-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathq_network.py
379 lines (303 loc) · 19.8 KB
/
q_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
from agent.hyperparameters import QNetworkHyperparameters
import numpy as np
import tensorflow as tf
import math
import logging
from collections import namedtuple
TFGraphForwardPassBundle = namedtuple('TFGraphForwardPropBundle',
['input_state',
'output_all_actions_q_values',
'variable_scope_name_prefix'])
TFGraphTrainBundle = namedtuple('TFGraphTrainBundle',
['input_states',
'output_all_actions_q_values',
'action_indexes',
'target_action_q_values',
'learning_rate',
'loss',
'optimizer',
'variable_scope_name_prefix'])
QNetworkTrainBundle = namedtuple("QNetworkTrainBundle", ["state", "action_index", "target_action_q_value"])
class QNetworkFactory(object):
def create(self, screen_width, screen_height, num_channels, num_actions, metrics_directory, batched_forward_pass_size):
return QNetwork(screen_width, screen_height, num_channels, num_actions, metrics_directory, batched_forward_pass_size)
class QNetwork(object):
MODEL_NAME_TRAIN = 'model-train'
MODEL_NAME_FORWARD_PASS = 'model-forward-pass'
def __init__(self,
screen_width,
screen_height,
num_channels,
num_actions,
metrics_directory,
batched_forward_pass_size,
hyperparameters=QNetworkHyperparameters()):
self.logger = logging.getLogger(__name__)
self.screen_width = screen_width
self.screen_height = screen_height
self.num_channels = num_channels
self.num_actions = num_actions
self.batched_forward_pass_size = batched_forward_pass_size
self.hyperparameters = hyperparameters
self.tf_graph = tf.Graph()
self.tf_graph_forward_pass_bundle_single = self._build_graph_forward_pass_bundle(self.tf_graph, 1)
self.tf_graph_forward_pass_bundle_batched = self._build_graph_forward_pass_bundle(self.tf_graph, batched_forward_pass_size)
self.tf_graph_train_bundle = self._build_graph_train_bundle(self.tf_graph)
self.tf_session = tf.Session(graph=self.tf_graph)
with self.tf_graph.as_default():
self.tf_all_summaries = tf.merge_all_summaries()
self.tf_summary_writer = tf.train.SummaryWriter(logdir=metrics_directory, graph=self.tf_graph)
self.tf_saver = tf.train.Saver()
tf.initialize_all_variables().run(session=self.tf_session)
self.assigns_train_to_forward_pass_variables = self._build_assigns_train_to_forward_pass_variables()
def _build_graph_forward_pass_bundle(self, graph, batch_size):
with graph.as_default():
input_state = tf.placeholder(tf.float32,
shape=(batch_size, self.screen_height, self.screen_width, self.num_channels),
name='input_state')
variable_scope_name_prefix = "{0}-{1}-scope".format(self.MODEL_NAME_FORWARD_PASS, batch_size)
output_all_actions_q_values = self._network_model(variable_scope_name_prefix=variable_scope_name_prefix,
input=input_state,
output_size=self.num_actions,
record_metrics=False)
return TFGraphForwardPassBundle(input_state=input_state,
output_all_actions_q_values=output_all_actions_q_values,
variable_scope_name_prefix=variable_scope_name_prefix)
def _build_graph_train_bundle(self, graph):
with graph.as_default():
input_states = tf.placeholder(tf.float32,
shape=(self.hyperparameters.SGD_BATCH_SIZE, self.screen_height, self.screen_width, self.num_channels),
name='input_states')
variable_scope_name_prefix=self.MODEL_NAME_TRAIN
output_all_actions_q_values = self._network_model(variable_scope_name_prefix=variable_scope_name_prefix,
input=input_states,
output_size=self.num_actions,
record_metrics=True)
action_indexes = tf.placeholder(tf.float32, shape=(self.hyperparameters.SGD_BATCH_SIZE, self.num_actions), name='action_indexes')
output_filtered_action_q_values = tf.reduce_sum(tf.mul(output_all_actions_q_values, action_indexes), reduction_indices=1)
target_action_q_values = tf.placeholder(tf.float32, shape=(self.hyperparameters.SGD_BATCH_SIZE), name='target_action_q_values')
delta = target_action_q_values - output_filtered_action_q_values
loss = tf.reduce_mean(tf.square(delta))
learning_rate = tf.Variable(self.hyperparameters.LEARNING_RATE_INITIAL, trainable=False)
optimizer = tf.train.RMSPropOptimizer(learning_rate,
decay=self.hyperparameters.RMS_DECAY,
momentum=self.hyperparameters.RMS_MOMENTUM,
