Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs
Switch branches/tags
Nothing to show
Clone or download
Latest commit dfe7061 Oct 22, 2018
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
learning Support the fix in NVIDIA/pynvrtc#2 Aug 30, 2018
partition fix the write_feature crash May 9, 2018
.gitmodules Release 1.0 Jan 16, 2018
LICENSE Release 1.0 Jan 16, 2018
README.md Update README.md Oct 22, 2018
S3DIS_fix.diff added S3DIS dataset fix, fixes #29 Jul 20, 2018

README.md

Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs

This is the official PyTorch implementation of our paper Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs http://arxiv.org/abs/1711.09869.

Code structure

  • ./partition/* - Partition code (geometric partitioning and superpoint graph construction)
  • ./learning/* - Learning code (superpoint embedding and contextual segmentation).

Requirements

  1. Install PyTorch and torchnet with pip install git+https://github.com/pytorch/tnt.git@master. Pytorch 0.4 is not tested and might cause errors.

  2. Install additional Python packages: pip install future python-igraph tqdm transforms3d pynvrtc fastrlock cupy h5py sklearn plyfile scipy.

  3. Install Boost (1.63.0 or newer) and Eigen3, in Conda: conda install -c anaconda boost; conda install -c omnia eigen3; conda install eigen; conda install -c r libiconv.

  4. Make sure that cut pursuit was downloaded. Otherwise, clone this repository in /partition

  5. Compile the libply_c and libcp libraries:

cd partition/ply_c
cmake . -DPYTHON_LIBRARY=$CONDAENV/lib/libpython3.6m.so -DPYTHON_INCLUDE_DIR=$CONDAENV/include/python3.6m -DBOOST_INCLUDEDIR=$CONDAENV/include -DEIGEN3_INCLUDE_DIR=$CONDAENV/include/eigen3
make
cd ..
cd cut-pursuit/src
cmake . -DPYTHON_LIBRARY=$CONDAENV/lib/libpython3.6m.so -DPYTHON_INCLUDE_DIR=$CONDAENV/include/python3.6m -DBOOST_INCLUDEDIR=$CONDAENV/include -DEIGEN3_INCLUDE_DIR=$CONDAENV/include/eigen3
make

where $CONDAENV is the path to your conda environment. The code was tested on Ubuntu 14.04 with Python 3.6 and PyTorch 0.2 and 0.3. The newer 0.4 is not tested yet.

Troubleshooting

Common sources of error and how to fix them:

  • $CONDA_ENV is not defined : define it or replace $CONDA_ENV by the absolute path of your environment (find it with locate anaconda)
  • anaconda uses a different version of python than 3.6m : adapt it in the command. Find which version of python conda is using with locate anaconda3/lib/libpython
  • you are using boost 1.62 or older: update it
  • cut pursuit did not download: manually clone it in the partition folder.

S3DIS

Download S3DIS Dataset and extract Stanford3dDataset_v1.2_Aligned_Version.zip to $S3DIR_DIR/data, where $S3DIR_DIR is set to dataset directory.

To fix some issues with the dataset as reported in issue #29, apply path S3DIS_fix.diff with: cp S3DIS_fix.diff $S3DIR_DIR/data; cd $S3DIR_DIR/data; git apply S3DIS_fix.diff; rm S3DIS_fix.diff; cd -

Partition

To compute the partition run

python partition/partition.py --dataset s3dis --ROOT_PATH $S3DIR_DIR --voxel_width 0.03 --reg_strength 0.03

Training

First, reorganize point clouds into superpoints by:

python learning/s3dis_dataset.py --S3DIS_PATH $S3DIR_DIR

To train on the all 6 folds, run

for FOLD in 1 2 3 4 5 6; do \
CUDA_VISIBLE_DEVICES=0 python learning/main.py --dataset s3dis --S3DIS_PATH $S3DIR_DIR --cvfold $FOLD --epochs 350 --lr_steps '[275,320]' \
--test_nth_epoch 50 --model_config 'gru_10_0,f_13' --ptn_nfeat_stn 14 --nworkers 2 --odir "results/s3dis/best/cv${FOLD}"; \
done

The trained networks can be downloaded here, unzipped and loaded with --resume argument.

To test this network on the full test set, run

for FOLD in 1 2 3 4 5 6; do \
CUDA_VISIBLE_DEVICES=0 python learning/main.py --dataset s3dis --S3DIS_PATH $S3DIR_DIR --cvfold $FOLD --epochs -1 --lr_steps '[275,320]' \
--test_nth_epoch 50 --model_config 'gru_10_0,f_13' --ptn_nfeat_stn 14 --nworkers 2 --odir "results/s3dis/best/cv${FOLD}" --resume RESUME; \
done

To evaluate quantitavily on the full set on a trained model type: python learning/evaluate_s3dis.py --odir results/s3dis/best --cvfold 123456

To visualize the results and all intermediary steps, use the visualize function in partition. For example:

python partition/visualize.py --dataset s3dis --ROOT_PATH $S3DIR_DIR --res_file 'models/cv1/predictions_val' --file_path 'Area_1/conferenceRoom_1' --output_type igfpres

output_type defined as such:

  • 'i' = input rgb point cloud
  • 'g' = ground truth (if available), with the predefined class to color mapping
  • 'f' = geometric feature with color code: red = linearity, green = planarity, blue = verticality
  • 'p' = partition, with a random color for each superpoint
  • 'r' = result cloud, with the predefined class to color mapping
  • 'e' = error cloud, with green/red hue for correct/faulty prediction
  • 's' = superedge structure of the superpoint (toggle wireframe on meshlab to view it)

Add option --upsample 1 if you want the prediction file to be on the original, unpruned data.

