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Abstract

In the developing process of a technical system a large number of arti-

facts is created. In order to manage the dependencies between differ-

ent artifacts created by different tools, the tool overlapping traceabil-

ity framework RiskTest has been developed. RiskTest administers the

artifacts and their dependencies as a graph. While it is already pos-

sible to connect different artifacts via RiskTest, the resulting graph

needs to be visualized properly to allow the user to easily identify

traces throughout the whole project. The visualization needs to pro-

vide an efficient way for the user to gain insight into a complex graph

structure. In this bachelor thesis the necessary requirements for such a

visualization are analyzed, different approaches for dealing with graph

visualization are evaluated, different frameworks and tools are closer

looked upon, their usefulness for these particular requirements is as-

sessed and finally a fitting visualization is implemented and added to

the RiskTest traceability framework.
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Chapter 1

Introduction

Modern software development of almost any scale is accompanied by a number

of processes that help organize and order the work that has to be done to build

a reliable, fitting and robust software solution to a real-life problem. These pro-

cesses can differ quite substantially but what almost all of them share is that the

production of the software is accompanied by the production of several different

artifacts. An artifact can be almost anything from a full scale requirements cat-

alogue to a use-case diagram illustrating one of the software’s user interfaces to

a single result of a unit-test.

These artifacts are essential for both programmers and customers to understand

the requirements of the software and its current state. Typically, there are a

number of specialized tools involved to create those artifacts. It is clear that the

artifacts have semantic links between them. For example in order to analyze and

visualize security risks, a developer may have used tool A to create diagrams.

A common solution after identifying security risks is to employ test patterns in

order to cover those. These test patterns however are probably not administered

by the same tool, so another tool (tool B) needs to be employed. After choosing

test patterns it is only logical to write test cases according to the pattern. This

however can be automated by some tools, which would mean that once again

another tool (tool C) needs to be employed.

While the usage of many different tools may not seem to be a problem at the

first glimpse, there is quite a substantial drawback. The drawback is that it can

become quite difficult to maintain the semantic links between artifacts created
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by different tools. Nonetheless maintaining these semantic links is crucial. A

simple example: In order to answer the question whether a security risk has been

successfully addressed, it is necessary to look at the associated test patterns from

tool B, find the test cases that were created from this pattern by tool C and only

then, by looking at the successful or unsuccessful test case results, is it possible

to determine if the security risk(visualized by a diagram created with tool A) has

been addressed or whether some work still remains to be done. Without a thor-

ough management of these semantic links questions like the one above become

almost impossible to answer.

For the purpose of maintaining semantic links, the Fraunhofer FOKUS institute

developed the RiskTest traceability framework [GBV13]. It was developed for

risk-based tests and test managements but could be used in a different context

as well. RiskTest supports the usage of different tools and allows the user to

create semantic links (traces) between artifacts created by these tools. In order

to maintain these semantic links it is essential that the underlying data structure

that administers the traces is visualized properly, so that incorrect linkings can

be spotted and corrected and missing links can be added. The underlying data

structure is of course a network of artifacts, hence a graph.

The aim of this bachelor thesis is to create a fitting visualization for traceability

data. In this context it is necessary to collect and analyze requirements of such

a visualization. It was already mentioned that the actual data structure to vi-

sualize is a graph, thus this bachelor thesis also deals with the visualization of

graphs and automatic graph layout algorithms. For the task of implementing a

visualization the usefulness of different tools and frameworks that provide graph

algorithmic functionality is assessed. The most fitting of these is decided on.

Finally the resulting concept for visualizing traceability data is implemented and

integrated into the RiskTest traceability framework.

Chapter 2 explains the state of the art in both traceability as well as graph visu-

alization. It covers the existing approaches to traceability, deals with the abstract

task of graph drawing, determines the desirable properties of a graph layout and

lists different approaches to automatic layouts algorithms. Chapter 3 deeply an-

alyzes the task of creating a visualization for traceability data in RiskTest. For

this purpose a closer look on RiskTest is taken, requirements for a visualization of
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traceability data are collected, categorized and illustrated. The software architec-

ture of RiskTest is analyzed, graph drawing tools and frameworks are introduced

and fitting graph layout algorithms are decided on. Chapter 4 shows the design

of the visualization and chapter 5 explains its implementation. Subsequently

chapter 6 validates that the implementation satisfies the requirements that were

collected in chapter 3 and it demonstrates the usage of the visualization at an

example project. Finally chapter 7 concludes the thesis.
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Chapter 2

State of the Art: Traceability

Tools and Graph Drawing

Algorithms

This chapter covers the State of the Art in both traceability as well as graph

drawing. The basic knowledge that is introduced here, especially concerning

graph drawing, is needed in the later chapters.

2.1 Traceability

First a short introduction to the topic of traceability is given, followed by an

overview over the different domains in which traceability has already been dealt

with.

2.1.1 Traceability in General

Traceability management can be best defined as the management of relationships

between different artifacts. These relationships (also called traces) are semantic

links that imply that two or more artifacts belong together in some sort of way.

For example a test pattern could be linked to a security risk, therefore implying

that the test pattern is used to cover the security risk. [GBV13]
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2.1.2 Traceability in Different Domains

The first context in which traceability became relevant was requirements engi-

neering. Traceability tools like Reqtify [Req] or Rhapsody gateway [Rha10] were

created. The overall goal of these tools was to display that the system fulfilled

the requirements. For that purpose these tools administer semantic links between

requirements and source code.

Another application domain of traceability is the development of safety critical

systems in which traces are administered between safety requirements, software

requirements and the source code. [KS]

In the domain of secure software applications in which security is a main aspect

of the requirements, traceability tools are rarer which led to the necessity of de-

veloping RiskTest. Apart from RiskTest there is the JESSIE project, a tool for

security assurance [BJY]. JESSIE allows the creation of traces but its focus is

on the aspect of handling the trace model and run-time verification in contrast

to good usability when dealing with the actual traces [GBV13]. An additional

motivation for the creation of RiskTest was that other traceability tools are often

separate and need to import the data from the other tools used during the devel-

opment process. This may lead to a high effort at the end of the development.

When all artifacts are created they need to be imported into the traceability tool

in which the tracing can be handled. Another disadvantage of a separate tool is

that its visualization of the artifacts will most likely differ from the visualization

used by the original tools.

RiskTest aims to correct that by integrating different tools and their native user

interfaces. That way RiskTest allows continuous updates to the traces while the

development is still in progress [GBV13]. A closer look on the current state of

RiskTest is taken in the beginning of chapter 3.

It was already mentioned that traceability data can be considered to be a graph.

Since the goal is to create a visualization of dependencies (traces), graph visu-

alization is the main task. Therefore the next section is about graph drawing

and graph layout algorithms and deals with the visualization of abstract graphs.

While it is useful to keep traceability with its artifacts and traces in the back of

one’s head when looking at different approaches to graph visualization, the next

5



section is nonetheless deliberately kept abstract in order to give an overview.

2.2 Graph Drawing

Graph drawing is the field of study that deals with the visualization of graphs.

A visualization of a graph can be best described as a graph layout. Graph layout

is an intuitive term so a formal definition is not necessary in this thesis. Never-

theless a short description is given to clarify what is meant by this term in this

thesis specifically. Details may differ from other sources.

Graph Layout A graph layout is a mapping that assigns each vertex of a graph

a point in a coordinate system. Usually the Cartesian coordinate system

is used but this does not necessarily have to be the case. Furthermore a

graph layout maps each edge to a line in the same coordinate system. This

line can have any shape as long as it connects the two vertices incident to

the edge.

In short a layout is a formal description of how to draw the graph.

2.2.1 Layout Evaluation

Before considering algorithms for automatic graph layouts it should be clarified

what the desirable properties of a layout are. The overall aim is of course to

enable the beholder to correctly identify relations between vertices, provide an

overview over the whole graph and avoid confusing or misleading the viewer. This

intuitive goal is described by Purchase, Cohen and James in their study about the

validation of graph drawing aesthetics (see [PCJ95a]). Their study was published

in [Bra95].

2.2.1.1 Edge Crossings

In the study mentioned above Purchase, Cohen and James (see [PCJ95a]) have

found clear evidence for the intuitive assumption that the higher the number of
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edge crossings in a graph drawing, the harder it is to understand the structure of

the graph. Thus the number of edge crossings in a graph layout should be kept

as small as possible.

2.2.1.2 Edge Bends

In the same study that found evidence for the harmful influence of edge crossings

Purchase, Cohen and James have found out that a high number of edge bends

decreases the understandability of a graph (see [PCJ95a]). Thus, similar to the

number of edge crossings, the number of edge bends in a layout should be kept

as small as possible.

2.2.1.3 Local Symmetry

Purchase, Cohen and James also tested the impact of local symmetry on the

readability of the graph and expected that the more symmetrical a graph drawing,

the higher the understandability of the graph. While this intuitively seems to be

a good hypothesis they did not find significant evidence for it. They still believe

that symmetry may improve the readability of a graph, and suspect that their

study failed to confirm this due to a ceiling effect:

”[...] ,but the symmetry hypothesis is inconclusive. We believe that

this is due to a ’ceiling effect’. The length of time for the subjects to

answer the questions (45 seconds for dense, 30 seconds for sparse),

was too generous: most of the subjects managed to get all the questions

right for the symmetrical graphs (even those which had a low measure

of symmetry). ” [PCJ95b]

So the positive influence of local symmetry on readability remains unclear, but

it is probably correct to at least assume that symmetry does not hinder the

readability of a graph.

