
TDD with Mock Objects:
Design Principles and Emergent Properties

Luca Minudel, 2009-2011
tdd@minudel.it

ABSTRACT
A team began to write code much easier to read, change and
extend after adopting the practice of TDD with Mock Objects.
And later the team developed the understanding of the design
principles with the ability to put them into practice in the code
written everyday.

This observation originated the intriguing conjecture that TDD
with Mock Objects led that team to write code compliant with
S.O.L.I.D. design principles and partially with the Law of
Demeter as an emergent property. This originated the second
intriguing conjecture that these tangible improvements of the
code-base led that team to deeply understand the design principles
and their practical applications as a result of a process of
coevolution.

This is an exploratory observational study with the goal of
understanding the phenomenon observed, identifying relevant
variables, turning conjectures into a verifiable hypothesis whose
general validity can be comprehensively investigated with a
rigorous research and controlled experiments. This study is to
recognize the language ambiguities about TDD and the
differences between person to person and team to team in the
actual practice of TDD that have relevant consequences on the
outcome. And recognize that while talking about engineering
practices intended for people in professional software production,
people and context are relevant variables that matter.

Test-driven development (TDD) is the technique that relies on
very short development cycles, every cycle starts writing a failing
automated test case and finish with the refactoring of the code [1].
TDD with Mock Objects emphasizes the behavior verification and
clarifies the interactions between classes [8], [3] and [4].
Law of Demeter (LoD) is a design principle that promotes loose
coupling between objects, encapsulation and helps to assign
responsibilities to the right object [7].
S.O.L.I.D. are 5 object oriented principles of class design to write
code that is easy to reuse, change, evolve without adding bugs [9].
Emergent property is a novel and coherent structure that arise
during the process of self-organization in a complex system [15].
Coevolution is a process where two interdependent systems
change together in mutual adaptation [16] [17][18].

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques,
Object-Oriented design methods.

General Terms
Design, Verification.

Keywords
Test-Driven Development, Mock Objects, Design, Learning,
Emergent properties, Coevolution.

1. INTRODUCTION
The software development team of a leading F1 Racing Team was
implementing software for the Formula One Racing
Championship. The team was working with a large and complex
code-base, with high pressure to deliver as much new features as
possible and in very short deadlines.

The team was trained on Object Orientation with the goal of
writing code that was easier to understand, change and evolve
without adding new bugs. After the training, the style of the code
written by the team did not changed significantly.

A year later the team was trained on the job using TDD with
Mock Objects.

Here follow the report of the qualitative observations of the team
and the code-base and the report of a qualitative experiment made
outside the team with small code exercises. Both team members
and the developers that voluntarily participated to the experiment
are uncontrolled groups acting in an uncontrolled environment.

2. OBSERVATIONS

2.1 Initial training on Object Orientation
During 2006 the team members, divided in two groups and in two
different moments, had an intermediate training on Object
Orientation.

2.2 After the training on Object Orientation
After this training some of the team members more experienced
with the code-base and the application domains proposed some
improvements to the design at the level of namespaces and
assemblies (intended as the fundamental unit of deployment,
versioning and reuse of compiled code like an EXE or DLL file)
and a top-down approach to implement these changes.
These ideas were not implemented and so the improvements in
the quality of the code produced day by day have not been
noticed during 2006.
During 2006 the team was also practicing unit testing, with tens
of thousands unit tests running on the automatic build server. The
majority of the unit tests were actually more integration tests then
real unit tests. For example most of the tests were involving
external systems like the database and were involving many
different objects and layers at the same time.

The tests suites were slow and some of them brittle. An effort was
made using advanced features of commercial mocking tools to
mock static classes, concrete classes, classes provided by external
libraries and classes instantiated directly inside the class under
tests. The code-base overall was hard to test.

2.3 The training on TDD with Mock Objects
In the beginning of 2007 two groups of software developers
attended an internal hands-on training on TDD with Mock
Objects.

At the beginning of the Sprint one group of team members went
into a meeting room. They brought with them one PC, one
keyboard, one projector with the screen and the user stories
selected for that Sprint. Team members contributed to the Sprint
goal with their knowledge of the code-base, the application
domain and the technology stack in use.
Two software engineers extremely experienced in the practice of
TDD with Mock Objects joined the group and contributed to the
Sprint goal with their knowledge of TDD and refactoring on large
complex and legacy code-base. They showed how to implement
the user stories guided by TDD and mocks, in quick (5-15
minutes) red-green-refactor cycles, constantly discussing together
and rotating pairs at the keyboard. At the end of the week the user
stories were implemented and accepted by the end users and
released.
The week after the team and the two software engineers went
back to the office and completed another Sprint. This time team
members were working in pair as usual at their workstations and
rotating pairs with the two software engineers.

