
NEURAL MACHINE TRANSLATION

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Minh-Thang Luong

December 2016

c© Copyright by Minh-Thang Luong 2017

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

(Christopher D. Manning) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

(Dan Jurafsky)

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

(Andrew Ng)

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

(Quoc V. Le)

iii

Approved for the Stanford University Committee on Graduate Studies

iv

Contents

1 Introduction 1

1.1 Machine Translation . 2

1.2 Neural Machine Translation . 7

1.3 Thesis Outline . 9

2 Background 14

2.1 Language Model . 15

2.2 Recurrent Neural Network . 16

2.2.1 Training & Backpropagation . 20

2.2.2 Long Short-Term Memory . 24

2.3 Neural Machine Translation . 31

2.3.1 Training . 33

2.3.2 Testing . 37

3 Copy Mechanisms 41

3.1 Rare Word Models . 42

3.1.1 Copyable Model . 43

3.1.2 Positional All Model (PosAll) . 44

3.1.3 Positional Unknown Model (PosUnk) 44

3.2 Experiments . 45

3.2.1 Training Data . 45

3.2.2 Training Details . 46

3.2.3 A note on BLEU scores . 46

v

3.2.4 Main Results . 47

3.3 Analysis . 49

3.3.1 Rare Word Analysis . 49

3.3.2 Rare Word Models . 50

3.3.3 Other Effects . 52

3.3.4 Sample Translations . 52

3.4 Conclusion . 53

4 Attention Mechanisms 55

4.1 Attention-based Models . 57

4.1.1 Global Attention . 57

4.1.2 Local Attention . 59

4.1.3 Input-feeding Approach . 61

4.2 Experiments . 62

4.2.1 Training Details . 63

4.2.2 English-German Results . 64

4.2.3 German-English Results . 65

4.3 Analysis . 66

4.3.1 Learning curves . 66

4.3.2 Effects of Translating Long Sentences 66

4.3.3 Choices of Attentional Architectures 67

4.3.4 Alignment Quality . 68

4.3.5 Alignment Visualization . 69

4.3.6 Sample Translations . 70

4.4 Conclusion . 71

5 Hybrid Models 73

5.1 Related Work . 75

5.2 Hybrid Neural Machine Translation . 76

5.2.1 Word-based Translation as a Backbone 76

5.2.2 Source Character-based Representation 77

5.2.3 Target Character-level Generation 77

vi

5.3 Experiments . 81

5.3.1 Data . 81

5.3.2 Training Details . 82

5.3.3 Results . 84

5.4 Analysis . 86

5.4.1 Effects of Vocabulary Sizes . 86

5.4.2 Rare Word Embeddings . 86

5.4.3 Sample Translations . 88

5.5 Conclusion . 90

6 The Future of NMT 91

6.1 Multi-task Sequence to Sequence Learning 91

6.1.1 Multi-task Sequence-to-Sequence Learning 93

6.1.2 Experiments . 96

6.1.3 Conclusion . 103

6.2 Compression of NMT Models via Pruning 103

6.2.1 Related Work . 104

6.2.2 My Approach . 106

6.2.3 Experiments . 109

6.2.4 Generalizability of my results . 116

6.2.5 Conclusion . 116

6.3 Future Outlook . 117

6.3.1 Multi-task and Semi/Un-supervised Learning 117

6.3.2 Model Compression and Knowledge Distillation 119

6.3.3 Beyond Maximum Likelihood Estimation 119

6.3.4 Translation with Coherence and Style 121

7 Conclusion 123

vii

List of Tables

3.1 Detokenized BLEU on newstest2014 . 47

3.2 Tokenized BLEU on newstest2014 . 48

3.3 Sample translations . 54

4.1 WMT’14 English-German results . 63

4.2 WMT’15 English-German results . 65

4.3 WMT’15 German-English results . 66

4.4 Attentional Architectures . 68

4.5 AER scores . 69

4.6 Sample translations . 72

5.1 WMT’15 English-Czech data . 82

5.2 WMT’15 English-Czech results . 83

5.3 Word similarity task . 87

5.4 Sample translations on newstest2015 . 89

6.1 Data & Training Details . 97

6.2 Translation & Penn Tree Bank parsing results 98

6.3 Translation & captioning results . 100

6.4 Translation & Large-Corpus parsing results 100

6.5 Large-Corpus parsing results & translation 101

6.6 German→English WMT’15 translation & unsupervised learning results . . 102

viii

List of Figures

1.1 Machine translation progress . 2

1.2 Corpus-based approaches to machine translation 3

1.3 Word-based alignment . 3

1.4 A simple translation story . 4

1.5 Phrase-based machine translation . 6

1.6 Encoder-decoder architecture . 8

1.7 Sequence Models for NMT . 9

2.1 Source-conditioned neural language models 16

2.2 Recurrent neural networks . 18

2.3 Recurrent language models . 19

2.4 Neural machine translation . 32

2.5 Greedy Decoding . 38

3.1 Example of the rare word problem . 42

3.2 Copyable Model . 43

3.3 Positional All Model . 44

3.4 Positional Unknown Model . 45

3.5 Rare word translation . 50

3.6 Rare word models . 51

3.7 Effect of depths . 52

3.8 Perplexity vs. BLEU . 53

4.1 Neural machine translation . 56

ix

4.2 Global attentional model . 58

4.3 Local attention model . 60

4.4 Input-feeding approach . 62

4.5 Learning curves . 67

4.6 Length Analysis . 67

4.7 Alignment visualizations – shown are images of the attention weights learned by various models:

5.1 Hybrid NMT . 74

5.2 Attention mechanism . 78

5.3 Separate-path Target Generation – two separate attentional vectors are creating: h̃t for predicting

5.4 Vocabulary size effect . 86

5.5 Barnes-Hut-SNE visualization of source word representations 88

6.1 Sequence to sequence learning examples 93

6.2 One-to-many Setting . 93

6.3 Many-to-one setting . 94

6.4 Many-to-many setting . 94

6.5 Weights of NMT architecture . 106

6.6 Effects of different pruning schemes. 109

6.7 ‘Breakdown’ of performance loss . 110

6.8 Magnitude of largest deleted weight vs. perplexity change 111

6.9 Performance of pruned models . 112

6.10 Validation set losses during training, pruning and retraining 113

6.11 Graphical representation of the location of small weights 114

x

Chapter 1

Introduction

The Babel fish is small, yellow, leech-like, and probably the oddest

thing in the universe. If you stick a Babel fish in your ear, you can

instantly understand anything in any form of language.

The Hitchhiker’s Guide to the Galaxy. Douglas Adams.

Human languages are diverse with about 6000 to 7000 languages spoken worldwide

(Anderson, 2010). As civilization advances, the need for seamless communication and un-

derstanding across languages becomes more and more crucial. Machine translation (MT),

the task of teaching machines to learn to translate automatically across languages, as a re-

sult, is an important research area. MT has a long history (Hutchins, 2007) from the original

philosophical ideas of universal languages in the 17th century to the first practical sugges-

tions in the 1950s, most notably an influential proposal by Weaver (1949) which marked

the beginnings of MT research in the United States. In that memorandum, Warren Weaver

touched on the idea of using computers to translate, specifically addressing the language

ambiguity problem by combining his knowledge of statistics, cryptography, information

theory, as well as logical and linguistic universals (Hutchins, 2000). Since then, MT has

gone through many periods of great development but also encountered several stagnant

phases as illustrated in Figure 1.1. Despite several moments of excitement that led to hopes

that MT will be solved “very soon”, such as the 701 translator (Sheridan, 1955) developed

by scientists at Georgetown and IBM in the 1950s and the popular Google Translate at the

1

CHAPTER 1. INTRODUCTION 2

beginning of the 21st century (Brants et al., 2007), MT remains an extremely challenging

problem (Kelly, 2014; David, 2016). This motivates my work in the area of machine trans-

lation; specifically, in this thesis, the goal is to advance neural machine translation (NMT),

a new promising approach for MT developed just recently, over the past two years. The

results achieved in this thesis on NMT together with work from other researchers have

eventually produced a significant leap in the translation quality as illustrated in Figure 1.1.

Before delving into details of the thesis, we now walk the reader through the background

and a bit of the development history of machine translation.

Figure 1.1: Machine translation progress – from the 1950s, the starting of modern MT

research, until the time of this thesis, 2016, in which neural MT becomes a dominant ap-

proach. Image courtesy of Christopher D. Manning.

1.1 Machine Translation

Despite much enthusiasm, the beginning period of MT research in the 1950-60s, was

mostly about direct word-for-word replacement based on bilingual dictionaries.1 An MT

winter quickly came right after the ALPAC report in 1966 pointing out that “there is no

1There are also proposals for “interlingual” and “transfer” approaches but these seemed to be too chal-

lenging to achieve, not to mention limitations in hardware at that time(Hutchins, 2007).

CHAPTER 1. INTRODUCTION 3

Figure 1.2: Corpus-based approaches to machine translation – a general setup in which

MT systems are built from parallel corpora of sentence pairs having the same meaning.

Once built, systems are used to translate new unseen sentences, e.g., “She loves cute cats”.

immediate or predictable prospect of useful machine translation”, which hampered MT

research for over a decade. Fast-forwarding through the resurgence in the 1980s begin-

ning with Europe, Japan, and gradually the United States, modern statistical MT started

out with a seminal work by IBM scientists (Brown et al., 1993). The proposed corpus-

based approaches require minimal linguistic content and only need a parallel dataset of

sentence pairs which are translations of one another, to train MT systems. Such a language-

independent setup is illustrated in Figure 1.2. In more detail, instead of hand building

bilingual dictionaries which can be costly to obtain, Brown and colleagues proposed to

learn these dictionaries, or translation models, probabilistically from parallel corpora. To

accomplish this, they propose a series of 5 algorithms of increasing complexity, often re-

ferred as IBM Models 1-5, to learn word alignment, a mapping between source and target

words in a parallel corpus, as illustrated in Figure 1.3. The idea is simple: the more often

two words, e.g., “loves” and “aime”, occur together in different sentence pairs, the more

likely they are aligned to each other and have equivalent meanings.

Figure 1.3: Word-based alignment – example of an alignment between source and target

words. In IBM alignment models, each target word is aligned to at most one source word.

CHAPTER 1. INTRODUCTION 4

Once a translation model, i.e., a probabilistic bilingual dictionary, has been learned,

IBM model 1, the simplest and the most naı̈ve one among the five proposed algorithms,

translates a new source sentence as follows. First, it decides on how long the translation

is as well as how source words will be mapped to target words as illustrated in Step 1 of

Figure 1.4. Then, in Step 2, it produces a translation by selecting for each target position a

word that is the best translation for the aligned source word according to the bilingual dic-

tionary. Subsequent IBM models build on top of one another and refine the translation story

such as better modeling the reordering structure, i.e., how word positions differ between

source and target languages. I refer the audience to the original IBM paper or Chapter 25

of (Jurafsky and Martin, 2009) for more details.

Figure 1.4: A simple translation story – example of the generative story in IBM Model 1

to produce a target translation given a source sentence and a learned translation model.

There are, however, two important details that we left out in the above translation story,

the search process and the language modeling component. In Step 1, one might wonder

among the exponentially many choices, how do we know what the right translation length is

and how source words should be mapped to target words? The search procedure informally

helps us “browse” through a manageable set of candidates which are likely to include a

good translation; whereas, the language model will help us select the best translation among

these candidates. I will defer details of the search process to later since it depends on the

exact translation model being used. Language modeling, on the other hand, is an important

concept which has been studied earlier in speech recognition (Katz, 1987). In a nutshell,

CHAPTER 1. INTRODUCTION 5

a language model (LM) learns from a corpus of monolingual text in the target language

and collect statistics on which sequence of words are likely to go with one another. When

applied to machine translation, an LM will assign high scores for coherent and natural-

sounding translations and low scores for bad ones. For our example in the above figure,

if the model happens to choose a wrong alignment, e.g., “cute” goes to position 3 while

“cats” goes to positions 4 and 5, an LM will alert us with a lower score given to that

incorrect translation “Elle aime mignons les chats” compared to the translation “Elle aime

les chats mignons” with a correct word ordering structure.2

While the IBM work had a huge impact on the field of statistical MT, researchers

quickly realized that word-based MT is insufficient as words require context to prop-

erly translate, e.g., “bank” has two totally different meanings when preceded by “finan-

cial” and “river”. As a result, phrase-based models, (Marcu and Wong, 2002; Zens et al.,

2002; Koehn et al., 2003), inter alia, became the de facto standard in MT research and are

still the dominant approach in existing commercial systems until recently.3 Much credit

went to Och’s work on alignment templates, starting with his thesis in 1998 and later in

(Och and Ney, 2003, 2004). The idea of alignment templates is to enable phrase-based MT

by first symmetrizing4 the alignment to obtain many-to-many correspondences between

source and target words; in contrast, the original IBM models only produce one-to-many

alignments. From the symmetrized alignment, several heuristics have been proposed to

extract phrase pairs; the general idea is that phrase pairs need to be “consistent” with their

alignments: each word in a phrase should not be aligned to a word outside of the other

2 For completeness, translation and language models are integrated together in an MT system through the

Bayesian noisy channel framework as follows:

t̂ = argmax
t

P (t|s) ≈ argmax
t

P (s|t)P (t) (1.1)

Here, we have a source sentence s in which we ask our decoder, an algorithm that implements the afore-

mentioned search process, to find the best translation, the argmax part. P (s|t) represents the translation

model, the faithfulness of the translation in terms of meaning preservation between the source and the target

sentences; whereas P (t) represents the language model, the fluency of the translated text.
3However, the landscape is changing rapidly! As I am preparing this dissertation, there have been recent

announcements from Google Translate (Wu et al., 2016) in September 2016 and SYSTRAN (Crego et al.,

2016) in October 2016 on using Neural Machine Translation for their production systems.
4Symmetrization is achieved by training IBM models in both directions, source to target and vice versa,

then intersecting the alignments. There are subsequent techniques that jointly train alignments in both direc-

tions such as (Liang et al., 2006).

CHAPTER 1. INTRODUCTION 6

phrase. These pairs are stored in what called a phrase table together with various scores

to evaluate phrase pairs in different aspects, e.g., how equivalent the meaning is, how good

the alignment is, etc. Figure 1.5 gives an example of how a phrase-based system translates.

Figure 1.5: Phrase-based machine translation (MT) – example of how phrase-based MT

systems translate a source sentence “She loves cute cats” into a target sentence “Elle aime

les chats mignons”: sentences are split into chunks and phrases are translated.

State-of-the-art MT systems, in fact, contain more components than just the two basic

translation and language models. There are many knowledge sources that can be useful to

the translation task, e.g., language model, translation model, reversed translation model,

reordering model5, length/unknown penalties6, etc. To incorporate all of these features,

modern MT systems use a popular framework in natural language processing, called the

maximum-entropy or log-linear model (Berger et al., 1996; Och and Ney, 2002), which has

as its special case the Bayesian noisy channel model that we briefly mentioned in Eq. (1.1).

Training log-linear MT models can be done using the standard maximum likelihood es-

timation approach. However, in practice, these models are learned by directly optimizing

translation quality metrics such as BLEU (Papineni et al., 2002) in a technique known as

minimum error rate training or MERT (Och, 2003). Here, BLEU is an inexpensive auto-

matic way of evaluating the translation quality; the idea is to count words and phrases that

overlap between machine and human outputs. Despite many criticisms, BLEU is still the

most widely used evaluation metric up until now thanks to its simplicity.

Lastly, there has also been effort in adding syntax to machine translation through tree-

based models such as work by Wu (1997); Yamada and Knight (2001); Chiang (2005),

inter alia. As illustrated in Figure 1.1, these approaches do provide gains for several lan-

guage pairs, mostly those that are significantly different in terms of sentence structures

5Reordering models learn the patterns of how words move across source and target sentences and are

trained based on the word alignment.
6To produce translations of appropriate lengths and with a reasonable amount of unknown words, e.g.,

unseen names and numbers at test time.

CHAPTER 1. INTRODUCTION 7

such as Chinese and English. However, the gains are often modest compared to the added

complexity of tree-based models such as requirements to have good parsers and syntactic

annotations.

For more information on evaluation metrics, tree-based models, and other topics in

statistical machine translation, we refer the audience to an excellent book by Koehn (2010).

1.2 Neural Machine Translation

While statistical machine translation (SMT) has been successfully deployed in many com-

mercial systems, it does not work very well and suffers from the following two major draw-

backs. First, translation decisions are locally determined as we translate phrase-by-phrase

and long-distance dependencies are often ignored. More problematically, the entire MT

pipeline is becoming increasingly complex as more and more features are added to the log-

linear framework such as in recent MT systems (Galley and Manning, 2008; Chiang et al.,

2009; Green et al., 2013). Many different components need to be tuned separately, e.g.,

translation models, language models, reordering models, etc., which makes it difficult to

combine them together and to innovate. As a result, the translation quality has saturated

for SMT and big changes to the existing framework were in dire need.

Neural Machine Translation (NMT) is a new approach that addresses the aforemen-

tioned problems. First, NMT is a single big neural network (with millions of artificial neu-

rons) that is designed to model the entire MT process (Kalchbrenner and Blunsom, 2013;

Sutskever et al., 2014; Cho et al., 2014). NMT requires minimal domain knowledge, just a

parallel corpus of source and target sentence pairs, similar to SMT, but with far less prepro-

cessing steps before a translation model can be built. The most appealing feature of NMT

is that it can be trained end-to-end directly from the learning objective; hence, eliminating

the problem of having to learn multiple components in SMT systems.

Unlike those intricate decoders (the search procedure we mentioned earlier) in popular

SMT packages (Koehn et al., 2007; Chiang, 2007; Dyer et al., 2010; Cer et al., 2010), the

translation story of NMT is conceptually simple. NMT translates as follows: an encoder

reads through the given source sentence to build a “thought” vector7, a sequence of numbers

7This term was coined by Geoffrey Hinton in this article https://www.theguardian.com/

https://www.theguardian.com/science/2015/may/21/google-a-step-closer-to-developing-machines-with-human-like-intelligence

CHAPTER 1. INTRODUCTION 8

that represents the sentence meaning; a decoder, then, processes the sentence vector to emit

a translation, as illustrated in Figure 1.7. This is often referred to as the encoder-decoder

architecture.8 In this manner, NMT addresses the local translation problem in SMT; it does

not do phrase-by-phrase translation. Instead, NMT gathers information from the entire

source sentence before translating; as a result, it can capture long-range dependencies in

languages, e.g., gender agreements; structural orderings of subject, verb, and object; etc.

Figure 1.6: Encoder-decoder architecture – example of the general approach for NMT.

An encoder converts a source sentence into a meaning vector which is passed through a

decoder to produce a translation.

A realization of NMT is to use a powerful model for sequential data, namely recurrent

neural network (RNN), for both the encoder and decoder (Sutskever et al., 2014; Cho et al.,

2014). Interested readers can find details about RNNs in Section 2.2; in a nutshell, RNNs

allow us to build representations for variable-length input – in our case, sentences – using

a dynamic memory structure. In Figure 1.7, deep RNNs with two stacking layers are used

to build a sequence-based NMT: an encoder first constructs a representation for a source

sequence; a decoder, then, generates a target sequence, one symbol at a time until a special

end-of-sequence symbol is produced.

Sequence-based NMT has several advantages. First, NMT beam-search decoders that

generate words from left to right can be easily implemented, unlike the highly complex

beam-search decoders in SMT (Koehn et al., 2003). More importantly, the use of RNNs in

NMT allows for better generalization to very long sequences while not having to explicitly

store any gigantic phrase tables or language models as in the case of SMT. As sequence-

based NMT is currently the de facto approach, we will use NMT to generally refer to

sequence-based NMT throughout this thesis unless otherwise stated.

science/2015/may/21/google-a-step-closer-to-developing-machines-with-

human-like-intelligence.
8Allen (1987); Chrisman (1991) wrote the very first papers on encoder-decoder models for translation!

https://www.theguardian.com/science/2015/may/21/google-a-step-closer-to-developing-machines-with-human-like-intelligence
https://www.theguardian.com/science/2015/may/21/google-a-step-closer-to-developing-machines-with-human-like-intelligence

CHAPTER 1. INTRODUCTION 9

Figure 1.7: Sequence Models for NMT – example of a deep recurrent architecture for

translating a source sentence “She loves cute cats” into a target sentence “Elle aime les

chats mignons”. On the decoder side, words generated from previous timesteps are used as

inputs for the next ones. Here, “ ” marks the end of a sentence.

1.3 Thesis Outline

Despite all the aforementioned advantages and potentials, the early NMT architecture

(Sutskever et al., 2014; Cho et al., 2014) still has many drawbacks. In this thesis, I will

highlight three problems pertaining to the existing NMT model, namely the vocabulary

coverage, the memory constraint, and the language complexity issues. Each chapter is de-

voted to solving one of these problems. In each chapter, I will describe how I have pushed

the limits of NMT, making it applicable to a wide variety of languages with state-of-the-art

performance such as English-French (Luong et al., 2015c), English-German (Luong et al.,

2015b; Luong and Manning, 2015), English-Vietnamese (Luong and Manning, 2015), and

English-Czech (Luong and Manning, 2016). Towards the future of NMT, I answer two

questions: (1) whether we can improve translation by jointly learning from a wide variety of

sequence-to-sequence tasks such as parsing, image caption generation, and auto-encoders

or skip-thought vectors (Luong et al., 2016); and (2) whether we can compress NMT for

mobile devices (See et al., 2016). In brief, this thesis is organized as follows. I start off

by providing background knowledge on RNN and NMT in Chapter 2. The aforementioned

CHAPTER 1. INTRODUCTION 10

three problems and approaches to the future of NMT are detailed in Chapters 3, 4, 5, and 6

respectively, which we will go through one by one next. Chapter 7 wraps up and discusses

remaining challenges in NMT research.

Copy Mechanisms

A significant weakness in the first NMT systems is their inability to correctly translate

very rare words: end-to-end NMTs tend to have relatively small vocabularies with a single

<unk> symbol that represents every possible out-of-vocabulary (OOV) word. In Chap-

ter 3, I propose simple and effective techniques to address this vocabulary size problem

through teaching NMT to “copy” words from source to target. Specifically, I train an NMT

system on data that is augmented by the output of a word alignment algorithm, allowing

the NMT system to emit, for each OOV word in the target sentence, the position of its

corresponding word in the source sentence. This information is later utilized in a post-

processing step that translates every OOV word using a dictionary. My experiments on the

WMT’14 English to French translation task show that this method provides a substantial

improvement of up to 2.8 BLEU points over an equivalent NMT system that does not use

this technique. With 37.5 BLEU points, this NMT system is the first to surpass the best

result achieved on a WMT’14 contest task. This chapter is based on the following paper

(Luong et al., 2015c) in which I, Ilya Sutskever, and Quoc Le share the first co-authorship.

Attention Mechanisms

While NMT can translate well for short- and medium-length sentences, it has a hard time

dealing with long sentences. An attentional mechanism was proposed by Bahdanau et al.

(2015) to address that sentence length problem by selectively focusing on parts of the

source sentence during translation. However, there has been little work exploring useful ar-

chitectures for attention-based NMT. Chapter 4 examines two simple and effective classes

of attentional mechanism: a global approach which always attends to all source words and

a local one that only looks at a subset of source words at a time. I demonstrate the effec-

tiveness of both approaches on the WMT translation tasks between English and German in

both directions. With local attention, I achieve a significant gain of 5.0 BLEU points over

CHAPTER 1. INTRODUCTION 11

non-attentional systems that already incorporate known techniques such as dropout. My

ensemble model using different attention architectures yields a new state-of-the-art result

in the WMT’15 English to German translation task with 25.9 BLEU points, an improve-

ment of 1.0 BLEU points over the existing best system backed by NMT and an n-gram

reranker. This chapter is based on the paper (Luong et al., 2015b).9

Hybrid Models

Nearly all previous NMT work has used quite restricted vocabularies, perhaps with a subse-

quent method to patch in unknown words such as the copy mechanisms mentioned earlier.

While effective, the copy mechanims cannot deal with all the complexity of human lan-

guages such as rich morphology, neologisms, and informal spellings. Chapter 5 presents a

novel word-character solution to that language complexity problem towards achieving open

vocabulary NMT. I build hybrid systems that translate mostly at the word level and consult

character components for rare words. My character-level recurrent neural networks com-

pute source word representations and recover unknown target words when needed. The

twofold advantage of such a hybrid approach is that it is much faster and easier to train

than character-based ones; at the same time, it never produces unknown words as in the

case of word-based models. On the WMT’15 English to Czech translation task, this hy-

brid approach offers an addition boost of +2.1−11.4 BLEU points over models that already

handle unknown words. My best system achieves a new state-of-the-art result with 20.7

BLEU score. I demonstrate that my character models can successfully learn to not only

generate well-formed words for Czech, a highly-inflected language with a very complex

vocabulary, but also build correct representations for English source words. This chapter is

based on the following paper (Luong and Manning, 2016), which takes inspirations from

my earlier work (Luong et al., 2013) and (Li et al., 2015).

9 Besides, I also have a follow-up paper (Luong and Manning, 2015) on applying these attention-based

models to the transfer learning and low-resource settings for TED talk translation, which obtains state-of-

the-art performance for English-German and English-Vietnamese (Cettolo et al., 2015).

CHAPTER 1. INTRODUCTION 12

The Future of NMT

Chapter 6 answers the two aforementioned questions for the future of NMT: whether we

can utilize other tasks to improve translation and whether we can compress NMT models.

The former question is important because of the fact that the first NMT systems only utilize

parallel corpora despite an abundant amount of available data from monolingual and multi-

lingual corpora as well as data from related tasks. The latter question is motivated by the

indispensable role of mobile devices in society nowadays10 and the fact that state-of-the-art

NMT models are beyond the storage capacity of existing mobile gadgets.

For the first question, I examine three multi-task learning (MTL) settings for sequence

to sequence models: (a) the one-to-many setting – where the encoder is shared between

several tasks such as machine translation and syntactic parsing, (b) the many-to-one setting

– useful when only the decoder can be shared, as in the case of translation and image cap-

tion generation, and (c) the many-to-many setting – where multiple encoders and decoders

are shared, which is the case with unsupervised objectives and translation. My results show

that training on a small amount of parsing and image caption data can improve the transla-

tion quality between English and German by up to 1.5 BLEU points over strong single-task

baselines on the WMT benchmarks. Rather surprisingly, I have established a new state-

of-the-art result in constituent parsing with 93.0 F1 by utilizing translation data. Lastly, I

reveal interesting properties of the two unsupervised learning objectives, autoencoder and

skip-thought, in the MTL context: an autoencoder helps less in terms of perplexity but

more on BLEU scores compared to skip-thought. This section is based on the following

paper (Luong et al., 2016).

For the second question, I examine three simple magnitude-based pruning schemes to

compress NMT models, namely class-blind, class-uniform, and class-distribution, which

differ in terms of how pruning thresholds are computed for the different classes of weights

in the NMT architecture. I demonstrate the efficacy of weight pruning as a compression

technique for a state-of-the-art NMT system. I show that an NMT model with over 200

million parameters can be pruned by 40% with very little performance loss as measured

on the WMT’14 English-German translation task. This sheds light on the distribution of

10In 2014, the number of mobile devices is more than the number of people in the world (Boren, 2014).

CHAPTER 1. INTRODUCTION 13

redundancy in the NMT architecture. My main result is that with retraining, I can recover

and even surpass the original performance with an 80%-pruned model. This section is

based on the following paper (See et al., 2016) in which Abigail See and I share the first

co-authorship.

Wrap-up

In summary, this thesis has touched on a variety of aspects in which NMT can be signif-

icantly improved. My hope is to convince the reader at the end of this thesis that NMT

models have successfully taken over the role of SMT models and will continue to be the de

facto standard for several years to come. Still, there are many challenging and rewarding

problems to be explored which I will summarize in the conclusion chapter. The material is

based on an NMT tutorial given by me, Kyunghuyn Cho, and Christopher D. Manning at

ACL’2016.11

11The tutorial website is at https://sites.google.com/site/acl16nmt/.

https://sites.google.com/site/acl16nmt/

Chapter 2

Background

Give me a place to stand and I will move the earth.

Archimedes.

In this chapter, I provide background knowledge on three main topics, namely language

model (LM), recurrent neural network (RNN), and neural machine translation (NMT). Lan-

guage modeling is an important concept in natural language processing to allow one to do

word prediction, i.e., guessing which word will come next given a preceding context. As

we shall see later, there is an interesting fact that for neural machine translation, it all started

from language modeling. Before I get into NMT, we will go through the basics of recur-

rent neural network, the heart of sequence-based NMT, to explain how RNNs can naturally

and effectively model variable-length inputs, or sentences in the context of the translation

task. I cover in depth one particular type of RNN, the Long Short-term Memory (LSTM),

that makes training RNNs easier. Interested readers can find all the details of how to im-

plement LSTM “by hand” with detailed formulas on gradient computation as compared to

the automatic differentiation feature given by nowadays deep learning frameworks. The

understanding of language modeling will allow us to extend RNNs into recurrent neural

language models which enable language generation, a key step in NMT. Lastly, with RNN

as a basic building block, I describe key elements of an NMT system as well as tips and

tricks for better training and testing NMT.

14

CHAPTER 2. BACKGROUND 15

2.1 Language Model

As I have discussed in Section 1.1, language modeling plays an indispensable role in MT to

ensure that systems produce fluent translations. Specifically, the job of an LM is to specify

a probability distribution over sequences of symbols (often, words) so that one can judge

if a sequence of words is more likely or “fluent” than another. To accomplish that, an LM

decomposes the probability of a word sequence y = y1, . . . , ym as:

p(y) =
m
∏

i=1

p(yi|y<i) (2.1)

In the above formula, each of the individual terms p(yi|y<i) is the conditional probability

of the current word yi given previous words y<i, also referred to as the context or the his-

tory. To model these conditional probabilities, traditional n-gram LMs have to resort to the

Markovian assumption to consider only a fixed context window of n−1 words, effectively

modeling p(yi|yi−n+1, . . . , yi−1). In fact, n-gram LMs have to explicitly store and handle

all possible n-grams occurred in a training corpus, the number of which quickly becomes

enormous. As a result, despite much research in this area (Rosenfeld, 2000; Stolcke, 2002;

Teh, 2006; Federico et al., 2008; Heafield, 2011), inter alia, n-gram LMs can only handle

short contexts of about 4 to 6 words, and does not generalize well to unseen n-grams.

Neural language models (NLMs), first proposed by Bengio et al. (2003) and enhanced

by others such as Morin and Bengio (2005); Mnih and Hinton (2009); Mnih and Teh (2012),

have addressed the aforementioned concerns using two ideas: (a) dense distributed repre-

sentations for words which encourage sharing of statistical weights between similar words;

and (b) feed-forward neural networks to allow for better composition of unseen word se-

quences at test time without having to explicitly store all enumerations of n-grams. These

features function as a way to combat the “curse” of dimensionality in language modeling.

As a result, NLMs are compact and can extend to longer context.

