

Traits

[TOC]

MLIR allows for a truly open ecosystem, as any dialect may define attributes, operations, and types that suit a specific level of abstraction. Traits are a mechanism which abstracts implementation details and properties that are common across many different attributes/operations/types/etc.. Traits may be used to specify special properties and constraints of the object, including whether an operation has side effects or that its output has the same type as the input. Some examples of operation traits are Commutative, SingleResult, Terminator, etc. See the more comprehensive list of operation traits below for more examples of what is possible.

Defining a Trait

Traits may be defined in C++ by inheriting from the TraitBase<ConcreteType, TraitType> class for the specific IR type. For attributes, this is AttributeTrait::TraitBase. For operations, this is OpTrait::TraitBase. For types, this is TypeTrait::TraitBase. This base class takes as template parameters:

	ConcreteType

	The concrete class type that this trait was attached to.

	TraitType

	The type of the trait class that is being defined, for use with the Curiously Recurring Template Pattern.

A derived trait class is expected to take a single template that corresponds to the ConcreteType. An example trait definition is shown below:

template <typename ConcreteType>
class MyTrait : public TraitBase<ConcreteType, MyTrait> {
};

Operation traits may also provide a verifyTrait hook, that is called when verifying the concrete operation. The trait verifiers will currently always be invoked before the main Op::verify.

template <typename ConcreteType>
class MyTrait : public OpTrait::TraitBase<ConcreteType, MyTrait> {
public:
 /// Override the 'verifyTrait' hook to add additional verification on the
 /// concrete operation.
 static LogicalResult verifyTrait(Operation *op) {
 // ...
 }
};

Note: It is generally good practice to define the implementation of the verifyTrait hook out-of-line as a free function when possible to avoid instantiating the implementation for every concrete operation type.

Operation traits may also provide a foldTrait hook that is called when folding the concrete operation. The trait folders will only be invoked if the concrete operation fold is either not implemented, fails, or performs an in-place fold.

The following signature of fold will be called if it is implemented and the op has a single result.

template <typename ConcreteType>
class MyTrait : public OpTrait::TraitBase<ConcreteType, MyTrait> {
public:
 /// Override the 'foldTrait' hook to support trait based folding on the
 /// concrete operation.
 static OpFoldResult foldTrait(Operation *op, ArrayRef<Attribute> operands) { {
 // ...
 }
};

Otherwise, if the operation has a single result and the above signature is not implemented, or the operation has multiple results, then the following signature will be used (if implemented):

template <typename ConcreteType>
class MyTrait : public OpTrait::TraitBase<ConcreteType, MyTrait> {
public:
 /// Override the 'foldTrait' hook to support trait based folding on the
 /// concrete operation.
 static LogicalResult foldTrait(Operation *op, ArrayRef<Attribute> operands,
 SmallVectorImpl<OpFoldResult> &results) { {
 // ...
 }
};

Note: It is generally good practice to define the implementation of the foldTrait hook out-of-line as a free function when possible to avoid instantiating the implementation for every concrete operation type.

Parametric Traits

The above demonstrates the definition of a simple self-contained trait. It is also often useful to provide some static parameters to the trait to control its behavior. Given that the definition of the trait class is rigid, i.e. we must have a single template argument for the concrete object, the templates for the parameters will need to be split out. An example is shown below:

template <int Parameter>
class MyParametricTrait {
public:
 template <typename ConcreteType>
 class Impl : public TraitBase<ConcreteType, Impl> {
 // Inside of 'Impl' we have full access to the template parameters
 // specified above.
 };
};

Attaching a Trait

Traits may be used when defining a derived object type, by simply appending the name of the trait class to the end of the base object class operation type:

/// Here we define 'MyAttr' along with the 'MyTrait' and `MyParametric trait
/// classes we defined previously.
class MyAttr : public Attribute::AttrBase<MyAttr, ..., MyTrait, MyParametricTrait<10>::Impl> {};
/// Here we define 'MyOp' along with the 'MyTrait' and `MyParametric trait
/// classes we defined previously.
class MyOp : public Op<MyOp, MyTrait, MyParametricTrait<10>::Impl> {};
/// Here we define 'MyType' along with the 'MyTrait' and `MyParametric trait
/// classes we defined previously.
class MyType : public Type::TypeBase<MyType, ..., MyTrait, MyParametricTrait<10>::Impl> {};

Attaching Operation Traits in ODS

To use an operation trait in the ODS framework, we need to provide a definition of the trait class. This can be done using the NativeOpTrait and ParamNativeOpTrait classes. ParamNativeOpTrait provides a mechanism in which to specify arguments to a parametric trait class with an internal Impl.

// The argument is the c++ trait class name.
def MyTrait : NativeOpTrait<"MyTrait">;

// The first argument is the parent c++ class name. The second argument is a
// string containing the parameter list.
class MyParametricTrait<int prop>
 : NativeOpTrait<"MyParametricTrait", !cast<string>(!head(parameters))>;

These can then be used in the traits list of an op definition:

def OpWithInferTypeInterfaceOp : Op<...[MyTrait, MyParametricTrait<10>]> { ... }

See the documentation on operation definitions for more details.

Using a Trait

Traits may be used to provide additional methods, static fields, or other information directly on the concrete object. Traits internally become Base classes of the concrete operation, so all of these are directly accessible. To expose this information opaquely to transformations and analyses, interfaces may be used.

To query if a specific object contains a specific trait, the hasTrait<> method may be used. This takes as a template parameter the trait class, which is the same as the one passed when attaching the trait to an operation.

Operation *op = ..;
if (op->hasTrait<MyTrait>() || op->hasTrait<MyParametricTrait<10>::Impl>())
 ...;

Operation Traits List

MLIR provides a suite of traits that provide various functionalities that are common across many different operations. Below is a list of some key traits that may be used directly by any dialect. The format of the header for each trait section goes as follows:

	Header

	(C++ class – ODS class(if applicable))

AffineScope

	OpTrait::AffineScope – AffineScope

This trait is carried by region holding operations that define a new scope for the purposes of polyhedral optimization and the affine dialect in particular. Any SSA values of ‘index’ type that either dominate such operations, or are defined at the top-level of such operations, or appear as region arguments for such operations automatically become valid symbols for the polyhedral scope defined by that operation. As a result, such SSA values could be used as the operands or index operands of various affine dialect operations like affine.for, affine.load, and affine.store. The polyhedral scope defined by an operation with this trait includes all operations in its region excluding operations that are nested inside of other operations that themselves have this trait.

AutomaticAllocationScope

	OpTrait::AutomaticAllocationScope – AutomaticAllocationScope

This trait is carried by region holding operations that define a new scope for automatic allocation. Such allocations are automatically freed when control is transferred back from the regions of such operations. As an example, allocations performed by std.alloca are automatically freed when control leaves the region of its closest surrounding op that has the trait AutomaticAllocationScope.

Broadcastable

	OpTrait::ResultsBroadcastableShape – ResultsBroadcastableShape

This trait adds the property that the operation is known to have broadcast-compatible operands and its result types’ shape is the broadcast compatible with the shape of the broadcasted operands. Specifically, starting from the most varying dimension, each dimension pair of the two operands’ shapes should either be the same or one of them is one. Also, the result shape should have the corresponding dimension equal to the larger one, if known. Shapes are checked partially if ranks or dimensions are not known. For example, an op with tensor<?x2xf32> and tensor<2xf32> as operand types and tensor<3x2xf32> as the result type is broadcast-compatible.

This trait requires that the operands are either vector or tensor types.

Commutative

	OpTrait::IsCommutative – Commutative

This trait adds the property that the operation is commutative, i.e. X op Y == Y op X

Function-Like

	OpTrait::FunctionLike

This trait provides APIs for operations that behave like functions. In particular:

	Ops must be symbols, i.e. also have the Symbol trait;

	Ops have a single region with multiple blocks that corresponds to the body of the function;

	the absence of a region corresponds to an external function;

	arguments of the first block of the region are treated as function arguments;

	they can have argument and result attributes that are stored in dictionary attributes on the operation itself.

This trait does NOT provide type support for the functions, meaning that concrete Ops must handle the type of the declared or defined function. getTypeAttrName() is a convenience function that returns the name of the attribute that can be used to store the function type, but the trait makes no assumption based on it.

HasParent

	OpTrait::HasParent<typename ParentOpType> – HasParent<string op>

This trait provides APIs and verifiers for operations that can only be nested within regions that are attached to operations of ParentOpType.

IsolatedFromAbove

	OpTrait::IsIsolatedFromAbove – IsolatedFromAbove

This trait signals that the regions of an operations are known to be isolated from above. This trait asserts that the regions of an operation will not capture, or reference, SSA values defined above the region scope. This means that the following is invalid if foo.region_op is defined as IsolatedFromAbove:

%result = constant 10 : i32
foo.region_op {
 foo.yield %result : i32
}

This trait is an important structural property of the IR, and enables operations to have passes scheduled under them.

MemRefsNormalizable

	OpTrait::MemRefsNormalizable – MemRefsNormalizable

This trait is used to flag operations that consume or produce values of MemRef type where those references can be ‘normalized’. In cases where an associated MemRef has a non-identity memory-layout specification, such normalizable operations can be modified so that the MemRef has an identity layout specification. This can be implemented by associating the operation with its own index expression that can express the equivalent of the memory-layout specification of the MemRef type. See [the -normalize-memrefs pass]. (https://mlir.llvm.org/docs/Passes/#-normalize-memrefs-normalize-memrefs)

Single Block with Implicit Terminator

	OpTrait::SingleBlockImplicitTerminator<typename TerminatorOpType> : SingleBlockImplicitTerminator<string op>

This trait provides APIs and verifiers for operations with regions that have a single block that must terminate with TerminatorOpType.

SymbolTable

	OpTrait::SymbolTable – SymbolTable

This trait is used for operations that define a SymbolTable.

Terminator

	OpTrait::IsTerminator – Terminator

This trait provides verification and functionality for operations that are known to be terminators.

Pass Infrastructure

[TOC]

Passes represent the basic infrastructure for transformation and optimization. This document provides a quickstart to the pass infrastructure in MLIR and how to use it.

See MLIR specification for more information about MLIR and its core aspects, such as the IR structure and operations.

See MLIR Rewrites for a quick start on graph rewriting in MLIR. If your transformation involves pattern matching operation DAGs, this is a great place to start.

Operation Pass

In MLIR, the main unit of abstraction and transformation is an operation. As such, the pass manager is designed to work on instances of operations at different levels of nesting. The structure of the pass manager, and the concept of nesting, is detailed further below. All passes in MLIR derive from OperationPass and adhere to the following restrictions; any noncompliance will lead to problematic behavior in multithreaded and other advanced scenarios:

	Modify anything within the parent block/region/operation/etc, outside of the current operation being operated on. This includes adding or removing operations from the parent block.

	Maintain pass state across invocations of runOnOperation. A pass may be run on several different operations with no guarantee of execution order.

	When multithreading, a specific pass instance may not even execute on all operations within the module. As such, a pass should not rely on running on all operations.

	Modify the state of another operation not nested within the current operation being operated on.

	Other threads may be operating on different operations within the module simultaneously.

	Maintain any global mutable state, e.g. static variables within the source file. All mutable state should be maintained by an instance of the pass.

	Must be copy-constructible, multiple instances of the pass may be created by the pass manager to process operations in parallel.

	Inspect the IR of sibling operations. Other threads may be modifying these operations in parallel.

When creating an operation pass, there are two different types to choose from depending on the usage scenario:

OperationPass : Op-Specific

An op-specific operation pass operates explicitly on a given operation type. This operation type must adhere to the restrictions set by the pass manager for pass execution.

To define an op-specific operation pass, a derived class must adhere to the following:

	Inherit from the CRTP class OperationPass and provide the operation type as an additional template parameter.

	Override the virtual void runOnOperation() method.

A simple pass may look like:

namespace {
struct MyFunctionPass : public OperationPass<MyFunctionPass, FuncOp> {
 void runOnOperation() override {
 // Get the current FuncOp operation being operated on.
 FuncOp f = getOperation();

 // Walk the operations within the function.
 f.walk([](Operation *inst) {

 });
 }
};
} // end anonymous namespace

// Register this pass to make it accessible to utilities like mlir-opt.
// (Pass registration is discussed more below)
static PassRegistration<MyFunctionPass> pass(
 "flag-name-to-invoke-pass-via-mlir-opt", "Pass description here");

OperationPass : Op-Agnostic

An op-agnostic pass operates on the operation type of the pass manager that it is added to. This means that a pass that operates on several different operation types in the same way only needs one implementation.

To create an operation pass, a derived class must adhere to the following:

	Inherit from the CRTP class OperationPass.

	Override the virtual void runOnOperation() method.

A simple pass may look like:

struct MyOperationPass : public OperationPass<MyOperationPass> {
 void runOnOperation() override {
 // Get the current operation being operated on.
 Operation *op = getOperation();
 ...
 }
};

Dependent Dialects

Dialects must be loaded in the MLIRContext before entities from these dialects (operations, types, attributes, …) can be created. Dialects must be loaded before starting the multi-threaded pass pipeline execution. To this end, a pass that can create an entity from a dialect that isn’t already loaded must express this by overriding the getDependentDialects() method and declare this list of Dialects explicitly.

Analysis Management

An important concept, along with transformation passes, are analyses. These are conceptually similar to transformation passes, except that they compute information on a specific operation without modifying it. In MLIR, analyses are not passes but free-standing classes that are computed lazily on-demand and cached to avoid unnecessary recomputation. An analysis in MLIR must adhere to the following:

	Provide a valid constructor taking an Operation*.

	Must not modify the given operation.

An analysis may provide additional hooks to control various behavior:

	bool isInvalidated(const AnalysisManager::PreservedAnalyses &)

Given a preserved analysis set, the analysis returns true if it should truly be invalidated. This allows for more fine-tuned invalidation in cases where an analysis wasn’t explicitly marked preserved, but may be preserved (or invalidated) based upon other properties such as analyses sets.

Querying Analyses

The base OperationPass class provides utilities for querying and preserving analyses for the current operation being processed.

	OperationPass automatically provides the following utilities for querying analyses:

	getAnalysis<>

	Get an analysis for the current operation, constructing it if necessary.

	getCachedAnalysis<>

	Get an analysis for the current operation, if it already exists.

	getCachedParentAnalysis<>

	Get an analysis for a given parent operation, if it exists.

	getCachedChildAnalysis<>

	Get an analysis for a given child operation, if it exists.

	getChildAnalysis<>

	Get an analysis for a given child operation, constructing it if necessary.

Using the example passes defined above, let’s see some examples:

/// An interesting analysis.
struct MyOperationAnalysis {
 // Compute this analysis with the provided operation.
 MyOperationAnalysis(Operation *op);
};

void MyOperationPass::runOnOperation() {
 // Query MyOperationAnalysis for the current operation.
 MyOperationAnalysis &myAnalysis = getAnalysis<MyOperationAnalysis>();

 // Query a cached instance of MyOperationAnalysis for the current operation.
 // It will not be computed if it doesn't exist.
 auto optionalAnalysis = getCachedAnalysis<MyOperationAnalysis>();
 if (optionalAnalysis)
 ...

 // Query a cached instance of MyOperationAnalysis for the parent operation of
 // the current operation. It will not be computed if it doesn't exist.
 auto optionalAnalysis = getCachedParentAnalysis<MyOperationAnalysis>();
 if (optionalAnalysis)
 ...
}

Preserving Analyses

Analyses that are constructed after being queried by a pass are cached to avoid unnecessary computation if they are requested again later. To avoid stale analyses, all analyses are assumed to be invalidated by a pass. To avoid invalidation, a pass must specifically mark analyses that are known to be preserved.

	All Pass classes automatically provide the following utilities for preserving analyses:

	markAllAnalysesPreserved

	markAnalysesPreserved<>

void MyOperationPass::runOnOperation() {
 // Mark all analyses as preserved. This is useful if a pass can guarantee
 // that no transformation was performed.
 markAllAnalysesPreserved();

 // Mark specific analyses as preserved. This is used if some transformation
 // was performed, but some analyses were either unaffected or explicitly
 // preserved.
 markAnalysesPreserved<MyAnalysis, MyAnalyses...>();
}

Pass Failure

Passes in MLIR are allowed to gracefully fail. This may happen if some invariant of the pass was broken, potentially leaving the IR in some invalid state. If such a situation occurs, the pass can directly signal a failure to the pass manager. If a pass signaled a failure when executing, no other passes in the pipeline will execute and the PassManager::run will return failure. Failure signaling is provided in the form of a signalPassFailure method.

void MyPass::runOnOperation() {
 // Signal failure on a broken invariant.
 if (some_broken_invariant) {
 signalPassFailure();
 return;
 }
}

Pass Manager

Above we introduced the different types of passes and their constraints. Now that we have our pass we need to be able to run it over a specific module. This is where the pass manager comes into play. The PassManager class is used to configure and run a pipeline. The OpPassManager class is used to schedule passes to run at a specific level of nesting.

OpPassManager

An OpPassManager is essentially a collection of passes to execute on an operation of a given type. This operation type must adhere to the following requirement:

	Must be registered and marked IsolatedFromAbove.

	Passes are expected to not modify operations at or above the current operation being processed. If the operation is not isolated, it may inadvertently modify the use-list of an operation it is not supposed to modify.

Passes can be added to a pass manager via addPass. The pass must either be an op-specific pass operating on the same operation type as OpPassManager, or an op-agnostic pass.

An OpPassManager cannot be created directly, but must be explicitly nested within another OpPassManager via the nest<> method. This method takes the operation type that the nested pass manager will operate on. At the top-level, a PassManager acts as an OpPassManager that operates on the module operation. Nesting in this sense, corresponds to the structural nesting within Regions of the IR.

For example, the following .mlir:

module {
 spv.module "Logical" "GLSL450" {
 func @foo() {
 ...
 }
 }
}

Has the nesting structure of:

`module`
 `spv.module`
 `function`

Below is an example of constructing a pipeline that operates on the above structure:

PassManager pm(ctx);

// Add a pass on the top-level module operation.
pm.addPass(std::make_unique<MyModulePass>());

// Nest a pass manager that operates on spirv module operations nested directly
// under the top-level module.
OpPassManager &nestedModulePM = pm.nest<spirv::ModuleOp>();
nestedModulePM.addPass(std::make_unique<MySPIRVModulePass>());

// Nest a pass manager that operates on functions within the nested SPIRV
// module.
OpPassManager &nestedFunctionPM = nestedModulePM.nest<FuncOp>();
nestedFunctionPM.addPass(std::make_unique<MyFunctionPass>());

// Run the pass manager on the top-level module.
Module m = ...;
if (failed(pm.run(m)))
 ... // One of the passes signaled a failure.

