
Pye: Small Python Text Editor

Looking for a code editor that would fit onto Pyboard (and now WiPy, ESP8266, ESP32,
Teensy, and the pycom.io devices), I made my way through the Micropython forum and
found pfalcon’s (Paul) Python editor code, which I took and ported it to PyBoard. It’s
really impressive how few lines of code Paul needed to implement a reasonable amount of
functionality. Since the code looked clean, and it seemed so easy to add features, I could
not resist adding a little bit, using some ideas of dhylands (Dave) for screen and keyboard
handling, and yes, it got quite a bit larger. It still contains the code for the Linux/Darwin
environment, so you can run it in Linux/Mac Python3 or MicroPython (if you install the
os module). I sprayed a few C Preprocessor statements in it, so you can use cpp to remove
the stuff which is not needed for a specific target. What did I change and add:

 Use stdin/stdout on the MicroPython boards.
 Changed the read keyboard function to comply with slow char-by-char input on

serial lines.
 Added support for TAB, BACKTAB, SAVE, FIND, REPLACE, GOTO Line,

CUT, COPY, PASTE, REDRAW, UNDO, INDENT, UN-INDENT, COMMENT
and OPEN (file).

 Join lines by Delete Char at the end or Backspace at the beginning, Auto-indent for
Enter.

 Moved main into a function with an option for Pipe'ing in on Linux & Python3
 Added a status line and single line prompts for Quit, Save, Find, Replace, Goto,

Open file and Flag settings.
 Support the simultaneous editing of multiple files.
 Support of the basic mouse functions scrolling up/down and setting the cursor.

The editor works in Insert mode. Cursor Keys, Home, End, PgUp and PgDn work as you
would expect. The other functions are available with Ctrl-Keys. Keyboard Mapping:

Keys Alternative Function
Up Move the cursor up one line.

Down Move the cursor down one line.

Left Move the cursor left by one char, skipping over to the previous
line .

Right Move the cursor right by one char, skipping over to the next line.

Shift-Up Mark current line or extend mark up

Shift-Down Mark current line or extend mark down

PgUp Move the cursor up by one screen height.

PgDn Move the cursor down by one screen height.

Home Go to start-of-line, if the Cursor is at start-of-text. Otherwise go
to start-of-text.

End Toggle the position between the end-of-line and end-of-code.

Mouse Button 1 Set the cursor.

Mouse Button 2 Set/Clear the line mark.

Mouse Scroll Wheel Scroll Up/Down the screen content by 3 lines per tick. The cursor
stays visible and will be moved in the content if required.

Enter \n Insert a line break at the cursor position. Auto-indent is
supported.

Backspace Delete the char left hand to the cursor. If the mark is set, just
delete the marked line range. (The key must be set to ASCII-Del)
At the beginning of the line Backspace joins the previous line. (*)

Del Delete char under the cursor. At the end of the line join the next
line. If auto-indent is enabled, delete also the leading spaces of the
joined line. If the mark is set, delete the marked line range.

Tab Ctrl-I Tab. Insert spaces at the cursor position up to the next tab
location, moving the cursor. If the mark is set, indent the marked
line range.

BackTab Ctrl-U Back Tab. Remove spaces left to the cursor position up to the next
tab location or the next non-space char, and moves the cursor. If
the mark is set, un-indent the marked line range.

Ctrl-Q Alt-Q Quit a file buffer or the line edit mode. If the edited text was
changed, ask for confirmation. If the last buffer is closed, the editor
will terminate too.

Ctrl-S Save to file. The file name will be prompted for. The content will
be written to a temporary file (basename + “.pyetmp”) first and
then this will be renamed. If the target file name is invalid, the
temporary file will have the content. The buffer will after saving
have the name of the saved file, which thus acts as Save-as.

Ctrl-E Redraw the screen according to the actual screen parameters
width, height. With MicroPython, as a side effect, garbage
collection is performed and the available memory is shown. With
Linux/CPython, window size changes result in an automatic
redraw.

Ctrl-F Find text. The last search string is memorized, even across multiple
edit windows. Search stops at the end.
Whether the search is case sensitive or not, can be set by the Ctrl-A
command.(*)

Ctrl-N Repeat find starting at the column right to the cursor.

Ctrl-H Ctrl-R Find and replace. If the mark is set, it affects the marked region
only.

Ctrl-G Go to Line. It prompts for the line number.