epsilon=self.hyperparameters.RMS_EPSILON).minimize(loss)
tf.scalar_summary('loss', loss)
tf.scalar_summary('learning_rate', learning_rate)
return TFGraphTrainBundle(input_states=input_states,
output_all_actions_q_values=output_all_actions_q_values,
action_indexes=action_indexes,
target_action_q_values=target_action_q_values,
learning_rate=learning_rate,
loss=loss,
optimizer=optimizer,
variable_scope_name_prefix=variable_scope_name_prefix)
def _network_model(self, variable_scope_name_prefix, input, output_size, record_metrics):
conv1 = self._convolutional_layer(input=input,
patch_size=8,
stride=4,
input_channels=self.num_channels,
output_channels=32,
bias_init_value=0.0,
scope_name=variable_scope_name_prefix + '_conv1')
conv2 = self._convolutional_layer(input=conv1,
patch_size=4,
stride=2,
input_channels=32,
output_channels=64,
bias_init_value=0.1,
scope_name=variable_scope_name_prefix + '_conv2')
conv3 = self._convolutional_layer(input=conv2,
patch_size=3,
stride=1,
input_channels=64,
output_channels=64,
bias_init_value=0.1,
scope_name=variable_scope_name_prefix + '_conv3')
flattened_conv3 = tf.reshape(conv3, [input.get_shape()[0].value, -1])
flattened_conv3_size = flattened_conv3.get_shape()[1].value
# relu4
relu4 = self._relu_layer(input=flattened_conv3,
input_size=flattened_conv3_size,
output_size=512,
scope_name=variable_scope_name_prefix + '_relu4')
local5 = self._linear_layer(input=relu4,
input_size=512,
output_size=output_size,
scope_name=variable_scope_name_prefix + '_local5')
if record_metrics:
self._activation_summary(conv1)
self._activation_summary(conv2)
self._activation_summary(conv3)
self._activation_summary(relu4)
self._activation_summary(local5)
return local5
def _convolutional_layer(self, input, patch_size, stride, input_channels, output_channels, bias_init_value, scope_name):
with tf.variable_scope(scope_name) as scope:
weights = tf.get_variable(name='weights',
shape=[patch_size, patch_size, input_channels, output_channels],
initializer=tf.contrib.layers.xavier_initializer_conv2d())
biases = tf.Variable(name='biases', initial_value=tf.constant(value=bias_init_value, shape=[output_channels]))
conv = tf.nn.conv2d(input, weights, [1, stride, stride, 1], padding='SAME')
linear_rectification_bias = tf.nn.bias_add(conv, biases)
output = tf.nn.relu(linear_rectification_bias, name=scope.name)
grid_x = output_channels // 4
grid_y = 4 * input_channels
kernels_image_grid = self._create_kernels_image_grid(weights, (grid_x, grid_y))
tf.image_summary(scope_name + '/features', kernels_image_grid, max_images=1)
if "_conv1" in scope_name:
x_min = tf.reduce_min(weights)
x_max = tf.reduce_max(weights)
weights_0_to_1 = (weights - x_min) / (x_max - x_min)
weights_0_to_255_uint8 = tf.image.convert_image_dtype(weights_0_to_1, dtype=tf.uint8)
# to tf.image_summary format [batch_size, height, width, channels]
weights_transposed = tf.transpose(weights_0_to_255_uint8, [3, 0, 1, 2])
tf.image_summary(scope_name + '/features', weights_transposed[:,:,:,0:1], max_images=32)
return output
def _relu_layer(self, input, input_size, output_size, scope_name):
with tf.variable_scope(scope_name) as scope:
weights = tf.get_variable(name='weights',
shape=[input_size, output_size],
initializer=tf.contrib.layers.xavier_initializer())
biases = tf.Variable(name='biases', initial_value=tf.constant(value=0.1, shape=[output_size]))
output = tf.nn.relu(tf.matmul(input, weights) + biases, name=scope.name)
return output
def _linear_layer(self, input, input_size, output_size, scope_name):
with tf.variable_scope(scope_name) as scope:
weights = tf.Variable(name='weights',
initial_value=tf.truncated_normal(shape=[input_size, output_size], stddev=0.1))
biases = tf.Variable(name='biases', initial_value=tf.constant(value=0.1, shape=[output_size]))
output = tf.matmul(input, weights) + biases
return output
def _activation_summary(self, tensor):
tensor_name = tensor.op.name
tf.histogram_summary(tensor_name + '/activations', tensor)
tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(tensor))
def _create_kernels_image_grid(self, kernel, (grid_X, grid_Y), pad=1):
'''Visualize conv. features as an image (mostly for the 1st layer).
