Skip to content
This repository

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Octocat-spinner-32-eaf2f5

Cannot retrieve contributors at this time

file 3629 lines (3591 sloc) 109.996 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
"""
Module morphdemo -- Demonstrations
-------------------------------------------------------------------
morphdemo is a set of Demonstrations for pymorph package
-------------------------------------------------------------------
airport() -- Detecting runways in satellite airport imagery.
area() -- Remove objects with small areas in binary images.
asp() -- Detect the missing aspirin tablets in a card of aspirin
tablets.
beef() -- Detect the lean meat region in a beef steak image.
blob() -- Demonstrate blob measurements and display.
brain() -- Extract the lateral ventricle from an MRI image of the
brain.
calc() -- Extract the keys of a calculator.
cells() -- Extract blood cells and separate them.
chickparts() -- Classify chicken parts in breast, legs+tights and wings
concrete() -- Aggregate and anhydrous phase extraction from a concrete
section observed by a SEM image.
cookies() -- Detect broken rounded biscuits.
cornea() -- Cornea cells marking.
fabric() -- Detection of vertical weave in fabrics.
fila() -- Detect Filarial Worms.
flatzone() -- Flat-zone image simplification by connected filtering.
flow() -- Detect water in a static image of an oil-water flow
experiment.
gear() -- Detect the teeth of a gear
holecenter() -- Hole center misalignment in PCB.
labeltext() -- Segmenting letters, words and paragraphs.
leaf() -- Segment a leaf from the background
lith() -- Detect defects in a microelectronic circuit.
pcb() -- Decompose a printed circuit board in its main parts.
pieces() -- Classify two dimensional pieces.
potatoes() -- Grade potato quality by shape and skin spots.
robotop() -- Detect marks on a robot.
ruler() -- Detect defects in a ruler.
soil() -- Detect fractures in soil.
"""
from pymorph import *
import numpy

print '''\
*********************** WARNING ******************************
The demo is not as well maintained as the rest of the package.
*********************** WARNING ******************************

The demo has not been updated to the newer interfaces.
'''

def readgray(imgname):
    import pylab
    return pylab.imread('pymorph/data/' + imgname)

def show(f, f1=None, f2=None, f3=None, f4=None, f5=None, f6=None):
    import pylab
    pylab.ion()
    pylab.imshow(overlay(f,f1,f2,f3,f4,f5,f6))
    pylab.draw()


# =========================================================================
#
# airport - Detecting runways in satellite airport imagery.
#
# =========================================================================
def airport():

    print
    print '''Detecting runways in satellite airport imagery.'''
    print
    #
    print '========================================================================='
    print '''
The satellite image of the airport is read.
'''
    print '========================================================================='
    #0
    print '''
f = readgray('galeao.jpg')
show(f)'''
    f = readgray('galeao.jpg')
    show(f)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The disk of radius 5 (diameter 11) is chosen to detect features
smaller than this size. For visualization, the top-hat image is
brightened by 150 gray-levels.
'''
    print '========================================================================='
    #0
    print '''
th=openth(f,sedisk(5))
show(addm(th, 150))'''
    th=openth(f,sedisk(5))
    show(addm(th, 150))
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
A thresholding is applied to detect the features enhanced by the
top-hat. This is a standard top-hat sequence.
'''
    print '========================================================================='
    #0
    print '''
bin=threshad(th,30)
show(f,bin)'''
    bin=threshad(th,30)
    show(f,bin)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The thinning (red) and pruning (green) detect closed structures
which characterized the runways structure. The area open (blue)
selects only very long features, with more than 1000 pixels.
'''
    print '========================================================================='
    #0
    print '''
m1=thin(bin)
m2=thin(m1,endpoints())
m=areaopen(m2,1000,sebox())
show(f,m1,m2,m)'''
    m1=thin(bin)
    m2=thin(m1,endpoints())
    m=areaopen(m2,1000,sebox())
    show(f,m1,m2,m)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The previous result is a sample of the runway pixels. It is used as
a marker for gray-scale morphological reconstruction. The runways
are enhanced in the reconstructed image.
'''
    print '========================================================================='
    #0
    print '''
g=infrec(gray(m), th)
show(g)'''
    g=infrec(gray(m), th)
    show(g)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
A thresholding is applied to the reconstructed image, detecting the
airport runways.
'''
    print '========================================================================='
    #0
    print '''
final=threshad(g, 20)
show(f, final)'''
    final=threshad(g, 20)
    show(f, final)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    #
    return
# =========================================================================
#
# area - Remove objects with small areas in binary images.
#
# =========================================================================
def area():

    print
    print '''Remove objects with small areas in binary images.'''
    print
    #
    print '========================================================================='
    print '''
The binary image to be processed is read.
'''
    print '========================================================================='
    #0
    print '''
a = readgray('circuit_bw.tif')
show(a)'''
    a = readgray('circuit_bw.tif')
    show(a)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The procedure areaopen removes the objects with area less than the
specified parameter (i.e., 200).
'''
    print '========================================================================='
    #0
    print '''
b = areaopen(a,200)
show(b)'''
    b = areaopen(a,200)
    show(b)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
For displaying purposes the filtered image is superposed over the
original image.
'''
    print '========================================================================='
    #0
    print '''
show(a,b)'''
    show(a,b)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    #
    return
# =========================================================================
#
# asp - Detect the missing aspirin tablets in a card of aspirin tablets.
#
# =========================================================================
def asp():

    print
    print '''Detect the missing aspirin tablets in a card of aspirin tablets.'''
    print
    #
    print '========================================================================='
    print '''
The aspirin tablet binary image is read.
'''
    print '========================================================================='
    #0
    print '''
a = readgray('astablet.tif')
show(a)'''
    a = readgray('astablet.tif')
    show(a)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The image can be model as a topographical surface where white
regions corresponds to high altitude and dark regions to lower
altitute. The regional maxima of the image is normally very noisy as
can be seen below.
'''
    print '========================================================================='
    #0
    print '''
b = surf(a)
show(b)
c = regmax(a,sebox())
show(b,c)'''
    b = surf(a)
    show(b)
    c = regmax(a,sebox())
    show(b,c)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Opening the original image by a disk a little smaller than the
tablets removes all the noisy regional maxima. The only regional
maxima in the opened image are the aspirin tablets as they are the
only regionally brighter regions of shape larger than the disk of
radius 20 pixels.
'''
    print '========================================================================='
    #0
    print '''
d = open(a, sedisk(20))
e = surf(d)
show(e)
f = regmax(d,sebox())
show(e,f)'''
    d = open(a, sedisk(20))
    e = surf(d)
    show(e)
    f = regmax(d,sebox())
    show(e,f)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Here it is shown the input and output result. Note that the binary
image of the aspirin tablets was obtained using just one parameter:
the radius of the circular structuring element. The problem was
solved as treating the image formed by circular bright regions.
'''
    print '========================================================================='
    #0
    print '''
show(a)
show(f)'''
    show(a)
    show(f)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    #
    return
# =========================================================================
#
# labeltext - Segmenting letters, words and paragraphs.
#
# =========================================================================
def labeltext():

    print
    print '''Segmenting letters, words and paragraphs.'''
    print
    #
    print '========================================================================='
    print '''
The text image is read.
'''
    print '========================================================================='
    #0
    print '''
f = readgray('stext.tif')
show(f)'''
    f = readgray('stext.tif')
    show(f)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The letters are the main connected components in the image. So we
use the classical 8-connectivity criteria for identify each letter.
'''
    print '========================================================================='
    #0
    print '''
fl=label(f,sebox())
lblshow(fl)'''
    fl=label(f,sebox())
    lblshow(fl)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The words are made of closed letters. In this case we use a
connectivity specified by a rectangle structuring element of 7
pixels high and 11 pixels width, so any two pixels that can be hit
by this rectangle, belong to the same connected component. The
values 7 and 11 were chosen experimentally and depend on the font
size.
'''
    print '========================================================================='
    #0
    print '''
from numpy.oldnumeric import ones
sew = img2se(binary(ones((7,11))))
seshow(sew)
fw=label(f,sew)
lblshow(fw)'''
    from numpy.oldnumeric import ones
    sew = img2se(binary(ones((7,11))))
    seshow(sew)
    fw=label(f,sew)
    lblshow(fw)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Similarly, paragraphs are closed words. In this case the
connectivity is given by a rectangle of 35 by 20 pixels.
'''
    print '========================================================================='
    #0
    print '''
sep = img2se(binary(ones((20,35))))
fp=label(f,sep)
lblshow(fp)'''
    sep = img2se(binary(ones((20,35))))
    fp=label(f,sep)
    lblshow(fp)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    #
    return
# =========================================================================
#
# beef - Detect the lean meat region in a beef steak image.
#
# =========================================================================
def beef():

