

 CONFIDENTIAL AND PROPRIETARY 1

Web Application Penetration Test

LocalGov Drupal (LGD)

Prepared for: Invuse Limited

Prepared by: Aditya Raj Singh

Date: 2023-02-06

Disclaimer
This document and all written advice and materials provided by The SecOps Group UK Limited (The

SecOps Group) to Invuse Limited (Invuse) are the intellectual property of The SecOps Group. Invuse

may use these materials freely for its own business purposes, but may not distribute or reproduce

this document, in whole or in part, or otherwise supply it for use by any third party, without the prior

written consent of The SecOps Group.

The SecOps Group owns all intellectual property rights, including copyright, trade secrets, know-how

and methodologies, in everything developed by The SecOps Group for Invuse, in whatever form and

regardless of when such rights came into existence.

 CONFIDENTIAL AND PROPRIETARY 2

The SecOps Group appreciates your co-operation in protecting its intellectual property.

 CONFIDENTIAL AND PROPRIETARY 3

Index

Disclaimer .. 1

General Information .. 4

Executive Summary ... 5

Assessment Summary .. 8

Technical Details .. 9

1. Malicious File Upload .. 9

2. Missing Anti-Scripting Controls ... 14

3. Weak Password Policy .. 19

4. Username Enumeration .. 23

5. Missing Security Related Headers ... 27

6. Verbose Error Messages .. 28

7. Insufficient Session Timeout .. 31

8. Weak Account Lockout Mechanism ... 33

9. Verbose HTTP Response Headers ... 36

Appendix A: Review Methodology .. 38

Appendix B: Severity Analysis .. 38

 CONFIDENTIAL AND PROPRIETARY 4

General Information

Testing Duration

The testing activities were performed by The SecOps Group between 2023-01-25 and 2023-02-01.

Scope

Invuse required The SecOps Group to perform security assessment on the following Web Application:

o https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site

Rules of Engagement and Assumptions

• No Denial of Service (DoS) attacks to be performed.

• The assessment was carried out on the development environment.

• The assessment was carried out during the standard business hours.

• The following activities were out of scope:

o API security testing. o Mobile

application security testing. o

Network security testing. o Attack

surface mapping.

User Accounts

Invuse provided the following user accounts for the test:

Application

User Accounts Role

LocalGov Drupal (LGD)

•

•

Editor@invuse.com

Editor2@invuse.com
Editor

•

•

Authoriseduser@invuse.com

Authoriseduser2@invuse.com
Standard User

• Newseditor@invuse.com
News Editor

 • Newseditor2@invuse.com

 CONFIDENTIAL AND PROPRIETARY 5

Note – The user accounts created/provided for testing purposes should now be removed as the testing

is complete.

Executive Summary
The SecOps Group conducted a comprehensive security assessment for Invuse Limited on their

LocalGov Drupal (LGD) web application, to provide them an estimate of their application’s existing

security posture and its susceptibility to exploitation and/or data breaches. This was a grey box or

authenticated type of assessment and was performed in accordance with The SecOps Group’s

Appendix A: Review Methodology.

During the assessment, it was observed that the application lacked input validation and processed a

malicious input, which allowed the assessment team to perform Server-Side Request Forgery (SSRF),

where it was possible to scan ports. This vulnerability if not mitigated can also lead to an

applicationlevel denial of service attack. Further, a file upload vulnerability was discovered, which

allowed the assessment team to upload malicious files on the application server. The assessment

team also identified that the application lacked anti-scripting controls, which allowed several

redundant requests to be sent to the server, which could negatively impact the application's

performance. The assessment team also found that a strong password policy was not enforced,

which allowed users to set easily- guessable passwords for their accounts. Additionally, some low-

risk findings were identified, details of which are mentioned in the Technical Details section of this

report.

The SecOps Group coordinated with the Invuse team to ensure safe, orderly, and complete testing

of the web application in scope, within the approved scope and timelines. It was also ensured that

the security issues/concerns stated by the Invuse team during the project meetings regarding the

LGD web application, were addressed and reviewed.

Based on the assessment, The SecOps Group categorized the findings into Critical / High /

Medium / Low / Informational severity risk issues, with the overall rating of the LocalGov Drupal

(LGD) web application in scope to be of Medium risk.

