one to build modular and reusable target independent and target dependent passes.



Design Decisions

This section sheds light on some of the design decisions – some of these are indirectly implied by the specification document.


Loads and stores

The ‘load’ and ‘store’ instructions are specifically crafted to fully resolve to an element of a memref. These instructions take as arguments n+1 indices for an n-ranked tensor. This disallows the equivalent of pointer arithmetic or the ability to index into the same memref in other ways (something which C arrays allow for example). Furthermore, for the affine constructs, the compiler can follow use-def chains (e.g. through affine.apply operations) or through the map attributes of affine operations) to precisely analyze references at compile-time using polyhedral techniques. This is possible because of the restrictions on dimensions and symbols.

A scalar of element-type (a primitive type or a vector type) that is stored in memory is modeled as a 0-d memref. This is also necessary for scalars that are live out of for loops and if conditionals in a function, for which we don’t yet have an SSA representation – an extension to allow that is described later in this doc.



Symbols and types

The current MLIR disallows use of symbols in types. For example, when a tensor or memref dimension is statically unknown, it is denoted in the type as ‘?’. An SSA symbol is then bound to it when a memref is created. The actual value of the unknown dimension can be queried using the “dim” builtin as shown below.

Example:

func foo(...) {
  %A = alloc <8x?xf32, #lmap> (%N)
  ...
  call bar(%A) : (memref<8x?xf32, #lmap>)
}

func bar(%A : memref<8x?xf32, #lmap>) {
  // Type of %A indicates that %A has dynamic shape with 8 rows
  // and unknown number of columns. The number of columns is queried
  // dynamically using dim instruction.
  %N = dim %A, 1 : memref<8x?xf32, #lmap>

  affine.for %i = 0 to 8 {
    affine.for %j = 0 to %N {
      // A[i,j] += 1
      %s1 = affine.load %A[%i, %j] : memref<8x?xf32, #lmap>
      %s2 = add %s1, 1
      affine.store %s2, %A[%i, %j] : memref<8x?xf32, #lmap>
    }
  }
  return
}


An alternative design is to embed the reference to symbols directly in the type - memref<8x%Nxf32>. We went for the current approach in MLIR because it simplifies the design — types remain immutable when the values of symbols change.



Block Arguments vs PHI nodes

MLIR Regions represent SSA using “block arguments” rather than PHI instructions used in LLVM. This choice is representationally identical (the same constructs can be represented in either form) but block arguments have several advantages:


	LLVM PHI nodes always have to be kept at the top of a block, and transformations frequently have to manually skip over them. This is defined away with BB arguments.

	LLVM has a separate function Argument node. This is defined away with BB arguments, because the arguments to the entry block serve this purpose.

	Blocks of PHI nodes in LLVM execute atomically, which is surprising and super confusing to compiler engineers and it is easy to introduce bugs with this (very related to the “lost copy” problem in SSA lowering literature.) With the BB argument representation, this confusion is defined away.

	The entry list of PHI nodes in LLVM are unordered, and some blocks have thousands of predecessors (e.g. unwind blocks). This can cause long compile time problems because transformations have to linearly scan this list. This is defined away with BB argument representation.

	LLVM has no way to represent values that are available only in one successor but not the other, e.g. its invoke instruction cannot produce the exception value JUST on the exception edge. Instead, the landingpad instruction is a hack used to represent this. MLIR doesn’t make use of this capability, but SIL uses it extensively, e.g. in the switch_enum instruction.



For more context, block arguments were previously used in the Swift SIL Intermediate Representation, and described in a talk on YouTube. The section of interest starts here.



Index type disallowed in vector types

Index types are not allowed as elements of vector types. Index types are intended to be used for platform-specific “size” values and may appear in subscripts, sizes of aggregate types and affine expressions. They are also tightly coupled with affine.apply and affine.load/store operations; having index type is a necessary precondition of a value to be acceptable by these operations.

We allow index types in tensors and memrefs as a code generation strategy has to map index to an implementation type and hence needs to be able to materialize corresponding values. However, the target might lack support for vector values with the target specific equivalent of the index type.



Bit width of a non-primitive type and index is undefined

The bit width of a compound type is not defined by MLIR, it may be defined by a specific lowering pass. In MLIR, bit width is a property of certain primitive type, in particular integers and floats. It is equal to the number that appears in the type definition, e.g. the bit width of i32 is 32, so is the bit width of f32. The bit width is not necessarily related to the amount of memory (in bytes) or the size of register (in bits) that is necessary to store the value of the given type. These quantities are target and ABI-specific and should be defined during the lowering process rather than imposed from above. For example, vector<3xi57> is likely to be lowered to a vector of four 64-bit integers, so that its storage requirement is 4 x 64 / 8 = 32 bytes, rather than (3 x 57) ceildiv 8 = 22 bytes as can be naively computed from the bitwidth. Individual components of MLIR that allocate space for storing values may use the bit size as the baseline and query the target description when it is introduced.

The bit width is not defined for dialect-specific types at MLIR level. Dialects are free to define their own quantities for type sizes.



Integer signedness semantics

Integers in the builtin MLIR type system have a bitwidth (note that the index type has a symbolic width equal to the machine word size), and they may additionally have signedness semantics. The purpose is to satisfy the needs of different dialects, which can model different levels of abstractions. Certain abstraction, especially closer to source language, might want to differentiate signedness with integer types; while others, especially closer to machine instruction, might want signless integers. Instead of forcing each abstraction to adopt the same integer modelling or develop its own one in house, Integer type provides this as an option to help code reuse and consistency.

For the standard dialect, the choice is to have signless integer types. An integer value does not have an intrinsic sign, and it’s up to the specific op for interpretation. For example, ops like addi and muli do two’s complement arithmetic, but some other operations get a sign, e.g. divis vs diviu.

LLVM uses the same design, which was introduced in a revamp rolled out in the LLVM 2.0 integer type. Prior to that, from LLVM 1.0 to 1.9, LLVM uses signed types like “sbyte” and “ubyte”. This shift was important and has served LLVM well over the years. The reason this is important is that it is a good thing for an intermediate representation to represent the same computation with the same instruction. Signed types got in the way, because (e.g.) an “add of an sbyte” does the same computation as an “add of a ubyte”, but the type system made them look artificially different. This split also required casts like “cast from sbyte to ubyte” which do nothing at the machine level. Removing signs from the type system eliminated these problems, making the compiler simpler.

More information about this split is available in an old talk on youtube talking about LLVM 2.0.

Note that this rationale only applies to the “standard ops” dialect in which we can express an opinion about its design. Other dialects generally try to model an external system, and should aim to reflect its design as closely as possible.



Splitting floating point vs integer operations

The MLIR “standard” operation set splits many integer and floating point operations into different categories, for example addf vs addi and cmpf vs cmpi (following the design of LLVM). These instructions are polymorphic on the number of elements in the type though, for example addf is used with scalar floats, vectors of floats, and tensors of floats (LLVM does the same thing with its scalar/vector types).

This split is important because floating point and integer operations are quite different in practice: for example, floating point values include NaN’s, so integer comparisons and floating point comparisons should use different comparison opcodes. On the arithmetic side of things, floating point operations support rounding modes, floating point contractions, “fast math”, and integers may want to have two’s complement overflow behavior or be undefined on various forms of wrapping for performance.

We are a long way from this sort of thing being a priority to care about in MLIR, but since we have experience and know the right way to do this, we’d rather design it in from the beginning.

Note that this rationale only applies to the “standard ops” dialect in which we can express an opinion about its design. Other dialects generally try to model an external system, and should aim to reflect its design as closely as possible.



Specifying sign in integer comparison operations

Since integers are signless, it is necessary to define the sign for integer comparison operations. This sign indicates how to treat the foremost bit of the integer: as sign bit or as most significant bit. For example, comparing two i4 values 0b1000 and 0b0010 yields different results for unsigned (8 > 3) and signed (-8 < 3) interpretations. This difference is only significant for order comparisons, but not for equality comparisons. Indeed, for the latter all bits must have the same value independently of the sign. Since both arguments have exactly the same bit width and cannot be padded by this operation, it is impossible to compare two values whose bit representations would differ while the values are interpreted as equal.



Specifying comparison kind as attribute

Unlike arithmetic, comparison operators share several common properties, e.g. they cannot be considered associative. In practice, comparisons are sometimes implemented by the same instruction or its variants so it makes sense to group them together at the IR level.

An alternative would be introducing ten distinct operators for all currently supported kinds of integer comparisons. These operators would have increased the number of “reserved” names used by standard operations as well as the size of the C++ API while their implementations would have been mostly identical.

The comparison kind is internally an integer attribute. However, for the sake of readability by humans, custom assembly form accepts string literals that are mapped to the underlying integer values: cmpi "eq", %lhs, %rhs better implies integer equality comparison than cmpi 0, %lhs, %rhs where it is unclear what gets compared to what else. This syntactic sugar is possible thanks to parser logic redefinitions for custom assembly form of non-builtin operations. Supporting it in the full notation would have required changing how the main parsing algorithm works and may have unexpected repercussions. While it had been possible to store the predicate as string attribute, it would have rendered impossible to implement switching logic based on the comparison kind and made attribute validity checks (one out of ten possible kinds) more complex.



‘select’ operation to implement min/max

Although min and max operations are likely to occur as a result of transforming affine loops in ML functions, we did not make them first-class operations. Instead, we provide the select operation that can be combined with cmpi to implement the minimum and maximum computation. Although they now require two operations, they are likely to be emitted automatically during the transformation inside MLIR. On the other hand, there are multiple benefits of introducing select: standalone min/max would concern themselves with the signedness of the comparison, already taken into account by cmpi; select can support floats transparently if used after a float-comparison operation; the lower-level targets provide select-like instructions making the translation trivial.

This operation could have been implemented with additional control flow: %r = select %cond, %t, %f is equivalent to

^bb0:
  cond_br %cond, ^bb1(%t), ^bb1(%f)
^bb1(%r):

However, this control flow granularity is not available in the ML functions where min/max, and thus select, are likely to appear. In addition, simpler control flow may be beneficial for optimization in general.



Regions


Attributes of type ‘Block’

We considered representing regions through ArrayAttrs containing a list of a special type IRBlockAttr, which in turn would contain a list of operations. All attributes in MLIR are unique’d within the context, which would make the IR inside the regions immortal for no good reason.



