
0.8.0 Release - To - Services 1

🤖
0.8.0 Release - To - Services
Constants.js

Replace most of the string errors with Custom errors. The selector for the custom errors is present in constants.js .

ALL_PERMISSIONS was all permissions except DELEGATECALL and SUPER_DELEGATECALL , now we add REENTRANCY also as an exception.

ERC725YKeys const function was renamed to ERC725YDataKeys ,
Example: https://github.com/lukso-network/universalprofile-
extension/blob/94d569d674eb6a021643ed00559659b6da24d2d4/src/popup/utils/ethUrlUtils.ts#L2

LSP0
InterfaceId was: 0xeb6be62e changed to : 0x66767497

Change in the UniversalReceiver event.
Switching the returnedValue with receivedData , event signature didn’t change.

Before:

event UniversalReceiver(
 address indexed from,
 uint256 value,
 bytes32 indexed typeId,
 bytes indexed returnedValue,
 bytes receivedData,
);

After:

event UniversalReceiver(
 address indexed from,
 uint256 indexed value,
 bytes32 indexed typeId,
 bytes receivedData,
 bytes returnedValue
);

Instead of just having the UniversalReceiverDelegate reacting on universalReceiver(typeId,data) function calls,
MappedUniversalReceiverDelegate is introduced as a contract that can be set to react on certain typeIds.

Main differences:
- UniversalReceiverDelegate react on the whole call regardless of the typeId
- MappedUniversalReceiverDelegate react on calls with specific typeIds, if set by the owner.

The MappedUniversalReceiverDelegate has a specific data key:

https://github.com/lukso-network/universalprofile-extension/blob/94d569d674eb6a021643ed00559659b6da24d2d4/src/popup/utils/ethUrlUtils.ts#L2

0.8.0 Release - To - Services 2

{
"name": "LSP1UniversalReceiverDelegate:<bytes32>",
"key": "0x0cfc51aec37c55a4d0b10000<bytes32>",
"keyType": "Mapping",
"valueType": "address",
"valueContent": "Address"
}

The return value of the universalReceiver function was the return value of the UniversalReceiverDelegate. 0x in case it didn’t
exist.

New behavior: The return value of the universalReceiver function is both return values of UniversalReceiverDelegate and
MappedUniversalReceiverDelegate encoded as bytes.

Before: ValueReceived was emitted whenever the contract receive ether.

After: ValueReceived event is also emitted in the payable function when the call is associated with value (ether/LYX) such as
execute function, execute Batch, universalReceiver function.

Change the ownership management from ClaimOwnership to LSP14Ownable2Step :
- Changing function name from claimOwnership to acceptOwnership .

- Change the event name from RenounceOwnershipInitiated to RenounceOwnershipStarted .

- renounceOwnership function is now 2 step process where once it’s called, the second call should happen after a delay of 100
block. If the second call was not made in another 100 block after the delay, the process is reset.

- Introduce OwnershipTransferStarted and OwnershipRenounced events.

Added execute batch function.

Function overloading for execute batch, in web3.js /ether.js overloaded functions should be written:

// web3.js example

// execute
myContract.methods['execute(uint256,address,uint256,bytes)'](OPERATION_CALL, target.address, 2WEI, "0x").send();
// execute Array
myContract.methods['execute(uint256[],address[],uint256[],bytes[])']([OPERATION_CALL, OPERATION_CREATE], [target.address, ZERO_ADDRESS], [2W

// OR

// execute
myContract.methods['0x44c028fe'](OPERATION_CALL, target.address, 2WEI, "0x").send();
// execute Array
myContract.methods['0x13ced88d']([OPERATION_CALL, OPERATION_CREATE], [target.address, ZERO_ADDRESS], [2WEI, 0WEI], ["0x", CONTRACT_BYTECODE

LSP0 supports the following interfaceIds:
- ERC725X : before: 0x44c028fe after: 0x570ef073
- ERC725Y : The same 0x714df77c
- ERC1271 : The same 0x1626ba7e
- LSP1 : The same 0x6bb56a14
- LSP14 : before: 0xa375e9c6 after: 0x94be5999
- LSP17Extendable : New: 0xa918fa6b

0.8.0 Release - To - Services 3

The event ContractCreated changed from: (Added bytes32 salt)
event ContractCreated(uint256 indexed operationType, address indexed contractAddress, uint256 indexed value)

to:

event ContractCreated(uint256 indexed operationType, address indexed contractAddress, uint256 indexed value, bytes32 salt)

In case of CREATE2 operation the salt will be the provided salt by the user.
In case of CREATE operation the salt will be bytes32(0) .

Sending random data to an LSP0 before was permissible, the call would pass.

New behavior: If you send data to the LSP0:
- if data.length < 4, the call will pass and return.