Graphical Representation of the Vulnerabilities as per Risk

 CONFIDENTIAL AND PROPRIETARY 6

• The application implemented access controls that prevented the assessment team from

exploiting Insecure Direct Object References (IDOR).

• The assessment team did not find SQL Injection, Operating System Code Injection, or other

related vulnerabilities.

• The applications were available only on encrypted channels such as TLS and no cleartext

protocols were in use.

• The application implemented input validation and output encoding, which prevented the

assessment team from identifying and exploiting the Cross-Site Scripting (XSS) attacks.

Findings Discovered

Key findings have been mentioned below:

• The SecOps Group identified that the application was vulnerable to SSRF attacks, which allowed

port scanning, and which was leveraged to perform Cross-Site Port Attack (XSPA).

• The SecOps Group discovered that the application allowed the upload of malicious files on the

server.

• The SecOps Group identified that the application lacked anti-scripting controls, which allowed

several redundant requests to be sent to the server.

• The SecOps Group found that a strong password policy was not enforced on the server-side, which

allowed users to set simple passwords for their accounts.

Positive Observations

0 1 2 3 4 5 6

Informational

Low

Medium

High

Critical

Vulnerability Severity Distribution

 CONFIDENTIAL AND PROPRIETARY 7

Recommendations

Recommendations for the key findings have been mentioned below:

• Implement a strong input validation on the server side against all user input and implement a

whitelist, and any requests containing invalid resources should be rejected.

• Validate the files uploaded to the application to ensure that the uploaded content matches only

types allowed by the application.

• Implement anti-scripting controls such as a CAPTCHA to stop automated bots from attacking

the application.

• Implement a strong password policy and ensure that server-side validation of the policy is in

place.

 CONFIDENTIAL AND PROPRIETARY 8

Assessment Summary

Overall Rating

Overall rating has been identified as Medium.

 Vulnerability Severity

Affected Resources

This finding has been reported

directly to Drupal.org security

team for review, following their

defined processes.

Request

Information

Update to be provided to LGD community

Malicious File Upload Medium

• https://dev-54ta5gq-b4ui4utkwzz2s.uk-

1.platformsh.site/ o "Add file"

functionality

Missing Anti-Scripting Controls Medium

• https://dev-54ta5gq-b4ui4utkwzz2s.uk-

1.platformsh.site/ o All the create

functionalities

Weak Password Policy Medium
• https://dev-54ta5gq-b4ui4utkwzz2s.uk-

1.platformsh.site/user/*/edit

Username Enumeration Low
• https://dev-54ta5gq-b4ui4utkwzz2s.uk-

1.platformsh.site/user/*/edit

Missing Security Related

Headers
Low

• https://dev-54ta5gq-b4ui4utkwzz2s.uk-

1.platformsh.site

Verbose Error Messages Low

•

https://dev-54ta5gq-b4ui4utkwzz2s.uk-

1.platformsh.site/sites/default/files/styles/la

rge_3_2_2x/public/202301/xss.gif?itok=FodxpFaz

 • https://dev-54ta5gq-b4ui4utkwzz2s.uk-

1.platformsh.site o File upload

functionality

Insufficient Session Timeout Low
• https://dev-54ta5gq-b4ui4utkwzz2s.uk-

1.platformsh.site

Weak Account Lockout

Mechanism
Low

• https://dev-54ta5gq-b4ui4utkwzz2s.uk-

1.platformsh.site/user/login

Verbose HTTP Response

Headers
Informational

• https://dev-54ta5gq-b4ui4utkwzz2s.uk-

1.platformsh.site o X-Generator HTTP Response

Header

http://drupal.org/
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/user/*/edit
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/user/*/edit
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/user/*/edit
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/user/*/edit
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/user/*/edit
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/user/*/edit
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/user/*/edit
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/user/*/edit
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/user/*/edit
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/user/*/edit
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/user/*/edit
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/user/*/edit
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/user/*/edit
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/user/*/edit
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/user/*/edit
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/user/*/edit
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/user/login
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/user/login
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/user/login
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/user/login
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/user/login
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/user/login
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/user/login
https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/user/login

 CONFIDENTIAL AND PROPRIETARY 9

Technical Details

1. Finding reported to Drupal.org Security

Severity

Request Information

Description

This finding has been reported directly to Drupal.org security team for review, following their defined

processes.