Use “inlined” functions as regions

We considered attaching a “force-inline” attribute on a function and/or a function call operation. Even the minimal region support (use cases in affine.for and affine.if existing before the regions) requires access to the values defined in the dominating block, which is not supported by functions. Conceptually, function bodies are instances of regions rather than the inverse; regions can also be device kernels, alternative sections, etc.



Dedicated region operation

This would mean we have a special kind of operation that is allowed to have regions while other operations are not. Such distinction is similar to the Stmt/Op difference we have had and chose to remove to make the IR simpler and more flexible. It would also require analyses and passes to consider the interplay between operations (e.g., an affine.for operation must be followed by a region operation). Finally, a region operation can be introduced using the current implementation, among other operations and without being special in any sense.



Explicit capture of the values used in a region

Being able to use values defined outside the region implies that use-def chains may contain uses from different nested regions. Consequently, IR transformations and analyses can pull the instruction defining the value across region boundaries, for example in case of TableGen-defined canonicalization patterns. This would not be the case if all used values had been passed as region arguments. One of the motivations for introducing regions in the IR is precisely to enable cross-region analyses and transformations that are simpler than inter-procedural transformations. Having uses from different regions appear in the same use-def chain, contrary to an additional data structure maintaining correspondence between function call arguments as uses of the original definitions and formal arguments as new definitions, enables such simplification. Since individual operations now belong to blocks, which belong to regions, it is always possible to check if the definition of the value belongs to the same region as its particular use. The risk is that any IR traversal will need to handle explicitly this situation and it is easy to forget a check (or conversely it isn’t easy to design the right check in a tablegen pattern for example): traversing use-def chains potentially crosses implicitly semantic barriers, making it possible to unknowingly break region semantics. This is expected to be caught in the verifier after the transformation.

At the same time, one may choose to pass certain or all values as region arguments to explicitly break the use-def chains in the current proposal. This can be combined with an attribute-imposed semantic requirement disallowing the body of the region to refer to any value from outside it.




Dialect type extensions

This section describes the design decisions that shaped the dialect extensible type system present in MLIR.


Interactions between dialects

There are two different interactions between dialects that are important to understand. When types of a dialect are:


	In operations of other dialects


	For standard/builtin operations, only standard/builtin types are allowed. This restriction allows for operations to clearly understand the invariants that they are working under.

	Outside of standard/builtin operations, dialects are expected to verify the allowable operation types per operation.




	In types of other dialects


	For standard/builtin types, these types are allowed to contain types from other dialects. This simplifies the type system and removes the need for dialects to redefine all of the standard aggregate types, e.g. tensor, as well as the memref type. Dialects are expected to verify that a specific type is valid within a standard type, e.g. if a type can be an element of a tensor.

	For dialect types, the dialect is expected to verify any type invariants, e.g. if the standard tensor type can contain a specific type of that dialect.








Separating builtin and standard types

Following the separation between the built-in and standard dialect, it makes sense to separate built-in types and standard dialect types. Built-in types are required for the validity of the IR itself, e.g. the function type (which appears in function signatures and generic assembly forms of operations). Integer, float, vector, memref and tensor types, while important, are not necessary for IR validity.



Unregistered types

MLIR supports unregistered operations in generic assembly form. MLIR also supports a similar concept for types. When parsing, if the dialect for dialect type has not been registered the type is modeled as an ‘OpaqueType’. This allows for types to be round-tripped without needing to link in the dialect library that defined them. No additional information about opaque types, outside of parsing/printing, will be available.



Dialect type syntax

Dialect extended types are represented as string literals wrapped inside of the dialect namespace. This means that the parser delegates to the dialect for parsing specific type instances. This differs from the representation of dialect defined operations, of which have an identifier name that the parser uses to identify and parse them.

This representation was chosen for several reasons:


Dialects must provide custom type parsers

Dialect type parsing cannot plug into the existing parser infrastructure as operations do with the OpAsmParser/Printer. Operations have a defined syntax structure that is the same across all dialects. Types, on the other hand, may have many different, and sometimes conflicting, parsing constraints that would be difficult/unmaintainable to provide within a single interface.

This also has the added benefit of encouraging dialects to reuse existing external type parsers. For example, an LLVM dialect may provide an MLIR LLVM type that is simply a wrapper around LLVM types. The LLVM dialect would then use the existing LLVM type parsing infrastructure.

Example:

%s = "foo"() : () -> !llvm<"i32*">



Types do not always have canonical names

Unlike operations, types generally do not have a formal canonical name. For example, function types have no defined keyword and integer types are defined by a regular expression to support arbitrary bitwidth. Dialects with existing type systems, e.g. LLVM, are likely to provide wrappers around their existing type systems. For these wrapper types there is no simple canonical name, it’s logical to think of these types as existing within the namespace of the dialect. If a dialect wishes to assign a canonical name to a type, it can be done via type aliases.





Tuple types

The MLIR type system provides first class support for defining tuple types. This is due to the fact that Tuple represents a universal concept that is likely to, and has already begun to, present itself in many different dialects. Though this type is first class in the type system, it merely serves to provide a common mechanism in which to represent this concept in MLIR. As such, MLIR provides no standard operations for interfacing with tuple types. It is up to dialect authors to provide operations, e.g. extract_tuple_element, to interpret and manipulate them. When possible, operations should prefer to use multiple results instead. These provide a myriad of benefits, such as alleviating any need for tuple-extract operations that merely get in the way of analysis and transformation.



Assembly forms

MLIR decides to support both generic and custom assembly forms under the following considerations:

MLIR is an open system; it is designed to support modular and pluggable dialects. Depending on whether there exists a corresponding dialect and whether the dialect is plugged in, operations may or may not be registered into MLIR system. Yet we still need a way to investigate these operations. So the generic assembly form is mandated by this aspect of MLIR system. It provides a default textual form for operations.

On the other hand, an assembly form is for assisting developers to investigate the IR. The generic form serves as a safe fallback but it can be too verbose for certain ops. Therefore, MLIR gives each dialect the choice to define a custom assembly form for each operation according to the operation’s semantics and specific needs. The custom assembly form can de-duplicate information from the operation to derive a more concise form, thus better facilitating the comprehension of the IR.




Examples

This section describes a few very simple examples that help understand how MLIR represents computation.


Non-affine control flow

// A simple linear search in every row of a matrix
for (i = 0; i < N; i++) {
  for (j = 0; j < N; j++) {
    // dynamic control flow
    if (a[i][j] == key) {
      s[i] = j;
      break;
    }
  }
}

The presence of dynamic control flow leads to an inner non-affine function nested in an outer function that using affine loops.

func @search(%A: memref<?x?xi32, %S: <?xi32>, %key : i32) {
  %ni = dim %A, 0 : memref<?x?xi32>
  // This loop can be parallelized
  affine.for %i = 0 to %ni {
    call @search_body (%A, %S, %key, %i) : (memref<?x?xi32>, memref<?xi32>, i32, i32)
  }
  return
}

func @search_body(%A: memref<?x?xi32>, %S: memref<?xi32>, %key: i32, %i : i32) {
  %nj = dim %A, 1 : memref<?x?xi32>
  br ^bb1(0)

^bb1(%j: i32)
  %p1 = cmpi "lt", %j, %nj : i32
  cond_br %p1, ^bb2, ^bb5

^bb2:
  %v = affine.load %A[%i, %j] : memref<?x?xi32>
  %p2 = cmpi "eq", %v, %key : i32
  cond_br %p2, ^bb3(%j), ^bb4

^bb3(%j: i32)
  affine.store %j, %S[%i] : memref<?xi32>
  br ^bb5

^bb4:
  %jinc = addi %j, 1 : i32
  br ^bb1(%jinc)

^bb5:
  return
}

As per the MLIR spec, the restrictions on dimensions and symbol identifiers to be used with the affine.apply operation only apply to accesses inside affine.for and affine.if operations. However, an analysis of accesses inside the called function (@search_body) is necessary to determine if the %i loop could be parallelized: such function access analysis is calling context sensitive.



Non-affine loop bounds

Loop bounds that are not affine lead to a nesting of functions as shown below.

for (i = 0; i < N; i++)
  for (j = 0; j < N; j++)
    // Non-affine loop bound for k loop.
    for (k = 0; k < pow(2, j); k++)
       for (l = 0; l < N; l++) {
        // block loop body
        ...
       }


func @outer_nest(%n : index) {
  affine.for %i = 0 to %n {
    affine.for %j = 0 to %n {
      %pow = call @pow(2, %j) : (index, index) ->  index
      call @inner_nest(%pow, %n) : ...
    }
  }
  return
}

func @inner_nest(%m : index, %n : index) {
  affine.for %k = 0 to %m {
    affine.for %l = 0 to %n {
      ...
    }
  }
  return
}



Reference 2D Convolution

The following example illustrates a reference implementation of a 2D convolution, which uses an integer set #domain to represent valid input data in a dilated convolution.

// Dilation factors S0 and S1 can be constant folded if constant at compile time.
#domain = (d0, d1)[S0,S1,S2,S3]: (d0 % S0 == 0, d1 % S1 == 0, d0 >= 0, d1 >= 0,
                                   S3 - d0 - 1 >= 0, S4 - d1 - 1 >= 0)
// Identity map (shown here for illustration).
#map0 = (d0, d1, d2, d3, d4, d5, d6) -> (d0, d1, d2, d3, d4, d5, d6)

// Affine map from output to input coordinate space.
// d0 = output_h, d1 = output_w, d2 = kernel_h, d3 = kernel_w
// S0 = h_stride, S1 = w_stride, S2 = h_kernel_dilation, S3 = w_kernel_dilation
// S4 = h_pad_low, S5 = w_pad_low
//     %out0 =  %0#1 * %h_stride + %0#4 * %h_kernel_dilation - %h_pad_low
//     %out1=  %0#2 * %w_stride + %0#5 * %w_kernel_dilation - %w_pad_low
#map1_0 = (d0, d1, d2, d3) [S0, S1, S2, S3, S4, S5] -> (d0 * S0 + d2 * S2 - %S4)
#map1_1 = (d0, d1, d2, d3) [S0, S1, S2, S3, S4, S5] -> (d1 * S1 + d3 * S3 - %S5)

// Semi-affine map to undilated input coordinate space.
// d0 = input_h, d1 = input_w, S0 = h_base_dilation, S1 = w_base_dilation.
#map2_0 = (d0, d1) [S0, S1] -> (d0 / S0)
#map2_1 = (d0, d1) [S0, S1] -> (d1 / S1)

