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1. Introduction

Overview
Protein evolution is determined by constraints at several levels of biological organization. Random
mutations have an immediate effect on the biophysical properties, structure and function of proteins.
These same mutations also affect the fitness of the organism. However, the evolutionary fate of
these mutations, whether they succeed to fixation or are purged, also depends on population size
and dynamics. There is an emerging interest, both theoretically and experimentally, to integrate
these two constraints in protein evolution. Although there are several tools available for simulating
protein evolution, most of them focus on either the biophysical or the population-level constraints,
but not both.

SodaPop is a new computational suite to simulate protein evolution in the context of the
population dynamics of asexual populations. SodaPop accepts as input several fitness landscapes
based on protein biochemistry or other user-defined fitness function. The user can also provide
as input experimental fitness landscapes derived from deep mutational scanning approaches or
theoretical landscapes derived from physical force field estimates. SodaPop is designed such that
population geneticists can explore the role of protein biochemistry on genetic variation, and that
biochemists and biophysicists can explore the role of population size and demography on protein
evolution. This highly flexible tool takes as input a fitness landscape based on protein biochemistry
and biophysics, experimental deep mutational scans or a phenomenological distribution of fitness
effects. SodaPop was designed such that population geneticists can explore the role of protein
biochemistry on genetic variation, and that biochemists and biophysicists can explore the role of
population size and demography on protein evolution.

The main software is implemented in C++ and supported on Linux, Mac OS/X and Windows.
Source code and binaries are freely available at https://github.com/louisgt/SodaPop under the GNU
GPLv3 license.
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2. Setup and installation

This section will take you through step-by-step installation.

Note This program and simulation examples were developed for a Unix environment. For use
in Windows, we strongly recommend installing a Unix-like environment such as Cygwin or
MinGW.

�

SodaPop is a suite of command-line tools written in the C++ programming language us-
ing the C++11 Standard. The source code and compiled binaries can be downloaded from
https://github.com/louisgt/SodaPop.

Users unfamiliar with command-line interface are referred to the Annex: Using the command-
line found at the end of this manual.

2.1 Downloading SodaPop

Directly download SodaPop using the Git command. Alternatively, you can download its zip
archive from https://github.com/louisgt/SodaPop.

2.1.1 Cloning via Git
Use the Git command to clone the original SodaPop repository to a local folder with

git clone https://github.com/louisgt/SodaPop.git my_folder

2.1.2 Zip archive
1. Go to https://github.com/louisgt/SodaPop. Click on the Clone or download button and select the
Download ZIP option.
2. Move the archive to your preferred location and unzip its contents with

tar -zxvf [name of the zip file]

2.2 Installation

SodaPop comes with compiled binaries (executables). However, you are advised to compile the
program on your system.

To compile all components of SodaPop, run

make

This uses the makefile to build the binaries sodapop, sodasnap and sodasumm, which can be
executed from the folder they are located in. If you wish to install the program on your computer,
run
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Chapter 2. Setup and installation 7

make install

By default, the three binaries above will be appended to /usr/local/bin. You can change
this option in the makefile by editing the content of the $INSTALLDIR variable.

To verify the installation step, run make again and the terminal will read

make: Nothing to be done for ‘all’.

If the following error arises when compiling

error: unrecognized command line option "-std=c++11"

your compiler is likely out-of-date. You can get a new version of gcc/g++ here. SodaPop is
compatible with any version starting from gcc 4.7 or higherr.

SodaPop 1.0: User Manual
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3. List of command-line options

Command-line flags and parameters are used to toggle features, change program behavior and
provide input parameters and files for a simulation. To view the available flags and their description,
type

sodapop -help

Flags can also be added or modified in the evolve.cpp source file, using the TCLAP library API.

3.1 Numerical parameters

Number of generations [-m, --maxgen]
(Integer) The length of the simulation in number of generations.
(Default value) 10.

Population size cutoff [-n, --size]
(Integer) The target population size in each generation or the carrying capacity.
(Default value) 1.

Snapshot interval [-t, --dt]
(Integer) The time interval at which a population snapshot is saved. The minimum value

is 1 and there is no maximum value. However, if dt exceeds the specified length of the
simulation, only one snapshot is saved.