    print
    print '''Detect the lean meat region in a beef steak image.'''
    print
    #
    print '========================================================================='
    print '''
The gray-scale image of the beef steak is read.
'''
    print '========================================================================='
    #0
    print '''
a = readgray('beef.tif');
show(a);'''
    a = readgray('beef.tif');
    show(a);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The input image is simplified by the application of a a small
closing. The dark area (inner lean part) is closed from the fat
white area.
'''
    print '========================================================================='
    #0
    print '''
b=close(a,sedisk(2));
show(b);'''
    b=close(a,sedisk(2));
    show(b);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The external marker is built from the detection of the complete beef
region and the extraction of its internal edge. As the beef is dark,
it is detected by a low value threshold. After this threshold, small
residual regions are eliminated by the binary areaclose operator.
'''
    print '========================================================================='
    #0
    print '''
c = threshad(a,uint8(10));
d = areaclose(c,200);
show(d);'''
    c = threshad(a,uint8(10));
    d = areaclose(c,200);
    show(d);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The internal edge generated is 13 points thick. It is created by the
residues of an erosion by a large structuring element.
'''
    print '========================================================================='
    #0
    print '''
e = gradm(d,secross(1),sebox(13));
show(e);'''
    e = gradm(d,secross(1),sebox(13));
    show(e);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The internal marker is a severe erosion of the steak. Both markers
are combined by union and displayed as overlay on the gradient image
'''
    print '========================================================================='
    #0
    print '''
f= erode(d,secross(80));
g = union(e,f);
h = gradm(b);
show(h,g);'''
    f= erode(d,secross(80));
    g = union(e,f);
    h = gradm(b);
    show(h,g);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Constrained watershed of the gradient of the smoothed image,
restricted to the internal and external markers
'''
    print '========================================================================='
    #0
    print '''
i=cwatershed(h,g);
show(i);'''
    i=cwatershed(h,g);
    show(i);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Superposition of the dilated detected contour on the original image.
'''
    print '========================================================================='
    #0
    print '''
show(a,dilate(i));'''
    show(a,dilate(i));
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    #
    return
# =========================================================================
#
# blob - Demonstrate blob measurements and display.
#
# =========================================================================
def blob():

    print
    print '''Demonstrate blob measurements and display.'''
    print
    #
    print '========================================================================='
    print '''
The binary image is read and then labeled. The number of blobs is
measured as the maximum label value. Both images are displayed.
'''
    print '========================================================================='
    #0
    print '''
f = readgray('blob3.tif')
fr = label(f)
show(f)
lblshow(fr,'border')
nblobs=stats(fr,'max')
print nblobs'''
    f = readgray('blob3.tif')
    fr = label(f)
    show(f)
    lblshow(fr,'border')
    nblobs=stats(fr,'max')
    print nblobs
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The centroids are computed from the labeled image. After, the
centroid image is labeled, so that each centroid point has a label
value varying from 1 to the maximum number of blobs. For display
illustration, the centroids are overlayed on the original blob image
on the left and the labeled centroids are enlarged and displayed on
the right.
'''
    print '========================================================================='
    #0
    print '''
c = blob(fr,'centroid')
cr = label(c)
show(f,c)
lblshow(dilate(cr))'''
    c = blob(fr,'centroid')
    cr = label(c)
    show(f,c)
    lblshow(dilate(cr))
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
To place a particular number on a particular blob, a number image is
generated using the function and converted to a structuring element.
A particular centroid is selected by comparing the image with the
labeled number. This output image is a binary image with a single
point at that centroid. Dilating this image by the structuring
element will "stamp" the structuring element on the centroid.
'''
    print '========================================================================='
    #0
    print '''
fbin = cmp(cr,'==',uint16(5))
f5 = text('5')
print f5
b5 = img2se(f5)
fb5 = dilate(fbin,b5)
show(dilate(fbin))
show(f,fb5)'''
    fbin = cmp(cr,'==',uint16(5))
    f5 = text('5')
    print f5
    b5 = img2se(f5)
    fb5 = dilate(fbin,b5)
    show(dilate(fbin))
    show(f,fb5)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
To automate the process just described, a loop scans every label
value and "stamp" its number in a final image. The stamps are
accumulated with the function. The area is computed and plotted
against each label blob number.
'''
    print '========================================================================='
    #0
    print '''
facc=subm(f,f)
for i in range(1,nblobs+1):
fbin = cmp(cr,'==',uint16(i))
fi = text(str(i))
bi = img2se(fi)
fbi = dilate(fbin,bi)
facc = union(facc,fbi)
show(f,facc)
darea = blob(fr,'area','data')
plot([[darea]], [['style','impulses']])'''
    facc=subm(f,f)
    for i in range(1,nblobs+1):
      fbin = cmp(cr,'==',uint16(i))
      fi = text(str(i))
      bi = img2se(fi)
      fbi = dilate(fbin,bi)
      facc = union(facc,fbi)
    show(f,facc)
    darea = blob(fr,'area','data')
    plot([[darea]], [['style','impulses']])
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    #
    return
# =========================================================================
#
# brain - Extract the lateral ventricle from an MRI image of the brain.
#
# =========================================================================
def brain():

    print
    print '''Extract the lateral ventricle from an MRI image of the brain.'''
    print
    #
    print '========================================================================='
    print '''
The MRI image of a brain slice is read.
'''
    print '========================================================================='
    #0
    print '''
a = readgray('mribrain.tif');
show(a);'''
    a = readgray('mribrain.tif');
    show(a);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The ventricle is enhanced using an opening with a disk of radius 10
followed by a reconstruction.
'''
    print '========================================================================='
    #0
    print '''
b = open(a,sedisk(10));
c = infrec(b,a);
show(b);
show(c);'''
    b = open(a,sedisk(10));
    c = infrec(b,a);
    show(b);
    show(c);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The result of the open by reconstruction is subtracted from the
original image. Note that the three operations: open, reconstruction
and the subtraction could be done at once using the (open by
reconstruction top-hat) function. On the right, the enhanced
ventricle is thresholded.
'''
    print '========================================================================='
    #0
    print '''
d = subm(a,c);
show(d);
e = cmp(d,'>=',uint8(50));
show(e);'''
    d = subm(a,c);
    show(d);
    e = cmp(d,'>=',uint8(50));
    show(e);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Finally, the ventricle is selected as the connected object with area
larger than 70 pixels. For visualization purposes, the result of the
segmentation is overlayed on the original brain image.
'''
    print '========================================================================='
    #0
    print '''
f= areaopen(e,70);
show(f);
show(a,f);'''
    f= areaopen(e,70);
    show(f);
    show(a,f);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    #
    return
# =========================================================================
#
# calc - Extract the keys of a calculator.
#
# =========================================================================
def calc():

    print
    print '''Extract the keys of a calculator.'''
    print
    #
    print '========================================================================='
    print '''
The gray-scale image of the calculator is read.
'''
    print '========================================================================='
    #0
    print '''
a = readgray('keyb.tif');
show(a);'''
    a = readgray('keyb.tif');
    show(a);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The image edges are enhanced by the gradient operator.
'''
    print '========================================================================='
    #0
    print '''
b = gradm(a, sebox());
show(b);'''
    b = gradm(a, sebox());
    show(b);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The opening top-hat procedure enhances the small objects relatively
to its background. In the calculator image, the digits are enhanced.
'''
    print '========================================================================='
    #0
    print '''
c = openth(a,sebox(5));
show(c);'''
    c = openth(a,sebox(5));
    show(c);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The threshold operator is used to separated the enhanced objects.
This procedure is quite robust, since the background was reduced to
very low levels with the opening top-hat.
'''
    print '========================================================================='
    #0
    print '''
d = threshad(c, uint8(150));
show(d);'''
    d = threshad(c, uint8(150));
    show(d);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
In order to have just one object (i.e., connected component) inside
each key, a dilation is applied.
'''
    print '========================================================================='
    #0
    print '''
e = dilate(d, sebox(3));
show(e);'''
    e = dilate(d, sebox(3));
    show(e);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The outside markers are built by taking the watershed (skiz) of the
complement of internal markers image.
'''
    print '========================================================================='
    #0
    print '''
f = watershed(neg(e));
show(f);'''
    f = watershed(neg(e));
    show(f);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The markers used are the union of the internal and external markers
detected. They are displayed as overlay on the gradient image.
'''
    print '========================================================================='
    #0
    print '''
g = union(e,f);
show(b,g);'''
    g = union(e,f);
    show(b,g);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The calculator keys are extracted by applying the watershed operator
on the gradient image, constrained by the markers detected.
'''
    print '========================================================================='
    #0
    print '''
h = cwatershed(b,g,sebox());
show(h);'''
    h = cwatershed(b,g,sebox());
    show(h);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Superposition of the detected contours on the input image.
'''
    print '========================================================================='
    #0
    print '''
show(a,h);'''
    show(a,h);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    #
    return
# =========================================================================
#
# cells - Extract blood cells and separate them.
#
# =========================================================================
def cells():