2.2.1.4 Edge length

The Sugiayma method, a popular algorithm for the visualization of hierarchies,

claims that long edges hinder readability and that therefore edge length should be
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kept as small as possible (see [HN07]). While this is certainly true for extremely

long edges there is of course a lower bound for this, since vertices should not

overlap and possible labels need to stay readable.

2.2.1.5 Vertex Distribution

The Sugiayma method claims that vertices should be distributed uniformly to

ensure order (see [HN07] ). This is somewhat contrary to the approach of some

other graph drawing algorithms. In force-directed algorithms for example, clus-

ters of vertices that are positioned very close to each other may emerge. These

clusters may have the advantage of grouping (structural) similar vertices. This

goes to show that while both approaches to automatic layouts are valid, they put

their focus on different aspects, and rate the uniformity of vertex distribution

differently. It remains unclear whether uniform vertex distribution is superior

due to order and overview, or whether clusters are preferable.

2.2.2 Graph Drawing Algorithms

In his book about graph drawing and graph visualization Roberto Tamassia gath-

ers a number of authors that contribute different chapters (see [Tam07]). Most

of these deal with automatic graph layout algorithms of all sorts. Many of the

different algorithms require a specific type of graph, for example an acyclic or a

planar graph, which leads to different categories of graph drawing algorithms. It

is important to note that even if a graph does not fulfill all requirements for an

algorithm, the graph can be temporarily modified in order for the algorithm to

work, and after an automatic layout has been generated the created layout can be

changed back in order to restore the original graph. This approach is suggested

by the Sugiyama framework, an algorithm of the hierarchical drawing algorithms

category (see [HN07]). Depending on the amount of changes that had to be made,

the resulting layout may of course be far from optimal since the graph did not

satisfy important properties the algorithm relied on in order to create the layout.

The next sections give a very brief overview over the different categories of graph

layout algorithms and their most important characteristics. Specific algorithms

of some of these categories are explained in detail in section 5.5. Unless it is
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said otherwise the algorithms produce layouts for a two-dimensional Cartesian

coordinate system.

2.2.2.1 Planar Graph Drawing Algorithms

Planar graph drawing algorithms focus on planar graphs (graphs that can be

drawn without edge crossings). If a graph is planar it is desirable to find a planar

drawing since it was already established that edge crossings hinder readability

(2.2.1.1). Given a graph, most planar drawing algorithms either return a planar

layout or the information that the graph is not planar. In the latter case it is

still possible to reduce edge crossings. However, minimizing edge crossings of

a non-planar graph drawing is proven to be NP-hard, so heuristics need to be

employed [BCG+07].

There are a large number of specialized drawing algorithms for planar graphs such

as orthogonal and polyline drawing algorithms, rectangular drawing algorithms

and many more.

For planarity testing algorithms see [Pat07]. Crossing minimization algorithms

are presented in [BCG+07]. Planar straight line drawing algorithms are dealt

with in [Vis07] and for planar orthogonal and polyline drawing algorithms see

[DG07]. Rectangular graph drawing algorithms (of planar graphs) are discussed

in [NR07].

2.2.2.2 Symmetric Graph Drawing Algorithms

Symmetric graph drawing algorithms focus on the symmetry aspect of the layout

evaluation criteria. They try to maximize symmetry in a graph layout. Given a

graph G = (V,E) symmetry can be formally expressed by functions δ : V → V

that preserve adjacency (automorphisms). However not all automorphisms of a

graph can be transformed into one symmetrical drawing. This means that it is

the aim of symmetric graph drawing algorithms to find the automorphisms that

can be transformed into a graph drawing with maximum symmetry. In their

chapter about symmetric graph drawing Eades and Hong explain that the most

precise specifications of the symmetric graph drawing problem are NP-complete,
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so once again heuristics have to be found. An exception is the problem of finding

a symmetrical layout for a planar graph, which can be done in linear time. [EH07]

2.2.2.3 Hierarchical Graph Drawing Algorithms

Hierarchical graph drawing algorithms specifically deal with hierarchies which are

typically modeled as directed, acyclic graphs. A common approach to specify the

hierarchy is to partition the vertices of the input graph into distinct sets, the so

called layers. Healy and Nikolov describe the Sugiyama framework as the most

popular method for drawing hierarchies. This thesis deals with this algorithm

again in section 5.5.2. [HN07]

2.2.2.4 Tree Drawing Algorithms

Tree drawing algorithms focus on drawing undirected, acyclic graphs. Trees are

commonly drawn as hierarchies but other layouts are possible which distinguishes

this category from the hierarchical drawing algorithms. [Rus07]

2.2.2.5 Spine and Radial Graph Drawing Algorithms

Spine and radial graph drawing algorithms partition the vertices of a graph into

distinct sets which are called layers, very much like hierarchical drawing algo-

rithms. One main difference is that spine and radial drawings allow cyclic graphs.

Furthermore, layers are allowed to be drawn as any type of curve. In practice

they are almost always drawn as either straight lines or circles. [GDL07]

2.2.2.6 Circular Graph Drawing Algorithms

Circular graph drawing algorithms partition the vertices of a graph into clusters.

The vertices of each cluster are then distributed on the circumference of a circle

and edges between vertices are drawn as straight lines or as an arc if the vertices

are neighbors on the circle. Both single circular drawings (all vertices are placed

on the same circle line) and multi circular drawings are possible. The input graph

is not restricted in any way which means that circular drawing algorithms can be

applied to any type of graph. [ST07]
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2.2.2.7 Simultaneous Graph Drawing Algorithms

Simultaneous graph drawing algorithms, also called simultaneous graph embed-

ding algorithms, do not aim to draw one single graph but an entire set of graphs

that have a (partly) common vertex set. These algorithms have to find a good

tradeoff between readability of the individual graphs and global overview, which

are both desirable, but often contradictory. The chapter in Tamassia’s book by

Blaesius specifies on simultaneous embedding of planar graphs. [BKI07]

2.2.2.8 Force-Directed Graph Drawing Algorithms

Force-directed graph drawing algorithms achieve their layouts by modeling the

graph as a physical system in which there are repulsive forces between all vertices,

but also attractive forces between vertices that are connected by an edge. A 3-

dimensional, physical example of this could be a space with zero gravity in which

the vertices are spheres, that are all equally, negatively charged, and if there

is an edge between two vertices, the corresponding spheres are connected by a

spring. For this reason force directed layout algorithms are also known as spring

embedders. Force directed drawing algorithms are extremely flexible and can

be applied to any graph. They can also create 2-dimensional drawings as well

as 3-dimensional drawings. This thesis provides a detailed look on a specific

force-directed algorithm in section 5.5.1. [Kob07]

2.2.2.9 Three-Dimensional Graph Drawing Algorithms

Three dimensional graph drawing algorithms create layouts for the three dimen-

sional Cartesian coordinate system. Compared to two-dimensional graph draw-

ing algorithms and layouts there has been little research in the area of three-

dimensional graph drawing algorithms.

This category can be roughly subdivided into polyline-grid drawing algorithms,

orthogonal grid drawing algorithms and non-grid drawing algorithms. Each of

these subcategories has a different approach to vertex distribution. One of the

main advantages of three-dimensional drawing algorithms is that all graphs can

be drawn without edge-crossings. This however comes at the cost of Volume,

since in order to remove crossings the size needs to be increased. [VW07]
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Chapter 3

Analysis

This chapter analyzes the task of creating a visualization for the dependencies

managed by RiskTest in depth. First the RiskTest traceability framework is closer

looked upon followed by the collection of the actual requirements for the visualiza-

tion. Subsequently graph drawing tools and frameworks are closer looked upon.

This chapter finishes by revisiting the different categories of graph drawing algo-

rithms and the assessment of their usefulness for the visualization of traceabitlity

data in RiskTest.

3.1 The RiskTest Traceability Framework

Before the actual requirements can be collected, it is necessary to take a closer

look on the current state of RiskTest and to examine parts of its software archi-

tecture.

3.1.1 Current State of RiskTest

RiskTest is a plugin for the popular and widely used development platform

Eclipse. It integrates different Eclipse-based tools which are Eclipse plugins them-

selves. The design purpose of RiskTest is to support as many tools as possible

that are helpful in the development of software systems. The users of RiskTest

will work with these tools in their native user interfaces but still be able to create

semantic links between artifacts of the supported tools via RiskTest. RiskTest
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currently supports:

• CORAS - A tool to conduct security risk analysis.

• ProR - A tool for requirements engineering that allows the user to organize

and administer test patterns.

• Papyrus - A tool for modeling that supports both EMF and UML as well

as a couple of other modeling languages.

• TTWorkbench - A tool for automated test generation and execution.