Ctrl-B Ctrl-End Go to the last line(*)

Ctrl-T Ctrl-Home Go to the first line(*)

Ctrl-K Go to the matching bracket, if any. The cursor has to be on a
bracket symbol. Bracket pairs are (), [], {} and <>. Brackets in
comments and strings are not discarded.(*)

Ctrl-A Settings. Sets the state of auto-indent, search case sensitivity, tab
size, comment string and write-tabs. Enter ‘y’ or ‘n’ or a number in
comma separated fields (e.g. n,y,4,n). An empty field leaves the
respective value unchanged. The default values are auto-indent: y,
case sensitive: n, tab-size: 4, comment string ‘# ‘, Write Tabs: n
The pye2 variant has an additional flag which affects the positioning
of the cursor during vertical moves (straight vs. following line ends).
In the minimal version, Ctrl-A just sets the state of search case
sensitivity and auto-indent.

Ctrl-L Ctrl-Space Mark the current line. Once a line is marked, the mark can be
extended by moving the cursor. The mark affects Delete, Backspace,
Cut lines, Copy lines, Insert lines, Tab, Backtab, Save and Replace.
The mark is cleared by pushing Ctrl-L again or an operation on the
marked area.

Ctrl-X Ctrl-Y Delete the area between the mark and the current line and
keep it in the paste buffer. Together with the Ctrl-V this
implements the Cut & Paste feature. The mark is cleared.

Ctrl-C Ctrl-D Copy the area between the mark and the current line to the
paste buffer. Together with the Ctrl-V this implements the Copy &
Paste feature. The mark is cleared on copy.

Ctrl-V Insert the content of the paste buffer before the actual line. If the
mark is set, delete the marked area first. In the line edit mode:
paste the item under the cursor of the active window.

Ctrl-W Switch to the next file.

Ctrl-O Open a new file. The file name will be prompted for. If the name is
left empty, an empty buffer will be opened. If the file cannot be
loaded (e.g. because it does not exist), a buffer with that name will
still be opened, but will be empty. If the name entered belongs to a
directory, the sorted list of file names in that directory will be
loaded.

Ctrl-Z Undo the last change(s). Every char add sequence/deleted char
sequence/replaced item/deleted line(s)/inserted line(s)/indent
sequence/Un-indent sequence counts as a single change. The default
for the undo stack size per buffer is 50 with PyBoard/WiPy and
500 with Linux/Darwin systems. It can be changed in the call to
pye().

Ctrl-P Comment/Uncomment a line or marked area. The string used for
commenting can be set through the Ctrl-A command. (*)

Functions denoted with (*) are not supported in the minimal version. The editor is
contained in the file pye.py. Start pye from the REPL prompt e.g. with

from pye import pye
res = pye(object_1, object_2, ..[, tabsize=n][, undo=n])

If object_n is a string, it's considered as the name of a file to be edited or a directory to be
opened. If it’s a file, the content will be loaded, and the name of the file will be returned
when pye is closed. If the file does not exist, an error is displayed, but the edit window is
given that name. If it’s a directory, the list of file names will be loaded to the edit window.
If object_n is a list of strings, these will be edited, and the edited list will be returned. If
no object is named, pye() will give you an empty screen, creating a list of strings, unless
you save to a file. In that case, the file name will be returned. If object_n is neither a
string nor a list of strings, an empty buffer is opened. It is always the last buffer closed,
which determines the return value of pye(). Optional named parameters:

tabsize=n Tab step (integer). The default is 4

undo=n Size of the undo stack (integer). A value of 0 or False disables undo.

The Linux/Darwin version can be called from the command line with:

python3 pye.py [filename(s)]

Obviously, you may use micropython too. Using python3 (not micropython), content can
also be redirected or pipe'd into the editor.

When reading files, tab characters (\x09) in the text are replaced by spaces, tab size 8,
and white space at the end of a line is discarded. When you save the file, you have the
option to replace all sequences of spaces by tabs, tab size 8. If the initial file contained tab

characters, this is the default. However, the original state will NOT be restored. So be
careful when editing files with tab characters.

The size of a file that can be edited on the boards is limited by its memory. You may use
REDRAW to determine how much space is left. Besides the file itself, both buffer
operations and especially undo consume memory. The undo stack can be limited in the call
to pye, the buffer size can be reduced again by copying a single line into it. Up to about
150 lines on ESP8266 and 600 lines on PyBoard should be safe to edit. The largest suitable
file size is in the same order of what can be handled as source file.