(Default value) 1.

3.2 Input files

Gene list file [-g, --gene-list]
(File) A text file that lists genes and the files that describe them (see Section 4.2 and Fig.

4.4)

Population description file [-p, --pop-desc]
(File) The binary snapshot required to initialize the population in the simulation (see Section

4.2).

Path to gene library [-l, --gene-lib]
(Integer) The path to the folder containing the gene files.
(Default value) /files/genes/.

SodaPop 1.0: User Manual
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Chapter 3. List of command-line options 9

3.3 Fitness landscape

Input fitness landscape [-i, --input]
(File) This file defines effects of mutations for all genes in the simulation (See section 5).

For a given gene, there is a matrix Ma,k describing the change in fitness for a mutation
to amino acid a in residue k. The index a is over all 20 amino acid listed in alphabetical
order (from ’A’ to ’Y’). In the file, this matrix is described by k rows of 20 values. The
mutational matrices of all the genes are ordered in the file according to their gene ID.

By default, the values of in the matrix are assumed to be fitness changes (selection
coefficients) from deep mutational scan (DMS) experiments. However, these matrices
can contain changes to folding stability (∆∆G f olding = ∆Gmutant −∆Gwildtype) or other
biophysical properties.

Fitness function [-f, --fitness]
(Integer) Used to select the appropriate fitness function depending on the input type and

the biophysical or biochemical property of interest. For a detailed reference of available
functions, refer to section Fitness functions.

1 Folding stability.
2 Misfolding toxicity.
3 Combined metabolic output.
4 Multiplicative.
5 Neutral.
6 No mutations.

Simulation type [--sim-type]
(String) This flag is used to specify if mutation effects are interpreted directly as selection co-

efficients, or if they are effects on a particular property. By default, values are interpreted
as selection coefficients. Alternatively, the type can be set to thermodynamic stability
(∆G), kcat/KM or another property implemented by the user.

s Selection coefficients.
stability Thermodynamic stability.
efficiency Protein catalytic efficiency.

Use gamma distribution [--gamma]
(Flag) This flag will draw fitness effects from a gamma distribution. The shape and scale

parameters are specified with the alpha and beta flags, respectively.

Use normal distribution [--normal]
(Flag) This flag will draw fitness effects from a normal distribution. The mean and standard

deviation are specified with the alpha and beta flags, respectively.
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Chapter 3. List of command-line options 10

Alpha parameter [--alpha]
(Double) Value of the alpha parameter. If gamma distribution is used, this corresponds to the

shape parameter. If normal distribution is used, this corresponds to the mean (µ).

Beta parameter [--beta]
(Double) Value of the alpha parameter. If gamma distribution is used, this corresponds to the

scale parameter. If normal distribution is used, this corresponds to the standard deviation
(σ ).

3.4 Analysis and output

Output prefix [-o, --prefix]
(String) A prefix string appended to the filename of the output. If the specified directory

does not exist, it will be created. If it exists, its current contents are overwritten. This
parameter is not required, but strongly recommended since the default setting will create
a directory named ?sim/? and could overwrite a previous run. You should always specify
a new output prefix if working with multiple runs.

Initialize population from single cell [-c, --create-single]
(Flag) Using this flag will populate the initial cell vector with copies of a single cell. This can

slightly speed up initialization for large-scale populations (106 or higher), at the expense
of no clonal diversity. If your starting population is polyclonal, you should not use this
flag.

Toggle automatic analysis [-a, --analyze]
(Flag) Using this flag will call analysis scripts after the simulation algorithm is complete.

Refer to the Results and analysis section for detailed information.

Track mutations [-e, --track-events]
(Flag) Using this flag will save a log with all arising mutations during the course of the

simulation (see Section 6.4).

Output format [-s, --seq-output]
(Flag) Using this flag you can specify the output format of population snapshots. If you

don’t need sequence information, use the short format as input/output operations will be
lighter. If you’d rather have sequence data as DNA instead of protein, use the long format
with DNA. See section 6.5 for details on output formats.

Default Long format.

0 Long format.
1 Short format.
2 Long format with DNA.
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4. Quick Start

This chapter introduces users to SodaPop and its applications.