- if data.length =< 4, and the first 4 bytes are 0s, the call will pass and return.

- if data.length =< 4, and the first 4 bytes are not 0, (look like a normal function selector):
 - The function selector will be checked against an extension.
 - If the extension exist for the function selector (first 4 bytes), then LSP0 call the extension and return its return value.
 - If the extension don’t exist for the function selector, then the call will revert.

LSP1
Switch the name of universalReceiverDelegate(..) function to universalReceiver(..)

Removed LSP1UniversalReceiverDelegate interfaceId

LSP2
Added the compact bytes array type, more information here: https://github.com/lukso-network/LIPs/blob/main/LSPs/LSP-2-
ERC725YJSONSchema.md#bytescompactbytesarray

LSP6
InterfaceId was: 0xc403d48f changed to : 0xfb437414

The event Executed changed

from
Executed(uint256 indexed value, bytes4 selector)

to
 Executed(bytes4 indexed selector, uint256 indexed value)

Signed message in executeRelayCall has a new format:

Before, the signed message was formed of: uint256 chainId , address KeyManager , uint256 nonce and bytes payloadToExecute was
hashed according to solidity keccak256.

https://github.com/lukso-network/LIPs/blob/main/LSPs/LSP-2-ERC725YJSONSchema.md#bytescompactbytesarray

0.8.0 Release - To - Services 4

Then signed with the normal signature process of keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n" provided by
ethers.js with signer.signMessage / web3.js with web3.eth.personal.sign .

let hash = ethers.utils.solidityKeccak256(
["uint256", "address", "uint256", "bytes"],
[
HARDHAT_CHAINID,
context.keyManager.address,
nonceBefore,
executeRelayCallPayload,
]
);

let signature = await signer.signMessage(ethers.utils.arrayify(hash));

await context.keyManager.connect(relayer)
 .executeRelayCall(signature, nonceBefore, executeRelayCallPayload);

New behavior:

The data is formed of:
0x19 <0x00> <KeyManager address> <LSP6_VERSION> <chainId> <nonce> <value> <payload>

with:

0x19 : byte intended to ensure that the signed_data is not valid RLP.

0x00 : version 0 of the EIP191.

KeyManager address : The address of the Key Manager executing the payload.

LSP6_VERSION : Version relative to the LSP6KeyManager defined as a uint256 equal to 6 .

chainId : The chainId of the blockchain where the Key Manager is deployed, as a uint256.

nonce : The nonce to sign the payload with, as a uint256.

value : The amount of native token to transfer to the linked target contract alongside the call.

payload : The payload to be executed.

LUKSO developed a signer tool for this method:
 https://github.com/lukso-network/tools-eip191-signer

For the KeyManager purpose you can use as follow:

eip191Signer.signDataWithIntendedValidator(
 validatorAddress, // We Put address of LSP6KeyManager here:
 message, // Packed encoded of: <LSP6VERSION><chainId><nonce><value><payload>
 signingKey, // The private key of the signer
);

Introduce execute(uint256[], bytes[]) batch and executeRelayCall(bytes[], uint256[], uint256[], bytes[]) batch.

Since there is function overloading, using web3.js or ether.js there is a need to call these functions using function signatures,
like the example above for execute on LSP0 .

// Example

// execute single

https://github.com/lukso-network/tools-eip191-signer

0.8.0 Release - To - Services 5

await context.keyManager.connect(signer)
 ["execute(bytes)"](payload)
);

// execute batch

const tx = await context.keyManager.connect(context.owner)
 ["execute(uint256[],bytes[])"]([0, 0, 0], batchExecutePayloads);

// executeRelayCall single
await context.keyManager
.connect(relayer)
["executeRelayCall(bytes,uint256,bytes)"](
signature,
nonceBefore,
executeRelayCallPayload
);

// executeRelayCall batch

await context.keyManager.connect(context.owner)
["executeRelayCall(bytes[],uint256[],uint256[],bytes[])"](
signatures,
nonces,
values,
payloads
)

Change the Data key AllowedERC725YKeys to AllowedERC725YDataKeys which is 0x4b80742de2bf90b8b485 to 0x4b80742de2bf866c2911 .