As a natural development, subsequent MT systems (Schwenk, 2007; Vaswani et al.,

2013; Luong et al., 2015a), inter alia, started adopting NLMs alongside with traditional n-

gram LMs and generally obtain sizable improvements in terms of translation quality. To

make NLMs even more powerful, recent work (Schwenk, 2012; Son et al., 2012; Auli et al.,

CHAPTER 2. BACKGROUND 16

2013; Devlin et al., 2014) proposes to condition on source words as well as the target con-

text to lower uncertainty in predicting next words (see Figure 2.1).1 These hybrid MT

systems with NLM components, while better than statistical MT systems, still translate lo-

cally and fail to capture long-range dependencies. For example, in Figure 2.1, the source-

conditioned NLM does not see the word “stroll”, or any other words outside of its fixed

context windows, which can be useful in deciding that the next word should be “bank” as

in “river bank” rather “financial bank”.

Figure 2.1: Source-conditioned neural language models (NLMs) – example of a source-

conditioned NLM proposed by Devlin et al. (2014). To evaluate how likely a next word

“rive” is, the model not only relies on previous target words (context) “promenade le long

de la” as in traditional NLMs (Bengio et al., 2003), but also utilizes source context “along

the South Bank” to lower uncertainty in its prediction.

More problematically, the entire MT pipeline is already complex with different com-

ponents needing to be tuned separately such as translation models, language models, and

reordering models. Now, it becomes even worse as different neural components are incor-

porated in to the translation framework. This inspires the birth of neural machine translation

with a goal of redesigning the entire MT pipeline completely. To start, we will first learn

about recurrent neural network, a building block for NMT as well as a key component to

address the local translation problem in statistical MT systems.

2.2 Recurrent Neural Network

Recurrent neural network (RNN) (Elman, 1990) is a powerful and expressive architecture

1In (Devlin et al., 2014), the authors constructed a model that conditions on 3 target words and 11 source

words, effectively building a 15-gram LM.

CHAPTER 2. BACKGROUND 17

that can handle sequential data and has been successfully applied to language modeling

tasks (Mikolov et al., 2010, 2011; Mikolov and Zweig, 2012). Formally, an RNN takes as

input a sequence of vectors x1,x2, . . . ,xn and processes them one by one. For each new

input xi, an RNN updates its memory to produce a hidden state hi which one can think of

as a representation for the partial sequence x1,i. The key secret sauce is in the recurrence

formula of an RNN that defines how its hidden state is updated. At its simplest form, a

“vanilla” RNN defines its recurrence function as:

ht = f (xt,ht−1) (2.2)

In the above formula, f is an abstract function that computes a new hidden state given the

current input xt and the previous hidden state ht−1. The starting state h0 is often set to 0

though it can take any value as we will see later in the context of NMT decoders. A popular

choice of f is provided below with σ being a non-linear function such as sigmoid or tanh.2

ht = σ(Wxhxt +Whhht−1) (2.3)

At each timestep t, an RNN can (optionally) emit an output symbol yt which can either

be discrete or real-valued. For the discrete scenario, which is often the case for linguistic

applications, a probability distribution p over a set of output classes Y is derived as:3

st = Whyht (2.4)

pt = softmax(st) (2.5)

Here, I introduce a new set of weights Why ∈ R
|Y |×d, with d being the dimension of the

RNN hidden state, to compute a score vector st, or logits, over different individual classes.

Often, with a large output set Y , the matrix-vector multiplication in Eq. (2.4) is a major

computational bottleneck in RNNs, which results in several challenges for neural language

2There could also be an optional bias term in Eq. (2.3).
3For the real-valued case, I refer readers to mixture density models (Bishop, 1994) which have been

applied to RNN training, e.g., for hand-writing synthesis (Graves, 2013).

CHAPTER 2. BACKGROUND 18

modeling and machine translation that I will address in later chapters. The softmax func-

tion transforms the score vector st into a probability vector pt, which is defined for each

specific element y ∈ Y as below. For convenience, we overload our notations to use pt(y)

and st(y) to refer to entries in the vectors pt and st that correspond to y.

pt(y) =
est(y)

∑

y′∈Y est(y
′)

(2.6)

With the above formulas, I have completely defined the RNN weight set θ which con-

sists of input connections Wxh, recurrent connections Whh, and output connections Why.

These weights are shared across timesteps as illustrated in Figure 2.2. This is, in fact, the

beauty of RNNs as they can capture the dynamics of arbitrarily long sequences without

having to increase their modeling capacity. In contrast, feedforward networks can only

model relationship over fixed-length segments.

Why

Whh

Wxh

xn. . .x2x1

yn. . .y2y1

Figure 2.2: Recurrent neural networks – example of a recurrent neural network that

processes a input sequence x1,x2, . . . ,xn to build up hidden representations as each input

is consumed and produces an output sequence y1,y2, . . . ,yn. The input Wxh, recurrent

Whh, and output Why weights are shared across timesteps.

Throughout this thesis, RNNs will be discussed from a language learning perspective.

For more details on general RNNs, I refer readers to the following resources (Sutskever,

2012; Mikolov, 2012; Karpathy, 2015).

Recurrent Language Models As a special case of RNN, recurrent language model as-

sumes that the input and output sequences consist of discrete symbols, often words in a

CHAPTER 2. BACKGROUND 19

language. Additionally, the input sequence is prepended with a special starting symbol

<s>, e.g., x = { <s>, “I”, “am”, “a”, “student”}. Since the goal of a language model

is to predict the next word, the output sequence is a shift-by-1 version of the input and

ends with a special symbol </s> that marks the boundary, e.g., y = { “I”, “am”, “a”,

“student”, </s>}. As I illustrate in Figure 2.3, the word emitted at one timestep is used

as an input to the next timestep.

Why

Whh

Wxh

We

Figure 2.3: Recurrent language models – example of a recurrent language model that

processes a sentence “I am a student” and predicts next words as it goes. Beside the shared

recurrent Whh and feed-forward Wxh weights, there is an additional shared embedding

weight matrix We that needs to be learned as well.

To apply RNNs to sentences in languages, or generally sequences of discrete symbols,

one can consider one-hot representations for words, i.e., xi ∈ R
|V |, with V being the

vocabulary considered. However, for a large vocabulary V , such a representation choice

is problematic as it results in a large weight matrix Wxh and there is no notion of sim-

ilarity between words. In practice, low-dimensional dense representations for words, or

embeddings, are often used to address these problems. Specifically, an embedding matrix

We ∈ R
de×|V | is looked up for each word xi to retrieve a representation xi ∈ R

de . As a

result, a vanilla recurrent language model will generally have θ = {Wxh,Whh,Why,We}

as its weights.

CHAPTER 2. BACKGROUND 20

2.2.1 Training & Backpropagation

Given a training dataset of N discrete output sequences y(1), . . . , y(N) with lengthsm1, . . . , mN

accordingly. The learning objective is to minimize the negative log-likelihood, or the cross-

entropy loss, of these training examples:

J(θ) =
N
∑

i=1

− log p
(

y(i)
)

(2.7)

=

N
∑

i=1

mi
∑

t=1

− log p
(

y
(i)
t |y

(i)
<t

)

(2.8)

RNN learning is often done using mini-batch stochastic gradient descent (SGD) algo-

rithms in which a small set of training examples, a mini-batch, is used to compute the

gradients and update weights one at a time. Using mini-batches has several advantages: (a)

the gradients are more reliable and consistent than the “online” setting which updates per

example, (b) less computation is required to update the weights unlike the case of full-batch

learning which has to process all examples before updating, and (c) with multiple examples

in a mini-batch, one can turn matrix-vector multiplications such as those in Eq. (2.3) and

Eq. (2.4) into matrix-matrix multiplications which can be deployed efficiently on GPUs.

The simplest weight update formula with η as a learning rate is given below:

θ ←− θ − η∇J(θ) (2.9)

Here, ∇J(θ) is the gradient of the loss that we are minimizing with respect to the model

weights. Intuitively, what the formula does is to update the weights along the opposite

direction of the gradient to minimize the loss objective. The learning rate η, sometimes

referred as a step size, is a hyperparameter which controls how much we update the weights

along the optimization direction.

Mathematical Helpers To simplify the maths for our backpropagation derivations in

the next section, I present here a few simple remarks and lemmas on vector calculus and

gradient computation.

CHAPTER 2. BACKGROUND 21

Remark 1. Let u, v be any vectors and ◦ be element-wise vector multiplication, we have:

diag(u) · v = u ◦ v (2.10)

Here diag(u) refers to a diagonal matrix with its diagonal elements being u.

Lemma 1. Let l be a loss value for which we already know how to compute its gradient dv

with respect to a vector v. Given that v = f(Wh), the gradients dh, dW of the loss l

with respect to the vector h and the matrix W can be derived as follows:

dh = W⊤ · (f ′(Wh) ◦ dv) (2.11)

dW = (f ′(Wh) ◦ dv) · h⊤ (2.12)

Proof. Let z = Wh, we have the following derivations:

dh =
∂z

∂h
·
∂v

∂z
· dv [Vector calculus chain rules]

=
∂Wh

∂h
·
∂f(z)

∂z
· dv

= W⊤ · diag (f ′(z)) · dv

= W⊤ · (f ′(Wh) ◦ dv) [Remark 1]

Let w⊤
i be the ith row vector of matrix W and vi, zi be the ith elements of vectors v, z.

Also denoting dwi, dvi to be the gradients of l with respect to wi, vi, we have:

dwi =
∂zi

∂wi

·
∂vi

∂zi
· dvi [Vector calculus chain rules]

=
∂w⊤

i h

∂wi

· f ′(zi) · dvi

= h · f ′(zi) · dvi

dw⊤
i = (f ′(zi) · dvi) · h

⊤ [Tranposing]

dW = (f ′(Wh) ◦ dv) · h⊤ [Concatenating row derivatives]

CHAPTER 2. BACKGROUND 22

Corollary 1. As a special case of Lemma 1, when f is an identity function, i.e., v = Wh,

we have:

dh = W⊤ · dv (2.13)

dW = dv · h⊤ (2.14)

Remark 2. Let u, v, s be any vectors such that s = u ◦ f(v). Also, let du, dv, ds be the

gradients of a loss l with respect to the corresponding vectors. We have:

du = f(v) ◦ ds (2.15)

dv = f ′(v) ◦ u ◦ ds (2.16)

Remark 3. As a special case of Remark 2 when f is an identity function, i.e., s = u ◦ v.

We have:

du = v ◦ ds (2.17)

dv = u ◦ ds (2.18)

Single-Time Backpropagation To compute the gradients for the loss J(θ), we first need

to be able to derive the gradients of the per-timestep loss lt = − log pt(yt) with respect

to both the RNN weights {Wxh,Whh,Why} and the inputs {xt,ht−1}. It is worth noting

that xt is a column vector in the embedding matrix We. We denote these gradients as

{dWxh, dWhh, dWhy, dxt, dht−1} respectively and define intermediate gradients dst, dht

similarly with st and ht being used in Eq. (2.4) and Eq. (2.5). Starting with the loss lt, we

employ backpropagation through structures (Goller and Kchler, 1996) to derive each gra-

dient one by one in the following order: lt → st → {ht,Why} → {xt,ht−1,Wxh,Whh}.

First, from Eq. (2.6), with pt(y) =
est(y)

∑

y′∈Y est(y
′)

, we have:

dst =
∂lt

∂st
=

∂

∂st

(

log
∑

y′

est(y
′) − st(yt)

)

(2.19)

CHAPTER 2. BACKGROUND 23

Computing per-coordinate gradient st(y) gives:

∂

∂st(y)

(

log
∑

y′

est(y
′) − st(yt)

)

=

pt(yt)− 1 y = yt

pt(y) y 6= yt

(2.20)

The above gradients can be concisely written in vector form as:

dst = pt − 1yt (2.21)

Here, pt is the probability distribution defined in Eq. (2.5) and has been calculated in the

forward pass, so we simply reuse it. 1yt is a one-hot vector with 1 at position yt. Applying

Corollary 1, noting that st = Whyht in Eq. (2.4), we arrive at:

dht = W⊤
hy · dst (2.22)

dWhy = dst · h
⊤
t (2.23)

At this point, I have derived part of the backpropation procedure which can be applied

to any hidden unit type, e.g., the aforementioned vanilla RNN or the LSTM unit that I will

describe shortly in the next section.

Vanilla RNN Backpropagation First of all, we can simplify the notation to have

T rnn=[WxhWhh] and zt=[xt;ht−1], so the RNN formulation in Eq. (2.3) becomes:

ht = σ (T rnnzt) (2.24)

Applying Lemma 1, we have:

dzt = T⊤
rnn · (σ

′(T rnnzt) ◦ dht) (2.25)

dT rnn = (σ′(T rnnzt) ◦ dht) · z
⊤
t (2.26)

This is one of the tricks that I use to better utilize GPUs by creating larger matrices

and vectors, i.e., T rnn and zt. From Eq. (2.25) and Eq. (2.26), one can easily extract the

following gradients: (a) dxt – embedding gradients which I use to sparsely update the

CHAPTER 2. BACKGROUND 24

embedding weights We, (b) dht−1 – gradients of the previous hidden state, which is needed

by the backpropagation-through-time algorithm that I will discuss next, and (c) dWxh as

well as dWhh – the RNN input and recurrent connections.4

Backpropagation Through Time (BPTT) Having defined a single-timestep back-

propagation procedure, we are now ready to go through the BPTT algorithm

(Rumelhart and McClelland, 1986; Werbos, 1990). Inspired by Sutskever (2012), I sum-

marize the BPTT algorithm for RNNs below with the following remarks: (a) Lines 3, 5, 6,

7 accumulate the gradients of RNN weights {Why,Wxh,Whh,We} over time; (b) In line

7, dxt refers to gradients of words participating in the current mini-batch which I use to

sparsely update We;
5 and (c) Line 4 accumulates gradients for the current hidden state ht

by considering two paths, a “vertical” one from the current loss at time t and a “recurrent”

one from the timestep t + 1 which was set in Line 8 earlier.

2.2.2 Long Short-Term Memory

Even though computing RNN gradients is straightforward once the BPTT algorithm has

been plotted out, training is inherently difficult due to the nonlinear iterative nature of

RNNs. Among all reasons, the two classic problems of RNNs that often arise when deal-

ing with very long sequences are the exploding and vanishing gradients as described by

Bengio et al. (1994). In short, exploding gradients refers to the phenomenon that the gradi-

ents become exponentially large as we backpropagate over time, making learning unstable.

Vanishing gradients, on the other hand, is the opposite problem when the gradients go ex-

ponentially fast towards zero, turning BPTT into truncated BPTT that is unable to capture

long-range dependencies in sequences.

4One can also separately derive these gradients as follows:

dxt = W⊤

xh · (σ
′(T rnnzt) ◦ dht) (2.27)

dht−1 = W⊤

hh · (σ
′(T rnnzt) ◦ dht) (2.28)

dWxh = (σ′(T rnnzt) ◦ dht) · x
⊤

t (2.29)

dWhh = (σ′(T rnnzt) ◦ dht) · h
⊤

t−1
(2.30)

5In multi-layer RNNs, dxt is used to send gradients down to the below layers.

CHAPTER 2. BACKGROUND 25

Algorithm 1: BPTT algorithm for “vanilla” RNNs

1 for t = T → 1 do

// Output backprop

2 dst ← 1yt − pt

3 dWhy ← dWhy + dst · h
⊤
t

4 dht ← dht +W⊤
hy · dst

// RNN backprop

5 dWxh ← dWxh + (σ′(T rnnzt) ◦ dht) · x
⊤
t

6 dWhh ← dWhh + (σ′(T rnnzt) ◦ dht) · h
⊤
t−1

// Input backprop

7 dxt ←W⊤
xh · (σ

′(T rnnzt) ◦ dht)
8 dht−1 ←W⊤

hh · (σ
′(T rnnzt) ◦ dht)

9 end

Let us try to explain the aforementioned problems informally and refer readers to more

rigorous and in-depth analyses in (Bengio et al., 1994; Hochreiter and Schmidhuber, 1997;

Martens and Sutskever, 2011; Pascanu et al., 2013). The main cause of these two prob-

lems all lies in Line 8 of the BPTT algorithm which can be rewritten as dht−1 = W⊤
hh ·

diag (σ′(T rnnzt))·dht (see Remark 1). We can try to understand the behavior of RNNs over

time by assuming for a moment that there is no contribution from intermediate losses, i.e.,

Line 4 is “ignored”. Given such an assumption, a signal backpropagated from the current

hidden state over K steps will become dht−K =
∏K

i=1

(

W⊤
hh · diag (σ′(T rnnzt−i+1))

)

· dht.

Assuming that the non-linear function σ is bounded, e.g., sigm and tanh, and behaves

“nicely”, what we need to deal with now is the multiplication of the recurrent matrix over

time. This leads to the fact that the behavior of RNNs is often governed by the charac-

teristics of the recurrent matrix Whh and most analyses examine it in terms of the largest

eigenvalue of Whh as well as the norms of these signals. Roughly speaking, if the largest

eigenvalue is large enough, exploding gradients will be likely to happen. On the contrary, if

the largest eigenvalue is below a certain threshold, vanishing gradients will occur, as clearly

explained by Pascanu et al. (2013).

Gradient Clipping In practice, it is generally easy to cope with the exploding gradient

problem by applying different forms of gradient clipping. The first approach was proposed

CHAPTER 2. BACKGROUND 26

by Mikolov (2012) through the form of temporal element-wise clipping. At each timestep

during backpropagation, any elements of dh that are greater than a positive threshold τ or

smaller than -τ will be set to τ or -τ respectively. One can also perform gradient norm

clipping as suggested by Pascanu et al. (2013). The idea is simple: given a final gradient

vector g computed per mini-batch, if its norm ||g|| is greater than a threshold τ , then we

will use the following scaled gradient τ
||g||

g instead. The latter approach is widely used in

many systems nowadays and can also be used in conjunction with the former. I take the

combined approach in my implementations described later in this thesis.

Long Short-Term Memory The vanishing gradient problem, on the other hand, is more

challenging to tackle. There have been many proposed approaches to alleviate the problem

such as skip connections (Waibel et al., 1990; Lin et al., 1996), hierarchical architectures

(El Hihi and Bengio, 1996), leaky integrators (Jaeger et al., 2007), second-order methods

(Martens and Sutskever, 2011), and regularization (Pascanu et al., 2013), to name a few;

also, see (Bengio et al., 2013) for a comparison of some of these techniques. Among all,

Long Short-term Memory (LSTM), invented by Hochreiter and Schmidhuber (1997) and

later refined by Gers et al. (2000), appears to be one of the most widely adopted solutions

to the vanishing gradient problem. Graves and colleagues deserve credit for popularizing

LSTM through a series of work (Graves and Schmidhuber, 2005, 2009; Graves, 2013). The

key idea of LSTM is to augment RNNs with linear memory units that allow the gradient to

flow smoothly through time. In addition, there are gating units that control how much an

RNN wants to reuse memory (forget gates), receive input signal (input gates), and extract

information (output gates) at each timestep. There are many implementation instances

of LSTM, differing in terms of whether and which biases are used, how gates are built,

etc; however, it turns out that these different choices do not matter much for most cases

(Józefowicz et al., 2015; Greff et al., 2015). As such, in this section and throughout this

thesis, I will stick to the formulation described in (Zaremba et al., 2014).

Instead of jumping directly into the detailed formulation, let me provide intuitions on

how to gradually build up an LSTM architecture. First, we can construct a simple memory

CHAPTER 2. BACKGROUND 27

unit as follows:

ct = ct−1 + σ (Wxhxt +Whhht−1)) (2.31)

ht = ct (2.32)

This architecture can be viewed as a form of “leaky” integration mentioned in (Sutskever,

2012; Bengio et al., 2013) since it is equivalent to ht = ht−1 + σ(Wxhxt + Whhht−1).

Training this network over long sequences is easy since among the exponentially many

backpropagation paths, there is exactly one path that goes through all the memory units ci

(i = 1, T) and is guaranteed to not vanish since dct = dct−1 along that path.

Such an architecture, however, does not account for the fact that certain inputs, e.g.,

function words or punctuations, are, sometimes, not relevant to the task at hand and should

be downweighted. Occasionally, we might also want to reset the memory, e.g., at the begin-

ning of each sentence in a paragraph. To add more flexibility and power to this architecture,

the LSTM adds forget, input, and output gates as follows:

ct = ft ◦ ct−1 + it ◦ σ (Wxhxt +Whhht−1) (2.33)

ht = ot ◦ σ (ct)) (2.34)

Note that, in Eq. (2.34), the memory cell ct is passed through a nonlinear function σ before

the output gate ot is used to extract relevant information in the hope for better information

retrieval. As evidence, Greff et al. (2015) have shown that such an output nonlinearity is

critical to the performance of an LSTM. Moving on, to ensure that the gates are adaptive,

we build them from the information given by the current input xt and the previous hidden

state ht−1. We also want the gates to be in [0, 1], so sigm will be used (here sigm refers to

the sigmoid function defined as f(x) =
1

1 + e−x
). All of these desiderata lead to the below

CHAPTER 2. BACKGROUND 28

LSTM formulation described in (Zaremba et al., 2014) in which σ is chosen to be tanh:

it

ft

ot

ĥt

=

sigm

sigm

sigm

tanh

WxiWhi

WxfWhf

WxoWho

WxhWhh

[

xt

ht−1

]

(2.35)

ct = ft ◦ ct−1 + it ◦ ĥt (2.36)

ht = ot ◦ tanh(ct) (2.37)

Following the same spirit as Eq. (2.24), we can be GPU-efficient with Eq. (2.35) since

the 8 different submatrices are grouped into a single big matrix, which we call T lstm. Let

zt = [xt;ht−1]. What we do is first multiply T lstmzt and then apply different non-linear

functions to corresponding parts of the output. For the ease of deriving backpropagation

equations later, we can rewrite Eq. (2.35) as:

ut = g(T lstmzt) (2.38)

= g(T xxt + T hht−1) (2.39)

Here, g is a non-linear function applied element-wise and we define g loosely in the sense

that it uses tanh only for the vector part corresponding to ĥt and sigm for the rest.

LSTM Training In the LSTM training pipeline, there are many components that are

exactly the same or very similar to RNN training. I will now highlight some key differences.

First of all, LSTM extends the recurrence function to have not just the hidden states but also

the memory cells as both inputs and outputs. The definition is as below:

(ht, ct) = f (xt,ht−1, ct−1) (2.40)

In our case, the abstract function f is implemented by Eq. 2.35-2.37. Once ht is computed,

the prediction process is the same as that of RNNs which is given by Eq. 2.4-2.6. The

training objective in Eq. (2.8) remains unchanged as well.

CHAPTER 2. BACKGROUND 29

LSTM Backpropagation Since the prediction procedure is the same, LSTM backpropa-

gation pipeline mimics that of RNNs up to Eq. (2.22) and Eq. (2.23), which computes dht

and dWhy respectively.

Given dht, we now work backward to derive other gradients. First, starting from

Eq. (2.37) and by applying Remark 2, we have:

dot = tanh(ct) ◦ dht (2.41)

dct = tanh′(ct) ◦ ot ◦ dht (2.42)

Before backpropagating Eq. (2.36), once must remember to update dct with the gradient

sent back from ct+1, which is accomplished by Lines 6 and 10 of Algorithm 2. Given the

updated dct, we apply Remark 3 to derive:

dft = ct−1 ◦ dct (2.43)

dct−1 = ft ◦ dct (2.44)

dit = ĥt ◦ dct (2.45)

dĥt = it ◦ dct (2.46)

Let dut = [dit; dft; dot; dĥt] (vertical concatenation), we are now ready to backpropa-

gate through Eq. (2.39). In a similar manner as RNNs, Eq. 2.27-2.30, we arrive at:

dxt = T ⊤
x · (g

′(T lstmzt) ◦ dut) (2.47)

dht−1 = T ⊤
h · (g

′(T lstmzt) ◦ dut) (2.48)

dT x = (g′(T lstmzt) ◦ dut) · x
⊤
t (2.49)

dT h = (g′(T lstmzt) ◦ dut) · h
⊤
t−1 (2.50)

All of these gradients can now be put together in the below BPTT algorithm for LSTM:

CHAPTER 2. BACKGROUND 30

Algorithm 2: BPTT algorithm for LSTM

1 for t = T → 1 do

// Output backprop

2 dst ← 1yt − pt

3 dWhy ← dWhy + dst · h
⊤
t

4 dht ← dht +W⊤
hy · dst

// LSTM backprop

5 dot ← tanh(ct) ◦ dht

6 dct ← dct + tanh′(ct) ◦ ot ◦ dht ; // Already included dct+1

7 dft ← ct−1 ◦ dct
8 dit ← ĥt ◦ dct
9 dĥt ← it ◦ dct

10 dct−1 ← ft ◦ dct ; // Compute dct−1

11 dut = [dit; dft; dot; dĥt]
12 dT x ← (g′(T lstmzt) ◦ dut) · x

⊤
t

13 dT h ← (g′(T lstmzt) ◦ dut) · h
⊤
t−1

// Input backprop

14 dxt ← T⊤
x · (g

′(T lstmzt) ◦ dut)

15 dht−1 ← T⊤
h · (g

′(T lstmzt) ◦ dut)

16 end

CHAPTER 2. BACKGROUND 31

2.3 Neural Machine Translation

Having introduced recurrent language models, one can simply think of neural machine

translation (NMT) as a recurrent language model that conditions on the source sentence.

More formally, NMT aims to directly model the conditional probability p(y|x) of translat-

ing a source sentence, x1, . . . , xn, to a target sentence, y1, . . . , ym. It accomplishes this goal

through an encoder-decoder framework (Kalchbrenner and Blunsom, 2013; Sutskever et al.,

2014; Cho et al., 2014). The encoder computes a representation s for each source sentence.

Based on that source representation, the decoder generates a translation, one target word at

a time, and hence, decomposes the log conditional probability as:

log p(y|x) =
∑m

t=1
log p (yt|y<t, s) (2.51)

NMT models vary in terms of the exact architectures to use. A natural choice for

sequential data is the recurrent neural network (RNN), used by most of the recent NMT

work and for both the encoder and decoder. The used RNN models, however, differ in terms

of: (a) directionality – unidirectional or bidirectional; (b) depth – single or deep multi-layer;

and (c) type – often either a vanilla RNN, an LSTM (Hochreiter and Schmidhuber, 1997),

or a gated recurrent unit (GRU) (Cho et al., 2014). In general, for the encoder, almost any

architecture can be used since we have fully observed the source sentence. For example,

Kalchbrenner and Blunsom (2013) used a convolutional neural network for encoding the

source. Choices on the decoder side are more limited since we need to be able to generate

a translation. At the time of this thesis, the most popular choice is a unidirectional RNN,

which simplifies the beam-search decoding algorithm by producing translations from left

to right.

In this thesis, all my NMT models are deep multi-layer RNNs which are unidirectional

and have an LSTM as the recurrent unit. I show an example of such model in Figure 2.4. In

this example, I train my model to translate a source sentence “I am a student” into a target

one “Je suis étudiant”. At a high level, my NMT models consist of two recurrent neural

networks as described in Section 2.2: the encoder RNN simply consumes the input source

words without making any prediction; the decoder, on the other hand, processes the target

sentence while predicting the next words.

CHAPTER 2. BACKGROUND 32

Figure 2.4: Neural machine translation – example of a deep recurrent architecture pro-

posed by Sutskever et al. (2014) for translating a source sentence “I am a student” into a

target sentence “Je suis étudiant”. Here, “ ” marks the end of a sentence.

In more detail, at the bottom layer, the encoder and decoder RNNs receive as input the

following: first, the source sentence, then a boundary marker “ ” which indicates the transi-

tion from the encoding to the decoding mode, and the target sentence. Given these discrete

words, the model looks up the source and target embeddings to retrieve the correspond-

ing word representations. For this embedding layer to work, a vocabulary is chosen for

each language, and often the top V frequent words are selected. These embedding weights,

one set per language, are learned during training. While one can choose to initialize em-

bedding weights with pretrained word representations, such as word2vec (Mikolov et al.,

2013) and Glove (Pennington et al., 2014), I found, in this thesis, that these embeddings

can be initialized randomly and learned from scratch given large training datasets.

Once retrieved, the word embeddings are then fed as input into the main network, which

CHAPTER 2. BACKGROUND 33

consists of two multi-layer RNNs ‘stuck together’ — an encoder for the source language

and a decoder for the target language. These two RNNs, in principle, can share the same

weights; however, in practice, I found that having two different RNN parameters works

better and less overfits to large training datasets. The encoder RNN uses zero vectors as

its starting states. The decoder, on the other hand, needs to have access to the source

information, so one simple way to achieve that is to initialize it with the last hidden state

of the encoder.6 In Figure 2.4, I pass the hidden state at the source word “student” to the

decoder side. The feed-forward (vertical) weights connect the hidden unit from the layer

below to the upper one; whereas, the recurrent (horizontal) weights transfer the history

knowlege from the previous timestep to the next one. Often, different weights can be used

across the encoder and decoder as well as across different layers; in the current example, I

have 4 different LSTM weight sets T lstm, detailed in Eq. (2.38), over {encoder, decoder}×

{1st, 2nd layer}. Finally, for each target word, the hidden state at the top layer is transformed

by the softmax weights into a probability distribution over the target vocabulary of size V

according to Eq. (2.4) and Eq. (2.5).

2.3.1 Training

Training a neural machine translation system is similar to training a recurrent language

model that I have discussed in Section 2.2 except that we need to handle the conditioning

on source sentences. The training objective for NMT is formulated as:

J =
∑

(x,y)∈D
− log p(y|x) (2.52)

Here, D refers to our parallel training corpus of source and target sentence pairs (x, y).

Given the aforementioned NMT architecture, computing the NMT loss for (x, y) during

the forward pass is almost the same as how we compute the regular RNN loss on just y.

The only difference is that we have to first compute representations for the source sentence

x to initialize the decoder RNN instead of just starting from zero states. For the backprop-

agation phase, computing gradients for the decoder is the same as what I have described in

6This is not the only way to initialize the decoder, e.g., Cho et al. (2014) connect the last encoder state to

every timestep in the decoder as an extra input.

CHAPTER 2. BACKGROUND 34

Algorithm 2 for regular RNNs. The last hidden-state gradient from the decoder is passed

back to the encoder. I then continue backpropagating through the encoder in a similar

fashion as that of the decoder but without any prediction losses.

More concretely, I present in Algorithm 3 details of the forward pass of an NMT model

which uses a deep multi-layer LSTM architecture. Since the encoder and decoder share

many operations in common, we combine the source sentence x (length mx), the target

sentence y (length my), and the end-of-sentence markers “ ” together to form an input

sequence s as shown in Line 1. We first start with the encoder weights and initial states set

to zero (lines 2-3). The algorithm switches to the decoder mode at time mx + 1 (line 5).

The same LSTM codebase (lines 8-11) is used for both the encoder and decoder in which

embeddings are first looked up for the input st; after that, hidden states as well as LSTM

cell memories are built from the bottom layer to the top one (the Lth layer). In Line 10,

LSTM refers to the entire formulation in Eq 2.35-2.37, which one can easily replace with

other hidden units such as RNN and GRU. Lastly, on the decoder side, the top hidden state

is used to predict the next symbol st+1 (line 13); then, a loss value lt and a probability

distribution pt computed according to Eq 2.4-2.5 are returned.