The same experience was repeated with another group and after
that the two software engineers joined the team full time.

Team members from both groups immediately appreciated that
the production code and the unit tests written during the training
session were better than before.

We learned:
- how to use the refactoring tool to extract interfaces, break

dependencies [2] and how to inject dependencies into
parameterized constructors and in methods arguments,

- how to replace static variables and singletons with more
testable code,

- how to wrap third-party libraries,

- how to use a mocking tool to mock dependencies and declare
and verify expectations,

- how to test non-trivial objects in isolation,

- how to quickly navigate in the IDE between interfaces and
the classes and tests,

- about the practice of avoiding getters and instead using
Smart Handlers that are Visitor-like objects [6]. However
this practice was not followed.

2.4 After the training on TDD with Mock
Objects
Team members after the training and after continuing to practice
TDD with mocks discussed the effects of this new practice on the
code.

For example there were discussions about the parametric
constructors used only by the unit tests; discussions about the
large use of Interfaces (as intended in Java, C# or like Abstract
classes in C++ with only pure virtual functions or like protocols
in Smalltalk) defined to enable the mocking of objects;
discussions about the larger number of small classes each one
with a narrow responsibility; discussions about the use of default
constructors or factories or Dependency Injection frameworks;
discussions about wrapper created to break dependencies to
external libraries and external systems; discussions about the
increased use of containment over inheritance; discussions about
avoiding the use of static classes and singleton; discussions about
the change of the point of view when writing tests with
expectations on how objects interacts; discussions about where to
use of strict mocks and where instead to use stubs.

The practice of TDD with mocks significantly changed our
production code and our test code. We observed and recognized
that the result was better code easier to understand, change and
evolve. Then we tried to understand which changes were causing
the improvements, which changes were just side effects needed
by unit tests and which changes were caused by our inexperience
with TDD and mocks.

2.5 One year after the training on TDD with
Mock Objects
Between 2007 and 2008 TDD with mocks become an established
practice for the team. A group of team members were constantly
discussing and striving to improve our practice of TDD with
mocks, another group were keen on practicing correctly and
systematically TDD with mocks and on adopting new
improvements proposed by the first group, and finally another
group were less interested about the practice still were supportive
in maintaining existing tests and in practicing TDD with mocks
when pairing with a team member experienced in that technique.

The difficulties with slow and fragile tests suits observed before
the training were solved in the new and changed code and in unit
tests written after the training. In addition the code written was
easier to understand, change and evolve then the code written
before, without TDD and mocks.

A group of team members striving to understand the relation
between the changes caused to the code-base by the practice of
TDD with mocks begun to study S.O.L.I.D. design principles and
the Law of Demeter, discussed the relation between the practice
of TDD and the adherence to design principles and reached a
deeper practical understanding of the design principles and were
able to further improve the code produced day by day
intentionally removing more violations of the design principles
then before.

2.6 Documentation of experience
Between 2009 and 2011 this experience has been documented,
reviewed by team members involved, discussed and compared
with other experiences, i.e. [21], to search for similarities and
differences.

3. HYPOTHESIS
As a result of these observations we were intrigued by the
conjecture that code developed with TDD and mock objects tends
to conform to the S.O.L.I.D. principles and to the Law of Demeter
as an emergent property.
By emergent property we understood this to mean that the
tendency to the conformance is obtained without an explicit
policy to do so, without training the team on the design principles
or without requiring the team to produce code that conforms to
the principles. This means that an improved conformance is
obtained as a positive unanticipated consequence of applying the
practice of TDD with Mocks Objects [15].

The number of violations of the design principles can be
measured every time a class is changed observing the code-base.
Therefore the positive trend of this number of violations after the
adoption of TDD with mocks can be verified. This is a hypothesis
that can be verified with observations and also with code metrics.

Team members learned by observing positive effects of the
changes in the code induced by the practice of TDD and mocks
and this led to a deep practical understanding of the design
principles and team members were able to further improve the
code produced day by day intentionally removing more violations
of the design principles. As a result of these observations we were
intrigued by the conjecture that the tangible improvements of the
code-base produced by the practice of TDD with mocks led the
team to deeply understand the design principles and their practical
applications as a result of a process of coevolution.
By coevolution we meant that the better understanding of the
design principles and their practical applications in the code
written is obtained without training the team on the design
principles. This means that an improved understanding of the
design principles and their practical applications is obtained as a
result of the process of a mutual adaptation of the code-base and
the team, where the positive change of the code-base is initiated
by the adoption of the practice of TDD with mocks and the
change in the team follows with a mutual adaptation process [16]
[17][18].