Place kernel into a grid, with some paddings between adjacent filters.
Args:
kernel: tensor of shape [Y, X, NumChannels, NumKernels]
(grid_X, grid_Y): shape of the grid. Require: NumKernels == grid_X * grid_Y
User is responsible of how to break into two multiples.
pad: number of black pixels around each filter (between them)
Return:
Tensor of shape [(Y+pad)*grid_Y, (X+pad)*grid_X, NumChannels, 1].
'''
flattened_kernel = tf.reshape(kernel, tf.pack([kernel.get_shape()[0],
kernel.get_shape()[1],
1,
kernel.get_shape()[3] * kernel.get_shape()[2]]))
# X and Y dimensions, w.r.t. padding
Y = flattened_kernel.get_shape()[0] + pad
X = flattened_kernel.get_shape()[1] + pad
# pad X and Y
x1 = tf.pad(flattened_kernel, tf.constant([[pad, 0], [pad, 0], [0, 0], [0, 0]]))
# put NumKernels to the 1st dimension
x2 = tf.transpose(x1, (3, 0, 1, 2))
# organize grid on Y axis
x3 = tf.reshape(x2, tf.pack([grid_X, Y * grid_Y, X, 1]))
# switch X and Y axes
x4 = tf.transpose(x3, (0, 2, 1, 3))
# organize grid on X axis
x5 = tf.reshape(x4, tf.pack([1, X * grid_X, Y * grid_Y, 1]))
# back to normal order (not combining with the next step for clarity)
x6 = tf.transpose(x5, (2, 1, 3, 0))
# to tf.image_summary order [batch_size, height, width, channels],
# where in this case batch_size == 1
x7 = tf.transpose(x6, (3, 0, 1, 2))
# scale to [0, 1]
x_min = tf.reduce_min(x7)
x_max = tf.reduce_max(x7)
x8 = (x7 - x_min) / (x_max - x_min)
return x8
def create_train_bundle(self, state, action_index, target_action_q_value):
return QNetworkTrainBundle(state=state,
action_index=action_index,
target_action_q_value=target_action_q_value)
def train(self, train_bundles, training_step):
train_bundles_len = len(train_bundles)
if train_bundles_len < self.hyperparameters.SGD_BATCH_SIZE:
self.logger.info('Training bundle is smaller than batch size, skipping train')
return
offset = self.hyperparameters.SGD_BATCH_SIZE % train_bundles_len
batch_train_bundles = self._circular_selection_of_batch(offset, train_bundles, train_bundles_len)
batch_input_states = [train_bundle.state for train_bundle in batch_train_bundles]
batch_action_indexes = [np.eye(self.num_actions)[train_bundle.action_index] for train_bundle in
batch_train_bundles]
batch_target_action_q_values = [train_bundle.target_action_q_value for train_bundle in batch_train_bundles]
feed_dict = {
self.tf_graph_train_bundle.input_states: np.asarray(batch_input_states),
self.tf_graph_train_bundle.action_indexes: np.asarray(batch_action_indexes),
self.tf_graph_train_bundle.target_action_q_values: np.asarray(batch_target_action_q_values)
}
with self.tf_session.as_default():
run_result = self.tf_session.run(
[self.tf_graph_train_bundle.loss,
self.tf_graph_train_bundle.optimizer],
feed_dict=feed_dict)
evaluated_loss = run_result[0]
self.logger.info('Loss: %f' % evaluated_loss)
if training_step % self.hyperparameters.NUM_STEPS_ASSIGN_TRAIN_TO_FORWARD_PROP_GRAPH == 0:
self.tf_session.run(self.assigns_train_to_forward_pass_variables)
self.logger.info("Assigning trained variables to forward pass graph")
if (training_step + 1) % self.hyperparameters.LEARNING_RATE_DECAY_STEP == 0:
current_learning_rate = self.tf_session.run([self.tf_graph_train_bundle.learning_rate])[0]
learning_rate_decay = math.pow(float(self.hyperparameters.LEARNING_RATE_FINAL) / float(self.hyperparameters.LEARNING_RATE_INITIAL),