// Conv2D shapes:
// input:   [batch, input_height, input_width, input_feature]
// kernel: [kernel_height, kernel_width, input_feature, output_feature]
// output: [batch, output_height, output_width, output_feature]
func @conv2d(%input: memref<16x1024x1024x3xf32, #lm0, /*scratchpad=*/1>,
             %kernel: memref<5x5x3x32xf32, #lm0, /*scratchpad=*/1>,
             %output: memref<16x512x512x32xf32, #lm0, /*scratchpad=*/1>) {
  affine.for %b = 0 to %batch {
    affine.for %oh = 0 to %output_height {
      affine.for %ow = 0 to %output_width {
        affine.for %of = 0 to %output_feature {
          affine.for %kh = 0 to %kernel_height {
            affine.for %kw = 0 to %kernel_width {
              affine.for %if = 0 to %input_feature {
                // Calculate input indices.
                %1_0 = affine.apply #map1_0 (%0#1, %0#2, %0#4, %0#5)
                  [%h_stride, %w_stride, %h_kernel_dilation, %w_kernel_dilation,
                   %h_pad_low, %w_pad_low]
                %1_1 = affine.apply #map1_1 (%0#1, %0#2, %0#4, %0#5)
                  [%h_stride, %w_stride, %h_kernel_dilation, %w_kernel_dilation,
                   %h_pad_low, %w_pad_low]

                // Check if access is not in padding.
                affine.if #domain(%1_0, %1_1)
                                       [%h_base_dilation, %w_kernel_dilation, %h_bound, %w_bound] {
                  %2_0 = affine.apply #map2 (%1_0, %1_1)
                  %2_1 = affine.apply #map2 (%1_0, %1_1)
                  // Compute: output[output_indices] += input[input_indices] * kernel[kernel_indices]
                  call @multiply_accumulate(%input, %kernel, %output, %b, %oh, %ow, %of, %kh, %kw, %if, %2_0, %2_1)
                }
              }
            }
          }
        }
      }
    }
  }
  return
}

TODO: (Add more examples showing the IR for a variety of interesting cases)




Design alternatives and extensions

This is a list of some design alternatives and extensions that we discussed in detail but did not include in the spec or postponed them for future consideration on demand. We will revisit these discussions when we have more implementation experience and learn more about the challenges and limitations of our current design in practice.


Polyhedral code representation alternatives: schedule lists vs schedules trees vs affine loop/if forms

The current MLIR uses a representation of polyhedral schedules using a tree of if/for loops. We extensively debated the tradeoffs involved in the typical unordered polyhedral instruction representation (where each instruction has multidimensional schedule information), discussed the benefits of schedule tree forms, and eventually decided to go with a syntactic tree of affine if/else conditionals and affine for loops. Discussion of the tradeoff was captured in this document: MLIR: The case for a simplified polyhedral form.

At a high level, we have two alternatives here:


	Schedule tree representation instead of an affine loop AST form: The current proposal uses an affine loop and conditional tree form, which is syntactic and with no separation of domains as sets and schedules as multidimensional affine functions. A schedule tree form however makes polyhedral domains and schedules a first class concept in the IR allowing compact expression of transformations through the schedule tree without changing the domains of instructions. Such a representation also hides prologues, epilogues, partial tiles, complex loop bounds and conditionals making loop nests free of “syntax”. Cost models instead look at domains and schedules. In addition, if necessary such a domain schedule representation can be normalized to explicitly propagate the schedule into domains and model all the cleanup code. An example and more detail on the schedule tree form is in the next section.

	Having two different forms of “affine regions”: an affine loop tree form and a polyhedral schedule tree form. In the latter, ops could carry attributes capturing domain, scheduling, and other polyhedral code generation options with IntegerSet, AffineMap, and other attributes.




Schedule Tree Representation for Affine Regions

This representation is based on a simplified form of the domain/schedule representation used by the polyhedral compiler community. Domains represent what has to be executed while schedules represent the order in which domain elements are interleaved. We model domains as non-piece-wise convex integer sets, and schedules as affine functions; however, the former can be disjunctive, and the latter can be piece-wise affine relations. In the schedule tree representation, domain and schedules for instructions are represented in a tree-like structure which is called a schedule tree. Each non-leaf node of the tree is an abstract polyhedral dimension corresponding to an abstract fused loop for each ML instruction that appears in that branch. Each leaf node is an ML Instruction.

// A tiled matmul code (128x128x128) represented in schedule tree form

// #map0 = (d0, d1, d2, d3, d4, d5) -> (128*d0 + d3, 128*d1 + d4, 128*d2 + d5)
#intset_ij = (i, j) [M, N, K]  : i >= 0, -i + N - 1 >= 0, j >= 0, -j + N-1 >= 0
#intset_ijk = (i, j, k) [M, N, K] : i >= 0, -i + N - 1 >= 0, j >= 0,
                                     -j +  M-1 >= 0, k >= 0, -k + N - 1 >= 0)
func @matmul(%A, %B, %C, %M, %N, %K) : (...)  { // %M, N, K are symbols
  // t1, t2, t3, t4, t5, t6  are abstract polyhedral loops
  mldim %t1 : {S1,S2,S3,S4,S5}  floordiv (i, 128) {
    mldim %t2 : {S1,S2,S3,S4,S5}  floordiv (j, 128) {
      // (%i, %j) = affine.apply (d0, d1) -> (128*d0, 128*d1) (%t1, %t2)
      call dma_mem_to_scratchpad(%C, %i, %j, %M, %N, %K)
          with @intset_ij(%i, %j) [%M, %N, %K]
      mldim %t3 :   {S2,S3,S4,S5} floordiv (k, 128) {
        // (%i, %j, %k) = affine.apply (d0, d1, d2)
        //                          -> (128*d0, 128*d1, 128*d2)  (%t1, %t2, %t3)
        call dma_mem_to_scratchpad(%A, ...) with #inset_ijk (%i, %j, %k) [%M, %N, %K]
        // (%i, %j, %k) = affine.apply (d0, d1, d2)
        //                          -> (128*d0, 128*d1, 128*d2)  (%t1, %t2, %t3)
        call dma_mem_to_scratchpad(%B, ...) with #inset_ijk (%i, %j, %k) [%M, %N, %K]
        mldim %t4 : {S4} i mod 128 {
          mldim %t5 : {S4} j mod 128 {
            mldim %t6 : {S4} k mod 128 {
              // (%i, %j, %k) = affine.apply #map0 (%t1, %t2, %t3, %t4, %t5, %t6)
              call matmul_body(A, B, C, %i, %j, %k, %M, %N, %K)
                  with #inset_ijk(%i, %j, %k) [%M, %N, %K]
            } // end mld4im t6
          } // end mldim t5
        } // end mldim t4
      } // end mldim t3
      // (%i, %j) = affine.apply (d0, d1) -> (128*d0, 128*d1) (%t1, %t2)
      call $dma_scratchpad_to_mem_C ... with #intset(%i, %j) [%M, %N, %K]
    }  // end mldim t2
  } // end mldim t1
  return
}





Affine Relations

The current MLIR spec includes affine maps and integer sets, but not affine relations. Affine relations are a natural way to model read and write access information, which can be very useful to capture the behavior of external library calls where no implementation is available, high-performance vendor libraries, or user-provided / user-tuned routines.

An affine relation is a relation between input and output dimension identifiers while being symbolic on a list of symbolic identifiers and with affine constraints on the identifiers.

Syntax:

// Affine relation definition at the top of file
affine-rel-def ::= affine-rel-id `=` affine-relation-inline

affine-rel-id ::= `##` prefixed-id

affine-relation-inline ::=
       `(` input-dims `)` (`[` symbols `]`)? `->`
       `(` output-dims `)` :  affine-constraint-conjunction

input-dims ::= bare-id-list
output-dims ::= bare-id-list
symbols ::= bare-id-list

affine-rel ::= affine-rel-id | affine-relation-inline

// Usage
affine-rel-spec ::= affine-rel dim-and-symbol-use-list

All identifiers appearing in input-dims, output-dims, and symbol-dims are pairwise distinct. All affine-constraint non-terminals in the above syntax are allowed to contain identifiers only from input-dims, output-dims, and symbol-dims.

Affine relations are used to model read, write, may_read, and may_write sets of functions in the IR. The output dimension identifiers correspond to the data dimensions.

Example:

// read relation: two elements ( d0 <= r0 <= d0+1 )
##aff_rel9 = (d0) -> (r0) : r0 - d0 >= 0, d0 - r0 + 1 >= 0

func @count (%A : memref<128xf32>, %pos : i32) -> f32
  reads: {%A ##aff_rel9 (%pos)}
  writes: /* empty */
  may_reads: /* empty */
  may_writes: /* empty */ {
bb0 (%0, %1: memref<128xf32>, i64):
  %val = affine.load %A [%pos]
  %val = affine.load %A [%pos + 1]
  %p = mulf %val, %val : f32
  return %p : f32
}



Regions


Making function definition an operation

MLIR supports values of a Function type. Instead of having first-class IR concept for functions, one could define an operation with a body region that defines a function value. The particularity of functions is that their names are globally visible and can be referred to before being defined, unlike SSA values that must be defined first. Implementing a “function definition” operation would require to relax some of the SSA constraints in a region, and also make the IR Module a region as well. It would also affect the core infrastructure (e.g., function passes) only for the sake of concept unification.



Having types on a region

Instead of inspecting the types of arguments of the first block, one could give the region itself a type. This type would be redundant with block argument types, which must have values and create room for type mismatches. While functions do have types that are partly redundant with the arguments of the first block in the function, this is necessary to support function declarations that do not have a body which we can refer to in order to obtain the argument types. A region is always contained in an operation or a function that can be queried to obtain the “type” of the region if necessary.

A type on a region can be justified if Regions were to be considered separately from the enclosing entity (operation or function) and had their own semantics that should be checked.



Attaching attributes to regions

Regions could be annotated with dialect attributes to use attribute verification hooks. An operation could take multiple regions as arguments, and each of them may require different attributes. However, there are currently very few practical cases where this would be necessary. Instead, one could simulate per-region attributes with array attributes attached to the entity containing the region (operation or function). This decreases the overall complexity of the IR and enables more concise and op-specific forms, e.g., when all regions of an op have the same attribute that can be only mentioned once. Since the semantics of the region is entirely defined by the enclosing entity, it also makes sense to have attributes attached to that entity rather than to the region itself.

