
Implementation of a Computation Graph
Framework

- a term project report for the course
Multicore Processing Fundamentals (CSI-6505-01) -

Lukas Prediger

Yonsei University
lukas.prediger@rwth-aachen.de

1 Introduction - Project Goals and Outline

The term projects rules allowed for the choice of any topic that involves par-
allelization of computation either by leveraging multithreading on a CPU or
the use of a GPGPUs massive parallelism capabilities and then comparing the
parallelized version to a sequential baseline implementation. Instead of just re-
implementing an existing sequential algorithm, I was interested in exploring how
a general framework that allows for the parallel execution of arbitrary computa-
tions would have to be realized and how this generalization affects performance
compared to an implementation specifically designed for a specific problem.

My project goal was thus the implementation of such a framework which
allows to represent a mathematical computation on data as a hardware- and
data-independent computation graph.1. To perform the computation represented
by this graph, the framework compiles the graph into specific instructions to be
executed on a hardware platform specified by the programmer. In compliance
with the project rules, the two platforms implemented in the framework are
a sequential CPU implementation and an implementation using OpenCL for
execution on the GPGPU.

This report will briefly discuss the general architecture (Section 2) and present
the compilation process of the graph (Section 3), as well as point out some fea-
tures implemented specifically to increase performance (Section 4). It will then
compare the performance of the CPU and OpenCL/GPU implementations on
several examples as well as both framework implementation variants with a prob-
lem specific sequential CPU baseline implementation for one specific problem to
examine the general abstraction overhead of the framework (Section 5). Finally
the report will conclude with some remarks and options for future work (Section
6).

Please note that this report just aims to give an overview about the general
workings of the framework and its performance. Thus, no code samples will be
provided in the following. The frameworks source code including all examples
mentioned in this report and instructions for compilation can be found in the

1 TensorFlow (Abadi et al., 2016) was the obvious inspiration for this

github repository available at https://github.com/lumip/computegraphlib. All
results reported in this document refer to commit 140b70e.

1.1 Computation Graphs

As mentioned in the paragraphs above, the framework will handle computation
represented as computation graphs. These are directed graphs where each node
represents a mathematical operation and the edges represent the flow of data:
Incoming edges of a node are the inputs to that node from preceeding com-
putations, outgoing edges accordingly mean that the results of the operation
represented by the node will be used as input by the target node of the outgo-
ing edge. Figure 1 shows a very simple graph representing the computation of
z = a · (x + y).

Fig. 1. A simple computation graph representing z = a · (x + y).

Note that the graph does explicitely not have to be circle-free and thus allows
to feed back results to earlier stages of the computation. This does not affect a
single evaluation of the graph, as each node is only evaluated once, but plays
a role when the graph is evaluated multiple times. However, the framework
currently requires every graph to have a single final node that is eventually
reached from every other, i.e., if f is this final node, for every node v in the
graph, there has to be a path from v to f .

Performing the computation represented by a computation graph will be
referred to as evaluating or executing the graph in this report.

2 Framework Architecture

The major components of the framework are its collection of Node classes forming
the API for creating hardware-agnostic computation graphs, the GraphCompiler
and CompiledGraph classes which constitute the graph compilation API (along
with some helper classes) and, finally, the implementations of the GraphCompila-
tionPlatform interface along with the Kernel classes which offer platform-specific
implementations to the GraphCompiler through a generalized interface.

2

https://github.com/lumip/computegraphlib

2.1 Node Classes

As mentioned above, the Node classes form the frameworks API by which an
application programmer can represent a computation graph. Each subclass of
Node represents an operation. There are currently 16 such nodes implemented
to represent operations such as element-wise addition or multiplication, matrix
multiplication, slicing/stacking of data blocks and more. There are also special
nodes to represent variables of and inputs to the graph.

Note that the framework assumes that data is passed along edges in matrix
format, i.e., as a data block of size m×n for arbitrary natural number values of
m and n. The data does not necessarily have to be a matrix in the mathematical
sense but can also represent a batch/stack of vectors or even a single scalar
value (m = n = 1). Some of the nodes allow for broadcasting operations, e.g.,
the VectorAddNode, which implements element-wise addition, allows inputs to
be of size m×n and 1×n and will then treat the first input a batch of m vectors
of size n and add the second input to each row of the first.