Change all references of plain “Keys” to “Data Keys” (The term keys should be replaced with data keys also on services side, to
avoid confusion with keys as controllers)

Allow bytes32(0) data key to be set a data value through the LSP6KeyManager

New Order of the Permission:

Before:

const PERMISSIONS = {
CHANGEOWNER: "0x0001", // 0001
CHANGEPERMISSIONS: "0x0002", // 0010
ADDPERMISSIONS: "0x0004", // 0100
SETDATA: "0x0008", // 1000
CALL: "0x0010", // 0001
STATICCALL: "0x0020", // 0010
DELEGATECALL: "0x0040", // 0100
DEPLOY: "0x0080", // 1000
TRANSFERVALUE: "0x000100", // 0001
SIGN: "0x000200", // 0010
ENCRYPT: "0x000400", // 0100
SUPER_SETDATA: "0x000800", // 1000
SUPER_TRANSFERVALUE: "0x001000", // 0001
SUPER_CALL: "0x002000", // 0010
SUPER_STATICCALL: "0x004000", // 0100
SUPER_DELEGATECALL: "0x008000", // 1000
}

After:

const PERMISSIONS = {
CHANGEOWNER :"0x0001",
ADDCONTROLLER :"0x0002",
CHANGEPERMISSIONS :"0x0004",
ADDEXTENSIONS :"0x0008",
CHANGEEXTENSIONS :"0x0010",
ADDUNIVERSALRECEIVERDELEGATE :"0x0020",
CHANGEUNIVERSALRECEIVERDELEGATE :"0x0040",
REENTRANCY :"0x0080",

0.8.0 Release - To - Services 6

SUPER_TRANSFERVALUE :"0x000100",
TRANSFERVALUE :"0x000200",
SUPER_CALL :"0x000400",
CALL :"0x000800",
SUPER_STATICCALL :"0x001000",
STATICCALL :"0x002000",
SUPER_DELEGATECALL :"0x004000",
DELEGATECALL :"0x008000",
DEPLOY :"0x00010000",
SUPER_SETDATA :"0x00020000",
SETDATA :"0x00040000",
ENCRYPT :"0x00080000",
DECRYPT :"0x00100000",
SIGN :"0x00200000",
}

Change Permission name from ADDPERMISSIONS to ADDCONTROLLER .
Variable in constant.js has been renamed to ADDCONTROLLER .

To set the UniversalReceiverDelegate data keys:

- Before: Permission needed was SETDATA
- After: Permission needed is ADDUNIVERSALRECEIVERDELEGATE

To change the address of the UniversalReceiverDelegate or remove it, Permission needed is
CHANGEUNIVERSALRECEIVERDELEGATE

Our default UniversalReceiverDelegate needs Reentrancy Permission because it reenter the UniversalProfile and setData on it.

Super Permissions are inlined after their relevant permission, not at the end.

Changed the AllowedStandard/AllowedAddresses/AllowedFunctions to AllowedCalls

Before we had these three data keys:

{
"name": "AddressPermissions:AllowedAddresses:<address>",
"key": "0x4b80742de2bfc6dd6b3c0000<address>",
"keyType": "MappingWithGrouping",
"valueType": "address[]",
"valueContent": "Address"
},

{
"name": "AddressPermissions:AllowedFunctions:<address>",
"key": "0x4b80742de2bf8efea1e80000<address>",
"keyType": "MappingWithGrouping",
"valueType": "bytes4[]",
"valueContent": "Bytes4"
},

{
"name": "AddressPermissions:AllowedStandards:<address>",
"key": "0x4b80742de2bf3efa94a30000<address>",
"keyType": "MappingWithGrouping",
"valueType": "bytes4[]",
"valueContent": "Bytes4"
},

Now their functionalities is combined under this data Key:

0.8.0 Release - To - Services 7

{
"name": "AddressPermissions:AllowedCalls:<address>",
"key": "0x4b80742de2bf393a64c70000<address>",
"keyType": "MappingWithGrouping",
"valueType": "(bytes4,address,bytes4)[CompactBytesArray]",
"valueContent": "(Bytes4,Address,Bytes4)"
}

Each entry (allowed call) is made of three elements concatenated together as a tuple that forms a final bytes28 long value.

The full list of allowed calls MUST be constructed as a CompactBytesArray according to LSP2-ERC725YJSONSchema as follow:

<001c> <bytes4 allowedInterfaceId> <bytes20 allowedAddress> <bytes4 allowedFunction> <001c> ... <001c> ...

NB: the three dots ... are placeholders for <bytes4 allowedInterfaceId> <bytes20 allowedAddress>
<bytes4 allowedFunction> and used for brievity.

001c : 001c in decimals is 28, which is the sum of bytes length of the three elements below concatenated together.

allowedInterfaceId : The ERC165 interface id being supported by the contract called from the target.

allowedAddress : The address called by the target contract.

allowedFunction : The function selector being called on the contract called by the target contract.

These can be done with the help of erc725.js once it’s released.

Before: If there is no AllowedCalls , everything was whitelisted.

After: If there is no AllowedCalls , no calls are allowed.

Change verification logic for AllowedERC725YDataKey.