4.1 Program workflow

SodaPop’s simulation algorithm is adapted from a Wright-Fisher model with selection (Fig. 4.1).
Generations are discrete steps in which all N parent cells within the population give birth to a
number of daughter cells proportional to their relative fitness. The number of progeny k is drawn
from a binomial distribution with N trials and mean w, which is the the fitness of the parent cell
over the sum of all cell fitnesses. The offspring become the parents for the next generation.

Initializing a simulation with SodaPop requires a combination of input files with a specific
hierarchy (Fig. 4.2). The next section will take you through the definition and function of these
files.

Figure 4.1: Illustration of SodaPop’s evolutionary algorithm.
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Chapter 4. Quick Start 12

Figure 4.2: Illustration of SodaPop’s input file hierarchy. (A) The population file indicates the
clonal composition of the initial population as the count of different cell types. These cells are
defined individually in (B) cell files that contain a numeric identifier, a mutation rate and a list of
gene identifiers. These numeric identifiers are indexed in a gene list (C) which maps to gene files
(D) that contain gene sequence and information.

4.2 Creating a starting population snapshot

Prior to running a simulation, the first thing to do is to create your own population snapshot. In
SodaPop, a population is defined by a collection of cells, that are in turned defined by their genes.
We will thus start by creating a gene file. An example gene file is shown in Fig. 4.3.

It has a numeric identifier as well as an alphanumeric ID. The numeric identifier is important for
the proper mapping of primordial sequences. Genes are thus saved as [numericID].gene. You can
keep an index of the alphanumeric ID corresponding to each gene in the gene list (textbfFig. 4.4).
Genes have an explicit nucleotide sequence and the corresponding translated amino acid sequence.
The nucleotide sequence should have an exact 3 to 1 correspondence with the protein sequence.
There should be no stop codons in the sequence. ’E’ is the gene’s essentiality. ’DG’ is the Gibbs
folding free energy (∆G, in kcal/mol) or folding stability of the corresponding protein. ’CONC’
is the intracellular concentration of the protein. ’F’ is the protein’s fitness. ’EFF’ is the catalytic
efficiency of the protein.

The file gene_list.dat keeps an index of all the genes to be used in a simulation. An example
gene list is shown in Fig. 4.4. You can define as many genes and gene lists as necessary. However,
make sure you use the correct list when you run a simulation. If there is a mismatch between the
genes of your initial population and the genes in your index list, the program will exit and issue an
error.

Now that we have created a gene, we need to define a cell and its properties. Cells possess
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Chapter 4. Quick Start 13

Figure 4.3: Example of .gene file description.

individual attributes such as a mutation rate. The .cell file lists all the identifiers of genes in a cell,
preceded by a ’G’. Again, genes are indexed by their numeric identifier. The same goes for cells.
An example cell file is shown in Fig. 4.5.

Figure 4.4: Example of gene_list file description.

Once a cell has been defined, we can create a starting population snapshot. The last layer in
the hierarchy is the population description file (Fig. 4.6). It lists the composition of the initial
population we wish to create. In our case, we will define a polyclonal population with three different
clones. The template shows how to define this population (Fig. 4.6). The count is the size of the
starting subpopulation for each clone. The comment is optional and is ignored by the program.

To recapitulate, we must first create a gene file (Fig. 4.2D). We then define a cell file to include
our gene(s) (Fig. 4.2B). Finally, we create a population summary defining the initial clonal structure
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Chapter 4. Quick Start 14

Figure 4.5: Example of .cell file description.

Figure 4.6: Example of population file description.

we want (Fig. 4.2A).
We will use the program called sodasumm to create a starting population snapshot. If you run

the program without any flag or argument, it will display the options:

sodasumm <population summary> [ 0-full | 1-single cell | 2-randomize
barcodes | 3-introduce variation]

As input, we need the population summary created above (Fig. 4.6), and we must specify
whether we want to build the full population with clones sharing the same barcode (option 0),
a randomized population from the first cell in the file (option 1), the full population with each
cell having a randomized unique barcode (option 2), or the full population with clones sharing
the same barcode, with fitness effects randomly introduced in clusters of cells (option 3). After
running sodasumm, a .snap file will be created in the same directory and with the same prefix as
the population description file. This is your starting snapshot. You can rename it, but keep the .snap
extension to distinguish between different input files.