This can be reconsidered in the future if we see a non-neglectable amount of use cases.




Read/Write/May_Read/May_Write sets for External Functions

Having read, write, may_read, and may_write sets for external functions which include opaque ones, high-performance vendor libraries such as CuDNN, CuB, MKL, FFT libraries, user-provided/optimized functions, or data movement runtimes such as DMA ones is a powerful feature. It allows the compiler to perform analysis, composition/transformation in the presence of such calls and with loops around such calls on sub-tensors. For user-provided or custom hand-tuned functions, the read/write/may_read/may_write sets could be provided a-priori by a user as part of the external function signature or they could be part of a database.

TODO: Design this, and update to use function attribute syntax.

Example:

##rel9 ( ) [s0] -> (r0, r1) : 0 <= r0 <= 1023, 0 <= r1 <= s0 - 1

func @cblas_reduce_ffi(%M: memref<1024 x ? x f32, #layout_map0, /*mem=*/0>)
  -> f32 [
  reads: {%M, ##rel9() }
  writes: /* empty */
  may_reads: /* empty */
  may_writes: /* empty */
]

func @dma_mem_to_scratchpad(%a : memref<1024 x f32, #layout_map0, /*mem=*/0>,
    %b : memref<1024 x f32, #layout_map0, 1>, %c : memref<1024 x f32,
    #layout_map0>) [
  reads: {%M, ##rel9() }
  writes: /* empty */
  may_reads: /* empty */
  may_writes: /* empty */
 ]




Memref Extensions


	Arbitrary polyhedral shapes for tensors: e.g., triangular shapes in tensor dimensions where there is symmetry: use integer set (affine constraints) to model tensor data space (instead of just extents). Requires some changes to the IR and the in-memory form.


	Layout maps


	Allow piece-wise affine maps for layouts: allows clean modeling of boundary cases for images/tensors through padding, wrapping, mirroring, padding where padded values are the results of computation as opposed to data, padding in the interior as opposed to just boundaries.

	Allow many-to-one layout maps: Index and layout maps in the current proposal are bijective. Extending them to many-to-one layout maps allows cleaner(?) modeling of broadcast/reduce style computations while reusing memory.



Proposal 2(a) requires non-trivial changes to the IR and the in-memory representation. 2(b) requires no change, but impacts how cost models look at index and layout maps.






affine.if and affine.for Extensions for “Escaping Scalars”

We considered providing a representation for SSA values that are live out of if/else conditional bodies and loop carried in affine.for loops. We ultimately abandoned this approach due to its complexity. In the current design of MLIR, scalar variables cannot escape for loops or if instructions. In situations, where escaping is necessary, we use zero-dimensional tensors and memrefs instead of scalars.

TODO: This whole section is obsolete and should be updated to use block arguments and a yield like terminator in for/if instructions.

The abandoned design of supporting escaping scalars is as follows:


affine.for Instruction

Syntax:

[<out-var-list> =]
for %<index-variable-name> = <lower-bound> ... <upper-bound> step <step>
   [with <in-var-list>] { <loop-instruction-list> }

out-var-list is a comma separated list of SSA values defined in the loop body and used outside the loop body. in-var-list is a comma separated list of SSA values used inside the loop body and their initializers. loop-instruction-list is a list of instructions that may also include a yield instruction.

Example:

// Return sum of elements in 1-dimensional mref A
func i32 @sum(%A : memref<?xi32>, %N : i32) -> (i32) {
   %init = 0
   %result = affine.for %i = 0 to N with %tmp(%init) {
      %value = affine.load %A[%i]
      %sum = %value + %tmp
      yield %sum
   }
   return %result : i32
}



affine.if/else Instruction

Syntax:

<out-var-list> = affine.if (<cond-list>) {...} [else {...}]

Out-var-list is a list of SSA values defined by the if-instruction. The values are arguments to the yield-instruction that occurs in both then and else clauses when else clause is present. When if instruction contains only if clause, the escaping value defined in the then clause should be merged with the value the variable had before the if instruction. The design captured here does not handle this situation.

Example:

// Compute sum of half of the array
func i32 @sum_half(%A : memref<?xi32>, %N : i32) -> (i32) {
   %s0 = 0
   %s1 = affine.for %i = 1 ... N step 1 with %s2 (%s0) {
       %s3 = if (%i >= %N / 2) {
          %v0 = affine.load %A[%i]
          %s4 = %s2 + %v0
          yield %s4
       }
       yield %s3
   }
   return %s1 : i32
}




Multithreading the compiler

People want compilers to go fast, and one simple way to do that is to multi-thread them. There are multiple strategies for this, but a simple one is to optimize and compile separate functions in parallel. LLVM’s original pass manager anticipated this demand, and the CallGraphSCCPass manager is even designed to support this as well, but unfortunately, a few early design decisions in LLVM prevent this from ever happening. Instead, things like ThinLTO are forced to split programs into separate LLVM modules/context and optimize those chunks independently.

The problem is that LLVM has several objects in its IR that are globally uniqued and also mutable: notably constants like i32 0. In LLVM, these constants are Value’s, which allow them to be used as operands to instructions, and that they also have SSA use lists. Because these things are uniqued, every i32 0 in any function shares a use list. This means that optimizing multiple functions in parallel won’t work (at least without some sort of synchronization on the use lists, which would be unbearably inefficient).

MLIR now supports a multithreaded pass manager. We do this through several design choices:


	MLIR makes use of extensive uniqued immutable data structures (affine expressions, types, etc are all immutable, uniqued, and immortal).

	Constants are defined in per-function pools, instead of being globally uniqued.

	Functions themselves are not SSA values either, so they don’t have the same problem as constants.

	FunctionPasses are copied (through their copy ctor) into one instance per thread, avoiding sharing of local state across threads.



This allows MLIR function passes to support efficient multithreaded compilation and code generation.
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MLIR: Incremental Application to Graph Algorithms in ML Frameworks

The existing documentation about MLIR focuses on long term vision, how its pieces fit together, and the benefits of modular and composable infrastructure in the vast and distant future. While this viewpoint appeals to some, it causes concern for others who are more concerned about the “here and now” - why does it make sense to make a “revolutionary” change when any individual problem can be fixed in place?

This document explains that adoption of MLIR to solve graph based problems isn’t a revolutionary change: it is an incremental series of steps which build on each other, each of which delivers local value. This document also addresses some points of confusion that keep coming up.

One note: even though a major advantage of MLIR is that it can span the full spectrum from graph algorithms down to low-level code generation, this document focuses on the use of MLIR for graph-level algorithms. MLIR will also unlock exciting code generation opportunities (particularly given its novel approach to integrating state of the art polyhedral techniques), but issues that touch on MLIR’s relationship to XLA, Eigen, etc, are out of scope for this particular doc.

This document uses TensorFlow as the example given that it is the focus of our immediate work, but we believe that the same viewpoint could be useful for people working in the context of other ML frameworks that may consider adopting MLIR in the future.


How is MLIR relevant?

MLIR is an overloaded acronym which unpacks as “Multi-Level Intermediate Representation”. Its high-level purpose is to provide mechanics for describing and transforming programs and computations in a flexible way. It provides common compiler infrastructure for things like constant folding, dead code elimination, graph rewriting, and others - which are independent of the representational choices picked by a given dialect (e.g. its concurrency semantics). It was built with a specific focus on compile time and memory efficiency, accurate propagation of source location information (important for reporting high quality errors and warnings) and is designed for testability.

TensorFlow has numerous subsystems (some of which are proprietary, e.g. Tensor-RT, nGraph, CoreML, etc) as well as translation layers between these different subsystems, and these translation layers face similar challenges. ((As an aside, the internals of each of these subsystems could often benefit from MLIR infrastructure, but that isn’t a focus of this doc.))

A key observation that MLIR makes is that these subsystems often have two things going on: they are both particular data structures and encodings (e.g. HLO graphs, TF-Lite’s flat buffer format, TensorFlow’s Graph format, the ONNX abstraction, etc) as well as an abstraction of computation (a specific way of modeling a convolution, a set of supported operations etc).

MLIR uses a standard IR (i.e., a set of data structures) for representing these computations - this allows a huge amount of shared infrastructure across these problem domains. MLIR then allows the definition of domain-specific “dialects” that describe the set of operations that are legal and supported for a given application. This means that the actual translations between data structures are kept as simple as possible - and are thus relatively easy to make “correct”. This allows the common compiler infrastructure to handle the mapping problems and the other issues within the domain.

MLIR’s design is directly informed by the experience of building (and then living with) intermediate representations like the LLVM IR, LLVM SelectionDAG, the LLVM machine instruction representation, Swift SIL IR, and learns new lessons from TensorFlow and XLA HLO, as well as learning from building countless research and production systems on top of them. Our goal is to drag the state of the art in compilers forward, not to merely apply a few well-known techniques to the machine learning domain.



What does adoption mean?

The point of this document is not to advocate for rewriting any particular subsystem in TensorFlow - indeed, the burden required to justify a rewrite is high, and often very specific to that subsystem. That said, there are several subsystems that are about to get rewritten or substantially revised anyway, so we use those as examples to concretely describe the benefits that MLIR provides in these cases and what it will take. The subsystems discussed are:


	the TF Lite TOCO translator, which we need to improve error reporting/reliability issues and generalize it to support more ops, and

	the TF/XLA bridge which needs to improve usability by merging some of its usage models, support dynamic shapes and generalize guest subsystem support to Tensor-RT and nGraph.

	Grappler is another subsystem that is likely to get substantial revisions in the future, and would definitely benefit from the MLIR framework, but there are no known plans to do that work at this point, so we don’t discuss it further.



Adopting MLIR for these works the same way - and, in fact, the work to support TF Lite is mostly a subset of the larger work to support the functionality of the TF/XLA bridge. TF Lite and the TF/XLA bridge include several compiler passes (things like encapsulate, functionalize control flow, lowering of ops, fusion, constant folding, shape inference, etc).

MLIR supports converting from TensorFlow Graphs to MLIR and back, which means that we can start by putting in a no-op translation to MLIR and back into the pipeline, and verify that nothing breaks. Then we can work on replacing the compiler transformations one by one by reimplementing them (with the improved algorithms that we’re planning).

This is a development plan, we wouldn’t actually ship a TensorFlow that just uses MLIR for a single pass. In practice, we’ll have the MLIR flag gated under an option, build out a replacement for an entire subsystem (e.g. the TOCO translator) and when the time is right, we’ll do A/B comparisons and eventually make a switch and phase out the old code over time.