Affected Resources

Update to be provided to LGD community following resolution.

Observation

N/A

2. Malicious File Upload

Severity
Medium

Description

Malicious file upload can allow attackers to upload executable or malicious code. If a malicious actor

can upload malware, the malicious actor could run that malicious code on the server itself or use it to

perform client-side attacks against other web application users or Administrators that might access

the file.

Affected Resources

• https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site o

"Add file" functionality.

http://drupal.org/

 CONFIDENTIAL AND PROPRIETARY 10

Observation

The assessment team discovered that the application did not validate the contents of the uploaded

file and stored it on the application server without validating it. This can be misused by an adversary

to upload malicious files such as malware that could affect the application server and all its users.

Proof of Concept

The assessment team navigated to the "Create Directory page" section, filled in the form with

necessary details and attached an “EICAR" file.

Note – EICAR is a malicious file which is used for testing purposes and is seemingly harmless.

The assessment team clicked the "Save" button and found that the malicious test file was successfully

uploaded to the application server.

Figure 8 – Attached Malicious File

 CONFIDENTIAL AND PROPRIETARY 11

The assessment team then navigated to "https://dev-54ta5gq-b4ui4utkwzz2s.uk-

1.platformsh.site/sites/default/files/2023-01/eicar_0.txt" and confirmed that the uploaded malicious

test file was present on the application server.

Figure 9 – Malicious Test File Uploaded Successfully

 CONFIDENTIAL AND PROPRIETARY 12

Note - The uploaded malicious file could be opened in the end user's browser with the original

EICAR file content. This also indicated that the application lacked server-side anti-virus protection.

The assessment team uploaded the malicious test file to “VirusTotal” and confirmed that it was

malicious and was detected by multiple security vendors.

Figure 10 – Uploaded Malicious Test File Present on the Server

 CONFIDENTIAL AND PROPRIETARY 13

Recommendation

• Examine the content of uploaded files.

• Check all the uploaded files for HTML/JavaScript tags and viruses.

• If web application users can download uploaded files, provide a Content-type header, and a

content-disposition header which specifies that browsers should handle the file as an

attachment.

Figure 11 – Confirmation Using VirusTotal

 CONFIDENTIAL AND PROPRIETARY 14

References

https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html

http://www.eicar.org/anti_virus_test_file.htm

3. Missing Anti-Scripting Controls

Severity
Medium

Description

Web applications process numerous calls from multiple clients, but there is a limit to the number that

they can handle within a certain time. As the number of concurrent calls increase, the web application

may reach that limit, which could impact an organization’s service uptime.

Affected Resources

• https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site o

All the “create” functionalities.

Observation

The assessment team discovered that the application lacked anti-scripting controls on "Add Content",

"Media" and other similar types of functionalities throughout the application. This issue was leveraged

by the assessment team for creating several posts. An adversary might also leverage this

misconfiguration for uploading many files to the application server, causing the application server's

resources to be depleted and resulting in denial-of-service attacks.

 CONFIDENTIAL AND PROPRIETARY 15

Proof of Concept

The assessment team logged into the application, navigated to the "Create Directory Channel" section,

and filled up the form with the necessary details.

The “create directory” request was intercepted using the Burp Suite proxy and was forwarded to the

Intruder for further analysis.

Figure 12 – Create Directory Channel Section

 CONFIDENTIAL AND PROPRIETARY 16

The intercepted request was replayed fifty times using the Burp Intruder.

Figure 13 – Intercepted Request Using Burp Suite

 CONFIDENTIAL AND PROPRIETARY 17

Figure 14 – Directory Channel Creation Request Replayed Fifty Times

The assessment team then navigated to the “Content” section of the application and observed that

the requests were successful, and fifty posts were created.

 CONFIDENTIAL AND PROPRIETARY 18

Recommendation

Limit the number of requests that can be made by authenticated and unauthenticated users.

Consider implementing limits for the number of requests that authenticated users can make per

second. REST API standards recommend returning an “HTTP 429” header to inform the user that

too many requests were made.