The practical ability to avoid and remove violations of the design
principles, even the ones that are not related to the adoption of
TDD with mocks can be easily measured in the code-base and
tested with exercises, before the adoption of TDD with mocks and
after the adoption of the practice. The hypothesis of
improvements of the practical ability to remove more violations
can be verified with observations of the code-base and also with
exercises.

4. EVALUATION OF THE HYPOTHESIS
In order to evaluate the hypothesis, in addition to the evidence
that the code was easier to understand, change and evolve, we
evaluated the conformance of the code to the design principles by
observation, sampling the code we were changing. We found that
the code produced was more adherent to the S.O.L.I.D. design
principles then before. And we found the code was only partially
adherent to the Law of Demeter and this was compatible with
what is reported in [8]. Indeed while every access to objects getter
was usually wrapped to avoid “train-wreck”, this had not removed
all the violations of the Law as instead the delegation of behavior
does.

Together with some of the team members we discussed in
retrospective about this experience and we reported that initially
we noticed in practice that code developed with TDD using Mock
Objects was easier to understand and change, we observed in the
code the characteristics that made it easier to read and evolve, we
learned from these observations and we adapted our coding style
to pursue that useful characteristics. Some of the software
engineers perceived commonalities in the source codes that were
easier to understand and change and autonomously and
voluntarily began to study the design principles and apply them in
an aware and intentional way.
Then we found that what we reported was explainable with a well
known secondary effect of the emergent properties called
coevolution.

5. EVALUATION OF THE HYPOTHESIS
IN OTHER TEAMS AND CONTEXTS
Discussing the observations of the experience of the team with
other teams and experts helped to identify common
misunderstanding and hidden assumptions that so need to be
explicitly stated and described as preconditions in order to verify
the hypothesis in different teams and in different contexts.

Also factors as people, the requirements, the technology used, the
environment where the development happen must be taken into
account as possible relevant variables [19] in order to verify the
hypothesis in different teams and in different contexts.

5.1 TDD with Mock Objects defined
TDD is generically described with the red-green-refactor cycle,
how every phase is actually executed can substantially change
from team to team, from programmer to programmer.
The style of TDD with mocks referred here is the one originated
in 1999 in the London-based software architecture group and then
experimented and evolved in the Connextra team and later also in
the London Extreme Tuesday Club (XTC).
It is the one described in the paper presented at the XP2000
conference [8] and the one presented at the In OOPSLA 2004
conference [3] and is the unit testing approach described and
explained in great detail in the GOOS book [4].

5.2 Properly trained developers
While here is made the hypothesis about learning and developing
a deep understanding of the design principles through a process of
coevolution, the ability to practice effectively TDD with mocks is
a given precondition. There is no claim here that the practice of
TDD with mocks can survive inadequately trained developers.

5.3 The people and the environment
Since no one can be forced to learn a new technique, it is relevant
that the people in the team have a purpose to learn TDD with
mocks. In the team we had the tests suites that were slow and
some of them brittle and we were striving to solve those issues.

The environment was also a relevant variable. There was a high
pressure to deliver new functionalities, a volume ten times bigger
than the actual capacity of the team. Because of this, only the top
priority functionalities were implemented and so they were used
immediately after released. Because the short deadlines we had to
implement the features incrementally and so after the first release
of a new feature the team usually had to reuse, change and extend
the code just created or changed in the previous Sprint to extend
the feature. And the deadlines were often of 1 or 2 weeks and less
often of 3 weeks.
The relevant variables are:
- early feedback from the users: immediately after every

feature is released defects and bugs are reported;
- early feedback form the code: immediately after every

feature is released its code is often reused and changed and
extended and this make it tangible how easy the code just
written is easy to change and extend;

- very frequent releases: the feedback loops are really short
and so the actions and the outcomes are under the same
learning horizon enabling the team to learn from the
experience

5.4 No centralized point of control
The code-base was large including a large number of different
integrated applications. And distinct autonomous interdependent
departments were driving the evolution of the applications.
The lack of a central point of control for the evolution of the
system makes it clear that a centralized policy to evolve the
design of the code could not be effective [20].
This encouraged the team to investigate other ways as emergent
design driven by TDD and mocks.

6. THE EXPERIMENT
To better understand the phenomenon in general, between 2009
and 2011 an experiment was made: some developers outside the
team voluntarily accepted to solve small coding exercises and
answering to a survey.
The exercises consisted in refactoring some code that had various
violations of the S.O.L.I.D. principles and the LoD, with the goal
of making the code testable and write the unit tests.

The survey’s questions were about the proficiency of the
developer in TDD with mocks, in TDD in general and in
S.O.L.I.D. design principles.
The solution of the exercises were compared with the level of
proficiency declared in the survey and a conversation with the
developer followed to clarify possible doubts.

