Fake University Database.
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
1989_Q4.csv
1990_Q1.csv
1990_Q2.csv
1990_Q3.csv
1990_Q4.csv
1991_Q1.csv
1991_Q2.csv
1991_Q3.csv
1991_Q4.csv
1992_Q1.csv
1992_Q2.csv
1992_Q3.csv
1992_Q4.csv
1993_Q1.csv
1993_Q2.csv
1993_Q3.csv
1993_Q4.csv
1994_Q1.csv
1994_Q2.csv
1994_Q3.csv
1994_Q4.csv
1995_Q1.csv
1995_Q2.csv
1995_Q3.csv
1995_Q4.csv
1996_Q1.csv
1996_Q2.csv
1996_Q3.csv
1996_Q4.csv
1997_Q1.csv
1997_Q2.csv
1997_Q3.csv
1997_Q4.csv
1998_Q1.csv
1998_Q2.csv
1998_Q3.csv
1998_Q4.csv
1999_Q1.csv
1999_Q2.csv
1999_Q3.csv
1999_Q4.csv
2000_Q1.csv
2000_Q2.csv
2000_Q3.csv
2000_Q4.csv
2001_Q1.csv
2001_Q2.csv
2001_Q3.csv
2001_Q4.csv
2002_Q1.csv
2002_Q2.csv
2002_Q3.csv
2002_Q4.csv
2003_Q1.csv
2003_Q2.csv
2003_Q3.csv
2003_Q4.csv
2004_Q1.csv
2004_Q2.csv
2004_Q3.csv
2004_Q4.csv
2005_Q1.csv
2005_Q2.csv
2005_Q3.csv
2005_Q4.csv
2006_Q1.csv
2006_Q2.csv
2006_Q3.csv
2006_Q4.csv
2007_Q1.csv
2007_Q2.csv
2007_Q3.csv
2007_Q4.csv
2008_Q1.csv
2008_Q2.csv
2008_Q3.csv
2008_Q4.csv
2009_Q1.csv
2009_Q2.csv
2009_Q3.csv
2009_Q4.csv
2010_Q1.csv
2010_Q2.csv
2010_Q3.csv
2010_Q4.csv
2011_Q1.csv
2011_Q2.csv
2011_Q3.csv
2011_Q4.csv
2012_Q1.csv
2012_Q2.csv
2012_Q3.csv
ECS_165_HW4.tgz
Grades.exi
Postgres-Setup-CSIF.pdf
README.md
loader.py
query.py

README.md

FakeU

Fake University Database. Python Version 2.7

Instruction to run our program: Please have the loader.py, query.py within the Grades folder which contains all the *.CSV files.

Our program connect to the default database named "postgres". Please start_postgres before running loader.py or query.py. Then run loader.py first, and then query.py.

Disclaimer: The loader.py will open and load the data from all the CSV files in the current directory to the database "postgres". The loader.py also check for any duplicated data, and insert "N/A" to any unknown values. The loader.py parses each course from each CSV file by looking for each line. Such as if a line contains CID or SEAT or INSTRUCTOR(S), we then just go to next line and parse the data. Once we get all the information for one course, we INSERT to the Table.

The query.py will connect to the same database that we connected with loader.py. Query.py will query the database and calculate data to get the result for each part of problem 3.