The above pass manager would contain the following pipeline structure:

OpPassManager<ModuleOp>
 MyModulePass
 OpPassManager<spirv::ModuleOp>
 MySPIRVModulePass
 OpPassManager<FuncOp>
 MyFunctionPass

These pipelines are then run over a single operation at a time. This means that, for example, given a series of consecutive passes on FuncOp, it will execute all on the first function, then all on the second function, etc. until the entire program has been run through the passes. This provides several benefits:

	This improves the cache behavior of the compiler, because it is only touching a single function at a time, instead of traversing the entire program.

	This improves multi-threading performance by reducing the number of jobs that need to be scheduled, as well as increasing the efficiency of each job. An entire function pipeline can be run on each function asynchronously.

Pass Registration

Briefly shown in the example definitions of the various pass types is the PassRegistration class. This is a utility to register derived pass classes so that they may be created, and inspected, by utilities like mlir-opt. Registering a pass class takes the form:

static PassRegistration<MyPass> pass("command-line-arg", "description");

	MyPass is the name of the derived pass class.

	“command-line-arg” is the argument to use on the command line to invoke the pass from mlir-opt.

	“description” is a description of the pass.

For passes that cannot be default-constructed, PassRegistration accepts an optional third argument that takes a callback to create the pass:

static PassRegistration<MyParametricPass> pass(
 "command-line-arg", "description",
 []() -> std::unique_ptr<Pass> {
 std::unique_ptr<Pass> p = std::make_unique<MyParametricPass>(/*options*/);
 /*... non-trivial-logic to configure the pass ...*/;
 return p;
 });

This variant of registration can be used, for example, to accept the configuration of a pass from command-line arguments and pass it over to the pass constructor. Make sure that the pass is copy-constructible in a way that does not share data as the pass manager may create copies of the pass to run in parallel.

Pass Pipeline Registration

Described above is the mechanism used for registering a specific derived pass class. On top of that, MLIR allows for registering custom pass pipelines in a similar fashion. This allows for custom pipelines to be available to tools like mlir-opt in the same way that passes are, which is useful for encapsulating common pipelines like the “-O1” series of passes. Pipelines are registered via a similar mechanism to passes in the form of PassPipelineRegistration. Compared to PassRegistration, this class takes an additional parameter in the form of a pipeline builder that modifies a provided OpPassManager.

void pipelineBuilder(OpPassManager &pm) {
 pm.addPass(std::make_unique<MyPass>());
 pm.addPass(std::make_unique<MyOtherPass>());
}

// Register an existing pipeline builder function.
static PassPipelineRegistration<> pipeline(
 "command-line-arg", "description", pipelineBuilder);

// Register an inline pipeline builder.
static PassPipelineRegistration<> pipeline(
 "command-line-arg", "description", [](OpPassManager &pm) {
 pm.addPass(std::make_unique<MyPass>());
 pm.addPass(std::make_unique<MyOtherPass>());
 });

Pipeline registration also allows for simplified registration of specializations for existing passes:

static PassPipelineRegistration<> foo10(
 "foo-10", "Foo Pass 10", [] { return std::make_unique<FooPass>(10); });

Textual Pass Pipeline Specification

In the previous sections, we showed how to register passes and pass pipelines with a specific argument and description. Once registered, these can be used on the command line to configure a pass manager. The limitation of using these arguments directly is that they cannot build a nested pipeline. For example, if our module has another module nested underneath, with just -my-module-pass there is no way to specify that this pass should run on the nested module and not the top-level module. This is due to the flattened nature of the command line.

To circumvent this limitation, MLIR also supports a textual description of a pass pipeline. This allows for explicitly specifying the structure of the pipeline to add to the pass manager. This includes the nesting structure, as well as the passes and pass pipelines to run. A textual pipeline is defined as a series of names, each of which may in itself recursively contain a nested pipeline description. The syntax for this specification is as follows:

pipeline ::= op-name `(` pipeline-element (`,` pipeline-element)* `)`
pipeline-element ::= pipeline | (pass-name | pass-pipeline-name) options?
options ::= '{' (key ('=' value)?)+ '}'

	op-name

	This corresponds to the mnemonic name of an operation to run passes on, e.g. func or module.

	pass-name | pass-pipeline-name

	This corresponds to the command-line argument of a registered pass or pass pipeline, e.g. cse or canonicalize.

	options

	Options are pass specific key value pairs that are handled as described in the instance specific pass options section.

For example, the following pipeline:

$ mlir-opt foo.mlir -cse -canonicalize -convert-std-to-llvm

Can also be specified as (via the -pass-pipeline flag):

$ mlir-opt foo.mlir -pass-pipeline='func(cse, canonicalize), convert-std-to-llvm'

In order to support round-tripping your pass to the textual representation using OpPassManager::printAsTextualPipeline(raw_ostream&), override Pass::printAsTextualPipeline(raw_ostream&) to format your pass-name and options in the format described above.

Instance Specific Pass Options

Options may be specified for a parametric pass. Individual options are defined using the LLVM command line flag definition rules. These options will then be parsed at pass construction time independently for each instance of the pass. To provide options for passes, the Option<> and OptionList<> classes may be used:

struct MyPass ... {
 /// Make sure that we have a valid default constructor and copy constructor to
 /// make sure that the options are initialized properly.
 MyPass() = default;
 MyPass(const MyPass& pass) {}

 // These just forward onto llvm::cl::list and llvm::cl::opt respectively.
 Option<int> exampleOption{*this, "flag-name", llvm::cl::desc("...")};
 ListOption<int> exampleListOption{*this, "list-flag-name",
 llvm::cl::desc("...")};
};

For pass pipelines, the PassPipelineRegistration templates take an additional optional template parameter that is the Option struct definition to be used for that pipeline. To use pipeline specific options, create a class that inherits from mlir::PassPipelineOptions that contains the desired options. When using PassPipelineRegistration, the constructor now takes a function with the signature void (OpPassManager &pm, const MyPipelineOptions&) which should construct the passes from the options and pass them to the pm:

struct MyPipelineOptions : public PassPipelineOptions {
 // These just forward onto llvm::cl::list and llvm::cl::opt respectively.
 Option<int> exampleOption{*this, "flag-name", llvm::cl::desc("...")};
 ListOption<int> exampleListOption{*this, "list-flag-name",
 llvm::cl::desc("...")};
};

static mlir::PassPipelineRegistration<MyPipelineOptions> pipeline(
 "example-pipeline", "Run an example pipeline.",
 [](OpPassManager &pm, const MyPipelineOptions &pipelineOptions) {
 // Initialize the pass manager.
 });

Pass Statistics

Statistics are a way to keep track of what the compiler is doing and how effective various transformations are. It is often useful to see what effect specific transformations have on a particular program, and how often they trigger. Pass statistics are instance specific which allow for taking this a step further as you are able to see the effect of placing a particular transformation at specific places within the pass pipeline. For example, they help answer questions like What happens if I run CSE again here?.

Statistics can be added to a pass by using the ‘Pass::Statistic’ class. This class takes as a constructor arguments: the parent pass, a name, and a description. This class acts like an unsigned integer, and may be incremented and updated accordingly. These statistics use the same infrastructure as llvm::Statistic and thus have similar usage constraints. Collected statistics can be dumped by the pass manager programmatically via PassManager::enableStatistics; or via -pass-statistics and -pass-statistics-display on the command line.

An example is shown below:

struct MyPass : public OperationPass<MyPass> {
 Statistic testStat{this, "testStat", "A test statistic"};

 void runOnOperation() {
 ...

 // Update our statistic after some invariant was hit.
 ++testStat;

 ...
 }
};

The collected statistics may be aggregated in two types of views:

A pipeline view that models the structure of the pass manager, this is the default view:

$ mlir-opt -pass-pipeline='func(my-pass,my-pass)' foo.mlir -pass-statistics

===---===
 ... Pass statistics report ...
===---===
'func' Pipeline
 MyPass
 (S) 15 testStat - A test statistic
 VerifierPass
 MyPass
 (S) 6 testStat - A test statistic
 VerifierPass
VerifierPass

And a list view that aggregates all instances of a specific pass together:

$ mlir-opt -pass-pipeline='func(my-pass, my-pass)' foo.mlir -pass-statistics -pass-statistics-display=list

===---===
 ... Pass statistics report ...
===---===
MyPass
 (S) 21 testStat - A test statistic

Declarative Pass Specification

Some aspects of a Pass may be specified declaratively, in a form similar to operations. This specification simplifies several mechanisms used when defining passes. It can be used for generating pass registration calls, defining boilerplate pass utilities, and generating pass documentation.

Consider the following pass specified in C++:

struct MyPass : PassWrapper<MyPass, OperationPass<ModuleOp>> {
 ...

 /// Options.
 Option<bool> option{
 *this, "example-option",
 llvm::cl::desc("An example option"), llvm::cl::init(true)};
 ListOption<int64_t> listOption{
 *this, "example-list",
 llvm::cl::desc("An example list option"), llvm::cl::ZeroOrMore,
 llvm::cl::MiscFlags::CommaSeparated};

 /// Statistics.
 Statistic statistic{this, "example-statistic", "An example statistic"};
};

/// Expose this pass to the outside world.
std::unique_ptr<Pass> foo::createMyPass() {
 return std::make_unique<MyPass>();
}

static PassRegistration<MyPass> pass("my-pass", "My pass summary");

This pass may be specified declaratively as so:

def MyPass : Pass<"my-pass", "ModuleOp"> {
 let summary = "My Pass Summary";
 let description = [{
 Here we can now give a much larger description of `MyPass`, including all of
 its various constraints and behavior.
 }];

 // A constructor must be provided to specify how to create a default instance
 // of MyPass.
 let constructor = "foo::createMyPass()";

 // Specify any options.
 let options = [
 Option<"option", "example-option", "bool", /*default=*/"true",
 "An example option">,
 ListOption<"listOption", "example-list", "int64_t",
 "An example list option",
 "llvm::cl::ZeroOrMore, llvm::cl::MiscFlags::CommaSeparated">
];

 // Specify any statistics.
 let statistics = [
 Statistic<"statistic", "example-statistic", "An example statistic">
];
}

Using the gen-pass-decls generator, we can generate the much of the boilerplater above automatically. This generator takes as an input a -name parameter, that provides a tag for the group of passes that are being generated. This generator produces two chunks of output:

The first is the code for registering the declarative passes with the global registry. For each pass, the generator produces a registerFooPass where Foo is the name of the definition specified in tablegen. It also generates a registerGroupPasses, where Group is the tag provided via the -name input parameter, that registers all of the passes present.

#define GEN_PASS_REGISTRATION
#include "Passes.h.inc"

void registerMyPasses() {
 // Register all of our passes.
 registerMyPasses();

 // Register `MyPass` specifically.
 registerMyPassPass();
}

The second is a base class for each of the passes, with each containing most of the boiler plate related to pass definition. These classes are named in the form of MyPassBase, where MyPass is the name of the definition in tablegen. We can update the original C++ pass definition as so:

/// Include the generated base pass class definitions.
#define GEN_PASS_CLASSES
#include "Passes.h.inc"

// Define the main class as deriving from the generated base class.
struct MyPass : MyPassBase<MyPass> {
 ...
};

/// Expose this pass to the outside world.
std::unique_ptr<Pass> foo::createMyPass() {
 return std::make_unique<MyPass>();
}

Using the gen-pass-doc generator, we can generate markdown documentation for each of our passes. See Passes.md for example output of real MLIR passes.

Tablegen Specification

The Pass class is used to begin a new pass definition. This class takes as an argument the command line argument to attribute to the pass, as well as an optional string corresponding to the operation type that the pass operates on. It contains the following fields:

	summary

	A short one line summary of the pass, used as the description when registering the pass.

	description

	A longer, more detailed description of the pass. This is used when generating pass documentation.

	dependentDialects

	A list of strings that are the Dialect classes this pass can introduce.

	constructor

	A piece of C++ code used to create a default instance of the pass.

	options

	A list of pass options used by the pass.

	statistics

	A list of pass statistics used by the pass.

Options

Options can be specified by the Option and ListOption classes. The Option class takes the following fields:

	C++ variable name

	A name to use for the generated option variable.

	argument

	The command line argument of the option.

	type

	The C++ type of the option.

	default value

	The default option value.

	description

	A one line description of the option.

	additional option flags

	A string containing any additional options necessary to construct the option.

The ListOption class takes the following fields:

	C++ variable name

	A name to use for the generated option variable.

	argument

	The command line argument of the option.

	element type

	The C++ type of the list element.

	description

	A one line description of the option.

	additional option flags

	A string containing any additional options necessary to construct the option.

Statistic

Statistics can be specified via the Statistic, which takes the following fields:

	C++ variable name

	A name to use for the generated statistic variable.

	display name

	The name used when displaying the statistic.

	description

	A one line description of the statistic.

Pass Instrumentation

MLIR provides a customizable framework to instrument pass execution and analysis computation. This is provided via the PassInstrumentation class. This class provides hooks into the PassManager that observe various pass events:

	runBeforePipeline

	This callback is run just before a pass pipeline, i.e. pass manager, is executed.

	runAfterPipeline

	This callback is run right after a pass pipeline has been executed, successfully or not.

	runBeforePass

	This callback is run just before a pass is executed.

	runAfterPass

	This callback is run right after a pass has been successfully executed. If this hook is executed, runAfterPassFailed will not be.

	runAfterPassFailed

	This callback is run right after a pass execution fails. If this hook is executed, runAfterPass will not be.

	runBeforeAnalysis

	This callback is run just before an analysis is computed.

	runAfterAnalysis

	This callback is run right after an analysis is computed.

PassInstrumentation objects can be registered directly with a PassManager instance via the addInstrumentation method. Instrumentations added to the PassManager are run in a stack like fashion, i.e. the last instrumentation to execute a runBefore* hook will be the first to execute the respective runAfter* hook. Below in an example instrumentation that counts the number of times DominanceInfo is computed:

struct DominanceCounterInstrumentation : public PassInstrumentation {
 unsigned &count;

 DominanceCounterInstrumentation(unsigned &count) : count(count) {}
 void runAfterAnalysis(llvm::StringRef, TypeID id, Operation *) override {
 if (id == TypeID::get<DominanceInfo>())
 ++count;
 }
};

MLIRContext *ctx = ...;
PassManager pm(ctx);

// Add the instrumentation to the pass manager.
unsigned domInfoCount;
pm.addInstrumentation(
 std::make_unique<DominanceCounterInstrumentation>(domInfoCount));

// Run the pass manager on a module operation.
ModuleOp m = ...;
if (failed(pm.run(m)))
 ...

llvm::errs() << "DominanceInfo was computed " << domInfoCount << " times!\n";

Standard Instrumentations

MLIR utilizes the pass instrumentation framework to provide a few useful developer tools and utilities. Each of these instrumentations are immediately available to all users of the MLIR pass framework.

Pass Timing

The PassTiming instrumentation provides timing information about the execution of passes and computation of analyses. This provides a quick glimpse into what passes are taking the most time to execute, as well as how much of an effect your pass has on the total execution time of the pipeline. Users can enable this instrumentation directly on the PassManager via enableTiming. This instrumentation is also made available in mlir-opt via the -pass-timing flag. The PassTiming instrumentation provides several different display modes for the timing results, each of which is described below:

List Display Mode

In this mode, the results are displayed in a list sorted by total time with each pass/analysis instance aggregated into one unique result. This view is useful for getting an overview of what analyses/passes are taking the most time in a pipeline. This display mode is available in mlir-opt via -pass-timing-display=list.

$ mlir-opt foo.mlir -mlir-disable-threading -pass-pipeline='func(cse,canonicalize)' -convert-std-to-llvm -pass-timing -pass-timing-display=list

===---===
 ... Pass execution timing report ...
===---===
 Total Execution Time: 0.0203 seconds

 ---Wall Time--- --- Name ---
 0.0047 (55.9%) Canonicalizer
 0.0019 (22.2%) VerifierPass
 0.0016 (18.5%) LLVMLoweringPass
 0.0003 (3.4%) CSE
 0.0002 (1.9%) (A) DominanceInfo
 0.0084 (100.0%) Total

Pipeline Display Mode

In this mode, the results are displayed in a nested pipeline view that mirrors the internal pass pipeline that is being executed in the pass manager. This view is useful for understanding specifically which parts of the pipeline are taking the most time, and can also be used to identify when analyses are being invalidated and recomputed. This is the default display mode.

$ mlir-opt foo.mlir -mlir-disable-threading -pass-pipeline='func(cse,canonicalize)' -convert-std-to-llvm -pass-timing

===---===
 ... Pass execution timing report ...
===---===
 Total Execution Time: 0.0249 seconds

 ---Wall Time--- --- Name ---
 0.0058 (70.8%) 'func' Pipeline
 0.0004 (4.3%) CSE
 0.0002 (2.6%) (A) DominanceInfo
 0.0004 (4.8%) VerifierPass
 0.0046 (55.4%) Canonicalizer
 0.0005 (6.2%) VerifierPass
 0.0005 (5.8%) VerifierPass
 0.0014 (17.2%) LLVMLoweringPass
 0.0005 (6.2%) VerifierPass
 0.0082 (100.0%) Total

Multi-threaded Pass Timing

When multi-threading is enabled in the pass manager the meaning of the display slightly changes. First, a new timing column is added, User Time, that displays the total time spent across all threads. Secondly, the Wall Time column displays the longest individual time spent amongst all of the threads. This means that the Wall Time column will continue to give an indicator on the perceived time, or clock time, whereas the User Time will display the total cpu time.

$ mlir-opt foo.mlir -pass-pipeline='func(cse,canonicalize)' -convert-std-to-llvm -pass-timing

===---===
 ... Pass execution timing report ...
===---===
 Total Execution Time: 0.0078 seconds

 ---User Time--- ---Wall Time--- --- Name ---
 0.0177 (88.5%) 0.0057 (71.3%) 'func' Pipeline
 0.0044 (22.0%) 0.0015 (18.9%) CSE
 0.0029 (14.5%) 0.0012 (15.2%) (A) DominanceInfo
 0.0038 (18.9%) 0.0015 (18.7%) VerifierPass
 0.0089 (44.6%) 0.0025 (31.1%) Canonicalizer
 0.0006 (3.0%) 0.0002 (2.6%) VerifierPass
 0.0004 (2.2%) 0.0004 (5.4%) VerifierPass
 0.0013 (6.5%) 0.0013 (16.3%) LLVMLoweringPass
 0.0006 (2.8%) 0.0006 (7.0%) VerifierPass
 0.0200 (100.0%) 0.0081 (100.0%) Total

IR Printing

When debugging it is often useful to dump the IR at various stages of a pass pipeline. This is where the IR printing instrumentation comes into play. This instrumentation allows for conditionally printing the IR before and after pass execution by optionally filtering on the pass being executed. This instrumentation can be added directly to the PassManager via the enableIRPrinting method. mlir-opt provides a few useful flags for utilizing this instrumentation:

	print-ir-before=(comma-separated-pass-list)

	Print the IR before each of the passes provided within the pass list.

	print-ir-before-all

	Print the IR before every pass in the pipeline.