The subclasses of Node serve the sole purpose of representing the graph
structure and are thus agnostic of the actual input data or even its dimension
as well as the hardware platform the graph will be evaluated on. This allows
application developers to implement graph structure in exactly the same way
for different inputs and hardware platforms. It would also allow storing the
graph structure into a file and porting it to a different system, although this is
currently not implemented.

For an overview of the Node classes currently implemented, please consult
the source code repository.

2.2 GraphCompiler and CompiledGraph

The GraphCompiler class implements the graph compilation process detailed in
Section 3. It is written in a platform-agnostic way and relies on implementations
of the GraphCompilationPlatform interface for platform specific operations. The
two major platform-specific tasks are the allocation of memory for nodes and
the compilation of node kernels which are the platform-specific implementation
of the operation represented by a Node class in the graph.

An implementation of the CompiledGraph interface is the result of the com-
pilation process and represents the platform-specific implementation of a graph.
As such, it is tied to the platform it was compiled for and the concrete dimen-
sions for the input variables, which have to be supplied to GraphCompiler at the
start of the compilation process. CompiledGraph exposes methods to evaluate
the graph for a certain input set as well as retrieve output data from the nodes
of the graph.

2.3 GraphCompilationPlatform and Kernel classes

As mentioned above GraphCompilationPlatform is the interface abstracting a
concrete platform implementation to the GraphCompiler. The framework cur-
rently implements GraphCompilationCPUPlatform, providing the sequential CPU

3

platform, and GraphCompilationGPUPlatform, implementing the OpenCL/GPU
platform.

The Kernel classes are the platform-specific implementations of node oper-
ations. For the most part there exists a Kernel class for each Node class per
platform, except for cases where a node operation could be expressed using al-
ready existing Kernel implementations. Kernel classes receive references to the
buffers that will hold the input and the output data at construction time and
provide a method Run() which will perform the computation.

For the CPU platform, Kernel classes implement the computation operation
in a straightforward way in their Run() method. Kernel classes of the GPU
platform will compile OpenCL kernels at construction time and enqueue them
to the GPU in their Run() method.

3 Graph Compilation Process

As briefly mentioned above, graph compilation is the process that translates the
representation of the computation as a computational graph into actual kernel
implementations for a specific hardware platform as well allocating required
memory to store results for a given input size. The process is driven by the
GraphCompiler class and has the following major steps:

1. Establish a topological order of the graph’s nodes, starting from the leafs.

2. Determine the required size of the memory buffer each node needs to store
its computation result in. (In the following, such a buffer will be referred to
as a node’s working memory.)

3. Determine whether subsequent nodes may share the same working memory.

4. Let the platform implementation allocate the required memory buffers.

5. Let the platform compile the kernels for all nodes.

3.1 Ordering the Nodes

The first step establishes a topological order of the graph’s nodes which allows
the following steps to iterate over a simple list rather than dealing with graph
traversal. Having this list be in topological order is important because processing
each node requires its input nodes to be already processed.

As mentioned previously, the framework allows graphs to contain circles,
which prevents establishment of a true topological order. This is dealt with
by only allowing circles that contain an instance of VariableNode. During the
ordering, the input edge to this node is ignored and the corresponding node at
the other end of this edge is treated as another ”root” node with no outputs.
Establishing a circle in a grahp that does not contain exactly one VariableNode
instance will currently result in unspecified behavior of the compilation process.

4

3.2 Determining Buffer Size

Determination of the sizes of working memory buffers for each node proceeds
linearly along the topologically sorted list of nodes. The process requires the
application programmer to provide a mapping of graph inputs to input data
dimensions and sets the working memory dimensions of InputNode instances
accordingly. All other nodes will examine the working memory dimensions of the
nodes that are their respective inputs and calculate their own working memory
dimensions according to that.

3.3 Determining Buffer Reuse

After determining the required size of working memory for all nodes the process
will try to minimize memory usage by reusing buffers among subsequent nodes.
Let u be a node which is an input to node v, then v can reuse u’s working
memory iff

1. u’s result is not used by any other node w 6= v
2. v is able to operate in-place
3. u’s working memory buffer is equal or larger than v’s in both dimensions.

