
Luca Minudel

Exploratory study

based on :

• what observed in this experience

• data collected from experiments
since now

Alan Turing:

«
The popular view that scientists proceed inexorably from

well-established fact to well-established fact, never being
influenced by any improved conjecture, is quite mistaken

Provided it is made clear which are proved facts and which
are conjectures, no harm can result

Conjectures are of great importance since they suggest useful
lines of research

»

DESIGN ~ TDD ?

• Parametrize Constructor
• Parametrize Method
• Extract Interface
• Introduce Instance Delegator
• Skin and Wrap the API
• Responsibility-Based

Extraction
• Adapt Parameter
• …

No technique can survive inadequately
trained developers - Steve Freeman

1st Law of Software Process:
Process only allows us to do things we

already know how to do - Philip G. Armour

TDD does not drive towards good design, it
drives away from a bad design. If you

know what good design is, the result is a
better design - Nat Pryce

TDD doesn't drive good design. TDD gives
you immediate feedback about what is
likely to be bad design - Kent Beck

All science is experiential; but all experience
must be related back to and derives its
validity from the conditions and context
of consciousness in which it arises, i.e.,
the totality of our nature - Wilhelm Dilthey

As soon as you introduce people, things
become complex - Joseph Pelrine

Social Complexity

To the degree that a software system is large and distributed
enough that there is no effective single point of control, we
must expect evolutionary forces

...

The strategies that we adopt to understand, control, interact
with, and influence the design of computational systems will
be different once we understand them as ongoing
evolutionary processes

D. H. Ackley et al. 2002

Software Systems Evolution

Terms check: mock ?

• Test Double
In automated unit testing replaces an
object on which the class under test
depends

Can be a Stub, a Mock a Spy

Terms check: mock ?

• Test Stub
Has configurable canned responses.
Is used to control the indirect input to the
class under test

Terms check: mock ?

• Strict Mock
Has configurable expectations.

Test fails when expected msg is not sent.
Test fails when unexpected msg is sent.

Used for verifying messages sent by the
class under test

Terms check: SOLID ?

• SRP – Single Responsibility Principle

there should never be more than one
reason for a class to change: a class should
have one and only one responsibility

Terms check: SOLID ?

• ISP – Interface Segregation Principle

clients should not be forced to depend upon
interface members that they don't use:
interfaces that serve only one scope should
be preferred over fat interfaces.

Terms check: SOLID ?

• OCP – Open Closed Principle

classes and methods should be open for
extensions and strategically closed for
modification:

so that the behavior can be changed and
extended adding new code instead of
changing the class

Terms check: SOLID ?

• DIP – Dependency Inversion Principle

low level classes and high level classes
should both depend on abstractions: high
level classes should not depend on low
level classes.

Terms check: SOLID ?

• LSP – Liskov Substitution Principle

methods that use a base class must be able
to use instances of derived classes without
knowing it: all the derived classes must
honor the contract defined by the base class

Unit Test & Design

• OCP: All dependencies are passed into a
parametric constructor or to a method, no
singleton no static methods call no new
object instantiated inside the class

• DIP: All dependencies implement an
interface used type of the
constructor/method arguments

Unit Test & Design

• SRP: composition over inheritance
promoted by TDD with Mocks prevent
abuse of inheritance that is a common
case of violation of SRP

• ISP: interfaces extracted from a class that
conform to SRP tend to conform also to
ISP

Unit Test & Design

• LSP: inheritance in TDD change from a
process of invention into a process of
discovery: this prevents many violations of
the LSP

• LSP: unit test can be run on all the derived
class so violations of the contract can be
discovered

OCP – DIP

SRP – ISP

LSP

LoD

Difficulties experienced with TDD and mocks ?

Downsides observed in the use of mocks ?

Co-Evolution / Attractors / Barriers

Prof. Sugata Mitra speculation

education is a self organizing system where
learning is an emergent phenomenon

Norwegian Developer Conference 2010

Session ‘The Deep Synergy Between
Testability and Good Design’

Michael Feathers:
writing tests is another way to look the code

and locally understand it and reuse it, and
that is the same goal of good OO design.

This is the reason of the deep synergy
between testability and good design.

Lessons learned
• Learning SOLID and design principles
• Learning TDD with Mocks

• TDD relation to design
• Language ambiguity

Generic / Abstract
principle Proper practice

Simplified practice
with feedback

About the conjectures
Observations, analysis and the experiment are compatible

with the conjectures that the practice of TDD with Mocks
Objects lead the team to :

• write code more conformant to the S.O.L.I.D. design
principles and partially to the Law of Demeter.

• learn and develop a deeper understanding of the design
principles and their practical applications

And they are compatible with the conjecture that the
conformance to the design principle is an emergent
property and the learning of the design principle is a
process of coevolution.

Relevant variables

Prerequisites
• Motivation, autonomy, proper training
• Early frequent feedback from users and

code

Expected outcome
• Number of violations of SOLID and LoD

decrease after the training
• Then understanding of SOLID and LoD

improve

Code / Paper / Slides :
http://github.com/lucaminudel

Feedback / Comments / Questions :
Luca Minudel - tdd@minudel.it