References

https://cheatsheetseries.owasp.org/cheatsheets/REST_Security_Cheat_Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/Denial_of_Service_Cheat_Sheet.html

Figure 15 – Successfully Created Directory Channels

 CONFIDENTIAL AND PROPRIETARY 19

4. Weak Password Policy

Severity
Medium

Description

A simple password is also simple to guess. A malicious actor can perform password guessing and

access any user account if a strong password policy is not set. A strong password policy ensures that

the passwords are complex and contains a mix of letters in upper and lower cases, numbers, and

special characters.

Affected Resources

• https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/user/*/edit

Observation

The assessment team observed that the application lacked a strong password policy validation on the

server side and allowed the user to set a weak password such as “1”, “mypassword” and “user123”.

Proof of Concept

The assessment team logged into the application and navigated to the "Editor" section.

 CONFIDENTIAL AND PROPRIETARY 20

The assessment team then supplied the Current password and entered a sample password in the

"Password" and "Confirm Password" fields.

Figure 16 – Edit Section

 CONFIDENTIAL AND PROPRIETARY 21

Further, the assessment team changed the new password to a single character and forwarded the

request.

Figure 17 – Sample Password

 CONFIDENTIAL AND PROPRIETARY 22

The assessment team tried to login into the LGD application using a valid username and a

singlecharacter password and observed that the login was successful.

Figure 19 – Successful Login Using the Single Character Password

Figure 18 – Single Character Password

 CONFIDENTIAL AND PROPRIETARY 23

Recommendation

Follow recommended password protection guidance as detailed by NCSC

https://www.ncsc.gov.uk/collection/small-business-guide/using-passwords-protect-your-data.

Do not allow significant portions of the user's account name, company name or full name as

passwords.

References

https://owasp.org/www-project-web-security-testing-guide/latest/4-

Web_Application_Security_Testing/04-

Authentication_Testing/07Testing_for_Weak_Password_Policy

https://pages.nist.gov/800-63-3/sp800-63b.html

5. Username Enumeration

Severity
Low

Description

Username Enumeration occurs when a malicious actor can determine the valid users of an

application/system. This vulnerability usually exists on the login or forgot password page of an

application, where an error message reveals that a username is present or absent on the system

when valid or invalid credentials are entered. After enumerating valid users, a malicious actor can

gain access to the system using password guessing or automated brute-force attacks. Username

enumeration essentially occurs when an application gives different responses when valid and invalid

data in various fields are entered.

Affected Resources

• https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/user/*/edit

Observation

The assessment team observed that the application provided different responses when a valid and

then an invalid email was entered in the ‘Password Reset’ functionality. These different responses

allowed the assessment team to determine the valid users of the application.

https://www.ncsc.gov.uk/collection/small-business-guide/using-passwords-protect-your-data

 CONFIDENTIAL AND PROPRIETARY 24

Proof of Concept

The assessment team logged into the application and navigated to the "Edit" section.

The assessment team then supplied an existing user's email in the "Email address" field and observed

that the application generated the following email, which confirmed that a valid user with the entered

email already existed in the application.

Figure 20 – Edit Section

 CONFIDENTIAL AND PROPRIETARY 25

The assessment team then supplied a non-existing user's email in the "Email address" field and

observed that the email was updated successfully, thus confirming that the user with the entered

email did not exist in the application.

Figure 21 – Error Indicating an Existing User

 CONFIDENTIAL AND PROPRIETARY 26

Recommendation

• Configure web applications so that error messages do not indicate whether a user account

had been correct or not.

• For login forms, use a generic error message such as ‘Invalid User ID or Password’ for all

failed logins.

• For password reset forms, report that instructions have been sent to the email address on file,

regardless of whether the submitted username was correct or not.

References

https://cwe.mitre.org/data/definitions/204.html

https://www.owasp.org/index.php/Brute_force_attack

Figure 22 – Message Indicating a Non - Existing User

 CONFIDENTIAL AND PROPRIETARY 27

https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet

https://www.owasp.org/index.php/Testing_for_User_Enumeration_and_Guessable_User_Account_(

OWASP-AT-002)

6. Missing Security Related Headers

Severity
Low

Description

The application did not implement certain HTTP security headers, which help in protecting the

application against attacks including Cross-site Scripting (XSS) and Clickjacking.

Affected Resources

• https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site

Observation

The assessment team found that the following security headers were missing in the web application

response:

• Content-Security-Policy

• Referrer-Policy

• Permissions-Policy

Proof of Concept

The assessment team analyzed the security headers of the application using "Shcheck.py" and

observed that the application lacked three security-related headers.

