ETHzürich

Efficient Numerical Optimal Robot Control Across Different Domains and Platforms

From UAVs to Quadrupeds – Markus Giftthaler and Michael Neunert

Who we are

M. Giftthaler M. Neunert

J. Buchli

Our focus of research:

Construction Robotics and Digital Fabrication

Legged Locomotion

ETH zürich

ETH zürich

Rigid Body Dynamics

- + Kinematics
- + Actuator models
- + Friction
- + Contact dynamics
- + Aerodynamics

Agile & Dexterous Robotics Lab Institute of Robotics and Intelligent Systems ETH Zurich

$\begin{array}{c} \text{minimize} \\ x(\cdot), u(\cdot), T \end{array}$

$$\int_0^T L(x(t), u(t)) dt + E(x(T))$$

$$\begin{aligned} x(0) - x_0 &= 0, & \text{(fixed initial value)} \\ \dot{x}(t) - f(x(t), u(t)) &= 0, & t \in [0, T], & \text{(ODE model)} \\ h(x(t), u(t)) &\geq 0, & t \in [0, T], & \text{(path constraints)} \\ r(x(T)) &= 0 & \text{(terminal constraints)}. \end{aligned}$$

(Continuous-time) Optimal Control Problem

One Optimal Control Framework - Different Regimes

How to achieve NMPC at >100 Hz ?

Two key points:

- Algorithmic and Numerical Engineering
- Efficient software implementation

Framework benefits:

- From a morphological description to MPC
- Extensively tested on Hardware

E Hzürich

A (Simplified) Overview of Numerical Optimal Control in Robotics

Nonlinear Program (NLP)

Off-the shelf, general purpose NLP solvers

- IPOPT
- SNOPT

. . .

- Good constraint handling
- **Open-loop Trajectories**
- Insufficient sparsity exploitation

Comp. complexity $\sim O(N^2) - O(N^3)$

L(x(t), u(t)) dt + E(x(T))minimize $x(\cdot), u(\cdot), T$ subject to $x(0) - x_0 = 0.$ (fixed initial value) $\dot{x}(t) - f(x(t), u(t)) = 0,$ $t \in [0, T],$ (ODE model) $h(x(t), u(t)) \ge 0,$ $t \in [0, T],$ (path constraints) $r\left(x(T)\right) = 0$ (terminal constraints)

~O(N)

highly optimized Riccati solvers:

- "Forces Pro" [3]
 - "HPIPM" ٠

Sparse (constrained) LQ Optimal Control problems

[1]

add

DDP iLQR, SLQ

- Trajectories + Feedback law
- Riccati-based LQ problem solving
- Computational complexity ~O(N)

"Lifting" [2, A] Multiple-shooting DDP & iLQR

Differentiation Methods Compared

Method	Accuracy	Computation Speed	Setup Time	Error Safety
Numeric Differentiation	-	-	+++	+++
Analytical Derivatives	+++	++	-	-
Symbolic Math Engine	+++	+	+	++
Automatic Differentiation	+++	+	++	++
Auto-Diff Code Generation	+++	+++	++	++

Automatic Differentiation: Efficiently Computing Derivatives

Automatic Differentiation

- As **accurate** as analytic derivatives
- As **fast** or faster than analytic derivatives
- Convenient to use and error-safe
- Code generation and JIT compilation add extra speed

Comparison – 1st order forward dynamics derivative for a quadruped

An Auto-differentiable Rigid Body Dynamics Engine

- First fully automatically differentiable Rigid Body Dynamics Engine
- Generates highly optimized C++ code for Rigid Body Dynamics and Kinematics
- Input: Simple parametric description of the robot
- Error safe

https://bitbucket.org/robcogenteam/ (original author: M. Frigerio)

See also:

M. Giftthaler, M. Neunert, et al. "Automatic Differentiation of Rigid Body Dynamics for Optimal Control and Estimation", *Advanced Robotics*, November 2017, Taylor and Francis.

M. Frigerio, J. Buchli, and D. Caldwell, "Code generation of algebraic quantities for robot controllers," in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct 2012.

NMPC Application Examples Across Domains

Ground Robots

Legged Robots

ional Centre of Competence essearch ital Fabrication

ETHzürich

UAVs

Report

Desktop quad-core CPUs

Non-Linear Full Dynamics MPC

Optimal Control Tools

	Control Toolbox	ACADO	MUSCOD-II	Drake	MuJoCo
Free software	\bigcirc	\bigcirc		\bigcirc	
Auto-Diff (w. codegen)	2 nd order (🕥)	2 nd order (②)		1 st order (②)	\bigotimes
Optimal Control Solvers	LQR, TVLQR, DMS, SLQ	DMS	DMS	LQR, TVLQR, DirCol	iLQR
Rigid Body Dynamics engine	\bigcirc				
Embedded/ realtime applications	\bigcirc	\bigcirc			

Questions and Discussion

Links

- www.adrl.ethz.ch
- www.bitbucket.org/adrlab/ct

Additional References

[1] G. Frison, Algorithms and Methods for Fast Model Predictive Control. PhD thesis, Technical University of Denmark, 2015

[2] J. Albersmeyer et al. "The Lifted Newton Method and Its Application in Optimization," SIAM Journal on Optimization, vol. 20, no. 3, pp. 1655–1684, 2010

[3] Embotech Forces Pro. https://www.embotech.com/FORCES-Pro

Related Publications

[A] M. Giftthaler, M. Neunert, et al. "A Family of iterative Gauss-Newton Shooting Methods for Nonlinear Optimal Control". Submitted to IEEE ICRA 2018 (pre-print online soon)

[B] M. Giftthaler, M. Neunert, et al. "Automatic Differentiation of Rigid Body Dynamics for Optimal Control and Estimation", *Advanced Robotics*, November 2017, Taylor and Francis.

[C] M. Giftthaler, et al. "Mobile Robotic Fabrication at 1:1 scale: the In situ Fabricator". Construction Robotics (2017), Springer.

[D] M. Giftthaler et al. "Efficient Kinematic Planning for Mobile Manipulators with Non-holonomic Constraints Using Optimal Control", IEEE Int. Conf. on Robotics and Automation (ICRA), May 2017, Singapore

[E] M. Neunert, M. Giftthaler, et al. "Fast Derivatives of Rigid Body Dynamics for Control, Optimization and Estimation". In 2016 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR) 2016.

[F] M. Neunert, M. St[°]auble, M. Giftthaler, C. D. Bellicoso, J. Carius, C. Gehring, M. Hutter, and J. Buchli, "Whole-Body Nonlinear Model Predictive Control Through Contacts for Quadrupeds," 2017. Submitted to IEEE Robotics and Automation Letters. (pre-print online soon)

[G] M. Neunert, C. de Crousaz, F. Furrer, M. Kamel, F. Farshidian, R. Siegwart, and J. Buchli, "Fast nonlinear model predictive control for unified trajectory optimization and tracking," in IEEE International Conference on Robotics and Automation (ICRA), 2016