What benefit does MLIR provide?

The adoption plan above might sound like it only makes things worse in the immediate term - we have two implementations of the same functionality, we are dividing our efforts, etc. In order for this to be worth it, we should have a good sense that we are building towards an improved future that will make customers and TensorFlow engineers happier when it lands. Here we describe a few of the benefits that MLIR provides, in no particular order:


A Lossless Human Editable Textual Representation

The MLIR in-memory data structure has a human readable and writable format, as well as a specification for that format - built just like any other programming language. Important properties of this format are that it is compact, easy to read, and lossless. You can dump an MLIR program out to disk and munge around with it, then send it through a few more passes.

If you haven’t worked with a system that works this way, it is hard to overstate how big of a deal this in practice: it means that you can call foo->dump() on an IR object to see its full contents, it means you can diff the IR before and after a change, delta reduce IR files, and many other things.



A Graph Verification Pass

Like many other popular compiler infrastructures, MLIR provides infrastructure and implementation for a “verifier” which checks that the IR is well formed. The MLIR verifier is a simple framework that makes it easy to provide a single source of truth for those correctness properties and is general across all Dialects (e.g. TF Graph, TF Lite flat buffer, XLA HLO, etc).

A verifier pass is sort of like a ‘super assertion’ that catches mistakes in program transformations early, making you as an engineer more productive, making the product more reliable, and making it easier to track down bugs when they appear - because the verifier can be run at any time, either as a compiler pass or with a single function call.

While MLIR provides a well-considered infrastructure for IR verification, and has simple checks for existing TensorFlow operations, there is a lot that should be added here and lots of opportunity to get involved!



Designed for Testability

There are many aspects of this in MLIR, but we’ll focus on compiler transformations since they are the easiest to understand. Compiler transformations are modeled as subclasses of the Pass C++ class, which are driven by an mlir-opt tool. When combined with a lossless textual representation, it becomes really easy to write unit tests for compiler transformations, for example, this is a simple test that shows “x-x” is being turned into zero:

  // RUN: mlir-opt %s -canonicalize | FileCheck %s
  func @test_subi_zero_cfg(%arg0: i32) -> i32 {
    %y = subi %arg0, %arg0 : i32
    return %y: i32
  }
  // CHECK-LABEL: func @test_subi_zero_cfg(%arg0: i32)
  // CHECK-NEXT: %c0_i32 = constant 0 : i32
  // CHECK-NEXT: return %c0

The “CHECK” comments are interpreted by the LLVM FileCheck tool, which is sort of like a really advanced grep. This test is fully self-contained: it feeds the input into the canonicalize pass, and checks that the output matches the CHECK lines. See the test/Transforms directory for more examples. In contrast, standard unit testing exposes the API of the underlying framework to lots and lots of tests (making it harder to refactor and move the API), typically requires a lot more code, and exacerbates issues with link time. For examples, see the TEST_F functions in TensorFlow’s testsuite.

MLIR has been pervasively designed with this sort of design by testability, allowing us to put in place a culture that expects every behavior changing commit to include a test case, and for these test cases to be stable and reliable over time, since they are testing exactly what they are supposed to. End to end integration tests are still super useful for some things of course!



Infrastructure for Warnings and Error Diagnostics and Location Tracking

MLIR benefits from the lessons learned from building other compilers - including Clang which [set the standard](http://blog.llvm.org/2010/04/amazing-feats-of-clang-error-recovery.html) for quality of implementation in C/C++ compiler diagnostics. Drawing from this experience (and fixing mistakes in LLVM), MLIR requires that operations and functions carry abstract location information, that transformations propagate this information, and provides standardized mechanisms to emit errors and warnings, as well as for clients to hook into them to capture and report them in custom ways.

Why is this important? In practice, many graph-to-graph translators can fail (e.g. TF Lite when an unsupported op is used) and it is important to be able to report the error up through to the user in the most precise way possible, in order for it to be actionable. This includes tracking rewrites through fusions and fissions of ops, mapping back into language / API specific domains, etc.

More selfishly for infrastructure hackers, this is a huge boon because it means that it is easy to write good tests for this: the testing tools for MLIR capture the diagnostics produced by passes (using the standard diagnostic hooks) and check that they match the expected diagnostics in the testcase. For example, to test the dependence analysis infra in the code generator, Andy Davis wrote a simple pass that checks dependencies and emits them as “notes”, allowing him to write tests like this:

  // RUN: mlir-opt %s -memref-dependence-check -verify-diagnostics
  func @different_memrefs() {
    %m.a = alloc() : memref<100xf32>
    %m.b = alloc() : memref<100xf32>
    %c0 = constant 0 : index
    %c1 = constant 1.0 : f32
    store %c1, %m.a[%c0] : memref<100xf32>
    // expected-note@-1 {{dependence from memref access 0 to access 1 = false}}
    %v0 = load %m.b[%c0] : memref<100xf32>
    return
  }

Note that a major limitation of this is that MLIR suffers from a problem of “garbage in, garbage out”: if the input locations to MLIR are imprecise, then there is nothing that it can do to recover them. There is work underway in TensorFlow/Python to improve the situation, and Swift for TensorFlow already has perfect location tracking due to its design.



Shape Information Captured in the IR

In TensorFlow Graphs, each op takes and returns values using a very simple type system (TF_DataType) in which each value is a tensor of unknown rank and dimensions. At the same time, many graphs have static shapes easily knowable for wide swaths of the computation, and even dynamically shaped operations often have statically knowable dimensions. Many analyses and transformations benefit and use this information when available, but because TensorFlow graphs don’t capture this (e.g. serialize it to proto), passes have to recompute it on demand with ShapeRefiner.

The MLIR Tensor Type directly captures shape information, so you can have things like:

  %x = tf.Add %x, %y : tensor<128 x 8 x ? x f32>

Capturing this in the IR is expected to speed up transformations (avoiding recomputing the same info over and over again) which therefore makes it practical to apply stronger shape analysis algorithms. It also makes it easier to work with the IR, because on-the-side representations can get out of date, and the API is easier to work with from an ergonomics perspective.



Unified Graph Rewriting Infrastructure

This is still a work in progress, but we have sightlines towards a general rewriting infrastructure for transforming DAG tiles into other DAG tiles, using a declarative pattern format. DAG to DAG rewriting is a generalized solution for many common compiler optimizations, lowerings, and other rewrites and having an IR enables us to invest in building a single high-quality implementation.

Declarative pattern rules are preferable to imperative C++ code for a number of reasons: they are more compact, easier to reason about, can have checkers written against them, and new tools can be built that inspect and manipulate the declarative patterns in interesting ways - e.g. applying theorem provers to them. It will be exciting to see this ecosystem develop as the infrastructure matures.



Clarified Semantics for TensorFlow Operations

One of the challenging things about working with TensorFlow is that there are many invariants and behaviors that need to be preserved and known about when working with Graphs, and these can be difficult to reason about and lead to bugs. Things like ‘dead values’, Switch and Merge nodes, concurrency semantics, nodes that execute even when passed a dead value, multiple device program representation - etc… all add complexities that can make it challenging to reason about whether a transformation or analysis is correct in general. Even something as simple as constant folding or transforming integer x-x into 0 is non-trivial because you need to consider control dependence edges.

One of our major goals for the TensorFlow dialect of MLIR is to sort out these situations and upgrade existing TensorFlow graphs to semantics that are easier to reason about. The solutions to these problems are all still being debated, but those discussions have already yielded a lot of potential answers: introducing a tf_dead_or<x> types for switch/merge, modeling of TF operations using futures/async semantics etc. None of these particular battles are critical or important for MLIR to succeed (because of its “meta” nature, the abstraction decisions of any given dialect are up for it to decide), but each one that works out will make it easier to work with and transform TensorFlow operations. We expect these issues to get nailed down in the next couple of months when MLIR effort moves beyond TF Lite / TOCO support. The discussions that are happening now are super valuable and making progress.



Ergonomics

A minor-in-theory, but important-in-practice point is that MLIR is designed to make it easy, memory efficient, and less error prone to transform code than other systems. TensorFlow::Graph has implementation issues where the same information is stored redundantly in different places (which must be manually kept up to date), has somewhat unusual representation of certain constructs (e.g. the function library, which makes it very difficult to add or remove functions, e.g. during interprocedural transformations), and stores information in the graph that is used by the executor, but isn’t necessary for program transformation.

TensorFlow has made a lot of progress in this area over the years, and there are lots of ideas about further improvements in the future, we are happy that MLIR addresses these needs (making it much easier to implement correct program transformations) today, and are committed to pushing hard to make it better.



Compile Time Performance and Memory Use

MLIR has been designed to be memory and compile-time efficient in its algorithms and data structures, using immutable and uniqued structures, low level bit-packing, and other well-known techniques to avoid unnecessary heap allocations, and allow simple and safe multithreaded optimization of MLIR programs. There are other reasons to believe that the MLIR implementations of common transformations will be more efficient than the Python and C++ TensorFlow::Graph implementations of the same things, given the current implementation details of TensorFlow.

That said, this is very much a theory at this point. When the new implementation of various subsystems are available, we will see what happens in practice: there will be no reason to speculate - we can measure.




Common Questions and Concerns

Here we address some frequently asked questions and concerns.


Isn’t MLIR a big dependency to take on?

We’ve heard that at least some people are concerned that MLIR is a “big” dependency to take on, and could result in large code size. Here are some key points MLIR:


	The entire MLIR codebase is a pretty small C++ code base in absolute terms compared to what goes into a modern ML framework.

	Like LLVM, MLIR is designed as a set of libraries that clients can link in or ignore as they wish. For example, the transformations in MLIR kept separate from the core IR abstractions, and dialect specific code (e.g. TensorFlow, TF-Lite, XLA, etc) is all independently selectable by the build system. Clients that don’t care about XLA don’t link in that code, whether they are a TF-Lite system or a client that is completely unrelated to TensorFlow.

	MLIR’s only third party dependency is on LLVM, but it doesn’t depend on LLVM IR or any other heavy dependency - it just depends on LLVM’s support library which provides efficient hash tables and other memory efficient data structures that the STL does not. There have been discussions about splitting this set of libraries out to its own subproject in LLVM that the LLVM IR project depends on. This would be great for MLIR as well as other LLVM subprojects.

	TensorFlow and many other frameworks already use LLVM - if so, MLIR would not be pulling in an additional dependency at all.





