
In-Process Object-Oriented Database Design for .NET
Yanhao Zhu

Department of Computer Science
East Carolina University
Greenville, NC 27858

USA
01-252-3281327

ZHUYA@MAIL.ECU.EDU

James Crouch
Department of Computer Science

East Carolina University
Greenville, NC 27858

USA
01-252-3289691

JLC0627@MAIL.ECU.EDU

Mohammad H. N. Tabrizi
Department of Computer Science

East Carolina University
Greenville, NC 27858

USA
01-252-3289626

TABRIZIM@MAIL.ECU.EDU

ABSTRACT
In this paper, we introduce the development of an In-Process
Object-Oriented Database (OODB) design for the .NET platform.
Using an OODB design, one simple function call is needed to
save, search, delete, or update .NET objects. Also little database
setup is required, as opposed to defining the system's schema in
relational database systems. In order to validate the efficiency of
In-Process OODB design, an experiment was conducted involving
a relational database system. The results show that the In-Process
Object-Oriented Database design outperforms Microsoft SQL
Server (running locally) for the queries based on the primary key
fields.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems - Object-oriented
databases.

General Terms
Algorithms, Performance, Design, Languages

Keywords
Object-oriented, database, design

1. INTRODUCTION
The rise of object-orientation including object-oriented analysis
[1], [2], [3] and object-oriented design [4], [5] defines the history
of computing. The earliest work in computing concerned itself
exclusively with what we now think of as programming. Only
later did a conscious concern with design and analysis as separate
issues arise. Object-oriented programming first responded to this
need, then object-orientation including object-oriented design,
and, more recently, object-oriented analysis completed the design
of the new system. As a result, object-orientation is now a firmly
established and essential part of the software development culture.
With increased emphasis on distributed systems, the object

metaphor appears to be the most natural one to adopt, given its
emphasis on encapsulation and message passing. In addition,
increasing concern over maintenance costs may well lead to the
recognition that reusability is a key issue in programming, design,
and analysis.

Preventing the existing methodologies and technologies from
becoming archaic, one has to look deeper into the application of
the existing technologies. Let us just talk about the database
technology itself. It seems that most existing technologies are
using relational databases design. Although almost all
applications are being developed using object-orientation
programming, not much attention is being paid to the object-
oriented analysis and design. Without foresight, many existing
software created specifically for today’s needs. The application of
object-oriented database design, which continues from the need
for persistent objects in object-oriented programming languages
that has lead to the development of OODB. One of the major
characteristics of OODB is its tight relationship with object-
oriented programming languages. With the increasing popularity
of object-oriented analysis and object-oriented design, more and
more research realized that a relational database is not a good
match for an object-oriented world. Object-Oriented Database
Management Systems (OODBMS) have become an intensive
research topic [6] followed by production of the prototypes and
commercial products [7].

Compared with the relational database systems, the OODBMS
has the following common properties:

• Transparent persistence: In OODBMS, users can access
the persistence objects stored on disk in much the same
way as they access the transient objects in the
application memory. In contrast to the relational
database, the smallest unit in OODBMS is an object,
not rows or columns.

• No impedance mismatch: For the OODBMS users,
there is no need to write code to map tables into objects
or the other way around. As a result, the code of the
application using OODBMS is quantitatively much less
than that using the relational database.

• One data model: Most of the time, OODBMS is used
with object-oriented programming language. So users
can focus on their more familiar object model without
any distraction. This can result in better application
design/architecture.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’05, October 20-22, 2005, Newark, New Jersey, USA.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

• Better performance: Most of the OODBMS save the
programming language object as is on disk. But the
relational database system separates objects into
different tables and connects the tables by various
foreign keys. Packing complex objects into tables and
unpacking objects from tables usually takes a lot of
time. By just saving composite objects and
relationships directly, OODBMS often perform better
than relational database systems.