As in the previous step, the process iterates over the topologically sorted list of
nodes. For each node it encounters (called the current node), the algorithm iter-
ates over its input nodes to see if it finds one that meets the above requirements.
If so, it maps the current node to the same memory buffer. If not, it will map
the current node to a new memory buffer.

The above outlines the general idea. The process is a bit more complicated
in reality to deal with possible circles introduces by VariableNode instances: If
the algorithm encounters an input node that does not yet have a buffer assigned
to it but meets the requirements, it will allocate a buffer of sufficient size and
then map both nodes, the current one and the input, to this buffer. Whenever
it iterates to a new node in its main loop, it will first check whether this node
already has a buffer associated with it. If that is the case but this buffer is not
one of its inputs, it will proceed to look for an input buffer meeting the above
requirements. If it finds one, it will merge its currently assigned buffer and the
input buffer it found, i.e., assign all nodes assigned to one of the buffers to the
other one and then delete that first buffer.

3.4 Allocating Buffers and Compiling Kernels

Note that no actual memory is allocated thus far to avoid constant allocation
and deallocation of memory during buffer merges. It also allows the compila-
tion process to perform this general computations without regard for the target
platform. Thus, this in this next step, the GraphCompiler issues a call the the
GraphCompilationPlatform to allocate memory and map the virtual buffers from
the previous steps to actual memory handles.

5

In the next step, it will cause the GraphCompilationPlatform to instanti-
ate Kernel objects for each node, which represent the concrete platform-specific
implementation of the node operations. The kernels are stored in the same topo-
logical order as the nodes they correspond to. For the OpenCL/GPU platform,
instantiation of a Kernel class implementation of a specific node will result in the
compilation of OpenCL kernel source code. To avoid compiling the same kernel
over and over again if the same node type is used several times in a graph, a
cache is employed which maps OpenCL kernel source code to compiled OpenCL
kernels, ensuring that each unique kernel source code is compiled only once.

Each Kernel instantiation encapsulates the platform-specific implementation
of the operation represented by the corresponding node as well as the handles
to the input and working buffers for that node. The ordered list of instanti-
ated Kernel objects is returned encapsulated in a CompiledGraph object to the
application code invoking the compilation process.

3.5 Graph Evaluation

Executing the graph is triggered by a call to the Evaluate() method of the Com-
piledGraph object. Application programmers have to make sure to first initialize
potential VariableNode buffers by passing a mapping of variable names to vari-
able initialization data to the InitializeVariables() method of the same object.
The Evaluate() method expects a similar mapping for input names to input
data. All data passed into the graph has to be a continuous memory buffer of
the size specified by the input dimensions passed into the compilation process
and will be treated as row-major linearization of the matrix layout represented
in the graph.

The evaluation of the graph iterates over all Kernel objects and invokes
the Run() method. As mentioned in Section 2.3, this simply executes the com-
putation for the CPU platform and enqueues the kernels to the GPU for the
OpenCL/GPU platform. Following the topological order of the graph nodes in
this step is important on the CPU platform so that each nodes inputs are com-
puted before its outputs. For the OpenCL/GPU platform, this is ensured using
OpenCL events, such that the order in which nodes are enqueued is not impor-
tant.

4 Framework Performance Features

Some features were implemented within the framework to reduce the perfor-
mance and resource usage the impact of the abstraction overhead. As mentioned
in the previous section, working memory reuse reduces the total amount of mem-
ory that is allocated by the framework and OpenCL kernel caching prevents
multiple compilation of OpenCL programs. Two other features which will be
discussed briefly in this section are mapped memory and parallel kernel execu-
tion capability for the OpenCL/GPU platform.

6

4.1 Mapped Memory

The execution of the graph requires the input data to be present in the work-
ing memory of the input nodes. This typcally involves costly copy operations
from the memory locations holding the input data provided by the application
programmer into the working memory during which the actual computation is
idle. For the OpenCL/GPU platform this involves a memory transfer to device
memory across the PCIe bus.