Semantic3D

Download all point clouds and labels from Semantic3D Dataset and place extracted training files to $SEMA3D_DIR/data/train, reduced test files into $SEMA3D_DIR/data/test_reduced, and full test files into $SEMA3D_DIR/data/test_full, where $SEMA3D_DIR is set to dataset directory. The label files of the training files must be put in the same directory than the .txt files.

Partition

To compute the partition run

python partition/partition.py --dataset sema3d --ROOT_PATH $SEMA3D_DIR --voxel_width 0.05 --reg_strength 0.8 --ver_batch 5000000

It is recommended that you have at least 24GB of RAM to run this code. Otherwise, increase the voxel_width parameter to increase pruning.

Training

First, reorganize point clouds into superpoints by:

python learning/sema3d_dataset.py --SEMA3D_PATH $SEMA3D_DIR

To train on the whole publicly available data and test on the reduced test set, run

CUDA_VISIBLE_DEVICES=0 python learning/main.py --dataset sema3d --SEMA3D_PATH $SEMA3D_DIR --db_test_name testred --db_train_name trainval \
--epochs 500 --lr_steps '[350, 400, 450]' --test_nth_epoch 100 --model_config 'gru_10,f_8' --ptn_nfeat_stn 11 \
--nworkers 2 --odir "results/sema3d/trainval_best"

The trained network can be downloaded here and loaded with --resume argument. Rename the file model.pth.tar (do not try to unzip it!) and place it in the directory results/sema3d/trainval_best.

To test this network on the full test set, run

CUDA_VISIBLE_DEVICES=0 python learning/main.py --dataset sema3d --SEMA3D_PATH $SEMA3D_DIR --db_test_name testfull --db_train_name trainval \
--epochs -1 --lr_steps '[350, 400, 450]' --test_nth_epoch 100 --model_config 'gru_10,f_8' --ptn_nfeat_stn 11 \
--nworkers 2 --odir "results/sema3d/trainval_best" --resume RESUME

We validated our configuration on a custom split of 11 and 4 clouds. The network is trained as such:

CUDA_VISIBLE_DEVICES=0 python learning/main.py --dataset sema3d --SEMA3D_PATH $SEMA3D_DIR --epochs 450 --lr_steps '[350, 400]' --test_nth_epoch 100 \
--model_config 'gru_10,f_8' --ptn_nfeat_stn 11 --nworkers 2 --odir "results/sema3d/best"

To upsample the prediction to the unpruned data and write the .labels files for the reduced test set, run:

python partition/write_Semantic3d.py --SEMA3D_PATH $SEMA3D_DIR --odir "results/sema3d/trainval_best" --db_test_name testred

To visualize the results and intermediary steps (on the subsampled graph), use the visualize function in partition. For example:

python partition/visualize.py --dataset sema3d --ROOT_PATH $SEMA3D_DIR --res_file 'results/sema3d/trainval_best/prediction_testred' --file_path 'test_reduced/MarketplaceFeldkirch_Station4' --output_type ifprs

avoid --upsample 1 as it can can take a very long time on the largest clouds.

Other data sets

You can apply SPG on your own data set with minimal changes:

  • adapt references to custom_dataset in /partition/partition.py
  • you will need to create the function read_custom_format in /partition/provider.py which outputs xyz and rgb values, as well as semantic labels if available (already implemented for ply and las files)
  • adapt the template function /learning/custom_dataset.py to your achitecture and design choices
  • adapt references to custom_dataset in /learning/main.py
  • add your data set colormap to get_color_from_label in /partition/provider.py
  • adapt line 212 of learning/spg.py to reflect the missing or extra point features
  • change --model_config to gru_10,f_K with K as the number of classes in your dataset, or gru_10_0,f_K to use matrix edge filters instead of vectors (only use matrices when your data set is quite large, and with many different point clouds, like S3DIS).

Datasets without RGB

If your data does not have RGB values you can easily use SPG. You will need to follow the instructions in partition/partition.ply regarding the pruning. You will need to adapt the /learning/custom_dataset.py file so that it does not refer ro RGB values. You should absolutely not use a model pretrained on values with RGB. instead, retrain a model from scratch using the --pc_attribs xyzelpsv option to remove RGB from the shape embedding input.