4.3 Running a neutral simulation
Using the created population snapshot, we can run a very simple neutral simulation, that is, without
selection. We can do this using the sample files packaged with the program. Try running the
following command:
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sodapop --sim-type stability -f 5 -p files/start/pop1K.snap
-g files/genes/gene_list.dat -o neutral -n 1000 -m 1000 -t 10

The command-line display will read:

Begin ...
Initializing matrix ...
Loading primordial genes file ...
Opening starting population snapshot ...
Creating directory out/neutral/snapshots ... OK
Constructing population from source files/start/pop1K.snap ...
Saving initial population snapshot ...
Starting evolution ...
Done.
Total number of mutation events: 10767

Breaking down this command step by step:
• sodapop is the main simulation utility (or program).
• --sim-type stability defines the type of input to be used for the simulation. In our

case, we chose stability.
• -f 5 is the choice of fitness function. For more information on fitness functions, see Chapter

7. For now, just know that 5 is the mapping for the neutral fitness function.
• -p files/start/pop1K.snap is the the starting population snapshot file.
• -g files/genes/gene_list.dat is the gene list file.
• -o neutral is the prefix for output.
• -n 1000 is the population size.
• -m 1000 is the number of generations we want to simulate.
• -t 10 is the interval at which the program saves a population snapshot.

4.4 Folding stability simulation example

In the files/ folder of the SodaPop archive, you will find examples and data to help you get
started. Here, we will use some of these files to run a simple simulation based on protein folding
stability of the dihydrofolate reductase enzyme (DHFR) which is encoded by the folA gene in E.
coli.

The file DHFR_DDG.matrix is the fitness landscape of the protein folding stability of E. coli
DHFR. We will use it as input, along with a starting population snapshot of Ne = 104 initially
monoclonal cells. We will use the first fitness function, based on metabolic flux (see Chapter 7).
The following command will start a simulation and direct output to the directory out/foldsim/:

sodapop --sim-type stability -i files/start/DHFR_DDG.matrix
-f 1 -p files/start/DHFR_start.snap -g files/genes/gene_list.dat
-o foldsim -t 100 -n 10000 -m 5000 -a

Refer to Chapter 6 for detailed information on simulation output.

4.5 Sampled selection coefficients example

Here, we will use the multiplicative fitness function (-f 4) and sample selection coefficients from a
gaussian distribution with µ =−0.02 and σ = 0.01:
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sodapop --sim-type s --normal --alpha -0.02 --beta 0.01
-p files/start/population.snap -g files/genes/gene_list.dat
-o codesim -t 100 -n 10000 -m 1500 -a

4.6 Converting binary snapshots to text
sodasumm and sodapop both create snapshots in binary format (.snap). To manually convert
binary files to text, use sodasnap:

sodasnap <snap-binary> <out-ascii>

Where <snap-binary> is the binary snapshot to convert and <out-ascii> is the name of
the text file to create. Alternatively, adding the -a flag to your sodapop command will call analysis
scripts once the simulation is done. This includes automatically converting your snapshots to text,
extracting barcodes and generating basic plots. Refer to Chapter 6 for more details.
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5. Fitness landscapes

When a random mutation occurs in SodaPop, its effect on organismal fitness depends on the fitness
landscape chosen by the user. The following sections describe the three models of fitness landscape
that can be used in the program.

5.1 Phenomenological distribution

The effects of random mutations on organismal fitness can come from user-defined distributions.
In the current version of SodaPop, the DFE can be modelled by a two-parameter distribution of
either normal form N(µ,σ) or gamma form Γ(α,β ) using the --normal and --gamma flags. The
--alpha and --beta flags are used to specify µ and σ or α and β , respectively. These flags are
used in tandem with --sim-type to determine the nature of the drawn values. For instance, the
command

sodapop --sim-type s --normal --alpha -0.02 --beta 0.01
-p files/start/population.snap -g files/genes/gene_list.dat
-o codesim -t 100 -n 10000 -m 1500 -a

will draw selection coefficients from a distribution N(−0.02,0.01).
However, the command

sodapop --sim-type stability --normal --alpha 1 --beta 1 -f 1
-p files/start/population.snap -g files/genes/gene_list.dat
-o codesim -t 100 -n 10000 -m 1500 -a

will draw ∆∆G values from a distribution N(1,1) and calculate fitness effects based on the
resulting folding stability, with all other things kept equal. The same distinction is applied to
--gamma.

