
NEURAL MACHINE TRANSLATION

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Minh-Thang Luong

August 2016

c© Copyright by Minh-Thang Luong 2016

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

(Christopher D. Manning) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

(Dan Jurafsky)

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

(Andrew Ng)

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

(Quoc V. Le)

iii

Approved for the Stanford University Committee on Graduate Studies

iv

Contents

1 Introduction 1

1.1 Machine Translation Development . 2

1.2 Thesis Outline . 5

2 Background 9

2.1 Recurrent Neural Network . 10

2.1.1 Recurrent Language Models . 12

2.1.2 Better Training RNNs . 16

2.2 Neural Machine Translation . 22

2.2.1 Testing . 27

3 Copy Mechanisms 30

4 Attention Mechanisms 31

5 Hybrid Models 32

6 NMT Future 33

7 Conclusion 34

A Miscellaneous 35

v

List of Tables

vi

List of Figures

1.1 A general setup of machine translation . 2

1.2 Phrase-based machine translation . 2

1.3 Source-conditioned neural probabilistic language models 4

1.4 Neural machine translation . 5

2.1 Recurrent neural networks . 11

2.2 Recurrent language models . 12

2.3 Neural machine translation . 23

2.4 Neural machine translation . 28

vii

Chapter 1

Introduction

The Babel fish is small, yellow, leech-like, and probably the oddest thing in the

universe. It feeds on brainwave energy ... if you stick a Babel fish in your ear,

you can instantly understand anything in any form of language.

The Hitchhiker’s Guide to the Galaxy. Douglas Adams.

Human languages are diverse and rich in categories with about 6000 to 7000 languages

spoken worldwide.1 As civilization advances, the need for seamless communication and

understanding across languages becomes more and more crucial. Machine translation

(MT), the task of teaching machines to learn to translate automatically across languages,

as a result, is an important research area. MT has a long history [26] from the original

phiosophical ideas of universal languages in the seventeen century to the first practical

instances of MT in the twentieth century, e.g., one proposal by Weaver [67]. Despite sev-

eral excitement moments that led to hopes that MT will be solved “very soon”, e.g., the

701 translator2 developed by scientists at George Town and IBM in the 1950s or a simple

vector-space transformation technique3 proposed by Google researchers at the beginning of

the twenty-first century, MT remains to be an extremely challenging problem.4 To under-

stand why MT is difficult, let us trace through one “evolution” path of MT which crosses

1http://www.linguisticsociety.org/content/how-many-languages-are-there-world
2http://www-03.ibm.com/ibm/history/exhibits/701/701_translator.html
3https://www.technologyreview.com/s/519581/how-google-converted-language-translatio
4http://www.huffingtonpost.com/nataly-kelly/why-machines-alone-cannot-translati

1

http://www.linguisticsociety.org/content/how-many-languages-are-there-world
http://www-03.ibm.com/ibm/history/exhibits/701/701_translator.html
https://www.technologyreview.com/s/519581/how-google-converted-language-translation-into-a-problem-of-vector-space-mathematics/
http://www.huffingtonpost.com/nataly-kelly/why-machines-alone-cannot-translation_b_4570018.html

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Machine translation (MT) – a general setup of MT. Systems build translation

models from parallel corpora to translate new unseen sentences, e.g., “She loves cute cats”.

through techniques that are used extensively in commercial MT systems.

1.1 Machine Translation Development

Modern statistical MT started out with a seminal work by IBM scientists [8]. The proposed

technique requires minimal linguistic content and only needs a parallel corpus, i.e., a set of

pairs of sentences that are translations of one another, to train machine learning algorithms

to tackle the translation problem. Such a language-independent setup is illustrated in Fig-

ure 1.1 and remains to be the general approach for nowadays MT systems. For over twenty

years since the IBM seminal paper, approaches in MT such as [9, 10, 13, 31, 32, 33, 50],

are, by and large, similar according to the following two-stage process (see Figure 1.2).

First, source sentences are broken into chunks which can be translated in isolation by look-

ing up a “dictionary”, or more formally a translation model. Translated target words and

phrases are then put together to form coherent and natural-sounding sentences by consult-

ing a language model (LM) on which sequences of words, i.e., n-grams, are likely to go

with one another.

Figure 1.2: Phrase-based machine translation (MT) – example of how phrase-based MT

systems translate a source sentence “She loves cute cats” into a target sentence “Elle aime

les chats mignons”: sentences are split into chunks and phrases are translated.

CHAPTER 1. INTRODUCTION 3

The aforementioned approach, while has been successfully deployed in many commer-

cial systems, does not work very well and suffers from the following two major drawbacks.

First, translation decisions are locally determined as we translate phrase-by-phrase and

long-distance dependencies are often ignored. Second, it is slightly “strange” that language

models (LMs), despite being a key component in the MT pipeline, utilize context informa-

tion that is both short, consisting of only a handful of previous words, and target-only, never

looking at the source words. These shortcomings in LMs gives rise to a new wave of hybrid

systems which aim to empower phrase-based MT with neural network components, most

notably neural probabilistic language models (NPLMs).

NPLMs were first proposed by Bengio et al. [5] as a way to combat the “curse” of

dimensionality suffered by traditional LMs. In traditional LMs, one has to explicitly store

and handle all possible n-grams occurred in a training corpus, the number of which quickly

becomes enormous. As a result, existing MT systems often limit themselves to use only

short, e.g., 5-gram, LMs [23], which capture little context and cannot generalize well to

unseen n-grams. NPLMs address these concerns by using distributed representations of

words and not having to explicitly store all enumerations of words. As a result, many MT

systems, [37, 56, 65], inter alia, start adopting NPLMs alongside with traditional LMs. To

make NPLMs even more powerful, recent work [1, 12, 57, 59] propose to condition on

source words beside the target context to lower uncertainty in predicting next words (see

Figure 1.3).5

These hybrid MT systems with NPLM components, while having addressed shortcom-

ings of traditional phrase-based MT, still translate locally and fail to capture long-range

dependencies. For example, in Figure 1.3, the source-conditioned NPLM does not see the

word “stroll”, or any other words outside of its fixed context windows, which can be useful

in deciding that the next word should be “bank” as in “river bank” rather “financial bank”.

More problematically, the entire MT pipeline is already complex with different compo-

nents needed to be tuned separatedly, e.g., translation models, language models, reordering

models, etc.; now, it becomes even worse as different neural components are incorporated.

Neural Machine Translation to the rescue!

5In [12], the authors have constructed a model that conditions on 3 target words and 11 source words,

effectively building a 15-gram LM.

CHAPTER 1. INTRODUCTION 4

Figure 1.3: Source-conditioned neural probabilistic language models (NPLMs) – ex-

ample of a source-conditioned NPLM proposed by Devlin et al. [12]. To evaluate a how

likely a next word “rive” is, the model not only relies on previous target words (context)

“promenade le long de la” as in traditional NPLMs [5], but also utilizes source context

“along the South Bank” to lower uncertainty in its prediction.

Neural Machine Translation (NMT) is a new approach to translating text from one

language into another that captures long-range dependencies in sentences and generalizes

better to unseen texts. The core of NMT is a single deep neural network with hundreds

of millions of neurons that learn to directly map source sentences to target sentences [11,

29, 63]. This is often referred as the sequence-to-sequence or encoder-decoder approach.6

NMT is appealing since it is conceptually simple and can be trained end-to-end. NMT

translates as follows: an encoder reads through the given source words one by one until

the end, and then, a decoder starts emitting one target word at a time until a special end-of-

sentence symbol is produced. We illustrate this process in Figure 1.4.

Such simplicity leads to several advantages. NMT requires minimal domain knowl-

edge: it only assumes access to sequences of source and target words as training data and

learns to directly map one into another. NMT beam-search decoders that generate words

from left to right can be easily implemented, unlike the highly intricate decoders in standard

MT [31]. Lastly, the use of recurrent neural networks (RNNs) allow NMT to generalize

well to very long word sequences while not having to explicitly store any gigantic phrase

tables or language models as in the case of standard MT.