2. PROJECT DESCRIPTION
The aim of this project is to promote OODBMS that provides a
simple mechanism for users to save the .NET objects directly to
disk. This research project is designed in such a way that only
one simple function call is needed to save an object. Almost all
the existing OODB systems require users to derive from some
special class to define the classes which will be saved into the
database. Some others require users to implement a specific
interface for the classes. There are no such requirements in the
in-process OODB developed here. The .NET reflection (will be
discussed later), which is a powerful technique used to manipulate
types’ metadata at runtime, is used to understand the various
properties of a class and an object. To save some development
time, the class to be saved to the database is required to have a
“primary key field” so that different objects of that class will have
different key field values. Users should specify the primary key
field by providing attributes to the class during the class
definition.

2.1 Saving information of an object
Although a class can have constructors, destructors, constants,
methods, properties, indexes, fields, and other members in .NET;
only values of the fields may be different for different objects of
the same class. All other members are class-level specific and are
therefore exactly the same for all the objects of that class. This
simple fact suggests that to save an object, we only need to save
all the fields’ values of that object. Other information will be
handled at class level.

2.2 Saving the information of a class
Only a very small portion of the class information needs to be
stored. In the implementation of this project, only the class name
and names of all fields are saved in the database. This is based on
two facts.

• In the user program, the class has to be defined
somewhere before it can be used. This means that the
types of objects which the user wants to deal with have
to be declared first in the program. In C#, VB.NET,
VC++.NET and other strong typed .NET programming
languages; the compilers will enforce this requirement
without any exception. The classes of the stored
objects, which will be used in the program, have to be
defined.

• With .NET reflection, the metadata of any defined
type/class in the user program is accessible at runtime.

2.3 Data structure for saving the information
B-tree was chosen to store the objects as well as the class
information. B-trees are not only highly efficient, but also
relatively easy to implement. Today it is one of the most

frequently used database techniques for indexing. When the size
of stored records is small, B-tree is often used for primary file
organization [8]. In this project, B-tree was used as the average
size of stored objects is not believed to be very high. Each entry
in the B-tree node is of the form <key, data>, and
inserting/searching/deleting is based on the key value. This is one
of the reasons why the persistent class is required to have a
“primary key field”.

2.4 Project overview
A general purpose B-tree was designed and reused to save class
and objects information. There is one B-tree which is dedicated
to save class information in the system. For each persistent class,
the class name is used as the key and an array of strings of the
fields’ names is saved in the data part of the node entry. For each
stored class, there is a B-tree, called object tree which is used to
save instances. In the object tree, the primary key field value of
the object will be used as the key part of the tree node entry, and
the data part contains the non-key field values. The pointer to the
top node of the object tree is also saved in the class information
B-tree.

The only problem of this approach is that the size of the node
entry <key, data> cannot be fixed for the class information and
objects. Even if the two objects are of the same class, the size of
each object can be greatly different from the other. So each node
in the class information B-tree and object B-trees is a variable
length segment of the database file. For any entry, there are two
pointers at each side. The pointers actually are the segment IDs.
Given the ID of a segment, its location and length should be
easily found. So another B-tree, called segment tree (in index
file), with segment ID as the key, is used to manage the segments
in the database file. There is only one segment tree in a database.
A segment can be moved around in the file as its size changes,
leaving some empty holes in the database file. Another B-tree,
which is called space tree (in index file), is used to keep track of
these holes and try to reuse them if possible. Because the size of
node entry in the segment B-tree and the space B-tree can be
fixed, segment tree and space tree are saved in the index file
which is separated into fixed length pages. Space
allocation/deallocation for paged file is much easier than that for
segmented file. A bitmap is used to keep track of the space usage
in the index file. More details about how to get information about
class, object at runtime, and how the internal storage works, will
be discussed in the following section.

3. REFLECTION

3.1 Reflection for Class Information
Reflection is a fundamental facility of .NET CLR. In the .NET
base class library, a whole namespace, namely System.Reflection,
is dedicated to the reflection. The classes in that namespace,
together with class System.Type, allow the user to obtain
information about any type/class defined in the program at
runtime. With reflection, one can not only create instances of
type/class at run time, but can also invoke members of any object
dynamically. The .NET base library class System.Type is the root
of the reflection functionality as it is the primary way to access
the class metadata [9]. Its members can be used to get

information about a type declaration, such as the constructors,
methods, fields, properties etc.