This experiment was conducted with an uncontrolled group and in
an uncontrolled environment, the results were qualitatively
measured.
The results of the experiment suggest that developers not
proficient in TDD with mock, especially the ones that wrote
integration or acceptance tests more then real unit tests, removed
fewer violations of the design principles. Even the ones that
claimed to be proficient in the S.O.L.I.D. design principles. Those
developers proficient in TDD but not in TDD with mocks, that
wrote real unit tests, removed more violations of the previous
group. The group of developers proficient in TDD with mocks
removed the major number of violations.
Some of the violations were not removed by any of the
participants to the experiment.

7. EVALUATION OF THE RESULTS
When discussing the conjecture that originated this study with
other experienced software engineers and TDDers a comment was
that the skills and expertise required to design properly an
application are vast and cannot be replaced just by applying TDD.

The preparation for this experiment made it very clear that the
kind of the design improvement discussed here is the one that
relate to the design of the classes, the distribution of
responsibilities among different classes and how objects
collaborate to each other sending messages at run-tine, and this is
consistent with earlier research results [22]. The design at a more
coarse grained level that focus on the organization of namespaces,
components and sub-systems, domain models and on the
definition of a compact & expressive languages to implement
features in that domain, is outside the scope of the hypothesis of
this study, indeed is more related with Acceptance-TDD.

The results of the experiment showed that developers proficient in
the S.O.L.I.D. design principles and very capable of arguing and
explaining the principles removed fewer violations of the ones
practicing TDD with mocks.
A possible explanation is that the design principles are not
specific to a language, a technology stack and a domain, so they
are described in general and abstract terms. And the connection
between the general abstract description and how to apply them in
the code is not given. Because of this, the help TDD with mocks
gives to remove violations and write code adherent to the
principles make a huge difference.
This huge difference is evident and tangible and helps developers
to make the connection between the general and abstract
definitions and the practical applications in the code.

8. ANALYSIS OF THE RELATION
BETWEEN TDD WITH MOCK OBJECTS,
S.O.L.I.D. CODE AND THE LAW OF
DEMETER
Here is analyzed how the team practiced TDD with Mock Objects
and how this promotes the conformance to the design principle.

TDD with Mock Objects defines [3] [4] [8] ways to write testable
code, below these are labeled as Practice. For example it tells to
pass dependencies in through the constructor. TDD with Mock
Objects describes also a set of test code smells in the unit tests
code that are related to possible problems in the design of the
production code. Below are labeled as Smell. For example one
smell is a bloated constructor. And for every test smell a list of
possible solutions are suggested.
A practice explicitly describes what to do, while a smell requires
to the developer a judgment based on knowledge and experience.
Indeed a test code smell is a hint that something might be wrong
somewhere in the code under test. It is not a certainty. It is up to
the developer to check out the design of the code under test, and
based on his/her knowledge and experience decides whether the
code actually need fixing, whether can be tolerated or whether is
just ok as is [13].

8.1 Open-Closed Principle and Dependency
Inversion Principle
The Open-Closed Principle states that classes and methods should
be open for extensions and strategically closed for modification:
so that the behavior of a class can be changed and extended
adding new code instead of changing existing code and many
dependent classes.
The Dependency Inversion Principle states that both low level
classes (e.g. representing the persistence details or intra-systems
communication details) and high level classes (e.g. representing
application domain concepts or business transactions) should both
depend on abstractions (e.g. interfaces): high level classes should
not depend on low level classes. This improves the re-usability of
classes and enables the evolution of the existing code with small
local changes.

8.1.1 Practice
When writing a unit test with TDD using Mock Objects, a
parameterized constructor is added to the class in order to inject
all the dependencies, directly or through a factory that can return
more than one instance of a dependency and permits to instantiate
a dependency later in time. Look [3] at paragraph 4.9.
public class MonitoringSystemAlarm
{
 public MonitoringSystemAlarm()
 : this(new TirePressureSensor(), 17, 21) {}

 public MonitoringSystemAlarm(
 ISensor sensor,
 double lowPressureTreshold,
 double highPressureTreshold)
 {
 // ...
 }

The point here is that all the dependencies implement their own
interface and the interface type is used for the parameters in the
constructor. The same holds true for dependencies that are passed
as arguments of a method of the class. All this makes it possible
to pass a mock object everywhere a real object is expected. This
is not a work-around for a limitation of the mocking tool that
cannot mock a concrete class, instead this is the deliberate way
that TDD with Mock Objects adopts to break dependencies
between classes, to make relationship explicit, to promote the
coding of classes that are easy to reuse and that can be changed
without provoking an unpredictable cascade of many changes.
This is how TDD with Mock Objects helps to write classes that
adhere to the DIP. Look [4] at chapter 20, paragraph "Mocking
Concrete Classes".