Next, I describe details of the backpropagation step in Algorithm 4. A quick glance

through the algorithm reveals many similarities compared to the forward pass algorithm

except that we have reversed the procedure. First, we initialize gradients of the recurrent

layers at the final time step (line 1) as well the model weights on the decoder size (line

2) to zero. At time mx, we switch to the encoder mode by saving the currently accumu-

lated LSTM and embedding gradients for the decoder (line 5) and starting to accumulate

gradients for the encoder weights (line 6). Thanks to the backpropagation procedure pre-

sented earlier for LSTM, we can simplify the core NMT gradient computation (lines 8-18)

by making the following two referents: (a) Predict grad (lines 2-4 of Algorithm 2)

which computes gradients for the target-side losses with respect to the hidden states at the

top layer and the softmax weights Why; and (b) LSTM grad (lines 5-15 of Algorithm 2)

which computes gradients for inputs to LSTM and the LSTM weights per layer T
(l)
lstm. It

is important to note that in Lines 10 and 15 of Algorithm 4, we add the gradients (flow-

ing vertically from either the loss or the upper LSTM layer) to the gradient of the below

CHAPTER 2. BACKGROUND 35

Algorithm 3: NMT training algorithm – forward pass.

Input: source sentence x of length mx, target sentence y of length my.

Parameters: encoder W encoder
e , T encoder

lstm ; decoder W decoder
e , T decoder

lstm .

Output: loss l and other intermediate variables for backpropagation.

1 s← [x, , y,] ; // Length of s is mx + 1 +my + 1

2 We,T
(1..L)
lstm ←W encoder

e ,T encoder
lstm ; // Encoder weights

3 h
(1..L)
0 , c

(1..L)
0 ← 0 ; // Zero init

4 for t = 1→ (mx + 1 +my) do

// Decoder transition

5 if t == (mx + 1) then

6 We,T
(1..L)
lstm ←W decoder

e ,T decoder
lstm ;

7 end

// Multi-layer LSTM

8 h
(0)
t ← Emb LookUp(st,We) ;

9 for l = 1→ L do

10 h
(l)
t , c

(l)
t ← LSTM

(

h
(l)
t−1, c

(l)
t−1,h

(l−1)
t ,T

(l)
lstm

)

; // LSTM hidden unit

11 end

// Target-side prediction

12 if t ≥ (mx + 1) then

13 lt,pt ← Predict(st+1,h
(L)
t ,Why) ;

14 end

15 end

CHAPTER 2. BACKGROUND 36

Algorithm 4: NMT training algorithm – backpropagation pass.

1 dh
(1..L)
mx+1+my

, dc
(1..L)
mx+1+my

← 0 ; // Cell and state gradients

2 dT
(1..L)
lstm , dWe, dWhy ← 0 ; // Model weight gradients

3 for t = (mx + 1 +my)→ 1 do

// Encoder transition

4 if t == mx then

5 dW decoder
e , dT decoder

lstm ← dWe, dT
(1..L)
lstm ; // Save decoder gradients

6 dT
(1..L)
lstm , dWe ← 0 ;

7 end

// Target-side prediction

8 if t ≥ (mx + 1) then

9 dh, dW ← Predict grad(st+1,pt,h
(L)
t);

10 dh
(L)
t ← dh

(L)
t + dh ; // Vertical gradients

11 dWhy ← dWhy + dW;

12 end

// Multi-layer LSTM

13 for l = L→ 1 do

// Recurrent gradients

14 dh
(l)
t−1, dc

(l)
t−1, dx, dT ← LSTM grad

(

dh
(l)
t , dc

(l)
t ,h

(l)
t−1, c

(l)
t−1,h

(l−1)
t

)

;

15 dh
(l−1)
t ← dh

(l−1)
t + dx; // Vertical gradients

16 dT
(l)
lstm ← dT

(l)
lstm + dT ;

17 end

18 dWe ← Emb grad update(st, dh
(0)
t , dWe) ;

19 end

20 dW encoder
e , dT encoder

lstm ← dWe, dT
(1..L)
lstm ; // Save encoder gradients

CHAPTER 2. BACKGROUND 37

layer (which already contains the gradient backpropagated horizontally) instead of overrid-

ing it. In Line 18, we perform sparse updates on the corresponding embedding matrix for

participating words only. Lastly, implementation wise, one can save memory by using a

single copy of dh(1..L) and dc(1..L) for all time steps and overwriting the values whenever

we transition from timesteps t to t− 1 (line 14).

2.3.2 Testing

Having trained an NMT model, we, of course, need to be able to use it to translate, or

decode, unseen source sentences! This section explains a few different ways to accomplish

this goal and how to decode with an ensemble of models.

The simplest strategy to translate a source sentence is to perform greedy decoding which

I illustrate in Figure 2.5. The idea is simple: (a) we first encode the source sentence, “I am a

student” in our example, similar to the training process; (b) the decoding process is started

as soon as an end-of-sentence marker “ ” for the source sentence is fed as an input; and (c)

for each timestep on the decoder side, we pick the most likely word (a greedy choice), e.g.,

“moi” has the highest translation probability in the first decoding step, then use it as an

input to the next timestep, and continue until the end-of-sentence marker “ ” is produced as

an output symbol. Step (c) is what makes testing different from training: unlike training in

which correct target words in y are always fed as an input, testing, on the other hand, uses

words predicted by the model.

More concretely, I adopt the NMT forward algorithm to arrive at the greedy decoding

strategy in Algorithm 5. I present the greedy algorithm in a slightly more abstract way

by reusing elements of the NMT forward pass in Algorithm 3. First, we run through the

encoder in Line 1 to obtain a representation h0, c0 for the source sentence x (length mx).

We then use the end-of-sentence marker “ ” as an input to start the decoding process and

restrict the final translation to have a maximum length of α ∗mx.7 At each timestep on the

decoder side, we call MultiLayerLSTM, which refers to Lines 8-11 in Algorithm 3, to

build up representations over L stacking LSTM layers. The hidden state at the top layer

is used to compute the predictive distribution pt from which we make a greedy choice

7We often set α to 1.5.

CHAPTER 2. BACKGROUND 38

Figure 2.5: Greedy Decoding – example of how a trained NMT model produces a transla-

tion for a source sentence “I am a student” using greedy search.

to produce the index of the translation word at that timestep (line 7). The process ends

when we have produced the marker “ ” as a translation word or when the translation length

exceeds the length threshold.

For NMT, it turns out that such a simple strategy of greedy decoding can produce very

good translations (Sutskever et al., 2014). However, to achieve a better result, a more popu-

lar strategy is to use a beam-search decoding algorithm which has been the core of phrase-

based statistical machine translation for years (Koehn et al., 2003). Unlike phrase-based

SMT, NMT has a much simpler beam-search decoding algorithm since it generates trans-

lations word-by-word from left to right and does not have to explicitly explore different

CHAPTER 2. BACKGROUND 39

Algorithm 5: NMT greedy decoding algorithm.

1 h0, c0 ← Encoder(x,W encoder
e ,T encoder

lstm) ;

2 t← 1 ;

3 y1 ← ;

4 while t ≤ α ∗mx do // Length factor α ≥ 1
5 ht, ct ← MultiLayerLSTM

(

ht−1, ct−1, yt,W
decoder
e ,T decoder

lstm

)

;

6 pt ← Softmax(h
(L)
t ,Why) ;

7 yt+1 ← argmaxi pt(i) ; // Greedy choice

8 if yt+1 == Index() then // Ending condition

9 break;

10 end

11 t← t+ 1

12 end

13 return y2..t

places on the source side to pay attention to.8 One can modify the greedy decoding al-

gorithm as follows to build a beam-search decoder: (a) at each timestep on the decoder

side, we keep track of the top B (the beam size) best translations together with their corre-

sponding hidden states; (b) in Line 7 of Algorithm 5, instead of applying argmax, we select

the top B most likely words; and (c) given B previous best translation ×B best words,

we select a new set of B best translations for the current timestep based on the combined

scores (previous translation scores + current word translation scores). Extra care needs to

be taken to make sure that in step (c) we select correct hidden states for the new set of B

best translations. Sutskever et al. (2014) observed that for NMT, a minimal beam size of 2

already provides a significant boost in translation quality. A beam of size 10 is often used,

which is significant smaller that what phrase-based SMT tends to use, about 100− 200.

Furthermore, to achieve the very best result, one simple strategy which has been widely

adopted for deep neural networks is to use an ensemble of models. For NMT decoding,

using multiple models is pretty straightforward. The idea is that each model produces

a distribution at each timestep in the decoder (line 6 of Algorithm 5). These different

distributions are then averaged to produce a new ensemble distribution which we can use

8In SMT, a source coverage set is maintained to indicate which words have been translated. As translation

progresses, an SMT system base on the coverage set and pick untranslated source words to continue. Such

an idea of coverage set later re-emerges in NMT which I will describe more in Chapter 7.

CHAPTER 2. BACKGROUND 40

for both greedy and beam-search decoders as if we decode from a single model.

In summary, I have covered all the necessary background knowledge to understand

this thesis entirely. We start with language modeling, an important concept in natural lan-

guage processing, which turns out to be the basis of NMT. One can simply view NMT

as a source-conditioned language model. To understand how NMT systems work, I have

covered the fundamentals of recurrent neural networks which allow us to handle variable-

length sequences, in our case, the sentences. We have particularly studied Long Short-term

Memory, a specific type of RNN that is more effective at handling long sequences, in depth.

Finally, given these building blocks, language modeling and RNN, I have discussed NMT

in detail from training to testing.

Chapter 3

Copy Mechanisms

Despite all of the advantages mentioned in the previous chapter, basic NMT systems are in-

capable of translating rare words because they have a fixed modest-sized vocabulary1 which

forces them to use the unk symbol to represent the large number of out-of-vocabulary

(OOV) words, as illustrated in Figure 3.1. Unsurprisingly, both Sutskever et al. (2014) and

Bahdanau et al. (2015) have observed that sentences with many rare words tend to be trans-

lated much more poorly than sentences containing mainly frequent words. Standard phrase-

based systems (Koehn et al., 2007; Chiang, 2007; Cer et al., 2010; Dyer et al., 2010), on the

other hand, do not suffer from the rare word problem to the same extent because they can

support a much larger vocabulary, and because their use of explicit alignments and phrase

tables allows for memorizing the translations of even extremely rare words.

Motivated by the strengths of the standard phrase-based system, I propose and imple-

ment a novel approach to address the rare word problem of NMTs. My approach annotates

the training corpus with explicit alignment information that enables the NMT system to

emit, for each OOV word, a “pointer” to its corresponding word in the source sentence.

This information is later utilized in a post-processing step that translates the OOV words

using a dictionary or with the identity translation, if no translation is found.

Experimental results confirm that this approach is effective. On the English to French

WMT’14 translation task, this approach provides an improvement of up to 2.8 BLEU points

1 Due to the computationally intensive nature of the softmax, NMT systems often limit their vocabularies

to be the top 30K-80K most frequent words in each language.

41

CHAPTER 3. COPY MECHANISMS 42

en: The ecotax portico in Pont-de-Buis , . . . [truncated] . . . , was taken down on Thursday morning

fr: Le portique écotaxe de Pont-de-Buis , . . . [truncated] . . . , a été démonté jeudi matin

nn: Le unk de unk à unk , . . . [truncated] . . . , a été pris le jeudi matin

✟✟✟✟

❍❍❍❍

❆
❆

❅
❅

✂
✂

✑
✑
✑

✟✟✟✟

Figure 3.1: Example of the rare word problem – An English source sentence (en), a

human translation to French (fr), and a translation produced by one of my neural network

systems (nn) before handling OOV words. I highlight words that are unknown to my model.

The token unk indicates an OOV word. I also show a few important alignments between

the pair of sentences.

(if the vocabulary is relatively small) over an equivalent NMT system that does not use

this technique. Moreover, my system is the first NMT that outperforms the winner of a

WMT’14 task.

3.1 Rare Word Models

Despite the relatively large amount of work done on pure neural machine translation sys-

tems, there has been no work addressing the OOV problem in NMT systems, with the

notable exception of Jean et al. (2015a)’s work which offered an efficient approximation

to the softmax to accommodate for a very large vocabulary (500K words). However, even

with a large vocabulary, the problem with rare words, e.g., names, numbers, etc., still per-

sists, and Jean et al. (2015a) found that using techniques similar to ours are beneficial and

complementary to their approach.

I propose to address the rare word problem by training the NMT system to track the

origins of the unknown words in the target sentences. If I knew the source word respon-

sible for each unknown target word, I could introduce a post-processing step that would

replace each unk in the system’s output with a translation of its source word, using either

a dictionary or the identity translation. For example, in Figure 3.1, if the model knows that

the second unknown token in the NMT (line nn) originates from the source word ecotax,

it can perform a word dictionary lookup to replace that unknown token by écotaxe. Sim-

ilarly, an identity translation of the source word Pont-de-Buis can be applied to the

CHAPTER 3. COPY MECHANISMS 43

en: The unk1 portico in unk2 . . .

fr: Le unk∅ unk1 de unk2 . . .

Figure 3.2: Copyable Model – an annotated example with two types of unknown tokens:

“copyable” unkn and null unk∅.

third unknown token.

I present three annotation strategies that can easily be applied to any NMT system

(Kalchbrenner and Blunsom, 2013; Sutskever et al., 2014; Cho et al., 2014). I treat the

NMT system as a black box and train it on a corpus annotated by one of the models below.

First, the alignments are produced with an unsupervised aligner. Next, I use the align-

ment links to construct a word dictionary that will be used for the word translations in the

post-processing step.2 If a word does not appear in my dictionary, then I apply the identity

translation.

The first few words of the sentence pair in Figure 3.1 (lines en and fr) illustrate my

models.

3.1.1 Copyable Model

In this approach, I introduce multiple tokens to represent the various unknown words in the

source and in the target language, as opposed to using only one unk token. I annotate the

OOV words in the source sentence with unk1, unk2, unk3, in that order, while assigning

repeating unknown words identical tokens. The annotation of the unknown words in the

target language is slightly more elaborate: (a) each unknown target word that is aligned to

an unknown source word is assigned the same unknown token (hence, the “copy” model)

and (b) an unknown target word that has no alignment or that is aligned with a known word

uses the special null token unk∅. See Figure 3.2 for an example. This annotation enables

us to translate every non-null unknown token.

2When a source word has multiple translations, I use the translation with the highest probability. These

translation probabilities are estimated from the unsupervised alignment links. When constructing the dic-

tionary from these alignment links, I add a word pair to the dictionary only if its alignment count exceeds

100.

CHAPTER 3. COPY MECHANISMS 44

en: The unk portico in unk . . .

fr: Le p0 unk p−1 unk p1 de p∅ unk p−1 . . .

Figure 3.3: Positional All Model – an example of the PosAll model. Each word is

followed by the relative positional tokens pd or the null token p∅.

3.1.2 Positional All Model (PosAll)

The copyable model is limited by its inability to translate unknown target words that are

aligned to known words in the source sentence, such as the pair of words, “portico” and

“portique”, in my running example. The former word is known on the source sentence;

whereas latter is not, so it is labelled with unk∅. This happens often since the source

vocabularies of my models tend to be much larger than the target vocabulary since a large

source vocabulary is cheap. This limitation motivated us to develop an annotation model

that includes the complete alignments between the source and the target sentences, which

is straightforward to obtain since the complete alignments are available at training time.

Specifically, I return to using only a single universal unk token. However, on the target

side, I insert a positional token pd after every word. Here, d indicates a relative position

(d = −7, . . . ,−1, 0, 1, . . . , 7) to denote that a target word at position j is aligned to a source

word at position i = j − d. Aligned words that are too far apart are considered unaligned,

and unaligned words rae annotated with a null token pn. My annotation is illustrated in

Figure 3.3.

3.1.3 Positional Unknown Model (PosUnk)

The main weakness of the PosAll model is that it doubles the length of the target sentence.

This makes learning more difficult and slows the speed of parameter updates by a factor of

two. However, given that my post-processing step is concerned only with the alignments

of the unknown words, so it is more sensible to only annotate the unknown words. This

motivates my positional unknown model which uses unkposd tokens (for d in −7, . . . , 7

or ∅) to simultaneously denote (a) the fact that a word is unknown and (b) its relative

position d with respect to its aligned source word. Like the PosAll model, I use the symbol

unkpos∅ for unknown target words that do not have an alignment. I use the universal unk

CHAPTER 3. COPY MECHANISMS 45

for all unknown tokens in the source language. See Figure 3.4 for an annotated example.

en: The unk portico in unk . . .

fr: Le unkpos1 unkpos−1 de unkpos1 . . .

Figure 3.4: Positional Unknown Model – an example of the PosUnk model: only aligned

unknown words are annotated with the unkposd tokens.

It is possible that despite its slower speed, the PosAll model will learn better alignments

because it is trained on many more examples of words and their alignments. However, I

show that this is not the case (see §3.3.2).

3.2 Experiments

I evaluate the effectiveness of my OOV models on the WMT’14 English-to-French transla-

tion task. Translation quality is measured with the BLEU metric (Papineni et al., 2002) on

the newstest2014 test set (which has 3003 sentences).

3.2.1 Training Data

To be comparable with the results reported by previous work on neural machine transla-

tion systems (Sutskever et al., 2014; Cho et al., 2014; Bahdanau et al., 2015), I train my

models on the same training data of 12M parallel sentences (348M French and 304M En-

glish words), obtained from (Schwenk, 2014). The 12M subset was selected from the full

WMT’14 parallel corpora using the method proposed in Axelrod et al. (2011).

Due to the computationally intensive nature of the naive softmax, I limit the French

vocabulary (the target language) to the either the 40K or the 80K most frequent French

words. On the source side, I can afford a much larger vocabulary, so I use the 200K most

frequent English words. The model treats all other words as unknowns.3

I annotate my training data using the three schemes described in the previous section.

The alignment is computed with the Berkeley aligner (Liang et al., 2006) using its default

3When the French vocabulary has 40K words, there are on average 1.33 unknown words per sentence on

the target side of the test set.

CHAPTER 3. COPY MECHANISMS 46

settings. I discard sentence pairs in which the source or the target sentence exceed 100

tokens.

3.2.2 Training Details

My training procedure and hyperparameter choices are similar to those used by

Sutskever et al. (2014). In more details, I train multi-layer deep LSTMs, each of which

has 1000 cells, with 1000 dimensional embeddings. Like Sutskever et al. (2014), I reverse

the words in the source sentences which has been shown to improve LSTM memory uti-

lization and results in better translations of long sentences. My hyperparameters can be

summarized as follows: (a) the parameters are initialized uniformly in [-0.08, 0.08] for 4-

layer models and [-0.06, 0.06] for 6-layer models, (b) SGD has a fixed learning rate of 0.7,

(c) I train for 8 epochs (after 5 epochs, I begin to halve the learning rate every 0.5 epoch),

(d) the size of the mini-batch is 128, and (e) I rescale the normalized gradient to ensure that

its norm does not exceed 5 (Pascanu et al., 2013).

I also follow the GPU parallelization scheme proposed in (Sutskever et al., 2014), al-

lowing us to reach a training speed of 5.4K words per second to train a depth-6 model with

200K source and 80K target vocabularies; whereas Sutskever et al. (2014) achieved 6.3K

words per second for a depth-4 models with 80K source and target vocabularies. Training

takes about 10-14 days on an 8-GPU machine.

3.2.3 A note on BLEU scores

I report BLEU scores based on both: (a) detokenized translations, i.e., WMT’14 style, to be

comparable with results reported on the WMT website4 and (b) tokenized translations, so

as to be consistent with previous work (Cho et al., 2014; Bahdanau et al., 2015; Schwenk,

2014; Sutskever et al., 2014; Jean et al., 2015a).5

The existing WMT’14 state-of-the-art system (Durrani et al., 2014) achieves a detok-

enized BLEU score of 35.8 on the newstest2014 test set for English to French language

4http://matrix.statmt.org/matrix
5The tokenizer.perl and multi-bleu.pl scripts are used to tokenize and score translations.

http://matrix.statmt.org/matrix

CHAPTER 3. COPY MECHANISMS 47

pair (see Table 3.1). In terms of the tokenized BLEU, its performance is 37.0 points (see

Table 3.2).

System BLEU

Existing SOTA (Durrani et al., 2014) 35.8

Ensemble of 8 LSTMs + PosUnk 36.6

Table 3.1: Detokenized BLEU on newstest2014 – translation results of the existing state-

of-the-art system and my best system.

3.2.4 Main Results

I compare my systems to others, including the then state-of-the-art MT system

(Durrani et al., 2014), recent end-to-end neural systems, as well as phrase-based baselines

with neural components.

The results shown in Table 3.2 demonstrate that my unknown word translation tech-

nique (in particular, the PosUnk model) significantly improves the translation quality for

both the individual (non-ensemble) LSTM models and the ensemble models.6 For 40K-

word vocabularies, the performance gains are in the range of 2.3-2.8 BLEU points. With

larger vocabularies (80K), the performance gains are diminished, but my technique can still

provide a nontrivial gains of 1.6-1.9 BLEU points.

It is interesting to observe that our approach is more useful for ensemble models as

compared to the individual ones. This is because the usefulness of the PosUnk model

directly depends on the ability of the NMT to correctly locate, for a given OOV target word,

its corresponding word in the source sentence. An ensemble of large models identifies

these source words with greater accuracy. This is why for the same vocabulary size, better

models obtain a greater performance gain our post-processing step. Except for the very

recent work of Jean et al. (2015a) that employs a similar unknown treatment strategy7 as

6 For the 40K-vocabulary ensemble, I combine 5 models with 4 layers and 3 models with 6 layers. For the

80K-vocabulary ensemble, I combine 3 models with 4 layers and 5 models with 6 layers. Two of the depth-6

models are regularized with dropout, similar to Zaremba et al. (2014) with the dropout probability set to 0.2.
7Their unknown replacement method and mine both track the locations of target unknown words and use

a word dictionary to post-process the translation. However, the mechanism used to achieve the “tracking”

behavior is different. Jean et al. (2015a)’s uses the attentional mechanism to track the origins of all target

words, not just the unknown ones. In contrast, I only focus on tracking unknown words using unsupervised

CHAPTER 3. COPY MECHANISMS 48

System Vocab Corpus BLEU

State of the art in WMT’14 (Durrani et al., 2014) All 36M 37.0

Standard MT + neural components

Schwenk (2014) – neural language model All 12M 33.3

Cho et al. (2014)– phrase table neural features All 12M 34.5

Sutskever et al. (2014) – 5 LSTMs, reranking 1000-best lists All 12M 36.5

Existing end-to-end NMT systems

Bahdanau et al. (2015) – single gated RNN with search 30K 12M 28.5

Sutskever et al. (2014) – 5 LSTMs 80K 12M 34.8

Jean et al. (2015a) – 8 gated RNNs with search + UNK replacement 500K 12M 37.2

My end-to-end NMT systems

Single LSTM with 4 layers 40K 12M 29.5

Single LSTM with 4 layers + PosUnk 40K 12M 31.8 (+2.3)

Single LSTM with 6 layers 40K 12M 30.4

Single LSTM with 6 layers + PosUnk 40K 12M 32.7 (+2.3)

Ensemble of 8 LSTMs 40K 12M 34.1

Ensemble of 8 LSTMs + PosUnk 40K 12M 36.9 (+2.8)

Single LSTM with 6 layers 80K 36M 31.5

Single LSTM with 6 layers + PosUnk 80K 36M 33.1 (+1.6)

Ensemble of 8 LSTMs 80K 36M 35.6

Ensemble of 8 LSTMs + PosUnk 80K 36M 37.5 (+1.9)

Table 3.2: Tokenized BLEU on newstest2014 – Translation results of various systems

which differ in terms of: (a) the architecture, (b) the size of the vocabulary used, and (c)

the training corpus, either using the full WMT’14 corpus of 36M sentence pairs or a subset

of it with 12M pairs. I highlight the performance of my best system in bolded text and state

the improvements obtained by our technique of handling rare words (namely, the PosUnk

model). Notice that, for a given vocabulary size, the more accurate systems achieve a

greater improvement from the post-processing step. This is the case because the more

accurate models are able to pin-point the origin of an unknown word with greater accuracy,

making the post-processing more useful.

mine, our best result of 37.5 BLEU outperforms all other NMT systems by a arge margin,

and more importanly, our system has established a new record on the WMT’14 English to

French translation.

alignments. My method can be easily applied to any sequence-to-sequence models since I treat any model as

a blackbox and manipulate only at the input and output levels.

CHAPTER 3. COPY MECHANISMS 49

3.3 Analysis

I analyze and quantify the improvement obtained by my rare word translation approach

and provide a detailed comparison of the different rare word techniques proposed in Sec-

tion 3.1. I also examine the effect of depth on the LSTM architectures and demonstrate a

strong correlation between perplexities and BLEU scores. I also highlight a few transla-

tion examples where my models succeed in correctly translating OOV words, and present

several failures.

3.3.1 Rare Word Analysis

To analyze the effect of rare words on translation quality, I follow Sutskever et

al. (Sutskever et al., 2014) and sort sentences in newstest2014 by the average inverse fre-

quency of their words. I split the test sentences into groups where the sentences within each

group have a comparable number of rare words and evaluate each group independently. I

evaluate my systems before and after translating the OOV words and compare with the

standard MT systems – I use the best system from the WMT’14 contest (Durrani et al.,

2014), and neural MT systems – I use the ensemble systems described in (Sutskever et al.,

2014) and Section 5.3.

Rare word translation is challenging for neural machine translation systems as shown

in Figure 3.5. Specifically, the translation quality of my model before applying the postpro-

cessing step is shown by the green curve, and the current best NMT system (Sutskever et al.,

2014) is the purple curve. While (Sutskever et al., 2014) produces better translations for

sentences with frequent words (the left part of the graph), they are worse than best system

(red curve) on sentences with many rare words (the right side of the graph). When ap-

plying my unknown word translation technique (purple curve), I significantly improve the

translation quality of my NMT: for the last group of 500 sentences which have the greatest

proportion of OOV words in the test set, I increase the BLEU score of my system by 4.8

BLEU points. Overall, my rare word translation model interpolates between the SOTA sys-

tem and the system of Sutskever et al. (2014), which allows us to outperform the winning

entry of WMT’14 on sentences that consist predominantly of frequent words and approach

its performance on sentences with many OOV words.

CHAPTER 3. COPY MECHANISMS 50

0 500 1000 1500 2000 2500 3000
28

30

32

34

36

38

40

42

Sents

B
L

E
U

		
		

SOTA Durrani et al. (37.0)

Sutskever et al. (34.8)

Ours (35.6)

Ours + PosUnk (37.5)

Figure 3.5: Rare word translation – On the x-axis, I order newstest2014 sentences by

their average frequency rank and divide the sentences into groups of sentences with a com-

parable prevalence of rare words. I compute the BLEU score of each group independently.

3.3.2 Rare Word Models

I examine the effect of the different rare word models presented in Section 3.1, namely:

(a) Copyable – which aligns the unknown words on both the input and the target side by

learning to copy indices, (b) the Positional All (PosAll) – which predicts the aligned source

positions for every target word, and (c) the Positional Unknown (PosUnk) – which predicts

the aligned source positions for only the unknown target words.8 It is also interesting to

measure the improvement obtained when no alignment information is used during training.

As such, I include a baseline model with no alignment knowledge (NoAlign) in which

I simply assume that the ith unknown word on the target sentence is aligned to the ith

unknown word in the source sentence.

From the results in Figure 3.6, a simple monotone alignment assumption for the NoAlign

8In this section and in section 3.3.3, all models are trained on the unreversed sentences, and I use the

following hyperparameters: I initialize the parameters uniformly in [-0.1, 0.1], the learning rate is 1, the

maximal gradient norm is 1, with a source vocabulary of 90k words, and a target vocabulary of 40k (see

Section 3.2.2 for more details). While these LSTMs do not achieve the best possible performance, it is still

useful to analyze them.

CHAPTER 3. COPY MECHANISMS 51

NoAlign (5.31) Copyable (5.38) PosAll (5.30, 1.37) PosUnk (5.32)
20

22

24

26

28

30

32
B

L
E

U
		

+0.8

+1.0

+2.4
+2.2

Figure 3.6: Rare word models – translation performance of 6-layer LSTMs: a model that

uses no alignment (NoAlign) and the other rare word models (Copyable, PosAll, PosUnk).

For each model, I show results before (left) and after (right) the rare word translation as

well as the perplexity (in parentheses). For PosAll, I report the perplexities of predicting

the words and the positions.

model yields a modest gain of 0.8 BLEU points. If I train the model to predict the align-

ment, then the Copyable model offers a slightly better gain of 1.0 BLEU. Note, however,

that English and French have similar word order structure, so it would be interesting to ex-

periment with other language pairs, such as English and Chinese, in which the word order

is not as monotonic. These harder language pairs potentially imply a smaller gain for the

NoAlign model and a larger gain for the Copyable model. I leave it for future work.

The positional models (PosAll and PosUnk) improve translation performance by more

than 2 BLEU points. This proves that the limitation of the copyable model, which forces

it to align each unknown output word with an unknown input word, is considerable. In

contrast, the positional models can align the unknown target words with any source word,

and as a result, post-processing has a much stronger effect. The PosUnk model achieves

better translation results than the PosAll model which suggests that it is easier to train the

LSTM on shorter sequences.

CHAPTER 3. COPY MECHANISMS 52

3.3.3 Other Effects

Deep LSTM architecture – I compare PosUnk models trained with different number of

layers (3, 4, and 6). I observe that the gain obtained by the PosUnk model increases in

tandem with the overall accuracy of the model, which is consistent with the idea that larger

models can point to the appropriate source word more accurately. Additionally, I observe

that on average, each extra LSTM layer provides roughly 1.0 BLEU point improvement as

demonstrated in Figure 3.7.

Depth 3 (6.01) Depth 4 (5.71) Depth 6 (5.46)
20

22

24

26

28

30

32

B
L

E
U

		

+1.9

+2.0

+2.2

Figure 3.7: Effect of depths – BLEU scores achieved by PosUnk models of various depths

(3, 4, and 6) before and after the rare word translation. Notice that the PosUnk model is

more useful on more accurate models.

Perplexity and BLEU – Lastly, I find it interesting to observe a strong correlation

between the perplexity (my training objective) and the translation quality as measured by

BLEU. Figure 3.8 shows the performance of a 4-layer LSTM, in which I compute both

perplexity and BLEU scores at different points during training. I find that on average, a

reduction of 0.5 perplexity gives us roughly 1.0 BLEU point improvement.

3.3.4 Sample Translations

I present three sample translations of my best system (with 37.5 BLEU) in Table 5.4. In my

first example, the model translates all the unknown words correctly: 2600, orthopédiques,

and cataracte. It is interesting to observe that the model can accurately predict an align-

ment of distances of 5 and 6 words. The second example highlights the fact that my model

CHAPTER 3. COPY MECHANISMS 53

5.6 5.8 6 6.2 6.4 6.6 6.8
23

23.5

24

24.5

25

25.5

26

26.5

Perplexity

B
L

E
U

	

Figure 3.8: Perplexity vs. BLEU – I show the correlation by evaluating an LSTM model

with 4 layers at various stages of training.

can translate long sentences reasonably well and that it was able to correctly translate the

unknown word for JPMorgan at the very far end of the source sentence. Lastly, my exam-

ples also reveal several penalties incurred by my model: (a) incorrect entries in the word

dictionary, as with négociateur vs. trader in the second example, and (b) incorrect align-

ment prediction, such as when unkpos3 is incorrectly aligned with the source word was

and not with abandoning, which resulted in an incorrect translation in the third sentence.

3.4 Conclusion

I have shown that a simple alignment-based technique can mitigate and even overcome

one of the main weaknesses of current NMT systems, which is their inability to translate

words that are not in their vocabulary. A key advantage of my technique is the fact that it

is applicable to any NMT system and not only to the deep LSTM model of Sutskever et al.