    print
    print '''Extract blood cells and separate them.'''
    print
    #
    print '========================================================================='
    print '''
First, the blood cells image is read. Then, the gray-scale area open
operator is applied for removing small white pores over the cells.
'''
    print '========================================================================='
    #0
    print '''
a = readgray('bloodcells.tif');
show(a);
b = areaopen(a, 200);
show(b);'''
    a = readgray('bloodcells.tif');
    show(a);
    b = areaopen(a, 200);
    show(b);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The threshold of dark areas produces the segmented image (i.e., the
region where there are cells). Then the opening by a small disk
performs smoothing of the cells borders.
'''
    print '========================================================================='
    #0
    print '''
c = cmp( uint8(0), '<=', b, '<=', uint8(140));
show(c);
d = open(c,sedisk(2,'2D','OCTAGON'));
show(d);'''
    c = cmp( uint8(0), '<=', b, '<=', uint8(140));
    show(c);
    d = open(c,sedisk(2,'2D','OCTAGON'));
    show(d);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
A marker for each cell is obtained by dilating the regional maximum
of the distance transform. For visualization illustration, the
distance transform is viewed as a topographic surface shading on the
left and the dilated regional maximum is displayed in read overlayed
on the surface view.
'''
    print '========================================================================='
    #0
    print '''
e1 = dist(d, sebox(),'EUCLIDEAN');
e2 = surf(e1);
show( e2);
e3 = regmax(e1);
e = dilate(e3);
show( e2, e);'''
    e1 = dist(d, sebox(),'EUCLIDEAN');
    e2 = surf(e1);
    show( e2);
    e3 = regmax(e1);
    e = dilate(e3);
    show( e2, e);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The watershed, constrained by the makers image, is applied to the
negation of the distance function. The result of this procedure is
also called geodesic SKIZ. For visualization, on the left the negate
distance function is displayed as a topographic surface, and on the
right this surface is superposed by the markers and the detected
watershed lines.
'''
    print '========================================================================='
    #0
    print '''
f = neg(e1);
fs = surf(f);
show(fs);
g = cwatershed( f, e, sebox());
show(fs, g, e);'''
    f = neg(e1);
    fs = surf(f);
    show(fs);
    g = cwatershed( f, e, sebox());
    show(fs, g, e);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The geodesic SKIZ (i.e., watershed division lines) is subtracted
from the segmented image, separating the cells. On the left the
detected watershed lines is overlayed on the cells binary image, and
on the right, the cells image separated using the watershed lines.
'''
    print '========================================================================='
    #0
    print '''
show(c,g);
h = intersec(c,neg(g));
show(h);'''
    show(c,g);
    h = intersec(c,neg(g));
    show(h);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The cells that touch the frame of the image are removed.
'''
    print '========================================================================='
    #0
    print '''
i = edgeoff(h);
show(i);'''
    i = edgeoff(h);
    show(i);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Superposition of the contour of the detected cells on the original
image.
'''
    print '========================================================================='
    #0
    print '''
j=gradm(i);
show(a,j);'''
    j=gradm(i);
    show(a,j);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    #
    return
# =========================================================================
#
# chickparts - Classify chicken parts in breast, legs+tights and wings
#
# =========================================================================
def chickparts():

    print
    print '''Classify chicken parts in breast, legs+tights and wings'''
    print
    #
    print '========================================================================='
    print '''
The input image is read.
'''
    print '========================================================================='
    #0
    print '''
a = readgray('chickparts.tif');
show(a);'''
    a = readgray('chickparts.tif');
    show(a);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Convert to binary objects by thresholding and then labeling the
objects.
'''
    print '========================================================================='
    #0
    print '''
b = cmp(a,'>=', uint8(100));
show(b);
c = label(b);
lblshow(c,'border');'''
    b = cmp(a,'>=', uint8(100));
    show(b);
    c = label(b);
    lblshow(c,'border');
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Measure the area o each object and put this value as the pixel
object value. For displaying purpose, overlay the background as red
in the right image below.
'''
    print '========================================================================='
    #0
    print '''
d = blob(c,'area');
show(d);
show(d, cmp(d,'==',0));'''
    d = blob(c,'area');
    show(d);
    show(d, cmp(d,'==',0));
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The wings are detected by finding objects with area 100 and 2500
pixels. The tights are selected as connected objects with area
between 2500 and 5500 pixels.
'''
    print '========================================================================='
    #0
    print '''
wings = cmp( uint16(100),'<=',d, '<=', uint16(2500));
show(wings);
tights = cmp( uint16(2500),'<',d, '<=', uint16(5500));
show(tights);'''
    wings = cmp( uint16(100),'<=',d, '<=', uint16(2500));
    show(wings);
    tights = cmp( uint16(2500),'<',d, '<=', uint16(5500));
    show(tights);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The legs+tights have area larger than 5500 and smaller than 8500
pixels and the breast is the largest connected object with area
larger than 8500 pixels
'''
    print '========================================================================='
    #0
    print '''
legs = cmp( uint16(5500), '<', d, '<=', uint16(8500));
show(legs);
breast = cmp( d,'>', uint16(8500));
show(breast);'''
    legs = cmp( uint16(5500), '<', d, '<=', uint16(8500));
    show(legs);
    breast = cmp( d,'>', uint16(8500));
    show(breast);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Overlay the contour of the detected parts over the original image
'''
    print '========================================================================='
    #0
    print '''
show(a, gradm(wings), gradm(tights), gradm(legs),gradm(breast));'''
    show(a, gradm(wings), gradm(tights), gradm(legs),gradm(breast));
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    #
    return
# =========================================================================
#
# concrete - Aggregate and anhydrous phase extraction from a concrete section observed by a SEM image.
#
# =========================================================================
def concrete():