3.2 Reflection for Object
There are two scenarios where reflection can be used to deal with
objects. One is that when the user tries to save some object into
the database, the values for all fields of that object should be
collected. The other is that when the user tries to search for some
objects, the matching objects have to be created dynamically. As
discussed before, class System.Type is the root of .NET reflection.
It has a method called “InvokeMember”, which can be used to get
value of any field of an object, and to create an instance of a class,
and to set the value of any field of an object. In other words, this
method itself is enough to deal with objects.

4. DEVELOPMENT of the INTERNAL
STORAGE
Among the 36 different classes developed in this project, only six
of them are not related to internal storage. In this chapter, the
development of the internal storage will be discussed.

4.1 The General B-Tree
A general purpose B-tree was designed in this project. The B-tree
can be used to save any kind of information as long as different
records have different values of the key field. In fact, the order of
the general B-tree can be any positive number. To make this
possible, two interfaces are defined in C#, namely IKey and
IData. A class can be used as the key in the B-tree if it
implements the interface IKey. In the specification of the
interface IKey, there is a property called Data. We can define any
class to implement IData interface and use that class as the data
field of IKey. Listing 4.1 shows the specifications of the IKey and
IData.

In the declaration of interface IKey, there is a method called
“CompareTo”, which is used to compare the keys during various
B-tree operations. The “Serialize” and “Deserialize” methods are
also very important. The “Serialize” method converts the key,
including its data field, to an array of bytes. This method is used
to save the key to disk during the serialization of B-tree node. The
“Deserialize” method converts a bytes array back to a suitable
IKey object. Thus it can be used to get the keys back from the
disk during the “deserialization” of B-tree node. The B-tree node
stored in disk is not exactly the same one as that in memory. The
B-tree node in disk is the “serialized” version of that in memory.
The B-tree node in memory is the “deserialized” version of that in
disk.

A B-tree node is “serialized” when the node is evicted from the
cache or during the database closing. The “serialization” of a B-
tree node will convert all the information in the node into an array
of bytes. For each key stored in the node, its “serialize” method
will be called to get the byte array of the “serialized” version. A
B-tree node will be “deserialized” when it is brought from the
disk to the memory. During the “deserialization”, each key’s
“deserialize” method will be called to get the key object back.

To speed-up the operations, the searching, insertion, deleting, and
updating operations in the B-tree are implemented in a non-
recursive way. To instantiate a B-tree object, a B-tree node
management system has to be provided. It has to be a sub-class of
the class OOD.SegmentManager. Reading a B-tree node from the
disk and saving a B-tree node back to the disk are some of the
typical tasks of the node management system.

4.2 B-tree Node Manager and Cache
To use the general B-tree, one needs to define a class to
implement the IKey interface and another one to implement the
IData interface. Besides that, decisions on how to manage the
nodes in this specialized B-tree have to be made. The size of the
nodes stored in the disk usually varies for different B-trees and
different mechanisms may be needed to manage the nodes in disk.
So after the key/data which will be stored in the tree is decided, a
sub-class of OOD.SegmentManager has to be defined to
implement the reading node and saving node operations for the
tree. Since OOD.SegmentManager is an abstract class, any class
inherited from it has to override all the abstract members it
defines. In fact, OOD.SegmentManager is quite simple in the
sense that it just defines several abstract methods later used by the
B-trees and the system. Listing 4.2 shows the complete listing of
class OOD.SegmentManager. In the implementation of this
project, a class for the B-tree node (BNode) is defined as a sub-
class of the Segment class. This is based on the possibility that
other data structures may be added in the future and the existing
B-tree node managers can be re-used.

