# luqui/dana

Removed the XIH rule.

1 parent ab06f38 commit e61dfc5f29468b017963806808554e493273bb49 committed Jun 19, 2009
Showing with 3 additions and 22 deletions.
1. +1 −7 ixi/IXi/Proof.hs
2. +1 −8 ixi/IXi/Sequent.hs
3. +1 −7 ixi/IXi/Tactic.hs
8 ixi/IXi/Proof.hs
 @@ -1,7 +1,7 @@ module IXi.Proof ( Proof , hypothesis, conversion - , implRule, xiRule, hxiRule, hhRule, xihRule + , implRule, xiRule, hxiRule, hhRule , theorem , Theorem, thmStatement, thmProof, prove ) @@ -20,7 +20,6 @@ data Proof | XiRule Name Proof Proof | HXiRule Name Proof Proof | HHRule - | XIHRule Proof | Theorem Theorem deriving (Show) @@ -30,7 +29,6 @@ implRule = ImplRule xiRule = XiRule hxiRule = HXiRule hhRule = HHRule -xihRule = XIHRule theorem = Theorem @@ -57,10 +55,6 @@ checkProof (HXiRule name hproof hxiproof) seq = do checkProof HHRule seq = S.hhRule seq -checkProof (XIHRule pf) seq = do - seq' <- S.xihRule seq - checkProof pf seq' - checkProof (Theorem (MkTheorem t _)) (hyps S.:|- goal) | goal == t = Right () | otherwise = Left "Goal does not match theorem"
9 ixi/IXi/Sequent.hs
 @@ -3,7 +3,7 @@ module IXi.Sequent , goal, hypotheses , Err , hypothesis, conversion, implRule - , xiRule, hxiRule, hhRule, xihRule + , xiRule, hxiRule, hhRule , newName ) where @@ -70,10 +70,3 @@ hhRule (hyps :|- goal) = invalid goal "Goal is not an H-H-form" newName :: Sequent -> Name newName seq = safeName' (goal seq : hypotheses seq) - --- conservative extension, Γ,x |- Hx -xihRule :: Sequent -> Err Sequent -xihRule (hyps :|- goal) = - case goal of - H :% x -> valid (hyps :|- x) - _ -> invalid goal "Goal is not an H-form"
8 ixi/IXi/Tactic.hs
 @@ -1,6 +1,6 @@ module IXi.Tactic ( Tactic, Hypothesis - , conversion, implRule, xiRule, hxiRule, hhRule, xihRule, theorem + , conversion, implRule, xiRule, hxiRule, hhRule, theorem , inspect, (>|<) , newName, failure , prove @@ -57,12 +57,6 @@ hhRule = Tactic \$ \seq -> do () <- Seq.hhRule seq return P.hhRule -xihRule :: Hypothesis -> Tactic -xihRule tac = Tactic \$ \seq -> do - seq' <- Seq.xihRule seq - pf <- unTactic tac seq' - return (P.xihRule pf) - theorem :: P.Theorem -> Tactic theorem thm = Tactic \$ \seq -> do if P.thmStatement thm == Seq.goal seq