    print
    print '''Aggregate and anhydrous phase extraction from a concrete section
observed by a SEM image.'''
    print
    #
    print '========================================================================='
    print '''
The SEM image of a polished concrete section is read. The anhydrous
phase are the white pores, while the aggregate are the medium-gray
homogeneous pores.
'''
    print '========================================================================='
    #0
    print '''
f = readgray('csample.jpg')
show(f)'''
    f = readgray('csample.jpg')
    show(f)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The histogram has a small peak in the white region related to the
anhydrous phase.
'''
    print '========================================================================='
    #0
    print '''
h = histogram(f)
plot([[h]])'''
    h = histogram(f)
    plot([[h]])
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The threshold value is extracted using the watershed technique. The
aim is to detect the middle valley of the histogram. If the
histogram is negated, we need to extract the middle peak of the 1D
signal. This is accomplished by find proper markers on the valleys.
These markers are extracted by detecting the regional minima of the
filtered signal (alternating sequential filtering, closing followed
by opening of length 5 pixels). To discard the detection of peaks
near the limits of the histogram, an intersection is done using the
function. For illustrative purpose, a plot of all the signals
involved is displayed.
'''
    print '========================================================================='
    #0
    print '''
hf = asf(neg(h),'co',seline(5))
ws = watershed(hf)
wsf = intersec(neg(frame(ws,20)),ws)
t = nonzero(wsf)
print t
ax = stats(h,'max')
hf_plot = neg(hf)
ws_plot = gray(ws, 'uint16', ax)
wsf_plot = gray(wsf, 'uint16', ax)
plot([[hf_plot],[ws_plot],[wsf_plot]])'''
    hf = asf(neg(h),'co',seline(5))
    ws = watershed(hf)
    wsf = intersec(neg(frame(ws,20)),ws)
    t = nonzero(wsf)
    print t
    ax = stats(h,'max')
    hf_plot = neg(hf)
    ws_plot = gray(ws, 'uint16', ax)
    wsf_plot = gray(wsf, 'uint16', ax)
    plot([[hf_plot],[ws_plot],[wsf_plot]])
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The threshold value found in the previous step is applied. After, a
filter to remove blobs smaller then 20 pixels is applied. For
illustrative, the contour of the anhydrous grains are displayed as
an overlay on the original image.
'''
    print '========================================================================='
    #0
    print '''
aux = threshad( f, t, 255)
anidro = areaopen(aux, 20)
show( f, gradm(anidro))'''
    aux = threshad( f, t, 255)
    anidro = areaopen(aux, 20)
    show( f, gradm(anidro))
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The watershed applied on the gradient using the markers from
filtered regional minima of the gradient is a standard watershed
based technique. In this case the filter was chosen to be a contrast
.
'''
    print '========================================================================='
    #0
    print '''
g=gradm(f)
m=regmin(hmin(g,10))
ws=cwatershed(g,m)
show(ws)'''
    g=gradm(f)
    m=regmin(hmin(g,10))
    ws=cwatershed(g,m)
    show(ws)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The result of the watershed in the previous step is the detection of
a large number of regions. The larger ones are the aggregate and the
anhydrous. So first the regions are filtered out using an area
criterion of 300 pixels. Small holes (area <= 50) are closed. The
aggregate is obtained by removing the anhydrous phase.
'''
    print '========================================================================='
    #0
    print '''
aux1=areaopen(neg(ws),300)
aux2=areaclose(aux1,50)
aggr=subm(aux2,anidro)
show(f, gradm(aggr))'''
    aux1=areaopen(neg(ws),300)
    aux2=areaclose(aux1,50)
    aggr=subm(aux2,anidro)
    show(f, gradm(aggr))
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Finally each phase is measured and an illustrative display is
constructed. The grains contoured by red are the aggregate and those
contoured by green, the anhydrous.
'''
    print '========================================================================='
    #0
    print '''
n = product(shape(f))
anidro_phase = stats(anidro,'sum')/n
print 'anidro=',anidro_phase
aggr_phase = stats(aggr,'sum')/n;
print 'aggr=',aggr_phase
show( f, gradm(aggr), gradm(anidro))'''
    n = product(shape(f))
    anidro_phase = stats(anidro,'sum')/n
    print 'anidro=',anidro_phase
    aggr_phase = stats(aggr,'sum')/n;
    print 'aggr=',aggr_phase
    show( f, gradm(aggr), gradm(anidro))
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    #
    return
# =========================================================================
#
# cookies - Detect broken rounded biscuits.
#
# =========================================================================
def cookies():

    print
    print '''Detect broken rounded biscuits.'''
    print
    #
    print '========================================================================='
    print '''
The input image is read.
'''
    print '========================================================================='
    #0
    print '''
a = readgray('cookies.tif');
show(a);'''
    a = readgray('cookies.tif');
    show(a);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Convert to binary objects by thresholding
'''
    print '========================================================================='
    #0
    print '''
b = threshad(a, uint8(100));
show(b);'''
    b = threshad(a, uint8(100));
    show(b);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The tophat of the binary image by an octagon disk with a radius fits
the good biscuit but does not fit in the broken biscuit can detect
the broken one.
'''
    print '========================================================================='
    #0
    print '''
c = openth(b,sedisk(55,'2D','OCTAGON'));
show(c);'''
    c = openth(b,sedisk(55,'2D','OCTAGON'));
    show(c);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Clean the residues from the octagon disk and the rounded shaped
biscuits by eliminating small connected regions
'''
    print '========================================================================='
    #0
    print '''
d = areaopen(c,400);
show(d);'''
    d = areaopen(c,400);
    show(d);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Display the detected broken biscuit
'''
    print '========================================================================='
    #0
    print '''
show(a,d);'''
    show(a,d);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    #
    return
# =========================================================================
#
# cornea - Cornea cells marking.
#
# =========================================================================
def cornea():

    print
    print '''Cornea cells marking.'''
    print
    #
    print '========================================================================='
    print '''
The gray-scale image of the cornea is read and displayed. A
topographic model is also displayed. We can notice that the cells
are formed by small hills in the topographic model. We can also
notice that the image is very noisy.
'''
    print '========================================================================='
    #0
    print '''
a = readgray('corneacells.tif');
show(a);
b = surf(a);
show(b);'''
    a = readgray('corneacells.tif');
    show(a);
    b = surf(a);
    show(b);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The image is filtered by an alternating sequential filtering with
size 2. This filter is composed by openings and closings, removing
small peaks and valleys. Next, the regional maxima are detected. For
illustrative purpose, they are displayed overlayed on the
topographic image view. These regional maxima are the markers for
each cell. If anything goes wrong in this step, the error will be
propagated throughout the process.
'''
    print '========================================================================='
    #0
    print '''
c = asf(a,'oc',secross(),2);
d = regmax( c);
show(surf(c));
show(surf(c), d);'''
    c = asf(a,'oc',secross(),2);
    d = regmax( c);
    show(surf(c));
    show(surf(c), d);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Following the paradigm of segmentation by watershed, the background
marker is detected by applying the constrained watershed on the
negation of the cells image using the markers detected in the last
step. These watershed lines partition the image in regions of
influence of each cell. For illustrative display, the negative of
the cell image is displayed overlayed by the markers on the left,
and also overlayed by the watershed lines on the right.
'''
    print '========================================================================='
    #0
    print '''
e = neg(a);
f = cwatershed(e, d, sebox());
show(e,d);
show(e,f,d);'''
    e = neg(a);
    f = cwatershed(e, d, sebox());
    show(e,d);
    show(e,f,d);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
As the internal and external markers can be touching, we combine the
external marker with value 1 with the labeling of the internal
markers added by 1. The labeled marker image is shown on the left.
The final watershed will be applied on the gradient of the original
image, which is shown on the right.
'''
    print '========================================================================='
    #0
    print '''
g = gray(f, 'uint16', 1);
h1 = addm(label(d), uint16(1));
h = intersec(gray(d,'uint16'), h1);
i = union( g, h);
lblshow(i);
j = gradm( a);
show(j);'''
    g = gray(f, 'uint16', 1);
    h1 = addm(label(d), uint16(1));
    h = intersec(gray(d,'uint16'), h1);
    i = union( g, h);
    lblshow(i);
    j = gradm( a);
    show(j);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Apply the constrained watershed on the gradient from the labeled
internal and external markers. Show the watershed lines on the left
and the results overlayed on the original image, on the right.
'''
    print '========================================================================='
    #0
    print '''
k = cwatershed(j, i);
show( k);
show(a, k, k);'''
    k = cwatershed(j, i);
    show( k);
    show(a, k, k);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    #
    return
# =========================================================================
#
# fabric - Detection of vertical weave in fabrics.
#
# =========================================================================
def fabric():