 CONFIDENTIAL AND PROPRIETARY 28

Recommendation

Implement the security-related HTTP headers to improve the overall security posture of the

application.

References

https://tools.ietf.org/html/rfc7234

https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Headers_Cheat_Sheet.html

7. Verbose Error Messages

Severity
Low

Description

Verbose error message is when the application throws sensitive error messages such as stack traces,

database queries or dumps and error codes. These error messages can be the first line of attack point

where an attacker is able to get the information about the application’s underlying technology like the

software or framework name and versions. An attacker can accordingly search for vulnerabilities and

exploits to harm the application or system, users, and technology.

Figure 23 – Missing Security Related HTTP Headers

 CONFIDENTIAL AND PROPRIETARY 29

Affected Resources

• https://dev-54ta5gq-b4ui4utkwzz2s.uk-

1.platformsh.site/sites/default/files/styles/large_3_2_2x/public/202301/xss.gif?itok=FodxpFa

z

• https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site o File upload

functionality

Observation

The assessment team observed that the application lacked a robust error handling mechanism and

produced a verbose error message, containing the application's stack trace and revealing internal

paths and other relevant details, which can be used by an adversary in crafting further attacks.

Proof of Concept

The assessment team navigated to the "Create Directory channel" section and attached a broken GIF

image.

 CONFIDENTIAL AND PROPRIETARY 30

The assessment team then clicked on the "Preview" button and observed that the application

generated a Stack Trace error message.

Figure 24 – Attached Broken GIF Image

 CONFIDENTIAL AND PROPRIETARY 31

Recommendation

• Error handling should be properly implemented by the developers in the application’s code to

avoid revealing unnecessary details or sensitive information. Custom error pages can be

created.

References

https://owasp.org/www-community/Improper_Error_Handling

https://projects.webappsec.org/f/WASC-TC-v1_0.txt

https://www.owasp.org/index.php/OWASP_Periodic_Table_of_Vulnerabilities__Information_Leakage

8. Insufficient Session Timeout

Severity
Low

Figure 25 – Verbose Error Message

 CONFIDENTIAL AND PROPRIETARY 32

Description

Session timeout occurs when a user does not perform any action on the website in the given time

frame or logs out of the application. This time is set at the web server. Application not having a

timeout or having an insufficient session timeout can lead to the misuse of the session ID where a

malicious actor can steal or reuse any user’s session identifiers. A session must be invalidated on the

server side once a user logs out or leaves the session idle.

Affected Resources

• https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site

Observation

The assessment team observed that the application had an insufficient session timeout mechanism

and allowed a session of 23 days.

Proof of Concept

The assessment team logged into the LGD application and observed that the application had

Insufficient session timeout and allowed a session for 23 days.

Figure 26 – Insufficient Session Timeout

 CONFIDENTIAL AND PROPRIETARY 33

Recommendation

• It is recommended to set the session timeout value to 2-5 minutes if the application contains

high-risk sensitive data. Implement the logout functionality in the application to destroy the

session identifiers. Invalidate the session ID after the use by the users to avoid reusing by an

attacker.

References

https://owasp.org/www-community/Session_Timeout

9. Weak Account Lockout Mechanism

Severity
Low

Description

With an insufficient account lockout policy, malicious actors could perform automated dictionary or

brute-force attacks against the user and administrative accounts. In a brute-force attack, a malicious

actor will guess many passwords rapidly, looking for one password that matches the account

password. These attacks often use dictionaries of the most commonly-used passwords, such as

“password”, “12345”, or the season and the year.

Affected Resources

• https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site/user/login

Observation

The assessment team observed that the application had a weak account lockout policy. The

application tried to prevent brute force attacks and blacklisted the tester's IP address; however, this

restriction was easily circumvented by rotating the IP address and the assessment team was able to

login into the application using the valid password. This indicated that an adversary could perform

password-guessing attacks by simply implementing an IP rotation mechanism after 3 failed attempts.

 CONFIDENTIAL AND PROPRIETARY 34

Proof of Concept

The assessment team used the Burp Intruder to brute force the user accounts and discovered that

the application restricted the IP address after four failed password-guessing attempts.