(2014). At the time of this work, in 2014-2015, a technique like mine is likely necessary if

an NMT system is to achieve state-of-the-art performance on machine translation.

I have demonstrated empirically that on the WMT’14 English-French translation task,

my technique yields a consistent and substantial improvement of up to 2.8 BLEU points

over various NMT systems of different architectures. Most importantly, with 37.5 BLEU

points, I have established the first NMT system that outperformed the best MT system on a

WMT’14 contest dataset.

CHAPTER 3. COPY MECHANISMS 54

Sentences

src An additional 2600 operations including orthopedic and cataract

surgery will help clear a backlog .

trans En outre , unkpos1 opérations supplémentaires , dont la chirurgie

unkpos5 et la unkpos6 , permettront de résorber l’ arriéré .

+unk En outre , 2600 opérations supplémentaires , dont la chirurgie or-

thopédiques et la cataracte , permettront de résorber l’ arriéré .

tgt 2600 opérations supplémentaires , notamment dans le domaine de la

chirurgie orthopédique et de la cataracte , aideront à rattraper le retard .

src This trader , Richard Usher , left RBS in 2010 and is understand to have

be given leave from his current position as European head of forex spot

trading at JPMorgan .

trans Ce unkpos0 , Richard unkpos0 , a quitté unkpos1 en 2010 et a

compris qu’ il est autorisé à quitter son poste actuel en tant que leader

européen du marché des points de vente au unkpos5 .

+unk Ce négociateur , Richard Usher , a quitté RBS en 2010 et a compris qu’

il est autorisé à quitter son poste actuel en tant que leader européen du

marché des points de vente au JPMorgan .

tgt Ce trader , Richard Usher , a quitté RBS en 2010 et aurait été mis sus-

pendu de son poste de responsable européen du trading au comptant

pour les devises chez JPMorgan

src But concerns have grown after Mr Mazanga was quoted as saying Ren-

amo was abandoning the 1992 peace accord .

trans Mais les inquiétudes se sont accrues après que M. unkpos3 a déclaré

que la unkpos3 unkpos3 l’ accord de paix de 1992 .

+unk Mais les inquiétudes se sont accrues après que M. Mazanga a déclaré

que la Renamo était l’ accord de paix de 1992 .

tgt Mais l’ inquiétude a grandi après que M. Mazanga a déclaré que la

Renamo abandonnait l’ accord de paix de 1992 .

Table 3.3: Sample translations – the table shows the source (src) and the translations of

my best model before (trans) and after (+unk) unknown word translations. I also show

the human translations (tgt) and italicize words that are involved in the unknown word

translation process.

I will now switch gear to address a different problem in NMT, that is the difficulty in

translating long sentences. However, I will return back to the topic of rare and unknown

words in Chapter 5 to present an even better treatment to that problem.

Chapter 4

Attention Mechanisms

While I have demonstrated in the previous chapter that Neural Machine Translation (NMT)

can achieve state-of-the-art performance in large-scale translation tasks such as from En-

glish to French, it is still challenging for NMT to handle long sentences as observed by

Bahdanau et al. (2015). One effective way to address such problem is through the attention

mechanism, which has gained popularity recently in training neural networks, allowing

models to learn alignments between different modalities, e.g., between image objects and

agent actions in the dynamic control problem (Mnih et al., 2014), between speech frames

and text in the speech recognition task (Chorowski et al., 2014), or between visual features

of a picture and its text description in the image caption generation task (Xu et al., 2015).

In the context of NMT, Bahdanau et al. (2015) has successfully applied such attentional

mechanism to jointly translate and align words. To the best of my knowledge during the

time of this work, there has not been any other work exploring the use of attention-based

architectures for NMT.

In this work, I design, with simplicity and effectiveness in mind, two novel types of

attention-based models: a global approach in which all source words are attended and a

local one whereby only a subset of source words are considered at a time. The former ap-

proach resembles the model of (Bahdanau et al., 2015) but is simpler architecturally. The

latter can be viewed as an interesting blend between the hard and soft attention models

proposed in (Xu et al., 2015): it is computationally less expensive than the global model

55

CHAPTER 4. ATTENTION MECHANISMS 56

Figure 4.1: Neural machine translation – a stacking recurrent architecture for translating

a source sequence A B C D into a target sequence X Y Z. Here, </s> marks the end of

a sentence.

or the soft attention; at the same time, unlike the hard attention, the local attention is dif-

ferentiable almost everywhere, making it easier to implement and train.1 Besides, I also

examine various alignment functions for my attention-based models.

Following (Sutskever et al., 2014; Luong et al., 2015c), I use the stacking LSTM ar-

chitecture for our NMT systems, as illustrated in Figure 4.1, together with the LSTM unit

defined in (Zaremba et al., 2014). The experimental results demonstrate that both of my ap-

proaches are effective in the WMT translation tasks between English and German in both

directions. My attentional models yield a boost of up to 5.0 BLEU over non-attentional sys-

tems which already incorporate known techniques such as dropout. For English to German

translation, I achieve new state-of-the-art (SOTA) results for both WMT’14 and WMT’15,

outperforming previous SOTA systems, backed by NMT models and n-gram LM rerankers,

by more than 1.0 BLEU. I conduct extensive analysis to evaluate my models in terms of

learning, the ability to handle long sentences, choices of attentional architectures, align-

ment quality, and translation outputs.

1There is a recent work by Gregor et al. (2015), which is very similar to my local attention and applied

to the image generation task. However, as I detail later, my model is much simpler and can achieve good

performance for NMT.

CHAPTER 4. ATTENTION MECHANISMS 57

4.1 Attention-based Models

Unlike the basic NMT systems (Kalchbrenner and Blunsom, 2013; Sutskever et al., 2014;

Cho et al., 2014; Luong et al., 2015c), in which the source representation is only used once

to initialize the decoder hidden state, the idea of the attention mechanism explored in

(Bahdanau et al., 2015; Jean et al., 2015a) and this work is to provide a “random access

memory” of source hidden states which one can constantly refer to as translation pro-

gresses. The various attention-based models proposed in this work can be classifed into

two broad categories, global and local. These classes differ in terms of whether the “atten-

tion” is placed on all source positions or on only a few source positions. I illustrate these

two model types in Figure 4.2 and 4.3 respectively.

Common to these two types of models is the fact that at each time step t in the decoding

phase, both approaches first take as input the hidden state ht at the top layer of a stacking

LSTM. The goal is then to derive a context vector ct that captures relevant source-side

information to help predict the current target word yt. While these models differ in how the

context vector ct is derived, they share the same subsequent steps. Specifically, given the

target hidden stateht and the source-side context vector ct, I employ a simple concatenation

layer to combine the information from both vectors to produce an attentional hidden state

as follows:

h̃t = tanh(Wc[ct;ht]) (4.1)

The attentional vector h̃t is then fed through the softmax layer to produce the predictive

distribution formulated as:

p(yt|y<t, x) = softmax(Wsh̃t) (4.2)

I now detail how each model type computes the source-side context vector ct.

4.1.1 Global Attention

The idea of a global attentional model is to consider all the hidden states of the encoder

when deriving the context vector ct. In this model type, a variable-length alignment vector

at, whose size equals the number of time steps on the source side, is derived by comparing

CHAPTER 4. ATTENTION MECHANISMS 58

yt

h̃t

ct

at

ht

h̄s

Figure 4.2: Global attentional model – at each time step t, the model infers a variable-

length alignment weight vector at based on the current target state ht and all source states

h̄s. A global context vector ct is then computed as the weighted average, according to at,

over all the source states.

the current target hidden state ht with each source hidden state h̄s:

at(s) = align(ht, h̄s) (4.3)

=
exp

(

score(ht, h̄s)
)

∑

s′ exp
(

score(ht, h̄s′)
)

Here, score is referred to as a content-based function for which I consider three different

alternatives:

score(ht, h̄s)=

h⊤
t h̄s dot

h⊤
t Wah̄s general

v⊤
a tanh

(

Wa[ht; h̄s]
)

concat

In addition, in our early attempts to build attention-based models, I used a location-

based function in which the alignment scores are computed from solely the target hidden

state ht as follows:

at = softmax(Waht) location (4.4)

Given the alignment vector as weights, the context vector ct is computed as the weighted

CHAPTER 4. ATTENTION MECHANISMS 59

average over all the source hidden states.2

Comparison to (Bahdanau et al., 2015) – While our global attention approach is similar

in spirit to the model proposed by Bahdanau et al. (2015), there are several key differences

which reflect how I have both simplified and generalized from the original model. First,

I simply use hidden states at the top LSTM layers in both the encoder and decoder as

illustrated in Figure 4.2. Bahdanau et al. (2015), on the other hand, use the concatenation

of the forward and backward source hidden states in the bi-directional encoder and target

hidden states in their non-stacking uni-directional decoder. Second, our computation path

is simpler; I go from ht → at → ct → h̃t then make a prediction as detailed in Eq. (4.1),

Eq. (4.2), and Figure 4.2. On the other hand, at any time t, Bahdanau et al. (2015) build

from the previous hidden state ht−1 → at → ct → ht, which, in turn, goes through a

deep-output and a maxout layer before making predictions.3 Lastly, Bahdanau et al. (2015)

only experimented with one alignment function, the concat product; whereas I show later

that the other alternatives are better.

4.1.2 Local Attention

The global attention has a drawback that it has to attend to all words on the source side for

each target word, which is expensive and can potentially render it impractical to translate

longer sequences, e.g., paragraphs or documents. To address this deficiency, I propose a

local attentional mechanism that chooses to focus only on a small subset of the source

positions per target word.

This model takes inspiration from the tradeoff between the soft and hard attentional

models proposed by Xu et al. (2015) to tackle the image caption generation task. In their

work, soft attention refers to the global attention approach in which weights are placed

“softly” over all patches in the source image. The hard attention, on the other hand, selects

one patch of the image to attend to at a time. While less expensive at inference time, the

hard attention model is non-differentiable and requires more complicated techniques such

as variance reduction or reinforcement learning to train.

2Eq. (4.4) implies that all alignment vectors at are of the same length. For short sentences, I only use the

top part of at and for long sentences, I ignore words near the end.
3I will refer to this difference again in Section 4.1.3.

CHAPTER 4. ATTENTION MECHANISMS 60

yt

h̃t

ct

at

ht

pt

h̄s

Figure 4.3: Local attention model – the model first predicts a single aligned position pt for

the current target word. A window centered around the source position pt is then used to

compute a context vector ct, a weighted average of the source hidden states in the window.

The weights at are inferred from the current target state ht and those source states h̄s in

the window.

My local attention mechanism selectively focuses on a small window of context and

is differentiable. This approach has an advantage of avoiding the expensive computation

incurred in the soft attention and at the same time, is easier to train than the hard attention

approach. In concrete details, the model first generates an aligned position pt for each target

word at time t. The context vector ct is then derived as a weighted average over the set of

source hidden states within the window [pt−D, pt+D]; D is empirically selected.4 Unlike

the global approach, the local alignment vector at is now fixed-dimensional, i.e., ∈ R
2D+1.

I consider two variants of the model as below.

Monotonic alignment (local-m) – I simply set pt = t assuming that source and target

sequences are roughly monotonically aligned. The alignment vector at is defined according

to Eq. (4.3).5

Predictive alignment (local-p) – instead of assuming monotonic alignments, our model

predicts an aligned position as follows:

pt = S · sigmoid(v⊤
p tanh(Wpht)), (4.5)

4If the window crosses the sentence boundaries, I simply ignore the outside part and consider words in

the window.
5local-m is the same as the global model except that the vector at is fixed-length and shorter.

CHAPTER 4. ATTENTION MECHANISMS 61

Wp and vp are the model parameters which will be learned to predict positions. S is the

source sentence length. As a result of sigmoid, pt ∈ [0, S]. To favor alignment points near

pt, I place a Gaussian distribution centered around pt . Specifically, our alignment weights

are now defined as:

at(s) = align(ht, h̄s) exp

(

−
(s− pt)

2

2σ2

)

(4.6)

I use the same align function as in Eq. (4.3) and the standard deviation is empirically set as

σ= D
2

. Note that pt is a real number; whereas s is an integer within the window centered

at pt.
6

Comparison to (Gregor et al., 2015) – they have proposed a selective attention mech-

anism, very similar to our local attention, for the image generation task. Their approach

allows the model to select an image patch of varying location and zoom. I, instead, use

the same “zoom” for all target positions, which greatly simplifies the formulation and still

achieves good performance.

4.1.3 Input-feeding Approach

In our proposed global and local approaches, the attentional decisions are made indepen-

dently, which is suboptimal. Whereas, in standard MT, a coverage set is often maintained

during the translation process to keep track of which source words have been translated.

Likewise, in attentional NMTs, alignment decisions should be made jointly taking into ac-

count past alignment information. To address that, I propose an input-feeding approach

in which attentional vectors h̃t are concatenated with inputs at the next time steps as il-

lustrated in Figure 4.4.7 The effects of having such connections are two-fold: (a) I hope

to make the model fully aware of previous alignment choices and (b) I create a very deep

network spanning both horizontally and vertically.

Comparison to other work – Bahdanau et al. (2015) use context vectors, similar to our

ct, in building subsequent hidden states, which can also achieve the “coverage” effect.

6local-p is similar to the local-m model except that I dynamically compute pt and use a truncated Gaussian

distribution to modify the original alignment weights align(ht, h̄s) as shown in Eq. (4.6). By utilizing pt to

derive at, I can compute backprop gradients for Wp and vp. This model is differentiable almost everywhere.
7If n is the number of LSTM cells, the input size of the first LSTM layer is 2n; those of subsequent layers

are n.

CHAPTER 4. ATTENTION MECHANISMS 62

h̃t

Figure 4.4: Input-feeding approach – Attentional vectors h̃t are fed as inputs to the next

time steps to inform the model about past alignment decisions.

However, there has not been any analysis of whether such connections are useful as done

in this work. Also, our approach is more general; as illustrated in Figure 4.4, it can be

applied to general stacking recurrent architectures, including non-attentional models.

Xu et al. (2015) propose a doubly attentional approach with an additional constraint

added to the training objective to make sure the model pays equal attention to all parts

of the image during the caption generation process. Such a constraint can also be useful

to capture the coverage set effect in NMT that I mentioned earlier. However, I chose to

use the input-feeding approach since it provides flexibility for the model to decide on any

attentional constraints it deems suitable.

4.2 Experiments

I evaluate the effectiveness of my models on the WMT translation tasks between English

and German in both directions. newstest2013 (3000 sentences) is used as a development

set to select my hyperparameters. Translation performances are reported in case-sensitive

BLEU (Papineni et al., 2002) on newstest2014 (2737 sentences) and newstest2015 (2169

sentences). Following (Luong et al., 2015c), I report translation quality using two types

CHAPTER 4. ATTENTION MECHANISMS 63

of BLEU: (a) tokenized8 BLEU to be comparable with existing NMT work and (b) NIST9

BLEU to be comparable with WMT results.

System Ppl BLEU

Winning WMT’14 system – phrase-based + large LM (Buck et al., 2014) 20.7

Existing NMT systems

RNNsearch (Jean et al., 2015a) 16.5

RNNsearch + unk replace (Jean et al., 2015a) 19.0

RNNsearch + unk replace + large vocab + ensemble 8 models (Jean et al., 2015a) 21.6

My NMT systems

Base 10.6 11.3

Base + reverse 9.9 12.6 (+1.3)

Base + reverse + dropout 8.1 14.0 (+1.4)

Base + reverse + dropout + global attention (location) 7.3 16.8 (+2.8)

Base + reverse + dropout + global attention (location) + feed input 6.4 18.1 (+1.3)

Base + reverse + dropout + local-p attention (general) + feed input
5.9

19.0 (+0.9)

Base + reverse + dropout + local-p attention (general) + feed input + unk replace 20.9 (+1.9)

Ensemble 8 models + unk replace 23.0 (+2.1)

Table 4.1: WMT’14 English-German results – shown are the perplexities (ppl) and the

tokenized BLEU scores of various systems on newstest2014. I highlight the best system

in bold and give progressive improvements in italic between consecutive systems. local-p

referes to the local attention with predictive alignments. I indicate for each attention model

the alignment score function used in pararentheses.

4.2.1 Training Details

All my models are trained on the WMT’14 training data consisting of 4.5M sentences pairs

(116M English words, 110M German words). Similar to (Jean et al., 2015a), I limit my

vocabularies to be the top 50K most frequent words for both languages. Words not in these

shortlisted vocabularies are converted into a universal token <unk>.

When training my NMT systems, following (Bahdanau et al., 2015; Jean et al., 2015a),

I filter out sentence pairs whose lengths exceed 50 words and shuffle mini-batches as I

proceed. My stacking LSTM models have 4 layers, each with 1000 cells, and 1000-

dimensional embeddings. I follow (Sutskever et al., 2014; Luong et al., 2015c) in training

NMT with similar settings: (a) my parameters are uniformly initialized in [−0.1, 0.1], (b)

8All texts are tokenized with tokenizer.perl and BLEU scores are computed with

multi-bleu.perl.
9With the mteval-v13a script as per WMT guideline.

CHAPTER 4. ATTENTION MECHANISMS 64

I train for 10 epochs using plain SGD, (c) a simple learning rate schedule is employed –

I start with a learning rate of 1; after 5 epochs, I begin to halve the learning rate every

epoch, (d) my mini-batch size is 128, and (e) the normalized gradient is rescaled whenever

its norm exceeds 5. Additionally, I also use dropout with probability 0.2 for my LSTMs

as suggested by (Zaremba et al., 2014). For dropout models, I train for 12 epochs and start

halving the learning rate after 8 epochs. For local attention models, I empirically set the

window size D = 10.

My code is implemented in MATLAB. When running on a single GPU device Tesla

K40, I achieve a speed of 1K target words per second. It takes 7–10 days to completely

train a model.

4.2.2 English-German Results

I compare my NMT systems in the English-German task with various other systems. These

include the winning system in WMT’14 (Buck et al., 2014), a phrase-based system whose

language models were trained on a huge monolingual text, the Common Crawl corpus. For

end-to-end NMT systems, to the best of my knowledge, (Jean et al., 2015a) is the only

work experimenting with this language pair and currently the SOTA system. I only present

results for some of my attention models and will later analyze the rest in Section 5.4.

As shown in Table 4.1, I achieve progressive improvements when (a) reversing the

source sentence, +1.3 BLEU, as proposed in (Sutskever et al., 2014) and (b) using dropout,

+1.4 BLEU. On top of that, (c) the global attention approach gives a significant boost

of +2.8 BLEU, making my model slightly better than the base attentional system of

Bahdanau et al. (2015) (row RNNSearch). When (d) using the input-feeding approach, I

seize another notable gain of +1.3 BLEU and outperform their system. The local atten-

tion model with predictive alignments (row local-p) proves to be even better, giving us a

further improvement of +0.9 BLEU on top of the global attention model. It is interesting

to observe the trend previously reported in (Luong et al., 2015c) that perplexity strongly

correlates with translation quality. In total, I achieve a significant gain of 5.0 BLEU points

over the non-attentional baseline, which already includes known techniques such as source

reversing and dropout.

CHAPTER 4. ATTENTION MECHANISMS 65

The unknown replacement technique proposed in (Luong et al., 2015c; Jean et al., 2015a)

yields another nice gain of +1.9 BLEU, demonstrating that my attentional models do learn

useful alignments for unknown works. Finally, by ensembling 8 different models of vari-

ous settings, e.g., using different attention approaches, with and without dropout etc., I was

able to achieve a new SOTA result of 23.0 BLEU, outperforming the existing best system

(Jean et al., 2015a) by +1.4 BLEU.

System BLEU

Top – NMT + 5-gram rerank (Montreal) 24.9

My ensemble 8 models + unk replace 25.9

Table 4.2: WMT’15 English-German results – NIST BLEU scores of the winning entry

in WMT’15 and my best one on newstest2015.

Latest results in WMT’15 – despite the fact that my models were trained on WMT’14

with slightly less data, I test them on newstest2015 to demonstrate that they can generalize

well to different test sets. As shown in Table 4.2, my best system establishes a new SOTA

performance of 25.9 BLEU, outperforming the existing best system backed by NMT and a

5-gram LM reranker by +1.0 BLEU.

4.2.3 German-English Results

I carry out a similar set of experiments for the WMT’15 translation task from German to

English. While my systems have not yet matched the performance of the SOTA system, I

nevertheless show the effectiveness of my approaches with large and progressive gains in

terms of BLEU as illustrated in Table 4.3. The attentional mechanism gives us +2.2 BLEU

gain and on top of that, I obtain another boost of up to +1.0 BLEU from the input-feeding

approach. Using a better alignment function, the content-based dot product one, together

with dropout yields another gain of +2.7 BLEU. Lastly, when applying the unknown word

replacement technique, I seize an additional +2.1 BLEU, demonstrating the usefulness of

attention in aligning rare words.

CHAPTER 4. ATTENTION MECHANISMS 66

System Ppl. BLEU

WMT’15 systems

SOTA – phrase-based (Edinburgh) 29.2

NMT + 5-gram rerank (MILA) 27.6

My NMT systems

Base (reverse) 14.3 16.9

+ global (location) 12.7 19.1 (+2.2)

+ global (location) + feed 10.9 20.1 (+1.0)

+ global (dot) + drop + feed
9.7

22.8 (+2.7)

+ global (dot) + drop + feed + unk 24.9 (+2.1)

Table 4.3: WMT’15 German-English results – performances of various systems (similar

to Table 4.1). The base system already includes source reversing on which I add global

attention, dropout, input feeding, and unk replacement.

4.3 Analysis

I conduct extensive analysis to better understand my models in terms of learning, the ability

to handle long sentences, choices of attentional architectures, and alignment quality. All

results reported here are on English-German newstest2014.

4.3.1 Learning curves

I compare models built on top of one another as listed in Table 4.1. It is pleasant to observe

in Figure 4.5 a clear separation between non-attentional and attentional models. The input-

feeding approach and the local attention model also demonstrate their abilities in driving the

test costs lower. The non-attentional model with dropout (the blue + curve) learns slower

than other non-dropout models, but as time goes by, it becomes more robust in terms of

minimizing test errors.

4.3.2 Effects of Translating Long Sentences

I follow (Bahdanau et al., 2015) to group sentences of similar lengths together and compute

a BLEU score per group. Figure 4.6 shows that my attentional models are more effective

than the non-attentional one in handling long sentences: the quality does not degrade as

CHAPTER 4. ATTENTION MECHANISMS 67

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10
5

2

3

4

5

6

Mini−batches

T
e
s
t
c
o
s
t

basic

basic+reverse

basic+reverse+dropout

basic+reverse+dropout+globalAttn

basic+reverse+dropout+globalAttn+feedInput

basic+reverse+dropout+pLocalAttn+feedInput

Figure 4.5: Learning curves – test cost (ln perplexity) on newstest2014 for English-

German NMTs as training progresses.

sentences become longer. My best model (the blue + curve) outperforms all other systems

in all length buckets.

10 20 30 40 50 60 70

10

15

20

25

Sent Lengths

B
L
E

U
		
		
	

ours, no attn (BLEU 13.9)

ours, local−p attn (BLEU 20.9)

ours, best system (BLEU 23.0)

WMT’14 best (BLEU 20.7)

Jeans et al., 2015 (BLEU 21.6)

Figure 4.6: Length Analysis – translation qualities of different systems as sentences be-

come longer.

4.3.3 Choices of Attentional Architectures

I examine different attention models (global, local-m, local-p) and different alignment

functions (location, dot, general, concat) as described in Section 4.1. Due to limited re-

sources, I cannot run all the possible combinations. However, results in Table 4.4 do give

CHAPTER 4. ATTENTION MECHANISMS 68

System Ppl
BLEU

Before After unk

global (location) 6.4 18.1 19.3 (+1.2)

global (dot) 6.1 18.6 20.5 (+1.9)

global (general) 6.1 17.3 19.1 (+1.8)

local-m (dot) >7.0 x x

local-m (general) 6.2 18.6 20.4 (+1.8)

local-p (dot) 6.6 18.0 19.6 (+1.9)

local-p (general) 5.9 19 20.9 (+1.9)

Table 4.4: Attentional Architectures – performances of different attentional models. I

trained two local-m (dot) models; both have ppl > 7.0.

us some idea about different choices. The location-based function does not learn good

alignments: the global (location) model can only obtain a small gain when performing

unknown word replacement compared to using other alignment functions.10 For content-

based functions, my implementation concat does not yield good performances and more

analysis should be done to understand the reason.11 It is interesting to observe that dot

works well for the global attention and general is better for the local attention. Among

the different models, the local attention model with predictive alignments (local-p) is best,

both in terms of perplexities and BLEU.

4.3.4 Alignment Quality

A by-product of attentional models are word alignments. While (Bahdanau et al., 2015)

visualized alignments for some sample sentences and observed gains in translation quality

as an indication of a working attention model, no work has assessed the alignments learned

as a whole. In contrast, I set out to evaluate the alignment quality using the alignment error

rate (AER) metric.

10There is a subtle difference in how I retrieve alignments for the different alignment functions. At time

step t in which I receive yt−1 as input and then compute ht,at, ct, and h̃t before predicting yt, the alignment

vector at is used as alignment weights for (a) the predicted word yt in the location-based alignment functions

and (b) the input word yt−1 in the content-based functions.
11With concat, the perplexities achieved by different models are 6.7 (global), 7.1 (local-m), and 7.1 (local-

p). Such high perplexities could be due to the fact that I simplify the matrixWa to set the part that corresponds

to h̄s to identity.

CHAPTER 4. ATTENTION MECHANISMS 69

Method AER

global (location) 0.39
local-m (general) 0.34
local-p (general) 0.36

ensemble 0.34
Berkeley Aligner 0.32

Table 4.5: AER scores – results of various models on the RWTH English-German align-

ment data.

Given the gold alignment data provided by RWTH for 508 English-German Europarl

sentences, I “force” decode my attentional models to produce translations that match the

references. I extract only one-to-one alignments by selecting the source word with the

highest alignment weight per target word. Nevertheless, as shown in Table 4.5, I was able

to achieve AER scores comparable to the one-to-many alignments obtained by the Berkeley

aligner (Liang et al., 2006).12

I also found that the alignments produced by local attention models achieve lower AERs

than those of the global one. The AER obtained by the ensemble, while good, is not better

than the local-m AER, suggesting the well-known observation that AER and translation

scores are not well correlated (Fraser and Marcu, 2007).

4.3.5 Alignment Visualization

I visualize the alignment weights produced by my different attention models in Figure 4.7.

The visualization of the local attention model is much sharper than that of the global one.

This contrast matches my expectation that local attention is designed to only focus on a

subset of words each time. Also, since I translate from English to German and reverse

the source English sentence, the white strides at the words “reality” and “.” in the global

attention model reveals an interesting access pattern: it tends to refer back to the beginning

of the source sequence.

Compared to the alignment visualizations in (Bahdanau et al., 2015), my alignment

patterns are not as sharp as theirs. Such difference could possibly be due to the fact

12I concatenate the 508 sentence pairs with 1M sentence pairs from WMT and run the Berkeley aligner.

CHAPTER 4. ATTENTION MECHANISMS 70

The
y

do no
t

un
de

rs
ta

nd

w
hy

Eur
op

e

ex
is
ts

in th
eo

ry

bu
t

no
t

in re
al
ity

.
Sie

verstehen
nicht

,
warum
Europa

theoretisch
zwar

existiert
,

aber
nicht

in
Wirklichkeit

.

The
y

do no
t

un
de

rs
ta

nd

w
hy

Eur
op

e

ex
is
ts

in th
eo

ry

bu
t

no
t

in re
al
ity

.
Sie

verstehen
nicht

,
warum
Europa

theoretisch
zwar

existiert
,

aber
nicht

in
Wirklichkeit

.

The
y

do no
t

un
de

rs
ta

nd

w
hy

Eur
op

e

ex
is
ts

in th
eo

ry

bu
t

no
t

in re
al
ity

.
Sie

verstehen
nicht

,
warum
Europa

theoretisch
zwar

existiert
,

aber
nicht

in
Wirklichkeit

.

The
y

do no
t

un
de

rs
ta

nd

w
hy

Eur
op

e

ex
is
ts

in th
eo

ry

bu
t

no
t

in re
al
ity

.
Sie

verstehen
nicht

,
warum
Europa

theoretisch
zwar

existiert
,

aber
nicht

in
Wirklichkeit

.

Figure 4.7: Alignment visualizations – shown are images of the attention weights learned

by various models: (top left) global, (top right) local-m, and (bottom left) local-p. The gold

alignments are displayed at the bottom right corner.

that translating from English to German is harder than translating into French as done

in (Bahdanau et al., 2015), which is an interesting point to examine in future work.

4.3.6 Sample Translations

I show in Table 5.4 sample translations in both directions. It it appealing to observe the

effect of attentional models in correctly translating names such as “Miranda Kerr” and

“Roger Dow”. Non-attentional models, while producing sensible names from a language

model perspective, lack the direct connections from the source side to make correct transla-

tions. I also observed an interesting case in the second example, which requires translating

CHAPTER 4. ATTENTION MECHANISMS 71

the doubly-negated phrase, “not incompatible”. The attentional model correctly produces

“nicht . . . unvereinbar”; whereas the non-attentional model generates “nicht vereinbar”,

meaning “not compatible”.13 The attentional model also demonstrates its superiority in

translating long sentences as in the last example.

4.4 Conclusion

In this chapter, I propose two simple and effective attentional mechanisms for neural ma-

chine translation: the global approach which always looks at all source positions and the

local one that only attends to a subset of source positions at a time. I test the effectiveness

of my models in the WMT translation tasks between English and German in both direc-

tions. My local attention yields large gains of up to 5.0 BLEU over non-attentional models

that already incorporate known techniques such as dropout. For the English to German

translation direction, my ensemble model has established new state-of-the-art results for

both WMT’14 and WMT’15.

I have compared various alignment functions and shed light on which functions are

best for which attentional models. My analysis shows that attention-based NMT models

are superior to non-attentional ones in many cases, for example in translating names and

handling long sentences.

13The reference uses a more fancy translation of “incompatible”, which is “im Widerspruch zu etwas

stehen”. Both models, however, failed to translate “passenger experience”.

CHAPTER 4. ATTENTION MECHANISMS 72

English-German translations

src Orlando Bloom and Miranda Kerr still love each other

ref Orlando Bloom und Miranda Kerr lieben sich noch immer

best Orlando Bloom und Miranda Kerr lieben einander noch immer .

base Orlando Bloom und Lucas Miranda lieben einander noch immer .

src ′′ We ′ re pleased the FAA recognizes that an enjoyable passenger experience is not incom-

patible with safety and security , ′′ said Roger Dow , CEO of the U.S. Travel Association

.

ref “ Wir freuen uns , dass die FAA erkennt , dass ein angenehmes Passagiererlebnis nicht im

Widerspruch zur Sicherheit steht ” , sagte Roger Dow , CEO der U.S. Travel Association

.

best ′′ Wir freuen uns , dass die FAA anerkennt , dass ein angenehmes ist nicht mit Sicherheit

und Sicherheit unvereinbar ist ′′ , sagte Roger Dow , CEO der US - die .

base ′′ Wir freuen uns über die <unk> , dass ein <unk><unk>mit Sicherheit nicht vereinbar

ist mit Sicherheit und Sicherheit ′′ , sagte Roger Cameron , CEO der US - <unk> .