6Forcada and Neco [17] wrote the very first paper on sequence-to-sequence models for translation!

CHAPTER 1. INTRODUCTION 5

Figure 1.4: Neural machine translation – example of a deep recurrent architecture pro-

posed by Sutskever et al. [63] for translating a source sentence “I am a student” into a target

sentence “Je suis étudiant”. Here, “ ” marks the end of a sentence.

1.2 Thesis Outline

Despite all the aforementioned advantages and potentials, the early NMT architecture [11,

63] still has many drawbacks. In this thesis, I will highlight three problems pertaining to the

existing NMT model, namely the vocabulary size, the sentence length, and the language

complexity issues. Each chapter is devoted to solving each of these problems in which I will

describe how I have pushed the limits of NMT, making it applicable to a wide variety of

languages with state-of-the-art performance such as English-French [39], English-German

[35, 38], and English-Czech [36]. Towards the future of NMT, I answer two questions: (1)

whether we can improve translation by jointly learning from a wide variety of sequence-

to-sequence tasks such as parsing, image caption generation, and auto-encoders or skip-

thought vectors [40]; and (2) whether we can compress NMT for mobile devices [58]. In

brief, this thesis is organized as follows. I start off by providing background knowledge

on RNN and NMT in Chapter 2. The aforementioned three problems and approaches for

NMT future are detailed in Chapters 3, 4, 5, and 6 respectively, which we will go through

one by one next. Chapter 7 wraps up and discusses remaining challenges in NMT research.

Copy Mechanisms

A significant weakness in conventional NMT systems is their inability to correctly translate

very rare words: end-to-end NMTs tend to have relatively small vocabularies with a single

CHAPTER 1. INTRODUCTION 6

<unk> symbol that represents every possible out-of-vocabulary (OOV) word. In Chap-

ter 3, we propose simple and effective techniques to address this vocabulary size problem

through teaching NMT to “copy” words from source to target. Specifically, we train an

NMT system on data that is augmented by the output of a word alignment algorithm, al-

lowing the NMT system to emit, for each OOV word in the target sentence, the position of

its corresponding word in the source sentence. This information is later utilized in a post-

processing step that translates every OOV word using a dictionary. Our experiments on the

WMT’14 English to French translation task show that this method provides a substantial

improvement of up to 2.8 BLEU points over an equivalent NMT system that does not use

this technique. With 37.5 BLEU points, our NMT system is the first to surpass the best

result achieved on a WMT’14 contest task.

Attention Mechanisms

While NMT can translate well for short- and medium-length sentences, it has a hard time

dealing with long sentences. An attentional mechanism was proposed by Bahdanau et al.

[2] to address that sentence length problem by selectively focusing on parts of the source

sentence during translation. However, there has been little work exploring useful archi-

tectures for attention-based NMT. Chapter 4 examines two simple and effective classes of

attentional mechanism: a global approach which always attends to all source words and a

local one that only looks at a subset of source words at a time. We demonstrate the effec-

tiveness of both approaches on the WMT translation tasks between English and German in

both directions. With local attention, we achieve a significant gain of 5.0 BLEU points over

non-attentional systems that already incorporate known techniques such as dropout. Our

ensemble model using different attention architectures yields a new state-of-the-art result in

the WMT’15 English to German translation task with 25.9 BLEU points, an improvement

of 1.0 BLEU points over the existing best system backed by NMT and an n-gram reranker.

Hybrid Models

Nearly all previous NMT work has used quite restricted vocabularies, perhaps with a subse-

quent method to patch in unknown words such as the copy mechanisms mentioned earlier.

CHAPTER 1. INTRODUCTION 7

While effective, the copy mechanims cannot deal with all the complexity of human lan-

guages such as rich morphology, neologisms, and informal spellings. Chapter 5 presents

a novel word-character solution to that language complexity problem towards achieving

open vocabulary NMT. We build hybrid systems that translate mostly at the word level

and consult the character components for rare words. Our character-level recurrent neural

networks compute source word representations and recover unknown target words when

needed. The twofold advantage of such a hybrid approach is that it is much faster and eas-

ier to train than character-based ones; at the same time, it never produces unknown words

as in the case of word-based models. On the WMT’15 English to Czech translation task,

this hybrid approach offers an addition boost of +2.1−11.4 BLEU points over models that

already handle unknown words. Our best system achieves a new state-of-the-art result with

20.7 BLEU score. We demonstrate that our character models can successfully learn to

not only generate well-formed words for Czech, a highly-inflected language with a very

complex vocabulary, but also build correct representations for English source words.

NMT Future

Chapter 6 answers the two aforementioned questions for the future of NMT: whether we

can utilize other tasks to improve translation and whether we can compress NMT models.

For the first question, we examine three multi-task learning (MTL) settings for sequence

to sequence models: (a) the one-to-many setting – where the encoder is shared between sev-

eral tasks such as machine translation and syntactic parsing, (b) the many-to-one setting –

useful when only the decoder can be shared, as in the case of translation and image caption

generation, and (c) the many-to-many setting – where multiple encoders and decoders are

shared, which is the case with unsupervised objectives and translation. Our results show

that training on a small amount of parsing and image caption data can improve the transla-

tion quality between English and German by up to 1.5 BLEU points over strong single-task

baselines on the WMT benchmarks. Rather surprisingly, we have established a new state-

of-the-art result in constituent parsing with 93.0 F1 by utilizing translation data. Lastly, we

reveal interesting properties of the two unsupervised learning objectives, autoencoder and

skip-thought, in the MTL context: autoencoder helps less in terms of perplexities but more

on BLEU scores compared to skip-thought.

CHAPTER 1. INTRODUCTION 8

For the second question, we examine three simple magnitude-based pruning schemes to

compress NMT models, namely class-blind, class-uniform, and class-distribution, which

differ in terms of how pruning thresholds are computed for the different classes of weights

in the NMT architecture. We demonstrate the efficacy of weight pruning as a compression

technique for a state-of-the-art NMT system. We show that an NMT model with over 200

million parameters can be pruned by 40% with very little performance loss as measured

on the WMT’14 English-German translation task. This sheds light on the distribution of

redundancy in the NMT architecture. Our main result is that with retraining, we can recover

and even surpass the original performance with an 80%-pruned model.

Chapter 2

Background

For neural machine translation, it all started from language modeling.

Thang Luong.

Language modeling plays an indispensable role in ensuring that machine translation

systems produce fluent target sentences and has always been an active area of research.

Despite much effort in improving traditional n-gram language models [16, 23, 24, 52, 54,

60, 64], traditional LMs inherently can only handle short contexts of a few words. Ap-

proaches to building neural probabilistic language models (NPLMs) using feed-forward

networks such as those initiated by Bengio et al. [5] and enhanced by others [3, 47, 48, 49]

have addressed that drawback to model longer contexts. Still, NPLMs can only capture

fixed-length contexts and is incapable of handling variable-length sequences, which is the

case for sentences. Recurrent neural networks (RNNs) come in handy as a powerful and

expressive architecture to handle sequential data and have successfully been applied to

the language modeling task [43, 44, 45]. By viewing RNNs as generative models [62]

that can produce texts and by pushing another step towards conditioning RNNs on source

sentences, recent works [11, 29, 63] have started a new line of resesarch in machine transla-

tion, namely Neural Machine Translation (NMT). NMT is technically a source-conditioned

NPLM that can be trained end-to-end.

In this chapter, we provide background knowledge on two main topics, RNN and NMT.

9

CHAPTER 2. BACKGROUND 10

We first go through the basics of RNNs, explaining how they can be used to model sen-

tences. Then, we delve into details of one particular type of RNNs, the Long Short-term

Memory, that makes training RNNs easier. Given RNNs as a building block, we discuss

NMT together with tips and tricks for better training and testing NMT.

2.1 Recurrent Neural Network

Recurrent Neural Network (RNNs) [15] are models that help understand the temporal as-

pect as well as build up representations for sequential data using a dynamic memory struc-

ture. At the surface form, an RNN takes as input a sequence of vectors x1,x2, . . . ,xn and

processes them one by one. For each new input xi, an RNN updates its memory to produce

a hidden state hi which one can think of as a representation for the partial sequence x1,i.