The support of these four tools is no coincidence. The main reason for the de-

velopment of RiskTest was to create a traceability framework for the context of

security. Figure 3.1 shows the intended usage of these four tools. As already

Figure 3.1: Usage of RiskTest, taken from: [GBV13]

mentioned the current user interface of RiskTest includes all native user inter-

faces of the supported tools.
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Figure 3.2 shows a configuration that depicts the views of CORAS, ProR and

Papyrus. At the very left border there is the project browser. At the center the

CORAS view is located, on its right is the view of ProR and below both of these

is the view of Papyrus. The position of the views can be adjusted as common

Figure 3.2: RiskTest user interface

in Eclipse-style interface layouts. Each of the tools could run on its own, but by

starting multiple tools in RiskTest it is now possible for the user to edit traces,

for example via the context menu. An example of this interaction is shown in

figure 3.3. As already mentioned the current user interface of RiskTest includes

all native user interfaces of the supported tools. Note that the native user inter-

faces keep their full functionality since RiskTest loads all tool-specific interactive

buttons and icons if a native view is selected. This means that RiskTest does not

decrease the usability of any of the supported tools, while adding more function-

ality.
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Figure 3.3: Editing semantic links by using the RiskTest context menu

3.1.2 Software Architecture of RiskTest

Since RiskTest itself is an Eclipse plugin it is not surprising that it consists of a

number of interdependent plugins for Eclipse. Each plugin typically has a number

of java packages which contain the relevant classes. The most important package

for data administration is org.yakindu.crema.model.tracing. Figure 3.4 shows an

excerpt of the relations between the classes contained in this package. The three

most important classes are the ones that also introduce important terminology.

These are TraceProject, TracePoint and TraceConnector. Technically the names

of the depicted classes are actually names of interfaces, the implementations sim-

ply have ”-Impl” as a suffix. For example the implementation of the TracePoint

interface is called TracePointImpl.

The class diagram shows that in RiskTest a TraceProject can consist of multi-

ple resources, which in turn may consist of multiple TracePoint instances. Trace

points model the artifacts between which traces are to be administered. Each Tra-

cePoint can once again have more than one TracePointEnd, which means that
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Figure 3.4: Class diagram of org.yakindu.crema.model.tracing

it can be related to any number of other TracePoint instances. These relations

are modeled by the TraceConnector instances. They relate two TracePointEnd

instances with each other, thus modeling that there is a trace between the two

corresponding trace points. A TraceProject instance can of course have multiple

TraceConnector instances. The TracePointType object provides additional infor-

mation about the specific trace point it is associated with. Among other things it

contains a string that identifies the tool in which the artifact that is represented

by the trace point was created. This tool is also called the trace point’s provider.

In order to easily extract information out of TraceProject objects or modify them,

there are useful utility classes such as de.fraunhofer.tracing.util.TraceManager

and org.yakindu.crema.model.tracing.util.ModelUtil.

3.2 Requirements Collection

The requirements for the visualization were collected over multiple meetings with

the developers of RiskTest from the Fraunhofer FOKUS institute. Table 3.1 gives

an overview about the different categories of requirements. The requirements of
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each category are then specified in the corresponding subsection.

Requirements
Category

Description Sub-
section

Data and Ap-
pearance

Deals with data constraints and the visual rep-
resentation of information

3.2.1

Interaction A summary of all the interactive features the vi-
sualization needs to include

3.2.2

Hierarchies Deals with information about hierarchies in the
trace project

3.2.3

Filtering A more detailed look on the interactive possibil-
ity of filters

3.2.4

Summary A brief summary containing the most important
aspects of the other categories

3.2.5

Table 3.1: Requirements overview

3.2.1 Data and Appearance

• The Visualization allows the user to view a freely chosen subset of all trace

points of one trace project.

• The chosen subset of trace points will be visualized as a graph. The follow-

ing constraints or restrictions apply:

– The trace points form the set of all vertices.

– The trace connectors are a part of the set of all edges. It may be the

case that all edges in the visualized graph are also trace connectors,

but it is also possible that they are virtual edges, meaning they cannot

be mapped to a single trace connector. The notion of virtual edges

and their purpose is explained in subsection 3.2.4.

– The visualization must be able to deal with a trace project that con-

tains up to 2000 trace points and any number of trace connectors.

– The trace project contains at most one trace connector for each pair

of trace points.
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– The trace connectors have no direction, that means if a, b are two trace

points and c is a trace connector between a and b then a is a neighbor

of b and b is a neighbor of a in the resulting graph.

• The providers can be interpreted to be in a hierarchical order, for more

details see subsection 3.2.3.

• The visualized graph can be dynamically changed by employing filter mech-

anisms. See subsection 3.2.4 for more details.

• Changes to the structure of the graph made in the visualization are au-

tomatically applied to the original trace project. See subsection 3.2.2 for

possible modifications of the graph by the user.

• The graph should be automatically drawn in an aesthetic way, so that the

user is able to clearly recognize the traces between the trace points and

confusion is avoided.

• When drawing graph vertices, the following should be considered:

– Each vertex is to be labeled with the name of its corresponding trace

point.

– Each vertex is depicted as the icon of the corresponding provider.

– Additional information considering a trace point can be revealed by

the user. See subsection 3.2.2 for more details.

• When drawing edges, the following should be considered:

– Virtual edges are to be drawn differently than edges that can be

mapped to a trace connector.

– Edges are to be labeled by information contained within, if such infor-

mation is present.

• As it is explained in subsection 3.2.2 the user will be able to select edges or

vertices. These selected graph components are to be displayed differently

than unselected graph components.
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3.2.2 Interaction

The visualization allows the user to interact with it. In order to logically describe

the possibilities of interaction, a definition of a view is necessary:

View A view consist of the following things:

• A graph, meaning a set of trace points and a set of edges (either real

trace connectors or virtual edges).

• A set of positions mapping each trace point to a coordinate.

• An edge style specifying how the edges are to be drawn.

In short: a view encompasses all relevant information to create a drawing of a

graph.

• The visualization allows the user to create a view by browsing all trace

points of the trace project and selecting some of them. While browsing,

filter mechanisms can be employed. These filter mechanisms are:

– Name of the trace points (normal substring search)

– Provider of the trace points

• The visualization allows the user to open multiple views and switch between

them.

• The visualization allows the user to interact with views. The possible ways

of interaction are:

– Creation and deletion of edges. If an edge is deleted or created the

trace project is updated, meaning an equivalent trace connector is

deleted or created.

– Dynamic addition and removal of vertices.

– Filter trace points of a certain provider. This is discussed in detail in

subsection 3.2.4.

– It should explicitly not be possible to create or delete trace points via

the visualization.
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• The visualization allows the user to either select automatic layouts or man-

ually arrange the visualized trace points. Both possibilities can also be

combined, for example an automatic layout algorithm can be applied to

generate a layout which can then be adapted by the user.

• The visualization offers saving and loading options for views.

• The visualization allows the user to reveal additional information for a

vertex. These information include its neighborhood.

3.2.3 Hierarchies

The requirements of the data and appearance category (subsection 3.2.1) already

mentioned that the tools integrated by RiskTest may have a hierarchical connec-

tion. This directly leads to the notion of hierarchies in the trace project. A closer

look on these hierarchies is necessary: Trace points are artifacts that belong to

exactly one tool (the provider). Each tool belongs to a domain, for example risk

assessment or automatic test generation. In the developing process of a technical

system these domains can usually be considered to be logically ordered (risk as-

sessment is done earlier than test generation). Thus these domains are forming

a hierarchy with regard to the specific process in which they were used. An ex-

ample trace project is given in figure 3.5 where such a hierarchy is depicted. The

trace points are drawn as yellow squares, the trace connectors are drawn as black

lines connecting the trace points. The domains are labeled by the green squares

and sorted from high (top) to low (bottom). This figure gives a typical example

of semantic links in a RiskTest project. The trace points created by CORAS

are artifacts from the security risk analysis, ProR administers test patterns to

ensure the fulfillment of requirements, TTWorkbench is used for automated test

generation and execution.

The intended use of RiskTest depicted in figure 3.1 shows that the process puts

the tools that are currently supported by RiskTest in a hierarchical order: First

security risk analysis is done with the help of CORAS, then ProR is used to find

fitting security test patterns, afterwards Papyrus is used to generate test cases

and finally these test cases are executed by TTWorkbench.
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Figure 3.5: Hierarchy among the domains

It is important to note that the hierarchy of the tools is dependent on the pro-

cess that is employed. The same tools may be ordered differently in two distinct

processes.

Hierarchical Trace Project A trace project is hierarchical, if all tools provid-

ing the trace points can be put into a logical order (hierarchy).

This logical hierarchy between tools becomes important when filtering is discussed

(see subsection 3.2.4).

In the example shown in figure 3.5 it is clear that there not only exists a trace

between A and B, but also between A and D as well as A and E (the test cases D

and E cover the security risk A). The above example may lead to the assumption,

that the definition of a trace could be transitively extended. In other words if a, b

and c are trace points and there is a trace between a and b as well as between b

and c then there is a trace between a and c. This would mean that it would be

sufficient to find a path in the resulting graph in order to say for two trace points
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that they are semantically linked. This looks promising at first but after a more

detailed analysis it becomes clear that it would be a wrong assumption.