To reduce this copy overhead, the CompiledGraph class exposes the method
GetMappedMemory() which takes an input or variable name as input and re-
turns a handle to a region of memory that is mapped to the corresponding
nodes working memory. The CompiledGraph class internally relies on the spe-
cific GraphCompilationStrategy implementation to provide this handle.

The CPU platform implementation will simply return the pointer to the
working memory buffer of the node, allowing an application to read input data
directly into it. This completely eliminates the need for a separate buffer on
application side and thus the necessity of the memory transfer operation. At
graph execution, the platform will check whether the buffer provided in the
input data mapping is that node’s working buffer and skips copying in this case.
If the buffer in the mapping is different from the node’s working memory, the
copy operation is performed. Since the check is necessary in any case, even if only
mapped memory is used, there is a small but, compared to copy time, negligible
overhead still.

On the GPU platform, mapped memory is implemented by employing the
OpenCL buffer allocation and mapping API to allocate (hopefully) pinned mem-
ory regions from which the copy to device memory can be performed by DMA,
significantly improving throughput.

4.2 Parallel Kernel Execution

A computation graph of sufficient size typically has nodes that do not depend
on each other (i.e., for two nodes u and v, u is not an input to v and v is not an
input to u) and thus can, in principle, be executed in parallel. The framework
supports this behavior for the OpenCL/GPU platform by allowing the OpenCL
command queues to execute out of order and ensuring correct order of execution
among dependent nodes by making use of OpenCL events and event waiting. If
the OpenCL implementation and hardware supports parallel kernel execution,
this allows kernels to be executed in parallel.

Note that the CPU platform as it is currently implemented is limited to exe-
cuting kernels in sequence according to the topological order of nodes determined
in the graph compilation process.

5 Performance Evaluation

To evaluate the performance of the framework, it has been subjected to several
test runs which were intended to assess different aspects of the implementation.

7

As such, there were tests that compared only the platform-specicfic kernel im-
plementations for a single node, a test concerning a larger graph with lots of
independent nodes as well as a practical example which used the framework to
implement and train a simple linear softmax classifier for the MNIST dataset.

All execution timings were taken using the PAPI library on a portable com-
puter with an Intel(R) Core(TM) i5-3230M clocking at 2.6Ghz, 8GiB of main
memory and an NVidia GTX 650M GPU with 2 compute units with 192 pro-
cessing elements each and 2GiB of device memory.

All performance timings were obtained by executing the corresponding test
executable 11 times, eliminating the result with the highest runtime and taking
the mean of the remaining. The following results will only present charts to make
the results easy to grasp. The Appendix A lists the results in numbers.

5.1 Kernel Implementations

The kernel implementation tests did not use the GraphCompiler class to main-
tain direct access to the underlying structures and thus be able to precisely
measure only the runtime of that nodes kernel for the given platform. Almost
no framework overhead is involved in the actual kernel execution such that a
separate comparison to a pure CPU baseline implementation was not deemed
to be necessary. Note that for the kernels to operate they require inputs to be
present, such that InputNode objects (which perform no operation themselves)
have been included in these tests as well as the actually tested node. The results
presented in the following are for vector addition, matrix multiplication as well
as a reduce mean operation.

Vector Addition (represented as VectorAddNode in the framework) is one of
the examples that falls into the category of embarassingly parallel problems. As
such, a major performance improvement can be observed for the parallelized
OpenCL/GPU kernel. The left side of Figure 2 shows the time required for
allocating memory and compiling the kernel (setup time), the time required
for copying the input data into the working memory of the input nodes using
mapped memory (copy time) as well as the time of the actual computation
(computation time) for a vector batch of 50000× 1000, amounting to 50 million
elements. As was to expect, the OpenCL/GPU kernel outperforms the CPU
kernel significantly with a speedup factor of about 12.5. It does, however, have a
significantly higher setup time caused by the necessity for the complex OpenCL
kernel compilation. It also has to spent more time for memory transfer, which is
completely negligible for the CPU kernel. To further emphasize this point, the
right side of Figure 2 shows only the setup and copy time with a logarithmic
scale on the y-axis.