The beauty of RNNs lies in the fact that it can capture the dynamics of an arbitrarily long

sequence without having to increase its modeling capacity unlike the case of feedforward

network which can only model relationship within a fixed-length sequence. The key secret

sauce is in the recurrence formula of an RNN that defines how its hidden state is updated.

At its simplest form, a “vanilla” RNN defines its recurrence function as:

ht = f (xt,ht−1) (2.1)

In the above formula, f is an abstract function that computes a new hidden state given the

current input xt and the previous hidden state ht−1. The starting state h0 is often set to 0

though it can take any value as we will see later in the context of NMT decoders. A popular

choice of f is provided below with σ being a non-linear function such as sigmoid or tanh.1

ht = σ(Wxhxt +Whhht−1) (2.2)

At each timestep t, an RNN can (optionally) emit an output symbol yt which can either

be discrete or real-valued. For the discrete scenario, which is often the case for languages,

1There could also be an optional bias term in Eq. (2.2).

CHAPTER 2. BACKGROUND 11

a probability distribution p over a set of output classes Y is derived as follows2:

st = Whyht (2.3)

pt = softmax(st) (2.4)

Here, we introduce a new set of weights Why ∈ R
|Y |×d, with d being the dimension of the

RNN hidden state, to compute a score vector st, or logits, over different individual classes.

Often, with a large output set Y , the matrix-vector multiplication in Eq. (2.3) is a major

computational bottleneck in RNNs, which results in several challenges for neural language

modeling and machine translation that we will address in later chapters. The softmax

function transforms the score vector st into a probability vector pt, which is defined for

each specific element y ∈ Y as below. For convenience, we overload our notations to use

pt(y) and st(y) to refer to entries in the vectors pt and st that correspond to y.

pt(y) =
est(y)

∑

y′∈Y est(y′)
(2.5)

With the above formulas, we have completely defined the RNN weight set θ which

consists of input connections Wxh, recurrent connections Whh, and output connections

Why. These weights are shared across timesteps as illustrated in Figure 2.1 Draw a picture

on general RNNs, which enables RNNs to handle arbitrarily long sequences.

Whh

Wxh

Figure 2.1: Recurrent neural networks – example of a recurrent neural network that

processes a sequence of input words “I am a student” to build up hidden representations

as input symbols are consumed. The recurrent Whh and feed-forward Wxh weights are

shared across timesteps.

2For the real-valued case, we refer readers to mixture density models [7] which have been applied to RNN

training, e.g., for hand-writing synthesis [19].

CHAPTER 2. BACKGROUND 12

Next, we discuss the training and testing phases of RNNs from a slightly more focused

angle, the language learning aspect. For more details on RNNs, we refer readers to the

following resources [30, 42, 61].

2.1.1 Recurrent Language Models

To apply RNNs to sentences in languages, or generally sequences of discrete symbols, one

can consider one-hot representations xi ∈ R
|V |, with V being the vocabulary considered.

However, for a large vocabulary V , such a representation choice is problematic as it results

in a large weight matrix Wxh and there is no notion of similarity between words. In prac-

tice, low-dimensional dense representations for words, or word embeddings, are often used

to address these problems. Specifically, an embedding matrix We ∈ R
de×|V | is looked up

for each word xi to retrieve a representation xi ∈ R
de . As a result, a simple RNN applied

to language modeling will generally have θ = {Wxh,Whh,Why,We} as its weights as

illustrated in Figure 2.2 Draw an RNN with embedding.

Whh

Wxh

Figure 2.2: Recurrent language models – example of a recurrent neural network that

processes a sequence of input words “I am a student” to build up hidden representations

as input symbols are consumed. The recurrent Whh and feed-forward Wxh weights are

shared across timesteps.

In language modeling (LM), the task is to specify a probability distribution over se-

quences of symbols (often, words) so that one can judge if a sequence of words is more

likely or “fluent” than another. To accomplish that, an LM decomposes the probability of a

word sequence y = y1, . . . , ym as:

p(y) =
m
∏

i=1

p(yi|y<i) (2.6)

CHAPTER 2. BACKGROUND 13

In the above formula, each of the individual term p(yi|y<i) is the conditional probability

of the current word yi given previous words y<i, also referred as the context or the history.

To model these conditional probabilities, traditional n-gram as well as feedforward-based

neural language models have to resort to the Markovian assumption to model only a fixed

window of context, i.e., p(yi|yi−n+1, . . . , yi−1). An RNN-based language model naturally

lends itself to model the full history as we shall see now.

An RNN-based language model (RNNLM) is a special case of RNNs in which: (a)

the input and output are sequences of discrete words, (b) the output sequence ends with

a special symbol <eos> that marks the boundary, e.g., y = { “I”, “am”, “a”, “student”,

<eos>}, and (c) the input sequence is a shift-by-1 version of the output sequence with

<sos> as a starting symbol, e.g., x = {<sos>, “I”, “am”, “a”, “student”}. We illustrate

this in Figure 2.2.

Training Given a training dataset of N discrete output sequences y(1), . . . , y(N) with

lengths m1, . . . , mN accordingly. The learning objective is to minimize the negative log-

likelihood, or the cross-entropy loss, of these training examples:

J(θ) =
N
∑

i=1

− log p
(

y(i)
)

(2.7)

=

N
∑

i=1

mi
∑

t=1

− log p
(

y
(i)
t |y

(i)
<t

)

(2.8)

RNN learning is often done using mini-batch stochastic gradient descent (SGD) algo-

rithms in which a small set of training examples, a mini-batch, is used to compute the

gradients and update weights one at a time. Using mini-batches has several advantages: (a)

the gradients are more reliable and consistent than the “online” setting which updates per

example, (b) less computation is required to update the weights unlike the case of full-batch

learning which has to process all examples before updating, and (c) with multiple examples

in a mini-batch, one can turn matrix-vector multiplications such as those in Eq. (2.2) and

Eq. (2.3) into matrix-matrix multiplications which can be deployed efficiently on GPUs.

CHAPTER 2. BACKGROUND 14

The simplest weight update formula with η as a learning rate is given below:

θ ←− θ − η∇J(θ) (2.9)

Single-timestep Backpropagation To compute the gradients for the loss J(θ), we first

need to be able to derive the gradients of the per-timestep loss lt = logpt(yt) with re-

spect to both the RNN weights {Wxh,Whh,Why} and the inputs {xt,ht−1}. We de-

note these gradients as {dWxh, dWhh, dWhy, dxt, dht−1} respectively and define inter-

mediate gradients dst, dht similarly. Starting with the loss lt, we employ backpropaga-

tion through structures [18] to derive each gradient one by one in the following order:

lt → st → {ht,Why} → {xt,ht−1,Wxh,Whh}. To simplify the math, we will utilize

several lemmas and corollaries provided in Appendix A.

First, from Eq. (2.5), we have:

dst =
∂lt

∂st
=

∂

∂st

(

st(yt)− log
∑

y′

est(y
′)

)

(2.10)

Computing per-coordinate gradient st(y) gives:

∂

∂st(y)

(

st(yt)− log
∑

y′

est(y
′)

)

=

1− pt(yt) y = yt

−pt(y) y 6= yt

(2.11)

The above gradients can be concisely written in vector form as:

dst = 1yt − pt (2.12)

Here, pt is the probability distribution defined in Eq. (2.4) and has been calculated in the

forward pass, so we simply reuse it. 1yt is a one-hot vector with 1 at position yt. Applying

Corollary 1, noting that st = Whyht in Eq. (2.3), we arrive at:

dht = W⊤
hy · dst (2.13)

dWhy = dst · h
⊤
t (2.14)

CHAPTER 2. BACKGROUND 15

At this point, we have derived part of the backpropation procedure which can be applied

to any hidden unit type, e.g., the aforementioned vanilla RNN or the LSTM unit that we

will describe shortly in the next section.