How does MLIR represent {control flow, concurrency, …} semantics in TensorFlow?

MLIR provides a dialect that is an isomorphic 1-1 mapping between TensorFlow graphs and MLIR, as well as a pretty complete translator back and forth (the only known gap is that a few TF_DataType enums aren’t handled yet). MLIR is a “Multi-Level IR”, which allows it to represent code with different abstraction levels, so the ability to faithfully represent TensorFlow code in a completely backwards compatible way (even if there are some historical warts!) is critical.

In addition to the isomorphic mapping, we are actively working on efforts to raise the abstraction level for working with TensorFlow graphs in MLIR. Doing so would make it even easier to write TensorFlow transformations than it is today, and would provide a path to migrating TF 1.x graphs forward into the TF 2.x world. For example, because MLIR has an extensible type system, we can directly model whether it is impossible for a Tensor value to be a “dead” value - similar to the use of optional types in modern programming languages.

These discussions occasionally cause confusion because there are several issues being mixed up into one:


	What are the current semantics of TensorFlow graphs, and what invariants can we rely on?

	What should the semantics be in TensorFlow 2.0?

	What do programs rely on in practice, and if it is unfriendly, can we migrate it?

	Can we find a way to make it so transforms don’t have to worry about the complexities of Switch/Merge, by using higher level control flow representations? (tentative answer: yes)

	How should MLIR represent async vs sync operations, what invariants are provided, how does this dovetail with control flow?

	When is it safe and beneficial to perform optimizations that might reduce parallelism?



All of these questions have a “conservative/safe fallback”: we can continue providing exactly the same abstractions that TensorFlow always has. That said, we are trying hard to level-up the representation (taking advantage of the “Multi-Level” part of MLIR) because doing so will make it much much easier to write analyses and transformations than it currently is in TensorFlow.



Non Goals

It is important to point out things that MLIR does not aim to do. For example, there is no runtime component to MLIR: the TensorFlow executor, the TF Lite FlatBuffer interpreter, or other existing runtime should be used as-is.

Another non-goal is that MLIR currently doesn’t support a stable binary encoding. We will certainly add this at some point, but existing formats should be used for serialization and distribution in the meantime.
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Usage of ‘Const’ in MLIR, for core IR types

aka, where’d const go?

The MLIR data structures that represent the IR itself (Instruction, Block, etc) form a graph-based data structure, and the compiler analyses and passes frequently walk this graph (e.g. traversing from defs to users). The early design of MLIR adopted the const model of LLVM, which is familiar and well understood (even though the LLVM implementation is flawed in many ways).

The design team since decided to change to a different module, which eschews const entirely for the core IR types: you should never see a const method on Operation, should never see the type const Value, and you shouldn’t feel bad about this. That said, you should use const for non-IR types, like SmallVector’s and many other things.

The document below explains this design point from the viewpoint of “why make a change”, to explain the rationale and the tradeoffs involved that led us to this potentially controversial design point.

Bjarke Roune summarized the situation like this:


In my opinion const correctness is highly valuable, catching many bugs and making it clear in a code base where the mutations happen. In my opinion const correctness still isn’t worth it in particular for IR elements because of the special uses and properties of IRs, in particular that it is common to transfer a pointer/reference to an instruction from an analysis to an optimization which will change the instruction. The analysis should be const, the optimization needs to get a non-const pointer. So all analyses either end up being templates (and if they never get instantiated in a const context, then the point of const correctness has been defeated), you need to somehow launder the const in a safe way or there will be const_casts. These options are all bad, probably so bad as to out-weigh the benefits of const.
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Reconsidering const in MLIR

This document argues this design is introducing significant sub-optimalities into the MLIR codebase, argues that the cost/benefit tradeoff of this design is a poor tradeoff, and proposes switching to a much simpler approach - eliminating the use of const of these IR types entirely.

Note: This document is only discussing things like const Value and const Operation*. There is no proposed change for other types, e.g. SmallVector references, the immutable types like Attribute, etc.


Background: The LLVM Const Model

The LLVM and MLIR data structures provide the IR data structures (like mlir::Operations and their users) as a structured cyclic graph data structure. Clients of the IR typically walk up and down the graph, perform dynamic down casting (of various sorts) to check for patterns, and use some high-abstraction pattern matching and binding facilities to do their work.

The basic idea of LLVM’s design is that these traversals of the IR should preserve the const’ness of a pointer: if you have a const pointer to an instruction and ask for its parent (or operand, users, etc), you should get a const pointer to the block containing the instruction (or value defining the operand, instruction using the instruction, etc). The instruction class looks like this:

namespace llvm {
class Instruction : ...  {
  BasicBlock *Parent;
public:
  // A const instruction returns a const parent pointer.
  inline const BasicBlock *getParent() const { return Parent; }
  // A non-const instruction returns a non-const parent pointer.
  inline       BasicBlock *getParent()       { return Parent; }
…
};
}

The rationale for this design is that it would be const-incorrect to return a non-const pointer from getParent, because you could then walk the block to find the instruction again and get non-const references to the same instruction - all without a const_cast.

This const model is simple and the C++ type system generally supports it through code duplication of methods. That said, LLVM is actually inconsistent and buggy about this. Even the core classes have bugs: llvm::Instruction::getOperand() isn’t currently const correct! There are other subsystems (e.g. the llvm/IR/PatternMatch.h APIs) where you can perform a pattern match on a const IR object and bind a non-const IR object.

LLVM is a mature technology with hundreds of people working on it. The fact that it still isn’t correctly following the const model it set out for strongly hints that one of: 1) The design is too complicated to be practical, 2) the benefits of the model aren’t worth the cost of the complexity, or 3) both 1 and 2, together in some combination.



Advantages of Const-correctness in MLIR

Even though this doc argues for eliminating const from MLIR, it is important to evaluate that as a tradeoff with the advantages the const model provides, allowing us to do a cost/benefit tradeoff. These are the benefits we see:

The major advantage of allowing const on MLIR types is as a marker in APIs that indicate that the function will not modify the specified values. For example, the dominator APIs have a dominates(const Block*, const Block*) method, and the consts provide a way of indicating that the call won’t modify the blocks passed in - similarly predicates like Instruction::isTerminator() const do not modify the receiver object.

It is also an advantage that MLIR follows the generally prevailing pattern of C++ code, which generally uses const. Consistency with the community norm is important.



Costs of Const-correctness in MLIR

As mentioned above, early work on MLIR adopted the same design as LLVM intended, allowing const-correct traversals in the APIs. Here we discuss the various costs of doing this by looking at some examples, listed in roughly increasing order of severity.


Pervasively duplicated accessors

Just as the getParent() example above shows, achieving this const model requires that all of the graph traversal accessors be duplicated into const and non-const versions. This causes API bloat and slows compile time, but these are minor problems.

The more significant issue is that this duplication can be so significant that the signal disappears in the noise, for example mlir::Operation ends up with things like this, which is twice as much API surface area just to try to satisfy const.

  operand_iterator operand_begin();
  operand_iterator operand_end();

  /// Returns an iterator on the underlying Value's (Value ).
  operand_range getOperands();

  // Support const operand iteration.
  using const_operand_iterator =
      OperandIterator<const Operation, const Value>;
  using const_operand_range = llvm::iterator_range<const_operand_iterator>;

  const_operand_iterator operand_begin() const;
  const_operand_iterator operand_end() const;

  /// Returns a const iterator on the underlying Value's (Value ).
  llvm::iterator_range<const_operand_iterator> getOperands() const;

  ArrayRef<OpOperand> getOpOperands() const {
    return getOperandStorage().getOperands();
  }
  MutableArrayRef<OpOperand> getOpOperands() {
    return getOperandStorage().getOperands();
  }

  OpOperand &getOpOperand(unsigned idx) { return getOpOperands()[idx]; }
  const OpOperand &getOpOperand(unsigned idx) const {
    return getOpOperands()[idx];
  }




Templated accessors

A related issue is that having to provide both const and non-const versions of accessors leads to us having to turn more code into templates than would otherwise be desirable. Things like ResultIterator and ResultTypeIterator are templates only because they are generic over const and non-const versions of types. This leads to them being defined inline in headers (instead of in .cpp files).

Thus, our const model is leading to more code in headers and more complexity in the implementation.



Const incorrect in practice

For some things, const is more trouble than it is worth, so they never get updated.

This means that certain API in practice don’t provide a const variant, leading to pervasive use of const_cast to drop the const qualifier. For example the logic in Matchers.h doesn’t support const pointers at all (b/123355851), even though matching and binding values themselves makes perfect sense for both const and non-const values. Actually fixing this would cause massive code bloat and complexity.

Other parts of the code are just outright incorrect. For example, the operation cloning methods are defined on Operation like this:

Operation *clone(BlockAndValueMapping &mapper, MLIRContext *context) const;

Operation *clone(MLIRContext *context) const;


While it makes sense for a clone method to be const conceptually (the original operation isn’t modified) this is a violation of the model, since the returned operation must be mutable, and provides access to the full graph of operands as the original operation, violating the graph based const model we were shooting for.



The OpPointer and ConstOpPointer Classes

The “typed operation” classes for registered operations (e.g. like DimOp for the “std.dim” operation in standard ops) contain a pointer to an operation and provide typed APIs for processing it.

However, this is a problem for our current const design - const DimOp means the pointer itself is immutable, not the pointee. The current solution for this is the OpPointer<> and ConstOpPointer<> classes, which exist solely to provide const correctness when referring to a typed operation. Instead of referring to DimOp directly, we need to use OpPointer<DimOp> and ConstOpPointer<DimOp> to preserve this constness.

While auto hides many instances of these OpPointer classes, their presence leads to extremely ugly APIs. It also obscures the fact that the user does not have a direct DimOp object, creating easy pitfalls with subtly incorrect semantics:

// OpPointer encodes unnecessary and superfluous information into the API.
SmallVector<OpPointer<AffineForOp>, 8> stripmineSink(
  OpPointer<AffineForOp> forOp, uint64_t factor,
  ArrayRef<OpPointer<AffineForOp>> targets);
// Compared to the much cleaner and easier to read...
SmallVector<AffineForOp, 8> stripmineSink(AffineForOp forOp, uint64_t factor,
                                          ArrayRef<AffineForOp> targets);

// OpPointer is easy to misuse.
if (auto *dimOp = inst->dyn_cast<DimOp>()) {
  // This is actually undefined behavior because dyn_cast actually returns
  // OpPointer<DimOp>. OpPointer<DimOp> happily implicitly converts to DimOp *
  // creating undefined behavior that will execute correctly most of the time.
}


It would be much better to eliminate them entirely, and just pass around DimOp directly. For example, instead of:

LogicalResult mlir::getIndexSet(MutableArrayRef<OpPointer<AffineForOp>> forOps,
                                FlatAffineConstraints *domain) {


It would be a lot nicer to just have:

LogicalResult mlir::getIndexSet(MutableArrayRef<AffineForOp> forOps,
                                FlatAffineConstraints *domain) {


Particularly since all of the FooOp classes are already semantically a smart pointer to their underlying operation.