This overhead reduces the overall speedup of the OpenCL/GPU kernel com-
pared to the CPU kernel to roughly 3. For larger amounts of data, it can be
expected that the ratio of setup time to computation time will diminish further,
meaning that the total speedup will increase further towards the 12.5 mark (but

8

not reach it since the time to copy larger amounts of data will also increase for
the OpenCL/GPU kernel).

Fig. 2. Performance timings for VectorAddNode.

Matrix Multiplication (represented by the MatrixMultNode in the frame-
work) presents a problem that allows for slightly different approaches to paral-
lelization which do not perform equally well.2 In the framework implementation,
one OpenCL work item is created for each column of the result matrix which will
calculate all row entries of that column (with the result that memory accesses of
all parallelly executing work items can be coalesced). Figure 3 shows the results
for a multiplication of matrices with dimensions 1000× 10000 and 10000× 1000
respectively. It is evident that, again, the parallelized OpenCL/GPU kernel per-

Fig. 3. Performance timings for MatrixMultNode.

forms faster than the sequential CPU kernel in terms of pure computation by

2 I am referring to the lecture here.

9

a factor of about 1.97. Since the overall runtime for the computation is high,
the relative significance of setup and copy cost, in which the CPU implemen-
tation trumps the OpenCL/GPU variant again, is very low: In total time the
OpenCL/GPU kernel still achieves a speedup of 1.92. Note that parallelization
benefit for OpenCL/GPU is more pronounced for larger matrices: For a multi-
plication of matrices with 4000× 10000 and 10000× 4000 elements, the speedup
of total time is 6.32 (not shown in the figure; refer to Appendix A).

Figure 4 explores the effect of implementing mapped memory for both plat-
forms in the matrix multiplication example. As can be seen clearly, the time
spent in the copy routine reduces to almost none for the CPU platform. The
usage of DMA transfer from a pinned memory buffer for the OpenCL/GPU
platform reduces copying time by a factor of 2.14 in this example. However,
since the data copying time is overall negligible in this example, the impact on
overall runtime is low.

Fig. 4. Time for memory transfers (copy time) in the matrix multiplication example
for mapped and not-mapped input data buffers.

Reduce Mean (represented by ReduceMeanNode) is the operation that takes
the mean of all elements along one axis of the buffer (row or column) and places
the results in a vector along the other axis. The process can be trivially paral-
lelized with one worker per row/column. However, due to the row-major layout
of data in the memory buffers, the choice of the reduction axis has an impact
on the speedup that occurs using this parallelization scheme. Figure 5 illustrates
this by showing evaluation times for both platform implemenatations along both
axes for a buffer of size 15000× 15000. Setup and copy time were omitted in the
figure as they are not relevant to the point of interest.

As can be seen, the choice of reduction axis indeed plays a significant role.
A reduction along columns (axis 0) is much faster than along rows on both
platform and allows the OpenCL/GPU implementation to exploit its inherent
parallelism and thus outperform the CPU implementation. For reduction along

10

rows it seems to be unable to benefit from parallel exeuction and actually requires
slightly more time for the computation. Thus, comparing column reducing to row
reducing shows a drastic performance difference for the OpenCL/GPU platform
implementation.

This effect is probably caused by the different memory access patterns de-
pending on the axis. When reducing along columns, all work items for the
OpenCL/GPU platform read adjacent memory locations in every iteration step,
resulting in coalesced reads. For row reduction, the locations read by the work
items are separated by a stride equal to the size of a row, making coalesced read
impossible and thus decreasing memory throughput drastically to the point of
effectively serializing the computation.

The CPU platform is implemented in a way that it will always iterate over
the input in sequence (i.e. according to row-major layout) and add each element
it encounters to an aggregation variable according to the reduction axis. When
reducing columns, the cursor to the aggregation variables increases with each
element and wraps around after reading a row of the input data. When reducing
rows, the cursor increases which each row read. In theory, access to the input data
as well as the aggregation variables should happen in a cache-friendly manner
independent of the chosen axis. Interestingly, it is the variant where the input
cursor changes less often and thus should put less strain on the cache that
performs worse. This behavior puzzles me somewhat. My hypothesis is that in
this case the single cache line storing the aggregation variable get swapped out
of the L1 cache while iterating over the row because cache lines inside fall into
the same cache line set.