Vanilla RNN Backpropagation First of all, we can simplify the notation to have

T rnn=[WxhWhh] and zt=[xt;ht−1], so the RNN formulation in Eq. (2.2) becomes:

ht = σ (T rnnzt) (2.15)

Applying Lemma 2, we have:

dzt = T⊤
rnn · (σ

′(T rnnzt) ◦ dht) (2.16)

dT rnn = (σ′(T rnnzt) ◦ dht) · z
⊤
t (2.17)

This is one of the tricks that we use to better utilize GPUs by creating larger matrices

and vectors, i.e., T rnn and zt. From Eq. (2.16) and Eq. (2.17), one can easily extract the

following gradients: (a) dxt – embedding gradients which we use to sparsely update the

embedding weights We, (b) dht−1 – gradients of the previous hidden state, which is needed

by the backpropagation-through-time algorithm that we will discuss next, and (c) dWxh as

well as dWhh – the RNN input and recurrent connections.3

Backpropagation Through Time (BPTT) Having defined a single-timestep backpropa-

gation procedure, we are now ready to go through the BPTT algorithm [55, 68]. Inspired by

Sutskever [61], we summarize the BPTT algorithm for RNNs below with the following re-

marks: (a) Lines 3, 5, 6, 7 accumulate the gradients of RNN weights {Why,Wxh,Whh,We}

3One can also separately derive these gradients as follows:

dxt = W⊤

xh · (σ
′(T rnnzt) ◦ dht) (2.18)

dht−1 = W⊤

hh · (σ
′(T rnnzt) ◦ dht) (2.19)

dWxh = (σ′(T rnnzt) ◦ dht) · x
⊤

t
(2.20)

dWhh = (σ′(T rnnzt) ◦ dht) · h
⊤

t−1
(2.21)

CHAPTER 2. BACKGROUND 16

over time; (b) In line 7, dxt refers to gradients of words participating in the current mini-

batch which we use to sparsely update We;
4 and (c) Line 4 accumulates gradients for the

current hidden state ht by considering two paths, a “vertical” one from the current loss at

time t and a “recurrent” one from the timestep t + 1 which was set in Line 8 earlier.

Algorithm 1: BPTT algorithm for “vanilla” RNNs

1 for t = T → 1 do

// Output backprop

2 dst ← 1yt − pt

3 dWhy ← dWhy + dst · h
⊤
t

4 dht ← dht +W⊤
hy · dst

// RNN backprop

5 dWxh ← dWxh + (σ′(T rnnzt) ◦ dht) · x
⊤
t

6 dWhh ← dWhh + (σ′(T rnnzt) ◦ dht) · h
⊤
t−1

// Input backprop

7 dxt ←W⊤
xh · (σ

′(T rnnzt) ◦ dht)
8 dht−1 ←W⊤

hh · (σ
′(T rnnzt) ◦ dht)

9 end

2.1.2 Better Training RNNs

Even though computing RNN gradients is straightforward once the BPTT algorithm has

been plotted out, training is inherently difficult due to the nonlinear iterative nature of

RNNs. Among all reasons, the two classic problems of RNNs that often arise when dealing

with very long sequences are the exploding and vanishing gradients as described by Bengio

et al. [4]. In short, exploding gradients refers to the phenomenon that the gradients become

exponentially large as we backpropagate over time, making learning unstable. Vanishing

gradients, on the other hand, is the opposite problem when the gradients go exponentially

fast towards zero, turning BPTT into truncated BPTT that is unable to capture long-range

dependencies in sequences.

Let us try to explain the aforementioned problems informally and refer readers to more

4In multi-layer RNNs, dxt is used to send gradients down to the below layers.

CHAPTER 2. BACKGROUND 17

rigorous and in-depth analyses in [4, 25, 41, 51]. The main cause of these two prob-

lems all lies in Line 8 of the BPTT algorithm which can be rewritten as dht−1 = W⊤
hh ·

diag (σ′(T rnnzt)) ·dht (see Lemma 1). We can try to understand the behavior of RNNs over

time by assuming for a moment that there is no contribution from intermediate losses, i.e.,

Line 4 is “ignored”. Given such an assumption, a signal backpropagated from the current

hidden state over K steps will become dht−K =
∏K

i=1

(

W⊤
hh · diag (σ′(T rnnzt−i+1))

)

· dht.

Assuming that the non-linear function σ is bounded, e.g., sigm and tanh, and behaves

“nicely”, what we need to deal with now is the multiplication of the recurrent matrix over

time. This leads to the fact that the behavior of RNNs is often governed by the character-

istics of the recurrent matrix Whh and most analyses examine in terms of the largest eigen

value of Whh as well as the norms of these signals. Roughly speaking, if the largest eigen

value is large enough, exploding gradients will be likely to happen. On the contrary, if the

largest eigen value is below a certain threshold, vanishing gradients will occur as clearly

explained by Pascanu et al. [51].

Gradient Clipping In practice, it is generally easy to cope with the exploding gradient

problem by applying different forms of gradient clipping. The first approach was proposed

by Mikolov [42] through the form of temporal element-wise clipping. At each timestep

during backpropagation, any elements of dh that are greater than a positive threshold τ or

smaller than -τ will be set to τ or -τ respectively. One can also perform gradient norm

clipping as suggested by Pascanu et al. [51]. The idea is simple: given a final gradient

vector g computed per mini-batch, if its norm ||g|| is greater than a threshold τ , then we

will use the following scaled gradient τ
||g||

g instead. The latter approach has been widely

used in many systems nowadays and can also be used in conjunction with the former. We

take the combined approach in our implementations described later in this thesis.

Long Short-Term Memory The vanishing gradient problem, on the other hand, is more

challenging to tackle. There have been many proposed approaches to alleviate the problem

such as skip connections [34, 66], hierarchical architectures [14], leaky integrators [27],

CHAPTER 2. BACKGROUND 18

second-order methods [41], and regularization [51], to name a few; also, see [6] for a com-

parison of some of these techniques. Among all, Long Short-term Memory (LSTM), in-

vented by Hochreiter and Schmidhuber [25], appears to be one of the most widely adopted

solutions to the vanishing gradient problem. Graves and colleagues deserve credit for pop-

ularizing LSTM through a series of work [19, 20, 21]. The key idea of LSTM is to augment

RNNs with linear memory units that allow the gradient to flow smoothly through time. In

addition, there are gating units that control how much an RNN wants to reuse memory

(forget gates), receive input signal (input gates), and extract information (output gates) at

each timestep. There are many implementation instances of LSTM, differing in terms of

whether and which biases are used, how gates are built, etc; however, it turns out that these

different choices do not matter much for most cases [22, 28]. As such, in this section and

through out this thesis, we will stick to the formulation described in [69].

Instead of jumping directly into the detailed formulation, let us provide intuitions on

how to gradually build up an LSTM architecture. First, we can construct a simple memory

unit as follows:

ct = ct−1 + σ (Wxhxt +Whhht−1)) (2.22)

ht = ct (2.23)

This architecture can be viewed as a form of “leaky” integration mentioned in [6, 61]

since it is equivalent to ht = ht−1 + σ(Wxhxt + Whhht−1). Training this network over

long sequences is easy since among the exponentially many backpropagation paths, there

is exactly one path that goes through all the memory units ci (i = 1, T) and is guaranteed

to not vanish since dct = dct−1 along that path.

Such architecture, however, does not account for the fact that certain inputs, e.g., func-

tion words or punctuations, are, sometimes, not relevant to the task at hand and should be

downweighted. Occasionally, we might also want to reset the memory, e.g., at the begin-

ning of each sentence in a paragraph. To add more flexibility and power to this architecture,

CHAPTER 2. BACKGROUND 19

the LSTM adds forget, input, and output gates as follows:

ct = ft ◦ ct−1 + it ◦ σ (Wxhxt +Whhht−1) (2.24)

ht = ot ◦ σ (ct)) (2.25)

We note that, in Eq. (2.25), the memory cell ct is passed through a nonlinear function

σ before the output gate ot is used to extract relevant information in the hope for better

information retrieval. As an evidence, Greff et al. [22] have shown that such a output

nonlinearity is critical to the performance of an LSTM. Moving on, to ensure that the gates

are adaptive, we build them from the information given by the current input xt and the

previous hidden state ht−1. We also want the gates to be in [0, 1], so sigm will be used.