5.2 Computational tools in biophysics

SodaPop can take as input one or more substitution matrices that describe the molecular effects of
mutations on a particular protein property for all 1-away mutants (Fig. 5.1). The entries in these
tables can be derived from computational protein engineering tools such as Rosetta [1], Eris [4] or
FoldX [2]. Each matrix must be tab-separated and preceded by a header line containing the prefix
"Gene_NUM", the gene index matching the corresponding gene file and the protein length in amino
acids. Then, each row in the matrix must start by indicating the property (e.g. "DDG"), the residue
position (starting at 1), followed by a list of values for each amino acid substitution, including the
identity substitution. If you are simulating several proteins at once, each with a different matrix,
you must list the matrices one after the other in a single file. To input this file in a simulation, you
must use the -i flag Section 3.3.
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Chapter 5. Fitness landscapes 18

Figure 5.1: Example of substitution matrix for folding stability.

5.3 Experimentally derived fitness effects
SodaPop can take as input a substitution matrix that describes the fitness effects of all 1-away
mutants derived from deep mutagenesis scanning experiments (Fig. 5.2). Here, we describe
the format of these matrices. Each matrix must be tab-separated and preceded by a header line
containing the prefix "Gene_NUM", the gene index matching the corresponding gene file and
the protein length in amino acids. Then, each row in the matrix must start by indicating "DMS",
the residue position (starting at 1), followed by a list of values for each amino acid substitution,
including the identity substitution. If you are simulating several proteins at once, each with a
different matrix, you must list the matrices one after the other in a single file. To input this file in a
simulation, you must use the -i flag Section 3.3.

Figure 5.2: Example of substitution matrix derived from DMS data.
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6. Results and analysis

The package includes a small bioinformatics pipeline to extract, analyze and plot your data. The
scripts are written in Bash and R* and can be used separately from the main program. Those
familiar with scripting languages can also use the scripts as templates for other analyses.

By default, SodaPop will always output population snapshots following the format chosen
by the user. To toggle on automatic analysis, use the -a [-analyze] boolean flag with your
command (see List of command-line options).

Note As a requirement for plotting, the R programming language must be installed on your
machine. You can download the latest version of R here. The script will automatically install
the required R packages for you at runtime. �

6.1 Scripts

barcodes.sh : this is a Bash script that uses Unix utilities such as awk, grep, uniq, sort and
join. It executes the following operations:

1. Detect snapshot file format
2. Unzip and convert binary snapshots to text
3. Extract and sort the barcodes for each time point
4. Compute the average population fitness for each time point
5. Count the number of occurrences of a given barcode at each time point
6. Identify the time point corresponding to the fixation of a single barcode
7. Combine all time points in a dataframe
8. Call polyclonal_structure.R

This script can executed independently from the main program using the command-line. It
requires the following parameters: [name of the simulation directory] [number of generations]
[population size] [step size (dt)] [encoding format] [gene count per cell].

As an example, the following would be the command to analyze a long format simulation with
n = 10000, m = 10000 and a time step of t = 25 generations:

./barcodes.sh test_sim 10000 10000 25 0

polyclonal_structure.R : this is a R script that imports the time series data and the fitness table to
generate four distinct plots. Examples of these plots are found throughout this chapter.

6.2 Mean fitness plot

The first plot is named fitness and shows the evolution of the average population fitness during the
course of the simulation.

In the example below (Fig. 6.1), we observe a steep drop in fitness in the first few generations.
This is a typical case of Muller’s ratchet: under a high mutation rate, the population sees its mean
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Chapter 6. Results and analysis 20

Figure 6.1: Example trajectory showing the evolution of the average population fitness over 1000
generations for Ne = 104.

fitness decrease as the fittest individuals are hit by marginally deleterious mutations. Over time,
marginally beneficial mutations arise, conferring a selective advantage that is driving the mean
fitness higher.