Figure 3.5 shows that there is also a path in the trace project leading from A

to C because C and E are connected. C however does not have any semantic

connection to A, since the test pattern that C represents was not used to cover

the security risk represented by A (otherwise there should be a trace connector

between them). This means that it would be wrong to say that A and C are

linked by a trace. Further restrictions are necessary:

Hierarchical path Let G = (TP, TC) be the graph that is formed by a hierar-

chical trace project, where TP (all trace points ) are the vertices and TC (all

trace connectors) are the edges and let Dom : TP → N be a function that

maps each trace point to a number according to the hierarchical position of

its domain(the highest tool in the hierarchy has the lowest number), then

a hierarchical path from a to b (a, b ∈ TP ) is a sequence S = {tp|tp ∈ TP}
of trace points, with the following constraints:

• |S| > 1

• S0 = a

• S|S|−1 = b

• ∀i ∈ {0, ..., |S| − 2} : (Si, Si + 1) ∈ TC ∧Dom(Si) ≤ Dom(Si + 1)

In the example shown in figure 3.5 the path from A to D is a hierarchical path,

since it fulfills the criteria specified above. The path from A to trace point C

is no hierarchical path since the last condition of a hierarchical path is violated.

If the trace project is hierarchical, then it is useful to extend the definition of a

trace to:

Trace Two trace points a and b are connected by a trace if there exists a hier-

archical path either from a to b or from b to a.

The notion of hierarchies and this extended definition as well as the concept of

a hierarchical path is needed when filtering is discussed in detail in the next

subsection.
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3.2.4 Filtering

The user is supposed to be able to filter the views by trace point providers.

While this does not seem to be a problem at the first glimpse, complications can

arise. Consider once again the hierarchy depicted in figure 3.5. If trace points

of a provider would be removed without any additional actions then the removal

of the provider ”ProR” would result in the graph depicted in figure 3.6 When

Figure 3.6: Filtered graph with ProR’s trace points hidden

looking at the diagram the beholder could be misled into believing that there

are no traces between any of the depicted trace points. This is of course a false

assumption, since they are just hidden by the filter mechanisms. To avoid this,

the notion of virtual edges that was already mentioned in subsection 3.2.1 is now

applied. The rule for the addition of virtual edges is as follows:

Let G = (TP, TC) be a graph of a view and the graph resulting from a filtering

action is G′ = (TP ′, TC ′) where TP ′ ⊆ TP and TC ′ ⊆ TC. Then ∀(tp1, tp2) ∈
TP ′ × TP ′ add a virtual edge between tp1 and tp2 if (tp1, tp2) /∈ TC ′ and there

exists a hierarchical path from either tp1 to tp2 or from tp2 to tp1 in the original
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graph G. With the notion of virtual edges the removal of all trace points of the

provider ”ProR” from the graph in figure 3.5 now results in the graph shown in

figure 3.7.

Through the virtual edges the filtered graph now preserves the information that

Figure 3.7: Filtered graph with ProR’s trace points hidden and virtual edges
added

the original graph had, which is a clear improvement compared to the filtered

graph in figure 3.6.

If the original graph is restored by the user (the filter is removed) then the virtual

edges should be removed again, since they are then obsolete.

3.2.5 Summary

The most important requirements of the ones listed above are:

• The data structure to be visualized is the trace project of RiskTest.

• The trace project must be visualized as a graph.
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• A static display is not enough, the visualization needs to be interactive.

• The trace project can be hierarchical in which case the use of a filter may

lead to the addition of virtual edges in the new graph. This has the goal of

preserving information.

The requirements underline that graph visualization is the central task when

creating an interactive visualization for RiskTest. Therefore the next section

deals with existing graph drawing frameworks and tools.

3.3 Graph Drawing Tools and Frameworks

This thesis is only one of many examples where the visualization of a graph

is the essential problem that needs to be dealt with. Thus there are already

several tools and frameworks that offer graph visualization functionality. This

section gives an overview over some of these and analyzes their usefulness for this

particular problem. Finally one of the solutions is picked. The advantages and

disadvantages refer to the specific task of building a visualization for RiskTest.

They are no general assessments of the tool’s or framework’s usefulness.

3.3.1 Tool: yEd Graph Editor

The yEd Graph Editor (see [yED]) is a tool that has been developed by yWorks.

It is a mighty tool for diagram and graph creation and modification. Figure 3.8

shows the main user interface with a simple graph displayed. The yEd Graph

Editor offers a large amount of functionality, some of which is very useful, for

example a number of automatic layout algorithms.

The most important advantages and disadvantages of the yEd Graph Editor are

summarized in table 3.2.

3.3.2 Framework: yFiles

The yFiles framework (see [yFia]), also developed by yWorks, is the underlying

framework with which the yEd Graph Editor was realized. The yEd Graph

Editor itself shows that yFiles is a powerful framework for graph drawing and
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Figure 3.8: Main user interface of the yEd Graph Editor

that comfortable tools can be created using it. The advantage of the framework

in contrast to the tool is of course that the framework can be used to create

a specialized visualization that is cut down to the exact requirements and no

external tool needs to be employed.

The biggest disadvantage in this context is that yFiles is not free to use ([yFib]). A

license is required. This is such a severe disadvantage in the context of a bachelor

thesis that a further analysis of advantages and disadvantages is obsolete.

3.3.3 Framework: JUNG

The Java Universal Network/Graph Framework (JUNG-framework) is an open

source framework for java (see [JUNa]). It encompasses among other features:

• Basic interfaces like graph, hypergraph, forest, etc. as well as basic imple-

mentations of these.

• Algorithms from graph theory, such as shortest path, minimum spanning

tree, but also algorithms from specialized graph theoretic problem domains

like social network analysis.

• Visualization classes that ease the task of drawing graph layouts.

26



Advantages Disadvantages
The yEd graph editor is an al-
ready completed tool, so very lit-
tle effort needs to be spent in or-
der to build a visualization

Very difficult or even impossi-
ble to integrate into the user in-
terface of RiskTest, needs to be
used externally

Very comfortable and intuitive
user interface with a large
amount of graph customization
possibilities

Data transfer could be problem-
atic, communication with Risk-
Test needs to run over files.

Some automatic layout algo-
rithms are already implemented

Communication is especially dif-
ficult when data is changed in
the visualization and the trace
project needs to be updated
Not open-source which means
that extensions are not possible
Direct filtering of the visual-
ized graph not possible to im-
plement, visualized part of the
trace project could only be pre-
filtered

Table 3.2: Advantages and disadvantages of the yEd Graph Editor

The most important advantages and disadvantages of the JUNG framework are

summarized in table 3.3.

3.3.4 Framework: OGDF

The Open Graph Drawing Framework (OGDF) is a framework similar to the

JUNG-framework (see [OGD]). The major differences are:

• OGDF is a c++ library

• OGDF implements more of the approaches that were discussed in chapter

2 than JUNG

• OGDF does not provide support for the visualization of the graph itself,

only layouts are implemented.
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Advantages Disadvantages
JUNG is a java framework, so it
can be easily integrated into the
Eclipse environment

Visualization needs to be built,
leads to a higher expenditure of
time

Good Documentation: several
examples and tutorials exist that
demonstrate the correct usage

Visualization is only embedded
into swing, RiskTest uses SWT,
this could lead to the necessity
of an external swing window

Some automatic layout algo-
rithms are already implemented

Several automatic layout ap-
proaches discussed in chapter 2
are not implemented

JUNG is a free, open source
framework
Clear and logical software archi-
tecture, different interfaces for
different functionalities
Several graph specific algorithms
that could be useful are imple-
mented
Supporting java classes designed
for an easy visualization of graph
layouts exist

Table 3.3: Advantages and disadvantages of the JUNG framework

The most important advantages and disadvantages of the OGDF framework are

summarized in table 3.4.

3.3.5 Overall Comparison and Decision

As the tables listing the advantages and disadvantages already hinted, the JUNG

framework is suited best for the creation of a visualization for RiskTest. While

the yEd Graph Editor offers great usability in dealing with visualized graphs, the

usage of an unchangeable external tool brings too many drawbacks, especially in

the category of data transfer and communication. These drawbacks do not even

arise if an own visualization is built.

yFiles is likely a high quality framework for graph drawing and visualization,

however it not being free to use is unacceptable in the context of a bachelor
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Advantages Disadvantages
More automatic layout ap-
proaches implemented than in
JUNG

OGDF is a c++ library, which
may lead to difficulties and
drawbacks when integrating it
into RiskTest, which is a java ap-
plication

OGDF might outperform
JUNG. Note that no tests were
made to confirm this assump-
tion. It is purely based on the
fact that properly written c++
code is usually faster than java
code

No built-in support for inter-
active graph visualization, even
higher amount of time needed
than with the JUNG framework

OGDF is free to use
Good Documentation: several
examples and tutorials exist that
demonstrate the correct usage
Clear and logical software archi-
tecture, different interfaces for
different functionalities
Several graph theoretic algo-
rithms that could be useful are
implemented

Table 3.4: Advantages and disadvantages of the OGDF

thesis, especially since free alternatives exist.

Finally the OGDF framework does have two advantages over JUNG, but in the

following it is explained why they are not that important or outweighed by the

disadvantages:

Performance: It is important to keep in mind that algorithms from OGDF

might not even run faster than the JUNG algorithms, as it was already

explained in table 3.4. Even if that is the case though, the requirements

stated that for this bachelor thesis it is sufficient to assume that the trace

project can have at most 2000 trace points. 2000 vertices is a moderate

number in terms of algorithm runtime. There are no bounds on the number

of trace connectors except that multiple trace connectors between the same
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pair of trace points are not allowed. This results in a maximum number of

1.999.000 edges in the (very unlikely) worst case of a complete graph.