Fig. 5. Performance timings for ReduceMeanNode operating on both axes.

5.2 Full Graph Implementation: Massively Parallel Matrix
Multiplications

To test the overall integrated working of compiling and executing a graph on
the framework, a simple graph structure was used that also allows for parallel

11

execution of kernels by having a large number of independent nodes. The graph
constitutes of up to 8192 nodes that perform a matrix multiplication of the same
two input matrices, which have a size of 200 × 100 and 100 × 200 respectively.
Each such multiplication is thus quite small but the large number of them means
that the overall graph execution time will be large if all operations are executed
sequentially. The multiplication results are then summed up in a binary tree
reduction scheme which can also be computed in parallel for each layer (/level
of depth).3 The structure of the graph is shown visually in Figure 6.

Fig. 6. Illustration of the matrix multiplication graph used in the performance evalu-
ation.

Figure 7 shows graph evaluation times depending on the amount of nodes in
the matrix multiplication layer on the left side. This includes the time to copy
the input data using mapped memory. The number of nodes increases in steps of
exponents of 2 from 512 to 8192. Both implementations show a linear increase,
indicating that the OpenCL/GPU implementation fails to parallelize kernels.
Further investigation suggests that this is an issue with either the OpenCL im-
plementation or the hardware present in the testing system, which does not
allow for parallel execution of OpenCL kernels.4 However, since the execution
time for each kernel is faster in the OpenCL/GPU implementation, the slope of
the corresponding line in the graph is smaller and for larger amounts of nodes,
a gap between evaluation durations becomes noticeable.

3 Note that the buffer reuse described in Section 3 means that only memory for the
intial layer of matrix multiplications needs to be allocated; the following summation
layers can reuse the same buffers.

4 For two subsequent calls to clEnqueueNDRangeKernel(), the second call will block
if the kernel enqueued by the first call has not finished execution.

12

Fig. 7. Evaluation times (including copying) for the parallel graph example depending
on the size of the multiplication layer (left) and relative increase in evaluation time to
the previous layer size (right).

The right side of Figure 7 shows the increase factor in graph evaluation
time for both executions depending on the increase in nodes between the steps
(yellow line, 2). This further reflects the linear scaling in the number of nodes,
as increase factors for both, CPU and OpenCL/GPU, implementations also are
about 2. Interesting to note is that the increase factor for the OpenCL/GPU
variant is slightly higher for small numbers of nodes but smoothly converges
towards the value of 2. This is very likely due to the copy time overhead, which
is significantly higher for this implementation than for the CPU variant but the
impact of which diminishes as overall computation time increases. The CPU
increase factor fluctuates very slightly around the baseline value of 2, which is
probably just random noise.

Fig. 8. Setup times for the parallel graph example depending on the size of the multi-
plication layer.

Finally, Figure 8 shows a similar linear dependency on the number of nodes
for the graph setup/compilation time. In agreement with the results for sin-
gle kernel performance measurements, the OpenCL/GPU implementation takes

13

much longer here, beeing constantly at least 50 ms slower than the CPU one
and also seems to have a slightly higher slope.

5.3 Practical Use Case: MNIST Softmax Classifier Training

As a final example the framework was tested with a small practical example in
form of a graph representing a linear softmax classifier for the MNIST dataset
and its training process. MNIST, introduced by LeCun, Bottou, Bengio, and
Haffner, 1998, is a famous sample dataset for machine learning and consists of
60000 images of 28 × 28 pixels showing handwritten digits as well as a label
providing the digit shown in the image. With this, a classifier is trained that
predicts the digit corresponding to unseen samples out of a test set of 10000
more images also provided by the dataset.

To keep things simple I followed the corresponding tutorial for the Tensor-
Flow framework (TensorFlow, 2017) to construct the graph representing the
classifier. As the cited tutorial goes through the setup in detail, I won’t repli-
cate it here. For training the classifier, I added a feedback circle to the graph
which updates the parameters of the classifier using gradient descent with a fixed
learning rate. The following sections will first compare performance of both im-
plementation variants on a single forward pass for different sizes of input batches.
It will also include comparisons to two pure CPU benchmarks (one using AVX
instructions to leverage instruction level data parallelism of the CPU) that were
tailored towards the problem and do not make use of the framework to get an
impression of the abstraction overhead. Afterwards, the performance of both
platform implementations is compared for a full training process.

