Luca Minudel

Exploratory study

based on :
e what observed In this experience

e data collected from experiments
since Nnow

2006 — Initial OO training

2006-2007 — After OO training
2007 = TDD with Mocks training

-
-
E
=
-
g

2007-2008 E After TDD w/ Mocks training

Alan Turing:

K«

The popular view that scientists proceed inexorably from
well-established fact to well-established fact, never being
Influenced by any improved conjecture, is quite mistaken

Provided it is made clear which are and which
are . ho harm can result

Conjectures are of great importance since they

»

DESIGN ~ TDD ?

Endo-Testing: Unit Testing with Mock Objects

Tim Mackinnon (Connextra). Steve Freeman (BBST), Phulip Craig (Independent)

(tim.mackinnon@pobox.com, steve@m3p.co.uk, phi

pépchox. com)

Thus paper was presented at t
Software Engineering - XP20
be published in YP aX

Abstract

Unit testing is a fundamental
difficult to test in isolation. It
and difficult to maintain and 1
domain code and test suites. T|
structure, and aveid polluting

Keywords: Extreme Programul

1 Introduction

“Once,” said the Mo

[2

Umit testing 15 a fundamental §
trivial code 1s difficult to test
time, and you want to be notif
because you are trying to test

We propose a technique calle
implementations that emulate
code which they test from ins
writing code stubs with two in
is usual, and we use our tests

Our experience is that develo
better structure of both domai
regular format that gives the d
should be written to make it e
technique to achieve this. We
cost of writing stub code.

In this paper. we first describg
the benefits and costs of MocH
brief pattern for using Mock (

2 Unit testing with Mal

An essential aspect of unit tes
you are testing and where any
simply and clearly as possible

Mock Roles, not Objects

Sieve Freeman, Nat Pryce, Tim Mackinnon, Joe Walnes
ThoughtWorks UK
Barkshire House, 168-173 High Holbomn
London WC1V 7AA

{sfreeman, npryce, tmackinnon, jwalnes} @thoughtworks.com

ABSTRACT
Maock Objects is an extension to Test)
supports good Ohject-Oriented design
a coherent system of types within a o
less nteresting as a technique for isol
libraries than is widely thought. This
of using Mock Objects with an extend
and worst practices gained from
process. It also introduces jMock, a Jav
our collective experience

Categories and Subject Desd
D.2.2 [Software Engineering]: Desig
Ohbject-Oriented design methods

General Terms
Deesign, Verification.

Keywords
Test-Driven Development. Mock Obj

L INTRODUCTION
Mock Objects is misnamed. It 1s really
types in a system based on the roles thal

GROWING
OBJECT-ORIENTED
SOFTWARE,

(GUIDED BY TESTS

In[10] we introduced the concept of M
to support Test-Driven Development.
better structured tests and. more impd
code by preserving encapsulation,
clarifying the interactions between ¢
how we have refined and adjusted ¢
experience since then. In particular, wi
most important benefic of Mock Objd
called “interface discovery”. We hav,
framework to support dynamic generati
on this experience.
The rest of this section establishes of
Driven Development and good pr
Programming, and then introduces the
rest of the paper introduces Need
Permission o make digital or hard copies
personal or classroom use is sranted witH
are not made or distributed for profit o o
copies bear this notice and the full citatig e
atherwise, or republish, te post on serve 5 I'E

requires prior specific permission andfor a I-‘ FI{ IJ l-
Conference 4, Manth 1-2, 2004, City, 514

Copyright 2004 A CM 1-58113-000-0/0000) N “x . l) l{ \l'(-\ l‘

. . - N 1
& -
I. 1.I|l _‘
- + e 11
e : |
N - § i]

ra

WORKING
EFFECTIVELY
WITH

Michael C. Feathers

Parametrize Constructor
Parametrize Method

Extract Interface

Introduce Instance Delegator
Skin and Wrap the API

Responsiblility-Based
Extraction

Adapt Parameter

No technique can survive inadequately
trained developers - Steve Freeman

1st Law of Software Process:

Process only allows us to do things we
already know how to do - Philip G. Armour

TDD does not drive towards good design, it
drives away from a bad design. If you
know what good design is, the result is a
better design - Nat Pryce

TDD doesn't drive good design. TDD gives
you immediate feedback about what is
likely to be bad design - Kent Beck

All science Is experiential; but all experience
must be related back to and derives its
validity from the
of consciousness In which it arises, I1.e.,
the totality of our nature - Wilhelm Dilthey

Social Complexity

As soon as you introduce people, things
become complex - Joseph Pelrine

Software Systems Evolution

To the degree that a software system is large and distributed
enough that there Is , We
must expect evolutionary forces

The strategies that we adopt to understand, control, interact
with, and influence will
be different once we understand them as ongoing
evolutionary processes

D. H. Ackley et al. 2002

Terms check: mock ?

e Test Double

In automated unit testing replaces an
object on which the class under test
depends

Can be a Stub, a Mock a Spy

Terms check: mock ?

e Test Stub

Has configurable canned responses.