8.1.2 Practice
Since with the practice of TDD with Mock Objects almost all the
dependencies of a class are interfaces, all these dependencies give
the possibility to create new implementations which extend the
possible use of the class behavior. E.g. a logger class could log on
different implementations of IAppender interface: file, console or
db; a deposit class could work with different implementations of
IOnlinePaymentsMethod: PayPal or Credit cards.
The interfaces and implementations are separate so it is possible
to completely substitute anything at any point by providing
another implementation of the interface. Moreover the use of
interfaces prevents the use of public member variables (aka class
fields), and singleton and static variables are discouraged because
they are not unit test friendly and mock friendly.
This help to write classes that adhere to the OCP.

8.1.3 Practice
The frequent refactoring during the red-green-refactor cycles of
TDD with Mock Objects helps to remove conditionals (i.e. if and
switch statements) and also the conditionals that check for object
type (e.g. through C++ Run-Time Type Information or through
Java and .NET Reflection).
This too helps to write classes that adhere to the OCP.

8.1.4 Where TDD with Mock Objects doesn't help in
the matter of OCP and DIP
A way to adhere to the OCP not directly enforced by TDD with
Mock Objects: the use of the template method design pattern, call-
back functions, events (publisher-subscribers design pattern) and
policies as sorting criteria delegated to other classes.

A way to adhere to the DIP not directly enforced by TDD with
Mock Objects: the use of the template method design pattern to
encode a high level algorithm implementation in an abstract base
class and have details implemented in derived classes. Thus, the
class containing the details depends upon the class containing the
abstraction. The same result can be obtained with the builder
design pattern.

8.2 Single Responsibility Principle and the
Interface Segregation Principle
The Single Responsibility Principle states that there should never
be more that one reason for a class to change: a class should have
one and only one responsibility.
The Interface Segregation Principle states that clients should not
be forced to depend upon interfaces that they don't use: fat
interfaces should be avoided, while interfaces that serve only one
scope should be preferred.

8.2.1 Smell
Writing a unit test with TDD using Mock Objects can lead the
class under test having a bloated constructor: a constructor that
has a long list of arguments used to inject dependencies. This is
the smell that the class has too many responsibilities and one
suggested refactoring is to break up the class into more classes
each one with a single responsibility. Another suggested
refactoring for this smell is to package a group of dependencies
into a new class that contains them and deals with the related
responsibility. Fore more details look [3] at paragraph 4.8 and [4]
at chapter 20 the paragraph "Bloated Constructor".

8.2.2 Smell
A unit test with a lot of expectations is a smell that the class under
test has more than one responsibility and the suggested
refactoring is to extract into a new class a group of those
collaborations declared in the expectations. [3] at paragraph 4.7
and paragraph 5.4 and [4] at chapter 20, paragraph "Too Many
Expectations".

8.2.3 Smell
When a group of test cases uses the same group of member
variables (aka class fields) of the text fixture class, this too is a
smell that those test cases deal with a distinct responsibility and
the suggested refactoring is to extract from the class under test the
responsibility into a new class. For more details look [14].

8.2.4 Smell
When writing a unit test with TDD using Mock Objects it can
happens to mock one method call of a dependency (e.g. set an
expectation) and at the same time to stub another method call on
the same dependency (e.g. set the return value for the method that
could be invoked zero, one or many times).
[Test]
public void Send_Diagnostic_String_&_Receive_Status()
{
 var mockTelem=mocks.StrictMock<ITelemetryClient>();
 mockTelem.Stub(m => m.Connect());
 mockTelem.Stub(m => m.OnlineStatus).Return(true);
 mockTelem.Expect(m => m.Send(DiagnosticMessage));
 //...
}
This is the smell that the dependency might have 2 distinct
responsibilities. The suggested refactoring is to split the two
responsibilities into two different classes.

8.2.5 About those smells
In all those cases, after breaking up the class, the result is new
classes that adhere to the SRP. The class interface too is split into
distinct interfaces that will adhere to the ISP [4] chapter 20,
paragraph "Mocking Concrete Classes". The interfaces obtained
with this process often mimic the implicit public interface of their
class, so as a result you see pairs of things, like ITelemetryClient
and TelemetryClient.

8.2.6 Practice
Another way to put too many responsibilities in a class is the
abuse of inheritance. TDD with Mock Objects encourages the use
of composition over inheritance and this prevents the abuse of
inheritance and also the violation of the SRP caused by the abuse
of the inheritance. For an example look at [3] paragraphs 2.1,
3.3.1 and 3.7.