In short this means that the worst possible case of a graph on which to

run algorithms is: G = (V,E) with |V | = 2000 and |E| = 1.999.000.

While 2 million edges is undeniably a large number, runtime for most graph

theoretic algorithms on this graph should still be tolerable, even in a ”slow”

programming language like java. The only restricition is that one might

want to avoid algorithms with O(|E|2) time or higher.

While the analysis for the worst case is theoretically interesting, it is highly

unlikely that any graph with that size will ever need to run through a layout

algorithm since viewing all 2000 vertices at once will seldom be the intention

of the user. It is much more likely that only a small subgraph is of interest

in which case the question of performance becomes negligible.

More layout approaches implemented: The availability of fully implemented

layout algorithms does save time, but given a clear specification of the layout

algorithm, implementing it should not take too much time either. JUNG

does already provide some algorithms, which makes the amount of time that

is needed for additional layout algorithm implementations manageable.

In addition JUNG provides utility classes that greatly reduce the effort for

actually visualizing the graph which more than makes up for the possible

effort of implementing a missing layout algorithm.

To sum it up one can say that OGDF does offer some advantages over JUNG,

but they are not relevant in this case. On the other hand, the two advantages

that JUNG has over OGDF (support for visualization and being a java-library)

are very relevant. That means that the JUNG framework is suited best. Now

that the framework that is to be used was determined, it is time to choose useful

graph drawing algorithms the visualization should encompass.

3.4 Graph Drawing Algorithms

Chapter 2 laid out different approaches to graph drawing and categorized them.

Now it is time to revisit those categories and decide whether an algorithm of it
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should be included in the visualization. This is done in table 3.5. Each of the

categories from which an algorithm is implemented in the visualization is revis-

ited and the algorithm is explained in detail in chapter 5.

Algorithm cate-

gory

Included Justification

Planar Graph

Drawing Algo-

rithms (2.2.2.1)

No Neither a normal, nor a hierarchical trace

project is assuredly a planar graph, so al-

gorithms would often fail, or result in non-

planar drawings.

Symmetric Graph

Drawing Algorithms

(2.2.2.2)

No It is unclear how many symmetries the al-

gorithms would be able to find in a trace

project. Results from the same algorithm

could strongly differ with different sub-

graphs. As it was already stated, symme-

try can come at the cost of an increased

number in edge crossings, which again hin-

ders readability. Additionally the JUNG-

framework does not provide an algorithm

specialized on symmetrical layouts, thus

additional time would be needed to imple-

ment one.

Hierarchical Graph

Drawing Algorithms

(2.2.2.3)

Yes If a trace project is hierarchical (which

it is in the standard uses of RiskTest)

it fits the requirements of the Sugiyama

method. That means that the algorithm

is specialized to aesthetically draw graphs

of exactly the type the trace project and

all possible subgraphs are. This promises

good results and is worth the effort of im-

plementing it, which is necessary because

JUNG does not provide it.
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Tree Drawing Algo-

rithms (2.2.2.4)

No A non-hierarchical trace project is not nec-

essarily acyclic, which means that tree

drawing algorithms could only be applied

for hierarchical trace projects for which

the Sugiyama method should return bet-

ter results.

Spine and Radial

Graph Drawing Al-

gorithms (2.2.2.5)

No Spine and radial drawing algorithms

might yield interesting results for non-

hierarchical trace projects and their sub-

graphs, but for the hierarchical ones the

Sugiyama method will most likely do bet-

ter.

Circular Graph

Drawing Algo-

rithms (2.2.2.6)

Yes Circular drawing algorithms can visualize

any type of graph and might yield good

results for some non-hierarchical trace

projects, where the Sugiyama method can-

not be applied. JUNG does provide a

single-circular drawing algorithm, so im-

plementing this in the visualization barely

costs any effort.

Simultaneous

Graph Drawing

Algorithms (2.2.2.7)

No The requirements state nothing about vi-

sualizing two or more trace projects at the

same time, or that different trace projects

are even supposed to operate on a com-

mon set of trace points. Thus simulta-

neous graph drawing algorithms are not

needed.
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Force-Directed

Graph Drawing

Algorithms (2.2.2.8)

Yes Force directed drawing algorithms are flex-

ible and tend to yield viable results for any

graph, provided it is not too large. They

promise to work well for non-hierarchical

trace projects and therefore present them-

selves as an alternative to the circu-

lar drawing algorithms. JUNG provides

an implementation of the Fruchtermann-

Reingold algorithm, which is a refined

force directed algorithm.

Three-Dimensional

Graph Drawing

Algorithms (2.2.2.9)

No Three dimensional drawings call for differ-

ent user interaction possibilities (for exam-

ple rotation) than two dimensional draw-

ings, so mixing both in the same applica-

tion may lead to complications or confu-

sion.

Table 3.5: Graph drawing algorithm categories and their

usefulness for the RiskTest visualization

Now that the requirements were collected, a suitable framework has been

found and promising automatic layout algorithms for graphs were chosen, the

visualization can be designed.
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Chapter 4

Design

When designing the visualization two aspects need to be considered: The actual

visual design and the design of the underlying software architecture. Both are

subsequently dealt with in this chapter.

4.1 Design of the Visualization

As the requirements stated, the visualization of the trace project is not simply a

static display of information, but must allow the user to interact with it and thus

manipulate the underlying data. This means that the visualization of the trace

project needs to be included in a basic user interface. To distinguish this new user

interface from the current user interface of RiskTest the user interface that is to

be designed and implemented will from now on be called the RiskTest Graph User

Interface (RTGUI) The general design of the RTGUI is presented in figure 4.1.

The data-part of the requirements (subsection3.2.1) specified that the user should

be able to browse all trace points of a trace project and employ filter mechanisms.

For that purpose another window was designed: the trace point browser. Its basic

design can be seen in figure 4.2. In the resulting implementation the user should

then be able to open the trace point browser via the RTGUI (fiugre 4.1) in order

to add trace points to the view.
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Figure 4.1: Basic design of the RiskTest-GraphUI (RTGUI)

4.2 Design of the Software Architecture

The RTGUI is not only supposed to allow interaction with the layouts, but also

manipulation of the underlying trace project. In order to avoid confusion and

unwanted side effects a good software architecture for dealing with data, its visual

representation and user interaction is needed. The model-view-presenter (MVP)

software pattern offers exactly this by clearly separating visualized data from

the underlying data-model. A slightly modified version of the MVP pattern is

used in the implementation of the RTGUI. The normal MVP pattern only has

one model-class, which is not enough in this context. Two models are needed

because the actual underlying data model is already given through the trace

project of RiskTest but it was already established that the trace project may

differ from the visualized graphs since these may include virtual edges introduced

by filtering mechanisms. The flow of information in the resulting application

is visualized in figure 4.3. As it was pointed out in the analysis, the JUNG

framework does have a natural support for visualization included. This support
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Figure 4.2: Basic design of the trace point browser

however is only able to interact with the swing library of java, which leads to

the necessity of developing the visualization as a swing application. This is not

problematic for the development of the RTGUI itself since swing offers a large

amount of functionality. It does however have the drawback that the RTGUI

cannot be easily integrated into a window in the existing interface of RiskTest

since that interface uses SWT classes instead of swing. It is however easy to open

the user interface in a second window parallel to the interface of RiskTest. The

only alternative to that would be not to use the classes of JUNG that support

the visualization of graphs which would lead to a much higher expenditure of

time since the functionality of these classes would have to be at least partly

reimplemented into SWT compatible classes.
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Figure 4.3: Software architecture with regard to the exchange of information
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Chapter 5

Implementation

This chapter illustrates the results of the implementation of the RTGUI. At first a

closer look on the resulting user interface is taken. The chapter then proceeds with

an enumeration of all packages contained in the eclipse plugin that implements the

RTGUI. Afterwards the usage of the JUNG-framework is explained, followed by

a description of the most important classes and their interactions. This chapter

then concludes with a detailed explanation of the algorithmic core of the RTGUI:

The automatic graph layout algorithms.

5.1 Resulting User Interface

Chapter 4 introduced the basic design of the RTGUI. The result of the imple-

mentation is shown in figures 5.1 and 5.2. The implementation is close to the

actual design. Only the following changes or additions were made:

• The Main-Visualization area consists of multiple tabs that can be opened or

closed by the user. This allows the user to quickly switch between different

views.

• The visualized graphs are drawn inside a window with scrollbars, which

means that graph layouts that are larger than the area of the tab can be

displayed.

• The bottom area displaying additional information only shows the neighbor-
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hood of the selected trace point. Other additional information is revealed

by mouseover effects.

Figure 5.1: RTGUI implementation

The interactive features specified by the requirements were implemented. The

following enumeration lists all interactive features of the menu bar, as well as the

toolbar.

• The ”Project” menu allows the user to

– save the current view to a file.

– load a new view from a file.

– open the trace point browser.