All of these desiderata lead to the below LSTM formulation described in [69] in which σ

is chosen to be tanh:

it

ft

ot

ĥt

=

sigm

sigm

sigm

tanh

WxiWhi

WxfWhf

WxoWho

WxhWhh

[

xt

ht−1

]

(2.26)

ct = ft ◦ ct−1 + it ◦ ĥt (2.27)

ht = ot ◦ tanh(ct) (2.28)

Following the same spirit as Eq. (2.15), we can be GPU-efficient with Eq. (2.26) since

the 8 different submatrices is grouped into a single big matrix, which we call T lstm. Let

zt = [xt;ht−1], what we do is first multiply T lstmzt and then apply different non-linear

functions to corresponding parts of the output. For the ease of deriving backpropagation

equations later, we can rewrite Eq. (2.26) as:

ut = g(T lstmzt) (2.29)

= g(T xxt + T hht−1) (2.30)

Here, g is a non-linear function applied element-wise and we define g loosely in the sense

that it uses tanh only for the vector part corresponding to ĥt and sigm for the rest.

CHAPTER 2. BACKGROUND 20

LSTM Training In the LSTM training pipeline, there are many components that are

exactly the same or very similar to RNN training. We will now highlight some key differ-

ences. First of all, LSTM extends the recurrence function to have not just the hidden states

but also the memory cells as both inputs and outputs. The definition is as below:

(ht, ct) = f (xt,ht−1, ct−1) (2.31)

In our case, the abstract function f is implemented by Eq. 2.26-2.28. Once ht is computed,

the prediction process is the same as that of RNNs which is given by Eq. 2.3-2.5. The

training objective in Eq. (2.8) remains unchanged as well.

LSTM Backpropagation Since the prediction procedure is the same, LSTM backpropa-

gation pipeline mimics that of RNNs up to Eq. (2.13) and Eq. (2.14), which computes dht

and dWhy respectively.

Given dht, we now work backwark to derive other gradients. First, starting from

Eq. (2.28) and by applying Lemma 3, we have:

dot = tanh(ct) ◦ dht (2.32)

dct = tanh′(ct) ◦ ot ◦ dht (2.33)

Before backpropagating Eq. (2.27), once must remember to update dct with the gradient

sent back from ct+1, which is accomplished by Lines 6 and 10 of Algorithm 2. Given the

updated dct, we apply Corollary 2 to derive:

dft = ct−1 ◦ dct (2.34)

dct−1 = ft ◦ dct (2.35)

dit = ĥt ◦ dct (2.36)

dĥt = it ◦ dct (2.37)

CHAPTER 2. BACKGROUND 21

Let dut = [dit; dft; dot; dĥt] (vertical concatenation), we are now ready to backpropa-

gate through Eq. (2.30). In a similar manner as RNNs, Eq. 2.18-2.21, we arrive at:

dxt = T ⊤
x · (g

′(T lstmzt) ◦ dut) (2.38)

dht−1 = T ⊤
h · (g

′(T lstmzt) ◦ dut) (2.39)

dT x = (g′(T lstmzt) ◦ dut) · x
⊤
t (2.40)

dT h = (g′(T lstmzt) ◦ dut) · h
⊤
t−1 (2.41)

All of these gradients can now be put together in the below BPTT algorithm for LSTM:

Algorithm 2: BPTT algorithm for LSTM

1 for t = T → 1 do

// Output backprop

2 dst ← 1yt − pt

3 dWhy ← dWhy + dst · h
⊤
t

4 dht ← dht +W⊤
hy · dst

// LSTM backprop

5 dot ← tanh(ct) ◦ dht

6 dct ← dct + tanh′(ct) ◦ ot ◦ dht ; // Already included dct+1

7 dft ← ct−1 ◦ dct
8 dit ← ĥt ◦ dct
9 dĥt ← it ◦ dct

10 dct−1 ← ft ◦ dct ; // Compute dct−1

11 dut = [dit; dft; dot; dĥt]
12 dT x ← (g′(T lstmzt) ◦ dut) · x

⊤
t

13 dT h ← (g′(T lstmzt) ◦ dut) · h
⊤
t−1

// Input backprop

14 dxt ← T⊤
x · (g

′(T lstmzt) ◦ dut)

15 dht−1 ← T⊤
h · (g

′(T lstmzt) ◦ dut)

16 end

CHAPTER 2. BACKGROUND 22

2.2 Neural Machine Translation

Having introduced recurrent language models, one can simply think of neural machine

translation (NMT) as a recurrent language model that conditions on the source sentence.

More formally, NMT aims to directly model the conditional probability p(y|x) of translat-

ing a source sentence, x1, . . . , xn, to a target sentence, y1, . . . , ym. It accomplishes this goal

through an encoder-decoder or sequence-to-sequence framework [11, 29, 63]. The encoder

computes a representation s for each source sentence. Based on that source representation,

the decoder generates a translation, one target word at a time, and hence, decomposes the

log conditional probability as:

log p(y|x) =
∑m

t=1
log p (yt|y<t, s) (2.42)

NMT models vary in terms of the exact architectures to use. A natural choice for

sequential data is the recurrent neural network (RNN), used by most of the recent NMT

work and for both the encoder and decoder. RNN models, however, differ in terms of: (a)

directionality – unidirectional or bidirectional; (b) depth – single or deep multi-layer; and

(c) type – often either a vanilla, an LSTM [25], or a gated recurrent unit (GRU) [11]. In

general, for the encoder, almost any architecture can be used since we have fully observed

the source sentence. For example, Kalchbrenner and Blunsom [29] used a convolutional

neural network for encoding the source. Choices on the decoder side are more limited since

we need to be able to generate a translation. At the time of this thesis, the most popular

choice is a unidirectional RNN, which simplifies the beam-search decoding algorithm by

producing translations from left to right.

In this thesis, all our NMT models are deep multi-layer RNNs which are unidirectional

and have LSTM as the recurrent unit. We show an example of such model in Figure 2.3

though it should be easy to extend to other RNN architectures. In this example, we train our

model to translate a source sentence “I am a student” into a target one “Je suis étudiant”.

At a high level, our NMT models consist of two recurrent language models as described

in Section (2.1.1): the encoder RNN simply consumes the input source words without

making any prediction; the decoder, on the other hand, processes the target sentence while

predicting the next words.

Chris

Chris

Chris

Chris

Chris

Chris

Chris

Chris

Chris

CHAPTER 2. BACKGROUND 23

Figure 2.3: Neural machine translation – example of a deep recurrent architecture pro-

posed by Sutskever et al. [63] for translating a source sentence “I am a student” into a target

sentence “Je suis étudiant”. Here, “ ” marks the end of a sentence.

In more detail, at the bottom layer, the encoder and decoder RNNs receive as input the

following: first, the source sentence, then a boundary marker “ ” which indicates the transi-

tion from the encoding to the decoding mode, and the target sentence. Given these discrete

words, the model looks up the source and target embeddings to retrieve the corresponding

word representations. For this embedding layer to work, a vocabulary is chosen for each

language, and often the top V frequent words are selected. These embedding weights, one

set per language, are learned during training. While one can choose to initialize embedding

weights with pretrained word representations, such as word2vec [46] and Glove [53], we

found, in this thesis, that these embeddings can be initialized randomly and learned from

scratch given large training datasets.

Once retrieved, the word embeddings are then fed as input into the main network, which

consists of two multi-layer RNNs ‘stuck together’ — an encoder for the source language

and a decoder for the target language. The encoder RNN uses zero vectors as its starting

states. The decoder, on the other hand, needs to have access to the source information, so

Chris

Chris

Chris

CHAPTER 2. BACKGROUND 24

one simple way to achieve that is to initialize it with the last hidden state of the encoder.5

In Figure 2.3, we pass the hidden state at the source word “student” to the decoder side.