8.2.7 Where TDD with Mock Objects doesn't help in
the matter of ISP
A way to adhere to the ISP not directly enforced by TDD with
Mock Objects: even when an interface mimic the implicit public
interface of a class that already has a single responsibility,
sometimes there can be chances to further break up the interface
into distinct interfaces aimed at different clients, with the goal of
eliminating an inadvertent coupling between clients and between
DLLs. This decreases the number of dependencies and the
number of recompiles needed after a change. And the result is a
better conformance with the ISP.

8.3 Liskov Substitution Principle
The Liskov Substitution Principle states that methods that use
pointers or references to a base class must be able to use instances
of derived classes without knowing it: all the derived classes must
honor the contract defined by the base class.

8.3.1 Practice
A method implementation that checks for the object type of the
actual argument (e.g. through C++ Run-Time Type Information
or through Java and .NET Reflection) violates the LSP as well as
the OCP. With the practice of TDD with Mock Objects the bar
become red when changing the method parameter type from the
base class type to the interface type in order to mock the
argument. The LSP violation is surfaced by the failing test, and to
get a green bar the violation must be removed.

8.3.2 Practice
TDD with Mock Objects and TDD in general change the design
of base and derived classes from a process of invention into a
process of discovery: first commonalities among different classes
are found and then are extracted in a common base class. The
commonalities are found after the test is green (red-green) and the
duplication is removed refactoring the code (green-refactoring).
This prevents many violations of the LSP that can happen when a
base class is designed upfront or when classes are derived upfront.
Furthermore TDD with Mock Objects promotes the use of

composition over inheritance. For more details and examples look
[3] at paragraph 2.1, 3.3.1 and 3.7. This avoids many violations of
the LSP too.

8.3.3 Practice
Furthermore, a derived class that overrides a virtual method
violates the LSP when it replaces the precondition of the base
class method with a stronger one and when it replaces the post
condition with a weaker one. This violation can be detected
executing the unit tests of the base class also against the derived
class. This holds true for TDD and for unit testing in general.

8.3.4 Where TDD with Mock Objects doesn't help in
the matter of LSP
All the previous practices prevent or avoid violations of the LSP.

Adherence to the LSP is easier to verify in the context of its
clients using the base class and the derived classes. The LSP
makes clear that in OOD the ISA relationship pertains to extrinsic
public behavior that clients depend upon. The main focus when
writing a unit test with TDD using Mock Objects is on the
behavior on the Design by Contract, in this case the behavior of
the method that is overwritten in the derived class. Look [3] at
paragraph 2.1. When there is a violations of the LSP it can be
highlighted by some unit tests e.g. when the expectations on the
same interface methods on two different tests are inconsistent. It
is up to the programmer to notice the inconsistency and finding
how to fix the LSP violation. It is also up to the programmer to
spot refused Bequest smell and fixing it when appropriate.

8.4 Law of Demeter
The Law of Demeter states that methods of an object should avoid
invoking methods of an object returned by another object method,
the motto of LoD is "Only talk to your friends" and the goal is to
promote loose coupling.

8.4.1 Practice
Avoid the use of getters; replace them with Smart Handlers that
are Visitor-like objects [6] that are passed to the object without
getters. With this practice code tend to conform to the LoD just
like when applying the Tell, Don’t Ask principle. For an example
look [8] at paragraph 4.3.

8.4.2 Smell
A single modification in the code that requires changes to
expectations in two different tests is a smell that design is broking
the Law Of Demeter. This is true especially when the initial
modification in the code involves getters. The suggested
refactoring is to replace getters, with Smart Handlers. For an
example look [8] at paragraph 4.3.

8.4.3 Smell
Also a unit test with a lot of expectations with mocks that return
other mocks is a smell that the class under test has a responsibility

that belongs to another object and the suggested refactoring is to
apply the heuristic "Tell, Don't Ask". Fore mode details look [3]
at paragraph 1.2, and [4] at chapter 2 paragraph "Tell, don't ask"
and at chapter 20 paragraph "What the Tests Will Tell Us (If
We’re Listening)" and also [5].

9. FINDINGS
The results of the observations, the experiment and the analysis
are compatible with the two initial conjectures and lead to identify
the preconditions, the relevant variables and the hypothesis that
can be tested.
The precondition is that the developers must be properly trained
in the practice of TDD with Mock Objects and able to apply it
properly as described in [3][4][8].

Relevant variables of the environment, within the software team
operates, are:
- early feedback from the users about defects and bugs in the

new releases
- early feedback form the code: features are developed and

release incrementally so the code just released is
immediately reused and changed and extended;

- very frequent releases: every week or two in order to have
very frequent feedbacks that enable learning from the
practice

Another relevant variable is the pressure and the will to release
working and valuable software as fast as possible, and the
presence of mentors for the practice of TDD with Mock Objects
to support safe experimentations and improvements.