1.0 / (float(self.hyperparameters.LEARNING_RATE_FINAL_AT_STEP) / float(self.hyperparameters.LEARNING_RATE_DECAY_STEP)))
next_learning_rate = current_learning_rate * learning_rate_decay
self.tf_session.run(tf.assign(self.tf_graph_train_bundle.learning_rate, next_learning_rate))
if training_step % self.hyperparameters.METRICS_SAVE_STEP == 0:
evaluated_all_summaries = self.tf_session.run([self.tf_all_summaries], feed_dict=feed_dict)[0]
self.tf_summary_writer.add_summary(evaluated_all_summaries, training_step)
return evaluated_loss
def _circular_selection_of_batch(self, offset, train_bundles, train_bundles_len):
selection_end_of_list = train_bundles[offset:min(train_bundles_len, (offset + self.hyperparameters.SGD_BATCH_SIZE))]
selection_beggining_of_list = train_bundles[0:max(0, ((offset + self.hyperparameters.SGD_BATCH_SIZE) - train_bundles_len))]
return selection_end_of_list + selection_beggining_of_list
def forward_pass_single(self, input_state):
return self._forward_pass([input_state], self.tf_graph_forward_pass_bundle_single)
def forward_pass_batched(self, input_states):
return self._forward_pass(input_states, self.tf_graph_forward_pass_bundle_batched)
def _forward_pass(self, input_states, forward_pass_graph_bundle):
feed_dict = {forward_pass_graph_bundle.input_state: np.asarray(self._replace_non_existing_states_with_zeroed_states(input_states))}
with self.tf_session.as_default():
return self.tf_session.run(
[forward_pass_graph_bundle.output_all_actions_q_values],
feed_dict=feed_dict)[0]
def _replace_non_existing_states_with_zeroed_states(self, states):
result = [None] * len(states)
for idx, state in enumerate(states):
if state is None:
result[idx] = np.zeros((self.screen_height, self.screen_width, self.num_channels))
else:
result[idx] = state
return result
def _build_assigns_train_to_forward_pass_variables(self):
assigns = []
with self.tf_graph.as_default():
for variable in tf.all_variables():
self._assign_forward_pass_variable_to_train_variable(forward_pass_prefix=self.tf_graph_forward_pass_bundle_single.variable_scope_name_prefix,
variable=variable,
assigns=assigns)
self._assign_forward_pass_variable_to_train_variable(forward_pass_prefix=self.tf_graph_forward_pass_bundle_batched.variable_scope_name_prefix,
variable=variable,
assigns=assigns)
return assigns
def _assign_forward_pass_variable_to_train_variable(self, forward_pass_prefix, variable, assigns):
if variable.name.startswith(forward_pass_prefix):
forward_pass_variable = variable
train_variable_name = forward_pass_variable.name.replace(forward_pass_prefix, self.tf_graph_train_bundle.variable_scope_name_prefix)
train_variable = [v for v in tf.all_variables() if train_variable_name in v.name][0]
assigns.append(forward_pass_variable.assign(train_variable))
self.logger.debug("{target} will be assigned to {source} when summoned".format(target=forward_pass_variable.name,
source=train_variable.name))
def save(self, path):
with self.tf_session.as_default():
save_path = self.tf_saver.save(self.tf_session, path)
self.logger.info("Q Network saved in file: %s" % save_path)
def restore(self, path):
with self.tf_session.as_default():
self.tf_saver.restore(self.tf_session, path)
self.logger.info("Q Network restored from file: %s" % path)