Skip to content
Page to PAGE Layout Analysis Tool
Python Shell R
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
data
docs add fixed width polygon around baselines Feb 18, 2019
egs Update README.md Dec 19, 2018
evalTools +line polygon Jun 5, 2019
nn_models Fix Dropout on Dev. Fix num of batches. Peanut Butter Jul 25, 2019
page_xml
utils +line polygon Jun 5, 2019
.gitignore Adding gitignore Nov 28, 2017
LICENSE Initial commit Nov 28, 2017
P2PaLA.py Fix Dropout on Dev. Fix num of batches. Peanut Butter Jul 25, 2019
README.md
_config.yml
conda_requirements.yml pythorch version to 1.0 Feb 22, 2019
requirements.txt update requirements to conda Feb 19, 2019
setup.py add nontext_region support Feb 7, 2019

README.md

P2PaLA

Python Version Code Style

Page to PAGE Layout Analysis (P2PaLA) is a toolkit for Document Layout Analysis based on Neural Networks.

💥 Try our new DEMO for online baseline detection. ❗️❗️

If you find this toolkit useful in your research, please cite:

@misc{p2pala2017,
  author = {Lorenzo Quirós},
  title = {P2PaLA: Page to PAGE Layout Analysis tookit},
  year = {2017},
  publisher = {GitHub},
  note = {GitHub repository},
  howpublished = {\url{https://github.com/lquirosd/P2PaLA}},
}

Check this paper for more details Arxiv.

Requirements

  • Linux (OSX may work, but untested.).
  • Python (2.7, 3.6 under conda virtual environment is recomended)
  • Numpy
  • PyTorch (1.0). PyTorch 0.3.1 compatible on this branch
  • OpenCv (3.4.5.20).
  • NVIDIA GPU + CUDA CuDNN (CPU mode and CUDA without CuDNN works, but is not recomended for training).
  • tensorboard-pytorch (v0.9) [Optional]. pip install tensorboardX > A diferent conda env is recomended to keep tensorflow separated from PyTorch

Install

python setup.py install

To install python dependencies alone, use requirements file conda env create --file conda_requirements.yml

Usage

  1. Input data must follow the folder structure data_tag/page, where images must be into the data_tag folder and xml files into page. For example:
mkdir -p data/{train,val,test,prod}/page;
tree data;
data
├── prod
│   ├── page
│   │   ├── prod_0.xml
│   │   └── prod_1.xml
│   ├── prod_0.jpg
│   └── prod_1.jpg
├── test
│   ├── page
│   │   ├── test_0.xml
│   │   └── test_1.xml
│   ├── test_0.jpg
│   └── test_1.jpg
├── train
│   ├── page
│   │   ├── train_0.xml
│   │   └── train_1.xml
│   ├── train_0.jpg
│   └── train_1.jpg
└── val
    ├── page
    │   ├── val_0.xml
    │   └── val_1.xml
    ├── val_0.jpg
    └── val_1.jpg
  1. Run the tool.
python P2PaLA.py --config config.txt --tr_data ./data/train --te_data ./data/test --log_comment "_foo"

❗️ Pre-trained models available here

  1. Use TensorBoard to visualize train status:
tensorboard --logdir ./work/runs
  1. xml-PAGE files must be at "./work/results/test/"

We recommend Transkribus or nw-page-editor to visualize and edit PAGE-xml files.

  1. For detail about arguments and config file, see docs or python P2PaLa.py -h.
  2. For more detailed example see egs:
    • Bozen dataset see
    • cBAD complex competition dataset see
    • OHG dataset see

License

GNU General Public License v3.0 See LICENSE to see the full text.

Acknowledgments

Code is inspired by pix2pix and pytorch-CycleGAN-and-pix2pix

You can’t perform that action at this time.