If B-tree requires a node, it gets it by calling the method
“GetSegment” of node management system to get it. If needed,
the argument “segFactory” is used to “deserialize” the node from
the byte array. The method “GetNewSegment” is used to create a
new node, and the method “FreeSegment” frees the specified

// The keys in the B-tree have to implement this interface.
public interface IKey
{
 IData Data { get; set;}
 int CompareTo(IKey B); //compare this with

another key, 0: this==B, >0: this>B, <0: this<b
 byte[] Serialize(); //serialize the key, including

 the data field, into the byte array
 IKey Deserialize(byte[] bytes);
 IKey Deserialize(byte[] bytes, int offset, int

count);
}

// All the user data part of the b-tree must implement this
interface.
public interface IData
{
 byte[] Serialize();
 IData Deserialize(byte[] bytes);
 IData Deserialize(byte[] bytes, int offset, int
count);
}

Listing 4.1 Interfaces IKey and IData

node. The “Close” method writes out all modified segments (B-
tree nodes) back to disk and is used by the system during the
database closing.

Two sub-classes of OOD.SegmentManager are defined in this
project. For each of them, a hash table is provided to cache the
nodes in memory. When the cache is full, victim nodes to be
evicted will be selected by the Least-Recently-Used (LRU) page
replacement algorithm. During the operations of the B-tree, the
top node of the tree (the most frequently used one) is guaranteed
to be in cache by the LRU scheme. In general, the nodes at lower
levels have a better chance to stay in the cache than those at
higher levels once the LRU algorithm is used. In the insertion
operation of a B-tree, the LRU scheme implies that nodes which
need to be split most likely are in the cache already. Although the
.NET base class library provides a generalized hash table, a hash
table with the LRU scheme built-in support is designed

4.3 Index File
The main purpose of the index file is to monitor the segments
(only tree nodes currently) in the database file. Two B-trees, the
segment tree and the space tree, are stored in this file to keep
track of the space usage in the database file. For the segment B-
tree, each node entry is of the form <segment ID, (offset,
length)>, where the segment ID serves as the key and the pair
(offset, length) is the data field of the key. During the various B-
tree operations, the segment tree is consulted to provide the
address and length of needed “serialized” nodes on disk. To
remember a free segment in the database file, only the offset and
length of that segment need to be saved. So the node entry in the
space tree is of the form <offset, length>. Two operations are
needed for this space tree. 1) When a segment is freed in the
database file, its offset and length should be inserted into this tree.
If the segment which is immediately after this segment exists in
the space tree, these two segments will be combined together. 2)
Allocating a new segment is accomplished by searching for a big
enough free space. Space allocation for the database file is
handled in the first-fit manner. Each “serialized” key in the space
tree is of size 8 bytes, so 36 is chosen to be the order of the space
tree.

This index file is separated into fixed length of pages. Currently,
each page has 512 bytes. The page is the smallest unit for space
allocation/dealocation in this file. Each page is identified by a
page ID, which equals the offset of the starting address (in bytes)

of the page divided by 512. The file header is stored in the first
page, namely the page 0. The page (segment) IDs of the top node
for the segment B-tree (in the index file), the free space B-tree (in
the index file), and the class information B-tree (in the database
file) are kept in the file header. Most of the 512 bytes in the file
header have not been used, and are reserved for the future.

From the page 1 to the page 32, the 16 KB memory usage bitmap
is stored. Each bit of this bitmap represents a page in the index
file. The value of each bit indicates whether a page is free or not.
This allows up to 16*1024*8 = 131072 pages in the index file.
There are 131039 possible nodes for the segment tree and the
space tree. If assume 2/3 of the nodes are used for segment tree
and the tree is 69 percent full, there will be about 1588696
segments in the database file. For each tree in database file, the
order is 21, that all together allow more than 25000000 objects
stored in the database.