Before:

{
"name": "AddressPermissions:AllowedERC725YKeys:<address>",

https://github.com/lukso-network/LIPs/blob/main/LSPs/LSP-2-ERC725YJSONSchema.md#bytescompactbytesarray

0.8.0 Release - To - Services 8

"key": "0x4b80742de2bf90b8b4850000<address>",
"keyType": "MappingWithGrouping",
"valueType": "bytes32[]",
"valueContent": "Bytes32"
}

Each data key defined in the array MUST be 32 bytes long. It is possible to set a range of allowed ERC725Y data keys (= partial
data keys), by setting:

some part of the data keys as the exact data key bytes

the rest of the data key bytes as 0 bytes.

The 0 bytes part will represent a part that is dynamic. Below is an example based on a LSP2 Mapping key type,
where first word = SupportedStandards , and second word = LSP3UniversalProfile .
name: "SupportedStandards:LSP3UniversalProfile"

key: 0xeafec4d89fa9619884b60000abe425d64acd861a49b8ddf5c0b6962110481f38

By setting the value
to 0xeafec4d89fa9619884b600 in the list of allowed ERC725Y data keys, one address can set
any data key starting with the first word SupportedStandards:... .

After

{
"name": "AddressPermissions:AllowedERC725YDataKeys:<address>",
"key": "0x4b80742de2bf866c29110000<address>",
"keyType": "MappingWithGrouping",
"valueType": "bytes[CompactBytesArray]",
"valueContent": "Bytes"
}

Contains a compact bytes array of dynamic ERC725Y data keys that the address is restricted to modify in case of setting normal
data with SETDATA permission.

If the value of the data key is empty, setting data is disallowed.

The compact bytes array MUST be constructed in this format according to LSP2-ERC725YJSONSchema:

<length of the data key prefix> <data key prefix>

length of the data key prefix : The length of the prefix of the data key which the rest is dynamic. MUST be a number
between 1 and 32 .

data key prefix : The prefix of the data key to be checked against the data keys being set.

Below is an example based on a LSP2 Mapping key type, where first word = SupportedStandards , and second word
= LSP3UniversalProfile .

name: "SupportedStandards:LSP3UniversalProfile"

key: 0xeafec4d89fa9619884b60000abe425d64acd861a49b8ddf5c0b6962110481f38

Example 1:

If address A has SETDATA permission, and have the following value for AllowedERC725YDataKeys :

> 0x 0020 eafec4d89fa9619884b60000abe425d64acd861a49b8ddf5c0b6962110481f38
> 0x0020eafec4d89fa9619884b60000abe425d64acd861a49b8ddf5c0b6962110481f38

0020 (32 in decimals) is the length of the data key to be set.

https://github.com/lukso-network/LIPs/blob/lsp0/universalReceiver/LSPs/LSP-2-ERC725YJSONSchema.md#Mapping
https://github.com/lukso-network/LIPs/blob/main/LSPs/LSP-6-KeyManager.md#setdata
https://github.com/lukso-network/LIPs/blob/main/LSPs/LSP-2-ERC725YJSONSchema.md#Mapping
https://github.com/lukso-network/LIPs/blob/main/LSPs/LSP-6-KeyManager.md#setdata

0.8.0 Release - To - Services 9

Resolve to:

Address A is only allowed to set the value for the data key attached above.

Example 2:

If address B has SETDATA permission, and have the following value for AllowedERC725YDataKeys :

>0x 000a eafec4d89fa9619884b6 0020 beefbeefbeefbeefbeefbeefbeefbeefbeefbeefbeefbeefbeefbeefbeefbeef
>0x000aeafec4d89fa9619884b60020beefbeefbeefbeefbeefbeefbeefbeefbeefbeefbeefbeefbeefbeefbeefbeef

000a (10 in decimals) is the length of the eafec4d89fa9619884b6 prefix

Resolve to:

Address B is only allowed to set the value for the data 0xbeefbeef..beef data key and any data key that starts
with 0xeafec4d89fa9619884b6 .

By setting the value to 0xeafec4d89fa9619884b6 in the list of allowed ERC725Y data keys, one address can set any data key starting
with the first word SupportedStandards:... .

LSP7
InterfaceId was: 0x5fcaac27 changed to : 0xda1f85e4

Changing bool param to bool[] in token transferBatch(..)

LSP7AmountExceedsBalance(address,address,uint256) changed to LSP7AmountExceedsBalance(uint256,address,uint256) . And the error hash
from 0xc5e194ab to 0x08d47949

LSP8
Add onReceived for safeTransferFrom of LSP8CompatibleERC721

Changing bool param to bool[] in token transferBatch(..)

InterfaceId was: 0x49399145 changed to : 0x622e7a01

The specifications at LIP repo are updated, feel free to go there to seek more information.

https://github.com/lukso-network/LIPs/blob/main/LSPs/LSP-6-KeyManager.md#setdata
https://github.com/lukso-network/LIPs/tree/main/LSPs

