
LSTM Derivations

Minh-Thang Luong
lmthang@stanford.edu

Abigail See
abisee@stanford.edu

1 LSTM Architecture

An LSTM block at layer l ∈ {1, . . . L} and time t ∈ {1, . . . T} consists of:

• The hidden state hl
t
∈ R

n

• The memory cell cl
t
∈ R

n

• The input gate il
t
∈ [0, 1]n

• The forget gate f l
t
∈ [0, 1]n

• The output gate ol
t ∈ [0, 1]n

• The input modulation gate ĥl
t
∈ [0, 1]n

We call n the LSTM block size.

2 Forward Propagation

We use the formulation of [Zaremba et al., 2014]. For a single LSTM block at layer l and
time t, the new hidden state hl

t
and memory cell cl

t
are calculated from h

l−1

t , hl
t−1

and cl
t−1

like so:








il
t

f l
t

ol
t

ĥl
t









=









sigm
sigm
sigm
tanh









T 4n×2n

[

h
l−1

t

hl
t−1

]

(1)

cl
t
= f l

t
◦ cl

t−1
+ il

t
◦ ĥl

t
(2)

hl
t
= ol

t
◦ tanh(cl

t
) (3)

where sigm and tanh are applied element-wise, ◦ denotes element-wise multiplication, and
T 4n×2n is a 4n× 2n matrix of weights that depends on l but not t.1 If l = 1 then h

l−1

t is the
input vector xt. If t = 1 then hl

t−1
and cl

t−1
are taken to be zero.

1Note: Sometimes these equations are written omitting the superscript l and writing h
l−1

t
as xt, but for

the purposes of deriving the back-propagation equations, we need to refer to the layer l explicitly.
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3 Backward Propagation

3.1 Definitions

In this section we define some additional notation that will help us to derive the necessary
back-propagation equations.

Definition 1. Let U and V refer to the n×n weight matrices corresponding to the following
portions of T 4n×2n:

T 4n×2n =









Ui Vi

Uf Vf

Uo Vo

Uĥ Vĥ









(4)

In particular, we will use the superscript l to denote these matrices used to calculate layer l
in Equation (1).

Definition 2. For all l ∈ {1, . . . , L} and t ∈ {1, . . . , T}, define the weighted inputs

zli(t) = Uih
l−1

t + Vih
l
t−1

zlf (t) = Ufh
l−1

t + Vfh
l
t−1

zlo(t) = Uoh
l−1

t + Voh
l
t−1

zl
ĥ
(t) = Uĥh

l−1

t + Vĥh
l
t−1

so that








il
t

f l
t

ol
t

ĥl
t









=









sigm
sigm
sigm
tanh

















zli(t)
zlf (t)
zlo(t)
zl
ĥ
(t)









(5)

where sigm and tanh are applied element-wise. We call zli(t) the weighted input to the input
gate il

t
.

Definition 3. Define the error of the input, forget, output and input modulation gates at
layer l and time t to be

δl
i
(t) =

∂L

∂zli(t)
δl
f
(t) =

∂L

∂zlf (t)

δl
o
(t) =

∂L

∂zlo(t)
δl

ĥ
(t) =

∂L

∂zl
ĥ
(t)

where L is the loss function. Note: δl
i(t) is the partial derivative of L with respect to the

weighted input zli(t), not i
l
t
.

Definition 4. Define the error of the hidden state and cell and layer l and time t to be

δl
h
(t) =

∂L

∂hl
t

δl
c
(t) =

∂L

∂cl
t

(6)

where L is the loss function.
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3.2 Derivations

In this section we will derive expressions for δl
h
(t), δl

c
(t), δl

i
(t), δl

f
(t), δl

o
(t), and δl

ĥ
(t) in

terms of the δ values for the (l + 1, t) and (l, t+ 1) blocks. These expressions will enable us
to do back-propagation through time and layers. If you are not interested in the derivations,
skip ahead to Section 3.3 to see the final back-propagation equations.

