Background

- Cell and nuclei segmentation is often a first step in analysis of multiplex tissue imaging (MTI) data.
- Evaluating segmentation results on user's datasets without ground truth labels is either subjective or amounts to the task of performing the time-intensive annotation.
- Published performance of the pretrained models may not guarantee satisfactory performance on the user's data.
- End-to-end pipelines such as MCMICRO are highly usable but lack ability to guide selection of the most appropriate segmentation method for a user's dataset.

Motivation

Feature level discrepancy between segmentation methods:

Dataset

- BC TMA: (fully annotated) 5 cores for method validation
- BC TNP-TMA: 24 antibodies (tumor panel) and 88 cores without annotation:

	-		-	-		-	-
R1	R2	R3	R4	R5	R6	R7	R8
CD3	CCND1	Ecad	EGFR	Ki67	CK14	LamABC	PCNA
pERK	Vim	ER	pRB	CD45	CK18	AR	PanCK
Rad51	aSMA	PR	HER2	p21	CK17	H2Ax	CD31

An overview of consensus-based ground truth estimation and refinement

Results: Method-specific weighting via ablation study avoids potential sensitivity to collective bias

; -	0.88 -		Dropped			Dropped				
; –	0.86	DICE	Method	Core	DICE	Method	Core	DICE	Method	Core
	0.8/	0.731	Mesmer		0.755	Mesmer		0.772	Mesmer	
	0.0-				0.769	Stardist		0.777	Stardist	
' <u>-</u>	0.82	0.737	Stardist	0.766 Scene 059 0.798		Scene			Scene	
; –	0.0 Dice	0.746	Cellpose		0.766	Cellpose	017	0.782	Cellpose	002
-	0.78				0.798	UnMicst		0.807	UnMicst	
; -	0.76	0.787	UnMicst		0.699	Mesmer	Scene 049	0.804	Mesmer	
. –	0.74				0.706	Stardist		0.821	Stardist	`oono
-	0.72				0.718	Cellpose		0.791	Cellpose	003
·	0.7				0.78	UnMicst		0.838	UnMicst	

Results: Refined ensemble-derived scores align with labeled ground truth

Results: Ablation study used to determine method specific weights in TNP-TMA dataset

(1) Metrics computed with equal method weighting

(2) Ablation study determines relative importance weighting

Summary & Discussion

We propose a methodological approach for evaluating MTI nuclei segmentation methods by scoring relative to a larger ensemble of segmentations. We demonstrate feasibility and accuracy of the proposed approach by using a small dataset (breast cancer 5 TMA cores) with ground truth labels. We validate the use of systematic model ablations to assign importance weighting scores to different segmentation methods, which further improve the ensemble-method's predictions. Lastly, we report results for 6 segmentation methods on an unlabeled TNP-TMA dataset and provide decision guidelines for the general user to easily choose the most suitable segmentation methods for their own dataset.

Acknowledgement

This work was supported by the National Cancer Institute – U2CCA233280, U54CA209988, U01 CA224012, R01 CA253680. We thank Jia-Ren Lin and Yu-An Chen (HMS) for their help and sharing dataset.

Mask-RCNN StarDist U-Net UnMicst