• The ”Layout” menu allows the user to select between the three different au-

tomatic layout algorithms that are included and apply them to the currently

selected view.

• The ”Edge Shape” menu allows the user to change the way the edges are

drawn in the current view.
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Figure 5.2: Implementation of the trace point browser

• The ”Filter” menu allows the user to

– activate or deactivate filtering in the current view.

– change the filter configuration in the current view.

• The three buttons in the toolbar provide additional view-saving functions.

• The ”Search” text field in the toolbar allows the user to enter any string

and the visualized trace points that contain this string in their name are

selected.

The following enumeration lists all interactive features that are not contained in

the menu bar or toolbar.

• Double-click on one of the view files shown in the left component opens this

view in a new tab.
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• Left-clicking vertices or edges selects them, shift modifier expands the se-

lection instead of creating a new one.

• Left-clicking a vertex additionally shows its neighborhood (concerning the

trace project) in the bottom component (neighborhood-view). The neighborhood-

view may also show trace points that are not included in the currently

selected view.

• Left-clicking on a selected vertex and dragging the mouse moves all selected

vertices.

• Right-Click in a tab opens a context menu, which allows the user to

– create traces.

– delete traces.

– remove trace points (this does not change the trace project, the vertices

are simply no longer depicted in the view).

The trace point browser allows the user to browse through all trace points of

the current project. The trace points can be filtered by their name or by the

providing tool. Selected trace points can either be opened in a new view or can

be added to the current one.

5.2 Packages

The implementation is a java eclipse plugin with the following packages:

presenting The presenting package includes all classes that work on the level of

the presenter in the MVP pattern.

dataModels The dataModels package includes all classes that work on the level

of the model in the MVP pattern. Additionally it includes classes that are

needed for the data of some RTGUI components such as the class Cus-

tomTableModel which is needed for the trace point browser.

41



layouts The layouts package includes all possible graph layouts that can be

applied to a graph. Most of these are subclasses of classes already existing

in the JUNG framework.

graphUI Standard package for the eclipse plugin that only contains the class

activating the plugin if it is needed, as well as the Main class responsible

for the initialization of the RTGUI and a class defining a basic SWT-window

that provides a button to open the external swing user interface.

extensions The extensions package contains subclasses of already existing classes.

These subclasses usually have a highly specialized purpose, for example

dummy trace points, that act as dummy vertices in a graph, which the

Sugiyama method requires.

interfaceComponents The interfaceComponents package contains all compo-

nents of the RTGUI windows.

projectConverter The projectConverter package contains a number of utility

classes for the purpose of transforming information obtained by the trace

project into graph structures that the RTGUI requires.

transformers The transformers package contains any classes that implement

the Transformer interface. They are necessary for the correct drawing of

the graph.

util The util package contains utility classes that provide commonly needed func-

tionality.

5.3 Usage of the JUNG Framework

This section gives an overview over the most important interfaces and classes

provided by the JUNG framework and how they are used in the implementation.

Graph The most basic yet important interface is of course the Graph interface.

It defines a large amount of essential methods that allow the manipulation

of the graph as well as tests for adjacency or incidence. JUNG also provides

implementing classes, such as SparseGraph or SparseMultiGraph.
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Layout The Layout interface is basically a transformer that maps vertices of

a graph to a coordinate. Implementations are the different existing graph

layout algorithms. Used in this visualization are the classes FRLayout and

CircleLayout.

VisualizationServer This interface is the main support for visualization. Its

implementation, VisualizationViewer, takes a graph layout as input and

then visualizes the graph. To do so it subclasses JComponent and therefore

can be put anywhere in a swing window. The interaction with the graph

visualization is highly customizable. The VisualizationViewer class offers

several methods that can modify the default interactive behavior.

RenderContext Each VisualizationViewer has a reference to an object that

implements this interface. The RenderContext offers several more ways

to customize the graph visualization, for example vertex appearance, edge

shape, vertex and edge labeling or edge painting.

For the full Javadoc of the JUNG framework see [JUNb].

5.4 Important Classes and Interactions Between

Them

5.4.1 Realization of the MVP Pattern

The modified MVP pattern that was decided on in the design (see figure 4.3) was

applied. The class interfaceComponents.GraphUI is the main class concerning

the user interface. It integrates all parts of the user interface into one frame.

It is instantiated and called upon by the presenting.Presenter class. This class

handles the logic of the user interface by reacting to user actions, communicating

with the data model and updating the interface via method calls to the GraphUI-

object. The dataModels.Model class administers the data to be presented to the

user. It is instantiated and called upon by the presenter object. Furthermore

the dataModels.Model class is responsible for separating visualized data from the
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original traceability data (trace project). For this purpose it uses the project-

Converter.ProjectConverter. This class provides abstract methods in order to

transform information from the trace project into user presentable data.

5.4.2 Bridge to the RiskTest Plugin

Obviously the data model requires access to the data of the RiskTest plugin. All

communication is handled with the help of the de.fraunhofer.tracing.util.TraceManager

class and the org.yakindu.crema.model.tracing.util.ModelUtil class. These classes

access the trace project which contains all traceability related information.

5.4.3 Visualization of the Views

As figure 5.1 already illustrated the views are visualized inside scroll areas. These

scroll areas are visualized inside of tabs so that multiple views can be opened at

the same time. The structure of the implementation can be seen in figure 5.3.

The central class administrating all relevant information for drawing a view is

TabDataStructure. The Presenter class obviously has a number of references

to these, depending on how many views are currently opened. One TabDataS-

tructure object has a reference to a File object, which contains the path of the

corresponding file. A TabDataStructure instance has two layouts, one filtered and

one unfiltered. Which of these layouts is currently being visualized is stored in a

boolean. The filter rules that were applied are stored in the FilterConfig class. A

TabDataStructure object also has a reference to the VisualizationViewer that is

managing the actual visualization and a reference to the GraphZoomScrollPane

that contains the VisualizationViewer. The TabDataStructure instance is also

able to configure the RenderContext of its VisualizationViewer. TabDataStruc-

ture objects are configured, initialized and manipulated by the Presenter.

5.5 Graph Layout Algorithms

This section describes the layout algorithms that were implemented in detail.
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Figure 5.3: Classdiagram showing the implementation of the views
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5.5.1 Fruchtermann-Reingold Algorithm

The Fruchtermann-Reingold Algorithm is a force-directed graph drawing algo-

rithm. As subsection 2.2.2.8 already explained, force-directed graph drawing

algorithms belong to the most flexible and universal graph drawing algorithms.

The basic concept behind all force-directed drawing algorithms is inspired by

physical forces between the vertices. The vertices will be moved according to the

sum of all forces exerted on them until either they have stabilized and no more

movements occur or a certain number of iterations is exceeded. Then all edges

are drawn (usually as a straight line, but other methods of drawing edges are

possible).

The pseudocode given in algorithm 1 shows the general principle of a force di-

rected algorithm. The formulas for calculating the attractive and repulsive

Data: Graph G = (V,E) , Integer n
Result: positions: A Map of positions
positions = new Map();
positions = initWithRandomValues();
i=0;
while i < n do

newPositions = new Map();
for v ∈ V do

f = calculateResultingForce(v,positions,G);
newPosition[v] = calculateNewPosition(f,positions[v]);

end
positions = newPositions;
i = i+ 1;

end
Algorithm 1: Simple Force-Directed Layout Algorithm

forces, as well as the distance the vertices are to be moved per unit of force can

be adjusted quite a bit. This results in many different force-directed algorithms.

One of them is the Fruchtermann-Reingold algorithm, which is already imple-

mented in the JUNG framework. The Fruchtermann Reingold algorithm has the

additional idea of a global temperature that starts at an initial value and then

linearly decreases. If the temperature is lower, the vertices are moved less dis-

tance per unit of force. This means that as the algorithm progresses (and the
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layout becomes better) the adjustments become smaller. The most important

functions for the Fruchtermann Reingold algorithm in a graph G = (V,E) are:

• The optimal distance between two vertices k = C
√

area
|V |

• attractive force: fa(d) = d2/k ,where d is the distance

• repulsive force: fr(d) = −k2/d ,where d is the distance

The complete algorithm is given in algorithm 2. An example layout calculated

by the Fruchtermann-Reingold algorithm can be observed in figure 5.4. For more

information on force-directed algorithms see [Kob07].

Figure 5.4: Layout created by the Fruchtermann-Reingold algorithm
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Data: Graph G = (V,E);
Integer n; //number of iterations
area = W ∗ L; //W and L are width and length

k =
√

area
|V | ;

for (i=1 to n) do
// calculate replusive forces

for v ∈ V do
// each vertex has two vectors as attributes: .pos and

.disp

v.disp = 0;
for u ∈ V \u do

δ = v.pos− u.pos;
v.disp = v.disp+ (δ/|δ|) ∗ fr(|δ|);

end

end
// calculate attractive forces

for e ∈ E do
// each edge is an ordered pair of vertices: .v and .u

δ = e.v.pos− e.u.pos;
e.v.disp = e.v.disp− (δ/|δ|) ∗ fa(|δ|);
e.u.disp = e.u.disp+ (δ/|δ|) ∗ fa(|δ|);

end
// update positions, limit maximum displacement to current

temperature and prevent displacement being out of the frame

for v ∈ V do
v.pos = v.pos+ (v.disp/|v.disp|) ∗min(|v.disp|, t);
// Previous line was modified, original source had v.disp
instead of |v.disp| when calculating the minimum

v.pos.x = min(W/2,max(−W/2, v.pos.x));
v.pos.y = min(L/2,max(−L/2, v.pos.y));

end
// reduce temperature

t = cool(t);

end
Algorithm 2: Fruchtermann-Reingold Algorithm, taken from [Kob07]
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5.5.2 Sugiyama Method

Healy and Nikolov describe the Sugiyama method or Sugiyama framework as the

most popular approach to drawing hierarchical graphs (see [HN07]). In order

to yield good results it requires directed, acyclic graphs as an input. If the

trace project is hierarchical then it can be interpreted as a graph that is nearly

completely acyclic and directed, which makes the Sugiyama method applicable.