The feed-forward (vertical) weights connect the hidden unit from the layer below to the

upper one; whereas, the recurrent (horizontal) weights transfer the history knowlege from

the previous timestep to the next one. Often, we use different weights across the encoder

and decoder as well as across different layers; in the current example, we have 4 different

LSTM weight sets T lstm, detailed in Eq. (2.29), over {encoder, decoder} × {1st, 2nd layer}.

Finally, for each target word, the hidden state at the top layer is transformed by the softmax

weights into a probability distribution over the target vocabulary of size V according to

Eq. (2.3) and Eq. (2.4).

Training Training neural machine translation is similar to training a recurrent language

model that we have discussed in Section (2.1) except that we need to handle the condition-

ing part on source sentences. The training objective for NMT is formulated as:

J =
∑

(x,y)∈D
− log p(y|x) (2.43)

Here, D refers to our parallel training corpus of source and target sentence pairs (x, y).

Given the aforementioned NMT architecture, computing the NMT loss for (x, y) during

the forward pass is almost the same as how we compute the regular RNN loss on just y.

The only difference is that we have to first compute representations for the source sentence

x to initialize the decoder RNN instead of just starting from zero states. For the backprop-

agation phase, computing gradients for the decoder is the same as what we have described

in Algorithm 2 for regular RNNs. The last hidden-state gradient from the decoder is passed

back to the encoder. We then continue backpropating through the encoder in a similar

fashion as that of the decoder but without any prediction losses.

More concretely, we present in Algorithm 3 details in the forward pass of an NMT

model which uses a deep multi-layer LSTM architecture. Since the encoder and decoder

share many operations in common, we combine both the source sentence x (length mx) and

the target sentence y (length my) together to form an input sequence s as shown in Line 1,

5This is not the only way to initialize the decoder, e.g., Cho et al. [11] connect the last encoder state to

every timesteps in the decoder.

Chris

Chris

Chris

Chris

Chris

Chris

Chris

Chris

Chris

Chris

CHAPTER 2. BACKGROUND 25

which also includes the end-of-sentence marker “ ”. We first start with the encoder weights

and initial states set to zero (Line 2-3). The algorithm switches to the decoder mode at time

mx + 1 (Line 5). The same LSTM codebase (Line 8-11) is used for both the encoder and

decoder in which embeddings are first looked up for the input st; after that, hidden states as

well as LSTM cell memories are built from the bottom layer to the top one (the Lth layer).

In Line 10, LSTM refers to the entire formulation in Eq 2.26-2.28, which one can easily

replace with other hidden units such as RNN and GRU. Lastly, on the decoder side, the top

hidden state is used to predict the next symbol st+1 (Line 13); then, a loss value lt and a

probability distribution pt computed according to Eq 2.3-2.4 are returned.

Algorithm 3: NMT training algorithm – forward pass.

1 s← [x, , y,] ; // Length of s is mx + 1 +my + 1

2 We,T
(1..L)
lstm ←W encoder

e ,T encoder
lstm ; // Encoder weights

3 h
(1..L)
0 , c

(1..L)
0 ← 0 ; // Zero init

4 for t = 1→ (mx + 1 +my) do

// Decoder transition

5 if t == (mx + 1) then

6 We,T
(1..L)
lstm ←W decoder

e ,T decoder
lstm ;

7 end

// Multi-layer LSTM

8 h
(0)
t ← Emb LookUp(st,We) ;

9 for l = 1→ L do

10 h
(l)
t , c

(l)
t ← LSTM

(

h
(l)
t−1, c

(l)
t−1,h

(l−1)
t ,T

(l)
lstm

)

; // LSTM hidden unit

11 end

// Target-side prediction

12 if t ≥ (mx + 1) then

13 lt,pt ← Predict(st+1,h
(L)
t ,Why) ;

14 end

15 end

Next, we describe details of the backpropagation step in Algorithm 4. A quick glance

through the algorithm reveals many similarities compared to the forward pass algorithm

except that we have reversed the procedue. First, we start with the decoder weights and

initialize all gradients to zero (Line 1-2). At time mx, we switch to the encoder mode while

Chris

Chris

Chris

Chris

Chris

Chris

Chris

CHAPTER 2. BACKGROUND 26

Algorithm 4: NMT training algorithm – backpropagation pass.

1 We,T
(1..L)
lstm ←W decoder

e ,T decoder
lstm ; // Decoder weights

2 dh(1..L), dc(1..L), dT
(1..L)
lstm , dWe, dWhy ← 0 ; // Zero init

3 for t = (mx + 1 +my)→ 1 do

// Encoder transition

4 if t == mx then

5 We,T
(1..L)
lstm ←W encoder

e ,T encoder
lstm ;

6 dW decoder
e , dT decoder

lstm ← dWe, dT
(1..L)
lstm ; // Save decoder gradients

7 dT
(1..L)
lstm , dWe ← 0 ;

8 end

// Target-side prediction

9 if t ≥ (mx + 1) then

10 dh, dW ← Predict grad(st+1,pt,h
(L)
t ,Why);

11 dh(L) ← dh(L) + dh;

12 dWhy ← dWhy + dW;

13 end

// Multi-layer LSTM

14 for l = L→ 1 do

15 dh(l), dc(l), dx, dT ← LSTM grad

(

dh(l), dc(l),h
(l)
t−1, c

(l)
t−1,h

(l−1)
t ,T

(l)
lstm

)

;

16 dh(l−1) ← dh(l−1) + dx;

17 dT
(l)
lstm ← dT

(l)
lstm + dT ;

18 end

19 dWe ← Emb grad update(st, dh
(0), dWe) ;

20 end

21 dW encoder
e , dT encoder

lstm ← dWe, dT
(1..L)
lstm ; // Save encoder gradients

Chris

Chris

Chris

Chris

Chris

Chris

Chris

CHAPTER 2. BACKGROUND 27

saving the currently accumulated LSTM and embedding gradients for the decoder (Line 5-

7). Thanks to the backpropagation procedure presented earlier for LSTM, we can simplify

the core NMT gradient computation (Line 9-19) by making the following two referents:

(a) Predict grad (Line 2-4 of Algorithm 2) which computes gradients for the target-

side losses with respect to the hidden states at the top layer and the softmax weights Why;

and (b) LSTM grad (Line 5-15 of Algorithm 2) which computes gradients for inputs to

LSTM and the LSTM weights per layer T
(l)
lstm. It is important to note that in Lines 11

and 16 of Algorithm 4, we add the gradients (flowed vertically from either the loss or the

upper LSTM layer) to the gradient of the below layer (which already contains the gradient

backpropagated horizontally) instead of overriding it. Lastly, in Line 19, we perform sparse

updates on the corresponding embedding matrix for participating words only.

2.2.1 Testing

Having trained an NMT model, we, of course, need to be able to use it to translate, or

decode, unseen source sentences! This section explains a few different ways to accomplish

this goal and how to decode with an ensemble of models.

The simplest strategy to translate a source sentence is to perform greedy decoding which

we illustrate in Figure 2.4. The idea is simple: (a) we first encode the source sentence, “I

am a student” in our example, similar to the training process; (b) the decoding process is

started as soon as an end-of-sentence marker “ ” for the source sentence is fed as an input;

and (c) for each timestep on the decoder side, we pick the most likely word (a greedy

choice), e.g., “moi” has the highest translation probability in the first decoding step, then

use it as an input to the next timestep, and continue until the end-of-sentence marker “ ”

is produced as an output symbol. Step (c) is what makes testing different from training:

unlike training in which correct target words in y are always fed as an input, testing, on the

other hand, uses words predicted by the model.

More concretely, we adopt the NMT forward algorithm to arrive at the greedy decoding

strategy in Algorithm 5. We present the greedy algorithm in a slightly more abstract way

by reusing elements of the NMT forward pass in Algorithm 3. First, we run through the

encoder in Line 1 to obtain a representation h0, c0 for the source sentence x (length mx).

Chris

Chris

Chris

CHAPTER 2. BACKGROUND 28

Figure 2.4: Greedy Decoding – example of how a trained NMT model produces a transla-

tion for a source sentence “I am a student” using greedy search.