    print
    print '''Detection of vertical weave in fabrics.'''
    print
    #
    print '========================================================================='
    print '''
The image to be processed is read.
'''
    print '========================================================================='
    #0
    print '''
a = readgray('fabric.tif');
show(a);'''
    a = readgray('fabric.tif');
    show(a);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
A sequence of dilations (by a disk and two line segments) is applied
to enhance the white stripes
'''
    print '========================================================================='
    #0
    print '''
b = dilate(a,sedisk(4));
c = dilate(b,seline(25,90));
d = dilate(c,seline(25,-90));
show(d);'''
    b = dilate(a,sedisk(4));
    c = dilate(b,seline(25,90));
    d = dilate(c,seline(25,-90));
    show(d);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The markers are the regional minima with contrast 25.
'''
    print '========================================================================='
    #0
    print '''
e = hmin(d,25);
f = regmin(e);
show(f);'''
    e = hmin(d,25);
    f = regmin(e);
    show(f);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Watershed of the original image from the dark stripes markers just
created. Show the result overlayed on the original image.
'''
    print '========================================================================='
    #0
    print '''
g = cwatershed(a,f);
show(a,dilate(g));'''
    g = cwatershed(a,f);
    show(a,dilate(g));
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Create a new marker by taking the union of the dark markers and the
watershed lines just created. The gradient of the original image is
computed.
'''
    print '========================================================================='
    #0
    print '''
h = union(g,f);
i = gradm(a);
show(h);
show(i);'''
    h = union(g,f);
    i = gradm(a);
    show(h);
    show(i);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The watershed of the gradient of the original image, taking the
marker just created, gives the extend of the white regions.
'''
    print '========================================================================='
    #0
    print '''
j = cwatershed(i,h,sebox());
show(a,j);'''
    j = cwatershed(i,h,sebox());
    show(a,j);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The watershed regions area computed. The area of each watershed
regions is measured and displayed.
'''
    print '========================================================================='
    #0
    print '''
k = cwatershed(i,h,sebox(),'REGIONS');
lblshow(k,'border');
l = blob(k,'area');
show(l);'''
    k = cwatershed(i,h,sebox(),'REGIONS');
    lblshow(k,'border');
    l = blob(k,'area');
    show(l);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
To select only the fabric spacing, select the regions with small
area (less than 2000). Label the narrow regions.
'''
    print '========================================================================='
    #0
    print '''
m = cmp(l,'<=',2000);
show(m);
n = label(m,sebox());
lblshow(n,'border');'''
    m = cmp(l,'<=',2000);
    show(m);
    n = label(m,sebox());
    lblshow(n,'border');
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Compute the area of each region and plot them. Also display the
original image for illustration. From the plot, we can notice that
the two rightmost weave spacing are significantly larger than the
others.
'''
    print '========================================================================='
    #0
    print '''
show(a);
o = blob(n,'area','data');
plot([[o]],[['style','impulses']])'''
    show(a);
    o = blob(n,'area','data');
    plot([[o]],[['style','impulses']])
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    #
    return
# =========================================================================
#
# fila - Detect Filarial Worms.
#
# =========================================================================
def fila():

    print
    print '''Detect Filarial Worms.'''
    print
    #
    print '========================================================================='
    print '''
A microscopic gray-scale image, with two filarial worms, is read.
'''
    print '========================================================================='
    #0
    print '''
a = readgray('danaus.tif');
show(a);'''
    a = readgray('danaus.tif');
    show(a);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The Close by Reconstruction Top-Hat operator is applied to
regularize the image background.
'''
    print '========================================================================='
    #0
    print '''
b = closerecth(a,sebox(5));
show(b);'''
    b = closerecth(a,sebox(5));
    show(b);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The gray-scale opening by the elementary cross is applied to remove
narrow objects.
'''
    print '========================================================================='
    #0
    print '''
c = open(b);
show(c);'''
    c = open(b);
    show(c);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The gray-scale area open operator is applied to remove small
objects.
'''
    print '========================================================================='
    #0
    print '''
d = areaopen(c,200);
show(d);'''
    d = areaopen(c,200);
    show(d);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The threshold operator is applied to extract a reduced set of
structures that include the two worms present in the image.
'''
    print '========================================================================='
    #0
    print '''
e = threshad(d,50);
show(e);'''
    e = threshad(d,50);
    show(e);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The objective of the sequence of transformations, that begin with
the homotopic skeleton, is to eliminateg the structures that are not
worms. The information used for the filtering is that the worms are
longer than any other structure found.
'''
    print '========================================================================='
    #0
    print '''
f = thin(e);
show(f);'''
    f = thin(e);
    show(f);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The first 12 points of the skeleton branches, counting from their
extremities, are eliminated. The structures that were not eliminated
will be the markers for extracting the two worms.
'''
    print '========================================================================='
    #0
    print '''
g = thin(f,endpoints(), 12);
show(g);'''
    g = thin(f,endpoints(), 12);
    show(g);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The binary reconstruction operator is applied to reconstruct the
binary image produced by the threshold from the marker image.
'''
    print '========================================================================='
    #0
    print '''
h = infrec(g,e);
show(h);'''
    h = infrec(g,e);
    show(h);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The structures extracted are overlaid to the input gray-scale image.
'''
    print '========================================================================='
    #0
    print '''
show(a,h);'''
    show(a,h);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    #
    return
# =========================================================================
#
# flatzone - Flat-zone image simplification by connected filtering.
#
# =========================================================================
def flatzone():

    print
    print '''Flat-zone image simplification by connected filtering.'''
    print
    #
    print '========================================================================='
    print '''
The input image is read.
'''
    print '========================================================================='
    #0
    print '''
a = readgray('cameraman.tif')
show(a)'''
    a = readgray('cameraman.tif')
    show(a)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Obtain the flat zones (8-connectivity) and compute its number. The
number of flat zones is determined by the maximum labeling value (
starting from flat zone one).
'''
    print '========================================================================='
    #0
    print '''
b = labelflat(a,sebox())
nfz=stats(b,'max')
print nfz
show(a)
lblshow(b)'''
    b = labelflat(a,sebox())
    nfz=stats(b,'max')
    print nfz
    show(a)
    lblshow(b)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Apply the alternating sequential filter by reconstruction with
increasing sizes. They constitute a connected pyramid.
'''
    print '========================================================================='
    #0
    print '''
c=asfrec(a,'CO',sebox(),sebox(),2)
d=asfrec(a,'CO',sebox(),sebox(),4)
e=asfrec(a,'CO',sebox(),sebox(),16)
show(c)
show(d)
show(e)'''
    c=asfrec(a,'CO',sebox(),sebox(),2)
    d=asfrec(a,'CO',sebox(),sebox(),4)
    e=asfrec(a,'CO',sebox(),sebox(),16)
    show(c)
    show(d)
    show(e)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
These figures show the image simplification in a connected pyramid.
Notice how the shapes are well preserved along the scale space. The
number of flat zones at each level of the pyramid are computed to
illustrate the flat zone number reduction.
'''
    print '========================================================================='
    #0
    print '''
c_lab=labelflat(c,sebox())
d_lab=labelflat(d,sebox())
e_lab=labelflat(e,sebox())
print stats(c_lab,'max')
print stats(d_lab,'max')
print stats(e_lab,'max')
lblshow(c_lab)
lblshow(d_lab)
lblshow(e_lab)'''
    c_lab=labelflat(c,sebox())
    d_lab=labelflat(d,sebox())
    e_lab=labelflat(e,sebox())
    print stats(c_lab,'max')
    print stats(d_lab,'max')
    print stats(e_lab,'max')
    lblshow(c_lab)
    lblshow(d_lab)
    lblshow(e_lab)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
In this experiment we select a particular flat zone, the flat zone
to which the pixel (90,60) belongs, and display it at each level of
the connected pyramid. Notice the flat zone inclusion property.
'''
    print '========================================================================='
    #0
    print '''
c_v=c_lab[89,59]
c_flat=cmp(c_lab,'==',c_v)
d_v=d_lab[89,59]
d_flat=cmp(d_lab,'==',d_v)
e_v=e_lab[89,59]
e_flat=cmp(e_lab,'==',e_v)
show(a,e_flat,d_flat,c_flat)'''
    c_v=c_lab[89,59]
    c_flat=cmp(c_lab,'==',c_v)
    d_v=d_lab[89,59]
    d_flat=cmp(d_lab,'==',d_v)
    e_v=e_lab[89,59]
    e_flat=cmp(e_lab,'==',e_v)
    show(a,e_flat,d_flat,c_flat)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    #
    return
# =========================================================================
#
# flow - Detect water in a static image of an oil-water flow experiment.
#
# =========================================================================
def flow():

    print
    print '''Detect water in a static image of an oil-water flow experiment.'''
    print
    #
    print '========================================================================='
    print '''
The gray-scale image of the water-oil flow experiment is read.
'''
    print '========================================================================='
    #0
    print '''
a = readgray('flow.tif')
show(a)'''
    a = readgray('flow.tif')
    show(a)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The dark region of the image is enhanced by the close top-hat
operator.
'''
    print '========================================================================='
    #0
    print '''
b=closeth(a,seline(50,90))
show(b)'''
    b=closeth(a,seline(50,90))
    show(b)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
A connected filtering is applied to remove small artifacts present
in the image.
'''
    print '========================================================================='
    #0
    print '''
c=closerec(b,sebox(5))
show(c)'''
    c=closerec(b,sebox(5))
    show(c)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
An alternated sequential filtering is used for shape smoothing.
'''
    print '========================================================================='
    #0
    print '''
d=asf(c,'co',secross())
show(d)'''
    d=asf(c,'co',secross())
    show(d)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The original and thresholded image overlayed on the original are
presented successively.
'''
    print '========================================================================='
    #0
    print '''
e=threshad(d,100)
show(a)
show(a,e)'''
    e=threshad(d,100)
    show(a)
    show(a,e)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    #
    return
# =========================================================================
#
# gear - Detect the teeth of a gear
#
# =========================================================================
def gear():