Fig. 9. Performance timings for a forward pass through the MNIST classifier with a
batch size of 500 (left). The (right) chart is zooming in on evaluation time only.

Forward Pass Figure 9 shows the full performance timings for all four imple-
mentations using an input batch size of 500 (with 728 elements per input row)

14

on the left. As in the previous section, the graph evaluation time includes time
to copy the inputs (if copying occurs). It can be seen that the OpenCL/GPU
framework implementation has a huge setup overhead time, which also dominates
overall runtime. A single forward pass is fast for all implementations such that a
large setup time has almost prohibitive impact.5 Looking only at the true evalua-
tion time (right side of the figure), the OpenCL/GPU framework implementation
performs fastest, followed by the AVX baseline, plain baseline and then the CPU
framework implementations in that order, as was to expect. This indicates that
the kernel implementations of the OpenCL/GPU are performing very well and,
if setup overhead can be accounted for, outperform problem-tailored sequential
CPU implementations.

Figure 10 proves this point by showing the same timings for a batch size
of 20000, where the problem size for a single pass throught the graph gets big
enough for the setup time to start to pay off: The OpenCL/GPU implementation
outperforms all other implementations except for the AVX baseline (although
the plain baseline just barely). In terms of pure evaluation time, it clearly beats
all other implementations with speedup factors > 9.

Fig. 10. Performance timings for a forward pass through the MNIST classifier with a
batch size of 20000 (left). The (right) chart is zooming in on evaluation time only.

Finally, Figure 11 shows how the implementations scale in pure evaluation
time with increasing batch sizes on a doubly-logarithmic scale (for easier readi-
bility). As is to expect, all CPU implementations scale linearly due to their se-
quential nature. The OpenCL/GPU platform variant however, scales sublinearly
and thus gains more advantage the bigger the input batches become, although
this gap widens less towards greater batch sizes.

Training Figure 12 shows the performance timings for 10 epochs of training
the MNIST classifier for batch sizes 500 (left) and 20000 (right). Note that an

5 Of course, the baseline implementations have no setup (or copying) cost as they are
not using the framework.

15

Fig. 11. Evaluation time over batch size for all implementations of the forward pass
throught the MNIST classifier.

epoch always processes all 60000 samples in the training set, a different batch
size just means that more batches are processed during one epoch (and thus the
graph is executed more often). Since the pure computation time advantage of the
OpenCL/GPU implementation is much more pronounced for larger batch sizes
in a forward pass, it was expected that training is faster for this case and the
difference between both platforms is larger for the larger batch size. Interestingly
however, this is not the case. For the larger batch size, both platform variants
got slightly faster, however not in any significant way (1 to 2 seconds). The
difference between the platforms remained the same across different batch sizes.
Note that setup time is negligible for both platform as the overall evaluation
time is high.

Fig. 12. Performance timings for 10 epochs of training the MNIST classifier for batch
sizes of 500 (left) and 20000 (right).

16

Since the much faster evaluation of a single pass through the graph for larger
batch sizes for the OpenCL/GPU implementation seems to not manifest any
effect in the training here, I suspect that the whole process is bottelnecked by
copying the batch input data into the working buffers, meaning that the actual
implementation variant has only a small effect on overall runtime.

6 Conclusion

This report briefly summarized architecture and core features of the created
framework and conducted an evaluation on several examples to highlight dif-
ferent aspects of framework performance. In general, the expectations towards
the framework by the author were met by the results of the evaluation, demon-
strating that the OpenCL/GPU implementation unsurprisingly outperforms the
sequential CPU implementation in almost all cases, but is also capable of com-
peting with problem-tailored sequential implementations if the problem size is
large enough to amortize the graph compilation setup cost.

