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Chapter 1

Introduction

The Babel fish is small, yellow, leech-like, and probably the oddest thing in the

universe. It feeds on brainwave energy ... if you stick a Babel fish in your ear,

you can instantly understand anything in any form of language.

The Hitchhiker’s Guide to the Galaxy. Douglas Adams.

Human languages are diverse and rich in categories with about 6000 to 7000 languages

spoken worldwide.1 As civilization advances, the need for seamless communication and

understanding across languages becomes more and more crucial. Machine translation

(MT), the task of teaching machines to learn to translate automatically across languages,

as a result, is an important research area. MT has a long history [11] from the original

phiosophical ideas of universal languages in the seventeen century to the first practical

instances of MT in the twentieth century, e.g., one proposal by Weaver [28]. Despite sev-

eral excitement moments that led to hopes that MT will be solved “very soon”, e.g., the

701 translator2 developed by scientists at George Town and IBM in the 1950s or a simple

vector-space transformation technique3 proposed by Google researchers at the beginning of

1http://www.linguisticsociety.org/content/how-many-languages-are-
there-world

2http://www-03.ibm.com/ibm/history/exhibits/701/701_translator.html
3https://www.technologyreview.com/s/519581/how-google-converted-

language-translation-into-a-problem-of-vector-space-mathematics/

1

http://www.linguisticsociety.org/content/how-many-languages-are-there-world
http://www.linguisticsociety.org/content/how-many-languages-are-there-world
http://www-03.ibm.com/ibm/history/exhibits/701/701_translator.html
https://www.technologyreview.com/s/519581/how-google-converted-language-translation-into-a-problem-of-vector-space-mathematics/
https://www.technologyreview.com/s/519581/how-google-converted-language-translation-into-a-problem-of-vector-space-mathematics/
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: Machine translation (MT) – a general setup of MT. Systems build translation
models from parallel corpora to translate new unseen sentences, e.g., “She loves cute cats”.

the twenty-first century, MT remains to be an extremely challenging problem.4 To under-

stand why MT is difficult, let us trace through one “evolution” path of MT which crosses

through techniques that are used extensively in commercial MT systems.

Modern statistical MT started out with a seminal work by IBM scientists [3]. The

proposed technique requires minimal linguistic content and only needs a parallel corpus,

i.e., a set of pairs of sentences that are translations of one another, to train machine learn-

ing algorithms to tackle the translation problem. Such a language-independent setup is

illustrated in Figure 1.1 and remains to be the general approach for nowadays MT sys-

tems. For over twenty years since the IBM seminal paper, approaches in MT such as

[4, 5, 8, 13, 14, 15, 22], are, by and large, similar according to the following two-stage pro-

cess (see Figure 1.2). First, source sentences are broken into chunks which can be translated

in isolation by looking up a “dictionary”, or more formally a translation model. Translated

target words and phrases are then put together to form coherent and natural-sounding sen-

tences by consulting a language model (LM) on which sequences of words, i.e., n-grams,

are likely to go with one another.

Figure 1.2: Phrase-based machine translation (MT) – example of how phrase-based MT
systems translate a source sentence “She loves cute cats” into a target sentence “Elle aime
les chats mignons”: sentences are split into chunks and phrases are translated.

4http://www.huffingtonpost.com/nataly-kelly/why-machines-alone-
cannot-translation_b_4570018.html

http://www.huffingtonpost.com/nataly-kelly/why-machines-alone-cannot-translation_b_4570018.html
http://www.huffingtonpost.com/nataly-kelly/why-machines-alone-cannot-translation_b_4570018.html
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CHAPTER 1. INTRODUCTION 3

The aforementioned approach, while has been successfully deployed in many commer-

cial systems, does not work very well and suffers from the following two major drawbacks.

First, translation decisions are locally determined as we translate phrase-by-phrase and

long-distance dependencies are often ignored. Second, it is slightly “strange” that language

models (LMs), despite being a key component in the MT pipeline, utilize context informa-

tion that is both short, consisting of only a handful of previous words, and target-only, never

looking at the source words. These shortcomings in LMs gives rise to a new wave of hybrid

systems which aim to empower phrase-based MT with neural network components, most

notably neural language models (NLMs).

