parse and summarise git repository history
R
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
R
benchmarking
data
docs
inst/report_templates
man
tests
vignettes
.Rbuildignore
.gitignore
.travis.yml
API
CONTRIBUTING.md
DESCRIPTION
LICENSE
NAMESPACE
README-ggplot1-1.png
README-ggplot2-1.png
README-ggplot3-1.png
README-per_file-1.png
README.Rmd
README.md
_pkgdown.yml
appveyor.yml
gitsum.Rproj
index.Rmd

README.md

Package is work in progress! If you encounter errors / problems, please file an issue or make a PR.

codecov Build Status AppVeyor Build Status

Introduction

This package parses a git repository history to collect comprehensive information about the activity in the repo. The parsed data is made available to the user in a tabular format. The package can also generate reports based on the parse data. You can install the development version from GitHub.

remotes::install_github("lorenzwalthert/gitsum")

There are two main functions for parsing the history, both return tabular data:

  • parse_log_simple() is a relatively fast parser and returns a tibble with one commit per row. There is no file-specific information.
  • parse_log_detailed() outputs a nested tibble and for each commit, the names of the amended files, number of lines changed ect. available. This function is slower.

report_git() creates a html, pdf, or word report with the parsed log data according to a template. Templates can be created by the user or a template from the gitsum package can be used.

Let’s see the package in action.

library("gitsum")
library("tidyverse")
library("forcats")

We can obtain a parsed log like this:

init_gitsum()
tbl <- parse_log_detailed() %>%
  select(short_hash, short_message, total_files_changed, nested)
tbl 
#> # A tibble: 149 x 4
#>    short_hash short_message        total_files_changed nested           
#>    <chr>      <chr>                              <int> <list>           
#>  1 243f       initial commit                         7 <tibble [7 × 5]> 
#>  2 f8ee       add log example data                   1 <tibble [1 × 5]> 
#>  3 6328       add parents                            3 <tibble [3 × 5]> 
#>  4 dfab       intermediate                           1 <tibble [1 × 5]> 
#>  5 7825       add licence                            1 <tibble [1 × 5]> 
#>  6 2ac3       add readme                             2 <tibble [2 × 5]> 
#>  7 7a2a       document log data                      1 <tibble [1 × 5]> 
#>  8 943c       add helpfiles                         10 <tibble [10 × 5]>
#>  9 917e       update infrastructur                   3 <tibble [3 × 5]> 
#> 10 4fc0       remove garbage                         6 <tibble [6 × 5]> 
#> # ... with 139 more rows

Since we used parse_log_detailed(), there is detailed file-specific information available for every commit:

tbl$nested[[3]]
#> # A tibble: 3 x 5
#>   changed_file edits insertions deletions is_exact
#>   <chr>        <int>      <int>     <int> <lgl>   
#> 1 DESCRIPTION      6          5         1 T       
#> 2 NAMESPACE        3          2         1 T       
#> 3 R/get_log.R     19         11         8 T

Since the data has such a high resolution, various graphs, tables etc. can be produced from it to provide insights into the git history.

Examples

Since the output of git_log_detailed() is a nested tibble, you can work on it as you work on any other tibble. Let us first have a look at who comitted to this repository:

log <- parse_log_detailed()
log %>%
group_by(author_name) %>%
  summarize(n = n())
#> # A tibble: 3 x 2
#>   author_name         n
#>   <chr>           <int>
#> 1 Jon Calder          2
#> 2 jonmcalder          6
#> 3 Lorenz Walthert   141

We can also investigate how the number of lines of each file in the R directory evolved. For that, we probaly want to view files with changed names as one file. Also, we probably don’t want to see boring plots for files that got changed only a few times. Let’s focus on files that were changed in at least five commits.

lines <- log %>%
  unnest_log() %>%
  set_changed_file_to_latest_name() %>%
  add_line_history()
#> The following name changes were identified (11 in total):
#> ● man/{get_log.Rd => get_log_simple.Rd}
#> ● man/{parse_log.Rd => parse_log_one.Rd}
#> ● man/{get_pattern.Rd => get_pattern_multiple.Rd}
#> ● man/{get_log_regex.Rd => git_log_detailed.Rd}
#> ● man/{rmd_simple.Rd => git_report.Rd}
#> ● R/{gitsum.R => gitsum-package.R}
#> ● man/{git_log_detailed.Rd => parse_log_detailed.Rd}
#> ● man/{git_log_simple.Rd => parse_log_simple.Rd}
#> ● man/{ensure_gitusm_repo.Rd => ensure_gitsum_repo.Rd}
#> ● man/{log.Rd => gitsumlog.Rd}
#> ● man/{git_report.Rd => report_git.Rd}

r_files <- grep("^R/", lines$changed_file, value = TRUE)

to_plot <- lines %>%
  filter(changed_file %in% r_files) %>%
  add_n_times_changed_file() %>%
  filter(n_times_changed_file >= 10)
ggplot(to_plot, aes(x = date, y = current_lines)) + 
  geom_step() + 
  scale_y_continuous(name = "Number of Lines", limits = c(0, NA)) + 
  facet_wrap(~changed_file, scales = "free_y")

Next, we want to see which files were contained in most commits:

log %>%
  unnest_log() %>%
  mutate(changed_file = fct_lump(fct_infreq(changed_file), n = 10)) %>%
  filter(changed_file != "Other") %>%
  ggplot(aes(x = changed_file)) + geom_bar() + coord_flip() + 
  theme_minimal()

We can also easily get a visual overview of the number of insertions & deletions in commits over time:

commit.dat <- data.frame(
    edits = rep(c("Insertions", "Deletions"), each = nrow(log)),
    commit = rep(1:nrow(log), 2),
    count = c(log$total_insertions, -log$total_deletions))
    
ggplot(commit.dat, aes(x = commit, y = count, fill = edits)) + 
  geom_bar(stat = "identity", position = "identity") +  
  theme_minimal()

Or the number of commits broken down by day of the week:

log %>%
  mutate(weekday = factor(weekday, c("Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"))) %>% 
  ggplot(aes(x = weekday)) + geom_bar() + 
  theme_minimal()