$ mlir-opt foo.mlir -pass-pipeline='func(cse)' -print-ir-before=cse

*** IR Dump Before CSE ***
func @simple_constant() -> (i32, i32) {
 %c1_i32 = constant 1 : i32
 %c1_i32_0 = constant 1 : i32
 return %c1_i32, %c1_i32_0 : i32, i32
}

	print-ir-after=(comma-separated-pass-list)

	Print the IR after each of the passes provided within the pass list.

	print-ir-after-all

	Print the IR after every pass in the pipeline.

$ mlir-opt foo.mlir -pass-pipeline='func(cse)' -print-ir-after=cse

*** IR Dump After CSE ***
func @simple_constant() -> (i32, i32) {
 %c1_i32 = constant 1 : i32
 return %c1_i32, %c1_i32 : i32, i32
}

	print-ir-after-change

	Only print the IR after a pass if the pass mutated the IR. This helps to reduce the number of IR dumps for “uninteresting” passes.

	Note: Changes are detected by comparing a hash of the operation before and after the pass. This adds additional run-time to compute the hash of the IR, and in some rare cases may result in false-positives depending on the collision rate of the hash algorithm used.

	Note: This option should be used in unison with one of the other ‘print-ir-after’ options above, as this option alone does not enable printing.

$ mlir-opt foo.mlir -pass-pipeline='func(cse,cse)' -print-ir-after=cse -print-ir-after-change

*** IR Dump After CSE ***
func @simple_constant() -> (i32, i32) {
 %c1_i32 = constant 1 : i32
 return %c1_i32, %c1_i32 : i32, i32
}

	print-ir-module-scope

	Always print the top-level module operation, regardless of pass type or operation nesting level.

	Note: Printing at module scope should only be used when multi-threading is disabled(-mlir-disable-threading)

$ mlir-opt foo.mlir -mlir-disable-threading -pass-pipeline='func(cse)' -print-ir-after=cse -print-ir-module-scope

*** IR Dump After CSE *** ('func' operation: @bar)
func @bar(%arg0: f32, %arg1: f32) -> f32 {
 ...
}

func @simple_constant() -> (i32, i32) {
 %c1_i32 = constant 1 : i32
 %c1_i32_0 = constant 1 : i32
 return %c1_i32, %c1_i32_0 : i32, i32
}

*** IR Dump After CSE *** ('func' operation: @simple_constant)
func @bar(%arg0: f32, %arg1: f32) -> f32 {
 ...
}

func @simple_constant() -> (i32, i32) {
 %c1_i32 = constant 1 : i32
 return %c1_i32, %c1_i32 : i32, i32
}

Crash and Failure Reproduction

The pass manager in MLIR contains a builtin mechanism to generate reproducibles in the even of a crash, or a pass failure. This functionality can be enabled via PassManager::enableCrashReproducerGeneration or via the command line flag pass-pipeline-crash-reproducer. In either case, an argument is provided that corresponds to the output .mlir file name that the reproducible should be written to. The reproducible contains the configuration of the pass manager that was executing, as well as the initial IR before any passes were run. A potential reproducible may have the form:

// configuration: -pass-pipeline='func(cse, canonicalize), inline'
// note: verifyPasses=false

module {
 func @foo() {
 ...
 }
}

Local Reproducer Generation

An additional flag may be passed to PassManager::enableCrashReproducerGeneration, and specified via pass-pipeline-local-reproducer on the command line, that signals that the pass manager should attempt to generate a “local” reproducer. This will attempt to generate a reproducer containing IR right before the pass that fails. This is useful for situations where the crash is known to be within a specific pass, or when the original input relies on components (like dialects or passes) that may not always be available.

For example, if the failure in the previous example came from canonicalize, the following reproducer will be generated:

// configuration: -pass-pipeline='func(canonicalize)'
// note: verifyPasses=false

module {
 func @foo() {
 ...
 }
}

Table-driven Declarative Rewrite Rule (DRR)

In addition to subclassing the mlir::RewritePattern C++ class, MLIR also supports defining rewrite rules in a declarative manner. Similar to Op Definition Specification (ODS), this is achieved via TableGen, which is a language to maintain records of domain-specific information. The rewrite rules are specified concisely in a TableGen record, which will be expanded into an equivalent mlir::RewritePattern subclass at compiler build time.

This manual explains in detail all of the available mechanisms for defining rewrite rules in such a declarative manner. It aims to be a specification instead of a tutorial. Please refer to Quickstart tutorial to adding MLIR graph rewrite for the latter.

Given that declarative rewrite rules depend on op definition specification, this manual assumes knowledge of the ODS doc.

Benefits

Compared to the hand-written C++ classes, this declarative approach has several benefits, including but not limited to:

	Being declarative: The pattern creator just needs to state the rewrite pattern declaratively, without worrying about the concrete C++ methods to call.

	Removing boilerplate and showing the very essence of the rewrite: mlir::RewritePattern is already good at hiding boilerplate for defining a rewrite rule. But we still need to write the class and function structures required by the C++ programming language, inspect ops for matching, and call op build() methods for constructing. These statements are typically quite simple and similar, so they can be further condensed with auto-generation. Because we reduce the boilerplate to the bare minimum, the declarative rewrite rule will just contain the very essence of the rewrite. This makes it very easy to understand the pattern.

Strengths and Limitations

The declarative rewrite rule is operation-based: it describes a rule to match against a directed acyclic graph (DAG) of operations and generate DAGs of operations. This gives DRR both its strengths and limitations: it is good at expressing op to op conversions, but not that well suited for, say, converting an op into a loop nest.

Per the current implementation, DRR does not have good support for the following features:

	Matching and generating ops with regions.

	Matching and generating ops with block arguments.

	Matching multi-result ops in nested patterns.

	Matching and generating variadic operand/result ops in nested patterns.

	Packing and unpacking variadic operands/results during generation.

	NativeCodeCall returning more than one results.

Rule Definition

The core construct for defining a rewrite rule is defined in OpBase.td as

class Pattern<
 dag sourcePattern, list<dag> resultPatterns,
 list<dag> additionalConstraints = [],
 dag benefitsAdded = (addBenefit 0)>;

A declarative rewrite rule contains two main components:

	A source pattern, which is used for matching a DAG of operations.

	One or more result patterns, which are used for generating DAGs of operations to replace the matched DAG of operations.

We allow multiple result patterns to support multi-result ops and auxiliary ops, but frequently we just want to convert one DAG of operations to another DAG of operations. There is a handy wrapper of Pattern, Pat, which takes a single result pattern:

class Pat<
 dag sourcePattern, dag resultPattern,
 list<dag> additionalConstraints = [],
 dag benefitsAdded = (addBenefit 0)> :
 Pattern<sourcePattern, [resultPattern], additionalConstraints, benefitAdded>;

Each pattern is specified as a TableGen dag object with the syntax of (operator arg0, arg1, ...).

operator is typically an MLIR op, but it can also be other directives. argN is for matching (if used in source pattern) or generating (if used in result pattern) the N-th argument for operator. If the operator is some MLIR operation, it means the N-th argument as specified in the arguments list of the op’s definition. Therefore, we say op argument specification in pattern is position-based: the position where they appear matters.

argN can be a dag object itself, thus we can have nested dag tree to model the def-use relationship between ops.

Source pattern

The source pattern is for matching a DAG of operations. Arguments in the dag object are intended to capture the op arguments. They can also be used to further limit the match criteria. The capturing is done by specifying a symbol starting with the $ sign, while further constraints are introduced by specifying a TypeConstraint (for an operand) or a AttrConstraint (for an attribute).

Binding op arguments and limiting the match

For example,

def AOp : Op<"a_op"> {
 let arguments = (ins
 AnyType:$a_input,
 AnyAttr:$a_attr
);

 let results = (outs
 AnyType:$a_output
);
}

def : Pat<(AOp $input, F32Attr:$attr), ...>;

In the above, we are matching an AOp whose $input can be anything valid as defined by the op and whose $attr must be a float attribute. If the match succeeds, we bind the $input symbol to the op’s only input ($a_input) and $attr to the only attribute ($a_attr); we can reference them using $input and $attr in result patterns and additional constraints.

The pattern is position-based: the symbol names used for capturing here do not need to match with the op definition as shown in the above example. As another example, the pattern can be written as def : Pat<(AOp $a, F32Attr:$b), ...>; and use $a and $b to refer to the captured input and attribute. But using the ODS name directly in the pattern is also allowed.

Also note that we only need to add TypeConstraint or AttributeConstraint when we need to further limit the match criteria. If all valid cases to the op are acceptable, then we can leave the constraint unspecified.

$_ is a special symbol to mean ignore capturing an argument. For example, def : Pat<(AOp $_, $b), ...> means only $b is interesting to capture and will be referenced later in result patterns. It’s still possible to place additional constraints even if the symbol is not to be captured; for such case, you can simply use just the TypeConstraint or AttributeConstraint without a bound symbol, for example, def : Pat<(AOp $a, F32Attr), ...>.

Matching DAG of operations

To match a DAG of ops, use nested dag objects:

def BOp : Op<"b_op"> {
 let arguments = (ins);

 let results = (outs
 AnyType:$b_output
);
}

def : Pat<(AOp (BOp), $attr), ...>;

The above pattern matches an AOp whose only operand is generated by a BOp, that is, the following MLIR code:

%0 = "b_op"() : () -> (...)
%1 = "a_op"(%0) {attr: ...} : () -> (...)

Binding op results

To bind a symbol to the results of a matched op for later reference, attach the symbol to the op itself:

def : Pat<(AOp (BOp:$b_result), $attr), ...>;

The above will bind $b_result to the matched BOp’s result. (There are more details regarding multi-result ops, which is covered later.)

Result pattern

The result pattern is for generating a DAG of operations. Arguments in the dag object are intended to reference values captured in the source pattern and potentially apply transformations.

Referencing bound symbols

For example,

def COp : Op<"c_op"> {
 let arguments = (ins
 AnyType:$c_input,
 AnyAttr:$c_attr
);

 let results = (outs
 AnyType:$c_output
);
}

def : Pat<(AOp $input, $attr), (COp $input, $attr)>;

In the above, AOp’s only operand and attribute are bound to $input and $attr, respectively. We then reference them in the result pattern for generating the COp by passing them in as arguments to COp’s build() method.

We can also reference symbols bound to matched op’s results:

def : Pat<(AOp (BOp:$b_result) $attr), (COp $b_result $attr)>;

In the above, we are using BOp’s result for building COp.

Building operations

Given that COp was specified with table-driven op definition, there will be several build() methods generated for it. One of them has aggregated parameters for result types, operands, and attributes in the signature: void COp::build(..., ArrayRef<Type> resultTypes, Array<Value> operands, ArrayRef<NamedAttribute> attr). The pattern in the above calls this build() method for constructing the COp.

In general, arguments in the result pattern will be passed directly to the build() method to leverage the auto-generated build() method, list them in the pattern by following the exact same order as the ODS arguments definition. Otherwise, a custom build() method that matches the argument list is required.

Right now all ODS-generated build() methods require specifying the result type(s), unless the op has known traits like SameOperandsAndResultType that we can use to auto-generate a build() method with result type deduction. When generating an op to replace the result of the matched root op, we can use the matched root op’s result type when calling the ODS-generated builder. Otherwise (e.g., generating an auxiliary op or generating an op with a nested result pattern), DRR will not be able to deduce the result type(s). The pattern author will need to define a custom builder that has result type deduction ability via OpBuilder in ODS. For example, in the following pattern

def : Pat<(AOp $input, $attr), (COp (AOp $input, $attr) $attr)>;

AOp is generated via a nested result pattern; DRR won’t be able to deduce the result type for it. A custom builder for AOp should be defined and it should deduce the result type by itself. The builder should have the separate parameter for each operand and attribute and deduce the result type internally by itself. For example, for the above AOp, a possible builder is:

void AOp::build(OpBuilder &builder, OperationState &state,
 Value input, Attribute attr) {
 state.addOperands({input});
 state.addAttribute("a_attr", attr);
 Type type = ...; // Deduce result type here
 state.addTypes({type});
}

Failing to define such a builder will result in an error at C++ compilation time saying the call to AOp::build() cannot be resolved because of the number of parameters mismatch.

Generating DAG of operations

dag objects can be nested to generate a DAG of operations:

def : Pat<(AOp $input, $attr), (COp (BOp), $attr)>;

In the above, we generate a BOp, and then use its result to generate the COp to replace the matched AOp.

Binding op results

In the result pattern, we can bind to the result(s) of a newly built op by attaching symbols to the op. (But we cannot bind to op arguments given that they are referencing previously bound symbols.) This is useful for reusing newly created results where suitable. For example,

def DOp : Op<"d_op"> {
 let arguments = (ins
 AnyType:$d_input1,
 AnyType:$d_input2,
);

 let results = (outs
 AnyType:$d_output
);
}

def : Pat<(AOp $input, $ignored_attr), (DOp (BOp:$b_result) $b_result)>;

In this pattern, an AOp is matched and replaced with a DOp whose two operands are from the result of a single BOp. This is only possible by binding the result of the BOp to a name and reuse it for the second operand of the DOp

NativeCodeCall: transforming the generated op

Sometimes the captured arguments are not exactly what we want so they cannot be directly fed in as arguments to build the new op. For such cases, we can apply transformations on the arguments by calling into C++ helper functions. This is achieved by NativeCodeCall.

For example, if we want to capture some op’s attributes and group them as an array attribute to construct a new op:

def TwoAttrOp : Op<"two_attr_op"> {
 let arguments = (ins
 AnyAttr:$op_attr1,
 AnyAttr:$op_attr2
);

 let results = (outs
 AnyType:$op_output
);
}

def OneAttrOp : Op<"one_attr_op"> {
 let arguments = (ins
 ArrayAttr:$op_attr
);

 let results = (outs
 AnyType:$op_output
);
}

We can write a C++ helper function:

Attribute createArrayAttr(Builder &builder, Attribute a, Attribute b) {
 return builder.getArrayAttr({a, b});
}

And then write the pattern as:

def createArrayAttr : NativeCodeCall<"createArrayAttr($_builder, $0, $1)">;

def : Pat<(TwoAttrOp $attr1, $attr2),
 (OneAttrOp (createArrayAttr $attr1, $attr2))>;

And make sure the generated C++ code from the above pattern has access to the definition of the C++ helper function.

In the above example, we are using a string to specialize the NativeCodeCall template. The string can be an arbitrary C++ expression that evaluates into some C++ object expected at the NativeCodeCall site (here it would be expecting an array attribute). Typically the string should be a function call.

Note that currently NativeCodeCall must return no more than one value or attribute. This might change in the future.

NativeCodeCall placeholders

In NativeCodeCall, we can use placeholders like $_builder, $N. The former is called special placeholder, while the latter is called positional placeholder.

NativeCodeCall right now only supports three special placeholders: $_builder, $_loc, and $_self:

	$_builder will be replaced by the current mlir::PatternRewriter.

	$_loc will be replaced by the fused location or custom location (as determined by location directive).

	$_self will be replaced with the entity NativeCodeCall is attached to.

We have seen how $_builder can be used in the above; it allows us to pass a mlir::Builder (mlir::PatternRewriter is a subclass of mlir::OpBuilder, which is a subclass of mlir::Builder) to the C++ helper function to use the handy methods on mlir::Builder.

$_self is useful when we want to write something in the form of NativeCodeCall<"...">:$symbol. For example, if we want to reverse the previous example and decompose the array attribute into two attributes:

class getNthAttr<int n> : NativeCodeCall<"$_self[" # n # "]">;

def : Pat<(OneAttrOp $attr),
 (TwoAttrOp (getNthAttr<0>:$attr), (getNthAttr<1>:$attr)>;

In the above, $_self is substituted by the attribute bound by $attr, which is OneAttrOp’s array attribute.

Positional placeholders will be substituted by the dag object parameters at the NativeCodeCall use site. For example, if we define SomeCall : NativeCodeCall<"someFn($1, $2, $0)"> and use it like (SomeCall $in0, $in1, $in2), then this will be translated into C++ call someFn($in1, $in2, $in0).

Customizing entire op building

NativeCodeCall is not only limited to transforming arguments for building an op; it can be also used to specify how to build an op entirely. An example:

If we have a C++ function for building an op:

Operation *createMyOp(OpBuilder builder, Value input, Attribute attr);

We can wrap it up and invoke it like:

def createMyOp : NativeCodeCall<"createMyOp($_builder, $0, $1)">;

def : Pat<(... $input, $attr), (createMyOp $input, $attr)>;

Supporting auxiliary ops

A declarative rewrite rule supports multiple result patterns. One of the purposes is to allow generating auxiliary ops. Auxiliary ops are operations used for building the replacement ops; but they are not directly used for replacement themselves.

For the case of uni-result ops, if there are multiple result patterns, only the value generated from the last result pattern will be used to replace the matched root op’s result; all other result patterns will be considered as generating auxiliary ops.

Normally we want to specify ops as nested dag objects if their def-use relationship can be expressed in the way that an op’s result can feed as the argument to consuming op. But that is not always possible. For example, if we want to allocate memory and store some computation (in pseudocode):

%dst = addi %lhs, %rhs

into

%shape = shape %lhs
%mem = alloc %shape
%sum = addi %lhs, %rhs
store %mem, %sum
%dst = load %mem

We cannot fit in with just one result pattern given store does not return a value. Instead we can use multiple result patterns:

def : Pattern<(AddIOp $lhs, $rhs),
 [(StoreOp (AllocOp:$mem (ShapeOp $lhs)), (AddIOp $lhs, $rhs)),
 (LoadOp $mem)];

In the above we use the first result pattern to generate the first four ops, and use the last pattern to generate the last op, which is used to replace the matched op.

Supporting multi-result ops

Multi-result ops bring extra complexity to declarative rewrite rules. We use TableGen dag objects to represent ops in patterns; there is no native way to indicate that an op generates multiple results. The approach adopted is based on naming convention: a __N suffix is added to a symbol to indicate the N-th result.

__N suffix

The __N suffix is specifying the N-th result as a whole (which can be variadic). For example, we can bind a symbol to some multi-result op and reference a specific result later:

def ThreeResultOp : Op<"three_result_op"> {
 let arguments = (ins ...);

 let results = (outs
 AnyTensor:$op_output1,
 AnyTensor:$op_output2,
 AnyTensor:$op_output3
);
}

def : Pattern<(ThreeResultOp:$results ...),
 [(... $results__0), ..., (... $results__2), ...]>;

In the above pattern we bind $results to all the results generated by ThreeResultOp and references its $input1 and $input3 later in the result patterns.

We can also bind a symbol and reference one of its specific result at the same time, which is typically useful when generating multi-result ops:

// TwoResultOp has similar definition as ThreeResultOp, but only has two
// results.

def : Pattern<(TwoResultOp ...),
 [(ThreeResultOp:$results__2, ...),
 (replaceWithValue $results__0)]>;

In the above, we created a ThreeResultOp and bind results to its results, and uses its last result ($output3) and first result ($output1) to replace the TwoResultOp’s two results, respectively.