NLMs were first proposed by Bengio et al. [2] as a way to combat the “curse” of di-

mensionality suffered by traditional LMs. In traditional LMs, one has to explicitly store

and handle all possible n-grams occurred in a training corpus, the number of which quickly

becomes enormous. As a result, existing MT systems often limit themselves to use only

short, e.g., 5-gram, LMs [10], which capture little context and cannot generalize well to

unseen n-grams. NLMs address these concerns by using distributed representations of

words and not having to explicitly store all enumerations of words. As a result, many MT

systems, [18, 23, 27], inter alia, start adopting NLMs alongside with traditional LMs. To

make NLMs even more powerful, recent work [7, 24] propose to condition on source words

beside the target context to lower uncertainty in predicting next words (see Figure 1.3).5

Figure 1.3: Source-conditioned neural language model (NLM) – example of a source-
conditioned NLM proposed by Devlin et al. [7]. To evaluate a how likely a next word “rive”
is, the model not only relies on previous target words (context) “promenade le long de la”
as in traditional NLMs [2], but also utilizes source context “along the South Bank” to lower
uncertainty in its prediction.

5In [7], the authors have constructed a model that conditions on 3 target words and 11 source words,
effectively building a 15-gram LM.

Chris

Chris

Chris

Chris

Chris

Chris

Chris

Chris

Chris

Chris

Chris

Chris

Chris



CHAPTER 1. INTRODUCTION 4

These hybrid MT systems with NLM components, while having addressed shortcom-

ings of traditional phrase-based MT, still translate locally and fail to capture long-range

dependencies. For example, in Figure 1.3, the source-conditioned NLM does not see the

word “stroll”, or any other words outside of its fixed context windows, which can be useful

in deciding that the next word should be “bank” as in “river bank” rather “financial bank”.

More problematically, the entire MT pipeline is already complex with different compo-

nents needed to be tuned separatedly, e.g., translation models, language models, reordering

models, etc.; now, it becomes even worse as different neural components are incorporated.

Neural Machine Translation to the rescue!

Neural Machine Translation (NMT) is a new approach to translating text from one

language into another that captures long-range dependencies in sentences and generalizes

better to unseen texts. The core of NMT is a single deep neural network with hundreds

of millions of neurons that learn to directly map source sentences to target sentences [6,

12, 26]. This is often referred as the sequence-to-sequence or encoder-decoder approach.6

NMT is appealing since it is conceptually simple and can be trained end-to-end. NMT

translates as follows: an encoder reads through the given source words one by one until

the end, and then, a decoder starts emitting one target word at a time until a special end-of-

sentence symbol is produced. We illustrate this process in Figure 1.4.

am a student _ Je suis étudiant

Je suis étudiant _

I

Figure 1.4: Neural machine translation – example of a deep recurrent architecture pro-
posed by Sutskever et al. [26] for translating a source sentence “I am a student” into a target
sentence “Je suis étudiant”. Here, “ ” marks the end of a sentence.

6Forcada and Neco [9] wrote the very first paper on sequence-to-sequence models for translation!
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CHAPTER 1. INTRODUCTION 5

Such simplicity leads to several advantages. NMT requires minimal domain knowl-

edge: it only assumes access to sequences of source and target words as training data and

learns to directly map one into another. NMT beam-search decoders that generate words

from left to right can be easily implemented, unlike the highly intricate decoders in standard

MT [13]. Lastly, the use of recurrent neural networks (RNNs) allow NMT to generalize

well to very long word sequences while not having to explicitly store any gigantic phrase

tables or language models as in the case of standard MT.