6.3 Clonal structure

The second plot is named clonal_structure. It represents the share of each unique barcode over the
course of the simulation, up to the point of fixation of a single lineage. In Fig. 6.2, the vertical axis
represents the density of each lineage. The sum of all lineages is always equal to the size of the
population (in this case, 104). The slight slope in the top left area of the plot is a result of discarding
all lineages that are lost immediately after the first time point. The reason is that as the ratio of
unique barcodes to the population size approaches 1, a majority of barcodes will be naturally lost to
stochastic drift. Removing these lineages speeds up plotting and makes for a sharper image.

6.4 Clonal trajectories

The two remaining plots are named clonal_trajectories and log_clonal_trajectories. They are
temporal representations of the structure of the population in terms of each segregating lineage –
that is, cells sharing a common barcode.

In Fig. 6.3, the vertical axis represents the total count of each lineage as it segregates. Again,
this plot will show lineages up to the point of fixation, if such a point exists. This plot is useful to
quickly identify selective sweeps. Fig. 6.4 shows the same plot with the vertical axis in log10-scale.
This is useful to visualize the segregation of low-frequency lineages and estimate the selection
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Figure 6.2: Example run of Ne = 104 cells showing the clonal structure spanning 1000 generations.

coefficient and establishment time of beneficial mutation by extrapolating the exponential growth
regime of a lineage. These estimations can then be correlated with the exact numbers found in the
mutation log (see section below).

6.5 Mutation log

The file MUTATION_LOG contains the information on arising mutations in a simulation run. It can
be toggled on with the -e [-track-events] flag.

The tab-separated file lists mutations line-by-line:

AGACTCAAGTGTGAC 6 K 272 E 0.001078 1
TGCAAGCAAACGGGC 5 D 160 H -0.363828 9
CGAGACTGTGGGAGT 4 T 48 R -0.198414 21
...

The columns respectively correspond to the barcode, the gene ID, the previous residue identity, its
position in the sequence, the new residue identity (the mutation), its selection coefficient and the
generation at which it occurred.
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Figure 6.3: Example run of Ne = 105 cells showing the clonal trajectories spanning 10000 genera-
tions.

6.6 Command log
The command.log file is created by default for each simulation run and contains the full command
and its corresponding standard output.
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Figure 6.4: Example run of Ne = 105 cells showing the clonal trajectories spanning 10000 genera-
tions.
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7. Fitness functions

SodaPop allows you to specify how organismal fitness is calculated by choosing a fitness function.
There are currently five native functions in this version. However, it is easy to implement a

custom fitness function (for details, see Section 8.1). Here we introduce the native fitness functions
of the program.

7.1 Metabolic flux
This function expresses organismal fitness as the metabolic output of the cell, proportional to the
number of correctly folded proteins. Assuming a two-state model of protein folding [3], the fraction
of proteins in the native state Pnat is given by

P(nat,i) =
1

1+ eβ∆Gi
(7.1)

where β = 1
kBT (kBT = 0.593kcal/mol) and ∆Gi is the folding free energy of the protein.

Summing over all genes and accounting for gene expression level, we obtain

f itness =
a0

∑i(Ai ·P(nat,i))−1 (7.2)

where a0 is a normalizing factor, i is the index for each gene and Ai is the corresponding cellular
abundance of the protein. By requiring that fitness be optimally 1 at very stable regimes (∆G→ ∞),
we get

a0 =
1

∑
N
i=1(Ai)−1

(7.3)

7.2 Toxicity
This function describes fitness as the fitness cost due to misfolded proteins in the cell, given by

f itness = c∑
i

Ai(1−P(nat,i)) (7.4)

where c is a constant modulating the fitness cost per misfolded protein.