We then use the end-of-sentence marker “ ” as an input to start the decoding process and

restrict the final translation to have a maximum length of α ∗ mx.6 At each timestep on

the decoder side, we call MultiLayerLSTM, which refers to Line 8-11 in Algorithm 3,

to build up representations over L stacking LSTM layers. The hidden state at the top layer

is used to compute the predictive distribution pt from which we make a greedy choice

to produce the index of the translation word at that timestep (Line 7). The process ends

when we have produced the marker “ ” as a translation word or when the translation length

exceeds the length threshold.

For NMT, it turns out that such a simple strategy of greedy decoding can produce very

good translations [63]. However, to achieve better result, a more popular strategy is to

use beam-search decoding algorithm which has been the core of phrase-based statistical

machine translation for years [31]. However, unlike phrase-based SMT, NMT has a much

6We often set α to 1.5

Chris

Chris

Chris

Chris

Chris

Chris

CHAPTER 2. BACKGROUND 29

Algorithm 5: NMT greedy decoding algorithm.

1 h0, c0 ← Encoder(x,W encoder
e ,T encoder

lstm) ;

2 t← 1 ;

3 y1 ← ;

4 while t ≤ α ∗mx do // Length factor α ≥ 1
5 ht, ct ← MultiLayerLSTM

(

ht−1, ct−1, yt,W
decoder
e ,T decoder

lstm

)

;

6 pt ← Softmax(h
(L)
t ,Why) ;

7 yt+1 ← argmaxi pt(i) ; // Greedy choice

8 if yt+1 == Index() then // Ending condition

9 break;

10 end

11 t← t+ 1

12 end

13 return y2..t

simpler beam-search decoding algorithm since it generates translations word-by-word from

left to right. One can modify the greedy decoding algorithm as follows to build a beam-

search decoder: (a) at each timestep on the decoder side, we keep track of the top B (the

beam size) best translations together with their corresponding hidden states; (b) in Line 7

of Algorithm 5, instead of applying argmax, we select the top B most likely words; and (c)

given B previous best translation×B best words, we select a new set of B best translations

for the current timestep based on the combined scores (previous translation scores + current

word translation scores). Extra care needs to be taken to make sure that in step (c) we select

correct hidden states for the new set of B best translations. Sutskever et al. [63] observed

that for NMT, a minimal beam size of 2 already provides a significant boost in translation

quality. A beam of size 10 is often used, which is significant smaller that what phrase-based

SMT tends to use > 1000.

Lastly, to achieve the very best result, one simple strategy which has been widely

adopted for deep neural networks is to use an ensemble of models. For NMT decoding,

using multiple models is pretty straightforward. The idea is that each model produces a

distribution at each timestep in the decoder (Line 6 of Algorithm 5). These different dis-

tributions are then averaged to produce a new ensemble distribution which we can be used

for both greedy and beam-search decoders as if we decode from a single model.

Chris

Chris

Chris

Chris

Chris

Chris

Chris

Chris

Chris

Chris

Chapter 3

Copy Mechanisms

30

Chapter 4

Attention Mechanisms

31

Chapter 5

Hybrid Models

32

Chapter 6

NMT Future

33

Chapter 7

Conclusion

34

Appendix A

Miscellaneous

Lemma 1. Let u, v be any vectors and ◦ be element-wise vector multiplication, we have:

diag(u) · v = u ◦ v (A.1)

Lemma 2. Let l be a loss value that in which we already knew how to compute its gradient

dv with respect to a vector v. Given that v = f(Wh), the gradients dh, dW of the loss l

with respect to the vector h and the matrix W can be derived as follows:

dh = W⊤ · (f ′(Wh) ◦ dv) (A.2)

dW = (f ′(Wh) ◦ dv) · h⊤ (A.3)

Proof. Let z = Wh, we have the following derivations:

dh =
∂z

∂h
·
∂v

∂z
· dv [Vector calculus chain rules]

=
∂Wh

∂h
·
∂f(z)

∂z
· dv

= W⊤ · diag (f ′(z)) · dv

= W⊤ · (f ′(Wh) ◦ dv) [Lemma 1]

Let w⊤
i be the ith row vector of matrix W and vi, zi be the ith elements of vectors v, z.

35

APPENDIX A. MISCELLANEOUS 36

Also denoting dwi, dvi to be the gradients of l with respect to wi, vi, we have:

dwi =
∂zi

∂wi

·
∂vi

∂zi
· dvi [Vector calculus chain rules]

=
∂w⊤

i h

∂wi

· f ′(zi) · dvi

= h · f ′(zi) · dvi

dw⊤
i = (f ′(zi) · dvi) · h

⊤ [Tranposing]

dW = (f ′(Wh) ◦ dv) · h⊤ [Concatenating row derivatives]

Corollary 1. As a special case of Lemma 2, when f is an identity function, i.e., v = Wh,

we have:

dh = W⊤ · dv (A.4)

dW = dv · h⊤ (A.5)

Lemma 3. Let u, v, s be any vectors such that s = u ◦ f(v). Also, let du, dv, ds be the

gradients of a loss l with respect to the corresponding vectors. We have:

du = f(v) ◦ ds (A.6)

dv = f ′(v) ◦ u ◦ ds (A.7)

Corollary 2. As a special case of Lemma 3 when f is an identity function, i.e., s = u ◦ v.

We have:

du = v ◦ ds (A.8)

dv = u ◦ ds (A.9)

Bibliography

[1] Michael Auli, Michel Galley, Chris Quirk, and Geoffrey Zweig. Joint language and

translation modeling with recurrent neural networks. In ACL, 2013.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation

by jointly learning to align and translate. In ICLR, 2015.

[3] Yoshua Bengio and Jean-Sébastien Senécal. Adaptive importance sampling to accel-

erate training of a neural probabilistic language model. IEEE Trans. Neural Networks,

19(4):713–722, 2008.

[4] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependen-

cies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):

157–166, 1994.

[5] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural

probabilistic language model. JMLR, 3:1137–1155, 2003.

[6] Yoshua Bengio, Nicolas Boulanger-Lewandowski, and Razvan Pascanu. Advances in

optimizing recurrent networks. In ICASSP, 2013.

[7] Christopher M. Bishop. Mixture density networks. Technical report, Aston Univer-

sity, 1994.

[8] Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della Pietra, and Robert L. Mercer.

The mathematics of statistical machine translation: Parameter estimation. Computa-

tional Linguistics, 19(2):263–311, 06 1993.

37

BIBLIOGRAPHY 38

[9] Daniel Cer, Michel Galley, Daniel Jurafsky, and Christopher D. Manning. Phrasal:

A statistical machine translation toolkit for exploring new model features. In ACL,

Demonstration Session, 2010.

[10] David Chiang. Hierarchical phrase-based translation. Computational Linguistics, 33

(2):201–228, 2007.

[11] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Fethi Bougares, Holger

Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-

decoder for statistical machine translation. In EMNLP, 2014.

[12] Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas Lamar, Richard Schwartz,

and John Makhoul. Fast and robust neural network joint models for statistical machine

translation. In ACL, 2014.

[13] Chris Dyer, Jonathan Weese, Hendra Setiawan, Adam Lopez, Ferhan Ture, Vladimir

Eidelman, Juri Ganitkevitch, Phil Blunsom, and Philip Resnik. cdec: A decoder,

alignment, and learning framework for finite-state and context-free translation mod-

els. In ACL, Demonstration Session, 2010.

[14] Salah El Hihi and Yoshua Bengio. Hierarchical recurrent neural networks for long-

term dependencies. In NIPS, 1996.

[15] Jeffrey L. Elman. Finding structure in time. In Cognitive Science, 1990.

[16] Marcello Federico, Nicola Bertoldi, and Mauro Cettolo. IRSTLM: an open source

toolkit for handling large scale language models. In Interspeech, 2008.

[17] Mikel L. Forcada and Ramón Neco. Recursive hetero-associative memories for trans-

lation. Biological and Artificial Computation: From Neuroscience to Technology,

pages 453–462, 1997.