Despite all these advantages and potentials, the early NMT architecture [6, 26] still has

many drawbacks. In this thesis, I will highlight three problems pertaining to the existing

NMT model, namely the vocabulary size, the sentence length, and the language complexity

issues. Each chapter is devoted to solving each of these problems in which I will describe

how I have pushed the limits of NMT, making it applicable to a wide variety of languages

with state-of-the-art performance such as English-French [20], English-German [16, 19],

and English-Czech [17]. Towards the future of NMT, I answer two questions: (1) whether

we can improve translation by jointly learning from a wide variety of sequence-to-sequence

tasks such as parsing, image caption generation, and auto-encoders or skip-thought vectors

[21]; and (2) whether we can compress NMT for mobile devices [25]. In brief, this thesis is

organized as follows. I start off by providing background knowledge on RNN and NMT in

Chapter 2. The aforementioned three problems and approaches for NMT future are detailed

in Chapters 3, 4, 5, and 6 respectively, which we will go through one by one next. Chapter 7

wraps up and discusses remaining challenges in NMT research.

Copy Mechanisms

A significant weakness in conventional NMT systems is their inability to correctly translate

very rare words: end-to-end NMTs tend to have relatively small vocabularies with a single

<unk> symbol that represents every possible out-of-vocabulary (OOV) word. In Chap-

ter 3, we propose simple and effective techniques to address this vocabulary size problem

through teaching NMT to “copy” words from source to target. Specifically, we train an

NMT system on data that is augmented by the output of a word alignment algorithm, al-

lowing the NMT system to emit, for each OOV word in the target sentence, the position of
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CHAPTER 1. INTRODUCTION 6

its corresponding word in the source sentence. This information is later utilized in a post-

processing step that translates every OOV word using a dictionary. Our experiments on the

WMT’14 English to French translation task show that this method provides a substantial

improvement of up to 2.8 BLEU points over an equivalent NMT system that does not use

this technique. With 37.5 BLEU points, our NMT system is the first to surpass the best

result achieved on a WMT’14 contest task.

Attention Mechanisms

While NMT can translate well for short- and medium-length sentences, it has a hard time

dealing with long sentences. An attentional mechanism was proposed by Bahdanau et al.

[1] to address that sentence length problem by selectively focusing on parts of the source

sentence during translation. However, there has been little work exploring useful archi-

tectures for attention-based NMT. Chapter 4 examines two simple and effective classes of

attentional mechanism: a global approach which always attends to all source words and a

local one that only looks at a subset of source words at a time. We demonstrate the effec-

tiveness of both approaches on the WMT translation tasks between English and German in

both directions. With local attention, we achieve a significant gain of 5.0 BLEU points over

non-attentional systems that already incorporate known techniques such as dropout. Our

ensemble model using different attention architectures yields a new state-of-the-art result in

the WMT’15 English to German translation task with 25.9 BLEU points, an improvement

of 1.0 BLEU points over the existing best system backed by NMT and an n-gram reranker.

Hybrid Models

Nearly all previous NMT work has used quite restricted vocabularies, perhaps with a subse-

quent method to patch in unknown words such as the copy mechanisms mentioned earlier.

While effective, the copy mechanims cannot deal with all the complexity of human lan-

guages such as rich morphology, neologisms, and informal spellings. Chapter 5 presents

a novel word-character solution to that language complexity problem towards achieving

open vocabulary NMT. We build hybrid systems that translate mostly at the word level

and consult the character components for rare words. Our character-level recurrent neural
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CHAPTER 1. INTRODUCTION 7

networks compute source word representations and recover unknown target words when

needed. The twofold advantage of such a hybrid approach is that it is much faster and eas-

ier to train than character-based ones; at the same time, it never produces unknown words

as in the case of word-based models. On the WMT’15 English to Czech translation task,

this hybrid approach offers an addition boost of +2.1−11.4 BLEU points over models that

already handle unknown words. Our best system achieves a new state-of-the-art result with

20.7 BLEU score. We demonstrate that our character models can successfully learn to

not only generate well-formed words for Czech, a highly-inflected language with a very

complex vocabulary, but also build correct representations for English source words.

NMT Future

Chapter 6 answers the two aforementioned questions for the future of NMT: whether we

can utilize other tasks to improve translation and whether we can compress NMT models.