Replacing multi-result ops

The above example also shows how to replace a matched multi-result op.

To replace an N-result op, the result patterns must generate at least N declared values (see Declared vs. actual value for definition). If there are more than N declared values generated, only the last N declared values will be used to replace the matched op. Note that because of the existence of multi-result op, one result pattern may generate multiple declared values. So it means we do not necessarily need N result patterns to replace an N-result op. For example, to replace an op with three results, you can have

// ThreeResultOp/TwoResultOp/OneResultOp generates three/two/one result(s),
// respectively.

// Replace each result with a result generated from an individual op.
def : Pattern<(ThreeResultOp ...),
 [(OneResultOp ...), (OneResultOp ...), (OneResultOp ...)]>;

// Replace the first two results with two results generated from the same op.
def : Pattern<(ThreeResultOp ...),
 [(TwoResultOp ...), (OneResultOp ...)]>;

// Replace all three results with three results generated from the same op.
def : Pat<(ThreeResultOp ...), (ThreeResultOp ...)>;

def : Pattern<(ThreeResultOp ...),
 [(AuxiliaryOp ...), (ThreeResultOp ...)]>;

But using a single op to serve as both auxiliary op and replacement op is forbidden, i.e., the following is not allowed because that the first TwoResultOp generates two results but only the second result is used for replacing the matched op’s result:

def : Pattern<(ThreeResultOp ...),
 [(TwoResultOp ...), (TwoResultOp ...)]>;

Supporting variadic ops

Declared vs. actual value

Before going into details on variadic op support, we need to define a few terms regarding an op’s values.

	Value: either an operand or a result

	Declared operand/result/value: an operand/result/value statically declared in ODS of the op

	Actual operand/result/value: an operand/result/value of an op instance at runtime

The above terms are needed because ops can have multiple results, and some of the results can also be variadic. For example,

def MultiVariadicOp : Op<"multi_variadic_op"> {
 let arguments = (ins
 AnyTensor:$input1,
 Variadic<AnyTensor>:$input2,
 AnyTensor:$input3
);

 let results = (outs
 AnyTensor:$output1,
 Variadic<AnyTensor>:$output2,
 AnyTensor:$output3
);
}

We say the above op has 3 declared operands and 3 declared results. But at runtime, an instance can have 3 values corresponding to $input2 and 2 values correspond to $output2; we say it has 5 actual operands and 4 actual results. A variadic operand/result is a considered as a declared value that can correspond to multiple actual values.

[TODO]

Supplying additional constraints

Constraints can be placed on op arguments when matching. But sometimes we need to also place constraints on the matched op’s results or sometimes need to limit the matching with some constraints that cover both the arguments and the results. The third parameter to Pattern (and Pat) is for this purpose.

For example, we can write

def HasNoUseOf: Constraint<CPred<"$_self.use_empty()">, "has no use">;

def HasSameElementType : Constraint<
 CPred<"$0.cast<ShapedType>().getElementType() == "
 "$1.cast<ShapedType>().getElementType()">,
 "has same element type">;

def : Pattern<(TwoResultOp:$results $input),
 [(...), (...)],
 [(F32Tensor:$results__0), (HasNoUseOf:$results__1),
 (HasSameElementShape $results__0, $input)]>;

You can

	Use normal TypeConstraints on previous bound symbols (the first result of TwoResultOp must be a float tensor);

	Define new Constraint for previous bound symbols (the second result of TwoResultOp must has no use);

	Apply constraints on multiple bound symbols ($input and TwoResultOp’s first result must have the same element type).

Adjusting benefits

The benefit of a Pattern is an integer value indicating the benefit of matching the pattern. It determines the priorities of patterns inside the pattern rewrite driver. A pattern with a higher benefit is applied before one with a lower benefit.

In DRR, a rule is set to have a benefit of the number of ops in the source pattern. This is based on the heuristics and assumptions that:

	Larger matches are more beneficial than smaller ones.

	If a smaller one is applied first the larger one may not apply anymore.

The fourth parameter to Pattern (and Pat) allows to manually tweak a pattern’s benefit. Just supply (addBenefit N) to add N to the benefit value.

Rewrite directives

location

By default the C++ pattern expanded from a DRR pattern uses the fused location of all source ops as the location for all generated ops. This is not always the best location mapping relationship. For such cases, DRR provides the location directive to provide finer control.

location is of the following syntax:

(location $symbol0, $symbol1, ...)

where all $symbol should be bound previously in the pattern and one optional string may be specified as an attribute. The following locations are created:

	If only 1 symbol is specified then that symbol’s location is used,

	If multiple are specified then a fused location is created;

	If no symbol is specified then string must be specified and a NamedLoc is created instead;

location must be used as the last argument to an op creation. For example,

def : Pat<(LocSrc1Op:$src1 (LocSrc2Op:$src2 ...),
 (LocDst1Op (LocDst2Op ..., (location $src2)), (location "outer"))>;

In the above pattern, the generated LocDst2Op will use the matched location of LocSrc2Op while the root LocDst1Op node will used the named location outer.

replaceWithValue

The replaceWithValue directive is used to eliminate a matched op by replacing all of it uses with a captured value. It is of the following syntax:

(replaceWithValue $symbol)

where $symbol should be a symbol bound previously in the pattern.

For example,

def : Pat<(Foo $input), (replaceWithValue $input)>;

The above pattern removes the Foo and replaces all uses of Foo with $input.

Debugging Tips

Run mlir-tblgen to see the generated content

TableGen syntax sometimes can be obscure; reading the generated content can be a very helpful way to understand and debug issues. To build mlir-tblgen, run cmake --build . --target mlir-tblgen in your build directory and find the mlir-tblgen binary in the bin/ subdirectory. All the supported generators can be found via mlir-tblgen --help.

To see the generated code, invoke mlir-tblgen with a specific generator by providing include paths via -I. For example,

To see all the C++ pattern rewrite classes
mlir-tblgen --gen-rewriters -I /path/to/mlir/include /path/to/input/td/file

Compilation error: no matching member function for call to ‘build’

This is because DRR is failing to call a build() method with result type deduction ability. See building operations for more details.

Passes

This document describes the available MLIR passes and their contracts.

[TOC]

General Transformation Passes

[include “GeneralPasses.md”]

Conversion Passes

[include “ConversionPasses.md”]

affine Dialect Passes

[include “AffinePasses.md”]

gpu Dialect Passes

[include “GPUPasses.md”]

linalg Dialect Passes

[include “LinalgPasses.md”]

llvm Dialect Passes

[include “LLVMPasses.md”]

quant Dialect Passes

[include “QuantPasses.md”]

Reducer Passes

[include “ReducerPasses.md”]

scf Dialect Passes

[include “SCFPasses.md”]

shape Dialect Passes

[include “ShapePasses.md”]

spv Dialect Passes

[include “SPIRVPasses.md”]

standard Dialect Passes

[include “StandardPasses.md”]

Background: declarative builders API

The main purpose of the declarative builders API is to provide an intuitive way of constructing MLIR programmatically. In the majority of cases, the IR we wish to construct exhibits structured control-flow. The Declarative builders in the EDSC library (Embedded Domain Specific Constructs) provide an API to make MLIR construction and manipulation very idiomatic, for the structured control-flow case, in C++.

ScopedContext

mlir::edsc::ScopedContext provides an implicit thread-local context, supporting a simple declarative API with globally accessible builders. These declarative builders are available within the lifetime of a ScopedContext.

Intrinsics

mlir::ValueBuilder is a generic wrapper for the mlir::OpBuilder::create method that operates on Value objects and return a single Value. For instructions that return no values or that return multiple values, the mlir::edsc::OperationBuilder can be used. Named intrinsics are provided as syntactic sugar to further reduce boilerplate.

using load = ValueBuilder<LoadOp>;
using store = OperationBuilder<StoreOp>;

LoopBuilder and AffineLoopNestBuilder

mlir::edsc::AffineLoopNestBuilder provides an interface to allow writing concise and structured loop nests.

 ScopedContext scope(f.get());
 Value i, j, lb(f->getArgument(0)), ub(f->getArgument(1));
 Value f7(std_constant_float(llvm::APFloat(7.0f), f32Type)),
 f13(std_constant_float(llvm::APFloat(13.0f), f32Type)),
 i7(constant_int(7, 32)),
 i13(constant_int(13, 32));
 AffineLoopNestBuilder(&i, lb, ub, 3)([&]{
 lb * index_type(3) + ub;
 lb + index_type(3);
 AffineLoopNestBuilder(&j, lb, ub, 2)([&]{
 ceilDiv(index_type(31) * floorDiv(i + j * index_type(3), index_type(32)),
 index_type(32));
 ((f7 + f13) / f7) % f13 - f7 * f13;
 ((i7 + i13) / i7) % i13 - i7 * i13;
 });
 });

IndexedValue

mlir::edsc::IndexedValue provides an index notation around load and store operations on abstract data types by overloading the C++ assignment and parenthesis operators. The relevant loads and stores are emitted as appropriate.

Putting it all together

With declarative builders, it becomes fairly concise to build rank and type-agnostic custom operations even though MLIR does not yet have generic types. Here is what a definition of a general pointwise add looks in Tablegen with declarative builders.

def AddOp : Op<"x.add">,
 Arguments<(ins Tensor:$A, Tensor:$B)>,
 Results<(outs Tensor: $C)> {
 code referenceImplementation = [{
 SmallVector<Value, 4> ivs(view_A.rank());
 IndexedValue A(arg_A), B(arg_B), C(arg_C);
 AffineLoopNestBuilder(
 ivs, view_A.getLbs(), view_A.getUbs(), view_A.getSteps())([&]{
 C(ivs) = A(ivs) + B(ivs)
 });
 }];
}

Depending on the function signature on which this emitter is called, the generated IR resembles the following, for a 4-D memref of vector<4xi8>:

// CHECK-LABEL: func @t1(%lhs: memref<3x4x5x6xvector<4xi8>>, %rhs: memref<3x4x5x6xvector<4xi8>>, %result: memref<3x4x5x6xvector<4xi8>>) -> () {
// CHECK: affine.for {{.*}} = 0 to 3 {
// CHECK: affine.for {{.*}} = 0 to 4 {
// CHECK: affine.for {{.*}} = 0 to 5 {
// CHECK: affine.for {{.*}}= 0 to 6 {
// CHECK: {{.*}} = load %arg1[{{.*}}] : memref<3x4x5x6xvector<4xi8>>
// CHECK: {{.*}} = load %arg0[{{.*}}] : memref<3x4x5x6xvector<4xi8>>
// CHECK: {{.*}} = addi {{.*}} : vector<4xi8>
// CHECK: store {{.*}}, %arg2[{{.*}}] : memref<3x4x5x6xvector<4xi8>>

or the following, for a 0-D memref<f32>:

// CHECK-LABEL: func @t3(%lhs: memref<f32>, %rhs: memref<f32>, %result: memref<f32>) -> () {
// CHECK: {{.*}} = load %arg1[] : memref<f32>
// CHECK: {{.*}} = load %arg0[] : memref<f32>
// CHECK: {{.*}} = addf {{.*}}, {{.*}} : f32
// CHECK: store {{.*}}, %arg2[] : memref<f32>

Similar APIs are provided to emit the lower-level scf.for op with LoopNestBuilder. See the builder-api-test.cpp test for more usage examples.

Since the implementation of declarative builders is in C++, it is also available to program the IR with an embedded-DSL flavor directly integrated in MLIR.

MLIR C API

Current status: Under development, API unstable, built by default.

Design

Many languages can interoperate with C but have a harder time with C++ due to name mangling and memory model differences. Although the C API for MLIR can be used directly from C, it is primarily intended to be wrapped in higher-level language- or library-specific constructs. Therefore the API tends towards simplicity and feature minimalism.

Note: while the C API is expected to be more stable than C++ API, it currently offers no stability guarantees.

Scope

The API is provided for core IR components (attributes, blocks, operations, regions, types, values), Passes and some fundamental type and attribute kinds. The core IR API is intentionally low-level, e.g. exposes a plain list of operation’s operands and attributes without attempting to assign “semantic” names to them. Users of specific dialects are expected to wrap the core API in a dialect-specific way, for example, by implementing an ODS backend.

Object Model

Core IR components are exposed as opaque handles to an IR object existing in C++. They are not intended to be inspected by the API users (and, in many cases, cannot be meaningfully inspected). Instead the users are expected to pass handles to the appropriate manipulation functions.

The handle may or may not own the underlying object.

Naming Convention and Ownership Model

All objects are prefixed with Mlir. They are typedefs and should be used without struct.

All functions are prefixed with mlir.

Functions primarily operating on an instance of MlirX are prefixed with mlirX. They take the instance being acted upon as their first argument (except for creation functions). For example, mlirOperationGetNumOperands inspects an MlirOperation, which it takes as its first operand.

The ownership model is encoded in the naming convention as follows.

	By default, the ownership is not transferred.

	Functions that transfer the ownership of the result to the caller can be in one of two forms:

	functions that create a new object have the name mlirXCreate<...>, for example, mlirOperationCreate;

	functions that detach an object from a parent object have the name mlirYTake<...>, for example mlirOperationStateTakeRegion.

	Functions that take ownership of some of their arguments have the form mlirY<...>OwnedX<...> where X can refer to the type or any other sufficiently unique description of the argument, the ownership of which will be taken by the callee, for example mlirRegionAppendOwnedBlock.

	Functions that create an object by default do not transfer its ownership to the caller, i.e. one of other objects passed in as an argument retains the ownership, they have the form mlirX<...>Get. For example, mlirTypeParseGet.

	Functions that destroy an object owned by the caller are of the form mlirXDestroy.

If the code owns an object, it is responsible for destroying the object when it is no longer necessary. If an object that owns other objects is destroyed, any handles to those objects become invalid. Note that types and attributes are owned by the MlirContext in which they were created.

Nullity

A handle may refer to a null object. It is the responsibility of the caller to check if an object is null by using mlirXIsNull(MlirX). API functions do not expect null objects as arguments unless explicitly stated otherwise. API functions may return null objects.

Type Hierarchies

MLIR objects can form type hierarchies in C++. For example, all IR classes representing types are derived from mlir::Type, some of them may also be also derived from common base classes such as mlir::ShapedType or dialect-specific base classes. Type hierarchies are exposed to C API through naming conventions as follows.

	Only the top-level class of each hierarchy is exposed, e.g. MlirType is defined as a type but MlirShapedType is not. This avoids the need for explicit upcasting when passing an object of a derived type to a function that expects a base type (this happens more often in core/standard APIs, while downcasting usually involves further checks anyway).

	A type Y that derives from X provides a function int mlirXIsAY(MlirX) that returns a non-zero value if the given dynamic instance of X is also an instance of Y. For example, int MlirTypeIsAInteger(MlirType).

	A function that expects a derived type as its first argument takes the base type instead and documents the expectation by using Y in its name MlirY<...>(MlirX, ...). This function asserts that the dynamic instance of its first argument is Y, and it is the responsibility of the caller to ensure it is indeed the case.

Auxiliary Types

StringRef

Numerous MLIR functions return instances of StringRef to refer to a non-owning segment of a string. This segment may or may not be null-terminated. In C API, these are represented as instances of MlirStringRef structure that contains a pointer to the first character of the string fragment (str) and the fragment length (length). Note that the fragment is not necessarily null-terminated, the length field must be used to identify the last character. MlirStringRef is a non-owning pointer, the caller is in charge of perfoming the copy or ensuring that the pointee outlives all uses of MlirStringRef.

Printing

IR objects can be printed using mlirXPrint(MlirX, MlirStringCallback, void *) functions. These functions accept take arguments a callback with signature void (*)(const char *, intptr_t, void *) and a pointer to user-defined data. They call the callback and supply it with chunks of the string representation, provided as a pointer to the first character and a length, and forward the user-defined data unmodified. It is up to the caller to allocate memory if the string representation must be stored and perform the copy. There is no guarantee that the pointer supplied to the callback points to a null-terminated string, the size argument should be used to find the end of the string. The callback may be called multiple times with consecutive chunks of the string representation (the printing itself is buffered).

Rationale: this approach allows the caller to have full control of the allocation and avoid unnecessary allocation and copying inside the printer.

For convenience, mlirXDump(MlirX) functions are provided to print the given object to the standard error stream.

Common Patterns

The API adopts the following patterns for recurrent functionality in MLIR.

Indexed Components

An object has an indexed component if it has fields accessible using a zero-based contiguous integer index, typically arrays. For example, an MlirBlock has its arguments as an indexed component. An object may have several such components. For example, an MlirOperation has attributes, operands, regions, results and successors.

For indexed components, the following pair of functions is provided.

	intptr_t mlirXGetNum<Y>s(MlirX) returns the upper bound on the index.

	MlirY mlirXGet<Y>(MlirX, intptr_t pos) returns ‘pos’-th subobject.

The sizes are accepted and returned as signed pointer-sized integers, i.e. intptr_t. This typedef is available in C99.

Note that the name of subobject in the function does not necessarily match the type of the subobject. For example, mlirOperationGetOperand returns an MlirValue.

Iterable Components

An object has an iterable component if it has iterators accessing its fields in some order other than integer indexing, typically linked lists. For example, an MlirBlock has an iterable list of operations it contains. An object may have several iterable components.

For iterable components, the following triple of functions is provided.

	MlirY mlirXGetFirst<Y>(MlirX) returns the first subobject in the list.

	MlirY mlirYGetNextIn<X>(MlirY) returns the next subobject in the list that contains the given object, or a null object if the given object is the last in this list.

	int mlirYIsNull(MlirY) returns 1 if the given object is null.

Note that the name of subobject in the function may or may not match its type.

This approach enables one to iterate as follows.

MlirY iter;
for (iter = mlirXGetFirst<Y>(x); !mlirYIsNull(iter);
 iter = mlirYGetNextIn<X>(iter)) {
 /* User 'iter'. */
}

Extending the API

Extensions for Dialect Attributes and Types

Dialect attributes and types can follow the example of standard attributes and types, provided that implementations live in separate directories, i.e. include/mlir-c/<...>Dialect/ and lib/CAPI/<...>Dialect/. The core APIs provide implementation-private headers in include/mlir/CAPI/IR that allow one to convert between opaque C structures for core IR components and their C++ counterparts. wrap converts a C++ class into a C structure and unwrap does the inverse conversion. Once the C++ object is available, the API implementation should rely on isa to implement mlirXIsAY and is expected to use cast inside other API calls.

Shape Inference

Shape inference as discussed here is considered a specific instance of type inference for ShapedType. Type constraints are along (at least) three axis: 1) elemental type, 2) rank (including static or dynamic), 3) dimensions. While some operations have no compile time fixed shape (e.g., output shape is dictated by data) we could still have some knowledge of constraints/bounds in the system for that operation (e.g., the output of a tf.where is at most the size of the input data). That is, there are additional valuable constraints that could be captured even without full knowledge of the shape.