German-English translations

src In einem Interview sagte Bloom jedoch , dass er und Kerr sich noch immer lieben .

ref However , in an interview , Bloom has said that he and Kerr still love each other .

best In an interview , however , Bloom said that he and Kerr still love .

base However , in an interview , Bloom said that he and Tina were still <unk> .

src Wegen der von Berlin und der Europäischen Zentralbank verhängten strengen Sparpolitik

in Verbindung mit der Zwangsjacke , in die die jeweilige nationale Wirtschaft durch das

Festhalten an der gemeinsamen Währung genötigt wird , sind viele Menschen der Ansicht

, das Projekt Europa sei zu weit gegangen

ref The austerity imposed by Berlin and the European Central Bank , coupled with the strait-

jacket imposed on national economies through adherence to the common currency , has

led many people to think Project Europe has gone too far .

best Because of the strict austerity measures imposed by Berlin and the European Central

Bank in connection with the straitjacket in which the respective national economy is

forced to adhere to the common currency , many people believe that the European project

has gone too far .

base Because of the pressure imposed by the European Central Bank and the Federal Cen-

tral Bank with the strict austerity imposed on the national economy in the face of the

single currency , many people believe that the European project has gone too far .

Table 4.6: Sample translations – for each example, I show the source (src), the human

translation (ref), the translation from my best model (best), and the translation of a non-

attentional model (base). I italicize some correct translation segments and highlight a few

wrong ones in bold.

Chapter 5

Hybrid Models

In the previous chapters, I showed that despite being relatively new, NMT has already

achieved state-of-the-art translation results for several language pairs such as English-

French (Luong et al., 2015c), English-German (Jean et al., 2015a; Luong et al., 2015b;

Luong and Manning, 2015), and English-Czech (Jean et al., 2015b). While NMT offers

many advantages over traditional phrase-based approaches, such as small memory foot-

print and simple decoder implementation, nearly all previous work in NMT has used quite

restricted vocabularies, crudely treating all other words the same with an <unk> sym-

bol. Sometimes, a post-processing step that patches in unknown words is introduced to

alleviate this problem. In Chapter 3, I propose to annotate occurrences of target <unk>

with positional information to track their alignments, after which simple word dictionary

lookup or identity copy can be performed to replace <unk> in the translation. Jean et al.

(2015a) approach the problem similarly but obtain the alignments for unknown words from

the attention mechanism. I refer to these as the unk replacement technique.

Though simple, these approaches ignore several important properties of languages.

First, monolingually, words are morphologically related; however, they are currently treated

as independent entities. This is problematic as pointed out by Luong et al. (2013): neural

networks can learn good representations for frequent words such as “distinct”, but fail for

rare-but-related words like “distinctiveness”. Second, crosslingually, languages have dif-

ferent alphabets, so one cannot naı̈vely memorize all possible surface word translations

such as name transliteration between “Christopher” (English) and “Krys̆tof” (Czech). See

73

CHAPTER 5. HYBRID MODELS 74

Figure 5.1: Hybrid NMT – example of a word-character model for translating “a cute

cat” into “un joli chat”. Hybrid NMT translates at the word level. For rare tokens, the

character-level components build source representations and recover target <unk>. “ ”

marks sequence boundaries.

CHAPTER 5. HYBRID MODELS 75

more on this problem in (Sennrich et al., 2016b).

To overcome these shortcomings, I propose a novel hybrid architecture for NMT that

translates mostly at the word level and consults the character components for rare words

when necessary. As illustrated in Figure 5.1, my hybrid model consists of a word-based

NMT that performs most of the translation job, except for the two (hypothetically) rare

words, “cute” and “joli”, that are handled separately. On the source side, representations

for rare words, “cute”, are computed on-the-fly using a deep recurrent neural network that

operates at the character level. On the target side, I have a separate model that recovers

the surface forms, “joli”, of <unk> tokens character-by-character. These components are

learned jointly end-to-end, removing the need for a separate unk replacement step as in

current NMT practice.

My hybrid NMT offers a twofold advantage: it is much faster and easier to train than

character-based models; at the same time, it never produces unknown words as in the case

of word-based ones. I demonstrate at scale that on the WMT’15 English to Czech transla-

tion task, such a hybrid approach provides an additional boost of +2.1−11.4 BLEU points

over models that already handle unknown words. I achieve a new state-of-the-art result with

20.7 BLEU score. My analysis demonstrates that my character models can successfully

learn to not only generate well-formed words for Czech, a highly-inflected language with a

very complex vocabulary, but also build correct representations for English source words.

I provide code, data, and models at http://nlp.stanford.edu/projects/nmt.

5.1 Related Work

There has been a recent line of work on end-to-end character-based neural models which

achieve good results for part-of-speech tagging (dos Santos and Zadrozny, 2014; Ling et al.,

2015a), dependency parsing (Ballesteros et al., 2015), text classification (Zhang et al., 2015),

speech recognition (Chan et al., 2016; Bahdanau et al., 2016b), and language modeling

(Kim et al., 2016; Jozefowicz et al., 2016). However, at the time of this work, success has

not been shown for cross-lingual tasks such as machine translation. Sennrich et al. (2016b)

propose to segment words into smaller units and translate just like at the word level, which

does not learn to understand relationships among words.

http://nlp.stanford.edu/projects/nmt

CHAPTER 5. HYBRID MODELS 76

My work takes inspiration from (Luong et al., 2013) and (Li et al., 2015). Similar to

the former, I build representations for rare words on-the-fly from subword units. However,

instead of using recursive neural networks with morphemes as units as in (Luong et al.,

2013), which requires existence of a morphological analyzer, I utilize recurrent neural net-

works with characters as the basic units. In comparison with (Li et al., 2015), my hybrid

architecture is also a hierarchical sequence-to-sequence model, but operates at a different

granularity level, word-character. In contrast, Li et al. (2015) build hierarchical models at

the sentence-word level for paragraphs and documents.

5.2 Hybrid Neural Machine Translation

My hybrid architecture, illustrated in Figure 5.1, leverages the power of both words and

characters to achieve the goal of open vocabulary NMT. The core of the design is a word-

level NMT with the advantage of being fast and easy to train. The character components

empower the word-level system with the abilities to compute any source word representa-

tion on the fly from characters and to recover character-by-character unknown target words

originally produced as <unk>.

5.2.1 Word-based Translation as a Backbone

The core of my hybrid NMT is a deep LSTM encoder-decoder that translates at the word

level as described in Chapter 2. I maintain a vocabulary of |V | frequent words for each

language. Other words not inside these lists are represented by a universal symbol <unk>,

one per language. I translate just like a word-based NMT system with respect to these

source and target vocabularies, except for cases that involve <unk> in the source input

or the target output. These correspond to the character-level components illustrated in

Figure 5.1. A nice property of my hybrid approach is that by varying the vocabulary size,

one can control how much to blend the word- and character-based models; hence, taking

the best of both worlds.

CHAPTER 5. HYBRID MODELS 77

5.2.2 Source Character-based Representation

In regular word-based NMT, for all rare words outside the source vocabulary, one feeds

the universal embedding representing <unk> as input to the encoder. This is problematic

because it discards valuable information about the source word. To fix that, I learn a deep

LSTM model over characters of source words. For example, in Figure 5.1, I run my deep

character-based LSTM over ‘c’, ‘u’, ‘t’, ‘e’, and ‘ ’ (the boundary symbol). The final

hidden state at the top layer will be used as the on-the-fly representation for the current rare

word. The layers of the deep character-based LSTM are always initialized with zero states.

One might propose to connect hidden states of the word-based LSTM to the character-based

model; however, I chose this design for various reasons. First, it simplifies the architecture.

Second, it allows for efficiency through precomputation: before each mini-batch, I can

compute representations for rare source words all at once. All instances of the same word

share the same embedding, so the computation is per type.1

5.2.3 Target Character-level Generation

General word-based NMT allows generation of <unk> in the target output. Afterwards,

there is usually a post-processing step that handles these unknown tokens by utilizing the

alignment information derived from the attention mechanism and then performing simple

word dictionary lookup or identity copy (Luong et al., 2015b; Jean et al., 2015a). While

this approach works, it suffers from various problems such as alphabet mismatches between

the source and target vocabularies and multi-word alignments. My goal is to address all

these issues and create a coherent framework that handles an unlimited output vocabulary.

My solution is to have a separate deep LSTM that “translates” at the character level

given the current word-level state. I train my system such that whenever the word-level

NMT produces an <unk>, I can consult this character-level decoder to recover the correct

surface form of the unknown target word. This is illustrated in Figure 5.1. The training

1While Ling et al. (2015b) found that it is slow and difficult to train source character-level models and

had to resort to pretraining, I demonstrate later that I can train my deep character-level LSTM perfectly fine

in an end-to-end fashion.

CHAPTER 5. HYBRID MODELS 78

yt

ct

h̄1 h̄n ht

h̃t

Figure 5.2: Attention mechanism – shown are the two steps of the attention mechanism

I described in Chapter 4 (Luong et al., 2015b): first, compute a context vector ct based on

the current target hidden state ht and all the source hidden states [h̄1, . . . , h̄n]; second, use

the context vector as an additional input to derive the attentional vector h̃t.

objective for the hybrid models consists of two components:

J = Jw + αJc (5.1)

Here, Jw refers to the usual loss of the word-level NMT; in my example, it is the sum of the

negative log likelihood of generating {“un”, “<unk>”, “chat”, “ ”}. The remaining com-

ponent Jc corresponds to the loss incurred by the character-level decoder when predicting

characters, e.g., {‘j’, ‘o’, ‘l’, ‘i’, ‘ ’}, of those rare words not in the target vocabulary.

Hidden-state Initialization Unlike the source character-based representations, which are

context-independent, the target character-level generation requires the current word-level

context to produce meaningful translation. This brings up an important question about

CHAPTER 5. HYBRID MODELS 79

what can best represent the current context so as to initialize the character-level decoder. I

answer this question in the context of the attention mechanism described in Chapter 4.

The final vector h̃t, just before the softmax as shown in Figure 5.2, seems to be a

good candidate to initialize the character-level decoder. The reason is that h̃t combines

information from both the context vector ct and the top-level recurrent state ht. I refer to it

later in my experiments as the same-path target generation approach.

On the other hand, the same-path approach worries us because all vectors h̃t used to

seed the character-level decoder might have similar values, leading to the same charac-

ter sequence being produced. The reason is because h̃t is directly used in the softmax,

Eq. (2.6), to predict the same <unk>. That might pose some challenges for the model

to learn useful representations that can be used to accomplish two tasks at the same time,

that is to predict <unk> and to generate character sequences. To address that concern, I

propose another approach called the separate-path target generation.

My separate-path target generation approach works as follows. I mimic the process

described in Eq. (4.1) of the attention mechanism to create a counterpart vector h̆t that will

be used to seed the character-level decoder:

h̆t = tanh(W̆ [ct;ht]) (5.2)

Here, W̆ is a new learnable parameter matrix, with which I hope to release W from

the pressure of having to extract information relevant to both the word- and character-

generation processes. This approach is illustrated in Figure 5.3. Only the hidden state of

the first layer is initialized as discussed above. The other components in the character-level

decoder such as the LSTM cells of all layers and the hidden states of higher layers, all start

with zero values.

Implementation-wise, the computation in the character-level decoder is done per word

token instead of per type as in the source character component (§5.2.2). This is because of

the context-dependent nature of the decoder. 2

2To be memory efficient, the character-level backward pass can be executed right after the character-level

forward pass and we can split these computations into mini-batches if the number of <unk> is large.

CHAPTER 5. HYBRID MODELS 80

ct
W̆ W

ht

h̆t h̃t

Figure 5.3: Separate-path Target Generation – two separate attentional vectors are cre-

ating: h̃t for predicting target words and h̆t to seed the target-side character model.

CHAPTER 5. HYBRID MODELS 81

Word-Character Generation Strategy With the character-level decoder, we can view

the final hidden states as representations for the surface forms of unknown tokens and

could have fed these to the next time step. However, I chose not to do so for the efficiency

reason explained next; instead, <unk> is fed to the word-level decoder “as is” using its

corresponding word embedding.

During training, this design choice decouples all executions over <unk> instances of

the character-level decoder as soon the word-level NMT completes. As such, the forward

and backward passes of the character-level decoder over rare words can be invoked in batch

mode. At test time, my strategy is to first run a beam search decoder at the word level to

find the best translations given by the word-level NMT. Such translations contains <unk>

tokens, so I utilize the character-level decoder with beam search to generate actual words

for these <unk>.

5.3 Experiments

I evaluate the effectiveness of my models on the publicly available WMT’15 translation

task from English into Czech with newstest2013 (3000 sentences) as a development set and

newstest2015 (2656 sentences) as a test set. Two metrics are used: case-sensitive NIST

BLEU (Papineni et al., 2002) and chrF3 (Popović, 2015).3 The latter measures the amounts

of overlapping character n-grams and has been argued to be a better metric for translation

tasks out of English.

5.3.1 Data

Among the available language pairs in WMT’15, all involving English, I choose Czech

as a target language for several reasons. First and foremost, Czech is a Slavic language

with not only rich and complex inflection, but also fusional morphology in which a single

morpheme can encode multiple grammatical, syntactic, or semantic meanings. As a result,

Czech possesses an enormously large vocabulary (about 1.5 to 2 times bigger than that of

3For NIST BLEU, I first run detokenizer.pl and then use mteval-v13a to compute the scores as

per WMT guideline. For chrF3, I utilize the implementation here https://github.com/rsennrich/

subword-nmt.

https://github.com/rsennrich/subword-nmt
https://github.com/rsennrich/subword-nmt

CHAPTER 5. HYBRID MODELS 82

English Czech

word char word char

Sents 15.8M

Tokens 254M 1,269M 224M 1,347M

Types 1,172K 2003 1,760K 2053

200-char 98.1% 98.8%

Table 5.1: WMT’15 English-Czech data – shown are various statistics of my training data

such as sentence, token (word and character counts), as well as type (sizes of the word and

character vocabularies). I show in addition the amount of words in a vocabulary expressed

by a list of 200 characters found in frequent words.

English according to statistics in Table 5.1) and is a challenging language to translate into.

Furthermore, this language pair has a large amount of training data, so I can evaluate at

scale. Lastly, though my techniques are language independent, it is easier for us to work

with Czech since Czech uses the Latin alphabet with some diacritics.

In terms of preprocessing, I apply only the standard tokenization practice.4 I choose

for each language a list of 200 characters found in frequent words, which, as shown in

Table 5.1, can represent more than 98% of the vocabulary.

5.3.2 Training Details

I train three types of systems, purely word-based, purely character-based, and hybrid.

Common to these architectures is a word-based NMT since the character-based systems

are essentially word-based ones with longer sequences and the core of hybrid models is

also a word-based NMT.

In training word-based NMT, I proceed as in Chapter 4 (Luong et al., 2015b) to use

the global attention mechanism together with similar hyperparameters: (a) deep LSTM

models, 4 layers, 1024 cells, and 1024-dimensional embeddings, (b) uniform initialization

of parameters in [−0.1, 0.1], (c) 6-epoch training with plain SGD and a simple learning rate

schedule – start with a learning rate of 1.0; after 4 epochs, halve the learning rate every 0.5

epoch, (d) mini-batches are of size 128 and shuffled, (e) the gradient is rescaled whenever

its norm exceeds 5, and (f) dropout is used with probability 0.2 according to (Pham et al.,

4I use tokenizer.perl in Moses with default settings.

CHAPTER 5. HYBRID MODELS 83

System Vocab
Perplexity

BLEU chrF3w c

(a) Best WMT’15, big data (Bojar and Tamchyna, 2015) - - - 18.8 -

Existing NMT

(b) RNNsearch + unk replace (Jean et al., 2015b) 200K - - 15.7 -

(c) Ensemble 4 models + unk replace (Jean et al., 2015b) 200K - - 18.3 -

My word-based NMT

(d) Base + attention + unk replace 50K 5.9 - 17.5 42.4

(e) Ensemble 4 models + unk replace 50K - - 18.4 43.9

My character-based NMT

(f) Base-512 (600-step backprop) 200 - 2.4 3.8 25.9

(g) Base-512 + attention (600-step backprop) 200 - 1.6 17.5 46.6

(h) Base-1024 + attention (300-step backprop) 200 - 1.9 15.7 41.1

My hybrid NMT

(i) Base + attention + same-path 10K 4.9 1.7 14.1 37.2

(j) Base + attention + separate-path 10K 4.9 1.7 15.6 39.6

(k) Base + attention + separate-path + 2-layer char 10K 4.7 1.6 17.7 44.1

(l) Base + attention + separate-path + 2-layer char 50K 5.7 1.6 19.6 46.5

(m) Ensemble 4 models 50K - - 20.7 47.5

Table 5.2: WMT’15 English-Czech results – shown are the vocabulary sizes, perplexities,

BLEU, and chrF3 scores of various systems on newstest2015. Perplexities are listed under

two categories, word (w) and character (c). Best and important results per metric are

highlighted.

CHAPTER 5. HYBRID MODELS 84

2014). I now detail differences across the three architectures.

Word-based NMT – I constrain my source and target sequences to have a maximum

length of 50 each; words that go past the boundary are ignored. The vocabularies are limited

to the top |V | most frequent words in both languages. Words not in these vocabularies are

converted into<unk>. After translating, I will perform dictionary5 lookup or identity copy

for <unk> using the alignment information from the attention models. Such a procedure

is referred to as the unk replace technique as in Chapter 3 (Luong et al., 2015c; Jean et al.,

2015a).

Character-based NMT – The source and target sequences at the character level are

often about 5 times longer than their counterparts in the word-based models as can be

inferred from the statistics in Table 5.1. Due to the memory constraint in GPUs, I limit my

source and target sequences to a maximum length of 150 each, i.e., I backpropagate through

at most 300 timesteps from the decoder to the encoder. With smaller 512-dimensional

models, I can afford to have longer sequences with up to 600-step backpropagation.

Hybrid NMT – The word-level component uses the same settings as the purely word-

based NMT. For the character-level source and target components, I experiment with both

shallow and deep 1024-dimensional models of 1 and 2 LSTM layers. I set the weight α in

Eq. (5.1) for my character-level loss to 1.0.

Training Time – It takes about 3 weeks to train a word-based model with |V | = 50K

and about 3 months to train a character-based model. Training and testing for the hybrid

models are about 10-20% slower than those of the word-based models with the same vo-

cabulary size.

5.3.3 Results

I compare my models with several strong systems. These include the winning entry in

WMT’15, which was trained on a much larger amount of data, 52.6M parallel and 393.0M

5Obtained from the alignment links produced by the Berkeley aligner (Liang et al., 2006) over the training

corpus.

CHAPTER 5. HYBRID MODELS 85

monolingual sentences (Bojar and Tamchyna, 2015).6 In contrast, I merely use the pro-

vided parallel corpus of 15.8M sentences. For NMT, to the best of my knowledge, (Jean et al.,

2015b) has the best published performance on English-Czech.

As shown in Table 5.2, for a purely word-based approach, my single NMT model out-

performs the best single model in (Jean et al., 2015b) by +1.8 points despite using a smaller

vocabulary of only 50K words versus 200K words. My ensemble system (e) slightly out-

performs the best previous NMT system with 18.4 BLEU.

To my surprise, purely character-based models, though extremely slow to train and

test, perform quite well. The 512-dimensional attention-based model (g) is best, surpassing

the single word-based model in (Jean et al., 2015b) despite having much fewer parame-

ters. It even outperforms most NMT systems on chrF3 with 46.6 points. This indicates

that this model translate words that closely but not exactly match the reference ones as

evidenced in Section 5.4.3. I notice two interesting observations. First, attention is crit-

ical for character-based models to work as is obvious from the poor performance of the

non-attentional model; this has also been shown in speech recognition (Chan et al., 2016).

Second, long time-step backpropagation is more important as reflected by the fact that the

larger 1024-dimensional model (h) with shorter backprogration is inferior to (g).

My hybrid models achieve the best results. At 10K words, I demonstrate that my

separate-path strategy for the character-level target generation (§5.2.3) is effective, yield-

ing an improvement of +1.5 BLEU points when comparing systems (j) vs. (i). A deeper

character-level architecture of 2 LSTM layers provides another significant boost of +2.1

BLEU. With 17.7 BLEU points, my hybrid system (k) has surpassed word-level NMT

models.

When extending to 50K words, I further improve the translation quality. My best single

model, system (l) with 19.6 BLEU, is already better than all existing systems. My ensemble

model (m) further advances the SOTA result to 20.7 BLEU, outperforming the winning

entry in the WMT’15 English-Czech translation task by a large margin of +1.9 points. My

ensemble model is also best in terms of chrF3 with 47.5 points.

6This entry combines two independent systems, a phrase-based Moses model and a deep-syntactic

transfer-based model. Additionally, there is an automatic post-editing system with hand-crafted rules to

correct errors in morphological agreement and semantic meanings, e.g., loss of negation.

CHAPTER 5. HYBRID MODELS 86

0 10 20 30 40 50
0

5

10

15

20

Vocabulary Size (x1000)

B
L
E

U
		
	

Word

Word + unk replace

Hybrid

+11.4

+5.0

+2.1
+3.5

Figure 5.4: Vocabulary size effect – shown are the performances of different systems as

I vary their vocabulary sizes. I highlight the improvements obtained by my hybrid models

over word-based systems which already handle unknown words.

5.4 Analysis

This section first studies the effects of vocabulary sizes towards translation quality. I then

analyze more carefully my character-level components by visualizing and evaluating rare

word embeddings as well as examining sample translations.

5.4.1 Effects of Vocabulary Sizes

As shown in Figure 5.4, my hybrid models offer large gains of +2.1-11.4 BLEU points

over strong word-based systems which already handle unknown words. With only a small

vocabulary, e.g., 1000 words, my hybrid approach can produce systems that are better than

word-based models that possess much larger vocabularies. While it appears from the plot

that gains diminish as I increase the vocabulary size, I argue that my hybrid models are still

preferable since they understand word structures and can handle new complex words at test

time as illustrated in Section 5.4.3.

5.4.2 Rare Word Embeddings

I evaluate the source character-level model by building representations for rare words and

measuring how good these embeddings are.

CHAPTER 5. HYBRID MODELS 87

Quantitatively, I follow Luong et al. (2013) in using the word similarity task, specif-

ically on the Rare Word dataset, to judge the learned representations for complex words.

The evaluation metric is the Spearman’s correlation ρ between similarity scores assigned

by a model and by human annotators. From the results in Table 5.3, I can see that source

representations produced by my hybrid7 models are significantly better than those of the

word-based one. It is noteworthy that my deep recurrent character-level models can outper-

form the model of (Luong et al., 2013), which uses recursive neural networks and requires

a complex morphological analyzer, by a large margin. My performance is also competi-

tive to the best Glove embeddings (Pennington et al., 2014) which were trained on a much

larger dataset.

System Size |V | ρ

(Luong et al., 2013) 1B 138K 34.4

Glove (Pennington et al., 2014)
6B 400K 38.1

42B 400K 47.8

My NMT models

(d) Word-based 0.3B 50K 20.4

(k) Hybrid 0.3B 10K 42.4

(l) Hybrid 0.3B 50K 47.1

Table 5.3: Word similarity task – shown are Spearman’s correlation ρ on the Rare Word

dataset of various models (with different vocab sizes |V |).

Qualitatively, I visualize embeddings produced by the hybrid model (l) for selected

words in the Rare Word dataset. Figure 5.5 shows the two-dimensional representations

of words computed by the Barnes-Hut-SNE algorithm (van der Maaten, 2013).8 It is ex-

tremely interesting to observe that words are clustered together not only by the word struc-

tures but also by the meanings. For example, in the top-left box, the character-based rep-

resentations for “loveless”, “spiritless”, “heartlessly”, and “heartlessness” are nearby, but

clearly separated into two groups. Similarly, in the center boxes, word-based embeddings

of “acceptable”, “satisfactory”, “unacceptable”, and “unsatisfactory”, are close by but sepa-

rated by meanings. Lastly, the remaining boxes demonstrate that my character-level models

7I look up the encoder embeddings for frequent words and build representations for rare word from char-

acters.
8I run Barnes-Hut-SNE algorithm over a set of 91 words, but filter out 27 words for displaying clarity.

CHAPTER 5. HYBRID MODELS 88

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

acceptable

acknowledgement

admission
admit

admittance
admitting

advance

antagonist

choose

chooses

connect

decide

developdevelopments

evidently
explicit

founder

governance

immobileimmoveable

impossible

insensitive
insufficiency

link
management

necessary

nominated

noticeable

obvious

perceptible

possible

practice

satisfactory

sponsor

unacceptable

unaffected

uncomfortable
unsatisfactory

unsuitable

antagonize

cofounders
companionships

disrespectful

heartlesslyheartlessness

illiberal

impossibilities

inabilities

loveless

narrow−mindednarrow−mindedness
nonconscious

regretful

spiritless

unattainableness

unconcern

uncontroversial

unfeathered
unfledged

ungraceful

unrealizable

unsighted

untrustworthy

wholeheartedness

Figure 5.5: Barnes-Hut-SNE visualization of source word representations – shown are

sample words from the Rare Word dataset. I differentiate two types of embeddings: fre-

quent words in which encoder embeddings are looked up directly and rare words where I

build representations from characters. Boxes highlight examples that I will discuss in the

text. I use the hybrid model (l) in this visualization.

are able to build representations comparable to the word-based ones, e.g., “impossibilities”

vs. “impossible” and “antagonize” vs. “antagonist”. All of this evidence strongly supports

that the source character-level models are useful and effective.

5.4.3 Sample Translations

I show in Table 5.4 sample translations between various systems. In the first example,

my hybrid model translates perfectly. The word-based model fails to translate “diagnosis”

because the second <unk> was incorrectly aligned to the word “after”. The character-

based model, on the other hand, makes a mistake in translating names.

For the second example, the hybrid model surprises us when it can capture the long-

distance reordering of “fifty years ago” and “pr̆ed padesáti lety” while the other two models

do not. The word-based model translates “Jr.” inaccurately due to the incorrect alignment

between the second <unk> and the word “said”. The character-based model literally

CHAPTER 5. HYBRID MODELS 89

1

source The author Stephen Jay Gould died 20 years after diagnosis .

human Autor Stephen Jay Gould zemr̆el 20 let po diagnóze .

word
Autor Stephen Jay <unk> zemr̆el 20 let po <unk> .

Autor Stephen Jay Gould zemr̆el 20 let po po .

char Autor Stepher Stepher zemr̆el 20 let po diagnóze .

hybrid
Autor <unk> <unk> <unk> zemr̆el 20 let po <unk>.

Autor Stephen Jay Gould zemr̆el 20 let po diagnóze .

2

source As the Reverend Martin Luther King Jr. said fifty years ago :

human Jak pr̆ed padesáti lety r̆ekl reverend Martin Luther King Jr . :

word
Jak r̆ekl reverend Martin <unk> King <unk> pr̆ed padesáti lety :

Jak r̆ekl reverend Martin Luther King r̆ekl pr̆ed padesáti lety :

char Jako reverend Martin Luther král r̆ı́kal pr̆ed padesáti lety :

hybrid
Jak pr̆ed <unk> lety r̆ekl <unk> Martin <unk> <unk> <unk> :

Jak pr̆ed padesáti lety r̆ekl reverend Martin Luther King Jr. :

3

source Her 11-year-old daughter , Shani Bart , said it felt a ” little bit weird ” [..] back to school

human Jejı́ jedenáctiletá dcera Shani Bartová prozradila , z̆e ” je to trochu zvlás̆tnı́ ” [..] znova do

s̆koly

word
Jejı́ <unk> dcera <unk> <unk> r̆ekla , z̆e je to ” trochu divné ” , [..] vracı́ do s̆koly

Jejı́ 11-year-old dcera Shani , r̆ekla , z̆e je to ” trochu divné ” , [..] vracı́ do s̆koly

char Jejı́ jedenáctiletá dcera , Shani Bartová , r̆ı́kala , z̆e cı́tı́ trochu divnĕ , [..] vrátila do s̆koly

hybrid
Jejı́ <unk> dcera , <unk><unk> , r̆ekla , z̆e cı́tı́ ” trochu <unk> ” , [..] vrátila do s̆koly

Jejı́ jedenáctiletá dcera , Graham Bart , r̆ekla , z̆e cı́tı́ ” trochu divný ” , [..] vrátila do s̆koly

Table 5.4: Sample translations on newstest2015 – for each example, I show the source,

human translation, and translations of the following NMT systems: word model (d), char

model (g), and hybrid model (k). I show the translations before replacing <unk> tokens

(if any) for the word-based and hybrid models. The following formats are used to highlight

correct, wrong, and close translation segments.

CHAPTER 5. HYBRID MODELS 90

translates the name “King” into “král” which means “king”.

Lastly, both the character-based and hybrid models impress us by their ability to trans-

late compound words exactly, e.g., “11-year-old” and “jedenáctiletá”; whereas the identity

copy strategy of the word-based model fails. Of course, my hybrid model does make mis-

takes, e.g., it fails to translate the name “Shani Bart”. Overall, these examples highlight

how challenging translating into Czech is and that being able to translate at the character

level helps improve the quality.

5.5 Conclusion

I have proposed a novel hybrid architecture that combines the strength of both word- and

character-based models. Word-level models are fast to train and offer high-quality transla-

tion; whereas, character-level models help achieve the goal of open vocabulary NMT. I have

demonstrated these two aspects through my experimental results and translation examples.

My best hybrid model has surpassed the performance of both the best word-based NMT

system and the best non-neural model to establish a new state-of-the-art result for English-

Czech translation in WMT’15 with 20.7 BLEU. Moreover, I have succeeded in replac-

ing the standard unk replacement technique in NMT with my character-level components,

yielding an improvement of +2.1−11.4 BLEU points. My analysis has shown that my

model has the ability to not only generate well-formed words for Czech, a highly inflected

language with an enormous and complex vocabulary, but also build accurate representa-

tions for English source words. Additionally, I have demonstrated the potential of purely

character-based models in producing good translations; they have outperformed past word-

level NMT models. I will further discuss the potential of these models in Chapter 7.

Chapter 6

The Future of NMT

In previous chapters, my efforts at improving neural machine translation have centered

around enhancing the model architecture to address different needs such as translating long

sentences or coping with complex vocabularies. In this chapter, I switch gears to examine

more “external” aspects of NMT, which is also a way for me to take a quick peek into

the future of NMT. Specifically, I first examine in Section 6.1 how NMT can be improved

by utilizing data from not only the translation but also other tasks such as parsing, image

caption generation, and unsupervised learning. This is framed under the multi-task setting

which I believe is important for the future of NMT given the humongous amount of data

available in the world growing at an exponentially fast pace. The second aspect that I ex-

amine is making NMT models smaller, a topic of increasing importance as mobile devices

become dominant. Specifically, in Section 6.2, I cast such desiderata as a model com-

pression problem in which I answer how much we can reduce the sizes of NMT models

without sacrifice in performance and reveal interesting patterns in the parameter space of

NMT. Lastly, in Section 6.3, I highlight other future trends and potential research directions

for NMT.