For the first question, we examine three multi-task learning (MTL) settings for sequence

to sequence models: (a) the one-to-many setting – where the encoder is shared between sev-

eral tasks such as machine translation and syntactic parsing, (b) the many-to-one setting –

useful when only the decoder can be shared, as in the case of translation and image caption

generation, and (c) the many-to-many setting – where multiple encoders and decoders are

shared, which is the case with unsupervised objectives and translation. Our results show

that training on a small amount of parsing and image caption data can improve the transla-

tion quality between English and German by up to 1.5 BLEU points over strong single-task

baselines on the WMT benchmarks. Rather surprisingly, we have established a new state-

of-the-art result in constituent parsing with 93.0 F1 by utilizing translation data. Lastly, we

reveal interesting properties of the two unsupervised learning objectives, autoencoder and

skip-thought, in the MTL context: autoencoder helps less in terms of perplexities but more

on BLEU scores compared to skip-thought.

For the second question, we examine three simple magnitude-based pruning schemes to

compress NMT models, namely class-blind, class-uniform, and class-distribution, which

differ in terms of how pruning thresholds are computed for the different classes of weights

in the NMT architecture. We demonstrate the efficacy of weight pruning as a compression

technique for a state-of-the-art NMT system. We show that an NMT model with over 200
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CHAPTER 1. INTRODUCTION 8

million parameters can be pruned by 40% with very little performance loss as measured

on the WMT’14 English-German translation task. This sheds light on the distribution of

redundancy in the NMT architecture. Our main result is that with retraining, we can recover

and even surpass the original performance with an 80%-pruned model.
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[15] Percy Liang, Alexandre Bouchard-Côté, Dan Klein, and Ben Taskar. An end-to-end

discriminative approach to machine translation. In ACL, 2006.

[16] Minh-Thang Luong and Christopher D. Manning. Stanford neural machine translation

systems for spoken language domain. In IWSLT, 2015.

[17] Minh-Thang Luong and Christopher D. Manning. Achieving open vocabulary neural

machine translation with hybrid word-character models. In ACL, 2016.

[18] Minh-Thang Luong, Michael Kayser, and Christopher D. Manning. Deep neural lan-

guage models for machine translation. In CoNLL, 2015.

[19] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches

to attention-based neural machine translation. In EMNLP, 2015.

[20] Minh-Thang Luong, Ilya Sutskever, Quoc V. Le, Oriol Vinyals, and Wojciech

Zaremba. Addressing the rare word problem in neural machine translation. In ACL,

2015.

Chris

Chris



BIBLIOGRAPHY 17

[21] Minh-Thang Luong, Quoc V. Le, Ilya Sutskever, Oriol Vinyals, and Lukasz Kaiser.

Multi-task sequence to sequence learning. In ICLR, 2016.

[22] Franz Josef Och and Hermann Ney. A systematic comparison of various statistical

alignment models. 29(1):19–51, 2003.

[23] Holger Schwenk. Continuous space language models. Computer Speech and Lan-

guages, 21(3):492–518, 2007.

[24] Holger Schwenk. Continuous space translation models for phrase-based statistical

machine translation. In COLING, 2012.

[25] Abigail See, Minh-Thang Luong, and Christopher D. Manning. Compression of neu-

ral machine translation models via pruning. In CoNLL, 2016.

[26] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with

neural networks. In NIPS, 2014.

[27] Ashish Vaswani, Yinggong Zhao, Victoria Fossum, and David Chiang. Decoding with

large-scale neural language models improves translation. In EMNLP, 2013.

[28] Warren Weaver. Translation. In William N. Locke and A. Donald Boothe, editors,

Machine Translation of Languages, pages 15–23. MIT Press, Cambridge, MA, 1949.

Reprinted from a memorandum written by Weaver in 1949.


	Introduction
	Background
	Copy Mechanisms
	Attention Mechanisms
	Hybrid Models
	NMT Future
	Conclusion