The Sugiyama method can be divided into 5 steps:

1. Cycle Removal

2. Layer Assignment

3. Edge Concentration

4. Vertex Ordering

5. x-Coordinate Assignment

The algorithm that is described here is at times a modified version, specifically

created for the context of traceability.

Cycle Removal

The first step, cycle removal, is done to transform an input graph of any kind

into a directed acyclic graph, which the following step requires. The trace project

can be transformed into a directed acyclic graph by employing knowledge about

the domain hierarchies. Therefore the suggested algorithms for cycle removal are

not explained in this thesis. If these methods are of interest they are described

in [HN07]. The transformation of the trace project into a directed acyclic graph

works in the following way:

1. Edges between trace points of different domains are interpreted as directed

edges, the trace point of the higher domain is the head, the other one the

tail.

2. Edges between trace points of the same domain are ignored for the calcu-

lation of the Sugiyama method’s layout and are dealt with afterwards. An
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alternative to this would be to impose directions on these edges as well, but

it is unclear how to do that in a reasonable way. Furthermore, it would

complicate the next step (layer assignment). Additionally, edges between

trace points of the same domain are rare, so ignoring them will probably

not hurt the resulting layout too much.

A disadvantage of this decision is however that the method will now cer-

tainly fail to produce good layouts for non-hierarchical trace projects. These

are not dividable into a clear hierarchy, which means that the amount of

layer internal edges will be much higher.

After these two steps the trace project is now a directed acyclic graph, which is

necessary for the next step.

Layer Assignment

The second step, layer assignment, requires a directed acyclic graph G = (V,E)

as an input and returns a proper layering L of G. Important terminology and

explanations (also see [HN07]):

Layering Let L = {L0, L1...Lh} be a partition of the vertex set of a graph

G = (V,E) then L is called a layering of G with the layers L0, ..., Lh if

∀(u, v) ∈ E if u ∈ Li ∧ v ∈ Lj then i > j.

Vertex rank The layer or rank of a vertex is the number of its corresponding

layer. The function that returns the rank for each vertex is called l. It

short: l(u, L) = i↔ u ∈ Li.

Edge span The span of the edge e = (u, v) ∈ E in the layering L is defined as

s(e, L) = l(u, L)− l(v, L).

Tight Edges An edge e ∈ E is tight in the layering L if s(e, L) = 1.

Proper Layering A Layering L of a graph G = (V,E) is proper if all edges of

E in L are tight.

It is clear that by categorizing trace points according to their domains and im-

posing direction on the edges as it was done in step 1 (cycle removal) a layering
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was already obtained. Thus the layering algorithms described by the Sugiyama

method are not further described in this thesis. They can be consulted in [HN07].

To make a layering proper Healy and Nikolov suggest the introduction of dummy

vertices to split all edges that are not tight. Figure 5.5 shows the creation of a

(a) (b)

Figure 5.5: (a) shows a non-proper layering, that is made proper by the intro-
duction of dummy vertices in (b)

proper layering from a normal layering via dummy vertices. This algorithm is

intuitive enough that pseudocode is skipped here.

Edge Concentration

The third step is optional. It aims to reduce the number of dummy vertices,

edges and therefore also edge crossings. This however comes at the cost of ad-

ditional, artificial layers which is undesirable, since the current set of layers has

the desirable feature of reflecting the involved domains. Therefore it is advisable

to skip the step in this application.
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Vertex Ordering

The vertex ordering step is also often called crossing minimization since it solely

aims to reduce edge crossings between adjacent layers. The number of crossings

is determined by the relative order of the vertices. What is ideally searched for

is a sequence of vertex-permutations (one for each layer) so that the number of

global edge-crossings is minimized. When attempting this one meets the problem

that this is proven to be NP-hard. Even for the comparably simple case of only 2

layers (a bipartite graph), with one layer already having a fixed order of vertices,

the problem of minimizing edge-crossings remains NP-hard (see [HN07]).

Nonetheless there are a number of heuristic and exact methods solving this prob-

lem. Running time of the exact ones will of course exponentially increase with

the number of vertices but for small graphs they are viable. The different meth-

ods can be categorized into one-layer minimization, two-layer minimization and

multi-layer minimization.

In the context of the RTGUI the greedy-insertion heuristic of the one-layer mini-

mization category is used. While not ideal, the algorithm is simple and can easily

be applied to a multilayered graph. The basic idea is: If V1 and V2 are the two

vertex partitions of a bipartite graph and the order of V1 is fixed, do the following:

Order the vertices of the free layer from left to right by starting with the first

position and insert the vertex v ∈ V2 at the current position if v minimizes the

edge crossings of its incident edges to all edges incident to unchosen vertices.

In order to reduce crossings between all layers this is done iteratively for each pair

of adjacent layers. Additionally, edges between dummy vertices should not be al-

lowed to cross, since this would strongly reduce the readability of these long edges

in the final layout. This is achieved by assigning dummy vertices an already fixed

position when introducing them and ignoring them in the crossing reduction step.

x-Coordinate Assignment

The previous step results in a layered graph with a fixed order of vertices for

each layer. This step is called x-coordinate assignment because most of the times

hierarchies are drawn from top to bottom, meaning that the first layer is drawn

on top, the last one on the bottom. Normally the distance between each of the

layers is the same which only leads to the necessity of now determining an x-
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coordinate for each vertex (y-coordinate is determined by its layer). Of course

hierarchies can also be drawn left to right. This results in a rotation of 90 degrees,

which means that for hierarchies drawn from left to right, the step x-Coordinate

assignment actually determines the y-coordinates of the vertices. The algorithms

for the coordinate calculation are of course applicable in both cases.

The main goal of this step is to straighten as many edges as possible by verti-

cally (horizontally if left to right) aligning connected vertices. There are different

approaches for this problem. The algorithm that was used here is the algorithm

by Brandes and Koepf [BK01] which Healy and Nikolov describe as one of the

best. The basic idea of the algorithm is to place a vertex at the median of its

lower neighbors’ positions, thus minimizing the sum of the lengths of its incident

edges. This can result in different types of conflicts which need to be resolved.

Note that during this step, the order of the vertices should no longer be changed,

since this was done in the step before. A detailed description of the algorithm

can be looked up in [BK01]. The paper about their algorithm was published in

[MJL01].

Layer internal edges

This step is not present in the Sugiyama framework because the layer assignment

algorithms that are normally applied result in a layering without edges between

vertices of the same layer. In the context of RiskTest these edges were simply

removed for the calculation of the layout. After adding them back to the graph

the layers may become unreadable due to edges intersecting vertices. There are

several possible methods in order to deal with this problem. Note that they

should not significantly alter the layout achieved by the Sugiyama method. The

imaginable solutions are:

• Do nothing, but inform the user that hierarchy internal edges may obstruct

the overview. The user is then able to use the layout as a basis and manually

manipulate it until a satisfying layout is created. This has the advantage of

being both convenient and reasonable in most cases, since hierarchy internal

edges are rare.

• Draw all of the internal edges in an orthogonal way. That way, internal
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edges may overlap, but at least they do not intersect vertices.

• Move vertices with many layer internal neighbors a bit up or down (in case

of left to right layer drawing: left or right), so that edges no longer overlap

and do not intersect vertices. The difficulty here is to determine a border

on the number of internal neighbors that needs to be exceeded in order for

a vertex to be moved. Additionally if too many vertices are moved by the

same amount and these also share edges, the original problem arises again.

Since it is known that hierarchy internal edges are rare, the first method was

decided on. While it is certainly not ideal to have the user correct flaws in an

automatic layout algorithm, it is a practical solution. After all, the user knows

best what kind of adaptions to the layout make it the most readable for him or her.

The adapted variant of the Sugiyama method described above was implemented

in the RTGUI. Its implementation is done by the class layouts.HierarchialLayout.

An example layout calculated by the Sugiyama method is shown in figure 5.6.

Figure 5.6: Layout created by the Sugiyama method after slight user modifica-
tions
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5.5.3 Circle Layout

Circular drawing algorithms can be applied to any graph. Thus they provide

an alternative to force-directed graph drawing algorithms when dealing with

non-hierarchical trace projects. The JUNG-framework provides a single-circular

drawing algorithm which is included in the visualization. Since it remains un-

clear which specific algorithm is implemented by the JUNG-framework, no further

description can be given. An example layout calculated by the circular layout

algorithm can be observed in figure 5.7.