    print
    print '''Detect the teeth of a gear'''
    print
    #
    print '========================================================================='
    print '''
The binary image of a gear is read.
'''
    print '========================================================================='
    #0
    print '''
a = readgray('gear.tif');
show(a);'''
    a = readgray('gear.tif');
    show(a);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Opening of the input image by an Euclidean disk of radius 20. The
sequence opening-subtraction is called opening top-hat. The opening
top-hat could be executed in a single coand: c = (a,(20));
'''
    print '========================================================================='
    #0
    print '''
b = open(a,sedisk(20));
show(b);
c = subm(a,b);
show(c);'''
    b = open(a,sedisk(20));
    show(b);
    c = subm(a,b);
    show(c);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The teeth detected are labeled. The maximum pixel value in the
labeled image gives the number of connected objects (n. of teeth).
'''
    print '========================================================================='
    #0
    print '''
d = label(c);
nteeth=stats(d,'max')
lblshow(d,'border');'''
    d = label(c);
    nteeth=stats(d,'max')
    lblshow(d,'border');
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    #
    return
# =========================================================================
#
# holecenter - Hole center misalignment in PCB.
#
# =========================================================================
def holecenter():

    print
    print '''Hole center misalignment in PCB.'''
    print
    #
    print '========================================================================='
    print '''
The image of the PCB is read.
'''
    print '========================================================================='
    #0
    print '''
a = readgray('pcbholes.tif')
show(a)'''
    a = readgray('pcbholes.tif')
    show(a)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Use the close hole function to remove the holes. Note that one hole
is open. This is not considered in this experiment. The regional
maxima of the distance transform gives the radius of the largest
disk inside the pad. We are interested only in radius larger than 20
pixels.
'''
    print '========================================================================='
    #0
    print '''
b = clohole(a)
show(b)
d = dist(b,secross(),'EUCLIDEAN')
e = regmax(d,sebox())
f = threshad(d, uint16([20])) # radius larger than 20 pixels
g = intersec(e,f)
h = blob(label(g,sebox()),'CENTROID'); # pad center
show(b,dilate(h))'''
    b = clohole(a)
    show(b)
    d = dist(b,secross(),'EUCLIDEAN')
    e = regmax(d,sebox())
    f = threshad(d, uint16([20])) # radius larger than 20 pixels
    g = intersec(e,f)
    h = blob(label(g,sebox()),'CENTROID'); # pad center
    show(b,dilate(h))
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The holes are given by the difference of the pad image from the
original image. Repeat the same procedure to find the center of the
pads to find now the center of the holes.
'''
    print '========================================================================='
    #0
    print '''
i = subm(b,a)
show(i)
j = dist(i,secross(),'EUCLIDEAN')
k = regmax(j,sebox())
l = blob(label(k,sebox()),'CENTROID') # hole center
show(i,dilate(l))'''
    i = subm(b,a)
    show(i)
    j = dist(i,secross(),'EUCLIDEAN')
    k = regmax(j,sebox())
    l = blob(label(k,sebox()),'CENTROID') # hole center
    show(i,dilate(l))
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
First both centers (pads and holes) are displayed together. Then the
actual misalignment is computed using the distance from one point to
the other.
'''
    print '========================================================================='
    #0
    print '''
from numpy.oldnumeric import nonzero
show(a,h,l)
m = dist(neg(l),secross(),'EUCLIDEAN')
n = intersec(gray(h),uint8(m))
show(n,a)
i = nonzero(n.ravel())
x = i / n.shape[1]
y = i % n.shape[1]
for k in range(len(i)):
print 'displacement of %d at (%d,%d)\n' %(n[x[k],y[k]],x[k],y[k])'''
    from numpy.oldnumeric import nonzero
    show(a,h,l)
    m = dist(neg(l),secross(),'EUCLIDEAN')
    n = intersec(gray(h),uint8(m))
    show(n,a)
    i = nonzero(n.ravel())
    x = i / n.shape[1]
    y = i % n.shape[1]
    for k in range(len(i)):
      print 'displacement of %d at (%d,%d)\n' %(n[x[k],y[k]],x[k],y[k])
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
First, the thinning to compute the skeleton of the PCB image, then
remove iteratively all the end points of the skeleton so just the
skeleton loop around the holes remains. Find the minimum distance of
these loops to the border and display their location.
'''
    print '========================================================================='
    #0
    print '''
o=thin(a)
p=thin(o,endpoints())
show(a,p)
q = dist(a,secross(),'EUCLIDEAN')
r = grain(label(p,sebox()),q,'min') # minimum
s = grain(label(p,sebox()),q,'min','data') # minimum
from numpy.oldnumeric import ravel
for k in ravel(s):
print 'Minimum distance: %d pixels' %(2*k+1)
t = intersec(cmp(r,'==',q),a)
show(a,dilate(t))'''
    o=thin(a)
    p=thin(o,endpoints())
    show(a,p)
    q = dist(a,secross(),'EUCLIDEAN')
    r = grain(label(p,sebox()),q,'min') # minimum
    s = grain(label(p,sebox()),q,'min','data') # minimum
    from numpy.oldnumeric import ravel
    for k in ravel(s):
      print 'Minimum distance: %d pixels' %(2*k+1)
    t = intersec(cmp(r,'==',q),a)
    show(a,dilate(t))
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    #
    return
# =========================================================================
#
# leaf - Segment a leaf from the background
#
# =========================================================================
def leaf():

    print
    print '''Segment a leaf from the background'''
    print
    #
    print '========================================================================='
    print '''
The gray scale image to be processed is read.
'''
    print '========================================================================='
    #0
    print '''
f = readgray('leaf.tif')
show(f)'''
    f = readgray('leaf.tif')
    show(f)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Although the leaf was pictured on a light background, it is not
possible to fully segment the leaf using a simple thresholding
'''
    print '========================================================================='
    #0
    print '''
f_low=threshad(f,100)
f_med=threshad(f,128)
f_high=threshad(f,160)
show(f_low)
show(f_med)
show(f_high)'''
    f_low=threshad(f,100)
    f_med=threshad(f,128)
    f_high=threshad(f,160)
    show(f_low)
    show(f_med)
    show(f_high)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The toggle is a non-linear image enhancement that changes the pixel
value to the maximum or the minimum in the neighborhood given by the
structure element, depending which one is the nearest value. The
result of the toggle is that near the edges, the image is better
defined.
'''
    print '========================================================================='
    #0
    print '''
f1=toggle(f,erode(f,sedisk(7)),dilate(f,sedisk(7)))
show(f1)'''
    f1=toggle(f,erode(f,sedisk(7)),dilate(f,sedisk(7)))
    show(f1)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The thresholding can now be applied resulting a good definition of
the leaf boarder. Small white spots can be removed by the area open
filter.
'''
    print '========================================================================='
    #0
    print '''
f2=threshad(f1,100)
f3=areaopen(f2,80)
show(f2)
show(f3)'''
    f2=threshad(f1,100)
    f3=areaopen(f2,80)
    show(f2)
    show(f3)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
For illustration, the contour of the segmented leaf is overlayed in
red in the original image
'''
    print '========================================================================='
    #0
    print '''
f4=gradm(f3)
show(f,f4)'''
    f4=gradm(f3)
    show(f,f4)
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    #
    return
# =========================================================================
#
# lith - Detect defects in a microelectronic circuit.
#
# =========================================================================
def lith():