Lemma 1. For l ∈ {1, . . . , L− 1} and t ∈ {1, . . . , T − 1},

δl
h(t) =

[

U⊤

i U⊤

f U⊤

o U⊤

ĥ
V ⊤

i V ⊤

f V ⊤

o V ⊤

ĥ

]



























δl
i
(t+ 1)

δl
f
(t + 1)

δl
o
(t+ 1)

δl

ĥ
(t+ 1)

δ
l+1

i (t)

δ
l+1

f (t)
δl+1
o (t)

δ
l+1

ĥ
(t)



























(7)

where each of the U and V matrices are with respect to layer l.

Note the left matrix in the multiplication has dimensions n×8n, the right matrix 8n×n,
and δl

h
(t) is n× 1.

Proof. We prove this element-wise. For any j = 1, . . . n:

δl
h
(t)

j
=

∂L

∂(hl
t
)j

(definition of δl
h
(t))

Now, because hl
t
affects (zi, zf , zo, zĥ) for (l, t+ 1) and (l + 1, t), we take the chain rule over

these eight variables. Therefore the above equation can be written as

n
∑

k=1

(

∂L

∂zli(t+ 1)k

∂zli(t + 1)k
∂(hl

t)j
+

∂L

∂zlf (t+ 1)k

∂zlf (t+ 1)k

∂(hl
t)j

+
∂L

∂zlo(t+ 1)k

∂zlo(t+ 1)k
∂(hl

t
)j

+
∂L

∂zl
ĥ
(t+ 1)k

∂zl
ĥ
(t+ 1)k

∂(hl
t
)j

+
∂L

∂zl+1

i (t)k

∂zl+1

i (t)k
∂(hl

t)j
+

∂L

∂zl+1

f (t)k

∂zl+1

f (t)k

∂(hl
t)j

+
∂L

∂zl+1
o (t)k

∂zl+1
o (t)k
∂(hl

t
)j

+
∂L

∂zl+1

ĥ
(t)k

∂zl+1

ĥ
(t)k

∂(hl
t
)j

)

First note that the first of each pair is some δ e.g.

∂L

∂zli(t+ 1)k
= δl

i
(t + 1) (by definition)
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The second of each pair can be evaluated like so:

∂zli(t + 1)k
∂(hl

t
)j

=
∂

∂(hl
t
)j

(

U l
ih

l
t+1

+ V l
i h

l
t

)

k
(definition of zli(t+ 1))

=
∂

∂(hl
t
)j

(

n
∑

m=1

(V l
i )km(h

l
t)m

)

(U l
ih

l
t+1

does not depend on hl
t)

= (V l
i )kj (expression equals 0 except when m = j)

so the first of the eight sums can be written as

n
∑

k=1

∂L

∂zli(t + 1)k

∂zli(t+ 1)k
∂(hl

t
)j

=

n
∑

k=1

δl
i(t+ 1)(V l

i )kj =
[

(V l
i )

⊤δl
i(t+ 1)

]

j
(8)

Finding similar expressions for the other seven sums, we obtain

δl
h
(t) = (U l

i )
⊤δli(t+ 1) + (U l

f )
⊤δlf(t+ 1) + (U l

o)
⊤δlo(t + 1) + (U l

ĥ
)⊤δl

ĥ
(t+ 1)

+ (V l
i )

⊤δl+1

i (t) + (V l
f )

⊤δl+1

f (t) + (V l
o )

⊤δl+1

o (t) + (V l

ĥ
)⊤δl+1

ĥ
(t)

Lemma 2. For l ∈ {1, . . . , L} and t ∈ {1, . . . , T − 1},

δl
c
(t) = δl

c
(t + 1) ◦ f l

t+1 + δl
h
(t) ◦ ol

t
◦ tanh′(cl

t
) (9)

Proof. We prove this element-wise. For any j = 1, . . . n:

δl
c(t)j =

∂L

∂(cl
t
)j

(definition of δl
c(t))

=

n
∑

k=1

∂L

∂(cl
t+1

)k

∂(cl
t+1

)k

∂(cl
t
)j

+

n
∑

k=1

∂L

∂(hl
t
)k

∂(hl
t
)k

∂(cl
t
)j

(chain rule)

The second equality follows from the fact that cl
t
affects hl

t
and cl

t+1
. For the first part of

the expression, note that

∂(cl
t+1

)k

∂(cl
t
)j

=
∂

∂(cl
t
)j

(

f l
t+1

◦ cl
t
+ il

t+1
◦ ĥl

t+1

)

k
(by definition of cl

t+1
)

=

{

f l
t+1

if k = j

0 otherwise.