Type inference is currently modelled executionally for operation creation using the InferTypeOpInterface, while InferShapedTypeOpInterface is used to implement the shape and element type inference. The return type can often be deduced from the deduced return shape and elemental type (queryable from InferShapedTypeOpInterface) and so type inference for tensor types can be implemented with InferShapedTypeOpInterface.

Shape functions

The C++ interfaces are the base mechanism whereby shape inference is queried and executed, but not the intended way to specify shape constraints in general.

Initially the shape inference will be declaratively specified using:

	Constraints on the operands of an operation directly. For example constraining the input type to be tensor/vector elements or that the elemental type be of a specific type (e.g., output of computing the size of a value is of elemental type i1) or class (e.g., float-like).

	Constraints across operands and results of an operation.

	For example, specifying equality constraints on type/constituents of a type (shape and elemental type) between operands and results (e.g., the output type of an add is the same as those of the input operands).

NOTE: The C++ shape functions are an intermediate step until the shape dialect is more full-fledged, at which point the C++ functions should become the exceptional case.

Testing

Shape inference is currently tested alongside type inference by TestReturnTypeDriver in the test dialect. This driver performs two checks:

	Verification that the return types specified matches the inferred types. This explicit check will be removed and made part of Op verification instead.

	Test the creation of Ops without specifying the return type explicitly in function testCreateFunctions by creating new binary Ops (Op classes specified in TestReturnTypeDriver) using 1) all operands to testCreateFunctions as both operands, and 2) using combinations of input operands of the function.

Shape dialect

This section details the shape type inference dialect (shape). The initial focus will be on shape functions that describe shape functions could be used in runtime and compiler (for constructions of ops/refinement of shapes, reification of dynamic allocations for dialect including TF, TFLite, XLA & tensor compute dialect under discussion).

This will focus on the shape functions (e.g., determine the rank and dimensions of the output shape). As shown in the shaped container type, shape will be one of 3 components, the others being elemental type and attribute (which is currently left open with the intention of supporting extensions such as layouts or bounded shapes at a later point). This allows for decoupling of these:

	Not all the information is needed for all analysis;

	Not all shape functions need to provide all the information (e.g., one could define a base class function that only populates element type but composes with the others);

	It allows reusing the constraints between, say, Tensor and Memref representation of an operation;

An argument could be made that these are metadata function instead of shape functions, with some considering shape and elemental types different and some considering them both as part of shape. But shape function is IMHO descriptive and metadata can span too large a range of potential uses/values.

Requirements

The requirements for the shape inference functions are determined by the requirements of shape inference, but we believe the requirements below still allow freedom to consider different shape inference approaches and so we do not impose a particular shape inference approach here.

Shape inference functions

	Expressiveness shape functions need to support programs where tensors have shapes that are not known statically (for example, tensor<16x?xf32> or tensor<*xf32>*);

	Shape error detection Many operations will have constraints on their operands. If the constraints are not satisfied or cannot be determined if satisfied statically, then a runtime check/assertion could be generated.

	This also aligns with the requirement that the shape function description should be usable by both the compiler and runtime.

	Shape error functions should be easy to understand, at least what constraint of the operation is violated. This also requires that shape function error messages should be configurable by the author of the shape function (e.g., the author would be able to give the semantic constraint invalidated rather the low-level check that failed).

	The static analysis may be used to eliminate run-time checks that are guaranteed to pass.

	Ideally all would eventually (see section Inlining shape checking) be elided.

	Only reporting errors which are guaranteed to occur at runtime. If an error is only possible (rather than guaranteed) then we use a runtime assertion to fail and produce an error message with the invariant violated.

	Shape functions usable by compiler and runtime.

	This does not mean the exact same C++ function, but rather the description should be consumable by either.

	Shape function description should not be constrained by either runtime or compiler’s type system to handle types only used for analysis. That is, these two type systems differ and both should be supported, but the intersection of the two should not be required. As a particular example, if a compiler only wants to differentiate exact shapes vs dynamic shapes, then it need not consider a more generic shape lattice even though the shape description supports it.

	Declarative (e.g., analyzable at compile time, possible to generate different versions for different use cases)

	This may not strictly be a requirement, but a way to handle the former: a declarative specification could be reused by both while avoiding a need to map to or from a 3rd representation given these two systems have/and will have different types.

	Shape inference functions are expressible at runtime

	User can define a shape function for a new operation dynamically at runtime, this allows for vendors to describe an operation and shape function dynamically.

This requirement is on the wishlist.

	Doesn’t require graph-wide shape information (e.g., only require local information)

	Shape functions should be cheap to invoke on each kernel launch.

	Shape function can be dictated by arguments (operands, attributes and regions) only (e.g., same operands as the corresponding operation could be constructed & invoked with).

	Shape information that needs higher-level/graph information should use richer types (e.g., TensorList<F32>);

	The function should be invocable before/while constructing an op (e.g., can’t rely on the op being constructed).

	Shape functions should be pure functions.

	Should support functions whose type is only known dynamically (e.g., read_from_file op)

	Without needing to invoke the op (e.g., reading a file once for determining the shape & then post to be able to actually consume the output of the file).

	The shape function operation dialect should be interoperable with non-shape function dialect operations.

	There may be a common set of operations that satisfy most uses (e.g., merge, equal_type, arithmetic expressions, slice, concat, pattern matching on attributes such as padding etc.) that will be discovered and could cover a large percentage of the use cases. Among these there will be some which carry extra semantic info that could be used for symbolic constraints (e.g., checking equality of two dimensions resulting in setting an equality constraint) and higher-order interpretation for constraint solving.

It is therefore beneficial (but not required) to reuse operations, especially as for statically known shapes, arbitrary arithmetic computations could still be performed. This means that the computations performed statically may or may not be supported by an arbitrary solver, but would still be allowed.

	The shape function should be expandable such that symbolic equality and upper bound constraints (say) could be represented and may be propagated by shape inference.

	E.g., the shape functions may contain more information that is only useful when used from shape inference;

	Shape functions are allowed to fail and report an error. The error reporting should report the location of the operation that failed with, where possible, a user actionable error message.

	These failures could become inlined and become runtime failures with runtime values and error messages.

	Reporting errors should be optional. E.g., The same function may be used as to query validity without reporting an error.

Non-goals

	The shape dialect is an IR representations and not a programming language;

	While the functions should be readable, it doesn’t carry the conveniences of a programming language. Deciding how people write these things, e.g. a mini dsl, a C++ API that generates them, extracting them programmatically from SetShapeFn calls, etc., is still TBD.

	Describe the shape inference approach that will use the shape functions;

	The goal is that the shape functions and the constraints one could obtain from them are general enough that they would be useful for various analysis. But whether we follow very simple (e.g., only fully static information is used for shape output, unranked for everything else) to very advance (e.g., expression trees of symbolic constants) can be evaluated independently of this proposal and with concrete benefit analysis.

	Describe the approach whereby error messages will be generated;

	While the shape functions will be able to emit errors optionally, it will be possible to dictate when they emit an error. This enables deciding whether or which error to emit: there have been proposals in the literature that the iteration order for shape inference affect the quality of the error message produced, and the shape functions do not mandate that.

	Flow sensitive shape functions;

	To enable scalable/cheap shape inference, the shape functions do not intend to provide flow sensitive information. This facility could potentially be built as part of shome higher order analysis that reuse the shape functions/constraints due to the shape functions.

	All static functions are usable for dynamic/unknown shapes;

	More involved computations can be performed with statically known shapes than what can be sensibly analyzed with unknown/symbolic variables.

Discussion

Inline shape inference checks

Shape functions should be lowerable to runtime checks for validity. E.g. verify as much as possible statically, but enable generating instructions to compute the shape dynamically and or falling back to runtime checks for attributes not verifiable at compile time. These checks inserted should ideally only check that which could not have been verified statically.

These inlined calls could interfere with optimization patterns/passes (e.g., shape inference should not insert constructs that interfere with optimization patterns) and so could be delayed until later (with another round of optimizations, constant folding, CSE, etc., that should remove redundant runtime operations).

Possibly Asked Questions

What about ODS specifications of operations?

In ODS we have been recording the constraints for the operands & attributes of an operation. Where these are sufficient to constrain the output shape (e.g., SameOperandAndResultType or broadcastable) we should generate the shape function from those. Where not, an explicit shape function should be specified (spelling TBD but currently considering using the MLIR textual form as serialization approach).

Why not extract the shape function from reference implementation?

This could be done in future! The extracted shape function would use the shape inference dialect, so we are starting there. Especially for operations described in a structured way, one could autogenerate the shape function.

How/in what language will the shape functions be authored?

TBD. open to many approaches and suggestions, starting on the IR produced by whatever language is the priority of this proposal.

What shape inference approach is being suggested here?

None. There are multiple different shape inference approaches that we could layer on top of these. From the most basic (always return unranked), to more useful (return fixed shape for constant inputs/arguments) to the more advanced (create logical conjuctions of algebraic statements between symbolic named values).

Open points

	Should shape functions that produce dynamic outputs given all statically shaped inputs be marked specially? E.g., read from file.

TODO: Add examples here.

WIP/Future considerations

Shape functions are determined by attributes and could be arbitrarily complicated with a wide-range of specification possibilities. Equality relationships are common (e.g., the elemental type of the output matches the primitive type of the inputs, both inputs have exactly the same type [primitive type and shape]) and so these should be easy to specify. Algebraic relationships would also be common (e.g., a concat of [n,m] and [n,m] matrix along axis 0 is [n+n, m] matrix), while some ops only have defined shapes under certain cases (e.g., matrix multiplication of [a,b] and [c,d] is only defined if b == c).

Instead of specifying an additional mechanism to specify a shape transfer function, the reference implementation of the operation will be used to derive the shape function. The reference implementation is general and can support the arbitrary computations needed to specify output shapes.

Dialect Conversion

This document describes a framework in MLIR in which to perform operation conversions between, and within dialects. This framework allows for transforming illegal operations to those supported by a provided conversion target, via a set of pattern-based operation rewriting patterns.

[TOC]

The dialect conversion framework consists of the following components:

	A Conversion Target

	A set of Rewrite Patterns

	A Type Converter (Optional)

Modes of Conversion

When applying a conversion to a set of operations, there are several different conversion modes that may be selected from:

	Partial Conversion

	A partial conversion will legalize as many operations to the target as possible, but will allow pre-existing operations that were not explicitly marked as “illegal” to remain unconverted. This allows for partially lowering parts of the input in the presence of unknown operations.

	A partial conversion can be applied via applyPartialConversion.

	Full Conversion

	A full conversion legalizes all input operations, and is only successful if all operations are properly legalized to the given conversion target. This ensures that only known operations will exist after the conversion process.

	A full conversion can be applied via applyFullConversion.

	Analysis Conversion

	An analysis conversion will analyze which operations are legalizable to the given conversion target if a conversion were to be applied. This is done by performing a ‘partial’ conversion and recording which operations would have been successfully converted if successful. Note that no rewrites, or transformations, are actually applied to the input operations.

	An analysis conversion can be applied via applyAnalysisConversion.

Conversion Target

The conversion target is a formal definition of what is considered to be legal during the conversion process. The final operations generated by the conversion framework must be marked as legal on the ConversionTarget for the rewrite to be a success. Depending on the conversion mode, existing operations need not always be legal. Operations and dialects may be marked with any of the provided legality actions below:

	Legal

	This action signals that every instance of a given operation is legal, i.e. any combination of attributes, operands, types, etc. are valid.

	Dynamic

	This action signals that only some instances of a given operation are legal. This allows for defining fine-tune constraints, e.g. saying that addi is only legal when operating on 32-bit integers.

	If a specific handler is not provided when setting the action, the target must override the isDynamicallyLegal hook provided by ConversionTarget.

	Illegal

	This action signals that no instance of a given operation is legal. Operations marked as “illegal” must always be converted for the conversion to be successful. This action also allows for selectively marking specific operations as illegal in an otherwise legal dialect.

An example conversion target is shown below:

struct MyTarget : public ConversionTarget {
 MyTarget(MLIRContext &ctx) : ConversionTarget(ctx) {
 //--
 // Marking an operation as Legal:

 /// Mark all operations within the LLVM dialect are legal.
 addLegalDialects<LLVMDialect>();

 /// Mark `std.constant` op is always legal on this target.
 addLegalOps<ConstantOp>();

 //--
 // Marking an operation as dynamically legal.

 /// Mark all operations within Affine dialect have dynamic legality
 /// constraints.
 addDynamicallyLegalDialects<AffineDialect>();

 /// Mark `std.return` as dynamically legal.
 addDynamicallyLegalOp<ReturnOp>();

 /// Mark `std.return` as dynamically legal, but provide a specific legality
 /// callback.
 addDynamicallyLegalOp<ReturnOp>([](ReturnOp op) { ... });

 /// Treat unknown operations, i.e. those without a legalization action
 /// directly set, as dynamically legal.
 markUnknownOpDynamicallyLegal();
 markUnknownOpDynamicallyLegal([](Operation *op) { ... });

 //--
 // Marking an operation as illegal.

 /// All operations within the GPU dialect are illegal.
 addIllegalDialect<GPUDialect>();

 /// Mark `std.br` and `std.cond_br` as illegal.
 addIllegalOp<BranchOp, CondBranchOp>();
 }

 /// Implement the default legalization handler to handle operations marked as
 /// dynamically legal that were not provided with an explicit handler.
 bool isDynamicallyLegal(Operation *op) override { ... }
};

Recursive Legality

In some cases, it may be desirable to mark entire regions as legal. This provides an additional granularity of context to the concept of “legal”. If an operation is marked recursively legal, either statically or dynamically, then all of the operations nested within are also considered legal even if they would otherwise be considered “illegal”. An operation can be marked via markOpRecursivelyLegal<>:

ConversionTarget &target = ...;

/// The operation must first be marked as `Legal` or `Dynamic`.
target.addLegalOp<MyOp>(...);
target.addDynamicallyLegalOp<MySecondOp>(...);

/// Mark the operation as always recursively legal.
target.markOpRecursivelyLegal<MyOp>();
/// Mark optionally with a callback to allow selective marking.
target.markOpRecursivelyLegal<MyOp, MySecondOp>([](Operation *op) { ... });
/// Mark optionally with a callback to allow selective marking.
target.markOpRecursivelyLegal<MyOp>([](MyOp op) { ... });

Rewrite Pattern Specification

After the conversion target has been defined, a set of legalization patterns must be provided to transform illegal operations into legal ones. The patterns supplied here have the same structure and restrictions as those described in the main Pattern documentation. The patterns provided do not need to generate operations that are directly legal on the target. The framework will automatically build a graph of conversions to convert non-legal operations into a set of legal ones.

As an example, say you define a target that supports one operation: foo.add. When providing the following patterns: [bar.add -> baz.add, baz.add -> foo.add], the framework will automatically detect that it can legalize bar.add -> foo.add even though a direct conversion does not exist. This means that you don’t have to define a direct legalization pattern for bar.add -> foo.add.

Conversion Patterns

Along with the general RewritePattern classes, the conversion framework provides a special type of rewrite pattern that can be used when a pattern relies on interacting with constructs specific to the conversion process, the ConversionPattern. For example, the conversion process does not necessarily update operations in-place and instead creates a mapping of events such as replacements and erasures, and only applies them when the entire conversion process is successful. Certain classes of patterns rely on using the updated/remapped operands of an operation, such as when the types of results defined by an operation have changed. The general Rewrite Patterns can no longer be used in these situations, as the types of the operands of the operation being matched will not correspond with those expected by the user. This pattern provides, as an additional argument to the matchAndRewrite and rewrite methods, the list of operands that the operation should use after conversion. If an operand was the result of a non-converted operation, for example if it was already legal, the original operand is used. This means that the operands provided always have a 1-1 non-null correspondence with the operands on the operation. The original operands of the operation are still intact and may be inspected as normal. These patterns also utilize a special PatternRewriter, ConversionPatternRewriter, that provides special hooks for use with the conversion infrastructure.

struct MyConversionPattern : public ConversionPattern {
 /// The `matchAndRewrite` hooks on ConversionPatterns take an additional
 /// `operands` parameter, containing the remapped operands of the original
 /// operation.
 virtual LogicalResult
 matchAndRewrite(Operation *op, ArrayRef<Value> operands,
 ConversionPatternRewriter &rewriter) const;
};

Type Safety

The types of the remapped operands provided to a conversion pattern must be of a type expected by the pattern. The expected types of a pattern are determined by a provided TypeConverter. If no type converter is provided, the types of the remapped operands are expected to match the types of the original operands. If a type converter is provided, the types of the remapped operands are expected to be legal as determined by the converter. If the remapped operand types are not of an expected type, and a materialization to the expected type could not be performed, the pattern fails application before the matchAndRewrite hook is invoked. This ensures that patterns do not have to explicitly ensure type safety, or sanitize the types of the incoming remapped operands. More information on type conversion is detailed in the dedicated section below.

Type Conversion

It is sometimes necessary as part of a conversion to convert the set types of being operated on. In these cases, a TypeConverter object may be defined that details how types should be converted when interfacing with a pattern. A TypeConverter may be used to convert the signatures of block arguments and regions, to define the expected inputs types of the pattern, and to reconcile type differences in general.

Type Converter

The TypeConverter contains several hooks for detailing how to convert types, and how to materialize conversions between types in various situations. The two main aspects of the TypeConverter are conversion and materialization.

A conversion describes how a given illegal source Type should be converted to N target types. If the source type is already “legal”, it should convert to itself. Type conversions are specified via the addConversion method described below.

A materialization describes how a set of values should be converted to a single value of a desired type. An important distinction with a conversion is that a materialization can produce IR, whereas a conversion cannot. These materializations are used by the conversion framework to ensure type safety during the conversion process. There are several types of materializations depending on the situation.

	Argument Materialization

	An argument materialization is used when converting the type of a block argument during a signature conversion.

	Source Materialization

	A source materialization converts from a value with a “legal” target type, back to a specific source type. This is used when an operation is “legal” during the conversion process, but contains a use of an illegal type. This may happen during a conversion where some operations are converted to those with different resultant types, but still retain users of the original type system.

	This materialization is used in the following situations:

	When a block argument has been converted to a different type, but the original argument still has users that will remain live after the conversion process has finished.

	When the result type of an operation has been converted to a different type, but the original result still has users that will remain live after the conversion process is finished.

	Target Materialization

	A target materialization converts from a value with an “illegal” source type, to a value of a “legal” type. This is used when a pattern expects the remapped operands to be of a certain set of types, but the original input operands have not been converted. This may happen during a conversion where some operations are converted to those with different resultant types, but still retain uses of the original type system.

	This materialization is used in the following situations:

	When the remapped operands of a conversion pattern are not legal for the type conversion provided by the pattern.

If a converted value is used by an operation that isn’t converted, it needs a conversion back to the source type, hence source materialization; if an unconverted value is used by an operation that is being converted, it needs conversion to the target type, hence target materialization.