6.1 Multi-task Sequence to Sequence Learning

Multi-task learning (MTL) is an important machine learning paradigm that aims at improv-

ing the generalization performance of a task using other related tasks. This framework

91

CHAPTER 6. THE FUTURE OF NMT 92

has been widely studied by Thrun (1996); Caruana (1997); Evgeniou and Pontil (2004);

Ando and Zhang (2005); Argyriou et al. (2007); Kumar and III (2012), among many oth-

ers. In the context of deep neural networks, MTL has been applied successfully to various

problems ranging from language (Liu et al., 2015), to vision (Donahue et al., 2014), and

speech (Heigold et al., 2013; Huang et al., 2013).

As we have seen in earlier chapters, sequence to sequence (seq2seq) learning

(Kalchbrenner and Blunsom, 2013; Sutskever et al., 2014; Cho et al., 2014) has emerged

as an effective paradigm for dealing with variable-length inputs and outputs. While rela-

tively new, the seq2seq approach has achieved state-of-the-art results in not only its original

application – machine translation – (Luong et al., 2015c; Jean et al., 2015a; Luong et al.,

2015b; Jean et al., 2015b; Luong and Manning, 2015), but also image caption generation

(Vinyals et al., 2015b), and constituency parsing (Vinyals et al., 2015a).

Despite the popularity of multi-task learning and sequence to sequence learning, there

has been little work in combining MTL with seq2seq learning. To the best of my knowl-

edge, there is only one recent publication by Dong et al. (2015) which applies a seq2seq

models for machine translation, where the goal is to translate from one language to multiple

languages. In this work, I propose three MTL approaches that complement one another: (a)

the one-to-many approach – for tasks that can have an encoder in common, such as transla-

tion and parsing; this applies to the multi-target translation setting in (Dong et al., 2015) as

well, (b) the many-to-one approach – useful for multi-source translation or tasks in which

only the decoder can be easily shared, such as translation and image captioning, and lastly,

(c) the many-to-many approach – which share multiple encoders and decoders through

which I study the effect of unsupervised learning in translation. I show that syntactic pars-

ing and image caption generation improves the translation quality between English and

German by up to +1.5 BLEU points over strong single-task baselines on the WMT bench-

marks. Furthermore, I have established a new state-of-the-art result in constituent parsing

with 93.0 F1. I also explore two unsupervised learning objectives, sequence autoencoders

(Dai and Le, 2015) and skip-thought vectors (Kiros et al., 2015), and reveal their interest-

ing properties in the MTL setting: the autoencoder helps less in terms of perplexities but

more on BLEU scores compared to skip-thought.

CHAPTER 6. THE FUTURE OF NMT 93

Figure 6.1: Sequence to sequence learning examples – (left) machine translation

(Sutskever et al., 2014) and (right) constituent parsing (Vinyals et al., 2015a).

6.1.1 Multi-task Sequence-to-Sequence Learning

I generalize the work of Dong et al. (2015) to the multi-task sequence-to-sequence learning

setting that includes the tasks of machine translation (MT), constituency parsing, and image

caption generation. Depending on which tasks are involved, I propose to categorize multi-

task seq2seq learning into three general settings. In addition, I will discuss the unsupervised

learning tasks considered as well as the learning process.

One-to-Many Setting This scheme involves one encoder and multiple decoders for tasks

in which the encoder can be shared, as illustrated in Figure 6.2. The input to each task

is a sequence of English words. A separate decoder is used to generate each sequence

of output units which can be either (a) a sequence of tags for constituency parsing as

used in (Vinyals et al., 2015a), (b) a sequence of German words for machine translation

(Luong et al., 2015b), and (c) the same sequence of English words for autoencoders or a

related sequence of English words for the skip-thought objective (Kiros et al., 2015).

Figure 6.2: One-to-many Setting – one encoder, multiple decoders. This scheme is useful

for either multi-target translation as in (Dong et al., 2015) or between different tasks. Here,

English and German imply sequences of words in the respective languages.

CHAPTER 6. THE FUTURE OF NMT 94

Many-to-One Setting This scheme is the opposite of the one-to-many setting. As illus-

trated in Figure 6.3, it consists of multiple encoders and one decoder. This is useful for

tasks in which only the decoder can be shared, for example, when my tasks include ma-

chine translation and image caption generation (Vinyals et al., 2015b). In addition, from a

machine translation perspective, this setting can benefit from a large amount of monolin-

gual data on the target side, which is a standard practice in machine translation system and

has also been explored for neural MT by (Gulcehre et al., 2015).

Figure 6.3: Many-to-one setting – multiple encoders, one decoder. This scheme is handy

for tasks in which only the decoders can be shared.

Many-to-Many Setting Lastly, as the name describes, this category is the most general

one, consisting of multiple encoders and multiple decoders. I will explore this scheme

in a translation setting that involves sharing multiple encoders and multiple decoders. In

addition to the machine translation task, I will include two unsupervised objectives over

the source and target languages as illustrated in Figure 6.4.

Figure 6.4: Many-to-many setting – multiple encoders, multiple decoders. I consider this

scheme in a limited context of machine translation to utilize the large monolingual corpora

in both the source and the target languages. Here, I consider a single translation task and

two unsupervised autoencoder tasks.

Unsupervised Learning Tasks My very first unsupervised learning task involves learn-

ing autoencoders from monolingual corpora, which has recently been applied to sequence

CHAPTER 6. THE FUTURE OF NMT 95

to sequence learning (Dai and Le, 2015). However, in Dai and Le (2015)’s work, the au-

thors only experiment with pretraining and then finetuning, but not joint training which

can be viewed as a form of multi-task learning (MTL). As such, I am very interested in

knowing whether the same trend extends to my MTL settings.

Additionally, I investigate the use of the skip-thought vectors (Kiros et al., 2015) in the

context of my MTL framework. Skip-thought vectors are trained by training sequence to

sequence models on pairs of consecutive sentences, which makes the skip-thought objec-

tive a natural seq2seq learning candidate. A minor technical difficulty with the skip-thought

objective is that the training data must consist of ordered sentences, e.g., paragraphs. Unfor-

tunately, in many applications that include machine translation, I only have sentence-level

data where the sentences are unordered. To address that, I split each sentence into two

halves; I then use one half to predict the other half.

Learning (Dong et al., 2015) adopted an alternating training approach, where they opti-

mize each task for a fixed number of parameter updates (or mini-batches) before switching

to the next task (which is a different language pair). In my setting, my tasks are more

diverse and contain different amounts of training data. As a result, I allocate different num-

bers of parameter updates for each task, which are expressed with the mixing ratio values

αi (for each task i). Each parameter update consists of training data from one task only.

When switching between tasks, I select randomly a new task i with probability αi∑
j αj

.

My convention is that the first task is the reference task with α1 = 1.0 and the number

of training parameter updates for that task is prespecified to be N . A typical task i will

then be trained for αi

α1

· N parameter updates. Such convention makes it easier for us to

fairly compare the same reference task in a single-task setting which has also been trained

for exactly N parameter updates. When sharing an encoder or a decoder, I share both the

recurrent connections and the corresponding embeddings.

CHAPTER 6. THE FUTURE OF NMT 96

6.1.2 Experiments

I evaluate the multi-task learning setup on a wide variety of sequence-to-sequence tasks:

constituency parsing, image caption generation, machine translation, and a number of un-

supervised learning as summarized in Table 6.1.

Data My experiments are centered around the translation task, where I aim to deter-

mine whether other tasks can improve translation and vice versa. I use the WMT’15 data

(Bojar et al., 2015) for the English⇆German translation problem. Following Chapter 4

(Luong et al., 2015b), I use the 50K most frequent words for each language from the train-

ing corpus.1 These vocabularies are then shared with other tasks, except for parsing in

which the target “language” has a vocabulary of 104 tags. I use newstest2013 (3000 sen-

tences) as a validation set to select my hyperparameters, e.g., mixing coefficients. For

testing, to be comparable with the existing results in Chapter 4 (Luong et al., 2015b), I

use the filtered newstest2014 (2737 sentences)2 for the English→German translation task

and newstest2015 (2169 sentences)3 for the German→English task. See the summary in

Table 6.1.

For the unsupervised tasks, I use the English and German monolingual corpora from

WMT’15.4 Since in my experiments, unsupervised tasks are always coupled with transla-

tion tasks, I use the same validation and test sets as the accompanied translation tasks.

For constituency parsing, I experiment with two types of corpora:

1. a small corpus – the widely used Penn Tree Bank (PTB) dataset (Marcus et al., 1993)

and,

2. a large corpus – the high-confidence (HC) parse trees provided by Vinyals et al.

(2015a).

1The corpus has already been tokenized using the default tokenizer from Moses. Words not in these

vocabularies are represented by the token <unk>.
2http://statmt.org/wmt14/test-filtered.tgz
3http://statmt.org/wmt15/test.tgz
4The training sizes reported for the unsupervised tasks are only 10% of the original WMT’15 monolingual

corpora which I randomly sample from. Such reduced sizes are for faster training time and already about three

times larger than that of the parallel data. I consider using all the monolingual data in future work.

http://statmt.org/wmt14/test-filtered.tgz
http://statmt.org/wmt15/test.tgz

CHAPTER 6. THE FUTURE OF NMT 97

Task
Train Valid Test Vocab Size Train Finetune

Size Size Size Source Target Epoch Start Cycle

English→German Translation 4.5M 3000 3003 50K 50K 12 8 1

German→English Translation 4.5M 3000 2169 50K 50K 12 8 1

English unsupervised 12.1M
Details in text

50K 50K 6 4 0.5

German unsupervised 13.8M 50K 50K 6 4 0.5

Penn Tree Bank Parsing 40K 1700 2416 50K 104 40 20 4

High-Confidence Corpus Parsing 11.0M 1700 2416 50K 104 6 4 0.5

Image Captioning 596K 4115 - - 50K 10 5 1

Table 6.1: Data & Training Details – Information about the different datasets used in this

work. For each task, I display the following statistics: (a) the number of training examples,

(b) the sizes of the vocabulary, (c) the number of training epochs, and (d) details on when

and how frequent I halve the learning rates (finetuning).

The two parsing tasks, however, are evaluated on the same validation (section 22) and test

(section 23) sets from the PTB data. Note also that the parse trees have been linearized

following Vinyals et al. (2015a). Lastly, for image caption generation, I use a dataset of

image and caption pairs provided by Vinyals et al. (2015b).

Training Details In all experiments, following Sutskever et al. (2014) and Chapter 3

(Luong et al., 2015c), I train deep LSTM models as follows: (a) I use 4 LSTM layers

each of which has 1000-dimensional cells and embeddings,5 (b) parameters are uniformly

initialized in [-0.06, 0.06], (c) I use a mini-batch size of 128, (d) dropout is applied with

probability of 0.2 over vertical connections (Pham et al., 2014), (e) I use SGD with a fixed

learning rate of 0.7, (f) input sequences are reversed, and lastly, (g) I use a simple finetun-

ing schedule – after x epochs, I halve the learning rate every y epochs. The values x and

y are referred as finetune start and finetune cycle in Table 6.1 together with the number of

training epochs per task.

As described in Section 6.1.1, for each multi-task experiment, I need to choose one task

to be the reference task (which corresponds to α1 = 1). The choice of the reference task

helps specify the number of training epochs and the finetune start/cycle values which I also

when training that reference task alone for fair comparison. To make sure my findings are

reliable, I run each experimental configuration twice and report the average performance in

the format mean (stddev).

5For image caption generation, I use 1024 dimensions, which is also the size of the image embeddings.

CHAPTER 6. THE FUTURE OF NMT 98

Results

I explore several multi-task learning scenarios by combining a large task (machine trans-

lation) with: (a) a small task – Penn Tree Bank (PTB) parsing, (b) a medium-sized task

– image caption generation, (c) another large task – parsing on the high-confidence (HC)

corpus, and (d) lastly, unsupervised tasks, such as autoencoders and skip-thought vectors.

In terms of evaluation metrics, I report both validation and test perplexities for all tasks.

Additionally, I also compute test BLEU scores (Papineni et al., 2002) for translation.

Large Tasks with Small Tasks In this setting, I want to understand if a small task such

as PTB parsing can help improve the performance of a large task such as translation. Since

the parsing task maps from a sequence of English words to a sequence of parsing tags

(Vinyals et al., 2015a), only the encoder can be shared with an English→German transla-

tion task. As a result, this is a one-to-many MTL scenario (§6.1.1).

Task
Translation Parsing

Valid ppl Test ppl Test BLEU Test F1

Chapter 4 system (Luong et al., 2015b) - 8.1 14.0 -

My single-task systems

Translation 8.8 (0.3) 8.3 (0.2) 14.3 (0.3) -

PTB Parsing - - - 43.3 (1.7)

My multi-task systems

Translation + PTB Parsing (1x) 8.5 (0.0) 8.2 (0.0) 14.7 (0.1) 54.5 (0.4)

Translation + PTB Parsing (0.1x) 8.3 (0.1) 7.9 (0.0) 15.1 (0.0) 55.2 (0.0)

Translation + PTB Parsing (0.01x) 8.2 (0.2) 7.7 (0.2) 15.8 (0.4) 39.8 (2.7)

Table 6.2: Large tasks with small tasks, English→German WMT’14 translation & Penn

Tree Bank parsing results – shown are perplexities (ppl), BLEU scores, and parsing F1 for

various systems. For muli-task models, reference tasks are in italic with the mixing ratio

in parentheses. My results are averaged over two runs in the format mean (stddev). Best

results are highlighted in boldface.

To my surprise, the results in Table 6.2 suggest that by adding a very small number of

parsing mini-batches (with mixing ratio 0.01, i.e., one parsing mini-batch per 100 transla-

tion mini-batches), I can improve the translation quality substantially. More concretely, my

best multi-task model yields a gain of +1.5 BLEU points over the single-task baseline. It is

CHAPTER 6. THE FUTURE OF NMT 99

worth pointing out that as shown in Table 6.2, my single-task baseline is very strong, even

better than the equivalent non-attention model reported in Chapter 4 (Luong et al., 2015b).

Larger mixing coefficients, however, overfit the small PTB corpus; hence, achieve smaller

gains in translation quality.

For parsing, as Vinyals et al. (2015a) have shown that attention is crucial to achieve

good parsing performance when training on the small PTB corpus, I do not set a high

bar for my attention-free systems in this setup (better performances are reported in Sec-

tion 6.1.2). Nevertheless, the parsing results in Table 6.2 indicate that MTL is also bene-

ficial for parsing, yielding an improvement of up to +8.9 F1 points over the baseline.6 It

would be interesting to study how MTL can be useful with the presence of the attention

mechanism, which I leave for future work.

Large Tasks With Medium Tasks I investigate whether the same pattern carries over to

a medium task such as image caption generation. Since the image caption generation task

maps images to a sequence of English words (Vinyals et al., 2015b; Xu et al., 2015), only

the decoder can be shared with a German→English translation task. Hence, this setting

falls under the many-to-one MTL setting (§6.1.1).

The results in Table 6.3 show the same trend I observed before, that is, by training on

another task for a very small fraction of time, the model improves its performance on its

main task. Specifically, with 5 parameter updates for image caption generation per 100

updates for translation (so the mixing ratio of 0.05), I obtain a gain of +0.7 BLEU scores

over a strong single-task baseline. My baseline is almost a BLEU point better than the

equivalent non-attention model reported in Chapter 4 (Luong et al., 2015b).

Large Tasks with Large Tasks My first set of experiments is almost the same as the

one-to-many big-vs-small-task setting which combines translation, as the reference task,

with parsing. The only difference is in terms of parsing data. Instead of using the small

Penn Tree Bank corpus, I consider a large parsing resource, the high-confidence (HC)

6While perplexities correlate well with BLEU scores as shown in Chapter 3 (Luong et al., 2015c), I ob-

serve empirically in Section 6.1.2 that parsing perplexities are only reliable if it is less than 1.3. Hence, I omit

parsing perplexities in Table 6.2 for clarity. The parsing test perplexities (averaged over two runs) for the last

four rows in Table 6.2 are 1.95, 3.05, 2.14, and 1.66. Valid perplexities are similar.

CHAPTER 6. THE FUTURE OF NMT 100

Task
Translation Captioning

Valid ppl Test ppl Test BLEU Valid ppl

Chapter 4 system (Luong et al., 2015b) - 14.3 16.9 -

My single-task systems

Translation 11.0 (0.0) 12.5 (0.2) 17.8 (0.1) -

Captioning - - - 30.8 (1.3)

My multi-task systems

Translation + Captioning (1x) 11.9 14.0 16.7 43.3

Translation + Captioning (0.1x) 10.5 (0.4) 12.1 (0.4) 18.0 (0.6) 28.4 (0.3)

Translation + Captioning (0.05x) 10.3 (0.1) 11.8 (0.0) 18.5 (0.0) 30.1 (0.3)

Translation + Captioning (0.01x) 10.6 (0.0) 12.3 (0.1) 18.1 (0.4) 35.2 (1.4)

Table 6.3: Large tasks with medium tasks, German→English WMT’15 translation &

captioning results – shown are perplexities (ppl) and BLEU scores for various tasks with

similar format as in Table 6.2. Reference tasks are in italic with mixing ratios in parenthe-

ses. The average results of 2 runs are in mean (stddev) format.

corpus, which is provided by Vinyals et al. (2015a). As highlighted in Table 6.4, the trend

is consistent; MTL helps boost translation quality by up to +0.9 BLEU points.

Task
Translation

Valid ppl Test ppl Test BLEU

Chapter 4 system (Luong et al., 2015b) - 8.1 14.0

My systems

Translation 8.8 (0.3) 8.3 (0.2) 14.3 (0.3)

Translation + HC Parsing (1x) 8.5 (0.0) 8.1 (0.1) 15.0 (0.6)

Translation + HC Parsing (0.1x) 8.2 (0.3) 7.7 (0.2) 15.2 (0.6)

Translation + HC Parsing (0.05x) 8.4 (0.0) 8.0 (0.1) 14.8 (0.2)

Table 6.4: English→German WMT’14 translation – shown are perplexities (ppl) and

BLEU scores of various translation models. My multi-task systems combine translation

and parsing on the high-confidence corpus together. Mixing ratios are in parentheses and

the average results over 2 runs are in mean (stddev) format. Best results are bolded.

The second set of experiments shifts the attention to parsing by having it as the ref-

erence task. I show in Table 6.5 results that combine parsing with either (a) the English

autoencoder task or (b) the English→German translation task. My models are compared

against the best attention-based systems in (Vinyals et al., 2015a), including the state-of-

the-art result of 92.8 F1.

Before discussing the multi-task results, I note a few interesting observations. First,

CHAPTER 6. THE FUTURE OF NMT 101

Task
Parsing

Valid ppl Test F1

LSTM+A (Vinyals et al., 2015a) - 92.5

LSTM+A+E (Vinyals et al., 2015a) - 92.8

My systems

HC Parsing 1.12/1.12 92.2 (0.1)

HC Parsing + Autoencoder (1x) 1.12/1.12 92.1 (0.1)

HC Parsing + Autoencoder (0.1x) 1.12/1.12 92.1 (0.1)

HC Parsing + Autoencoder (0.01x) 1.12/1.13 92.0 (0.1)

HC Parsing + Translation (1x) 1.12/1.13 91.5 (0.2)

HC Parsing + Translation (0.1x) 1.13/1.13 92.0 (0.2)

HC Parsing + Translation (0.05x) 1.11/1.12 92.4 (0.1)

HC Parsing + Translation (0.01x) 1.12/1.12 92.2 (0.0)

Ensemble of 6 multi-task systems - 93.0

Table 6.5: Large-Corpus parsing results – shown are perplexities (ppl) and F1 scores

for various parsing models. Mixing ratios are in parentheses and the average results over 2

runs are in mean (stddev) format. I show the individual perplexities for all runs due to small

differences among them. For Vinyals et al. (2015a)’s parsing results, LSTM+A represents

a single LSTM with attention, whereas LSTM+A+E indicates an ensemble of 5 systems.

Important results are bolded.

very small parsing perplexities, close to 1.1, can be achieved with large training data.7

Second, our baseline system can obtain a very competitive F1 score of 92.2, rivaling

Vinyals et al. (2015a)’s systems. This is rather surprising since our models do not use

any attention mechanism. A closer look into these models reveal that there seems to be

an architectural difference: Vinyals et al. (2015a) use 3-layer LSTM with 256 cells and

512-dimensional embeddings; whereas our models use 4-layer LSTM with 1000 cells and

1000-dimensional embeddings. This further supports findings in (Jozefowicz et al., 2016)

that larger networks matter for sequence models.

For the multi-task results, while autoencoder does not seem to help parsing, translation

does. At the mixing ratio of 0.05, I obtain a non-negligible boost of 0.2 F1 over the baseline

and with 92.4 F1, our multi-task system is on par with the best single system reported in

7Training solely on the small Penn Tree Bank corpus can only reduce the perplexity to at most 1.6, as

evidenced by poor parsing results in Table 6.2. At the same time, these parsing perplexities are much smaller

than what can be achieved by a translation task. This is because parsing only has 104 tags in the target

vocabulary compared to 50K words in the translation case. Note that 1.0 is the theoretical lower bound.

CHAPTER 6. THE FUTURE OF NMT 102

(Vinyals et al., 2015a). Furthermore, by ensembling 6 different multi-task models (trained

with the translation task at mixing ratios of 0.1, 0.05, and 0.01), I am able to establish a

new state-of-the-art result in English constituent parsing with 93.0 F1 score.

Multi-tasks and Unsupervised Learning My main focus in this section is to determine

whether unsupervised learning can help improve translation. Specifically, I follow the

many-to-many approach described in Section 6.1.1 to couple the German→English transla-

tion task with two unsupervised learning tasks on monolingual corpora, one per language.

The results in Tables 6.6 show a similar trend as before, a small amount of other tasks, in

this case the autoencoder objective with mixing coefficient 0.05, improves the translation

quality by +0.5 BLEU scores. However, as I train more on the autoencoder task, i.e. with

larger mixing ratios, the translation performance gets worse.

Task
Translation German English

Valid ppl Test ppl Test BLEU Test ppl Test ppl

Chapter 4 system (Luong et al., 2015b) - 14.3 16.9 - -

My single-task systems

Translation 11.0 (0.0) 12.5 (0.2) 17.8 (0.1) - -

My multi-task systems with Autoencoders

Translation + autoencoders (1.0x) 12.3 13.9 16.0 1.01 2.10

Translation + autoencoders (0.1x) 11.4 12.7 17.7 1.13 1.44

Translation + autoencoders (0.05x) 10.9 (0.1) 12.0 (0.0) 18.3 (0.4) 1.40 (0.01) 2.38 (0.39)

My multi-task systems with Skip-thought Vectors

Translation + skip-thought (1x) 10.4 (0.1) 10.8 (0.1) 17.3 (0.2) 36.9 (0.1) 31.5 (0.4)

Translation + skip-thought (0.1x) 10.7 (0.0) 11.4 (0.2) 17.8 (0.4) 52.8 (0.3) 53.7 (0.4)

Translation + skip-thought (0.01x) 11.0 (0.1) 12.2 (0.0) 17.8 (0.3) 76.3 (0.8) 142.4 (2.7)

Table 6.6: German→English WMT’15 translation & unsupervised learning results –

shown are perplexities for translation and unsupervised learning tasks. I experiment with

both autoencoders and skip-thought vectors for the unsupervised objectives. Numbers in

mean (stddev) format are the average results of 2 runs; others are for 1 run only.

Skip-thought objectives, on the other hand, behave differently. If I merely look at the

perplexity metric, the results are very encouraging: with more skip-thought data, I perform

better consistently across both the translation and the unsupervised tasks. However, when

computing the BLEU scores, the translation quality degrades as I increase the mixing co-

efficients. I anticipate that this is due to the fact that the skip-thought objective changes

the nature of the translation task when using one half of a sentence to predict the other

CHAPTER 6. THE FUTURE OF NMT 103

half. It is not a problem for the autoencoder objectives, however, since one can think of

autoencoding a sentence as translating into the same language.

I believe these findings pose interesting challenges in the quest towards better unsu-

pervised objectives, which should satisfy the following criteria: (a) a desirable objective

should be compatible with the supervised task in focus, e.g., autoencoders can be viewed

as a special case of translation, and (b) with more unsupervised data, both intrinsic and

extrinsic metrics should be improved; skip-thought objectives satisfy this criterion in terms

of the intrinsic metric but not the extrinsic one.

6.1.3 Conclusion

In this section, I showed that multi-task learning (MTL) can improve the performance of

the attention-free sequence to sequence model of (Sutskever et al., 2014). I found it sur-

prising that training on syntactic parsing and image caption data improved our translation

performance, given that these datasets are orders of magnitude smaller than typical trans-

lation datasets. Furthermore, I have established a new state-of-the-art result in constituent

parsing with an ensemble of multi-task models. I also showed that the two unsupervised

learning objectives, autoencoder and skip-thought, behave differently in the MTL context

involving translation. I hope that these interesting findings will motivate future work in uti-

lizing unsupervised data for sequence to sequence learning. A criticism of this work is that

the sequence to sequence models do not employ the attention mechanism (Bahdanau et al.,

2015). I leave the exploration of MTL with attention for future work.

6.2 Compression of NMT Models via Pruning

While NMT has a significantly smaller memory footprint than traditional phrase-based

approaches (which need to store gigantic phrase-tables and language models), the model

size of NMT is still prohibitively large for mobile devices. For example, the NMT system in

Chapter 4 (Luong et al., 2015b)requires over 200 million parameters, resulting in a storage

size of hundreds of megabytes. Though the trend for bigger and deeper neural networks

has brought great progress, it has also introduced over-parameterization, resulting in long

CHAPTER 6. THE FUTURE OF NMT 104

running times, overfitting, and the storage size issue discussed above. A solution to the

over-parameterization problem could potentially aid all three issues, though the first (long

running times) is outside the scope of this work.

I investigate the efficacy of weight pruning for NMT as a means of compression. I

show that despite its simplicity, magnitude-based pruning with retraining is highly effec-

tive, and I compare three magnitude-based pruning schemes — class-blind, class-uniform

and class-distribution. Though recent work has chosen to use the latter two, I find the first

and simplest scheme — class-blind — the most successful. I am able to prune 40% of the

weights of a state-of-the-art NMT system with negligible performance loss, and by adding

a retraining phase after pruning, I can prune 80% with no performance loss. My pruning

experiments also reveal some patterns in the distribution of redundancy in NMT. In partic-

ular, I find that higher layers, attention and softmax weights are the most important, while

lower layers and the embedding weights hold a lot of redundancy. For the Long Short-Term

Memory (LSTM) architecture, I find that at lower layers the parameters for the input are

most crucial, but at higher layers the parameters for the gates also become important.

6.2.1 Related Work

Pruning the parameters from a neural network, referred to as weight pruning or network

pruning, is a well-established idea though it can be implemented in many ways. Among

the most popular are the Optimal Brain Damage (OBD) (Le Cun et al., 1989) and Opti-

mal Brain Surgeon (OBS) (Hassibi and Stork, 1993) techniques, which involve comput-

ing the Hessian matrix of the loss function with respect to the parameters, in order to

assess the saliency of each parameter. Parameters with low saliency are then pruned

from the network and the remaining sparse network is retrained. Both OBD and OBS

were shown to perform better than the so-called ‘naive magnitude-based approach’, which

prunes parameters according to their magnitude (deleting parameters close to zero). How-

ever, the high computational complexity of OBD and OBS compare unfavorably to the

computational simplicity of the magnitude-based approach, especially for large networks

(Augasta and Kathirvalavakumar, 2013).

CHAPTER 6. THE FUTURE OF NMT 105

In recent years, the deep learning renaissance has prompted a re-investigation of net-

work pruning for modern models and tasks. Magnitude-based pruning with iterative re-

training has yielded strong results for Convolutional Neural Networks (CNN) performing

visual tasks. (Collins and Kohli, 2014) prune 75% of AlexNet parameters with small accu-

racy loss on the ImageNet task, while (Han et al., 2015b) prune 89% of AlexNet parameters

with no accuracy loss on the ImageNet task.

Other approaches focus on pruning neurons rather than parameters, via sparsity-inducing

regularizers (Murray and Chiang, 2015) or ‘wiring together’ pairs of neurons with similar

input weights (Srinivas and Babu, 2015). These approaches are much more constrained

than weight-pruning schemes; they necessitate finding entire zero rows of weight matrices,

or near-identical pairs of rows, in order to prune a single neuron. By contrast weight-

pruning approaches allow weights to be pruned freely and independently of each other.

The neuron-pruning approach of (Srinivas and Babu, 2015) was shown to perform poorly

(it suffered performance loss after removing only 35% of AlexNet parameters) compared

to the weight-pruning approach of (Han et al., 2015b). Though (Murray and Chiang, 2015)

demonstrates neuron-pruning for language modeling as part of a (non-neural) Machine

Translation pipeline, their approach is more geared towards architecture selection than

compression.

There are many other compression techniques for neural networks, including ap-

proaches based on on low-rank approximations for weight matrices (Jaderberg et al., 2014;

Denton et al., 2014), or weight sharing via hash functions (Chen et al., 2015). Several

methods involve reducing the precision of the weights or activations (Courbariaux et al.,

2015), sometimes in conjunction with specialized hardware (Gupta et al., 2015a), or

even using binary weights (Lin et al., 2016). The ‘knowledge distillation’ technique of

(Hinton et al., 2015) involves training a small ‘student’ network on the soft outputs of a

large ‘teacher’ network. Some approaches use a sophisticated pipeline of several tech-

niques to achieve impressive feats of compression (Han et al., 2015a; Iandola et al., 2016).

Most of the above work has focused on compressing CNNs for vision tasks. I extend

the magnitude-based pruning approach of (Han et al., 2015b) to recurrent neural networks

(RNN), in particular LSTM architectures for NMT, and to my knowledge I am the first

to do so. There has been some recent work on compression for RNNs (Lu et al., 2016;

CHAPTER 6. THE FUTURE OF NMT 106

studentaamI Je

Je suis

suis étudiant

étudiant
_

one-hot vectors
length V

word embeddings

length n

hidden layer 1
length n

hidden layer 2!
length n

scores
length V

one-hot vectors!
length V

_

source language input target language
input

initial (zero)
states

target language output

softmax weights
size: V ! n

Key to weight classes

attention hidden layer
length n

context vector
(one for each
target word)

length n

target !
layer 2

weights
size: 4n x 2n

source embedding
weights

size: n x V

attention
weights

size: n x 2n

target !
layer 1

weights
size: 4n x 2n

source!
layer 2

weights
size: 4n x 2n

source!
layer 1!

weights
size: 4n x 2n

target embedding
weights

size: n x V

Figure 6.5: NMT architecture. This example has two layers, but my system has four.

The different weight classes are indicated by arrows of different color (the black arrows

in the top right represent simply choosing the highest-scoring word, and thus require no

parameters). Best viewed in color.

Prabhavalkar et al., 2016), but it focuses on other, non-pruning compression techniques.

Nonetheless, my general observations on the distribution of redundancy in a LSTM, de-

tailed in Section 6.2.3, are corroborated by (Lu et al., 2016).

6.2.2 My Approach

Understanding NMT Weights

In this work, I am focusing on the deep multi-layer recurrent architecture with LSTM as the

hidden unit type. Figure 6.5 shows the system in detail, highlighting the different types of

parameters, or weights, in the model. I will go through the architecture from bottom to top.

First, a vocabulary is chosen for each language, assuming that the top V frequent words are

CHAPTER 6. THE FUTURE OF NMT 107

selected. Thus, every word in the source or target vocabulary can be represented by a one-

hot vector of length V . The source input sentence and target input sentence, represented

as a sequence of one-hot vectors, are transformed into a sequence of word embeddings by

the embedding weights. These embedding weights, which are learned during training, are

different for the source words and the target words. The word embeddings and all hidden

layers are vectors of length n (a chosen hyperparameter).