For the second part, note that

∂(hl
t
)k

∂(cl
t
)j

=
∂

∂(cl
t
)j

(

ol
t
◦ tanh(cl

t
)
)

k
(by definition of hl

t
)

=

{

(ol
t
)j tanh

′(cl
t
)j if k = j

0 otherwise.
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Combining the previous three equations and using the definitions of δl
c(t + 1) and δl

h(t),
we obtain

δl
c
(t)

j
= δl

c
(t+ 1)

j
(f l

t+1
)j + δl

h
(t)

j
(ol

t
)j tanh

′(cl
t
)j (10)

Lemma 3. For l ∈ {1, . . . , L} and t ∈ {1, . . . , T},

δl
i
(t) = δl

c
(t) ◦ sigm′(zli(t)) ◦ ĥ

l
t

(11)

Proof. We prove this element-wise. For any j = 1, . . . n:

δl
i
(t)

j
=

∂L

∂zli(t)j
(definition of δl

i
(t))

=

n
∑

k=1

∂L

∂(cl
t
)k

∂(cl
t
)k

∂zli(t)j
(chain rule)

=

n
∑

k=1

δl
c
(t)

k

∂

∂zli(t)j

(

f l
t
◦ cl

t−1
+ il

t
◦ ĥl

t

)

k
(definition of δl

c
(t) and cl

t
)

= δl
c
(t)

j

∂

∂zli(t)j

(

il
t
◦ ĥl

t

)

j
(expression equals 0 except when k = j)

= δl
c(t)j sigm

′(zli(t))j(ĥ
l
t)j (definition of ilt in terms of zli(t))

Note that for the second equality we took the chain rule with respect to the elements of cl
t
,

because il
t
affects cl

t
.

Lemma 4. For l ∈ {1, . . . , L} and t ∈ {1, . . . , T},

δl
f
(t) = δl

c
(t) ◦ sigm′(zlf (t)) ◦ c

l
t−1

(12)

Proof. We prove this element-wise. For any j = 1, . . . n:

δl
f
(t)

j
=

∂L

∂zlf (t)j
(definition of δl

f
(t))

=

n
∑

k=1

∂L

∂(cl
t
)k

∂(cl
t
)k

∂zlf (t)j
(chain rule)

=
n
∑

k=1

δl
c
(t)

k

∂

∂zlf (t)j

(

f l
t
◦ cl

t−1
+ il

t
◦ ĥl

t

)

k
(definition of δl

c
(t) and cl

t
)

= δl
c
(t)

j

∂

∂zlf (t)j

(

f l
t
◦ cl

t−1

)

j
(expression equals 0 except when k = j)

= δl
c
(t)

j
sigm′(zlf(t))j(c

l
t−1

)j (definition of f l
t
in terms of zlf (t))

Note that for the second equality we took the chain rule with respect to the elements of clt,
because f l

t
affects cl

t
.
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Lemma 5. For l ∈ {1, . . . , L} and t ∈ {1, . . . , T},

δl
o(t) = δl

h(t) ◦ sigm
′(zlo(t)) ◦ tanh(c

l
t) (13)

Proof. We prove this element-wise. For any j = 1, . . . n:

δl
o(t)j =

∂L

∂zlo(t)j
(definition of δl

o(t))

=

n
∑

k=1

∂L

∂(hl
t
)k

∂(hl
t
)k

∂zlo(t)j
(chain rule)

=

n
∑

k=1

δl
h
(t)

k

∂

∂zlo(t)j

(

ol
t
◦ tanh(cl

t
)
)

k
(definition of δl

h
(t) and hl

t
)

= δl
h
(t)

j

∂

∂zlo(t)j

(

ol
t
◦ tanh(cl

t
)
)

j
(expression equals 0 except when k = j)

= δl
h
(t)

j
sigm′(zlo(t))j tanh(c

l
t
)j (definition of ol

t
in terms of zlo(t))

Note that for the second equality we took the chain rule with respect to the elements of hl
t
,

because ol
t
affects hl

t
.