As noted above, the conversion process guarantees that the type contract of the IR is preserved during the conversion. This means that the types of value uses will not implicitly change during the conversion process. When the type of a value definition, either block argument or operation result, is being changed, the users of that definition must also be updated during the conversion process. If they aren’t, a type conversion must be materialized to ensure that a value of the expected type is still present within the IR. If a target materialization is required, but cannot be performed, the pattern application fails. If a source materialization is required, but cannot be performed, the entire conversion process fails.

Several of the available hooks are detailed below:

class TypeConverter {
 public:
 /// Register a conversion function. A conversion function defines how a given
 /// source type should be converted. A conversion function must be convertible
 /// to any of the following forms(where `T` is a class derived from `Type`:
 /// * Optional<Type>(T)
 /// - This form represents a 1-1 type conversion. It should return nullptr
 /// or `llvm::None` to signify failure. If `llvm::None` is returned, the
 /// converter is allowed to try another conversion function to perform
 /// the conversion.
 /// * Optional<LogicalResult>(T, SmallVectorImpl<Type> &)
 /// - This form represents a 1-N type conversion. It should return
 /// `failure` or `llvm::None` to signify a failed conversion. If the new
 /// set of types is empty, the type is removed and any usages of the
 /// existing value are expected to be removed during conversion. If
 /// `llvm::None` is returned, the converter is allowed to try another
 /// conversion function to perform the conversion.
 /// Note: When attempting to convert a type, e.g. via 'convertType', the
 /// mostly recently added conversions will be invoked first.
 template <typename FnT,
 typename T = typename llvm::function_traits<FnT>::template arg_t<0>>
 void addConversion(FnT &&callback) {
 registerConversion(wrapCallback<T>(std::forward<FnT>(callback)));
 }

 /// Register a materialization function, which must be convertible to the
 /// following form:
 /// `Optional<Value> (OpBuilder &, T, ValueRange, Location)`,
 /// where `T` is any subclass of `Type`.
 /// This function is responsible for creating an operation, using the
 /// OpBuilder and Location provided, that "converts" a range of values into a
 /// single value of the given type `T`. It must return a Value of the
 /// converted type on success, an `llvm::None` if it failed but other
 /// materialization can be attempted, and `nullptr` on unrecoverable failure.
 /// It will only be called for (sub)types of `T`.
 ///
 /// This method registers a materialization that will be called when
 /// converting an illegal block argument type, to a legal type.
 template <typename FnT,
 typename T = typename llvm::function_traits<FnT>::template arg_t<1>>
 void addArgumentMaterialization(FnT &&callback) {
 argumentMaterializations.emplace_back(
 wrapMaterialization<T>(std::forward<FnT>(callback)));
 }
 /// This method registers a materialization that will be called when
 /// converting a legal type to an illegal source type. This is used when
 /// conversions to an illegal type must persist beyond the main conversion.
 template <typename FnT,
 typename T = typename llvm::function_traits<FnT>::template arg_t<1>>
 void addSourceMaterialization(FnT &&callback) {
 sourceMaterializations.emplace_back(
 wrapMaterialization<T>(std::forward<FnT>(callback)));
 }
 /// This method registers a materialization that will be called when
 /// converting type from an illegal, or source, type to a legal type.
 template <typename FnT,
 typename T = typename llvm::function_traits<FnT>::template arg_t<1>>
 void addTargetMaterialization(FnT &&callback) {
 targetMaterializations.emplace_back(
 wrapMaterialization<T>(std::forward<FnT>(callback)));
 }
};

Region Signature Conversion

From the perspective of type conversion, the types of block arguments are a bit special. Throughout the conversion process, blocks may move between regions of different operations. Given this, the conversion of the types for blocks must be done explicitly via a conversion pattern. To convert the types of block arguments within a Region, a custom hook on the ConversionPatternRewriter must be invoked; convertRegionTypes. This hook uses a provided type converter to apply type conversions to all blocks within a given region, and all blocks that move into that region. As noted above, the conversions performed by this method use the argument materialization hook on the TypeConverter. This hook also takes an optional TypeConverter::SignatureConversion parameter that applies a custom conversion to the entry block of the region. The types of the entry block arguments are often tied semantically to details on the operation, e.g. FuncOp, AffineForOp, etc. To convert the signature of just the region entry block, and not any other blocks within the region, the applySignatureConversion hook may be used instead. A signature conversion, TypeConverter::SignatureConversion, can be built programmatically:

class SignatureConversion {
public:
 /// Remap an input of the original signature with a new set of types. The
 /// new types are appended to the new signature conversion.
 void addInputs(unsigned origInputNo, ArrayRef<Type> types);

 /// Append new input types to the signature conversion, this should only be
 /// used if the new types are not intended to remap an existing input.
 void addInputs(ArrayRef<Type> types);

 /// Remap an input of the original signature with a range of types in the
 /// new signature.
 void remapInput(unsigned origInputNo, unsigned newInputNo,
 unsigned newInputCount = 1);

 /// Remap an input of the original signature to another `replacement`
 /// value. This drops the original argument.
 void remapInput(unsigned origInputNo, Value replacement);
};

The TypeConverter provides several default utilities for signature conversion and legality checking: convertSignatureArgs/convertBlockSignature/isLegal(Region *|Type).

Debugging

To debug the execution of the dialect conversion framework, -debug-only=dialect-conversion may be used. This command line flag activates LLVM’s debug logging infrastructure solely for the conversion framework. The output is formatted as a tree structure, mirroring the structure of the conversion process. This output contains all of the actions performed by the rewriter, how generated operations get legalized, and why they fail.

Example output is shown below:

//===---===//
Legalizing operation : 'std.return'(0x608000002e20) {
 "std.return"() : () -> ()

 * Fold {
 } -> FAILURE : unable to fold

 * Pattern : 'std.return -> ()' {
 ** Insert : 'spv.Return'(0x6070000453e0)
 ** Replace : 'std.return'(0x608000002e20)

 //===---===//
 Legalizing operation : 'spv.Return'(0x6070000453e0) {
 "spv.Return"() : () -> ()

 } -> SUCCESS : operation marked legal by the target
 //===---===//
 } -> SUCCESS : pattern applied successfully
} -> SUCCESS
//===---===//

This output is describing the legalization of an std.return operation. We first try to legalize by folding the operation, but that is unsuccessful for std.return. From there, a pattern is applied that replaces the std.return with a spv.Return. The newly generated spv.Return is then processed for legalization, but is found to already legal as per the target.

Operation Canonicalization

Canonicalization is an important part of compiler IR design: it makes it easier to implement reliable compiler transformations and to reason about what is better or worse in the code, and it forces interesting discussions about the goals of a particular level of IR. Dan Gohman wrote an article exploring these issues; it is worth reading if you’re not familiar with these concepts.

Most compilers have canonicalization passes, and sometimes they have many different ones (e.g. instcombine, dag combine, etc in LLVM). Because MLIR is a multi-level IR, we can provide a single canonicalization infrastructure and reuse it across many different IRs that it represents. This document describes the general approach, global canonicalizations performed, and provides sections to capture IR-specific rules for reference.

General Design

MLIR has a single canonicalization pass, which iteratively applies canonicalization transformations in a greedy way until the IR converges. These transformations are defined by the operations themselves, which allows each dialect to define its own set of operations and canonicalizations together.

Some important things to think about w.r.t. canonicalization patterns:

	Repeated applications of patterns should converge. Unstable or cyclic rewrites will cause infinite loops in the canonicalizer.

	It is generally better to canonicalize towards operations that have fewer uses of a value when the operands are duplicated, because some patterns only match when a value has a single user. For example, it is generally good to canonicalize “x + x” into “x * 2”, because this reduces the number of uses of x by one.

	It is always good to eliminate operations entirely when possible, e.g. by folding known identities (like “x + 0 = x”).

Globally Applied Rules

These transformations are applied to all levels of IR:

	Elimination of operations that have no side effects and have no uses.

	Constant folding - e.g. “(addi 1, 2)” to “3”. Constant folding hooks are specified by operations.

	Move constant operands to commutative operators to the right side - e.g. “(addi 4, x)” to “(addi x, 4)”.

	constant-like operations are uniqued and hoisted into the entry block of the first parent barrier region. This is a region that is either isolated from above, e.g. the entry block of a function, or one marked as a barrier via the shouldMaterializeInto method on the DialectFoldInterface.

Defining Canonicalizations

Two mechanisms are available with which to define canonicalizations; getCanonicalizationPatterns and fold.

Canonicalizing with getCanonicalizationPatterns

This mechanism allows for providing canonicalizations as a set of RewritePatterns, either imperatively defined in C++ or declaratively as Declarative Rewrite Rules. The pattern rewrite infrastructure allows for expressing many different types of canonicalizations. These transformations may be as simple as replacing a multiplication with a shift, or even replacing a conditional branch with an unconditional one.

In ODS, an operation can set the hasCanonicalizer bit to generate a declaration for the getCanonicalizationPatterns method.

def MyOp : ... {
 let hasCanonicalizer = 1;
}

Canonicalization patterns can then be provided in the source file:

void MyOp::getCanonicalizationPatterns(OwningRewritePatternList &patterns,
 MLIRContext *context) {
 patterns.insert<...>(...);
}

See the quickstart guide for information on defining operation rewrites.

Canonicalizing with fold

The fold mechanism is an intentionally limited, but powerful mechanism that allows for applying canonicalizations in many places throughout the compiler. For example, outside of the canonicalizer pass, fold is used within the dialect conversion infrastructure as a legalization mechanism, and can be invoked directly anywhere with an OpBuilder via OpBuilder::createOrFold.

fold has the restriction that no new operations may be created, and only the root operation may be replaced. It allows for updating an operation in-place, or returning a set of pre-existing values (or attributes) to replace the operation with. This ensures that the fold method is a truly “local” transformation, and can be invoked without the need for a pattern rewriter.

In ODS, an operation can set the hasFolder bit to generate a declaration for the fold method. This method takes on a different form, depending on the structure of the operation.

def MyOp : ... {
 let hasFolder = 1;
}

If the operation has a single result the following will be generated:

/// Implementations of this hook can only perform the following changes to the
/// operation:
///
/// 1. They can leave the operation alone and without changing the IR, and
/// return nullptr.
/// 2. They can mutate the operation in place, without changing anything else
/// in the IR. In this case, return the operation itself.
/// 3. They can return an existing value or attribute that can be used instead
/// of the operation. The caller will remove the operation and use that
/// result instead.
///
OpFoldResult MyOp::fold(ArrayRef<Attribute> operands) {
 ...
}

Otherwise, the following is generated:

/// Implementations of this hook can only perform the following changes to the
/// operation:
///
/// 1. They can leave the operation alone and without changing the IR, and
/// return failure.
/// 2. They can mutate the operation in place, without changing anything else
/// in the IR. In this case, return success.
/// 3. They can return a list of existing values or attribute that can be used
/// instead of the operation. In this case, fill in the results list and
/// return success. The results list must correspond 1-1 with the results of
/// the operation, partial folding is not supported. The caller will remove
/// the operation and use those results instead.
///
LogicalResult MyOp::fold(ArrayRef<Attribute> operands,
 SmallVectorImpl<OpFoldResult> &results) {
 ...
}

In the above, for each method an ArrayRef<Attribute> is provided that corresponds to the constant attribute value of each of the operands. These operands are those that implement the ConstantLike trait. If any of the operands are non-constant, a null Attribute value is provided instead. For example, if MyOp provides three operands [a, b, c], but only b is constant then operands will be of the form [Attribute(), b-value, Attribute()].

Also above, is the use of OpFoldResult. This class represents the possible result of folding an operation result: either an SSA Value, or an Attribute(for a constant result). If an SSA Value is provided, it must correspond to an existing value. The fold methods are not permitted to generate new Values. There are no specific restrictions on the form of the Attribute value returned, but it is important to ensure that the Attribute representation of a specific Type is consistent.

When the fold hook on an operation is not successful, the dialect can provide a fallback by implementing the DialectFoldInterface and overriding the fold hook.

Generating Constants from Attributes

When a fold method returns an Attribute as the result, it signifies that this result is “constant”. The Attribute is the constant representation of the value. Users of the fold method, such as the canonicalizer pass, will take these Attributes and materialize constant operations in the IR to represent them. To enable this materialization, the dialect of the operation must implement the materializeConstant hook. This hook takes in an Attribute value, generally returned by fold, and produces a “constant-like” operation that materializes that value.

In ODS, a dialect can set the hasConstantMaterializer bit to generate a declaration for the materializeConstant method.

def MyDialect_Dialect : ... {
 let hasConstantMaterializer = 1;
}

Constants can then be materialized in the source file:

/// Hook to materialize a single constant operation from a given attribute value
/// with the desired resultant type. This method should use the provided builder
/// to create the operation without changing the insertion position. The
/// generated operation is expected to be constant-like. On success, this hook
/// should return the value generated to represent the constant value.
/// Otherwise, it should return nullptr on failure.
Operation *MyDialect::materializeConstant(OpBuilder &builder, Attribute value,
 Type type, Location loc) {
 ...
}

Conversion to the LLVM Dialect

Conversion from the Standard to the LLVM Dialect can be performed by the specialized dialect conversion pass by running:

mlir-opt -convert-std-to-llvm <filename.mlir>

It performs type and operation conversions for a subset of operations from standard dialect (operations on scalars and vectors, control flow operations) as described in this document. We use the terminology defined by the LLVM IR Dialect description throughout this document.

[TOC]

Type Conversion

Scalar Types

Scalar types are converted to their LLVM counterparts if they exist. The following conversions are currently implemented:

	i* converts to !llvm.i*

	f16 converts to !llvm.half

	f32 converts to !llvm.float

	f64 converts to !llvm.double

Note: bf16 type is not supported by LLVM IR and cannot be converted.

Index Type

Index type is converted to a wrapped LLVM IR integer with bitwidth equal to the bitwidth of the pointer size as specified by the data layout of the LLVM module contained in the LLVM Dialect object. For example, on x86-64 CPUs it converts to !llvm.i64.

Vector Types

LLVM IR only supports one-dimensional vectors, unlike MLIR where vectors can be multi-dimensional. Vector types cannot be nested in either IR. In the one-dimensional case, MLIR vectors are converted to LLVM IR vectors of the same size with element type converted using these conversion rules. In the n-dimensional case, MLIR vectors are converted to (n-1)-dimensional array types of one-dimensional vectors.

For example, vector<4 x f32> converts to !llvm<"<4 x float>"> and vector<4 x 8 x 16 x f32> converts to !llvm<"[4 x [8 x <16 x float>]]">.

Memref Types

Memref types in MLIR have both static and dynamic information associated with them. The dynamic information comprises the buffer pointer as well as sizes and strides of any dynamically-sized dimensions. Memref types are normalized and converted to a descriptor that is only dependent on the rank of the memref. The descriptor contains:

	the pointer to the data buffer, followed by

	the pointer to properly aligned data payload that the memref indexes, followed by

	a lowered index-type integer containing the distance between the beginning of the buffer and the first element to be accessed through the memref, followed by

	an array containing as many index-type integers as the rank of the memref: the array represents the size, in number of elements, of the memref along the given dimension. For constant MemRef dimensions, the corresponding size entry is a constant whose runtime value must match the static value, followed by

	a second array containing as many 64-bit integers as the rank of the MemRef: the second array represents the “stride” (in tensor abstraction sense), i.e. the number of consecutive elements of the underlying buffer.

For constant memref dimensions, the corresponding size entry is a constant whose runtime value matches the static value. This normalization serves as an ABI for the memref type to interoperate with externally linked functions. In the particular case of rank 0 memrefs, the size and stride arrays are omitted, resulting in a struct containing two pointers + offset.

Examples:

memref<f32> -> !llvm<"{ float*, float*, i64 }">
memref<1 x f32> -> !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
memref<? x f32> -> !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
memref<10x42x42x43x123 x f32> -> !llvm<"{ float*, float*, i64, [5 x i64], [5 x i64] }">
memref<10x?x42x?x123 x f32> -> !llvm<"{ float*, float*, i64, [5 x i64], [5 x i64] }">

// Memref types can have vectors as element types
memref<1x? x vector<4xf32>> -> !llvm<"{ <4 x float>*, <4 x float>*, i64, [1 x i64], [1 x i64] }">

If the rank of the memref is unknown at compile time, the memref is converted to an unranked descriptor that contains:

	a 64-bit integer representing the dynamic rank of the memref, followed by

	a pointer to a ranked memref descriptor with the contents listed above.

Dynamic ranked memrefs should be used only to pass arguments to external library calls that expect a unified memref type. The called functions can parse any unranked memref descriptor by reading the rank and parsing the enclosed ranked descriptor pointer.

Examples:

// unranked descriptor
memref<*xf32> -> !llvm<"{i64, i8*}">

In function signatures, memref is passed as a pointer to the structured defined above to comply with the calling convention.

Example:

// A function type with memref as argument
(memref<?xf32>) -> ()
// is transformed into the LLVM function with pointer-to-structure argument.
!llvm<"void({ float*, float*, i64, [1 x i64], [1 x i64]}*) ">

Function Types

Function types get converted to LLVM function types. The arguments are converted individually according to these rules. The result types need to accommodate the fact that LLVM IR functions always have a return type, which may be a Void type. The converted function always has a single result type. If the original function type had no results, the converted function will have one result of the wrapped void type. If the original function type had one result, the converted function will also have one result converted using these rules. Otherwise, the result type will be a wrapped LLVM IR structure type where each element of the structure corresponds to one of the results of the original function, converted using these rules. In high-order functions, function-typed arguments and results are converted to a wrapped LLVM IR function pointer type (since LLVM IR does not allow passing functions to functions without indirection) with the pointee type converted using these rules.

Examples:

// zero-ary function type with no results.
() -> ()
// is converted to a zero-ary function with `void` result
!llvm<"void ()">

// unary function with one result
(i32) -> (i64)
// has its argument and result type converted, before creating the LLVM IR function type
!llvm<"i64 (i32)">

// binary function with one result
(i32, f32) -> (i64)
// has its arguments handled separately
!llvm<"i64 (i32, float)">

// binary function with two results
(i32, f32) -> (i64, f64)
// has its result aggregated into a structure type
!llvm<"{i64, double} (i32, f32)">

// function-typed arguments or results in higher-order functions
(() -> ()) -> (() -> ())
// are converted into pointers to functions
!llvm<"void ()* (void ()*)">

Calling Convention

Function Signature Conversion

LLVM IR functions are defined by a custom operation. The function itself has a wrapped LLVM IR function type converted as described above. The function definition operation uses MLIR syntax.