The assessment team rotated the IP address and tried to log into the application using the correct

password, confirming that the application permitted login attempts upon IP rotation.

Figure 27 – Blocked IP Add ress

 CONFIDENTIAL AND PROPRIETARY 35

Recommendation

• It is recommended to implement a time-based lockout. The lockout limit should be set according

to the business requirement of the application. Also, implement CAPTCHA and Twofactor

authentication (2FA) to further strengthen the application security.

References

https://owasp.org/www-project-web-security-testing-guide/latest/4-

Web_Application_Security_Testing/04-

Authentication_Testing/03Testing_for_Weak_Lock_Out_Mechanism

Figure 28 – Successful Login Post IP R otation

 CONFIDENTIAL AND PROPRIETARY 36

10. Verbose HTTP Response Headers

Severity Informational

Description

In its default configuration, the application occasionally displays the server technology or CMS that it

utilizes. This provides the actual version data in some cases and merely the technology name in

others. In any situation, it is critical to carefully regulate the data provided in both the HTTP response

header and the HTTP response body to ensure that no technical or server details are present.

Affected Resources

• https://dev-54ta5gq-b4ui4utkwzz2s.uk-1.platformsh.site o

X-Generator HTTP Response Header

Observation

The assessment team found that the application revealed the version of Drupal CMS it was using. If

an exploit is released for the revealed version of Drupal CMS in the near future, this might assist an

adversary in narrowing down the publicly accessible exploits for a greater probability of success.

Proof of Concept

The assessment team navigated to the LGD application and observed that the application revealed

the Drupal CMS version via the X-Generator HTTP response header.

 CONFIDENTIAL AND PROPRIETARY 37

Recommendation

• Perform output validation to filter/escape/encode technology-specific data that is being passed

from the server in an HTTP response header.

References

https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Headers_Cheat_Sheet.html

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Server

Figure 29 – Verbose HTTP Response Headers

 CONFIDENTIAL AND PROPRIETARY 38

Appendix A: Review Methodology
The assessment has been done in 4 phases:

1. Preparation: This phase involves, network recon, asset walkthrough, crawling, content

discovery, Open-Source Intelligence (OSINT) and understanding the logic and flow of the

application and other services.

2. Automated Scanning: Using automated scanning tools and scripts to scan the assets for

vulnerabilities.

3. Manual Assessment: Manual testing of the assets using proxy tools, reviewing business flow,

and attempting to circumvent it.

4. Analysis and Reporting: The identified issues were confirmed, analyzed for severity based

upon network context and a detailed report with vulnerability information, proof of concepts and

recommendations was prepared.

Our testing methodologies cover comprehensive security vulnerability models, i.e., Sans 25, OWASP,

Top 10, OSSTMM, etc. Our Security engagements employ automated tools (commercial, open-source

and in-house tools), followed by manual testing for comprehensive assessment and convergence. All

our security reviews cover the following areas (as applicable):

Coverage Area

Asset Discovery Data Leakage and Exposure

Recon and Open-Source Intelligence Weak or Missing Security Policies

Authentication and Authorization Testing Excessive Service Exposure

Security Patches and Outdated Resource Default Credentials and Configurations

Security Configuration Check Weak Cryptographic Implementations

Appendix B: Severity Analysis
The severity analysis of the application has been primarily based upon three factors:

 CONFIDENTIAL AND PROPRIETARY 39

Impact: How would the vulnerability affect the assets?

Likelihood: What is the likelihood of a malicious actor being able to exploit the vulnerability and how

easy it would be to do so.

Risk: What risk does the vulnerability pose to the application and its users.

All the factors have been evaluated by the consultant to the best of his ability, considering the

application context and other available information at the time of assessment. The following is the list

of ratings provided in the report:

Critical

o Vulnerabilities have immediate impact and remediation should be implemented at

maximum priority.

High

o Vulnerabilities have significant impact and remediation should be implemented at

priority.

Medium

o Vulnerabilities have moderate impact and remediation should be implemented after

Critical and High severity vulnerabilities have been patched.

Low

o Vulnerability exploitation is not trivial and/or exposure is minimal. Remediation

should be implemented after Critical, High, and Medium severity vulnerabilities have

been patched.

Informational

o Vulnerabilities have no impact Vulnerability. However, as a best practice the remedy

should can be applied.