The first hypothesis: the number of violations of the design
principles when a class is changed in the code-base decrease
significantly more when the team practice TDD with mocks.

The second hypothesis: after the adoption of the practice also the
number of violations of the design principles not directly related
to the adoption of TDD with mocks (for example the ones
describe in the paragraph 8.1.4) decrease progressively more.

The result should be different from team members that don’t
practice TDD or practice TDD improperly writing using tests that
are more similar to integration tests. In that case the number of
violations in the code-base is not expected to decrease as much as
for the team doing TDD with mocks.

10. DISCUSSION
The analysis here documented about the relation between the
practice of TDD with mocks and the design principles is useful to
evaluate the conjecture that the improved conformance to the
design principles is an emergent property.
Indeed the Practices as described in the analysis show that some
of the violations of the principles are removed as direct

consequence of those practices, this cause-effect relationship does
not indicate an emergent behavior even if this it still is a positive
unanticipated consequence. So we can name this a weak
emergence.
Ad the same time the Smells described in the analysis don’t have
a direct relation with removing violations of a design principle, it
is the result of a judgment based on knowledge and experience of
the developer that is developed practicing TDD with mocks. We
can call this proper emergence.

The coevolution used to explain the process of learning the design
principles and their practical applications when practicing TDD
with mocks as well as the emergence used to explain the
improved conformance they both arise during the process of self-
organization in a complex system. And since team members are
humans it is a socially complex system [10][19].

Joseph Pelrine is one of Europe’s leading experts on Agile
software development, has worked as assistant to Kent Beck in
developing eXtreme Programming, is an accredited practitioner
for the Cognitive Edge Network, and his work focus is on the
field of social complexity science and its application to Agile
processes. He suggested the use of the ABIDE model (Attractors,
Barriers, Identity, Dissent/diversity and Environment) developed
by Dave Snowden at the Cynefin Center for Organisational
Complexity and now at Cognitive Edge [11] to search for
relevant parameters of the socially complex system. In particular
he suggested that the two software engineers extremely
experienced in the practice of TDD with Mock Objects that
trained the team and then joined the team acted as Attractors in
the process of self-organization of the socially complex system.
Following the ABIDE model, the practices or TDD with mocks
acted as Barriers in the self-organization.
While the frequent feedback from users and the code that define a
structure of the interaction between team members and the users
and the code contributed to define the Environment where the
self-organization had place. This is consistent with research
results about iteration and learning [23].

The conjecture reported here that the process of learning is
emergent phenomenon has been studied before also by Dr. Sugata
Mitra.
Dr. Sugata Mitra, Education scientist, professor of Educational
Technology at New Castle University UK and Chief Scientist of
NIIT since 1999 with his 'Hole In The Wall' experiments is
testing his speculations about education as a self-organising
system where learning is an emergent phenomenon [12].
Sphere College in Phoenixville Pennsylvania, and Khabele
School in Austin Texas have an educational philosophy that
incorporates elements of self-organisation and emergent
education.

Here follow comments and quote form experts in TDD and in
TDD with mocks that are relevant to this study.
A relevant quote from Steve Freeman: No technique can survive
inadequately trained developers.

A relevant quote from Nat Pryce: TDD does not drive towards
good design, it drives away from a bad design. If you know what
good design is, the result is a better design.

A relevant quote from Kent Back: TDD doesn't drive good
design. TDD gives you immediate feedback about what is likely to
be bad design.

A relevant quote from Michael Feathers: writing tests is another
way to look the code and locally understand it and reuse it, and
that is the same goal of good OO design. This is the reason of the
deep synergy between testability and good design.

11. THREATS TO VALIDITY
Since this an observational study based on observations in an
uncontrolled experiment it is not free from overt biases as i.e. in
the sampling of the code that has been observed and in the
judgment of the code observed in regard to the adherence to the
design principles.
There is also the possibility of hidden biases as i.e. lot of tacit
knowledge of good design by the observed team.
Since the observations have been documented in retrospective,
potentially suffer from the Texas sharpshooter fallacy.

12. CONCLUSION
The observations, the analysis of the relation between TDD with
mocks and the design principles and the qualitative experiment
are compatible with the conjecture that the practice of TDD with
Mocks Objects led the team to write code more conformant to the
S.O.L.I.D. design principles and partially to the Law of Demeter.
They are compatible also with the conjecture that the practice of
TDD with Mocks Objects led the team to learn and develop a
deep understanding of the design principles and their practical
applications.
And finally they are compatible with the conjecture that the
conformance to the design principle is an emergent property and
the learning of the design principle is a process of coevolution.

The qualitative experiment and the analysis of the relation
between TDD with mocks permitted to roughly quantify the
expected improvement of conformance to the design principles
due to the practice of TDD with mocks.