Examples:

// zero-ary function type with no results.
func @foo() -> ()
// gets LLVM type void().
llvm.func @foo() -> ()

// function with one result
func @bar(i32) -> (i64)
// gets converted to LLVM type i64(i32).
func @bar(!llvm.i32) -> !llvm.i64

// function with two results
func @qux(i32, f32) -> (i64, f64)
// has its result aggregated into a structure type
func @qux(!llvm.i32, !llvm.float) -> !llvm<"{i64, double}">

// function-typed arguments or results in higher-order functions
func @quux(() -> ()) -> (() -> ())
// are converted into pointers to functions
func @quux(!llvm<"void ()*">) -> !llvm<"void ()*">
// the call flow is handled by the LLVM dialect `call` operation supporting both
// direct and indirect calls

Result Packing

In case of multi-result functions, the returned values are inserted into a structure-typed value before being returned and extracted from it at the call site. This transformation is a part of the conversion and is transparent to the defines and uses of the values being returned.

Example:

func @foo(%arg0: i32, %arg1: i64) -> (i32, i64) {
 return %arg0, %arg1 : i32, i64
}
func @bar() {
 %0 = constant 42 : i32
 %1 = constant 17 : i64
 %2:2 = call @foo(%0, %1) : (i32, i64) -> (i32, i64)
 "use_i32"(%2#0) : (i32) -> ()
 "use_i64"(%2#1) : (i64) -> ()
}

// is transformed into

func @foo(%arg0: !llvm.i32, %arg1: !llvm.i64) -> !llvm<"{i32, i64}"> {
 // insert the vales into a structure
 %0 = llvm.mlir.undef : !llvm<"{i32, i64}">
 %1 = llvm.insertvalue %arg0, %0[0] : !llvm<"{i32, i64}">
 %2 = llvm.insertvalue %arg1, %1[1] : !llvm<"{i32, i64}">

 // return the structure value
 llvm.return %2 : !llvm<"{i32, i64}">
}
func @bar() {
 %0 = llvm.mlir.constant(42 : i32) : !llvm.i32
 %1 = llvm.mlir.constant(17) : !llvm.i64

 // call and extract the values from the structure
 %2 = llvm.call @bar(%0, %1) : (%arg0: !llvm.i32, %arg1: !llvm.i32) -> !llvm<"{i32, i64}">
 %3 = llvm.extractvalue %2[0] : !llvm<"{i32, i64}">
 %4 = llvm.extractvalue %2[1] : !llvm<"{i32, i64}">

 // use as before
 "use_i32"(%3) : (!llvm.i32) -> ()
 "use_i64"(%4) : (!llvm.i64) -> ()
}

Calling Convention for Ranked memref

Function arguments of memref type, ranked or unranked, are expanded into a list of arguments of non-aggregate types that the memref descriptor defined above comprises. That is, the outer struct type and the inner array types are replaced with individual arguments.

This convention is implemented in the conversion of std.func and std.call to the LLVM dialect, with the former unpacking the descriptor into a set of individual values and the latter packing those values back into a descriptor so as to make it transparently usable by other operations. Conversions from other dialects should take this convention into account.

This specific convention is motivated by the necessity to specify alignment and aliasing attributes on the raw pointers underpinning the memref.

Examples:

func @foo(%arg0: memref<?xf32>) -> () {
 "use"(%arg0) : (memref<?xf32>) -> ()
 return
}

// Gets converted to the following.

llvm.func @foo(%arg0: !llvm<"float*">, // Allocated pointer.
 %arg1: !llvm<"float*">, // Aligned pointer.
 %arg2: !llvm.i64, // Offset.
 %arg3: !llvm.i64, // Size in dim 0.
 %arg4: !llvm.i64) { // Stride in dim 0.
 // Populate memref descriptor structure.
 %0 = llvm.mlir.undef : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
 %1 = llvm.insertvalue %arg0, %0[0] : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
 %2 = llvm.insertvalue %arg1, %1[1] : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
 %3 = llvm.insertvalue %arg2, %2[2] : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
 %4 = llvm.insertvalue %arg3, %3[3, 0] : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
 %5 = llvm.insertvalue %arg4, %4[4, 0] : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">

 // Descriptor is now usable as a single value.
 "use"(%5) : (!llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">) -> ()
 llvm.return
}

func @bar() {
 %0 = "get"() : () -> (memref<?xf32>)
 call @foo(%0) : (memref<?xf32>) -> ()
 return
}

// Gets converted to the following.

llvm.func @bar() {
 %0 = "get"() : () -> !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">

 // Unpack the memref descriptor.
 %1 = llvm.extractvalue %0[0] : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
 %2 = llvm.extractvalue %0[1] : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
 %3 = llvm.extractvalue %0[2] : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
 %4 = llvm.extractvalue %0[3, 0] : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">
 %5 = llvm.extractvalue %0[4, 0] : !llvm<"{ float*, float*, i64, [1 x i64], [1 x i64] }">

 // Pass individual values to the callee.
 llvm.call @foo(%1, %2, %3, %4, %5) : (!llvm<"float*">, !llvm<"float*">, !llvm.i64, !llvm.i64, !llvm.i64) -> ()
 llvm.return
}

Calling Convention for Unranked memref

For unranked memrefs, the list of function arguments always contains two elements, same as the unranked memref descriptor: an integer rank, and a type-erased (!llvm<"i8*">) pointer to the ranked memref descriptor. Note that while the calling convention does not require stack allocation, casting to unranked memref does since one cannot take an address of an SSA value containing the ranked memref. The caller is in charge of ensuring the thread safety and eventually removing unnecessary stack allocations in cast operations.

Example

llvm.func @foo(%arg0: memref<*xf32>) -> () {
 "use"(%arg0) : (memref<*xf32>) -> ()
 return
}

// Gets converted to the following.

llvm.func @foo(%arg0: !llvm.i64 // Rank.
 %arg1: !llvm<"i8*">) { // Type-erased pointer to descriptor.
 // Pack the unranked memref descriptor.
 %0 = llvm.mlir.undef : !llvm<"{ i64, i8* }">
 %1 = llvm.insertvalue %arg0, %0[0] : !llvm<"{ i64, i8* }">
 %2 = llvm.insertvalue %arg1, %1[1] : !llvm<"{ i64, i8* }">

 "use"(%2) : (!llvm<"{ i64, i8* }">) -> ()
 llvm.return
}

llvm.func @bar() {
 %0 = "get"() : () -> (memref<*xf32>)
 call @foo(%0): (memref<*xf32>) -> ()
 return
}

// Gets converted to the following.

llvm.func @bar() {
 %0 = "get"() : () -> (!llvm<"{ i64, i8* }">)

 // Unpack the memref descriptor.
 %1 = llvm.extractvalue %0[0] : !llvm<"{ i64, i8* }">
 %2 = llvm.extractvalue %0[1] : !llvm<"{ i64, i8* }">

 // Pass individual values to the callee.
 llvm.call @foo(%1, %2) : (!llvm.i64, !llvm<"i8*">)
 llvm.return
}

Lifetime. The second element of the unranked memref descriptor points to some memory in which the ranked memref descriptor is stored. By convention, this memory is allocated on stack and has the lifetime of the function. (Note: due to function-length lifetime, creation of multiple unranked memref descriptors, e.g., in a loop, may lead to stack overflows.) If an unranked descriptor has to be returned from a function, the ranked descriptor it points to is copied into dynamically allocated memory, and the pointer in the unranked descriptor is updated accordingly. The allocation happens immediately before returning. It is the responsibility of the caller to free the dynamically allocated memory. The default conversion of std.call and std.call_indirect copies the ranked descriptor to newly allocated memory on the caller’s stack. Thus, the convention of the ranked memref descriptor pointed to by an unranked memref descriptor being stored on stack is respected.

This convention may or may not apply if the conversion of MemRef types is overridden by the user.

C-compatible wrapper emission

In practical cases, it may be desirable to have externally-facing functions with a single attribute corresponding to a MemRef argument. When interfacing with LLVM IR produced from C, the code needs to respect the corresponding calling convention. The conversion to the LLVM dialect provides an option to generate wrapper functions that take memref descriptors as pointers-to-struct compatible with data types produced by Clang when compiling C sources. The generation of such wrapper functions can additionally be controlled at a function granularity by setting the llvm.emit_c_interface unit attribute.

More specifically, a memref argument is converted into a pointer-to-struct argument of type {T*, T*, i64, i64[N], i64[N]}* in the wrapper function, where T is the converted element type and N is the memref rank. This type is compatible with that produced by Clang for the following C++ structure template instantiations or their equivalents in C.

template<typename T, size_t N>
struct MemRefDescriptor {
 T *allocated;
 T *aligned;
 intptr_t offset;
 intptr_t sizes[N];
 intptr_t strides[N];
};

If enabled, the option will do the following. For external functions declared in the MLIR module.

	Declare a new function _mlir_ciface_<original name> where memref arguments are converted to pointer-to-struct and the remaining arguments are converted as usual.

	Add a body to the original function (making it non-external) that

	allocates a memref descriptor,

	populates it, and

	passes the pointer to it into the newly declared interface function, then

	collects the result of the call and returns it to the caller.

For (non-external) functions defined in the MLIR module.

	Define a new function _mlir_ciface_<original name> where memref arguments are converted to pointer-to-struct and the remaining arguments are converted as usual.

	Populate the body of the newly defined function with IR that

	loads descriptors from pointers;

	unpacks descriptor into individual non-aggregate values;

	passes these values into the original function;

	collects the result of the call and returns it to the caller.

Examples:

func @qux(%arg0: memref<?x?xf32>)

// Gets converted into the following.

// Function with unpacked arguments.
llvm.func @qux(%arg0: !llvm<"float*">, %arg1: !llvm<"float*">, %arg2: !llvm.i64,
 %arg3: !llvm.i64, %arg4: !llvm.i64, %arg5: !llvm.i64,
 %arg6: !llvm.i64) {
 // Populate memref descriptor (as per calling convention).
 %0 = llvm.mlir.undef : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
 %1 = llvm.insertvalue %arg0, %0[0] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
 %2 = llvm.insertvalue %arg1, %1[1] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
 %3 = llvm.insertvalue %arg2, %2[2] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
 %4 = llvm.insertvalue %arg3, %3[3, 0] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
 %5 = llvm.insertvalue %arg5, %4[4, 0] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
 %6 = llvm.insertvalue %arg4, %5[3, 1] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
 %7 = llvm.insertvalue %arg6, %6[4, 1] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">

 // Store the descriptor in a stack-allocated space.
 %8 = llvm.mlir.constant(1 : index) : !llvm.i64
 %9 = llvm.alloca %8 x !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
 : (!llvm.i64) -> !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }*">
 llvm.store %7, %9 : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }*">

 // Call the interface function.
 llvm.call @_mlir_ciface_qux(%9) : (!llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }*">) -> ()

 // The stored descriptor will be freed on return.
 llvm.return
}

// Interface function.
llvm.func @_mlir_ciface_qux(!llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }*">)

func @foo(%arg0: memref<?x?xf32>) {
 return
}

// Gets converted into the following.

// Function with unpacked arguments.
llvm.func @foo(%arg0: !llvm<"float*">, %arg1: !llvm<"float*">, %arg2: !llvm.i64,
 %arg3: !llvm.i64, %arg4: !llvm.i64, %arg5: !llvm.i64,
 %arg6: !llvm.i64) {
 llvm.return
}

// Interface function callable from C.
llvm.func @_mlir_ciface_foo(%arg0: !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }*">) {
 // Load the descriptor.
 %0 = llvm.load %arg0 : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }*">

 // Unpack the descriptor as per calling convention.
 %1 = llvm.extractvalue %0[0] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
 %2 = llvm.extractvalue %0[1] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
 %3 = llvm.extractvalue %0[2] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
 %4 = llvm.extractvalue %0[3, 0] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
 %5 = llvm.extractvalue %0[3, 1] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
 %6 = llvm.extractvalue %0[4, 0] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
 %7 = llvm.extractvalue %0[4, 1] : !llvm<"{ float*, float*, i64, [2 x i64], [2 x i64] }">
 llvm.call @foo(%1, %2, %3, %4, %5, %6, %7)
 : (!llvm<"float*">, !llvm<"float*">, !llvm.i64, !llvm.i64, !llvm.i64,
 !llvm.i64, !llvm.i64) -> ()
 llvm.return
}

Rationale: Introducing auxiliary functions for C-compatible interfaces is preferred to modifying the calling convention since it will minimize the effect of C compatibility on intra-module calls or calls between MLIR-generated functions. In particular, when calling external functions from an MLIR module in a (parallel) loop, the fact of storing a memref descriptor on stack can lead to stack exhaustion and/or concurrent access to the same address. Auxiliary interface function serves as an allocation scope in this case. Furthermore, when targeting accelerators with separate memory spaces such as GPUs, stack-allocated descriptors passed by pointer would have to be transferred to the device memory, which introduces significant overhead. In such situations, auxiliary interface functions are executed on host and only pass the values through device function invocation mechanism.

Repeated Successor Removal

Since the goal of the LLVM IR dialect is to reflect LLVM IR in MLIR, the dialect and the conversion procedure must account for the differences between block arguments and LLVM IR PHI nodes. In particular, LLVM IR disallows PHI nodes with different values coming from the same source. Therefore, the LLVM IR dialect disallows operations that have identical successors accepting arguments, which would lead to invalid PHI nodes. The conversion process resolves the potential PHI source ambiguity by injecting dummy blocks if the same block is used more than once as a successor in an instruction. These dummy blocks branch unconditionally to the original successors, pass them the original operands (available in the dummy block because it is dominated by the original block) and are used instead of them in the original terminator operation.

Example:

 cond_br %0, ^bb1(%1 : i32), ^bb1(%2 : i32)
^bb1(%3 : i32)
 "use"(%3) : (i32) -> ()

leads to a new basic block being inserted,

 cond_br %0, ^bb1(%1 : i32), ^dummy
^bb1(%3 : i32):
 "use"(%3) : (i32) -> ()
^dummy:
 br ^bb1(%4 : i32)

before the conversion to the LLVM IR dialect:

 llvm.cond_br %0, ^bb1(%1 : !llvm.i32), ^dummy
^bb1(%3 : !llvm<"i32">):
 "use"(%3) : (!llvm.i32) -> ()
^dummy:
 llvm.br ^bb1(%2 : !llvm.i32)

Default Memref Model

Memref Descriptor

Within a converted function, a memref-typed value is represented by a memref descriptor, the type of which is the structure type obtained by converting from the memref type. This descriptor holds all the necessary information to produce an address of a specific element. In particular, it holds dynamic values for static sizes, and they are expected to match at all times.

It is created by the allocation operation and is updated by the conversion operations that may change static dimensions into dynamic dimensions and vice versa.

Note: LLVM IR conversion does not support memrefs with layouts that are not amenable to the strided form.

Index Linearization

Accesses to a memref element are transformed into an access to an element of the buffer pointed to by the descriptor. The position of the element in the buffer is calculated by linearizing memref indices in row-major order (lexically first index is the slowest varying, similar to C, but accounting for strides). The computation of the linear address is emitted as arithmetic operation in the LLVM IR dialect. Strides are extracted from the memref descriptor.

Accesses to zero-dimensional memref (that are interpreted as pointers to the elemental type) are directly converted into llvm.load or llvm.store without any pointer manipulations.

Examples:

An access to a zero-dimensional memref is converted into a plain load:

// before
%0 = load %m[] : memref<f32>

// after
%0 = llvm.load %m : !llvm<"float*">

An access to a memref with indices:

%0 = load %m[1,2,3,4] : memref<10x?x13x?xf32>

is transformed into the equivalent of the following code:

// Compute the linearized index from strides. Each block below extracts one
// stride from the descriptor, multiplies it with the index and accumulates
// the total offset.
%stride1 = llvm.extractvalue[4, 0] : !llvm<"{float*, float*, i64, i64[4], i64[4]}">
%idx1 = llvm.mlir.constant(1 : index) !llvm.i64
%addr1 = muli %stride1, %idx1 : !llvm.i64

%stride2 = llvm.extractvalue[4, 1] : !llvm<"{float*, float*, i64, i64[4], i64[4]}">
%idx2 = llvm.mlir.constant(2 : index) !llvm.i64
%addr2 = muli %stride2, %idx2 : !llvm.i64
%addr3 = addi %addr1, %addr2 : !llvm.i64

%stride3 = llvm.extractvalue[4, 2] : !llvm<"{float*, float*, i64, i64[4], i64[4]}">
%idx3 = llvm.mlir.constant(3 : index) !llvm.i64
%addr4 = muli %stride3, %idx3 : !llvm.i64
%addr5 = addi %addr3, %addr4 : !llvm.i64

%stride4 = llvm.extractvalue[4, 3] : !llvm<"{float*, float*, i64, i64[4], i64[4]}">
%idx4 = llvm.mlir.constant(4 : index) !llvm.i64
%addr6 = muli %stride4, %idx4 : !llvm.i64
%addr7 = addi %addr5, %addr6 : !llvm.i64

// Add the linear offset to the address.
%offset = llvm.extractvalue[2] : !llvm<"{float*, float*, i64, i64[4], i64[4]}">
%addr8 = addi %addr7, %offset : !llvm.i64

// Obtain the aligned pointer.
%aligned = llvm.extractvalue[1] : !llvm<"{float*, float*, i64, i64[4], i64[4]}">

// Get the address of the data pointer.
%ptr = llvm.getelementptr %aligned[%addr8]
 : !llvm<"{float*, float*, i64, i64[4], i64[4]}"> -> !llvm<"float*">

// Perform the actual load.
%0 = llvm.load %ptr : !llvm<"float*">

For stores, the address computation code is identical and only the actual store operation is different.

Note: the conversion does not perform any sort of common subexpression elimination when emitting memref accesses.

Interfaces

MLIR is a generic and extensible framework, representing different dialects with their own operations, attributes, types, and so on. MLIR Dialects can express operations with a wide variety of semantics and different levels of abstraction. The downside to this is that MLIR transformations and analyses need to account for the semantics of every operation, or handle operations conservatively. Without care, this can result in code with special-cases for each supported operation type. To combat this, MLIR provides the concept of interfaces.

Motivation

Interfaces provide a generic way of interacting with the IR. The goal is to be able to express transformations/analyses in terms of these interfaces without encoding specific knowledge about the exact operation or dialect involved. This makes the compiler more extensible by allowing the addition of new dialects and operations in a decoupled way with respect to the implementation of transformations/analyses.

Dialect Interfaces

Dialect interfaces are generally useful for transformation passes or analyses that want to operate generically on a set of attributes/operations/types, which might even be defined in different dialects. These interfaces generally involve wide coverage over the entire dialect and are only used for a handful of transformations/analyses. In these cases, registering the interface directly on each operation is overly complex and cumbersome. The interface is not core to the operation, just to the specific transformation. An example of where this type of interface would be used is inlining. Inlining generally queries high-level information about the operations within a dialect, like legality and cost modeling, that often is not specific to one operation.

A dialect interface can be defined by inheriting from the CRTP base class DialectInterfaceBase::Base. This class provides the necessary utilities for registering an interface with the dialect so that it can be looked up later. Once the interface has been defined, dialects can override it using dialect-specific information. The interfaces defined by a dialect are registered in a similar mechanism to Attributes, Operations, Types, etc.