Proposal: Remove const from IR objects

As we can see above, there is very little benefit to our const design and significant cost, and given that the primary purpose of an IR is to represent transformations of code, const is providing very little benefit.

As such, we propose eliminating support for const references to IR objects in MLIR. This implies the following changes to the codebase:


	All of the const-duplicated accessors would be eliminated, e.g. Operation::getParent() const would be removed. This is expected to remove approximately ~130 lines of code from just Operation.h alone.

	Const-only predicates would be changed to be non-const, e.g. Operation::isTerminator() const would have the const removed.

	Iterators and other types and functions that are templated to support const can have those template arguments removed.

	Types like OpPointer and ConstOpPointer that exist solely to propagate const can be entirely removed from the codebase.

	We can close bugs complaining about const incorrectness in the IR.
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Generic DAG Rewriter Infrastructure Rationale

This document details the rationale behind a general DAG-to-DAG rewrite infrastructure for MLIR. For up-to-date documentation on the user facing API, please look at the main Pattern Rewriting document.


Introduction and Motivation

The goal of a compiler IR is to represent code - at various levels of abstraction which pose different sets of tradeoffs in terms of representational capabilities and ease of transformation. However, the ability to represent code is not itself very useful - you also need to be able to implement those transformations.

There are many different types of compiler transformations, but this document focuses on a particularly important class of transformation that comes up repeatedly at scale, and is important for the goals of MLIR: matching one DAG of operations, and replacing with another. This is an integral part of many compilers and necessary for peephole optimizations like “eliminate identity nodes” or “replace x+0 with x”, a generalized canonicalization framework (e.g. Instruction Combiner in LLVM), as well as a useful abstraction to implement optimization algorithms for optimization algorithms for IR at multiple levels.

A particular strength of MLIR (and a major difference vs other compiler infrastructures like LLVM, GCC, XLA, TensorFlow, etc) is that it uses a single compiler IR to represent code at multiple levels of abstraction: an MLIR operation can be a “TensorFlow operation”, an “XLA HLO”, an Affine Loop Nest, an LLVM IR instruction (transitively including X86, Lanai, PTX, and other target specific instructions), or anything else that the MLIR operation system can reasonably express. Given that MLIR spans such a wide range of different problem scopes, a single infrastructure for performing graph-to-graph rewrites can help solve many diverse domain challenges.

Static single assignment (SSA) representations like MLIR make it easy to access the operands and “users” of an operation. As such, a natural abstraction for these graph-to-graph rewrites is that of DAG pattern matching: clients define DAG tile patterns (where a tile is a sequence of operations defining a subgraph of the DAG), and each pattern includes a result DAG to produce and the cost of the result (or, inversely, the benefit of doing the replacement). A common infrastructure efficiently finds and performs the rewrites.

While this concept is simple, the details are more nuanced. This document defines and explores a set of abstractions that can solve a wide range of different problems, and be applied to many different sorts of problems that MLIR is - and is expected to - face over time. We do this by separating the pattern application algorithm from the “driver” of the computation loop, and make space for the patterns to be defined declaratively.


Constant folding

A degenerate but pervasive case of DAG-to-DAG pattern matching is constant folding: an operation whose operands contain constants can often be folded to a result constant value.

MLIR operations may override a fold routine, which exposes a simpler API compared to a general DAG-to-DAG pattern matcher, and allows for it to be applicable in cases that a generic matcher would not. For example, a DAG-rewrite can remove arbitrary nodes in the current function, which could invalidate iterators. Constant folding as an API does not remove any nodes, it just provides a (list of) constant values and allows the clients to update their data structures as necessary.




Related Work

There is a huge amount of related work to consider, given that nearly every compiler in existence has to solve this problem many times over. One unifying problem is that all of these systems are designed to solve one particular, and usually, narrow problem: MLIR on the other hand would like to solve many of these problems within a single infrastructure. Here are a few related graph rewrite systems, along with the pros and cons of their work (The most similar design to the infrastructure present in MLIR is the LLVM DAG-to-DAG instruction selection algorithm).


AST-Level Pattern Matchers

The literature is full of source-to-source translators which transform identities in order to improve performance (e.g. transforming X*0 into 0). One large example is the GCC fold function, which performs many optimizations on ASTs. Clang has similar routines for simple constant folding of expressions (as required by the C++ standard) but doesn’t perform general optimizations on its ASTs.

The primary downside of AST optimizers is that you can’t see across operations that have multiple uses. It is well known in literature that DAG pattern matching is more powerful than tree pattern matching, but on the other hand, DAG pattern matching can lead to duplication of computation which needs to be checked for.



“Combiners” and other peephole optimizers

Compilers end up with a lot of peephole optimizers for various things, e.g. the GCC “combine” routines (which try to merge two machine instructions into a single one), the LLVM Inst Combine pass, LLVM’s DAG Combiner, the Swift compiler’s SIL Combiner, etc. These generally match one or more operations and produce zero or more operations as a result. The LLVM Legalization infrastructure has a different outer loop but otherwise works the same way.

These passes have a lot of diversity, but also have a unifying structure: they mostly have a worklist outer loop which visits operations. They then use a visitor pattern (or equivalent) to switch over the class of operation and dispatch to a method. That method contains a long list of hand-written C++ code that pattern-matches various special cases. LLVM introduced a “match” function that allows writing patterns in a somewhat more declarative style using template metaprogramming (MLIR has similar facilities). Here’s a simple example:

  // Y - (X + 1) --> ~X + Y
  if (match(Op1, m_OneUse(m_Add(m_Value(X), m_One()))))
    return BinaryOperator::CreateAdd(Builder.CreateNot(X), Op0);


Here is a somewhat more complicated one (this is not the biggest or most complicated :)

  // C2 is ODD
  // LHS = XOR(Y,C1), Y = AND(Z,C2), C1==(C2+1) => LHS == NEG(OR(Z, ~C2))
  // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
  if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
    if (C1->countTrailingZeros() == 0)
      if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
        Value NewOr = Builder.CreateOr(Z, ~(*C2));
        return Builder.CreateSub(RHS, NewOr, "sub");
      }


These systems are simple to set up, and pattern matching templates have some advantages (they are extensible for new sorts of sub-patterns, look compact at point of use). On the other hand, they have lots of well known problems, for example:


	These patterns are very error prone to write, and contain lots of redundancies.

	The IR being matched often has identities (e.g. when matching commutative operators) and the C++ code has to handle it manually - take a look at the full code for checkForNegativeOperand that defines the second pattern).

	The matching code compiles slowly, both because it generates tons of code and because the templates instantiate slowly.

	Adding new patterns (e.g. for count leading zeros in the example above) is awkward and doesn’t often happen.

	The cost model for these patterns is not really defined - it is emergent based on the order the patterns are matched in code.

	They are non-extensible without rebuilding the compiler.

	It isn’t practical to apply theorem provers and other tools to these patterns - they cannot be reused for other purposes.



In addition to structured “combiners” like these, there are lots of ad-hoc systems like the LLVM Machine code peephole optimizer which are related.



LLVM’s DAG-to-DAG Instruction Selection Infrastructure

The instruction selection subsystem in LLVM is the result of many years worth of iteration and discovery, driven by the need for LLVM to support code generation for lots of targets, the complexity of code generators for modern instruction sets (e.g. X86), and the fanatical pursuit of reusing code across targets. Eli Bendersky wrote a nice short overview of how this works, and the LLVM documentation describes it in more depth including its advantages and limitations. It allows writing patterns like this.

def : Pat<(or GR64:$src, (not (add GR64:$src, 1))),
          (BLCI64rr GR64:$src)>;

This example defines a matcher for the “blci” instruction in the X86 target description, there are many others in that file (look for Pat<> patterns, since they aren’t entangled in details of the compiler like assembler/disassembler generation logic).

For the purposes of MLIR, there is much to like about this system, for example:


	It is defined in a declarative format.

	It is extensible to target-defined operations.

	It automates matching across identities, like commutative patterns.

	It allows custom abstractions and intense factoring of target-specific commonalities.

	It generates compact code - it compiles into a state machine, which is interpreted.

	It allows the instruction patterns to be defined and reused for multiple purposes.

	The patterns are “type checked” at compile time, detecting lots of bugs early and eliminating redundancy from the pattern specifications.

	It allows the use of general C++ code for weird/complex cases.



While there is a lot that is good here, there are also a few undesirable bits:


	The representation is specifically designed and only applicable for instruction selection, meaning that the directly adjacent problems like the DAGCombiner and Legalizer can’t use it.

	This isn’t extensible at compiler runtime, you have to rebuild the compiler to extend it.

	The error messages when failing to match a pattern are not exactly optimal.

	It has lots of implementation problems and limitations (e.g. can’t write a pattern for a multi-result operation) as a result of working with the awkward SelectionDAG representation and being designed and implemented on demand.

	Organic growth over time has left lots of sharp edges.





Summary

MLIR faces a wide range of pattern matching and graph rewrite problems, and one of the major advantages of having a common representation for code at multiple levels is that it allows for investing in - and highly leveraging - a single infrastructure for doing this sort of work.




Goals

We’d like the to encompass many problems in the MLIR space, including 1-to-N expansions (e.g. such as in type legalization during instruction selection when an add of one bit width may be split into multiple adds of a smaller bit width), M-to-1 patterns (e.g. when converting a multiply+add into a single muladd operation), as well as general M-to-N patterns (e.g. instruction selection for target instructions). Patterns have a benefit associated with them, and the common infrastructure should be responsible for sorting out the highest benefit match for a given application.

We separate the task of picking a particular optimal pattern from a given root node, the algorithm used to rewrite an entire graph given a particular set of goals, and the definition of the patterns themselves. We do this because DAG tile pattern matching is NP complete. Additionally, we would like to support iterative rewrite algorithms that progressively transform the input program through multiple steps. Furthermore, we would like to support many different sorts of clients across the MLIR stack, and they may have different tolerances for compile time cost, different demands for optimality, and other algorithmic goals or constraints.