It is important to notice that it is very easy to increase the size of
bitmap dynamically at runtime. For example, if a free page
cannot be found in current bitmap, additional 16KB memory will
be allocated for the bitmap. The IDs of all the pages used by the
bitmap can be saved in the file header. To keep the size of the
index file as small as possible, the page allocation for this file is
handled in the first-fit manner. A class memSegmentManager
was defined to inherit from the abstract class SegmentManager.
The class memSegmentManager uses the bitmap to manage the
pages in the index file. The segment tree and the space tree
employ this class to request a new page or free an unused page.
The “deserialized” B-tree nodes are cached in a hash table. The
page replacement algorithm used is the LRU scheme. When a B-
tree node is evicted from the cache, all the references to that B-
tree node are released. The .NET garbage collection will be
eventually invoked and clean up that unused node.

4.4 Database File
The objects are stored in this file. There are two different kinds
of B-trees, the class information B-tree is the first, which is used
to store the information of each class whose objects are stored in
the database. There is only one such a kind of B-tree in the file.
The second kind is the object tree. For each persistent class, a
clustering object tree for that class is created in this file too.

The full name of a class is used as the key for the class
information B-tree. For this B-tree, class KCatalog was defined
to implement the interface IKey. The “IKey.CompareTo” method
is carried out by comparing the strings in the directory order. The
class DCatalog, which implements the interface IData, is defined
to remember the field names of a stored class. DCatalog also has
a pointer which points to the top node of the clustering object tree
for the persistent class stored.

For the clustering object trees, class KClass, which implemented
the IKey interface, was defined to hold the value of the primary
key field of an object. The type of the primary field is also saved
in the KClass, which helps to compare two values of the primary
field. DClass is defined to implement the interface IData. It is
used to store the values of all other non-primary key fields of an

public abstract class SegmentManager
{
 public abstract Segment GetSegment(uint segId,

Segment segFactory, object helper);
public abstract void GetNewSegment(Segment
seg);

 public abstract void FreeSegment(Segment seg);
 public abstract void Close(); //write out modified

segment back to disk
}

Listing 4.2 Abstract class SegmentManager

object. The .NET reflection technique is used to convert the
serialized object to a real object, and vice versa.

The B-tree node management in this file is accomplished with the
help of the index file. Each B-tree node is a segment of the file.
Whenever a B-tree node in memory needs to be “serialized” and
saved to disk, the addressing information, the offset and the
length, can be reached from the segment tree in the index file. It
also makes it possible to compare the old size of the node with the
size of the current “serialized” byte array. If the new size is
bigger than the old one, the old segment needs to be freed and a
bigger free space will be requested from the space tree (in the
index file), and then the node will be saved to the new location.
During the deletion of a B-tree, a used node may be freed. If this
happens, its addressing information can be deleted from the
segment tree and that segment can be inserted into the space tree.
All the “deserialized” B-tree nodes from this file are cached in a
hash table and the LRU scheme is used again here.

Using two B-trees in the index file to keep track of segments in
the database file seems to involve too much overhead. But given
the speed of B-tree and the cache scheme used, it performs well.
The major reason for selecting this approach is to save some
development time. An alternative method we tried is that the size
of the B-tree node is fixed, and the key can have the variable
length. Whether the node is full or not is not based on the number
of keys in the node; instead the node is full whenever there is no
room for a new key. The problem of this approach is that it does
not scale well. If the length of the key is very large, the speed of
B-tree will be decreased significantly[10].

5. PERFORMANCE VALIDATION
In order to validate the efficiency of the In-Process OOD design,
an experiment was conducted. The results show that operations
based on the primary key field are extremely efficient. In the
experiment using a simple class of several fields and the primary
key field of type integer, querying a random object by its primary
field took about 0.15 seconds. To get a better idea about the
speed of this In-Process OOD, a comparison with Microsoft SQL
server was carried out. Since the most important operation for a
database is searching, only query on the primary key field was
conducted.

To test performance of the developed in-process OOD, a simple
class with fields, m_id, m_name, m_sex, m_birthDate, and m_age,
namely Student, was defined. The field m_id is the primary key
field; different objects of Student class are required to have
different IDs. 60,000 different Student objects were first inserted
into the database, and then the objects were queried back by their
IDs. On the SQL server side, a table was first created with five
columns, which have the same names as the fields of Student
class. Then a batch query was written to insert the 60,000 student
information into the table. An equivalent program was used to
query the student information back and to pack the information to
Student objects.

