Compute Persistence Fisher distance (Fisher information metric between two persistence diagrams with and without Fast Gauss Transform) --- Algorithm 1 in Tam Le & Makoto Yamada NIPS'18
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
LICENSE
TamLe_Code_dFIM.zip
compute_dFIM_distance.m
compute_dFIM_distance_FGT.m
figtree-0.9.3.zip
readme.txt
setup.m
test_dFIM.m

readme.txt

NOTES:

----------------------------------
* SETUP:
----------------------------------
+ run setup for setpath for figtree (precompiled for Mac and Linux)


----------------------------------
* DEMO:
----------------------------------
+ test_dFIM: randomly generate two persistence diagrams, and compute the Fisher information metric
between them, with or without Fast Gauss Transform.


----------------------------------
* FUNCTIONS in LIB:
----------------------------------
+ compute_dFIM_distance: compute Fisher information metric between two persistence diagrams
(without Fast Gauss Transform --- Quadratic complexity)
<Algorithm 1 in the NIPS'18 paper)
+ compute_dFIM_distance_FGT: compute Fisher information metric between two persistence diagrams,
approximated by Fast Gauss Transform --- Linear complexity
<Algorithm 1 in the NIPS'18 paper>
+ Third party toolbox (figtree-0.9.3): Fast Gauss Transform library
(Link: http://www.umiacs.umd.edu/~morariu/figtree/   
or  http://sourceforge.net/projects/figtree)


----------------------------------
RELEVANT PAPER:
----------------------------------
Tam Le, Makoto Yamada, Persistence Fisher Kernel: A Riemannian Manifold Kernel
for Persistence Diagrams, Neural Information Processing Systems (NIPS), Canada, 2018.

ArXiv link: https://arxiv.org/abs/1802.03569

----------------------------------
* CONTACT
----------------------------------
% Version 0.1 (October 19th, 2018)
@ Tam Le - RIKEN AIP
Email: tam.le@riken.jp
Homepage: https://sites.google.com/site/lttamvn/


Please contact me if you observe any bugs in the execution of the algorithms.
Many thanks !!!