Skip to content
master
Go to file
Code

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 

README.md

Maxwell's equations are universal for locally conserved quantities

Abstract

A fundamental result of classical electromagnetism is that Maxwell's equations imply that electric charge is locally conserved. Here we show the converse: Local charge conservation implies the local existence of fields satisfying Maxwell's equations. This holds true for any conserved quantity satisfying a continuity equation. It is obtained by means of a strong form of the Poincaré lemma presented here that states: Divergence-free multivector fields locally possess curl-free antiderivatives on flat manifolds. The above converse is an application of this lemma in the case of divergence-free vector fields in spacetime. We also provide conditions under which the result generalizes to curved manifolds.

arXiv:1906.02675

DOI:10.1007/s00006-019-0979-7

About

Maxwell's equations are universal for locally conserved quantities

Resources

Packages

No packages published

Languages

You can’t perform that action at this time.