    print
    print '''Detect defects in a microelectronic circuit.'''
    print
    #
    print '========================================================================='
    print '''
The input image is read. The image is also displayed as a surface
model.
'''
    print '========================================================================='
    #0
    print '''
a = readgray('r4x2_256.tif');
show(a);
show(surf(a));'''
    a = readgray('r4x2_256.tif');
    show(a);
    show(surf(a));
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Closing of the image by a vertical line of length 25 pixels. Then
subtract it from the original. The sequence closing-subtraction is
called closing top-hat. (This could be executed in a single coand:
c=(a,(25,90));).
'''
    print '========================================================================='
    #0
    print '''
b = close(a,seline(25,90));
show(b);
show(surf(b));'''
    b = close(a,seline(25,90));
    show(b);
    show(surf(b));
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Subtraction of the closing from the original is called closing
top-hat. It shows the discrepancies of the image where the
structuring element cannot fit the surface. In this case, it
highlights vertical depression with length longer than 25 pixels.
'''
    print '========================================================================='
    #0
    print '''
c = subm(b,a);
show(c);
show(surf(c));'''
    c = subm(b,a);
    show(c);
    show(surf(c));
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Threshold on the residues image. Elimination of the small objects by
area open.
'''
    print '========================================================================='
    #0
    print '''
d = cmp(c,'>=',50);
e = areaopen(d,5);
show(d);
show(e);'''
    d = cmp(c,'>=',50);
    e = areaopen(d,5);
    show(d);
    show(e);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Overlay the detected defects over the original image, and over the
surface display.
'''
    print '========================================================================='
    #0
    print '''
show(a,e);
show(surf(a),e);'''
    show(a,e);
    show(surf(a),e);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    #
    return
# =========================================================================
#
# pcb - Decompose a printed circuit board in its main parts.
#
# =========================================================================
def pcb():

    print
    print '''Decompose a printed circuit board in its main parts.'''
    print
    #
    print '========================================================================='
    print '''
The binary image of a printed circuit board is read.
'''
    print '========================================================================='
    #0
    print '''
a = readgray('pcb1bin.tif');
show(a);'''
    a = readgray('pcb1bin.tif');
    show(a);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
A new image is created by filling the holes. The input image is
subtracted from this new image with holes. The resulting residues
are the holes.
'''
    print '========================================================================='
    #0
    print '''
b = clohole(a);
holes = subm(b,a);
show(b);
show(a, holes);'''
    b = clohole(a);
    holes = subm(b,a);
    show(b);
    show(a, holes);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The square islands are detected using an opening by a square of size
17x17.
'''
    print '========================================================================='
    #0
    print '''
c = open(b,sebox(8));
square = cdil(c, a);
show(b, c);
show(holes, square);'''
    c = open(b,sebox(8));
    square = cdil(c, a);
    show(b, c);
    show(holes, square);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The circle islands are detected using an opening by an Euclidean
disk on a residues image.
'''
    print '========================================================================='
    #0
    print '''
f = subm(b, c);
g = open(f, sedisk(8));
circle = cdil(g,a);
show(f, g);
show(holes, square, circle);'''
    f = subm(b, c);
    g = open(f, sedisk(8));
    circle = cdil(g,a);
    show(f, g);
    show(holes, square, circle);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The rectangular islands are detected using an opening by a rectangle
of size 25 x 8 on a residues image. The rectangle structuring
element is built from the composition of vertical and horizontal
lines.
'''
    print '========================================================================='
    #0
    print '''
i = subm(f, g);
m = open(i,sedil(seline(8,90), seline(25)));
rect = cdil(m,a);
show(i, m);
show(holes, square, circle, rect);'''
    i = subm(f, g);
    m = open(i,sedil(seline(8,90), seline(25)));
    rect = cdil(m,a);
    show(i, m);
    show(holes, square, circle, rect);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The thick connections are detected using an opening by a square on a
residues image.
'''
    print '========================================================================='
    #0
    print '''
o = subm(i,m);
p = open(o, sebox(2));
thin = cdil(p,a);
show(o, p);
show(holes, square, circle, rect, thin);'''
    o = subm(i,m);
    p = open(o, sebox(2));
    thin = cdil(p,a);
    show(o, p);
    show(holes, square, circle, rect, thin);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The thin connections are detected using an opening by a square on a
residues image.
'''
    print '========================================================================='
    #0
    print '''
r = subm(o,p);
s = open(r, sebox());
thick = cdil(s,a);
show(r, s);
show(holes, square, circle, rect, thin, thick);'''
    r = subm(o,p);
    s = open(r, sebox());
    thick = cdil(s,a);
    show(r, s);
    show(holes, square, circle, rect, thin, thick);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The main components of the circuit are overlayed and presented in a
single image.
'''
    print '========================================================================='
    #0
    print '''
show(holes, square, circle, rect, thin, thick);'''
    show(holes, square, circle, rect, thin, thick);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    #
    return
# =========================================================================
#
# pieces - Classify two dimensional pieces.
#
# =========================================================================
def pieces():

    print
    print '''Classify two dimensional pieces.'''
    print
    #
    print '========================================================================='
    print '''
The binary image of the pieces is read.
'''
    print '========================================================================='
    #0
    print '''
a = readgray('pieces_bw.tif');
show(a);'''
    a = readgray('pieces_bw.tif');
    show(a);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
An homotopic thickening is applied to reduce contour noise.
'''
    print '========================================================================='
    #0
    print '''
seA = img2se(binary([[0,1,0],[1,0,1],[0,0,0]]))
seB = img2se(binary([[0,0,0],[0,1,0],[0,0,0]]))
iAB = se2hmt(seA,seB);
print intershow(iAB)
b = thick(a, iAB);
show(b);'''
    seA = img2se(binary([[0,1,0],[1,0,1],[0,0,0]]))
    seB = img2se(binary([[0,0,0],[0,1,0],[0,0,0]]))
    iAB = se2hmt(seA,seB);
    print intershow(iAB)
    b = thick(a, iAB);
    show(b);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The homotopic skeleton by thinning is created.
'''
    print '========================================================================='
    #0
    print '''
c = thin(b);
show(c);'''
    c = thin(b);
    show(c);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The open lines of the skeleton are pruned by the end point thinning.
The remaining skeleton components will be loops, identifying the
rings.
'''
    print '========================================================================='
    #0
    print '''
d = thin(c,endpoints());
show(c,d);'''
    d = thin(c,endpoints());
    show(c,d);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Extraction of the rings by reconstruction of the thicked image from
the filtered skeleton.
'''
    print '========================================================================='
    #0
    print '''
e = infrec(d,b);
show(e);'''
    e = infrec(d,b);
    show(e);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Restriction of the objects detected to the input-image.
'''
    print '========================================================================='
    #0
    print '''
f = intersec(a,e);
show(f);'''
    f = intersec(a,e);
    show(f);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
It eliminates the skeleton of the rings.
'''
    print '========================================================================='
    #0
    print '''
g = subm(c,e);
show(g);'''
    g = subm(c,e);
    show(g);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
It removes sucessively 4 end-points to let T junctions just on
T-pins.
'''
    print '========================================================================='
    #0
    print '''
h = thin(g, endpoints(), 4);
show(h);'''
    h = thin(g, endpoints(), 4);
    show(h);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
It detects triple points, applying the union of matchings with two
templates. These points will identify (mark) the T-pins.
'''
    print '========================================================================='
    #0
    print '''
seA1 = img2se(binary([[0,1,0],[0,1,0],[1,0,1]]))
seB1 = img2se(binary([[0,0,0],[1,0,1],[0,1,0]]))
seA2 = img2se(binary([[0,1,0],[1,1,1],[0,0,0]]))
seB2 = img2se(binary([[1,0,1],[0,0,0],[0,1,0]]))
i1 = supcanon(h, se2hmt(seA1,seB1));
i2 = supcanon(h, se2hmt(seA2,seB2));
i = union(i1,i2);
show(h,dilate(i,sedisk(2)));'''
    seA1 = img2se(binary([[0,1,0],[0,1,0],[1,0,1]]))
    seB1 = img2se(binary([[0,0,0],[1,0,1],[0,1,0]]))
    seA2 = img2se(binary([[0,1,0],[1,1,1],[0,0,0]]))
    seB2 = img2se(binary([[1,0,1],[0,0,0],[0,1,0]]))
    i1 = supcanon(h, se2hmt(seA1,seB1));
    i2 = supcanon(h, se2hmt(seA2,seB2));
    i = union(i1,i2);
    show(h,dilate(i,sedisk(2)));
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Detection of the T-pins by reconstruction of the ticked image from
the T-pin markers.
'''
    print '========================================================================='
    #0
    print '''
j = infrec(i,b,sebox());
show(j);'''
    j = infrec(i,b,sebox());
    show(j);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Restriction of the objects detect to the input image
'''
    print '========================================================================='
    #0
    print '''
k = intersec(a,j);
show(k);'''
    k = intersec(a,j);
    show(k);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The nails are imediatly detected by the subtration of the images of
the rings and T-pints from the input image.
'''
    print '========================================================================='
    #0
    print '''
l = subm(subm(a,f),k);
show(l);'''
    l = subm(subm(a,f),k);
    show(l);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The result of the classification is presented in a pseudo color
image.
'''
    print '========================================================================='
    #0
    print '''
m = gray(f,'uint8',1);
n = gray(k,'uint8',2);
o = gray(l,'uint8',3);
p = union(m,n,o);
lblshow(p);'''
    m = gray(f,'uint8',1);
    n = gray(k,'uint8',2);
    o = gray(l,'uint8',3);
    p = union(m,n,o);
    lblshow(p);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    #
    return
# =========================================================================
#
# potatoes - Grade potato quality by shape and skin spots.
#
# =========================================================================
def potatoes():