Is used to control the indirect input to the
class under test

Terms check: mock ?

e Strict Mock

Has configurable expectations.
Test fails when expected msg Is not sent.
"est fails when unexpected msg Is sent.

Used for verifying messages sent by the
class under test

Terms check: SOLID ?
« SRP - Single Responsibility Principle
there should never be more than one

reason for a class to change: a class should
have one and only one responsibility

Terms check: SOLID ?

ISP — Interface Segregation Principle

clients should not be forced to depend upon
Interface members that they don't use:
Interfaces that serve only one scope should
be preferred over fat interfaces.

Terms check: SOLID ?

« OCP — Open Closed Principle

classes and methods should be open for
extensions and strategically closed for
modification:

so that the behavior can be changed and
extended adding new code instead of
changing the class

Terms check: SOLID ?

 DIP — Dependency Inversion Principle

low level classes and high level classes
should both depend on abstractions: high
level classes should not depend on low
level classes.

Terms check: SOLID ?

 LSP — Liskov Substitution Principle

methods that use a base class must be able
to use instances of derived classes without
knowing it: all the derived classes must
honor the contract defined by the base class

Unit Test & Design

 OCP: All dependencies are passed Into a
parametric constructor or to a method, no
singleton no static methods call no new
object instantiated inside the class

* DIP: All dependencies implement an
Interface used type of the
constructor/method arguments

Unit Test & Design

 SRP: composition over inheritance
promoted by TDD with Mocks prevent
abuse of inheritance that Is a common
case of violation of SRP

e |SP: Interfaces extracted from a class that
conform to SRP tend to conform also to
ISP

Unit Test & Design

e LSP: inheritance in TDD change from a
process of invention into a process of
discovery: this prevents many violations of
the LSP

e LSP: unit test can be run on all the derived
class so violations of the contract can be
discovered

OCP - DIP

SRP — ISP

LSP

LoD

Difficulties experienced with TDD and mocks ?

Downsides observed in the use of mocks ?

High adherence to
Design Principles

Low adherence to
Design Principles

High adherence to
Design Principles

<- Average (*)

Low adherence to
Design Principles

High adherence to
Design Principles

<- TDD with Mocks

<- Average (*)

Low adherence to
Design Principles

High adherence to
Design Principles

<- After TDD w/ Mocks
<- TDD with Mocks

<- Average (*)

Low adherence to
Design Principles

Co-Evolution / Attractors / Barriers

Prof. Sugata Mitra speculation

education is a self organizing system where
learning Is an emergent phenomenon

Norwegian Developer Conference 2010

Session ‘The Deep Synergy Between
Testability and Good Design’

Michael Feathers:

writing tests Is another way to look the code

and locally understand it and reuse it, and

that Is the same goal of good OO design.
This is the reason of the deep synergy

between testablility and good design.

| essons learned

* Learning SOLID and design principles
* Learning TDD with Mocks

———~

-~ ~
“ Generic / Abstract A) :
(o < Proper practice
\ principle /
~ -~y — - g /
Simplified practice
with feedback

e TDD relation to design
e Language ambiguity

About the conjectures

Observations, analysis and the experiment are compatible
with the conjectures that the practice of TDD with Mocks
Objects lead the team to :

« write code more conformant to the S.O.L.1.D. design
principles and partially to the Law of Demeter.

« |earn and develop a deeper understanding of the design
principles and their practical applications

And they are compatible with the conjecture that the
conformance to the design principle is an emergent
property and the learning of the design principle is a
process of coevolution.

Relevant variables

Prerequisites
* Motivation, autonomy, proper training

e Early frequent feedback from users and
code

Expected outcome

 Number of violations of SOLID and LoD
decrease after the training

 Then understanding of SOLID and LoD
iImprove

Code / Paper / Slides :
nttp://github.com/lucaminudel

Feedback / Comments / Questions :
Luca Minudel - tdd@minudel.it