The word embeddings are then fed as input into the main network, which consists of

two multi-layer RNNs ‘stuck together’ — an encoder for the source language and a decoder

for the target language, each with their own weights. The feed-forward (vertical) weights

connect the hidden unit from the layer below to the upper RNN block, and the recurrent

(horizontal) weights connect the hidden unit from the previous time-step RNN block to the

current time-step RNN block. The hidden state at the top layer of the decoder is fed through

an attention layer, which guides the translation by ‘paying attention’ to relevant parts of the

source sentence. Finally, for each target word, the top layer hidden unit is transformed by

the softmax weights into a score vector of length V . The target word with the highest score

is selected as the output translation.

Weight Subgroups in LSTM – For the aforementioned RNN block, I choose to use

LSTM as the hidden unit type. To facilitate my later discussion on the different subgroups

of weights within LSTM, recall the details of the LSTM presented in Chapter 2 (2.35-2.37):

i

f

o

ĥ

=

sigm

sigm

sigm

tanh

T4n,2n

(

hl−1
t

hl
t−1

)

(6.1)

clt = f ◦ clt−1 + i ◦ ĥ (6.2)

hl
t = o ◦ tanh(clt) (6.3)

Each LSTM block at time t and layer l computes as output a pair of hidden and memory

vectors (hl
t, c

l
t) given the previous pair (hl

t−1, clt−1) and an input vector hl−1
t (either from the

LSTM block below or the embedding weights if l=1). All of these vectors have length n.

The core of a LSTM block is the weight matrix T4n,2n of size 4n× 2n. This matrix can be

CHAPTER 6. THE FUTURE OF NMT 108

decomposed into 8 subgroups that are responsible for the interactions between {input gate

i, forget gate f , output gate o, input signal ĥ} × {feed-forward input hl−1
t , recurrent input

hl
t−1}.

Pruning Schemes

I follow the general magnitude-based approach of (Han et al., 2015b), which consists of

pruning weights with smallest absolute value. However, I question the authors’ pruning

scheme with respect to the different weight classes, and experiment with three pruning

schemes. Suppose I wish to prune x% of the total parameters in the model. How do I

distribute the pruning over the different weight classes (illustrated in Figure 6.5) of my

model? I propose to examine three different pruning schemes:

1. Class-blind: Take all parameters, sort them by magnitude and prune the x% with

smallest magnitude, regardless of weight class. (So some classes are pruned propor-

tionally more than others).

2. Class-uniform: Within each class, sort the weights by magnitude and prune the x%

with smallest magnitude. (So all classes have exactly x% of their parameters pruned).

3. Class-distribution: For each class c, weights with magnitude less than λσc are pruned.

Here, σc is the standard deviation of that class and λ is a universal parameter cho-

sen such that in total, x% of all parameters are pruned. This is used by (Han et al.,

2015b).

All these schemes have their seeming advantages. Class-blind pruning is the simplest and

adheres to the principle that pruning weights (or equivalently, setting them to zero) is least

damaging when those weights are small, regardless of their locations in the architecture.

Class-uniform pruning and class-distribution pruning both seek to prune proportionally

within each weight class, either absolutely, or relative to the standard deviation of that

class. I find that class-blind pruning outperforms both other schemes (see Section 6.2.3).

CHAPTER 6. THE FUTURE OF NMT 109

0 10 20 30 40 50 60 70 80 90
0

10

20

percentage pruned

B
L

E
U

sc
o

re

class-blind

class-uniform

class-distribution

Figure 6.6: Effects of different pruning schemes.

Retraining

In order to prune NMT models aggressively without performance loss, I retrain my pruned

networks. That is, I continue to train the remaining weights, but maintain the sparse struc-

ture introduced by pruning. In my implementation, pruned weights are represented by

zeros in the weight matrices, and I use binary ‘mask’ matrices, which represent the sparse

structure of a network, to ignore updates to weights at pruned locations. This implemen-

tation has the advantage of simplicity as it requires minimal changes to the training and

deployment code, but I note that a more complex implementation utilizing sparse matrices

and sparse matrix multiplication could potentially yield speed improvements. However,

such an implementation is beyond the scope of this work.

6.2.3 Experiments

I evaluate the effectiveness of my pruning approaches on the attention-based English-

German NMT system from Chapter 4 (Luong et al., 2015b). Training data was obtained

from WMT’14 consisting of 4.5M sentence pairs (116M English words, 110M German

words). For more details on training hyperparameters, I refer readers to Section 4.1 of the

thesis. All models are tested on newstest2014 (2737 sentences). The model achieves a

perplexity of 6.1 and a BLEU score of 20.5 (after unknown word replacement).8

8The performance of this model is reported under row global (dot) in Table 4.1 of the thesis.

CHAPTER 6. THE FUTURE OF NMT 110

so
ur

ce
la

ye
r 1

so
ur

ce
la

ye
r 2

so
ur

ce
la

ye
r 3

so
ur

ce
la

ye
r 4

ta
rg

et
la

ye
r 1

ta
rg

et
la

ye
r 2

ta
rg

et
la

ye
r 3

ta
rg

et
la

ye
r 4

at
te

nt
io

n

so
ftm

ax

so
ur

ce
em

be
dd

in
g

ta
rg

et
em

be
dd

in
g

0

5

10

15

p
er

p
le

x
it

y
ch

an
g

e

class-blind

class-uniform

class-distribution

Figure 6.7: ‘Breakdown’ of performance loss (i.e., perplexity increase) by weight class,

when pruning 90% of weights using each of the three pruning schemes. Each of the first

eight classes have 8 million weights, attention has 2 million, and the last three have 50

million weights each.

When retraining pruned NMT systems, I use the following settings: (a) I start with

a smaller learning rate of 0.5 (the original model uses a learning rate of 1.0), (b) I train

for fewer epochs, 4 instead of 12, using plain SGD, (c) a simple learning rate schedule is

employed; after 2 epochs, I begin to halve the learning rate every half an epoch, and (d) all

other hyperparameters are the same, such as mini-batch size 128, maximum gradient norm

5, and dropout with probability 0.2.

Comparing pruning schemes

Despite its simplicity, I observe in Figure 6.6 that class-blind pruning outperforms both

other schemes in terms of translation quality at all pruning percentages. In order to under-

stand this result, for each of the three pruning schemes, I pruned each class separately and

recorded the effect on performance (as measured by perplexity). Figure 6.7 shows that with

class-uniform pruning, the overall performance loss is caused disproportionately by a few

classes: target layer 4, attention and softmax weights. Looking at Figure 6.8, I see that the

CHAPTER 6. THE FUTURE OF NMT 111

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

100

101

magnitude of largest deleted weight

p
er

p
le

x
it

y
ch

an
g

e

Figure 6.8: Magnitude of largest deleted weight vs. perplexity change, for the 12 different

weight classes when pruning 90% of parameters by class-uniform pruning.

most damaging classes to prune also tend to be those with weights of greater magnitude

— these classes have much larger weights than others at the same percentile, so pruning

them under the class-uniform pruning scheme is more damaging. The situation is similar

for class-distribution pruning.

By contrast, Figure 6.7 shows that under class-blind pruning, the damage caused by

pruning softmax, attention and target layer 4 weights is greatly decreased, and the contri-

bution of each class towards the performance loss is overall more uniform. In fact, the dis-

tribution begins to reflect the number of parameters in each class — for example, the source

and target embedding classes have larger contributions because they have more weights. I

use only class-blind pruning for the rest of the experiments.

Figure 6.7 also reveals some interesting information about the distribution of redun-

dancy in NMT architectures — namely it seems that higher layers are more important than

lower layers, and that attention and softmax weights are crucial. I will explore the distribu-

tion of redundancy further in Section 6.2.3.

Pruning and retraining

Pruning has an immediate negative impact on performance (as measured by BLEU) that

is exponential in pruning percentage; this is demonstrated by the blue line in Figure 6.9.

However I find that up to about 40% pruning, performance is mostly unaffected, indicating

a large amount of redundancy and over-parameterization in NMT.

CHAPTER 6. THE FUTURE OF NMT 112

0 10 20 30 40 50 60 70 80 90
0

10

20

percentage pruned

B
L

E
U

sc
o

re

pruned

pruned and retrained

sparse from the beginning

Figure 6.9: Performance of pruned models (a) after pruning, (b) after pruning and retrain-

ing, and (c) when trained with sparsity structure from the outset (see Section 6.2.3).

I now consider the effect of retraining pruned models. The orange line in Figure 6.9

shows that after retraining the pruned models, baseline performance (20.48 BLEU) is both

recovered and improved upon, up to 80% pruning (20.91 BLEU), with only a small perfor-

mance loss at 90% pruning (20.13 BLEU). This may seem surprising, as I might not expect

a sparse model to significantly out-perform a model with five times as many parameters.

There are several possible explanations, two of which are given below.

Firstly, I found that the less-pruned models perform better on the training set than the

validation set, whereas the more-pruned models have closer performance on the two sets.

This indicates that pruning has a regularizing effect on the retraining phase, though clearly

more is not always better, as the 50% pruned and retrained model has better validation set

performance than the 90% pruned and retrained model. Nonetheless, this regularization

effect may explain why the pruned and retrained models outperform the baseline.

Alternatively, pruning may serve as a means to escape a local optimum. Figure 6.10

shows the loss function over time during the training, pruning and retraining process. Dur-

ing the original training process, the loss curve flattens out and seems to converge (note

that I use early stopping to obtain my baseline model, so the original model was trained for

longer than shown in Figure 6.10). Pruning causes an immediate increase in the loss func-

tion, but enables further gradient descent, allowing the retraining process to find a new,

better local optimum. It seems that the disruption caused by pruning is beneficial in the

long-run.

CHAPTER 6. THE FUTURE OF NMT 113

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

·105

2

4

6

8

training iterations

lo
ss

Figure 6.10: The validation set loss during training, pruning and retraining. The vertical

dotted line marks the point when 80% of the parameters are pruned. The horizontal dotted

line marks the best performance of the unpruned baseline.

Starting with sparse models

The favorable performance of the pruned and retrained models raises the question: can

I get a shortcut to this performance by starting with sparse models? That is, rather than

train, prune, and retrain, what if I simply prune then train? To test this, I took the sparsity

structure of my 50%–90% pruned models, and trained completely new models with the

same sparsity structure. The purple line in Figure 6.9 shows that the ‘sparse from the

beginning’ models do not perform as well as the pruned and retrained models, but they do

come close to the baseline performance. This shows that while the sparsity structure alone

contains useful information about redundancy and can therefore produce a competitive

compressed model, it is important to interleave pruning with training.

Though my method involves just one pruning stage, other pruning methods interleave

pruning with training more closely by including several iterations (Collins and Kohli, 2014;

Han et al., 2015b). I expect that implementing this for NMT would likely result in further

compression and performance improvements.

Storage size

The original unpruned model (a MATLAB file) has size 782MB. The 80% pruned and

retrained model is 272MB, which is a 65.2% reduction. In this work I focus on compression

CHAPTER 6. THE FUTURE OF NMT 114

target embedding weights

source embedding weights

least common wordmost common word

source layer 1 weights

recurrentfeed-forward

input gate

forget gate

output gate

input

source layer 2 weights source layer 3 weights source layer 4 weights

target layer 1 weights target layer 2 weights target layer 3 weights target layer 4 weights

Figure 6.11: Graphical representation of the location of small weights in various parts of the

model. Black pixels represent weights with absolute size in the bottom 80%; white pixels

represent those with absolute size in the top 20%. Equivalently, these pictures illustrate

which parameters remain after pruning 80% using my class-blind pruning scheme.

CHAPTER 6. THE FUTURE OF NMT 115

in terms of number of parameters rather than storage size, because it is invariant across

implementations.

Distribution of redundancy in NMT

I visualize in Figure 6.11 the redundancy structore of my NMT baseline model. Black pix-

els represent weights near to zero (those that can be pruned); white pixels represent larger

ones. First I consider the embedding weight matrices, whose columns correspond to words

in the vocabulary. Unsurprisingly, in Figure 6.11, I see that the parameters corresponding

to the less common words are more dispensable. In fact, at the 80% pruning rate, for 100

uncommon source words and 1194 uncommon target words, I delete all parameters corre-

sponding to that word. This is not quite the same as removing the word from the vocabu-

lary — true out-of-vocabulary words are mapped to the embedding for the ‘unknown word’

symbol, whereas these ‘pruned-out’ words are mapped to a zero embedding. However in

the original unpruned model these uncommon words already had near-zero embeddings,

indicating that the model was unable to learn sufficiently distinctive representations.

Returning to Figure 6.11, now look at the eight weight matrices for the source and target

connections at each of the four layers. Each matrix corresponds to the 4n×2n matrix T4n,2n

in Equation (6.1). In all eight matrices, I observe — as does (Lu et al., 2016) — that the

weights connecting to the input ĥ are most crucial, followed by the input gate i, then the

output gate o, then the forget gate f . This is particularly true of the lower layers, which

focus primarily on the input ĥ. However for higher layers, especially on the target side,

weights connecting to the gates are as important as those connecting to the input ĥ. The

gates represent the LSTM’s ability to add to, delete from or retrieve information from the

memory cell. Figure 6.11 therefore shows that these sophisticated memory cell abilities

are most important at the end of the NMT pipeline (the top layer of the decoder). This is

reasonable, as I expect higher-level features to be learned later in a deep learning pipeline.

I also observe that for lower layers, the feed-forward input is much more important than

the recurrent input, whereas for higher layers the recurrent input becomes more important.

This makes sense: lower layers concentrate on the low-level information from the current

word embedding (the feed-forward input), whereas higher layers make use of the higher-

level representation of the sentence so far (the recurrent input).

CHAPTER 6. THE FUTURE OF NMT 116

Lastly, on close inspection, I notice several white diagonals emerging within some sub-

squares of the matrices in Figure 6.11, indicating that even without initializing the weights

to identity matrices (as is sometimes done (Le et al., 2015)), an identity-like weight matrix

is learned. At higher pruning percentages, these diagonals become more pronounced.

6.2.4 Generalizability of my results

To test the generalizability of my results, I also test my pruning approach on a smaller, non-

state-of-the-art NMT model trained on the WIT3 Vietnamese-English dataset (Cettolo et al.,

2015), which consists of 133,000 sentence pairs. This model is effectively a scaled-down

version of the state-of-the-art model in Chapter 4 (Luong et al., 2015b), with fewer layers,

smaller vocabulary size, smaller hidden layer size, no attention mechanism, and about 11%

as many parameters in total. It achieves a BLEU score of 9.61 on the validation set.

Although this model and its training set are on a different scale to my main model, and

the language pair is different, I found very similar results. For this model, it is possible

to prune 60% of parameters with no immediate performance loss, and with retraining it is

possible to prune 90%, and regain original performance. My main observations from Sec-

tion 6.2.3 are also replicated; in particular, class-blind pruning is most successful, ‘sparse

from the beginning’ models are less successful than pruned and retrained models, and I

observe the same patterns as seen in Figure 6.11.

6.2.5 Conclusion

I have shown that weight pruning with retraining is a highly effective method of compres-

sion and regularization on a state-of-the-art NMT system, compressing the model to 20% of

its size with no loss of performance. Though I am the first to apply compression techniques

to NMT, I obtain a similar degree of compression to other current work on compressing

state-of-the-art deep neural networks, with an approach that is simpler than most. I have

found that the absolute size of parameters is of primary importance when choosing which

to prune, leading to an approach that is extremely simple to implement, and can be applied

to any neural network. Lastly, I have gained insight into the distribution of redundancy in

the NMT architecture.

CHAPTER 6. THE FUTURE OF NMT 117

In terms of future work, including several iterations of pruning and retraining would

likely improve the compression and performance of my pruning method. If possible it

would be highly valuable to exploit the sparsity of the pruned models to speed up training

and runtime, perhaps through sparse matrix representations and multiplications (see Sec-

tion 6.2.2). Though I have found magnitude-based pruning to perform very well, it would

be instructive to revisit the original claim that other pruning methods (for example Optimal

Brain Damage and Optimal Brain Surgery) are more principled, and perform a comparative

study.

6.3 Future Outlook

In this section, I will highlight potential research directions and speculate on the future

of NMT by first extending on ideas I have just discussed, multi-task learning and model

compression. After that, I will talk about two other future trends on training sequence

models beside maximum-likelihood estimation as well as maintaining coherence and style

in translation.9

6.3.1 Multi-task and Semi/Un-supervised Learning

In Section 6.1, I have assessed the feasibility of utilizing other tasks, such as parsing, im-

age caption, and unsupervised learning, to improve translation. The positive gains in the

translation quality that we achieved further reinforces my belief that multi-task learning is

an important direction for the future of NMT (and even for Artificial General Intelligence).

In the short-term future, as successors to our work, there have been fruitful results in build-

ing multilingual NMT systems (Zoph and Knight, 2016; Firat et al., 2016; Johnson et al.,

2016; Ha et al., 2016) in which translations in multiple languages are viewed as different

tasks. A nice by-product of such a system is the ability to do zero-shot learning which has

been demonstrated convincingly by Johnson et al. (2016). In that work, the authors built

a single model that can do translation for 12 language pairs using the same sub-word vo-

cabulary. Even more exciting, they can translate reasonably well for unseen language pairs

9Some of the content of this section is based on the NMT tutorial that I, Kyunghuyn Cho, and Christopher

D. Manning gave at ACL 2016 https://sites.google.com/site/acl16nmt/.

https://sites.google.com/site/acl16nmt/

CHAPTER 6. THE FUTURE OF NMT 118

at training time without using a pivot language. Ultimately, as what human does, it will

be tremendously powerful if we can successfully learn from the data of all (sequence-to-

sequence) tasks and construct a single model that can accomplish multiple goals, such as

speech recognition and translation, at the same time. In this way, an intelligent system can

take speech, for example in English, as input and produces on the fly a text translation, say

in Urdu or Vietnamese, even though it has never seen any training data between the speech

and text of that language pair.

Semi-supervised learning will also play a crucial role in the future of NMT systems.

When mentioning about semi-supervised learning, I also imply the importance of unsu-

pervised learning: any successful unsupervised learning model in text should provide a

general form of language understanding that will be beneficial to downstream tasks that

require supervision, e.g., (Dai and Le, 2015). In Section 6.1.2, I have also shown prelimi-

nary performance gains in translation by having auto-encoders or skip-thought training as

unsupervised tasks in a multi-task setting. Such model, however, can only utilize a small

amount of monolingual text, the data that exists in vast quantity. Human, in contrast, has

the ability to learn a new language by first having some form of supervision such as a

language teacher or a grammar book; afterwards, they can simply read books or material

in that foreign language and keep improving their translation capabilities. Future NMT

systems should be able to do so.

In fact, recent approaches in dual translation models (Sennrich et al., 2016a; Xia et al.,

2016), which involve two back-and-forth translation models between a language pair, are

heading towards that direction. In the former work, the authors simply use the reverse trans-

lation model to generate more parallel training data from the target-language monolingual

text, which helps alleviating over-fitting. The latter work is closer to what I envision for the

future: starting with 10% of the bilingual data, the authors train both source-to-target and

target-to-source models; then, through a Reinforcement Learning setting on monolingual

data only, the two models help each other in improving their translation abilities. Using this

approach, the dual-translation system can achieve comparable performance to NMT mod-

els trained on the full bilingual data. However, the approach is not yet scaled well to utilize

the full monolingual data. Ideally, we would want to keep learning from monolingual data

forever and getting better and better over time.

CHAPTER 6. THE FUTURE OF NMT 119

6.3.2 Model Compression and Knowledge Distillation

As we have discussed, the need for model compression is inevitable as mobile devices be-

come ubiquitous nowadays and we want to make NMT models small enough to fit onto the

device. In Section 6.2, I found it rather surprising that the parameters of NMT models can

be pruned up to 80% without any loss in performance as long as I retrain the pruned models.

What I did, however, was only a proof-of-concept to show that there is a great redundancy

in the parameter space of NMT models and it can be made smaller to fit onto mobile de-

vices. I believe the future for NMT (and deep learning models in general) will involve

dealing efficiently with low-precision arithmetics (Courbariaux et al., 2014; Gupta et al.,

2015b) and sparse models.

In parallel, the idea of knowledge distillation (Hinton et al., 2015), also proves to be

of great importance in deep learning. What happens in practice is often, one can improve

the system performance (sometimes by quite a lot) simply by training multiple models, an

ensemble, and then averaging the predictions. Such a process is quite tedious and computa-

tionally expensive to deploy to users. The idea of distillation arises to address this problem

by building a single neural network that can mimic the behavior of an ensemble. This turns

out to work very well for NMT as demonstrated by Kim and Rush (2016). Instead of trying

to mimic an ensemble of models, they try build a smaller (student) network to learn from a

larger (teacher) network. This not only speeds up inference time but also achieves the goal

of making NMT models smaller. Additionally, they applied the absolute-value pruning

technique that I proposed in Section 6.2 to achieve further model compression for NMT,

which is quite remarkable. I am looking forward to see knowledge distillation applied to

not just one but over a variety of NMT models.

6.3.3 Beyond Maximum Likelihood Estimation

So far, the standard maximum likelihood estimation (MLE) approach to optimizing the

conditional probability of a target sentence given a source sentence has served us well

in training NMT models. However, as NMT has reached a new milestone of completely

surpassing phrase-based models and being used in commercial systems (Wu et al., 2016;

Crego et al., 2016), it is time to look beyond MLE to further advance NMT. Researchers

CHAPTER 6. THE FUTURE OF NMT 120

have previously and recently started to identifying major problems of using MLE to train

sequence models. The first one is the exposure bias problem (Bengio et al., 2015) which

arose due to mismatch between training and inference: at training time, correct words from

the data distribution, are always provided; where as at inference time, the most likely words

predicted by the model are used as input to the next time step. The second one is the loss-

evaluation mismatch problem (Ranzato et al., 2016), due to the fact that we train models

with word-level loss, e.g., the cross-entropy objective, but evaluate the final performance

using sequence-level discrete metrics such as BLEU (Papineni et al., 2002).

This is a research direction that I find extremely fascinating as evidenced by a diverse

set of recent work trying to address the aforementioned problems. Here, I try to high-

light some of the work though readers will notice that the general ideas revolve around

incorporating inference into training and maximizing the sequence-wise global loss. For

example, Bengio et al. (2015) address the exposure bias problem using a scheduled sam-

pling approach that bridges the gap between training and inference by alternating between

using the correct words as input and words predicted by the model during training; the opti-

mization procedure remains to be MLE. Ranzato et al. (2016) incorporates sequence-level

metrics, such as BLEU for translation and ROUGE for summarization, through the rein-

forcement learning (RL) framework, specifically using the REINFORCE, or policy gra-

dient, algorithm (Williams, 1992). Since RL requires drawing samples from the model

distribution, this approach does address the exposure bias problem as well. There is, how-

ever, a challenge in applying RL to languages, that is, the action space, or the vocabulary,

is too large. As such, to speed up learning, the authors of (Ranzato et al., 2016) propose

an approach, named MIXER, that combines both MLE and RL training: MLE is used for

pretraining the network initially as well as to help RL produce more stable sequences. Al-

ternatively, Bahdanau et al. (2016a) use the actor-critic approach to find better actions, i.e.,

words given a context, which leads to faster convergence and better final performance.

There are also many related approaches for sequence-level training. For example,

Shen et al. (2016) employ the minimum risk training framework to minimize the expected

(non-differentiable) loss on the training data, which happens to be the same as the pol-

icy gradient loss. However, there are differences in how candidates are sampled and how

the expected loss is approximated using a renormalized distribution over the candidates

CHAPTER 6. THE FUTURE OF NMT 121

only. Norouzi et al. (2016) offer insights on how MLE and RL objectives are related as

well as propose a hybrid approach between the two, namely reward-augmented MLE, that

is computationally efficient and avoids the aforementioned “tricks”, such as pretraining,

actor-critic, and variance reduction, to make RL work. While all of the above work incor-

porates stochastic inference to training, Wiseman and Rush (2016) consider adding deter-

ministic inference to training through beam-search optimization. The authors utilize the

max-margin framework and substitute the RNN locally-normalized scores with the par-

tial sentence-level BLEU scores. This approach has several advantages in that it preserves

the proven model architecture of seq2seq and at the same time addresses the well-known

label-bias problem (Lafferty et al., 2001) which arises whenever the locally-normalized

scores from RNNs are used.

As I mentioned, this is an exciting research area with many different approaches. The

list does not simply stop there and it remains to be seen which approaches will stand the

test of time, I think an important big picture here is that we are coming closer to optimizing

arbitrary objectives. Among the different choices, I hope coherence and style, which I will

talk about next, will be featured some day.

6.3.4 Translation with Coherence and Style

Up until now, translation only happens at the sentence level: a paragraph or a document

is split into multiple sentences, each of which is translated in isolation. This is, unfortu-

nately, neither how a human translates nor the way the meaning of texts is derived. Behind

a sequence of sentences, there is often a high-level, sometimes complex, organization of

thoughts, the discourse structure (Mann and Thompson, 1988) which captures relation-

ships among different text units such as comparison, elaboration, and evidence. Profes-

sional translators do not translate, for example a 4-sentence paragraph, using the exact

number of sentences in the source; they can use more or less sentences depending on their

understanding of the source text and how thoughts are presented in the target language.

Early work (Marcu et al., 2000) hinted that modeling discourse structure is useful for ma-

chine translation, especially for distant language pairs such as English and Japanese.

CHAPTER 6. THE FUTURE OF NMT 122

The big picture here, in my opinion, is that future NMT systems should handle coher-

ence and style, the two fundamental elements present in professional translations, on which

current machine translation systems are missing. Coherence means translation beyond the

sentence level and to achieve that, one might need to consider linguistic insights such as

discourse structure analysis and coreference solution, just like how the attention model

in NMT was motivated by word alignment notion in machine translation. Architecture-

wise, I think models that can handle well very long sequences such as hierarchical models

will be useful in maintaining translation coherence. In this paper Li et al. (2015), I and

other colleagues demonstrated the effectiveness of hierarchical models in constructing rep-

resentations for long-text sequences such as paragraphs and documents in an autoencoder

setting. Besides, hierarchical models have also proven its usefulness in other areas such as

speech recognition (Chan et al., 2016) and dialogue systems (Serban et al., 2016).

Maintaining style is an even harder problem. Not only does the translation system

need to ensure coherence but it also has to recognize and preserve the tone of the source

text, e.g., whether this is a formal text in business setting or if the text is informal and

has some sense of humor, satire, etc. Accomplishing this will require deep understanding

of languages such as recognizing idiomatic phrases, scare quotes, slang usages, and even

implicit cultural referents. I believe insights from the area of dialogue systems will benefit

style translation as we start seeing work in adding personalization to conversation dialogues

(Li et al., 2016; Al-Rfou et al., 2016).

Lastly, to make our progress measurable, evaluation datasets and proper automatic met-

rics will be tremendously useful as how BLEU (Papineni et al., 2002) has helped advanced

the field of machine translation. The authors in (Sim Smith et al., 2015) have put up a

proposal for a coherence corpus in machine translation and I am looking forward to many

more of such resources in the future.

Chapter 7

Conclusion

In this dissertation, my goal is to present to the readers all of the essence of Neural Ma-

chine Translation, through which I discuss how I have contributed to the development

of NMT since its birth as a fringe research project in 2014 to its well-established status

as a mainstream approach for machine translation including commercial deployments in

2016. Chapter 1 – Introduction walks the readers through the history and fundamentals

of machine translation together with drawbacks of existing approaches, leading to the de-

velopment of NMT. In Chapter 2 – Background, I provide readers with all the necessary

knowledge to fully understand and build a vanilla NMT, which covers details of language

model and recurrent neural network, a basic building block for NMT. Several key high-

lights in this chapter include (a) a complete derivation for the gradients of LSTM and its

backpropagation algorithm in Section 2.2.2 and (b) the forward and backpropagation steps

of multi-layer NMT models in Algorithm 3 and 4.

Chapter 3 – Copy Mechanism starts discussing my contribution. When I was devel-

oping the work for this chapter in 2014, NMT had just started with the seminal work of

Sutskever et al. (2014). Despite its potential, NMT models at that time had not been able

to surpass phrase-based models and suffered from the limited-vocabulary problem. Specif-

ically, NMT models often use a single <unk> token to represent all other words not in its

vocabulary, but do not know how to handle them at translation time. My proposed copy

mechanisms provide simple yet effective ways for alleviating that problem. By learning

to align the target <unk> with words on the source through additional annotations to the

123

CHAPTER 7. CONCLUSION 124

training data (no need to modify the models, i.e., we can treat any NMT models as a black

box), we can post-process target unknown translations much easier through word dictio-

nary translation and identity copy of source words. This approach provides a further lift

to the performance of the vanilla NMT model, allowing me for the first time to build an

English-French NMT system that achieves state-of-the-art performance. Looking back,

one can think of the way I track target unknown words as a special case of the attention

mechanism. Still, the idea of copy mechanism remains to be useful until now, especially

when adapting seq2seq models to new tasks such as text summarization (Gu et al., 2016;

Gülçehre et al., 2016) and semantic parsing (Jia and Liang, 2016).

Chapter 4 – Attention Mechanism includes my deep exploration of what is now the de

factor standard in NMT, the attention mechanism, which improves translation quality for

long sentences. At the time of my work, there has been little study in useful architectures

for attention-based NMT apart from the introduction of the attention mechanism to NMT in

the seminal paper of Bahdanau et al. (2015). My work experiments with various variants

of the attention mechanism and analyzes the effects of different attentional components.

One of the key highlights of my work is the introduction of a simple bilinear attentional

function to compare source and target states which has now been widely adopted by many

people, such as Harvard NLP1, and across different domains such as reading comprehen-

sion (Chen et al., 2016) and dependency parsing (Dozat and Manning, 2016). I have also

introduced a local attention mechanism that only focuses on a different subset of the source

sentence at each time step. While I have demonstrated the effectiveness of the local at-

tention mechanism on translation, I wish that I could have tested it over tasks that involve

very long sequences which local attention was designed for. Overall, the result of this work

is a new state-of-the-art NMT system for English-German, a harder language pair than

English-French, which further convinces people on the superiority of NMT.

Chapter 5 – Hybrid Models can be viewed as my continuing effort to completely solve

the rare word problem in NMT which was introduced in Chapter 3. Instead of having sepa-

rate components to perform data annotation, train NMT models, and post-process, we build

a single model that handles unlimited vocabulary. Motivating by the proven word-level

seq2seq architecture for NMT and the flexibility of character-based models in handling

1https://github.com/harvardnlp/seq2seq-attn

https://github.com/harvardnlp/seq2seq-attn

CHAPTER 7. CONCLUSION 125

complex and unknown words, we propose hybrid models that translate mostly at the word

level and consult the character components for rare words only. The twofold advantage of

such a hybrid approach is that it is much faster and easier to train than character-based ones;

at the same time, it never produces unknown words as in the case of word-based models.