We aim for MLIR transformations to be easy to implement and reduce the likelihood for compiler bugs. We expect there to be a very large number of patterns that are defined over time, and we believe that these sorts of patterns will have a very large number of legality/validity constraints - many of which are difficult to reason about in a consistent way, may be target specific, and whose implementation may be particularly bug-prone. As such, we aim to design the API around pattern definition to be simple, resilient to programmer errors, and allow separation of concerns between the legality of the nodes generated from the idea of the pattern being defined.

Finally, error handling is a topmost concern, we want pattern match failures to be diagnosable in a reasonable way. This is a difficult problem in general, as the space of malfunction is too great to be fully enumerated and handled optimally, but MLIR is already designed to represent the provenance of an operation well. The aim of the pattern rewriting infrastructure is simply to propagate that provenance information precisely, as well as diagnose pattern match failures with the rationale for why a set of patterns do not apply.


Non goals

The pattern infrastructure does not aim to solve all compiler problems, it is simply a DAG-to-DAG pattern matching system. Compiler algorithms that require global dataflow analysis (e.g. common subexpression elimination, conditional constant propagation, and many many others) will not be directly solved by this infrastructure.

This infrastructure is limited to DAG patterns, which (by definition) prevent the patterns from seeing across cycles in a graph. In an SSA-based IR like MLIR, this means that these patterns don’t see across basic block arguments. We consider this acceptable given the set of problems we are trying to solve - we don’t know of any other system that attempts to do so, and consider the payoff of worrying about this to be low.

This design includes the ability for DAG patterns to have associated benefits, but those benefits are defined in terms of magic numbers (typically equal to the number of nodes being replaced). For any given application, the units of magic numbers will have to be defined.
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Pattern Rewriting : Generic DAG-to-DAG Rewriting

[TOC]

This document details the design and API of the pattern rewriting infrastructure present in MLIR, a general DAG-to-DAG transformation framework. This framework is widely used throughout MLIR for canonicalization, conversion, and general transformation.

For an introduction to DAG-to-DAG transformation, and the rationale behind this framework please take a look at the Generic DAG Rewriter Rationale.


Introduction

The pattern rewriting framework can largely be decomposed into two parts: Pattern Definition and Pattern Application.



Defining Patterns

Patterns are defined by inheriting from the RewritePattern class. This class represents the base class of all rewrite patterns within MLIR, and is comprised of the following components:


Benefit

This is the expected benefit of applying a given pattern. This benefit is static upon construction of the pattern, but may be computed dynamically at pattern initialization time, e.g. allowing the benefit to be derived from domain specific information (like the target architecture). This limitation allows for performing pattern fusion and compiling patterns into an efficient state machine, and Thier, Ertl, and Krall have shown that match predicates eliminate the need for dynamically computed costs in almost all cases: you can simply instantiate the same pattern one time for each possible cost and use the predicate to guard the match.



Root Operation Name (Optional)

The name of the root operation that this pattern matches against. If specified, only operations with the given root name will be provided to the match and rewrite implementation. If not specified, any operation type may be provided. The root operation name should be provided whenever possible, because it simplifies the analysis of patterns when applying a cost model. To match any operation type, a special tag must be provided to make the intent explicit: MatchAnyOpTypeTag.



match and rewrite implementation

This is the chunk of code that matches a given root Operation and performs a rewrite of the IR. A RewritePattern can specify this implementation either via separate match and rewrite methods, or via a combined matchAndRewrite method. When using the combined matchAndRewrite method, no IR mutation should take place before the match is deemed successful. The combined matchAndRewrite is useful when non-trivially recomputable information is required by the matching and rewriting phase. See below for examples:

class MyPattern : public RewritePattern {
public:
  /// This overload constructs a pattern that only matches operations with the
  /// root name of `MyOp`.
  MyPattern(PatternBenefit benefit, MLIRContext *context)
      : RewritePattern(MyOp::getOperationName(), benefit, context) {}
  /// This overload constructs a pattern that matches any operation type.
  MyPattern(PatternBenefit benefit)
      : RewritePattern(benefit, MatchAnyOpTypeTag()) {}

  /// In this section, the `match` and `rewrite` implementation is specified
  /// using the separate hooks.
  LogicalResult match(Operation *op) const override {
    // The `match` method returns `success()` if the pattern is a match, failure
    // otherwise.
    // ...
  }
  void rewrite(Operation *op, PatternRewriter &rewriter) {
    // The `rewrite` method performs mutations on the IR rooted at `op` using
    // the provided rewriter. All mutations must go through the provided
    // rewriter.
  }

  /// In this section, the `match` and `rewrite` implementation is specified
  /// using a single hook.
  LogicalResult matchAndRewrite(Operation *op, PatternRewriter &rewriter) {
    // The `matchAndRewrite` method performs both the matching and the mutation.
    // Note that the match must reach a successful point before IR mutation may
    // take place.
  }
};



Restrictions

Within the match section of a pattern, the following constraints apply:


	No mutation of the IR is allowed.



Within the rewrite section of a pattern, the following constraints apply:


	All IR mutations, including creation, must be performed by the given PatternRewriter. This class provides hooks for performing all of the possible mutations that may take place within a pattern. For example, this means that an operation should not be erased via its erase method. To erase an operation, the appropriate PatternRewriter hook (in this case eraseOp) should be used instead.

	The root operation is required to either be: updated in-place, replaced, or erased.






Pattern Rewriter

A PatternRewriter is a special class that allows for a pattern to communicate with the driver of pattern application. As noted above, all IR mutations, including creations, are required to be performed via the PatternRewriter class. This is required because the underlying pattern driver may have state that would be invalidated when a mutation takes place. Examples of some of the more prevalent PatternRewriter API is shown below, please refer to the class documentation for a more up-to-date listing of the available API:


	Erase an Operation : eraseOp



This method erases an operation that either has no results, or whose results are all known to have no uses.


	Notify why a match failed : notifyMatchFailure



This method allows for providing a diagnostic message within a matchAndRewrite as to why a pattern failed to match. How this message is displayed back to the user is determined by the specific pattern driver.


	Replace an Operation : replaceOp/replaceOpWithNewOp



This method replaces an operation’s results with a set of provided values, and erases the operation.


	Update an Operation in-place : (start|cancel|finalize)RootUpdate



This is a collection of methods that provide a transaction-like API for updating the attributes, location, operands, or successors of an operation in-place within a pattern. An in-place update transaction is started with startRootUpdate, and may either be canceled or finalized with cancelRootUpdate and finalizeRootUpdate respectively. A convenience wrapper, updateRootInPlace, is provided that wraps a start and finalize around a callback.


	OpBuilder API



The PatternRewriter inherits from the OpBuilder class, and thus provides all of the same functionality present within an OpBuilder. This includes operation creation, as well as many useful attribute and type construction methods.




Pattern Application

After a set of patterns have been defined, they are collected and provided to a specific driver for application. A driver consists of several high levels parts:


	Input OwningRewritePatternList



The input patterns to a driver are provided in the form of an OwningRewritePatternList. This class provides a simplified API for building a list of patterns.


	Driver-specific PatternRewriter



To ensure that the driver state does not become invalidated by IR mutations within the pattern rewriters, a driver must provide a PatternRewriter instance with the necessary hooks overridden. If a driver does not need to hook into certain mutations, a default implementation is provided that will perform the mutation directly.


	Pattern Application and Cost Model



Each driver is responsible for defining its own operation visitation order as well as pattern cost model, but the final application is performed via a PatternApplicator class. This class takes as input the OwningRewritePatternList and transforms the patterns based upon a provided cost model. This cost model computes a final benefit for a given rewrite pattern, using whatever driver specific information necessary. After a cost model has been computed, the driver may begin to match patterns against operations using PatternApplicator::matchAndRewrite.

An example is shown below:

class MyPattern : public RewritePattern {
public:
  MyPattern(PatternBenefit benefit, MLIRContext *context)
      : RewritePattern(MyOp::getOperationName(), benefit, context) {}
};

/// Populate the pattern list.
void collectMyPatterns(OwningRewritePatternList &patterns, MLIRContext *ctx) {
  patterns.insert<MyPattern>(/*benefit=*/1, ctx);
}

/// Define a custom PatternRewriter for use by the driver.
class MyPatternRewriter : public PatternRewriter {
public:
  MyPatternRewriter(MLIRContext *ctx) : PatternRewriter(ctx) {}

  /// Override the necessary PatternRewriter hooks here.
};

/// Apply the custom driver to `op`.
void applyMyPatternDriver(Operation *op,
                          const OwningRewritePatternList &patterns) {
  // Initialize the custom PatternRewriter.
  MyPatternRewriter rewriter(op->getContext());

  // Create the applicator and apply our cost model.
  PatternApplicator applicator(patterns);
  applicator.applyCostModel([](const RewritePattern &pattern) {
    // Apply a default cost model.
    // Note: This is just for demonstration, if the default cost model is truly
    //       desired `applicator.applyDefaultCostModel()` should be used
    //       instead.
    return pattern.getBenefit();
  });

  // Try to match and apply a pattern.
  LogicalResult result = applicator.matchAndRewrite(op, rewriter);
  if (failed(result)) {
    // ... No patterns were applied.
  }
  // ... A pattern was successfully applied.
}




Common Pattern Drivers

MLIR provides several common pattern drivers that serve a variety of different use cases.


Dialect Conversion Driver

This driver provides a framework in which to perform operation conversions between, and within dialects using a concept of “legality”. This framework allows for transforming illegal operations to those supported by a provided conversion target, via a set of pattern-based operation rewriting patterns. This framework also provides support for type conversions. More information on this driver can be found here.



Greedy Pattern Rewrite Driver

This driver performs a post order traversal over the provided operations and greedily applies the patterns that locally have the most benefit. The benefit of a pattern is decided solely by the benefit specified on the pattern, and the relative order of the pattern within the pattern list (when two patterns have the same local benefit). Patterns are iteratively applied to operations until a fixed point is reached, at which point the driver finishes. This driver may be used via the following: applyPatternsAndFoldGreedily and applyOpPatternsAndFold. The latter of which only applies patterns to the provided operation, and will not traverse the IR.

Note: This driver is the one used by the canonicalization pass in MLIR.
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