Figure 5.7: Layout created by the circular layout algorithm provided by the
JUNG framework

55



Chapter 6

Validation

This chapter validates that the implementation of the RTGUI satisfies the re-

quirements that were collected.

Section 5.1 already explained the interactive features that the implementation

offers. By comparing these with the requirements that were collected in chapter

3 one can already see that all of them were met. To further demonstrate that,

this chapter presents an example usage of the RTGUI. With an example project,

the following shall be achieved via RTGUI:

1. Get a general overview over the traceability structure of the example trace

project.

2. If necessary, manually change the layout of the visualized graph until a clear

and aesthetically pleasing layout is achieved.

3. Save this layout as a view.

4. Modify the example trace project via the RTGUI.

5. Find out how many test cases can be traced to a security risk.

6. Save another view depicting these traces.

At first the RTGUI is opened and it displays its initial state (see figure 6.1). One

can see in the project browser on the left that there are no views saved in the
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project directory at the moment.

To access the trace project the trace point browser is opened (see figure 6.2). It

Figure 6.1: RTGUI is initially opened

reveals that there are 63 trace points in this project. By employing the filter

at the top-right corner, one can quickly get an overview over the distribution of

these trace points among the different providing tools:

• 1 trace point by CORAS

• 1 trace point by ProR

• The rest of the trace points are almost evenly divided among Eclipse Pa-

pyrus and TTWorkbench: 31 trace points by Eclipse Papyrus and 30 by

TTWorkbench.

63 is a comparably low number of trace points for a trace project, but a rather

large number of vertices to visualize in one graph (the higher the number of

vertices, the more complex the graph, thus the more difficult to find a good visu-

alization). Nonetheless it shall be tested how the layout algorithms perform. All

trace points are selected and opened in a new view.
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Figure 6.2: The trace point browser reveals all trace points in the example trace
project

Figure 6.3: The whole trace project is visualized as a graph
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The standard layout algorithm that is applied to the traceability graph is the hi-

erarchical layout algorithm (Sugiyama method). The layout algorithm correctly

identifies the hierarchies, the layout does however seem to have the flaw of many

layer internal edges (discussed in subsection 5.5.2) in the third layer which makes

the layout hard to read. Additionally the layout is space consuming due to high

minimum vertex distances. Thus the layout is switched to the Fruchtermann-

Reingold layout (see figure 6.4).

The Fruchtermann-Reingold layout immediately returns more pleasing results. It

Figure 6.4: Switch to the Fruchtermann-Reingold layout

manages to reduce the area in which the graph is drawn, resulting in smaller dis-

tances the beholder needs to scroll in order to view the whole graph. Additionally

and more importantly one can now identify the traces much better since edges

no longer overlap. The problem for the hierarchical layout seemed to have been

a central trace point in the layer of Papyrus, which is connected to all other trace

points of Papyrus. A look on the neighborhood of this vertex confirms this (see

figure 6.5). The neighborhood can be viewed by selecting the vertex and moving

the border between the visualized graph and the neighborhood view upwards.

A disadvantage of the Fruchtermann-Reingold Layout is that the labels of the

vertices are not always readable, a problem that did not arise in the hierarchical
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Figure 6.5: Neighborhood of the central trace point

layout, due to the high minimum vertex distances. In order to have both advan-

tages, the view that was achieved by the Fruchtermann-Reingold layout is saved,

and the layout is once again changed to the hierarchical layout. The central ver-

tex is now manually moved upwards, which resolves the issue of the layer internal

edges (see figure 6.6).

What remains to note about the hierarchical layout though is that the number of

edge crossings between the third layer(Papyrus) and fourth layer(TTWorkbench)

is very high, which results in bad readability in this part. The Fruchtermann-

Reingold layout clearly showed the fact, that in this project one actual test case

(TTWorkbench) is connected to exactly one modeled test case (Papyrus). The

hierarchical layout fails to do so due to the high number of edge crossings between

the two layers. It seems that the vertex ordering heuristic that was chosen in the

crossing minimization step of the Sugiyama method(see subsection 5.5.2) is not

ideally suited for this particular trace project.

The manually improved layout is saved as well. Now, as an example of project

modification, the traces between four trace points shall be swapped. The swap is

done by creating the new traces and deleting the old ones (see 6.7).

That the modification of the trace project was successful is shown in figure 6.8

which depicts the tracing explorer, a part of the RiskTest user interface that al-

lows to see relations between the trace points in a tree-like structure.
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Figure 6.6: Manually improved hierarchical Layout

(a) initial state, trace points
of interest are marked

(b) new trace is created via
context menu

(c) old trace is deleted via
context menu

(d) state after the modifica-
tions

Figure 6.7: Example modification of the trace project
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The tracing explorer shows that indeed the fuzzed testcase 8 of Papyrus is now

Figure 6.8: TraceExplorer reflects the changes made via RTGUI

linked with the fuzzed testcase 19 of TTWorkbench.

It is now of interest how many test cases can be traced to the security risk(trace

point of tool CORAS). In order to properly visualize this, the trace points of

ProR and Papyrus do not need to appear in the visualized graph. Since this

trace project reflects the standard use of RiskTest, the providers can be put into

hierarchical relations. Thus the filtering options that are applied do not result

in the loss of any information, since virtual edges will be inserted. In order to

find a compact visualization the circle layout is chosen and the providers ProR

and Papyrus are filtered from the view. The comparison between the unfiltered

(a) unfiltered circle layout (b) filtered circle layout

Figure 6.9: New layouts to find out how many test cases can be traced to the
security risk
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layout and the filtered layout in figure 6.9 shows that filtering options combined

with the notion of virtual edges are a powerful approach to strongly reduce com-

plexity while still preserving traceability information. The filtered layout can

now be further improved by moving the security risk to the center (see figure

6.10). Figure 6.10 also shows that the actual neighborhood of the security risk

in the trace project has not changed. The actual neighborhood is depicted in the

neighborhood view below the circle layout.

After applying the filter it is easy to see that all 30 test cases in this trace project

have traces to the security risk.
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Figure 6.10: Final layout, including the neighborhood view of the security risk
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Chapter 7

Conclusion and Prospects

This chapter concludes the thesis and gives an overview over possible goals in the

future.

7.1 Conclusion

The goal of this thesis was to create a visualization for dependencies (traces)

between artifacts of different tools in the RiskTest traceability framework.

Traceability data, that means a set of artifacts and a set of links between those,

has the form of a graph which made graph visualization a central topic of this

thesis. It was shown that while there are many categories of graph drawing algo-

rithms, not all of them are viable for the domain of traceability, since some of them

require constraints that are not given in the very general task of visualizing trace-

ability data. The algorithms that were decided on are the Fruchtermann-Reingold

algorithm, a force-directed graph drawing algorithm, the Sugiyama method, a

hierarchical graph drawing algorithm, and a single circular graph drawing algo-

rithm. All of these algorithms were of use during the validation phase, which

implies that the choice was justified.

Furthermore it was established that a static visualization is not sufficient. The vi-

sualization was required to have many interactive features which led to the neces-

sity of developing of a basic user interface containing the visualized data. There-

fore the RiskTest Graph User Interface (RTGUI) was developed, which combines

the visualization of traceability data with interactive possibilities. To facilitate
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the development of the RTGUI, several graph drawing frameworks and tools were

inspected out of which the JUNG framework (Java Universal Graph/Network

Framework) was suited best for the development of the RTGUI.

The RTGUI was successfully implemented and integrated into the RiskTest trace-

ability framework which means that the overall goal of this thesis was achieved.

Even though the visualization of traceability data was successfully implemented

there are still relevant topics and open issues that were not extensively dealt with

in this thesis. The last section briefly mentions each of these.

7.2 Prospects

Usability Usability, although undoubtedly an important factor when creating

user interfaces, was not the main topic of this thesis, since its focus was

laid on finding appropriate ways to visualize traceability data. Thus the

usability of the RTGUI could still be enhanced, for example through the

addition of key bindings, drag and drop functionality, improved look and

feel and many other factors that affect usability.

Integration of the RTGUI into the RiskTest Window The necessity of an

external swing window came through JUNG’s natural support for swing.

RiskTest however uses SWT as the basis for visualization. There are some

methods that can be applied to integrate swing components into SWT win-

dows. One could try to apply these here. If they are successful, the RTGUI

could be integrated into the main Window of RiskTest, which would im-

prove the overall handling of RiskTest.

Graph Drawing: Add a labeling algorithm Currently the labels are placed

in default positions by the JUNG framework. In some of the resulting

layouts this can result in the overlapping of labels with other labels, edges

or vertices. This is of course undesirable since it makes the labels hard to

read or can even lead to wrong assumptions if the beholder is confused which

label belongs to which vertex. There are algorithms specifically designed

for the purpose of labeling a map or a drawing of a graph ( see [KGT07]).
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These algorithms could be reviewed and applied to further improve the

graph layouts.

Graph drawing algorithms for large graphs The layout algorithms that were

chosen work well for small to medium sized graphs. They are practical for

uses in smaller projects or excerpts of larger projects. However, if it is de-

sirable to view the complete traceability graph of a large project at once,

different algorithms will need to be employed. To find out which of these

are viable choices for visualizing large amounts of traceability data could

be a field of study in the future.
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