7.3 Combined metabolic output
This function describes fitness as a combination of the two previous functions, namely metabolic
flux and toxicity due to misfolding. It is expressed as the difference

f itness = f f lux− ftoxicity (7.5)

If ftoxicity > f f lux, the cell is not viable and the fitness is set to 0.
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7.4 Neutral
In this scenario, the fitness effect of all arising mutations is null. That is, the selection coefficient of
a mutation is 0. Thus, organismal fitness is given by

fneutral = 1 (7.6)

7.5 Multiplicative
Consider a gene with wild-type fitness w f that acquires n mutations with selection coefficient si.
The multiplicative fitness of this gene is given by

Fn = w f

n

∏
i
(1+ si) (7.7)

By design, only a single mutation can arise in a gene at once, so this computation is straightfor-
ward and only requires the previous fitness state of the sequence. In this case, if multiple genes are
present, the organismal fitness is the arithmetic mean of all sequences’ fitnesses.

7.6 No mutation
Mutations can be turned off completely by using this dummy fitness function. This is useful to
simulate the effects of standing genetic variation on population dynamics.
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8. Modifying the code

SodaPop is written in an object-oriented programming (OOP) framework, making it easily hackable
by anyone with elementary knowledge of OOP and/or C++.

8.1 Implementing a fitness function

Figure 8.1: Example of fitness function. The function returns a double.

Fitness functions are located in the PolyCell.h source file. All functions have the same return
type (double) and are indexed by increasing integers starting from 1. A static function pointer
selects the correct fitness function to use during simulations (Fig. 7.2). Users can implement a
new fitness function by following this signature and adding their new function to the selectFitness()
switch case statement.

8.2 Adding gene properties
The present version implements folding stability (∆G) and enzymatic efficiency (Kcat/Km) as the
fitness defining properties for each gene product. Other biochemical properties can be implemented
here, such as or binding affinity (Kd). Additionally, other properties like protein concentration and
essentiality can be used to model specific genotype-to-phenotype relationships (fitness functions).
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Figure 8.2: The control structure used to select the proper fitness function. New functions can be
added to the switch statement with a function pointer.

Figure 8.3: Part of the gene.h class definition. New private properties can be added here, with the
corresponding accessory functions.
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9. Implementation and performance

SodaPop is built on streamlined data structures and a fast algorithm to achieve high computational
efficiency and to minimize the general trade-off between flexibility and runtime. Here we briefly
describe this software’s design decisions.

9.1 Data structures and complexity

The population is implemented as a vector (std::vector container) of cells. This is because vectors
store elements contiguously in physical memory, making elements accessible sequentially through
iterators and pointer arithmetic, and providing spatial locality of reference. The most common
operation is appending a cell at the end of the vector, which is done in amortized constant time
[O(1)]. This operation is linear O(k) when appending k cells at once. Random iterator access is
also done in constant time, making the random rescaling of the population an efficient operation
that is linear in the number of cells to be added/removed. Vectors also confer efficient memory
handling since memory can be reserved ahead of time, provided a good estimate of capacity is
known. Because we use a constant population size between generations, and because generation
overhead never exceeds 2Ne, the upper bound on population size is a known variable, preventing
costly O(n) vector doubling reallocations when the container reaches full capacity.

Whenever it is possible, we use safe C++ standard library operators such as std::shuffle and
std::swap. The first operator is used when the new generation exceeds the intended size (as a result
of binomial drawings). It performs a fast random shuffle of the population vector indexes. This is
followed by a standard resizing of the vector whose complexity is linear on the number of elements
erased. Essentially, instead of picking k cells to erase at random and downshifting the vector every
time, we shuffle the vector and then trim off the last k cells. The second operator is used to assign
the new vector of cells to the population vector, overwriting the previous generation. Because cells
are large objects containing a lot of information distributed over different containers, overwriting
the population one by one would not only be inefficient, but potentially pose the risk of losing
information by shallow copies of certain object members. The swap operator uses move semantics
to swap the two cell vectors efficiently. We can then reset the old vector for the new generation.

The program reads and writes binary files because they are smaller in size and can be handled
with buffers reading discrete chunks of data. Since the memory overhead for I/O is significantly
higher than that of type conversion, the computational cost incurred by converting types to binary is
negligible. Moreover, while using binary over raw text might not be significantly advantageous for
small-scale simulations, it can trim down the size of snapshots in larger runs where each population
can reach several hundred megabytes in size.