This advance leads us to conquer (with state-of-the-art performance) another challenging

language pair, English-Czech, in which the target is a highly-inflected language with a

complex vocabulary. I have also demonstrated an impressive gain from 2.1 to 11.4 BLEU

points over models that already handle unknown words. Recently, there is a new trend

of translating at purely subword level (Sennrich et al., 2016b; Wu et al., 2016) in which

a segmentation algorithm is run over the data and a black-box NMT model is used in a

similar spirit to the copy mechanism. While that new trend works very well for NMT, I

think that the hybrid models that I propose will remain useful for new applications where

segmentation of units, such as predicates in semantic parsing, is not desirable or when we

want to incorporate more complex structures such as semantic representations (instead of

sequences of characters) for unknown entities to existing systems.

Chapter 6 – NMT Future examines two questions that I think are important to the fu-

ture of NMT: whether other tasks can be utilized to improve translation and whether NMT

models can be compressed. The former question is important because of the fact that the

first NMT systems only utilize parallel corpora despite an abundant amount of available

data from monolingual and multi-lingual corpora as well as data from related tasks. To

answer, I demonstrate that translation quality can be improved with data from parsing,

image caption, and unsupervised learning. My work motivates subsequent papers in build-

ing multi-lingual NMT models (Zoph and Knight, 2016; Firat et al., 2016; Johnson et al.,

2016; Ha et al., 2016). The latter question arises from the indispensable role of mobile

devices in society nowadays and the fact that state-of-the-art NMT models are beyond the

storage capacity of existing mobile gadgets. With simple pruning schemes, my results

show that the parameters of NMT models can be pruned up to 80% without any loss in

performance as long as pruned models are retrained. Subsequent work (Kim and Rush,

2016) combines our proposed pruning approach with knowledge distillation to obtain fur-

ther gain in model compression. Beside the aforementioned questions, in Section 6.3, I

cover in-depth the existing research landscape, highlight potential research directions, and

CHAPTER 7. CONCLUSION 126

speculate on future elements needed to further advance NMT

Lastly, I am fortunate to have gone through a exciting journey in developing Neural

Machine Translation since its early days. I hope that this dissertation will provide use-

ful background and inspiration for future research in building much more advanced NMT

models, through which I expect the babelfish to become a reality very soon!

Bibliography

Rami Al-Rfou, Marc Pickett, Javier Snaider, Yun-Hsuan Sung, Brian Strope, and Ray

Kurzweil. 2016. Conversational contextual cues: The case of personalization and history

for response ranking. arXiv preprint arXiv:1606.00372 .

Robert B. Allen. 1987. Several studies on natural language and back-propagation. In ICNN.

Stephen R. Anderson. 2010. How many languages are there in the world? http://

www.linguisticsociety.org/content/how-many-languages-are-

there-world. Accessed: 2016-09-10.

Rie Kubota Ando and Tong Zhang. 2005. A framework for learning predictive structures

from multiple tasks and unlabeled data. JMLR 6:1817–1853.

Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. 2007. Multi-task feature

learning. In NIPS.

M Gethsiyal Augasta and T Kathirvalavakumar. 2013. Pruning algorithms of neural net-

works - a comparative study. Central European Journal of Computer Science 3(3):105–

115.

Michael Auli, Michel Galley, Chris Quirk, and Geoffrey Zweig. 2013. Joint language and

translation modeling with recurrent neural networks. In ACL.

Amittai Axelrod, Xiaodong He, and Jianfeng Gao. 2011. Domain adaptation via pseudo

in-domain data selection. In EMNLP.

127

http://www.linguisticsociety.org/content/how-many-languages-are-there-world
http://www.linguisticsociety.org/content/how-many-languages-are-there-world
http://www.linguisticsociety.org/content/how-many-languages-are-there-world

BIBLIOGRAPHY 128

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle

Pineau, Aaron C. Courville, and Yoshua Bengio. 2016a. An actor-critic algorithm for

sequence prediction. arXiv preprint arXiv:1607.07086 .

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine transla-

tion by jointly learning to align and translate. In ICLR.

Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, Philemon Brakel, and Yoshua Ben-

gio. 2016b. End-to-end attention-based large vocabulary speech recognition. In ICASSP.

Miguel Ballesteros, Chris Dyer, and Noah A. Smith. 2015. Improved transition-based

parsing by modeling characters instead of words with LSTMs. In EMNLP.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam M. Shazeer. 2015. Scheduled

sampling for sequence prediction with recurrent neural networks. In NIPS.

Yoshua Bengio, Nicolas Boulanger-Lewandowski, and Razvan Pascanu. 2013. Advances

in optimizing recurrent networks. In ICASSP.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003. A neural

probabilistic language model. JMLR 3:1137–1155.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. 1994. Learning long-term dependen-

cies with gradient descent is difficult. IEEE Transactions on Neural Networks 5(2):157–

166.

Adam L. Berger, Vincent J. Della Pietra, and Stephen A. Della Pietra. 1996. A maximum

entropy approach to natural language processing. Computational Linguistics 22(1):39–

71.

Christopher M. Bishop. 1994. Mixture density networks. Technical report, Aston Univer-

sity.

Ondr̆ej Bojar and Ales̆ Tamchyna. 2015. CUNI in WMT15: Chimera Strikes Again. In

WMT .

BIBLIOGRAPHY 129

Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Barry Haddow, Matthias Huck,

Chris Hokamp, Philipp Koehn, Varvara Logacheva, Christof Monz, Matteo Negri, Matt

Post, Carolina Scarton, Lucia Specia, and Marco Turchi. 2015. Findings of the 2015

workshop on statistical machine translation. In WMT .

Zachary Davies Boren. 2014. There are officially more mobile devices than people in the

world. http://www.independent.co.uk/life-style/gadgets-and-

tech/news/there-are-officially-more-mobile-devices-than-

people-in-the-world-9780518.html. Accessed: 2016-09-10.

Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och, and Jeffrey Dean. 2007. Large

language models in machine translation. In EMNLP.

Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della Pietra, and Robert L. Mercer.

1993. The mathematics of statistical machine translation: Parameter estimation. Com-

putational Linguistics 19(2):263–311.

Christian Buck, Kenneth Heafield, and Bas van Ooyen. 2014. N-gram counts and language

models from the common crawl. In LREC.

Rich Caruana. 1997. Multitask learning. Machine Learning 28(1):41–75.

Daniel Cer, Michel Galley, Daniel Jurafsky, and Christopher D. Manning. 2010. Phrasal: A

statistical machine translation toolkit for exploring new model features. In ACL, Demon-

stration Session.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa Bentivogli, Roldano Cattoni, and

Marcello Federico. 2015. The iwslt 2015 evaluation campaign. In IWSLT .

William Chan, Navdeep Jaitly, Quoc V. Le, and Oriol Vinyals. 2016. Listen, attend and

spell. In ICASSP.

Danqi Chen, Jason Bolton, and Christopher D. Manning. 2016. A thorough examination

of the cnn/daily mail reading comprehension task. In ACL.

http://www.independent.co.uk/life-style/gadgets-and-tech/news/there-are-officially-more-mobile-devices-than-people-in-the-world-9780518.html
http://www.independent.co.uk/life-style/gadgets-and-tech/news/there-are-officially-more-mobile-devices-than-people-in-the-world-9780518.html
http://www.independent.co.uk/life-style/gadgets-and-tech/news/there-are-officially-more-mobile-devices-than-people-in-the-world-9780518.html

BIBLIOGRAPHY 130

Wenlin Chen, James T Wilson, Stephen Tyree, Kilian Q Weinberger, and Yixin Chen. 2015.

Compressing neural networks with the hashing trick. In ICML.

David Chiang. 2005. A hierarchical phrase-based model for statistical machine translation.

In ACL.

David Chiang. 2007. Hierarchical phrase-based translation. Computational Linguistics

33(2):201–228.

David Chiang, Kevin Knight, and Wei Wang. 2009. 11,001 new features for statistical

machine translation. In NAACL.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Fethi Bougares, Holger

Schwenk, and Yoshua Bengio. 2014. Learning phrase representations using RNN

encoder-decoder for statistical machine translation. In EMNLP.

Jan Chorowski, Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. End-

to-end continuous speech recognition using attention-based recurrent NN: first results.

CoRR abs/1412.1602.

Lonnie Chrisman. 1991. Learning recursive distributed representations for holistic compu-

tation. Connection Science 3(4):345–366.

Maxwell D Collins and Pushmeet Kohli. 2014. Memory bounded deep convolutional net-

works. arXiv preprint arXiv:1412.1442 .

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2014. Low precision arith-

metic for deep learning. arXiv preprint 1412.7024 .

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2015. Low precision arith-

metic for deep learning. In ICLR workshop.

J. Crego, J. Kim, G. Klein, A. Rebollo, K. Yang, J. Senellart, E. Akhanov, P. Brunelle,

A. Coquard, Y. Deng, S. Enoue, C. Geiss, J. Johanson, A. Khalsa, R. Khiari, B. Ko,

C. Kobus, J. Lorieux, L. Martins, D.-C. Nguyen, A. Priori, T. Riccardi, N. Segal, C. Ser-

van, C. Tiquet, B. Wang, J. Yang, D. Zhang, J. Zhou, and P. Zoldan. 2016. SYSTRAN’s

Pure Neural Machine Translation Systems. arXiv preprint 1610.05540 .

BIBLIOGRAPHY 131

Andrew M. Dai and Quoc V. Le. 2015. Semi-supervised sequence learning. In NIPS.

Ernest David. 2016. Winograd schemas and machine translation. arXiv preprint

arXiv:1608.01884 .

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. 2014.

Exploiting linear structure within convolutional networks for efficient evaluation. In

NIPS.

Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas Lamar, Richard Schwartz, and

John Makhoul. 2014. Fast and robust neural network joint models for statistical machine

translation. In ACL.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and

Trevor Darrell. 2014. DeCAF: A deep convolutional activation feature for generic visual

recognition.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and Haifeng Wang. 2015. Multi-task learn-

ing for multiple language translation. In ACL.

Cı́cero Nogueira dos Santos and Bianca Zadrozny. 2014. Learning character-level repre-

sentations for part-of-speech tagging. In ICML.

Timothy. Dozat and Christopher D. Manning. 2016. Deep Biaffine Attention for Neural

Dependency Parsing. arXiv preprint arXiv:1611.01734 .

Nadir Durrani, Barry Haddow, Philipp Koehn, and Kenneth Heafield. 2014. Edinburgh’s

phrase-based machine translation systems for WMT-14. In WMT .

Chris Dyer, Jonathan Weese, Hendra Setiawan, Adam Lopez, Ferhan Ture, Vladimir Ei-

delman, Juri Ganitkevitch, Phil Blunsom, and Philip Resnik. 2010. cdec: A decoder,

alignment, and learning framework for finite-state and context-free translation models.

In ACL, Demonstration Session.

Salah El Hihi and Yoshua Bengio. 1996. Hierarchical recurrent neural networks for long-

term dependencies. In NIPS.

BIBLIOGRAPHY 132

Jeffrey L. Elman. 1990. Finding structure in time. In Cognitive Science.

Theodoros Evgeniou and Massimiliano Pontil. 2004. Regularized multi–task learning. In

SIGKDD.

Marcello Federico, Nicola Bertoldi, and Mauro Cettolo. 2008. IRSTLM: an open source

toolkit for handling large scale language models. In Interspeech.

Orhan Firat, Kyunghyun Cho, and Yoshua Bengio. 2016. Multi-way, multilingual neural

machine translation with a shared attention mechanism. In NAACL.

Alexander Fraser and Daniel Marcu. 2007. Measuring word alignment quality for statistical

machine translation. Computational Linguistics 33(3):293–303.

Michel Galley and Christopher D. Manning. 2008. A simple and effective hierarchical

phrase reordering model. In EMNLP.

Felix A. Gers, Jürgen A. Schmidhuber, and Fred A. Cummins. 2000. Learning to forget:

Continual prediction with lstm. Neural Computation 12(10):2451–2471.

C. Goller and A. Kchler. 1996. Learning task-dependent distributed representations by

backpropagation through structure. IEEE Transactions on Neural Networks 1:347–352.

A. Graves. 2013. Generating sequences with recurrent neural networks. In Arxiv preprint

arXiv:1308.0850.

Alex Graves and Juergen Schmidhuber. 2009. Offline handwriting recognition with multi-

dimensional recurrent neural networks. In NIPS.

Alex Graves and Jürgen Schmidhuber. 2005. Framewise phoneme classification with bidi-

rectional LSTM and other neural network architectures. Neural Networks 18(5-6):602–

610.

Spence Green, Sida Wang, Daniel Cer, and Christopher D. Manning. 2013. Fast and adap-

tive online training of feature-rich translation models. In ACL.

BIBLIOGRAPHY 133

Klaus Greff, Rupesh Kumar Srivastava, Jan Koutnı́k, Bas R. Steunebrink, and Jürgen

Schmidhuber. 2015. LSTM: A search space odyssey. arXiv preprint arXiv:1503.04069 .

Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra.

2015. DRAW: A recurrent neural network for image generation. In ICML.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K. Li. 2016. Incorporating copying

mechanism in sequence-to-sequence learning. In ACL.

Çaglar Gülçehre, Sungjin Ahn, Ramesh Nallapati, Bowen Zhou, and Yoshua Bengio. 2016.

Pointing the unknown words. In ACL.

Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun Cho, Loic Barrault, Huei-Chi Lin,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2015. On using monolingual

corpora in neural machine translation. arXiv preprint arXiv:1503.03535 .

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. 2015a.

Deep learning with limited numerical precision. In ICML.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. 2015b.

Deep learning with limited numerical precision. arXiv preprint 1502.02551 .

Thanh-Le Ha, Jan Niehues, and Alexander Waibel. 2016. Toward multilingual neural ma-

chine translation with universal encoder and decoder. arXiv preprint 1611.04798 .

Song Han, Huizi Mao, and William J Dally. 2015a. Deep compression: Compressing deep

neural networks with pruning, trained quantization and huffman coding. In ICLR.

Song Han, Jeff Pool, John Tran, and William Dally. 2015b. Learning both weights and

connections for efficient neural network. In NIPS.

Babak Hassibi and David G Stork. 1993. Second order derivatives for network pruning:

Optimal brain surgeon. Morgan Kaufmann.

Kenneth Heafield. 2011. KenLM: faster and smaller language model queries. In WMT .

BIBLIOGRAPHY 134

Georg Heigold, Vincent Vanhoucke, Alan Senior, Patrick Nguyen, Marc’Aurelio Ranzato,

Matthieu Devin, and Jeffrey Dean. 2013. Multilingual acoustic models using distributed

deep neural networks. In ICASSP.

G. Hinton, O. Vinyals, and J. Dean. 2015. Distilling the Knowledge in a Neural Network.

arXiv preprint 1502.02531 .

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in a neural

network. In NIPS Deep Learning Workshop.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Com-

putation 9(8):1735–1780.

Jui-Ting Huang, Jinyu Li, Dong Yu, Li Deng, and Yifan Gong. 2013. Cross-language

knowledge transfer using multilingual deep neural network with shared hidden layers.

In ICASSP.

W. John Hutchins. 2000. Warren Weaver and the launching of MT: brief biographical note.

In Early Years in Machine Translation: Memoirs and Biographies of Pioneers, John

Benjamins, pages 17–20.

W. John Hutchins. 2007. Machine translation: A concise history. In Chan Sin Wai, editor,

Computer Aided Translation: Theory and Practice, Chinese University of Hong Kong.

Forrest N Iandola, Matthew W Moskewicz, Khalid Ashraf, Song Han, William J Dally, and

Kurt Keutzer. 2016. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and

< 1mb model size. arXiv preprint arXiv:1602.07360 .

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. 2014. Speeding up convolutional

neural networks with low rank expansions. In NIPS.

Herbert Jaeger, Mantas Lukoševičius, Dan Popovici, and Udo Siewert. 2007. Optimization

and applications of echo state networks with leaky-integrator neurons. Neural Networks

20(3):335–352.

BIBLIOGRAPHY 135

Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. 2015a. On using

very large target vocabulary for neural machine translation. In ACL.

Sébastien Jean, Orhan Firat, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio.

2015b. Montreal neural machine translation systems for WMT’15. In WMT .

Robin Jia and Percy Liang. 2016. Data recombination for neural semantic parsing. In ACL.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen,

Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, Macduff Hughes,

and Jeffrey Dean. 2016. Google’s multilingual neural machine translation system: En-

abling zero-shot translation. arXiv preprint 1611.04558 .

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. 2016.

Exploring the limits of language modeling. arXiv preprint arXiv:1602.02410 .

Rafal Józefowicz, Wojciech Zaremba, and Ilya Sutskever. 2015. An empirical exploration

of recurrent network architectures. In ICML.

Daniel Jurafsky and James H. Martin. 2009. Speech and Language Processing (2Nd Edi-

tion). Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent continuous translation models. In

EMNLP.

Andrej Karpathy. 2015. The unreasonable effectiveness of recurrent neural networks.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/. Ac-

cessed: 2016-07-05.

Slava Katz. 1987. Estimation of probabilities from sparse data for the language model

component of a speech recognizer. IEEE Transactions on Acoustics, Speech, and Signal

Processing 35(3):400–401.

Nataly Kelly. 2014. Why machines alone cannot solve the worlds transla-

tion problem. http://www.huffingtonpost.com/nataly-kelly/why-

machines-alone-cannot-translation_b_4570018.html. Accessed:

2016-09-10.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://www.huffingtonpost.com/nataly-kelly/why-machines-alone-cannot-translation_b_4570018.html
http://www.huffingtonpost.com/nataly-kelly/why-machines-alone-cannot-translation_b_4570018.html

BIBLIOGRAPHY 136

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M. Rush. 2016. Character-aware

neural language models. In AAAI.

Yoon Kim and Alexander M. Rush. 2016. Sequence-level knowledge distillation. In

EMNLP.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Antonio Torralba,

Raquel Urtasun, and Sanja Fidler. 2015. Skip-thought vectors. In NIPS.

Philipp Koehn. 2010. Statistical Machine Translation. Cambridge University Press, 1st

edition.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico,

Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, et al. 2007.

Moses: Open source toolkit for statistical machine translation. In ACL, Demonstration

Session.

Philipp Koehn, Franz Josef Och, and Daniel Marcu. 2003. Statistical phrase-based transla-

tion. In NAACL.

Abhishek Kumar and Hal Daumé III. 2012. Learning task grouping and overlap in multi-

task learning. In ICML.

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. 2001. Conditional ran-

dom fields: Probabilistic models for segmenting and labeling sequence data. In ICML.

Quoc V. Le, Navdeep Jaitly, and Geoffrey E. Hinton. 2015. A simple way to initialize

recurrent networks of rectified linear units. arXiv preprint arXiv:1504.00941 .

Yann Le Cun, John S Denker, and Sara A Solla. 1989. Optimal brain damage. In NIPS.

Jiwei Li, Michel Galley, Chris Brockett, Georgios Spithourakis, Jianfeng Gao, and Bill

Dolan. 2016. A persona-based neural conversation model. In ACL.

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. 2015. A hierarchical neural autoencoder

for paragraphs and documents. In ACL.

BIBLIOGRAPHY 137

Percy Liang, Ben Taskar, and Dan Klein. 2006. Alignment by agreement. In NAACL.

Tsungnan Lin, Bill G. Horne, Peter Tin̆o, and C. Lee Giles. 1996. Learning long-term

dependencies in narx recurrent neural networks. IEEE Transactions on Neural Networks

7(6):1329–1338.

Zhouhan Lin, Matthieu Courbariaux, Roland Memisevic, and Yoshua Bengio. 2016. Neural

networks with few multiplications. In ICLR.

Wang Ling, Chris Dyer, Alan W. Black, Isabel Trancoso, Ramon Fermandez, Silvio Amir,

Luı́s Marujo, and Tiago Luı́s. 2015a. Finding function in form: Compositional character

models for open vocabulary word representation. In EMNLP.

Wang Ling, Isabel Trancoso, Chris Dyer, and Alan Black. 2015b. Character-based neural

machine translation. arXiv preprint arXiv:1511.04586 .

Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng, Kevin Duh, and Ye-Yi Wang. 2015.

Representation learning using multi-task deep neural networks for semantic classifica-

tion and information retrieval. In NAACL.

Zhiyun Lu, Vikas Sindhwani, and Tara N Sainath. 2016. Learning compact recurrent neural

networks. In ICASSP.

Minh-Thang Luong, Michael Kayser, and Christopher D. Manning. 2015a. Deep neural

language models for machine translation. In CoNLL.

Minh-Thang Luong, Quoc V. Le, Ilya Sutskever, Oriol Vinyals, and Lukasz Kaiser. 2016.

Multi-task sequence to sequence learning. In ICLR.

Minh-Thang Luong and Christopher D. Manning. 2015. Stanford neural machine transla-

tion systems for spoken language domain. In IWSLT .

Minh-Thang Luong and Christopher D. Manning. 2016. Achieving open vocabulary neural

machine translation with hybrid word-character models. In ACL.

Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. 2015b. Effective ap-

proaches to attention-based neural machine translation. In EMNLP.

BIBLIOGRAPHY 138

Minh-Thang Luong, Richard Socher, and Christopher D. Manning. 2013. Better word

representations with recursive neural networks for morphology. In CoNLL.

Minh-Thang Luong, Ilya Sutskever, Quoc V. Le, Oriol Vinyals, and Wojciech Zaremba.

2015c. Addressing the rare word problem in neural machine translation. In ACL.

William C Mann and Sandra A Thompson. 1988. Rhetorical structure theory: Toward a

functional theory of text organization 8(3):243–281.

Daniel Marcu, Lynn Carlson, and Maki Watanabe. 2000. The automatic translation of

discourse structures. In NAACL.

Daniel Marcu and William Wong. 2002. A phrase-based, joint probability model for sta-

tistical machine translation. In EMNLP.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Building

a large annotated corpus of english: The penn treebank. Computational Linguistics

19(2):313–330.

James Martens and Ilya Sutskever. 2011. Learning recurrent neural networks with Hessian-

free optimization. In ICML.

Tomáš Mikolov. 2012. Statistical Language Models Based on Neural Networks. Ph.D.

thesis, Brno University of Technology.

Tomáš Mikolov, Martin Karafit, Lukas Burget, Jan Cernock, and Sanjeev Khudanpur. 2010.

Recurrent neural network based language model. In Interspeech.

Tomáš Mikolov, Stefan Kombrink, Lukas Burget, Jan Cernock, and Sanjeev Khudanpur.

2011. Extensions of recurrent neural network language model. In ICASSP.

Tomáš Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Dis-

tributed representations of words and phrases and their compositionality. In NIPS.

Tomáš Mikolov and Geoffrey Zweig. 2012. Context dependent recurrent neural network

language model. In SLT .

BIBLIOGRAPHY 139

Andriy Mnih and Geoffrey Hinton. 2009. A scalable hierarchical distributed language

model. In NIPS.

Andriy Mnih and Yee Whye Teh. 2012. A fast and simple algorithm for training neural

probabilistic language models. In ICML.

Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu. 2014. Recurrent

models of visual attention. In NIPS.

Frederic Morin and Yoshua Bengio. 2005. Hierarchical probabilistic neural network lan-

guage model. In AISTATS.

Kenton Murray and David Chiang. 2015. Auto-sizing neural networks: With applications

to n-gram language models. In EMNLP.

Mohammad Norouzi, Samy Bengio, Zhifeng Chen, Navdeep Jaitly, Mike Schuster,

Yonghui Wu, and Dale Schuurmans. 2016. Reward augmented maximum likelihood

for neural structured prediction. In NIPS.

Franz Josef Och. 2003. Minimum error rate training in statistical machine translation. In

ACL.

Franz Josef Och and Hermann Ney. 2002. Discriminative training and maximum entropy

models for statistical machine translation. In ACL.

Franz Josef Och and Hermann Ney. 2003. A systematic comparison of various statistical

alignment models. Computational Linguistics 29(1):19–51.

Franz Josef Och and Hermann Ney. 2004. The alignment template approach to statistical

machine translation. Computational Linguistics 30(4):417–449.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei jing Zhu. 2002. Bleu: a method for

automatic evaluation of machine translation. In ACL.

Razvan Pascanu, Tomáš Mikolov, and Yoshua Bengio. 2013. On the difficulty of training

recurrent neural networks. In ICML.

BIBLIOGRAPHY 140

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove: Global

vectors for word representation. In EMNLP.

Vu Pham, Théodore Bluche, Christopher Kermorvant, and Jérôme Louradour. 2014.

Dropout improves recurrent neural networks for handwriting recognition. In ICFHR.

Maja Popović. 2015. chrF: character n-gram F-score for automatic MT evaluation. In

WMT .

Rohit Prabhavalkar, Ouais Alsharif, Antoine Bruguier, and Ian McGraw. 2016. On the

compression of recurrent neural networks with an application to lvcsr acoustic modeling

for embedded speech recognition. In ICASSP.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. 2016. Se-

quence level training with recurrent neural networks. In ICLR.

Ronald Rosenfeld. 2000. Two decades of statistical language modeling: Where do we go

from here? In IEEE. volume 88, pages 1270–1278.

David E. Rumelhart and James L. McClelland. 1986. On learning the past tenses of English

verbs. In J. L. McClelland, D. E. Rumelhart, and PDP Research Group, editors, Parallel

Distributed Processing. Volume 2: Psychological and Biological Models, MIT Press,

pages 216–271.

H. Schwenk. 2014. University le mans. http://www-lium.univ-lemans.fr/

˜schwenk/cslm_joint_paper/. [Online; accessed 03-September-2014].

Holger Schwenk. 2007. Continuous space language models. Computer Speech and Lan-

guages 21(3):492–518.

Holger Schwenk. 2012. Continuous space translation models for phrase-based statistical

machine translation. In COLING.

Abigail See, Minh-Thang Luong, and Christopher D. Manning. 2016. Compression of

neural machine translation models via pruning. In CoNLL.

http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/
http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/

BIBLIOGRAPHY 141

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016a. Improving neural machine

translation models with monolingual data. In ACL.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016b. Neural machine translation of

rare words with subword units. In ACL.

Iulian Vlad Serban, Alessandro Sordoni, Yoshua Bengio, Aaron C. Courville, and Joelle

Pineau. 2016. Building end-to-end dialogue systems using generative hierarchical neural

network models. In AAAI.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua Wu, Maosong Sun, and Yang Liu.

2016. Minimum risk training for neural machine translation. In ACL.

Peter Sheridan. 1955. Research in language translation on the IBM type 701. In IBM

Technical Newsletter, 9.

Karin Sim Smith, Wilker Aziz, and Lucia Specia. 2015. A proposal for a coherence corpus

in machine translation. In Second Workshop on Discourse in Machine Translation.

Le Hai Son, Alexandre Allauzen, and Franois Yvon. 2012. Continuous space translation

models with neural networks. In NAACL-HLT .

Suraj Srinivas and R Venkatesh Babu. 2015. Data-free parameter pruning for deep neural

networks. In BMVC.

Andreas Stolcke. 2002. SRILM – an extensible language modeling toolkit. In ICSLP.

Ilya Sutskever. 2012. Training Recurrent Neural Networks. Ph.D. thesis, University of

Toronto.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with

neural networks. In NIPS.

Yee Whye Teh. 2006. A hierarchical Bayesian language model based on Pitman-Yor pro-

cesses. In ACL.

BIBLIOGRAPHY 142

Sebastian Thrun. 1996. Is learning the n-th thing any easier than learning the first? In

NIPS.

Laurens van der Maaten. 2013. Barnes-Hut-SNE. In ICLR.

Ashish Vaswani, Yinggong Zhao, Victoria Fossum, and David Chiang. 2013. Decoding

with large-scale neural language models improves translation. In EMNLP.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey Hinton.

2015a. Grammar as a foreign language. In NIPS.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2015b. Show and tell:

A neural image caption generator. In CVPR.

Alexander Waibel, Toshiyuki Hanazawa, Geofrey Hinton, Kiyohiro Shikano, and Kevin J.

Lang. 1990. Readings in speech recognition. chapter Phoneme Recognition Using Time-

delay Neural Networks, pages 393–404.

Warren Weaver. 1949. Translation. In William N. Locke and A. Donald Boothe, ed-

itors, Machine Translation of Languages, MIT Press, Cambridge, MA, pages 15–23.

Reprinted from a memorandum written by Weaver in 1949.

Paul J. Werbos. 1990. Back propagation through time: What it does and how to do it. In

Proceedings of the IEEE. volume 78, pages 1550–1560.

Ronald J. Williams. 1992. Simple statistical gradient-following algorithms for connection-

ist reinforcement learning. In Machine Learning. pages 229–256.

Sam Wiseman and Alexander M. Rush. 2016. Sequence-to-sequence learning as beam-

search optimization. In EMNLP.

Dekai Wu. 1997. Stochastic inversion transduction grammars and bilingual parsing of

parallel corpora. Computational Linguistics 23(3):377–403.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang

Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva

BIBLIOGRAPHY 143

Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,

Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang,

Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,

Macduff Hughes, and Jeffrey Dean. 2016. Google’s neural machine translation system:

Bridging the gap between human and machine translation. arXiv preprint 1609.08144 .

Y. Xia, D. He, T. Qin, L. Wang, N. Yu, T.-Y. Liu, and W.-Y. Ma. 2016. Dual learning for

machine translation. arXiv preprint 1611.00179 .

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Ruslan Salakhut-

dinov, Richard S. Zemel, and Yoshua Bengio. 2015. Show, attend and tell: Neural image

caption generation with visual attention. In ICML.

Kenji Yamada and Kevin Knight. 2001. A syntax-based statistical translation model. In

ACL.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. 2014. Recurrent neural network

regularization. arXiv preprint arXiv:1409.2329 .

Richard Zens, Franz Josef Och, and Hermann Ney. 2002. Phrase-Based Statistical Machine

Translation, Springer Berlin Heidelberg, pages 18–32.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional networks

for text classification. In NIPS.

Barret Zoph and Kevin Knight. 2016. Multi-source neural translation. In NAACL.

	Introduction
	Machine Translation
	Neural Machine Translation
	Thesis Outline

	Background
	Language Model
	Recurrent Neural Network
	Training & Backpropagation
	Long Short-Term Memory

	Neural Machine Translation
	Training
	Testing

	Copy Mechanisms
	Rare Word Models
	Copyable Model
	Positional All Model (PosAll)
	Positional Unknown Model (PosUnk)

	Experiments
	Training Data
	Training Details
	A note on BLEU scores
	Main Results

	Analysis
	Rare Word Analysis
	Rare Word Models
	Other Effects
	Sample Translations

	Conclusion

	Attention Mechanisms
	Attention-based Models
	Global Attention
	Local Attention
	Input-feeding Approach

	Experiments
	Training Details
	English-German Results
	German-English Results

	Analysis
	Learning curves
	Effects of Translating Long Sentences
	Choices of Attentional Architectures
	Alignment Quality
	Alignment Visualization
	Sample Translations

	Conclusion

	Hybrid Models
	Related Work
	Hybrid Neural Machine Translation
	Word-based Translation as a Backbone
	Source Character-based Representation
	Target Character-level Generation

	Experiments
	Data
	Training Details
	Results

	Analysis
	Effects of Vocabulary Sizes
	Rare Word Embeddings
	Sample Translations

	Conclusion

	The Future of NMT
	Multi-task Sequence to Sequence Learning
	Multi-task Sequence-to-Sequence Learning
	Experiments
	Conclusion

	Compression of NMT Models via Pruning
	Related Work
	My Approach
	Experiments
	Generalizability of my results
	Conclusion

	Future Outlook
	Multi-task and Semi/Un-supervised Learning
	Model Compression and Knowledge Distillation
	Beyond Maximum Likelihood Estimation
	Translation with Coherence and Style

	Conclusion