When you save a file on PyBoard, these changes may not be visible in the file system of a
connected PC until you disconnect and reconnect the Pyboard drive. See also the related
discussion in the MicroPython Forum.

Notes:
 The keyboard mapping assumes VT100. For those interested, I collected

the key codes issue by terminal emulators, all claiming VT100
compatible. Picocom seems sometimes to send the Linux Terminal
codes. If the KEYMAP is too large, and you know which terminal you
are working on, delete or comment out the obsolete lines. If your
terminal is different, just change the control codes.

Key Putty
VT100 &
Xterm

Putty
esc-[~

Putty
Linux

Minico
m

GtkTer
m

Picoco
m

Linux
Terminal

Up \e[A \e[A \e[A \e[A \e[A \e[A \e[A
Down \e[B \e[B \e[B \e[B \e[B \e[B \e[B
Left \e[D \e[D \e[D \e[D \e[D \e[D \e[D
Right \e[C \e[C \e[C \e[C \e[C \e[C \e[C
Home \e[1~ \e[1~ \e[1~ \e[1~ \eOH \eOH \e[H
End \e[4~ \e[4~ \e[4~ \eOF \eOF \eOF \e[F
Ins \e[2~ \e[2~ \e[2~ \e[2~ \e[2~ \e[2~ \e[2~
Del \e[3~ \e[3~ \e[3~ \e[3~ \e[3~ \e[3~ \e[3~
PgUp \e[5~ \e[5~ \e[5~ \e[5~ \e[5~ \e[5~ \e[5~
PgDn \e[6~ \e[6~ \e[6~ \e[6~ \e[6~ \e[6~ \e[6~
Backspa
ce

\x7f \x7f \x7f \x7f \x08 \x7f \x7f

Ctrl-
Home

 \e[1;5H \e[1;5H \e[1;5H

Ctrl-End \e[1;5F \e[1;5F \e[1;5F
Ctrl-Del \e[3;5~ \e[3;5~ \e[3;5~ \e[3;5~
Tab \x09 \x09 \x09 \x09 \x09 \x09 \x09
BackTab \e[Z \e[Z \e[Z \e[Z \e[Z \e[Z \e[Z

 Since all these key sequences start with the Escape char, typing Escape on the
keyboard seems to lock the keyboard. You can unlock it by typing any alpha
character.

 Windows terminal emulators behave inconsistent. Putty does not report the mouse
actions at all. TeraTerm, IVT terminal and Xsh20 just report the mouse click, but
not the scroll wheel actions. ZOC reports mouse positions constantly, and sends no
key codes for Home, End, PgUp, PGDn and Del. The latter holds also for
PowerVT. I could not get Qodem working. Hyperterminal's VT100 emulation is
crap. So, after all, I consider TeraTerm, Xsh20 or Putty as the best choices for
Windows.

 Gnome terminal sometimes does not send the first mouse wheel code, after the
pointer was moved into the window. Mate and XFCE4 terminal do, but have
slightly different keyboard mappings.

 Saving to the internal flash of PyBoard is really slow, so don't get nervous. Watch
the red LED.

 For those who do complain about the enormous long handle_edit_key() function: I
tried a variant where every if-elif-case of the function was replaced by a little
function, and KEYMAP contained the names of the functions as pointers, which
then could be called directly. Thus, almost every key had the same handling time.
That worked, and the source file was not much longer, but the compiled code size
grew by 50% w/o a useful advantage. So I dropped this approach.

 Putting all functions into the single class is a little bit messy. I made a variant of
pye.py, where all tty related functions are placed in a separate class. That looks
much better, but uses about 600 bytes more RAM. For WiPy, I'm still fighting for
every byte, so I left it aside. And even then there are some functions (scroll_xx())
where it's not clear in which module to place them. Finally, I would have to split
them.

 The Linux version runs on Android too, at least in a setup I tried. That consists of
the termux terminal emulator app, which includes an 'apt' command, much like
apt-get or aptitude. It allows installing a command line version of python 3.5.1,
which will run pye. The terminal window emulates VT100. The keyboard app I'm
using is hacker's keyboard, which provides Escape, Ctrl- and cursor keys.

 Using frozen bytecode (Pyboard, ESP8266, ESP32, WiPy2, LoPy, ..) or at least
compiled byte code (WiPy1/WiPy2/LoPy) is highly recommended. That reduces
start-up time and saves RAM in case of frozen bytecode.