However, there is still a lot of work that could be done as some kernel imple-
mentations definetely need futher improvements. It would also be interesting to
add a problem-tailored OpenCL baseline implementation to the MNIST forward
pass evaluation to compare the framework overhead on that level as well. An-
other interesting aspect would be to find an OpenCL implementation that allows
for parallel kernel execution for the parallel matrix multiplication graph as well
as comparing the created framework to its source of inspiration, TensorFlow.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., . . . Isard, M.,
et al. (2016). Tensorflow: A system for large-scale machine learning. In
OSDI (Vol. 16, pp. 265–283).

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86 (11), 2278–
2324.

TensorFlow, T. (2017). MNIST for ML beginners. (accessed December 19, 2017).
Retrieved from https://www.tensorflow.org/get started/mnist/beginners

17

https://www.tensorflow.org/get_started/mnist/beginners

A Performance Test Data

setup copy computation total

CPU 0.0300 0.0026 511.4991 511.5431
OpenCL/GPU 99.4795 33.8463 40.7044 174.0540

Table 1. Performance timings in ms for VectorAddNode for a vector with 50 million
elements using mapped memory.

setup copy computation total

CPU (w/o mapped memory) [1k rows] 0.0358 18.1613 3356.9046 3362.4792
OpenCL/GPU (w/o mapped memory) [1k rows] 21.0623 15.2451 1742.0700 1778.2640

CPU [1k rows] 0.0288 0.0027 3431.1673 3406.8097
OpenCL/GPU [1k rows] 22.2867 7.1111 1742.5283 1771.9261

CPU [4k rows] 0.0353 0.0025 49294.9499 49295.9897
OpenCL/GPU [4k rows] 78.3387 27.0026 7690.6851 7796.1219

Table 2. Performance timings in ms for MatrixMultNode with and without mapped
memory on a 1000 × 10000 (and transposed) matrix pair as well as on a 4000 × 10000
(and transposed) matrix pair with mapped memory.

reduction axis setup copy computation total

CPU row 0.0272 0.0022 650.5087 650.5417
OpenCL/GPU row 193.2303 75.4013 659.3438 928.0013

CPU column 0.0299 0.0023 222.7609 222.7971
OpenCL/GPU column 196.3027 75.4104 40.7376 312.7600

Table 3. Performance timings in ms for ReduceMeanNode on a 15000×15000 elements
large input matrix for both reductions directions using mapped memory.

18

nodes 512 1024 2048 4096 8192

CPU setup 3.4295 7.7354 12.9619 25.6724 55.6570
OpenCL/GPU setup 56.0852 61.0913 65.7772 83.3012 125.0189

CPU evaluation 1197.4120 2318.8319 4541.9213 9459.3411 19327.2259
OpenCL/GPU evaluation 739.5297 1672.0622 3615.8352 7515.5722 1516.4396

Table 4. Performance timings in ms for the parallel matrix muliplication graph exam-
ple on 200× 100 (and transposed) input matrices for different numbers of node counts
in the multiplication layer using mapped memory (evaluation time includes copying of
data).

batch size 500 1000 10000 20000

CPU setup 0.0663 0.0809 0.0837 0.0735
OpenCL/GPU setup 55.9960 55.5887 61.8241 66.1387

CPU baseline evaluation 1.9408 3.9098 39.3514 75.7029
CPU AVX baseline evaluation 1.5600 3.1315 30.8252 61.4217
CPU evaluation 3.0150 6.0797 57.9689 115.1675
OpenCL/GPU evaluation 0.9042 1.0529 3.3746 6.5463

Table 5. Graph evaluation time in ms for the forward pass through the MNIST classi-
fier example for different batch sizes using mapped memory (evaluation time includes
copying of data). Also includes baseline implementation timings. The baselines do not
have setup times.

batch size setup evaluation accuracy

CPU 500 0.1184 57120.4066 0.9115
OpenCL/GPU 500 53.5477 42780.0779 0.9115

CPU 20000 0.1471 55765.7366 0.8338
OpenCL/GPU 20000 64.3618 41156.1538 0.8338

Table 6. Evaluation time in ms for 10 epochs of training the MNIST classifier example
for different batch sizes using mapped memory. The evaluation times include all copying
of data (including assembling batches from the general input buffer into the mapped
memory regions). The last column gives the accuracy of the trained graph on the test
set (i.e. the ratio of correctly classified samples).

19

	Implementation of a Computation Graph Framework