Information and understanding developed with this study
permitted to identify preconditions and relevant variables and to
turn the conjectures into hypothesis that can be tested in a
subsequent empirical software engineering research in other
teams.

13. ACKNOWLEDGMENTS
Thanks to Paolo Polce e Gerardo Bascianelli that joined the team
and shared with us their knowledge and deep experience on TDD
with Mock Objects. Thanks to Antonio Carpentieri and Riccardo
Marotti and all the dev team members of the F1 Racing Team for
their curiosity to explore new ways of writing code, for their
courage to give up old skills for new ones, for their trust and
respect that permitted us to engage in discussions, open
disagreement and coding experiments and come out with new
useful understanding and insights.

Thanks to those members of the XPUG-IT and UGIdotNET
Italian community that voluntarily participated in the experiment.

Thanks to the many of you that helped to review this paper, who
suggested ideas and improvements and who shared and discussed
their own experiences with TDD.

14. REFERENCES
[1] Beck, K. 2002. Test Driven Development: By Example,

Addison Wesley
[2] Feathers, M. 2004. Working Effectively with Legacy Code,

Prentice-Hall
[3] Freeman, S., Mackinnon, T., Pryce, N. & Walnes, J. 2004 .

Mock roles, not objects. In OOPSLA '04: Companion to the
19th annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications, 236-246.
Available also from: http://www.planningcards.com/papers/

[4] Freeman, S., Pryce , N. 2010. Growing Object-Oriented
Software Guided by Tests, Addison-Wesley

[5] Hunt, A. and Thomas, D. 1998. Tell, Don’t Ask, Available at:
http://www.pragmaticprogrammer.com/ppllc/papers/1998_0
5.htm

[6] Gamma, E., Helm, R., Johnson, R. & Vlissides, J. M. 1994.
Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley Professional

[7] Lieberherr, K. and Holland, I. Assuring Good Style for
Object-Oriented Programs IEEE Software, September 1989,
38-48.

[8] Mackinnon, T., Freeman, S., Craig, P. Endo-testing: unit
testing with mock objects. In Extreme Programming
Examined, Addison-Wesley, Boston, MA. 2001. 287-301.
Available also from: http://www.planningcards.com/papers/

[9] Martin, R. C. 2002. Agile Software Development, Principles,
Patterns, and Practices, Prentice-Hall

[10] Arrow, H., McGrath, J. E. & Berdahl, J. L. 2000. Small
Groups as Complex Systems: Formation, Coordination,
Development, and Adaptation, Sage Publications

[11] Cognitive Edge: http://www.cognitive-edge.com/
[12] Mitra, S. Self organising systems for mass computer literacy:

Findings from the 'Hole in the Wall' experiments, In
International Journal of Development Issues, 4(1), pp 71-81
(2005).

[13] Beck, K., Fowler, M. 1999. Refactoring: Improving the
Design of Existing Code, Chapter 3 Bad smells in code,
Addison-Wesley,
See also http://en.wikipedia.org/wiki/Code_smell

[14] Feathers, M. 2004. Working Effectively with Legacy Code,
pp 251 Heuristic #4: Look for internal relationship, Prentice
Hall

[15] Goldstein, J. Emergence as a Construct: History and Issues,
In Emergence: Complexity and Organization 1 (1): 49–72
(1999)

[16] Kauffman, S. A. 1993. The origin of order: self-organization
and selection in evolution, Oxford University Press

[17] Kauffman, S. A. 1995. At Home in the Universe: The Search
for Laws of Self-Organization and Complexity, Oxford
University Press

[18] Goerner, S. 1994. Chaos and the evolving ecological
universe, Langhorne PA: Gordon & Breach

[19] Pelrine, J. On Understanding Software Agility - A Social
Complexity Point Of View, In E:CO Issue Vol. 13 Nos.1-2
2002 pp 26-37

[20] Forrest S. Balthrop J. Glickman M. Ackley D. Computation
in the wild. E. Jen, editor, Robust Design: A Repertoire of
Biological, Ecological, and Engineering Case Studies, pages
207–230. Oxford University Press, 2004. Reprinted in K.
Park and W. Willinger Eds. The Internet as a Large-Scale
Complex System, pp. 227-250. Oxford University Press
(2005).

[21] Madeyski, L. 2010. Test-Driven Development: An
Empirical Evaluation of Agile Practice, Springer.

[22] Madeyski, L. 2006. The Impact of Pair Programming and
Test-Driven Development on Package Dependencies in
Object-Oriented Design - An Experiment. Lecture Notes in
Computer Science, 4034:278-289, Springer

[23] Taylor, K. , Rohrer, D. 2010. The effects of interleaved
practice,