Lemma 6. For l ∈ {1, . . . , L} and t ∈ {1, . . . , T},

δl

ĥ
(t) = δl

c(t) ◦ i
l
t ◦ tanh

′(zl
ĥ
(t)) (14)

Proof. We prove this element-wise. For any j = 1, . . . n:

δl

ĥ
(t)

j
=

∂L

∂zl
ĥ
(t)j

(definition of δl

ĥ
(t))

=

n
∑

k=1

∂L

∂(cl
t
)k

∂(cl
t
)k

∂zl
ĥ
(t)j

(chain rule)

=
n
∑

k=1

δl
c
(t)

k

∂

∂zl
ĥ
(t)j

(

f l
t
◦ cl

t−1
+ il

t
◦ ĥl

t

)

k
(definition of δl

c
(t) and cl

t
)

= δl
c(t)j

∂

∂zl
ĥ
(t)j

(

ilt ◦ ĥ
l
t

)

j
(expression equals 0 except when k = j)

= δl
c(t)j(i

l
t)j tanh

′(zl
ĥ
(t))j (definition of ĥl

t in terms of zl
ĥ
(t))

Note that for the second equality we took the chain rule with respect to the elements of cl
t
,

because ĥl
t
affects cl

t
.
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Lemma 7. For all l ∈ {1, . . . , L},

∂L

∂U l
i

=
T
∑

t=1

(hl−1

t )(δl
i
(t))⊤

∂L

∂V l
i

=
T
∑

t=1

(hl
t−1

)(δl
i
(t))⊤

∂L

∂U l
f

=

T
∑

t=1

(hl−1

t )(δl
f
(t))⊤

∂L

∂V l
f

=

T
∑

t=1

(hl
t−1

)(δl
f
(t))⊤

∂L

∂U l
o

=

T
∑

t=1

(hl−1

t )(δl
o(t))

⊤
∂L

∂V l
o

=

T
∑

t=1

(hl
t−1

)(δl
o(t))

⊤

∂L

∂U l

ĥ

=
T
∑

t=1

(hl−1

t )(δl

ĥ
(t))⊤

∂L

∂V l

ĥ

=
T
∑

t=1

(hl
t−1

)(δl

ĥ
(t))⊤

Proof. We will prove the identities for the input gate i only; the proofs for f , o and ĥ are
identical. First recall Definition 2 for the weighted input:

zli(t) = Uih
l−1

t + Vih
l
t−1

Now, for any j, k ∈ {1, . . . , n}, consider the effect of (U l
i )jk. It maps from the kth element

of hl−1

t to the jth element of zli(t), for all t. Therefore applying the chain rule we obtain

∂L

∂(U l
i )jk

=
T
∑

t=1

∂L

∂zli(t)j

∂zli(t)j
∂(U l

i )jk
(chain rule)

=

T
∑

t=1

δl
i
(t)

j
(hl−1

t )k (definition of δl
i
(t) and zli(t))

Therefore

∂L

∂(U l
i )

=
T
∑

t=1

(hl−1

t )(δl
i
(t))⊤ (15)

The expression for ∂L/∂V l
i is derived similarly, by noting that (V l

i )jk maps from the kth
element of hl

t−1
to the jth element of zli(t).

Corollary 1. For all l ∈ {1, . . . , L},









∂L/∂U l
i ∂L/∂V l

i

∂L/∂U l
f ∂L/∂V l

f

∂L/∂U l
o ∂L/∂V l

o

∂L/∂U l

ĥ
∂L/∂V l

ĥ









=
T
∑

t=1









δl
i
(t)

δl
f
(t)

δl
o
(t)

δl

ĥ
(t)









[

hl−1

t hl
t−1

]

(16)

Proof. This is simply a rearrangement of Lemma 7.
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3.3 Summary

Now we have derived all the necessary equations, we have an algorithm to calculate the
necessary error values for each LSTM block, and thus calculate the derivative of the loss
function with respect to our various weights.