0.
01

0.
10

1.
00

10
.0

0

10
0.

00

Nu
m

be
r

of
 q

ue
ri

es

Time used (in seconds)

M
ic

ro
so

ft
SQ

L
Se

rv
er

0.
20

0.
06

0.
25

0.
79

8.
21

16
.6

1
34

.2
5

55
.8

7

O
ur

 O
O

D
0.

12
0.

10
0.

70
0.

75
6.

02
10

.6
9

18
.9

0
27

.3
2

1
10

10
0

10
00

10
00

0
20

00
0

40
00

0
60

00
0

Figure 5.1. Query on random IDs

Figure 5.1 shows the time used to randomly query a certain
number of Student objects by IDs. The database initialization
time, in the case of SQL server the time used to create the
connection, was not included in the experiment. Time used to
search a number of objects in the ascendant order of IDs is
compared in Figure 5.2. It is interesting to note that when the
number of queries is very small, the performance of SQL server is
about the same as the In-Process OOD. But the in-process OOD
outperforms Microsoft SQL Server as the number of queries
increases. One possible reason for the superior performance of
the in-process OOD with regards to large number of queries is the
implementation of cache scheme, where queries enable more
nodes to be brought into cache, and the LRU node replacement
algorithm guarantees the most needed nodes are always kept in
cache. Another reason could be that the in-process OOD is
running in the same process as the user program, there is no inter-
process communication overhead.

0.
01

0.
10

1.
00

10
.0

0

10
0.

00

Nu
m

be
r

of
 q

ue
ri

es

Time used (in seconds)

M
ic

ro
so

ft
SQ

L
Se

rv
er

0.
10

0.
01

0.
08

0.
75

7.
75

15
.5

2
32

.0
4

51
.7

7

O
ur

 O
O

D
0.

01
0.

10
0.

40
0.

59
4.

09
8.

17
16

.7
4

25
.2

4

1
10

10
0

10
00

10
00

0
20

00
0

40
00

0
60

00
0

Figure 5.2. Ordered query on IDs

6. CONCLUSIONS
Application of the existing technologies including the database
technology is the subject of this study. Although almost all
applications are being developed using object-orientation
programming, not much attention is being paid to the object-
oriented analysis design. Without foresight, many existing
software created specifically for today’s needs. Given the
inefficiency of packing/unpacking objects, the object-oriented
database system seems to be the natural choice. In this project,
the development of a single-user in-process database for the .NET
platform is described. Single-user in-process refers to the fact
that this project will use an embedded database engine for
standalone .NET applications. Using the in-process OOD, the
user should be able to save, query, delete and update .NET objects
through a simple interface.

7. REFERENCES
[1] Meyer, B. Objected-Oriented Software Construction,

Prentice Hall, 1988.
[2] Shlaer, S. and Mellor, S.J. Object-Oriented Systems

Analysis: Modeling the World in Data. Prentice Hall, 1988.
[3] Lee, S. and Carver, D.L. “Object-oriented analysis and

specification: A knowledge base approach”. J. Object-
Oriented Program. Jan. 1991, pp. 35-43.

[4] Coad, P. and Yourdon, E. Object-Oriented Design. Prentice
Hall, 1991.

[5] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F.,
Lorensen, W. Objected-Oriented Modeling and Design.
Prentice Hall, 1991.

[6] Elisa Bertino and Lorenzo Martino, Object-Oriented
Database System—Concepts and Architectures, Addison-
wesley, 1993, p 8.

[7] ObjectStore (Progress Software Corp.), Cache´ (InterSystems
Corp.), FastObjects (FastObjects Inc.), db4o, etc. Please
check http://www.service-architecture.com/products/object-
oriented_databases.html for a more complete list.

[8] http://www.bluerwhite.org/btree/.
[9] MSDN online .NET documenting:

http://msdn.microsoft.com/library/.
[10] Donald E. Knuth, The art of computer programming,

Volume 3, 1973, p475.