/// Define an Inlining interface to allow for dialects to opt-in.
class DialectInlinerInterface :
 public DialectInterface::Base<DialectInlinerInterface> {
public:
 /// Returns true if the given region 'src' can be inlined into the region
 /// 'dest' that is attached to an operation registered to the current dialect.
 /// 'valueMapping' contains any remapped values from within the 'src' region.
 /// This can be used to examine what values will replace entry arguments into
 /// the 'src' region, for example.
 virtual bool isLegalToInline(Region *dest, Region *src,
 BlockAndValueMapping &valueMapping) const {
 return false;
 }
};

/// Override the inliner interface to add support for inlining affine
/// operations.
struct AffineInlinerInterface : public DialectInlinerInterface {
 /// Affine structures have specific inlining constraints.
 bool isLegalToInline(Region *dest, Region *src,
 BlockAndValueMapping &valueMapping) const final {
 ...
 }
};

/// Register the interface with the dialect.
AffineDialect::AffineDialect(MLIRContext *context) ... {
 addInterfaces<AffineInlinerInterface>();
}

Once registered, these interfaces can be queried from the dialect by the transformation/analysis that wants to use them, without determining the particular dialect subclass:

Dialect *dialect = ...;
if (auto *interface = dialect->getInterface<DialectInlinerInterface>())
 ... // The dialect provides this interface.

DialectInterfaceCollections

An additional utility is provided via DialectInterfaceCollection. This CRTP class allows for collecting all of the dialects that have registered a given interface within the context.

class InlinerInterface : public
 DialectInterfaceCollection<DialectInlinerInterface> {
 /// The hooks for this class mirror the hooks for the DialectInlinerInterface,
 /// with default implementations that call the hook on the interface for a
 /// given dialect.
 virtual bool isLegalToInline(Region *dest, Region *src,
 BlockAndValueMapping &valueMapping) const {
 auto *handler = getInterfaceFor(dest->getContainingOp());
 return handler ? handler->isLegalToInline(dest, src, valueMapping) : false;
 }
};

MLIRContext *ctx = ...;
InlinerInterface interface(ctx);
if(!interface.isLegalToInline(...))
 ...

Attribute/Operation/Type Interfaces

Attribute/Operation/Type interfaces, as the names suggest, are those registered at the level of a specific attribute/operation/type. These interfaces provide access to derived objects by providing a virtual interface that must be implemented. As an example, the Linalg dialect may implement an interface that provides general queries about some of the dialects library operations. These queries may provide things like: the number of parallel loops; the number of inputs and outputs; etc.

These interfaces are defined by overriding the CRTP base class AttrInterface, OpInterface, or TypeInterface respectively. These classes take, as a template parameter, a Traits class that defines a Concept and a Model class. These classes provide an implementation of concept-based polymorphism, where the Concept defines a set of virtual methods that are overridden by the Model that is templated on the concrete object type. It is important to note that these classes should be pure in that they contain no non-static data members. Objects that wish to override this interface should add the provided trait *Interface<..>::Trait to the trait list upon registration.

struct ExampleOpInterfaceTraits {
 /// Define a base concept class that defines the virtual interface that needs
 /// to be overridden.
 struct Concept {
 virtual ~Concept();
 virtual unsigned getNumInputs(Operation *op) const = 0;
 };

 /// Define a model class that specializes a concept on a given operation type.
 template <typename OpT>
 struct Model : public Concept {
 /// Override the method to dispatch on the concrete operation.
 unsigned getNumInputs(Operation *op) const final {
 return llvm::cast<OpT>(op).getNumInputs();
 }
 };
};

class ExampleOpInterface : public OpInterface<ExampleOpInterface,
 ExampleOpInterfaceTraits> {
public:
 /// Use base class constructor to support LLVM-style casts.
 using OpInterface<ExampleOpInterface, ExampleOpInterfaceTraits>::OpInterface;

 /// The interface dispatches to 'getImpl()', an instance of the concept.
 unsigned getNumInputs() const {
 return getImpl()->getNumInputs(getOperation());
 }
};

Once the interface has been defined, it is registered to an operation by adding the provided trait ExampleOpInterface::Trait. Using this interface is just like using any other derived operation type, i.e. casting:

/// When defining the operation, the interface is registered via the nested
/// 'Trait' class provided by the 'OpInterface<>' base class.
class MyOp : public Op<MyOp, ExampleOpInterface::Trait> {
public:
 /// The definition of the interface method on the derived operation.
 unsigned getNumInputs() { return ...; }
};

/// Later, we can query if a specific operation(like 'MyOp') overrides the given
/// interface.
Operation *op = ...;
if (ExampleOpInterface example = dyn_cast<ExampleOpInterface>(op))
 llvm::errs() << "num inputs = " << example.getNumInputs() << "\n";

Utilizing the ODS Framework

Operation interfaces require a bit of boiler plate to connect all of the pieces together. The ODS(Operation Definition Specification) framework provides simplified mechanisms for defining interfaces.

As an example, using the ODS framework would allow for defining the example interface above as:

def ExampleOpInterface : OpInterface<"ExampleOpInterface"> {
 let description = [{
 This is an example interface definition.
 }];

 let methods = [
 InterfaceMethod<
 "Get the number of inputs for the current operation.",
 "unsigned", "getNumInputs"
 >,
];
}

Operation Interface List

MLIR includes standard interfaces providing functionality that is likely to be common across many different operations. Below is a list of some key interfaces that may be used directly by any dialect. The format of the header for each interface section goes as follows:

	Interface class name

	(C++ class – ODS class(if applicable))

CallInterfaces

	CallOpInterface - Used to represent operations like ‘call’

	CallInterfaceCallable getCallableForCallee()

	CallableOpInterface - Used to represent the target callee of call.

	Region * getCallableRegion()

	ArrayRef<Type> getCallableResults()

RegionKindInterfaces

	RegionKindInterface - Used to describe the abstract semantics of regions.

	RegionKind getRegionKind(unsigned index) - Return the kind of the region with the given index inside this operation.

	RegionKind::Graph - represents a graph region without control flow semantics

	RegionKind::SSACFG - represents an SSA-style control flow region with basic blocks and reachability

	hasSSADominance(unsigned index) - Return true if the region with the given index inside this operation requires dominance.

SymbolInterfaces

	SymbolOpInterface - Used to represent Symbol operations which reside immediately within a region that defines a SymbolTable.

	SymbolUserOpInterface - Used to represent operations that reference Symbol operations. This provides the ability to perform safe and efficient verification of symbol uses, as well as additional functionality.

‘llvm’ Dialect

This dialect wraps the LLVM IR types and instructions into MLIR types and operations. It provides several additional operations that are necessary to cover for the differences in the IR structure (e.g., MLIR does not have phi operations and LLVM IR does not have a constant operation).

In this document, we use “LLVM IR” to designate the intermediate representation of LLVM and “LLVM IR dialect” to refer to the MLIR dialect reflecting LLVM instructions and types.

[TOC]

Context and Module Association

The LLVM IR dialect object contains an LLVM Context and an LLVM Module that it uses to define, print, parse and manage LLVM IR types. These objects can be obtained from the dialect object using .getLLVMContext() and getLLVMModule(). All LLVM IR objects that interact with the LLVM IR dialect must exist in the dialect’s context.

Types

The LLVM IR dialect defines a single MLIR type, LLVM::LLVMType, that can wrap any existing LLVM IR type. Its syntax is as follows

type ::= `!llvm<"` llvm-canonical-type `">
llvm-canonical-type ::= <canonical textual representation defined by LLVM>

For example, one can use primitive types !llvm.i32, pointer types !llvm<"i8*">, vector types !llvm<"<4 x float>"> or structure types !llvm<"{i32, float}">. The parsing and printing of the canonical form are delegated to the LLVM assembly parser and printer.

LLVM IR dialect types contain an llvm::Type* object that can be obtained by calling .getUnderlyingType() and used in LLVM API calls directly. These objects are allocated within the LLVM context associated with the LLVM IR dialect and may be linked to the properties of the associated LLVM module.

LLVM IR dialect type can be constructed from any llvm::Type* that is associated with the LLVM context of the dialect. In this document, we use the term “wrapped LLVM IR type” to refer to the LLVM IR dialect type containing a specific LLVM IR type.

Operations

All operations in the LLVM IR dialect have a custom form in MLIR. The mnemonic of an operation is that used in LLVM IR prefixed with “llvm.”.

LLVM functions

MLIR functions are defined by an operation that is not built into the IR itself. The LLVM IR dialect provides an llvm.func operation to define functions compatible with LLVM IR. These functions have wrapped LLVM IR function type but use MLIR syntax to express it. They are required to have exactly one result type. LLVM function operation is intended to capture additional properties of LLVM functions, such as linkage and calling convention, that may be modeled differently by the built-in MLIR function.

// The type of @bar is !llvm<"i64 (i64)">
llvm.func @bar(%arg0: !llvm.i64) -> !llvm.i64 {
 llvm.return %arg0 : !llvm.i64
}

// Type type of @foo is !llvm<"void (i64)">
// !llvm.void type is omitted
llvm.func @foo(%arg0: !llvm.i64) {
 llvm.return
}

// A function with `internal` linkage.
llvm.func internal @internal_func() {
 llvm.return
}

Attribute pass-through

An LLVM IR dialect function provides a mechanism to forward function-level attributes to LLVM IR using the passthrough attribute. This is an array attribute containing either string attributes or array attributes. In the former case, the value of the string is interpreted as the name of LLVM IR function attribute. In the latter case, the array is expected to contain exactly two string attributes, the first corresponding to the name of LLVM IR function attribute, and the second corresponding to its value. Note that even integer LLVM IR function attributes have their value represented in the string form.

Example:

llvm.func @func() attributes {
 passthrough = ["noinline", // value-less attribute
 ["alignstack", "4"], // integer attribute with value
 ["other", "attr"]] // attribute unknown to LLVM
} {
 llvm.return
}

If the attribute is not known to LLVM IR, it will be attached as a string attribute.

Linkage

An LLVM IR dialect function has a linkage attribute derived from LLVM IR linkage types. Linkage is specified by the same keyword as in LLVM IR and is located between llvm.func and the symbol name. If no linkage keyword is present, external linkage is assumed by default.

LLVM IR operations

The following operations are currently supported. The semantics of these operations corresponds to the semantics of the similarly-named LLVM IR instructions.

Integer binary arithmetic operations

Take two arguments of wrapped LLVM IR integer type, produce one value of the same type.

	add

	sub

	mul

	udiv

	sdiv

	urem

	srem

Examples:

// Integer addition.
%0 = llvm.add %a, %b : !llvm.i32

// Unsigned integer division.
%1 = llvm.udiv %a, %b : !llvm.i32

Floating point binary arithmetic operations

Take two arguments of wrapped LLVM IR floating point type, produce one value of the same type.

	fadd

	fsub

	fmul

	fdiv

	frem

Examples:

// Float addition.
%0 = llvm.fadd %a, %b : !llvm.float

// Float division.
%1 = llvm.fdiv %a, %b : !llvm.float

Memory-related operations

	<r> = alloca <size> x <type>

	<r> = getelementptr <address>[<index> (, <index>)+]

	<r> = load <address>

	store <value>, <address>

In these operations, <size> must be a value of wrapped LLVM IR integer type, <address> must be a value of wrapped LLVM IR pointer type, and <value> must be a value of wrapped LLVM IR type that corresponds to the pointer type of <address>.

The index operands are integer values whose semantics is identical to the non-pointer arguments of LLVM IR’s getelementptr.

Examples:

// Allocate an array of 4 floats on stack
%c4 = llvm.mlir.constant(4) : !llvm.i64
%0 = llvm.alloca %c4 x !llvm.float : (!llvm.i64) -> !llvm<"float*">

// Get the second element of the array (note 0-based indexing).
%c1 = llvm.mlir.constant(1) : !llvm.i64
%1 = llvm.getelementptr %0[%c1] : (!llvm<"float*">, !llvm.i64)
 -> !llvm<"float*">

// Store a constant into this element.
%cf = llvm.mlir.constant(42.0 : f32) : !llvm.float
llvm.store %cf, %1 : !llvm<"float*">

// Load the value from this element.
%3 = llvm.load %1 : !llvm<"float*">

Operations on values of aggregate type.

	<value> = extractvalue <struct>[<index> (, <index>)+]

	<struct> = insertvalue <value>, <struct>[<index> (, <index>)+]

In these operations, <struct> must be a value of wrapped LLVM IR structure type and <value> must be a value that corresponds to one of the (nested) structure element types.

Note the use of integer literals to designate subscripts, which is made possible by extractvalue and insertvalue must have constant subscripts. Internally, they are modeled as array attributes.

Examples:

// Get the value third element of the second element of a structure.
%0 = llvm.extractvalue %s[1, 2] : !llvm<"{i32, {i1, i8, i16}">

// Insert the value to the third element of the second element of a structure.
// Note that this returns a new structure-typed value.
%1 = llvm.insertvalue %0, %s[1, 2] : !llvm<"{i32, {i1, i8, i16}">

Terminator operations.

Branch operations:

	br [<successor>(<operands>)]

	cond_br <condition> [<true-successor>(<true-operands>), <false-successor>(<false-operands>)]

In order to comply with MLIR design, branch operations in the LLVM IR dialect pass arguments to basic blocks. Successors must be valid block MLIR identifiers and operand lists for each of them must have the same types as the arguments of the respective blocks. <condition> must be a wrapped LLVM IR i1 type.

Since LLVM IR uses the name of the predecessor basic block to identify the sources of a PHI node, it is invalid for two entries of the PHI node to indicate different values coming from the same block. Therefore, cond_br in the LLVM IR dialect disallows its successors to be the same block if this block has arguments.

Examples:

// Branch without arguments.
^bb0:
 llvm.br ^bb0

// Branch and pass arguments.
^bb1(%arg: !llvm.i32):
 llvm.br ^bb1(%arg : !llvm.i32)

// Conditionally branch and pass arguments to one of the blocks.
llvm.cond_br %cond, ^bb0, %bb1(%arg : !llvm.i32)

// It's okay to use the same block without arguments, but probably useless.
llvm.cond_br %cond, ^bb0, ^bb0

// ERROR: Passing different arguments to the same block in a conditional branch.
llvm.cond_br %cond, ^bb1(%0 : !llvm.i32), ^bb1(%1 : !llvm.i32)

Call operations:

	<r> = call(<operands>)

	call(<operands>)

In LLVM IR, functions may return either 0 or 1 value. LLVM IR dialect implements this behavior by providing a variadic call operation for 0- and 1-result functions. Even though MLIR supports multi-result functions, LLVM IR dialect disallows them.

The call instruction supports both direct and indirect calls. Direct calls start with a function name (@-prefixed) and indirect calls start with an SSA value (%-prefixed). The direct callee, if present, is stored as a function attribute callee. The trailing type of the instruction is always the MLIR function type, which may be different from the indirect callee that has the wrapped LLVM IR function type.

Examples:

// Direct call without arguments and with one result.
%0 = llvm.call @foo() : () -> (!llvm.float)

// Direct call with arguments and without a result.
llvm.call @bar(%0) : (!llvm.float) -> ()

// Indirect call with an argument and without a result.
llvm.call %1(%0) : (!llvm.float) -> ()

Miscellaneous operations.

Integer comparisons: icmp "predicate" <lhs>, <rhs>. The following predicate values are supported:

	eq - equality comparison;

	ne - inequality comparison;

	slt - signed less-than comparison

	sle - signed less-than-or-equal comparison

	sgt - signed greater-than comparison

	sge - signed greater-than-or-equal comparison

	ult - unsigned less-than comparison

	ule - unsigned less-than-or-equal comparison

	ugt - unsigned greater-than comparison

	uge - unsigned greater-than-or-equal comparison

Bitwise reinterpretation: bitcast <value>.

Selection: select <condition>, <lhs>, <rhs>.

Auxiliary MLIR Operations for Constants and Globals

LLVM IR has broad support for first-class constants, which is not the case for MLIR. Instead, constants are defined in MLIR as regular SSA values produced by operations with specific traits. The LLVM dialect provides a set of operations that model LLVM IR constants. These operations do not correspond to LLVM IR instructions and are therefore prefixed with llvm.mlir.

Inline constants can be created by llvm.mlir.constant, which currently supports integer, float, string or elements attributes (constant structs are not currently supported). LLVM IR constant expressions are expected to be constructed as sequences of regular operations on SSA values produced by llvm.mlir.constant. Additionally, MLIR provides semantically-charged operations llvm.mlir.undef and llvm.mlir.null for the corresponding constants.

LLVM IR globals can be defined using llvm.mlir.global at the module level, except for functions that are defined with llvm.func. Globals, both variables and functions, can be accessed by taking their address with the llvm.mlir.addressof operation, which produces a pointer to the named global, unlike the llvm.mlir.constant that produces the value of the same type as the constant.

llvm.mlir.addressof

Creates an SSA value containing a pointer to a global variable or constant defined by llvm.mlir.global. The global value can be defined after its first referenced. If the global value is a constant, storing into it is not allowed.

Examples:

func @foo() {
 // Get the address of a global variable.
 %0 = llvm.mlir.addressof @const : !llvm<"i32*">

 // Use it as a regular pointer.
 %1 = llvm.load %0 : !llvm<"i32*">

 // Get the address of a function.
 %2 = llvm.mlir.addressof @foo : !llvm<"void ()*">

 // The function address can be used for indirect calls.
 llvm.call %2() : () -> ()
}

// Define the global.
llvm.mlir.global @const(42 : i32) : !llvm.i32

llvm.mlir.constant

Unlike LLVM IR, MLIR does not have first-class constant values. Therefore, all constants must be created as SSA values before being used in other operations. llvm.mlir.constant creates such values for scalars and vectors. It has a mandatory value attribute, which may be an integer, floating point attribute; dense or sparse attribute containing integers or floats. The type of the attribute is one of the corresponding MLIR standard types. It may be omitted for i64 and f64 types that are implied. The operation produces a new SSA value of the specified LLVM IR dialect type. The type of that value must correspond to the attribute type converted to LLVM IR.

Examples:

// Integer constant, internal i32 is mandatory
%0 = llvm.mlir.constant(42 : i32) : !llvm.i32

// It's okay to omit i64.
%1 = llvm.mlir.constant(42) : !llvm.i64

// Floating point constant.
%2 = llvm.mlir.constant(42.0 : f32) : !llvm.float

// Splat dense vector constant.
%3 = llvm.mlir.constant(dense<1.0> : vector<4xf32>) : !llvm<"<4 x float>">

llvm.mlir.global

Since MLIR allows for arbitrary operations to be present at the top level, global variables are defined using the llvm.mlir.global operation. Both global constants and variables can be defined, and the value may also be initialized in both cases.

There are two forms of initialization syntax. Simple constants that can be represented as MLIR attributes can be given in-li