[18] C. Goller and A. Kchler. Learning task-dependent distributed representations by back-

propagation through structure. IEEE Transactions on Neural Networks, 1:347–352,

1996.

BIBLIOGRAPHY 39

[19] A. Graves. Generating sequences with recurrent neural networks. In Arxiv preprint

arXiv:1308.0850, 2013.

[20] Alex Graves and Juergen Schmidhuber. Offline handwriting recognition with multi-

dimensional recurrent neural networks. In NIPS. 2009.

[21] Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with bidi-

rectional LSTM and other neural network architectures. Neural Networks, 18(5-6):

602–610, 2005.

[22] Klaus Greff, Rupesh Kumar Srivastava, Jan Koutnı́k, Bas R. Steunebrink, and Jürgen

Schmidhuber. LSTM: A search space odyssey. arXiv preprint arXiv:1503.04069,

2015.

[23] Kenneth Heafield. KenLM: faster and smaller language model queries. In WMT,

2011.

[24] Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H. Clark, and Philipp Koehn. Scalable

modified Kneser-Ney language model estimation. In ACL, 2013.

[25] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Compu-

tation, 9(8):1735–1780, 1997.

[26] W. John Hutchins. Machine translation: A concise history, 2007.

[27] Herbert Jaeger, Mantas Lukoševičius, Dan Popovici, and Udo Siewert. Optimiza-

tion and applications of echo state networks with leaky-integrator neurons. Neural

Networks, 20(3):335–352, 2007.

[28] Rafal Józefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical exploration

of recurrent network architectures. In ICML, 2015.

[29] Nal Kalchbrenner and Phil Blunsom. Recurrent continuous translation models. In

EMNLP, 2013.

BIBLIOGRAPHY 40

[30] Andrej Karpathy. The unreasonable effectiveness of recurrent neural networks.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/,

2015. Accessed: 2016-07-05.

[31] Philipp Koehn, Franz Josef Och, and Daniel Marcu. Statistical phrase-based transla-

tion. In NAACL, 2003.

[32] Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Fed-

erico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens,

et al. Moses: Open source toolkit for statistical machine translation. In ACL, Demon-

stration Session, 2007.

[33] Percy Liang, Alexandre Bouchard-Côté, Dan Klein, and Ben Taskar. An end-to-end

discriminative approach to machine translation. In ACL, 2006.

[34] Tsungnan Lin, Bill G. Horne, Peter Tin̆o, and C. Lee Giles. Learning long-term

dependencies in narx recurrent neural networks. IEEE Transactions on Neural Net-

works, 7(6):1329–1338, 1996.

[35] Minh-Thang Luong and Christopher D. Manning. Stanford neural machine translation

systems for spoken language domain. In IWSLT, 2015.

[36] Minh-Thang Luong and Christopher D. Manning. Achieving open vocabulary neural

machine translation with hybrid word-character models. In ACL, 2016.

[37] Minh-Thang Luong, Michael Kayser, and Christopher D. Manning. Deep neural lan-

guage models for machine translation. In CoNLL, 2015.

[38] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches

to attention-based neural machine translation. In EMNLP, 2015.

[39] Minh-Thang Luong, Ilya Sutskever, Quoc V. Le, Oriol Vinyals, and Wojciech

Zaremba. Addressing the rare word problem in neural machine translation. In ACL,

2015.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

BIBLIOGRAPHY 41

[40] Minh-Thang Luong, Quoc V. Le, Ilya Sutskever, Oriol Vinyals, and Lukasz Kaiser.

Multi-task sequence to sequence learning. In ICLR, 2016.

[41] James Martens and Ilya Sutskever. Learning recurrent neural networks with Hessian-

free optimization. In ICML, 2011.

[42] Tomáš Mikolov. Statistical Language Models Based on Neural Networks. PhD thesis,

Brno University of Technology, 2012.

[43] Tomáš Mikolov and Geoffrey Zweig. Context dependent recurrent neural network

language model. In SLT, 2012.

[44] Tomáš Mikolov, Martin Karafit, Lukas Burget, Jan Cernock, and Sanjeev Khudanpur.

Recurrent neural network based language model. In Interspeech, 2010.

[45] Tomáš Mikolov, Stefan Kombrink, Lukas Burget, Jan Cernock, and Sanjeev Khudan-

pur. Extensions of recurrent neural network language model. In ICASSP, 2011.

[46] Tomáš Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Dis-

tributed representations of words and phrases and their compositionality. In NIPS,

2013.

[47] Andriy Mnih and Geoffrey Hinton. A scalable hierarchical distributed language

model. In NIPS, 2009.

[48] Andriy Mnih and Yee Whye Teh. A fast and simple algorithm for training neural

probabilistic language models. In ICML, 2012.

[49] Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network lan-

guage model. In AISTATS, 2005.

[50] Franz Josef Och and Hermann Ney. A systematic comparison of various statistical

alignment models. Computational Linguistics, 29(1):19–51, 2003.

[51] Razvan Pascanu, Tomáš Mikolov, and Yoshua Bengio. On the difficulty of training

recurrent neural networks. In ICML, 2013.

BIBLIOGRAPHY 42

[52] Adam Pauls and Dan Klein. Faster and smaller n-gram language models. In ACL,

2011.

[53] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global

vectors for word representation. In EMNLP, 2014.

[54] Ronald Rosenfeld. Two decades of statistical language modeling: Where do we go

from here? In IEEE, volume 88, pages 1270–1278, 2000.

[55] David E. Rumelhart and James L. McClelland. On learning the past tenses of English

verbs. In J. L. McClelland, D. E. Rumelhart, and PDP Research Group, editors,

Parallel Distributed Processing. Volume 2: Psychological and Biological Models,

pages 216–271. MIT Press, 1986.

[56] Holger Schwenk. Continuous space language models. Computer Speech and Lan-

guages, 21(3):492–518, 2007.

[57] Holger Schwenk. Continuous space translation models for phrase-based statistical

machine translation. In COLING, 2012.

[58] Abigail See, Minh-Thang Luong, and Christopher D. Manning. Compression of neu-

ral machine translation models via pruning. In CoNLL, 2016.

[59] Le Hai Son, Alexandre Allauzen, and Franois Yvon. Continuous space translation

models with neural networks. In NAACL-HLT, 2012.

[60] Andreas Stolcke. SRILM – an extensible language modeling toolkit. In ICSLP, 2002.

[61] Ilya Sutskever. Training Recurrent Neural Networks. PhD thesis, University of

Toronto, 2012.

[62] Ilya Sutskever, James Martens, and Geoffrey Hinton. Generating text with recurrent

neural networks. In ICML, 2011.

[63] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with

neural networks. In NIPS, 2014.

BIBLIOGRAPHY 43

[64] Yee Whye Teh. A hierarchical Bayesian language model based on Pitman-Yor pro-

cesses. In ACL, 2006.

[65] Ashish Vaswani, Yinggong Zhao, Victoria Fossum, and David Chiang. Decoding with

large-scale neural language models improves translation. In EMNLP, 2013.

[66] Alexander Waibel, Toshiyuki Hanazawa, Geofrey Hinton, Kiyohiro Shikano, and

Kevin J. Lang. Readings in speech recognition. chapter Phoneme Recognition Using

Time-delay Neural Networks, pages 393–404. 1990. ISBN 1-55860-124-4.

[67] Warren Weaver. Translation. In William N. Locke and A. Donald Boothe, editors,

Machine Translation of Languages, pages 15–23. MIT Press, Cambridge, MA, 1949.

Reprinted from a memorandum written by Weaver in 1949.

[68] Paul J. Werbos. Back propagation through time: What it does and how to do it. In

Proceedings of the IEEE, volume 78, pages 1550–1560, 1990.

[69] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network reg-

ularization. arXiv preprint arXiv:1409.2329, 2014.

	Introduction
	Machine Translation Development
	Thesis Outline

	Background
	Recurrent Neural Network
	Recurrent Language Models
	Better Training RNNs

	Neural Machine Translation
	Testing

	Copy Mechanisms
	Attention Mechanisms
	Hybrid Models
	NMT Future
	Conclusion
	Miscellaneous