For l ∈ {1, . . . , L− 1} and t ∈ {1, . . . , T}, we calculate δl
h
(t) as follows:

δl
h
(t) =

[

U⊤

i U⊤

f U⊤

o U⊤

ĥ
V ⊤

i V ⊤

f V ⊤

o V ⊤

ĥ

]



























δl
i
(t+ 1)

δl
f
(t + 1)

δl
o
(t+ 1)

δl

ĥ
(t + 1)

δ
l+1

i (t)

δ
l+1

f (t)
δl+1
o

(t)

δ
l+1

ĥ
(t)



























δl
c(t) = δl

c(t+ 1) ◦ f l
t+1 + δl

h(t) ◦ o
l
t ◦ tanh

′(clt)

δl
i
(t) = δl

c
(t) ◦ sigm′(zli(t)) ◦ ĥ

l
t

δl
o(t) = δl

h(t) ◦ sigm
′(zlo(t)) ◦ tanh(c

l
t)

δl
f
(t) = δl

c
(t) ◦ sigm′(zlf (t)) ◦ c

l
t−1

δl

ĥ
(t) = δl

c
(t) ◦ il

t
◦ tanh′(zl

ĥ
(t))

Note: if t = T then we take δl(t + 1) to be zero for i, f , o, ĥ and c. if l = L how do we
calculate δl

h
(t)?

Once we have calculated the above error values for all l and t, we can calculate the
derivative of the loss function with respect to our various weights. In particular, for l ∈
{1, . . . , L}:









∂L/∂U l
i ∂L/∂V l

i

∂L/∂U l
f ∂L/∂V l

f

∂L/∂U l
o ∂L/∂V l

o

∂L/∂U l

ĥ
∂L/∂V l

ĥ









=
T
∑

t=1









δl
i
(t)

δl
f
(t)

δl
o
(t)

δl

ĥ
(t)









[

hl−1

t hl
t−1

]

We then use these derivatives to apply gradient descent to U l and V l.

4 Random

δc(2)

δh(2)

δc(1)

δh(1)

δc += δhot tanh
′(ct)

δc = δc ◦ ft

δh += upper grad
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5 Other Recurrent Units

Different recurrent units:
RNN

ht = σ

(

T n×2n

[

xt

ht−1

])

(17)

T n×2n = [WxhWhh] (18)

ht = σ (Wxhxt +Whhht−1) (19)

∂ht

∂ht−1

= diag (σ′(. . .))Whh
⊤ (20)

∥

∥

∥

∥

∂ht

∂ht−1

∥

∥

∥

∥

≤ ‖diag (σ′(. . .))‖
∥

∥Whh
⊤
∥

∥ (21)

≤ γλ1 (22)

∥

∥

∥

∥

∂ht

∂ht−k

∥

∥

∥

∥

≤ (γλ1)
k → 0 if λ1 <

1

γ
(23)

∂ct
∂ct−1

= I (24)

GRU [Cho et al., 2014]
(

zt

rt

)

=

(

sigm
sigm

)

T 2n×2n

[

xt

ht−1

]

(25)

ĥt = tanh(Wxt + rt ◦Uht−1) (26)

ht = zt ◦ ht−1 + (1− zt) ◦ ĥt (27)

My unit (maybe we should try to implement this!)




it
ft

ĥt



 =





sigm
sigm
tanh



T 3n×2n

[

xt

ht−1

]

(28)

ht = ft ◦ ht−1 + it ◦ ĥt (29)
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am a student _ Je suis étudiant

Je suis étudiant _

I

Figure 1: NMT

6 Neural Machine Translation

[Sutskever et al., 2014]

6.1 Attention

Content-based

at = Attend(ht−1, h̄1...S) (30)

Location-based

at = Attend(ht−1,at−1) (31)

Hybrid

at = Attend(ht−1,at−1, h̄1...S) (32)

7 Conclusion and Future Work
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