9.2 Pseudo-random number generation

We are working with the assumption that arising mutations are uniformly distributed along the
genome, and a single simulation run can easily produce millions of mutations. Hence, we need
a reliable pseudo-random number generator (PRNG) that lacks bias. Additionally, we want our
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PRNG to be relatively fast as it is being used heavily in the algorithm. Finally, the PRNG should
be lightweight and compatible with C/C++. Following these criteria, we opted to use the PCG
family of random generators by Melissa E. O’Neill, as a substitute to the widely used Mersenne
Twister with a native implementation in C++11. The latter has a large state space and is known
to be uneven in its output, while PCG is compact, relatively fast, and uniform in its output, which
makes it a good candidate for simulation.

9.3 Runtime
SodaPop is the first publicly available tool that can effectively simulate multi-scale molecular
evolution and polyclonal population dynamics. We benchmarked SodaPop for multiple population
sizes and number of generations. All simulations were run on a standard iMac desktop with
a 3.2GHz Intel Core i5 processor and 16GB memory. Figure 8.1 shows that runtime is quasi-
monomial with respect to population size. Simulating up to a million cells for long time periods
is entirely tractable using standard desktop computers. We limited our desktop benchmarking
to Ne = 106 cells, as higher orders of magnitude induce a shift in performance due to a RAM
bottleneck. The simulation of populations with higher orders of magnitude requires a larger amount
of memory than the current standard in commercial desktop computers.However, larger population
sizes can be simulated on high-performance computing clusters where memory allocation is not as
limiting.

Figure 9.1: Average runtimes per population size for different time scales. The initial population
was characterized by a monoclonal cell with a single 194 bp gene. The time step for snapshots was
set at 0.01∗(number of generations) for each scenario. Each point represents the average runtime
over 100 simulations for a particular condition. Error bars represent standard error of the mean.
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Annex: Using the command-line

The command-line interface is a powerful way to interact with the computer. In its simplest form, the
command-line is a space where you type commands for the computer to execute. On Mac OS/X, the
command-line is an application called Terminal. It is located in the /Applications/Utilities/
folder.

The overwhelming majority of command-line programs follow the same simple syntax. A
command can be broken down into three basic components:
• The utility, also referred to as the program. Utilities execute a sequence of actions depending

on their input. In some cases, you may use a utility without any flag or argument.
• The flags: flags are like options. They allow you to modify the behavior of the utility.
• The arguments: some utilities take arguments. These are commonly files, but they can be

numbers, words or special characters.
Here is a simple command. We will break it down by component.

ls -l Documents/

ls is the utility. It lists the content of directories in the command-line interface.
-l is a flag. It indicates that we want more information than is provided by default. Flags are

most often preceded by a hyphen (’-’) and consist of single characters. Some flags can also be
specified using a word preceded by a double hyphen (’--’). Using one or the other will have the
interpretation by the command-line. For instance, typing

man -h

or

man -help

will output the same response from the terminal. The man utility displays the manual pages
for a specific utility. The command is used in conjuction with another utility as its argument. For
example,

man ls

will display the manual page for ls.

The last component of our initial command is the argument ’Documents/’. It tells ls that we
want to show the content of that directory. And that?s it! Besides ls, you will need to know how to
use a few other basic utilities in order to get started.

cd

is the command to change directory. By default, without any flag or argument, cd will move up
one folder. You can navigate down a folder by giving the name of the folder you wish to move to as
an argument. If you are unsure of the folder you are currently in, type
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pwd

The command stands for print working directory, and it does exactly that.
If you want to view the contents of a text file, say ’some_file.txt’, try

less some_file.txt

This will display the content of the file in the terminal. You can scroll through the file using
the up and down arrows. Pressing Q will quit the utility and bring you back to the command-line
prompt.

If you want to copy a file to a specific location, say ’Data/’, type

cp some_file.txt Data/

Likewise, you can instead move the file using a similar syntax:

mv some_file.txt Data/

Finally, you can remove a file using

rm some_file.txt

Note A handy feature of the terminal is TAB autocompletion. Whenever you are typing an
argument, say a path or a filename, you can type the first few letters and press TAB. This will list
all the files and folders accessible from your current directory corresponding to that prefix. If
there is only one match, it will autocomplete the argument for you. Getting familiar with this
option will help you to use the command-line swiftly. �
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