    print
    print '''Grade potato quality by shape and skin spots.'''
    print
    #
    print '========================================================================='
    print '''
The input image is read.
'''
    print '========================================================================='
    #0
    print '''
a = readgray('potatoes.tif');
show(a);'''
    a = readgray('potatoes.tif');
    show(a);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Convert to binary objects by thresholding
'''
    print '========================================================================='
    #0
    print '''
b = threshad(a,90);
show(b);'''
    b = threshad(a,90);
    show(b);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The binary image is thinned and the result overlayed on the original
image
'''
    print '========================================================================='
    #0
    print '''
c = thin(b);
show(a,c);'''
    c = thin(b);
    show(a,c);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
To detect the skin spots, a closing tophat can enhance the dark
areas of the image
'''
    print '========================================================================='
    #0
    print '''
d = closeth(a,sedisk(5));
show(d);'''
    d = closeth(a,sedisk(5));
    show(d);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The tophat is thresholded and the result is masked with the binary
image of the potatoes as we are interested only on the spots inside
them
'''
    print '========================================================================='
    #0
    print '''
e = threshad(d,20);
f = intersec(e,b);
show(f);'''
    e = threshad(d,20);
    f = intersec(e,b);
    show(f);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Show both results: skeleton and skin spots overlayed on the original
image
'''
    print '========================================================================='
    #0
    print '''
show(a);
show(a,f,c);'''
    show(a);
    show(a,f,c);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    #
    return
# =========================================================================
#
# robotop - Detect marks on a robot.
#
# =========================================================================
def robotop():

    print
    print '''Detect marks on a robot.'''
    print
    #
    print '========================================================================='
    print '''
The gray-scale image of the robot top view is read.
'''
    print '========================================================================='
    #0
    print '''
a = readgray('robotop.tif');
show(a);'''
    a = readgray('robotop.tif');
    show(a);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
It detects white regions smaller than a square of radius 4.
'''
    print '========================================================================='
    #0
    print '''
b = openth(a,sebox(4));
show(b);'''
    b = openth(a,sebox(4));
    show(b);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
It removes white objects smaller than a square of radius 1.
'''
    print '========================================================================='
    #0
    print '''
c = open(b,sebox());
show(c);'''
    c = open(b,sebox());
    show(c);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
It detects the robot markers. This is a very robust thresholding
(i.e., the result is not sensible to small changes in the value of
the threshold parameter). The original image is overlayed by the
detected robot markers.
'''
    print '========================================================================='
    #0
    print '''
d = threshad(c,100);
show(a,d);'''
    d = threshad(c,100);
    show(a,d);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    #
    return
# =========================================================================
#
# ruler - Detect defects in a ruler.
#
# =========================================================================
def ruler():

    print
    print '''Detect defects in a ruler.'''
    print
    #
    print '========================================================================='
    print '''
The gray-scale image of the ruler is read.
'''
    print '========================================================================='
    #0
    print '''
a = readgray('3.tif');
show(a);'''
    a = readgray('3.tif');
    show(a);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The close top-hat operator followed by a thresholding is applied.
'''
    print '========================================================================='
    #0
    print '''
b = threshad( closeth(a,sebox(5)),40);
show(b);'''
    b = threshad( closeth(a,sebox(5)),40);
    show(b);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The vertical lines longer than 50 pixels are detected.
'''
    print '========================================================================='
    #0
    print '''
c = open(b,seline(50,90));
show(c);'''
    c = open(b,seline(50,90));
    show(c);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
It closes ruler tick marks gaps.
'''
    print '========================================================================='
    #0
    print '''
d =close(c,seline(15));
show(d);'''
    d =close(c,seline(15));
    show(d);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
It detects all objects connected to the ruler tick markers.
'''
    print '========================================================================='
    #0
    print '''
e = infrec(d,b);
show(e);'''
    e = infrec(d,b);
    show(e);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
It detects all objects vertically connected to the ruler tick mark.
Note that the 3x1 rectangle is used as structuring element in the
vertical reconstruction.
'''
    print '========================================================================='
    #0
    print '''
f = infrec(d,b,seline(3,90));
show(f);'''
    f = infrec(d,b,seline(3,90));
    show(f);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The residues obtained from the previous image.
'''
    print '========================================================================='
    #0
    print '''
g = subm(e,f);
show(g);'''
    g = subm(e,f);
    show(g);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
It uses an opening by an elementary cross structuring element to
eliminate the artifacts.
'''
    print '========================================================================='
    #0
    print '''
h = open(g);
show(h);'''
    h = open(g);
    show(h);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
It detects the objects connected to ruler tick marks. A
reconstruction from the ruler marks detected is applied.
'''
    print '========================================================================='
    #0
    print '''
i = infrec(h, b);
show(i);'''
    i = infrec(h, b);
    show(i);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Overlay the detected defect over the original image
'''
    print '========================================================================='
    #0
    print '''
show(a,i);'''
    show(a,i);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    #
    return
# =========================================================================
#
# soil - Detect fractures in soil.
#
# =========================================================================
def soil():

    print
    print '''Detect fractures in soil.'''
    print
    #
    print '========================================================================='
    print '''
The image of fractures in soil is read.
'''
    print '========================================================================='
    #0
    print '''
a = readgray('soil.tif');
show(a);'''
    a = readgray('soil.tif');
    show(a);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The fracture lines are enhanced by the close top-hat operator.
'''
    print '========================================================================='
    #0
    print '''
b = closeth(a,sebox(2));
show(b);'''
    b = closeth(a,sebox(2));
    show(b);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Small connected bright regions are removed by the gray-scale area
open operator. Note the connectivity used (: 8-connected).
'''
    print '========================================================================='
    #0
    print '''
c= areaopen(b,80,sebox());
show(c);'''
    c= areaopen(b,80,sebox());
    show(c);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
The fracture lines are detected. This threshold is very robust.
'''
    print '========================================================================='
    #0
    print '''
d = threshad(c,15);
show(d);'''
    d = threshad(c,15);
    show(d);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    ##
    print '========================================================================='
    print '''
Overlay of the fracture lines over the original image.
'''
    print '========================================================================='
    #0
    print '''
show(a,d);'''
    show(a,d);
    print
    raw_input(4*' '+'Please press return to continue...')
    print
    print
    #
    return

# =====================================================================
#
# script execution
#
# =====================================================================

#all demonstrations - initialization
_alldemos = [
    'airport',
    'area',
    'asp',
    'labeltext',
    'beef',
    'blob',
    'brain',
    'calc',
    'cells',
    'chickparts',
    'concrete',
    'cookies',
    'cornea',
    'fabric',
    'fila',
    'flatzone',
    'flow',
    'gear',
    'holecenter',
    'leaf',
    'lith',
    'pcb',
    'pieces',
    'potatoes',
    'robotop',
    'ruler',
    'soil',
    ]

def main():
    import sys
    print '\npymorph Demonstrations -- SDC Morphology Toolbox\n'
    print 'Available Demonstrations: \n' + str(_alldemos) + '\n'
    if len(sys.argv) > 1:
        for demo in sys.argv[1:]:
            if demo in _alldemos:
                eval(demo + '()')
            else:
                print "Demonstration " + demo + " is not in this package. Please use help for details\n"
    else:
        print "\nUsage: python %s <demo_name>\n\n" % sys.argv[0]

if __name__ == '__main__':
    main()
Something went wrong with that request. Please try again.